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by

Stephan Boyer

Submitted to the Department of Electrical Engineering and Computer Science
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Master of Engineering in Electrical Engineering and Computer Science

Abstract

Ad hoc polymorphism allows a value to take on multiple types, with a separate
definition of the value provided for each type. We offer a new formalization
of this old concept as a typed lambda calculus. Motivated by the aspiration of
extending System F with ad hoc constraints, we introduce a new mechanism for
implicit parameter passing. Putting these ideas together, we present a practical
replacement for bounded type quantification with simpler metatheory.
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Chapter 1

Introduction

A type system is a tractable syntactic method for proving the absence of certain

program behaviors by classifying phrases according to the kinds of values they

compute.

-Benjamin C. Pierce in [4]

The challenge for a type system is to be expressive enough to type any pro-

gram one might reasonably want to write, yet simple enough for a programmer

to use effectively. Polymorphism is a prevailing source of both expressivity and

complexity in type systems. Suppose we wish to write a generic function

square x A x x x

defined over any kind of value that can be "multiplied" by itself. The work pre-

sented in this thesis is motivated by a simple question: what type should we

ascribe to square?

To make sense of this question, we must have some mechanism for defining

multiplication over various types. One would expect x to be implemented differ-

ently for integers and matrices, for example. The ability for multiple definitions

of x to coexist in the same scope and be disambiguated by their type signatures

11



is called ad hoc polymorphism.1 Our first contribution is to formalize ad hoc poly-

morphism in the lambda calculus, the lingua franca of type theory research.

The simply typed lambda calculus of 2.2 can only ascribe monomorphic types

to square. For example, we can prove the judgment

x : Integer -+ Integer -+ Integer H square : Integer -+ Integer,

which informally reads "assuming x takes two Integers and returns an Integer,2

square takes an Integer and returns an Integer." Symmetrically, we can also prove

x : Matrix -+ Matrix -4 Matrix F- square : Matrix -- Matrix,

but there is no way to express that square can be used on any type for which there

is a binary x operator.

Parametric polymorphism allows types to be parametrized by other types.

System F, described in 2.3, extends the simply typed lambda calculus with uni-

versal quantification, the most common form of parametric polymorphism. Sup-

pose we define square to accept a multiply function as well as the operand to be

squared:

square multiply x A multiply x x

Then in System F3 we can show

H square: VX. (X -+ X - X) -- X - X.

Thus, System F can successfully type square as a generic function, but at the cost

of adding multiply as a formal parameter. For larger programs, the ceremony of

'Ad hoc polymorphism is also called overloading.
2More formally, x takes one Integer and returns a function which maps the second Integer to

the final Integer. Functions in the lambda calculus only accept a single formal parameter. Polyadic
and variadic functions are emulated by currying.

3Technically, System F as presented in 2.3 would require that square also take the type of
the operand as a formal parameter. We elect to use a simplified presentation here, deferring the
details of the formalism to Chapter 2.

12



explicitly abstracting over every such function is too cumbersome. Our second

contribution is to introduce a mechanism to mitigate this inconvenience.

Subtyping is the object-oriented approach to polymorphism. We can represent

an object which can be multiplied by itself as a record containing a value and a

multiply method. Such a record can be given the recursive type4

T A yX . {x : T, multiply : X - X - X}.

Now we can define5 square as

square x A x.multiply x x

and show

I square: T -+ T.

We can define a subtyping relation <: over types, and any value whose type

is a subtype of T can be squared. This may seem like a success, but it has several

disadvantages. First, the metatheory is significantly more complex. We have to

introduce the concepts of records, recursive types, subtyping, etc. Second, it is not

always sensible to package a polyadic operator as a method of one of its operands.

Finally, square is now "lossy": square x where x : S <: T is an expression of type

T, not S. The details of S not shared by T are forgotten.

That last concern is remedied by bounded quantification. The idea is to combine

subtyping with parametric polymorphism, such that we can show

F- square : VS <: T . S -+ S.

