
Architectural Support to Exploit Commutativity in Shared-Memory Systems

by

Guowei Zhang

B.S., Economics

Tsinghua University, China (2014)

Submitted to the Department of Electrical Engineering and Computer Science in
partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 2016

2016 Massachusetts Institute of Technology. All rights reserved.

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 12 2016

LIBRARIES
ARCHES

Author Signature redacted
Department of Electrical Engineering and Computer Science

May 19, 2016

Certified by.....

Accepted by...........

Signature redacted
Daniel Sanchez

Assistant Professor
Thesis Supervisor

Signature redacted
(3)r fessor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

B.S., Microelectronics

Architectural Support to Exploit Commutativity in Shared-Memory Systems
by

Guowei Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2016, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract
Parallel systems are limited by the high costs of communication and synchronization. Exploiting

commutativity has historically been a fruitful avenue to reduce traffic and serialization. This is because
commutative operations produce the same final result regardless of the order they are performed in, and
therefore can be processed concurrently and without communication.

Unfortunately, software techniques that exploit commutativity, such as privatization and semantic
locking, incur high runtime overheads. These overheads offset the benefit and thereby limit the appli-
cability of software techniques. To avoid high overheads, it would be ideal to exploit commutativity
in hardware. In fact, hardware already provides much of the functionality that is required to support