With bounded quantification, square x where x : S <: T has type S, not T. No

type information is lost, at the expense of additional metatheoretic complexity.

4This definition is somewhat problematic because any subtype S of T would require that its
multiply method accept values of type T, not just S. This is due to contravariance, another intricacy
of subtyping.

5The notation x.multiply means the field multiply of record x.

13



Type classes and implicits, from Haskell and Scala, respectively, offer com-

pelling solutions for ad hoc polymorphism. We believe ours is a more fundamen-

tal "kernel" which these heavier frameworks approximate.

Chapter 2 reviews the background knowledge on which our work is built.

Chapter 3 describes our approach to ad hoc polymorphism. Chapter 4 intro-

duces a mechanism for implicit parameter passing to make programming with

polymorphism more convenient in practice. Finally, Chapter 5 summarizes our

contributions and suggests directions for future work.

14



Chapter 2

Prerequisites

This chapter surveys the main ideas upon which our work builds. We use c to

stand for constants, s and t for arbitrary terms, x, y, z, and w for variables, S, T,

and P for types, X and Y for type variables, and r for contexts. The names of

types are capitalized, and the names of terms are lowercase.

2.1 The untyped lambda calculus (A)

The lambda calculus is a model of computation developed by Alonzo Church in

the 1930s. Originally intended to be a logical system, it was proven inconsistent

by [1] and thus unsuitable as a foundation of mathematics-but it found other

purpose. Church used it in [2] to prove the impossibility of constructing an algo-

rithm which correctly decides for any given statement whether it is provable in

first-order logic. Peter Landin discovered its use as a programming language in

[3], and it has been the kernel of functional programming languages ever since.

2.1.1 Syntax

The syntax of the lambda calculus is given in Figure 2-1. Every term is understood

to be a function, and there are three syntactic forms. A variable such as x is a term.

An abstraction Ax. t of a variable x from a term t is a term. Finally, the application

15



t1 t2 of one term to another is a term. The body of an abstraction extends as far

to the right as possible, meaning Ax . y z is interpreted as Ax . (y z). Application

is left-associative, meaning tj t2 t 3 is interpreted as (t1 t2 ) t3-

t (term)
x (variable)
Ax . t (abstraction)
t t (application)

Figure 2-1: Syntax of terms for A

For example, the term Ax . x represents the identity function. With parentheses

to clarify the precedence, the term (Ax . x) y is the identity function applied to the

variable y. The term Ax . Ay . x is a function with formal parameter x, returning

a function which ignores its parameter and returns x. 1

2.1.2 Free and bound variables

A variable x is bound if it appears as the formal parameter of an abstraction Ax.t.

A free variable is one which is not bound. More formally, the free variables of a

term are defined inductively as

1. free (x) = {x}

2. free (Ax . t) = free (t) - {x}

3. free (t1 t2 ) = free (ti) U free (t2 )

where - and U are set difference and union, respectively.

2.1.3 Substitution

The notion of substitution turns out to be both subtle and paramount in our work,

so we pay special attention to the details here. Substitution is tricky is because

1While not formally correct, it is useful in practice to think of this term as a function accepting
two arguments, x and y, and returning x.

16



two things can go wrong:

1. A bound variable becomes free or bound to a different binder.

2. A free variable becomes bound.2

Thus, substitution must be done carefully such that bindings (and the lack

thereof) are preserved. The rules for substitution are given in Figure 2-2.

X [x -+ s]= s

y [x - s] = y if y # x
(Ay . t) [x - s] =Ay . t [x - s] if y = x and y 4 free(s)

(t1 t2 ) [x -+ s] = t1 [x -4 s] t2 [x '-+ s]

Figure 2-2: Capture-avoiding substitution

The third rule is not "total", meaning not every case is covered. For example,

Aa . x [x - a] is not defined above. The resolution is to rename bound variables

to "fresh" variables, such that the meaning of the terms is preserved. 3 Since the

set of variables is infinite, there will always be an unused variable available to use.

For example, (Aa . x) [x '-+ a] can be rewritten as (Ab . x) [x - a], which becomes

Ab . (x [x - a]) and finally Ab . a.

2.1.4 Operational semantics

A redex4 is a term of the form (Ax . t1 ) t2 . We can rewrite this term by substituting

t2 for x in t1 . For example, (Ax . x) y can be rewritten as y. Rewriting redexes in

this way is called beta reduction.

It is natural to ask: in what order are redexes in a term reduced? There

are several strategies. We will describe a call-by-value strategy here; the choice of

17
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reduction strategy is inconsequential for our work. The operational semantics is

given in Figure 2-3.

For our purposes, a redex will be reduced only when it is in an outermost

position and its right side cannot be reduced any further. Here, outermost means

the redex is not in the body of any abstraction. In the term ti (t 2 (Ax . t3 )), for

example, the subterms t1 , t2, and Ax . t3 are outermost, but t3 is not. In the case

that both sides of an outermost application are redexes, we choose to reduce the

left side first. With this reduction strategy, arguments to functions are evaluated

before they are substituted into the function body. This strategy is strict, meaning

that an argument is always evaluated before the body of the function, even if it is

never referenced.

To demonstrate beta reduction, consider the term (Ax . (Ay . x y)) ((As . t) u).

With one step of beta reduction, the term is rewritten as (Ax . (Ay . x y)) t. A sec-

ond step gives Ay . t y, and no more reductions are possible.

Let v represent any variable x or abstraction Ax . t, but not an application t1 t2.

1 (E-Appl)
tl t2-+t' t2

t +t' (E-APP2)
V t - Vt

(Ax . t) v t [x 1- v] (E-APPABS)

Figure 2-3: Operational semantics for A

2.2 The simply typed lambda calculus (A-)

We can extend the untyped lambda calculus with primitive data types, such

as Integer and Boolean, and functions operating on them, such as successor i

18



and not b. 5 But this allows for some uncomfortable possibilities, for example,

successor true or not 5. In this section, we review a formal system for ruling out

such meaningless expressions.

2.2.1 Syntax of types

The idea is to design a set of rules to ascribe types to meaningful terms, leaving no

possibility of typing a nonsensical program. The syntax of types is shown in Fig-

ure 2-4. We start with a set of base types B, for example B = {Integer, Boolean}. In

addition to those, we can build types for functions such as Boolean -+ Boolean and

Integer -+ Integer -÷ Integer. The -÷ operator is right-associative, so Integer -

Integer -- Integer is interpreted as Integer -+ (Integer -+ Integer).

T ::= (type)
P where P E B (base type)
T -+ T (arrow type)

Figure 2-4: Syntax of types for A,

2.2.2 Syntax of terms

The syntax for terms, given in 2-5, is almost identical to that of the untyped

lambda calculus from 2.1.1. There are two differences:

1. There are new terms for constants.

2. Abstractions Ax : T . t now have type annotations for their arguments.

2.2.3 Typing rules

Each syntactic category of terms has a typing rule dictating what type, if any, to

ascribe to terms of that category. For example, the typing rule for constants is:
5These types and functions can be implemented without any additions to the untyped lambda

calculus, but it is convenient to have them as primitives. See 5.2 of [4] for details.

19



t (term)
c (constant of type P C B)
x (variable)
Ax : T . t (abstraction)
t t (application)

Figure 2-5: Syntax of terms for A_

c is a constant of type P (TCONST)
TFc:P

The judgment above the line is the premise, and the judgment below is the con-

clusion. In the case of multiple premises above the line, they are interpreted as a

conjunction. F is a set of typing assumptions, which can be thought of as a map

from variables "in scope" to their types. Here, the judgment F I- c : P means c has

type P for any typing assumptions F, since F was not referenced in any premise.

So this rule is understood to mean: under the premise that c is a constant of type P,

we know c : P in any context F.

The rule for variables states that, under the premise that if the context F con-

tains the assumption x : T, then we know x : T in that context. This rule may

seem redundant, but it is necessary to formalize the semantics of F:

x: T E F (T-VAR)
FI-x:T

The rule for abstractions states that if we can prove the body of an abstraction

has type T2 assuming the argument has type T1, then we know the function has

type T1 -+ T2:

F, x : T1 I- t2 : T2 (T-AS)
F I- Ax: T2 . T2 : T1 -+ T2

The syntax F, x : T1 means F amended such that x maps to T1 . If x was already

in F, then it is overwritten to map to T1 .6 Note that the T-ABs rule does not

6Many treatments of the simply typed lambda calculus require that x not already exist in F.
The choice of allowing variable shadowing is inconsequential for our purposes.
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uniquely determine the type for an abstraction. For example, Ax . x has type

Boolean -+ Boolean and also type Integer -+ Integer according to this rule.

Finally, the rule for applications requires that the argument type for the ab-

straction match the type of the right side of the application:

F t1 : X Y F F t2t: X(T-App)
TF t1 t2 : Y

The rules for the simply typed lambda calculus are summarized in Figure 2-6.

They can be chained to form proofs about the types of programs. For example,

here is a proof that Ax : Boolean . 5 has type Boolean -+ Integer:

5 is a constant of type Integer (T-CONST)
{x : Boolean} I- 5 : Integer

H Ax : Boolean . 5 : Boolean -+ Integer

c is a constant of type P
F I- c : P(T-CoNsT)

x: T c r (T-VAR)
FHx:T

F,x : T1 H t2 : T2 (T-ABS)
F F Ax: T2 . T2 : T1 -+ T2

F ktj : X -Y F t2 : X (T-AP)
F t1 t2 : Y

Figure 2-6: Typing rules for A,

Theorem 1 (Uniqueness of types in A-). In the simply typed lambda calculus, a term

has at most one type.

Proof. The proof is by induction on typing derivations. The induction principle

is that the type of a term is fixed given a context and the term itself. There are

two base cases. The T-CONST rule is the first base case. Observe that the type of

a constant depends only on the constant itself. The second base case is the T-VAR

21



rule, which fixes the type of a variable given a context which contains it. For the

T-ABs rule, the argument type is fixed because it is written in the term itself (e.g.,

Ax : Integer . x). The return type is fixed by induction on the premise. So the

whole arrow type is fixed. Finally, for the T-APP rule, the type of the abstraction

and the type of the argument are both fixed by induction, so the resulting type is

fixed as the return type of the function. Thus, a term cannot have more than one

type. E

2.2.4 Operational semantics

The operational semantics for A, is identical to that of the untyped lambda calcu-

lus, given in Figure 2-3, except abstractions Ax : T . t now have type annotations.

However, there are two interpretations:

1. In the Curry style, the operational semantics is defined for all terms, includ-

ing those which are ill-typed. The type system then eliminates undesirable

terms, but typing comes after semantics.

2. In the Church style, only well-typed terms are given semantics. It does not

make sense to speak of the semantics of an ill-typed expression. Typing

comes before semantics.

In our work, we will adopt the Church style by necessity, as semantics will depend

on types.

2.3 System F

Recall the function square multiply x A multiply x x from Chapter 1. For any type

we choose for multiply, we end up with a corresponding type for square:

- square : (Integer -+ Integer - Integer) - Integer - Integer,

I square: (Matrix - Matrix -+ Matrix) -+ Matrix -+ Matrix,

22



These types are identical modulo the choice of operand type. We would like

to be able to abstract the operand type out, such that this infinite set of types

collapses into one parametric type. System F, discovered independently by Jean-

Yves Girard in [5] and John C. Reynolds in [6], provides that mechanism. With

System F, we can define

square A AX. Af : X -+ X -+ X. Ax: X .f x x.

The X argument is a type, and the f and x parameters are constrained by that

type. Written in this way, square can be shown to have type

- square: VX. (X - X -+ X) -+ X -+ X.

2.3.1 Syntax of types

The syntax of types is shown in Figure 2-7. It is identical to that of the simply

typed lambda calculus, except with two new forms:

1. X (type variable)

2. VX. T (universal type)

Universal types are the types of polymorphic values, that is, values which take a

type as a parameter. Type variables represent those type parameters on the type

level.

2.3.2 Syntax of terms

System F adds two new forms to the syntax of terms:

1. AX . t (type abstraction)

2. t T (type application)

23



T ::= (type)
P where P C B (base type)
T - T (arrow type)
X (type variable)
VX. T (universal type)

Figure 2-7: Syntax of types for System F

Type abstractions are a new kind of function which take a type as a parameter

and return a term. The full syntax is given in Figure 2-8.

t ::= (term)
c (constant of type P E B)
x (variable)
Ax: T. t (abstraction)
t t (application)
AX. t (type abstraction)
t T (type application)

Figure 2-8: Syntax of terms for System F

2.3.3 Typing rules

The typing rules for System F are given in Figure 2-9. The two new rules are

T-TABs and T-TAPP, for type abstraction and application, respectively.

2.3.4 Operational semantics

The operational semantics for System F is given in Figure 2-9. The rules for type

application and abstraction take the same form as their term-level counterparts.

24



c is a constant of type P
F F- c : P(T-CoNsT)

x x: T (T-VAR)

F,x : T1 F t2 : T2 (T-ABS)
F I- Ax: T2 . T2 : T1 -+ T2

F -t : X -+ Y
F I- t1 t2

YF t2 : X (T-APP)
Y

F . t X T (T-TABS)
FI- AX. t: VX.T TTA)

F K t : VX. T1
F K t T2 : T1 [X " T2 ]

(T-TAPP)

Figure 2-9: Typing rules for System F

Let v represent any variable x, abstraction Ax : T . t, or type abstraction AX . t,
but not an application t1 t2 or type application t T.

1 (E-Appl)
tl t2 -4-t' t2

t +t' (E-APP2)
V t - V V

(Ax . t) V- t [x (E-TAPPAB

t t' (E-TAPP1)
t T - t' T

(AX. t) T -- + t [X -4 - (E-TAPPTABS)

Figure 2-10: Operational semantics for System F
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Chapter 3

The lambda-cross calculus (A X)

Recall our goal of ascribing a type to the generic function square x L x x x. First,

we must devise a mechanism to allow the x operator to be defined over various

types; this is called ad hoc polymorphism. More precisely, it should be allowed for

multiple values to be bound to a single name in the same scope, as long as they

have different types. In this chapter, we formalize this idea as a typed lambda

calculus. To give the system a name, we choose Ax, pronounced the lambda-cross

calculus. The x symbol was chosen to suggest an overloaded operator.

3.1 Syntax of types and terms

The typing rules and operational semantics give A x its unique personality, whereas

the syntax of types and terms is the same as that of the simply typed lambda cal-

culus. For convenience, the syntax is reproduced in Figures 3-1 and 3-2.

T ::= (type)
P where P E B (base type)
T -+ T (arrow type)

Figure 3-1: Syntax of types for Ax
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(term)
c (constant of type P E B)
x (variable)
Ax : T . t (abstraction)
t t (application)

Figure 3-2: Syntax of terms for Ax

3.2 Typing rules

The typing rules for A.x are syntactically identical to those of the simply typed

lambda calculus, with one semantic difference: the interpretation of the context.

In the simply typed lambda calculus, the context is a map from variables to types,

and a variable must map to at most one type. In Ax, the context is a multimap, that

is, a structure allowing for a single variable to simultaneously map to multiple

types. The syntax F, x : T adds x : T to the multimap F, but does not remove any

existing mapping in the case that x was already in F.

This subtle difference allows a term to take on multiple types in the same

scope. For example, consider the term Ax : Integer . Ax : Boolean . x. The

innermost x takes on the types Integer and Boolean simultaneously, and this leads

to two distinct type derivations:

x : Integer C x : Integer,x : Boolean

x : Integer, x : Boolean F- x : Integer (TVAR)

x : Integer P Ax : Boolean . x : Boolean -+ Integer (T-ABs)
F Ax: Integer . Ax : Boolean. x : Integer - Boolean -+ Integer

x : Boolean E x: Integer,x : Boolean

x : Integer, x : Boolean - x : Boolean (T- A

x : Integer F Ax : Boolean . x : Boolean -+ Boolean (T-ABs)
F Ax: Integer . Ax : Boolean . x : Integer -+ Boolean -+ Boolean

This is in contrast to the simply typed calculus, in which a term can have at most

one type (cf. Theorem 1).
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c is a constant of type P
F - c (T-CoNsT)

x: T E F (T-VAR)
FF-x: T

F, x: T1 F t2 : T2 (T-ABS)
F I- Ax: T2. :T1 -+ T2

TFt1 :X-+Y TFt2 :XF -tj X F t2: X(T-APP)
F t1 t2 :Y

Figure 3-3: Typing rules for Ax

3.3 Type-aware substitution

The operational semantics of A x depends on types. We have to modify the me-

chanics of substitution given in 2.1.3 to be type-aware. Now that a variable can

simultaneously refer to multiple values of different types, we have to ensure beta

reduction does not accidentally apply substitutions to variables which have the

right name but are bound to the wrong value. For example, when substituting in

the definition of integer multiplication for x, we don't want to affect any instances

where x refers to matrix multiplication. The rules for type-aware substitution are

given in Figure 3-4. Just as in Figure 2-2, the rules in Figure 3-4 are partial. In

the case that no rule applies, bound variables must be alpha-renamed to fresh

variables.

The type-aware substitution rules deserve some explanation. The first thing

to notice is that the syntax t [FIx : X '-+ s] includes a type context F and a type

annotation for the variable. The meaning of this syntax is "in a capture-avoiding

manner, replace any free instances of x in term t with s if the instance can be

shown to have unique type X in context F." As with typing rules, the context is

used to keep track of the variables in scope and their types. For consistency with

the typing rules, the context is a multimap. The syntax F - x, x : X means F with

any annotations for x replaced with the single annotation x : X.
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x [FIx: X F-i s] =
s ifF-x:XandFr'Yx:YforallY#X

x otherwise

y[FIx: X -4s] =yify#x

(Ay: T. t) [Fix: X - s] = Ay: T. t [F,y: Tix: X - s]

if y $ x and y i free(s)

(z w) [Fix: X -+ s] =

z [r - z,z : T1 -+ T2 1x: X F- s]

w [r - w,w: T2 |x : X - s]

if F F- z: T1 -+ T2 and F F w: T2

(z t ) [rix : x F-- s] = z [r - z,z : T2 --+ T2|x : X - s ] t [rix : x F- s]

if F F- z : T1 --+ T2 and F F- t: T2

and t is not a variable

(t w) [Fix: X -+ s] = t [Fix: X -4 s] w [F - w,w: T2 |x: X '-4 s]

if F F- t: T1 --+ T2 and F I- w: T2

and t is not a variable

(t1 t2 ) [F x :X - s] = t1 [Fix : X -+ s] t2 [Fix : X F-+ s]

if t1 and t2 are not variables

Figure 3-4: Type-aware substitution

The first rule specifies that a variable will only be substituted if it can be shown

to have the target type and no other type.

x [Fix: X F-- s] =

s

x

if F F- x: X and F V x: Y for all Y 7 X

otherwise

The second rule is identical to that of the lambda calculus.

y [Fix : X '-4 s] = y if y 3 x

The third rule resembles that of the lambda calculus, with the bound variable
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y added to the context in the recursive substitution.

(Ay: T. t) [FTx : X '-4 s] = Ay: T. t [F,y: T~x: X - s] if y / x and y i free(s)

The fourth, fifth, and sixth rules give rise to ad hoc polymorphism. In an appli-

cation, either the left subterm or the right subterm (or both) may be polymorphic,

and these rules choose an implementation such that the types link together. For

example, in the expression negate 3, the fifth rule will ensure the correct version

of negate is applied if multiple are in scope.

(z w) [Tx:

(z t) [Flx:

(t w) [F|x:

X - s] = z [F - z,z: T1 -> T2 |x: X - s] w [F - w,w: T2 |x: X - s]

if F K z: T1 -* T2 and F -w: T2

X - s] = z [F - z,z: T2 -4 T2 |x: X " s] t [Flx: X -+s]

if F F-z : T1 -- T2 and F F-t : T2 and t is not a variable

X " s] = t [Flx: X - s] w [F - w,w: T2 |x: X " s]

if F F-t : T1 -+ T2 and F I-w : T2 and t is not a variable

The typing rules guarantee that these substitution rules will always find an

appropriate implementation for z or w, but they don't guarantee uniqueness. For

example, consider the expression negate x. If negate is implemented for both

integers and rationals and x has both an integer and rational definition in scope,

then substitution is nondeterministic. If deterministic behavior is required, such

expressions should be rejected.

Finally, the seventh rule has the same form as the corresponding rule from

capture-avoiding substitution.

(t 1 t2 ) [Fx: X '-4 s] = t1 [Fx: X " s] t2 [Flx: X '-4 s]

if t1 and t2 are not variables
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3.4 Operational semantics

Once the details of type-aware substitution have been fleshed out, the operational

semantics for Ax is straightforward. The semantics is identical to that of the

lambda calculus, except the E-APPABs rule uses type-aware substitution instead

of vanilla capture-avoiding substitution.

Let v represent any variable x or abstraction Ax . t, but not an application ti t2 .

tj -- + t' Apl1 (E-APP1)
6 t2-+t' t2

t t, ' (E-APP2)
V t - V t

(Ax : T. t) v -+ t [jx : T - v] (E-APPABS)

Figure 3-5: Operational semantics for Ax

3.5 Example: overloading negation

In A.x, we can define negation (n) over integers (I) and rationals (Q), with separate

implementations. With both definitions in scope, suppose we want to negate the

integer 5. First, we write the term

(An : I - I. (An : Q -+ Q. n 5) nQ) n1 ,

where nj and nQ are the implementations of negation for integers and rationals,

respectively

Next, we construct a typing derivation:
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n : I --+ I E
n I -+ I,
n:Q -Q (T-VAR)
n: I -+ I,
n:Q-Q

F n I + In : I -+ I,

n:Q-Q

5 is a constant
of type I (T-CONST)
n : + I, 
n:Q1+Q

F- 5: I (T-APP)

-nQ :Q-Q (T-APP)

Ne - (T-ABS)
F- An:I -+ I. (An : Q -+ Q. n 5) nQ : (I -+ I) -+ I

F- (An :1 - I. (An : Q -+ Q. n 5) nQ) nj : I

To evaluate the term, we first apply the E-APPABs rule.

(An: Q -4 Q . nj 5) nQ

Notice how the innermost n was substituted with n1 . Finally, we apply the

E-APPABS rule once more.

nI 5

We see that the correct implementation of n was chosen to negate 5.
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Sn: I I (T-ABs)

F An: Q -+ Q. n 5
(Q -*Q) I

n: I-I
F- (An: 0 - 0. n 5) n : I

F- n, : I -+ I
(T-APP)
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Chapter 4

The lambda-delta calculus (A)

Recall the parametrically polymorphic definition of square from 2.3:

k- AX. Af : X -+ X -+ X . Ax: X. f x x : VX. (X - X a X) 3 X -+ X

As we mentioned in Chapter 1, we'd rather not explicitly pass the multiplication

function f at every call site for square. In this chapter, we will introduce a calculus

which provides a mechanism for implicit parameter passing. We call this system

A6, pronounced the lambda-delta calculus. It is named after one of its syntactic

constructs.

4.0.1 Syntax of terms

The syntax of terms comes from the simply typed lambda calculus, but with a

new kind of function called an implicit abstraction bx : T . t. The full syntax of

terms is given in Figure 4-1.

An implicit abstraction bx : T . t represents a parameter which is automatically

retrieved by name from the context. For example, the square function might be

refactored to use an implicit abstraction to abstract over the multiplication opera-

tor:

square AX. 6f : X - X -+ X. Ax: X. f x x
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t (term)
c (constant of type P E B)
x (variable)
Ax : T . t (explicit abstraction)
Jx: T. t (implicit abstraction)
t t (application)

Figure 4-1: Syntax of terms for Aj

4.0.2 Operational semantics

The operational semantics, shown in Figure 4-2, are nearly identical to the un-

typed lambda calculus with one exception: two substitutions are performed in

the E-APPABs rule. The first substitution supplies implicit parameters to any im-

plicit abstractions, and the second substitution performs beta reduction.

Let v represent any variable x or abstraction Ax . t, but not an application t1 t2.

tl-+ t (E-Appl)
t t 2 -+t' t 2

t t ' (E-APP2)
V t - V t'

( Ax : T . t) v --- t [Jy : T . t F- t] [x -+ V]_ (E-APPABS)

Figure 4-2: Operational semantics for Ab

4.0.3 Syntax of types

Ab adds a new kind of type, implicit arrow types x : T -+ T. This type is unusual

in that it remembers the name of the argument to the abstraction-this is because

the argument is implicitly fetched by name. The full syntax of types is given in

Figure 4-3.
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T ::= (type)
P where P E B (base type)
T -+ T (explicit arrow type)
x: T - T (implicit arrow type)

Figure 4-3: Syntax of types for A6

4.0.4 Typing rules

The T-IABs rule for implicit abstraction mirrors the rule for explicit abstractions.

Curious, however, is the T-IAPP rule for implicit application. It is a rule of sub-

sumption, meaning that it recasts a value of one type as having another type (by

eliminating the implicit parameter). The full set of rules is given in Figure 4-4.

c is a constant of type P (T-CONST)
F I-c: P

x: T E (T-VAR)
FI-x:T

F, x : T1 F- t2 : T2 (T-EABs)
F F- Ax: T2 . T2 : T1 -+ T2

F -t : X -+ Y
F F- t1 t2

F H t2 : X (T-EAPP)
Y

F, x : T1 H t2 : T2 (T-IABs)
F F- bx: T2 . T2: x: T1 -+ T2

F H t1 : x: X -4 Y

F H ti : Y
F x: X (T-IAPP)

Figure 4-4: Typing rules for A 3
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Chapter 5

Conclusion

5.1 Summary

We have presented two calculi which combine to offer a minimal kernel of ad hoc

polymorphism. We believe our approach to formalizing ad hoc polymorphism

in the lambda calculus is novel, and it provides a solid foundation for future

research.

5.2 Future work

We have not attempted to construct type inference algorithms for any of the sys-

tems presented in this thesis, and type inference would be the natural next step to

make these systems easier to use. The author suspects that one or both of A.x and

A 3 could be compiled down to the simply typed lambda calculus with little ef-

fort, where a Damas-Hindley-Milner strategy may yield a tractable type inference

solution.

Another direction for further work is investigating the interaction of these

calculi with higher-order polymorphism, such as System F". In fact, we suspect

that many type systems could be combined with our work to yield interesting

research.
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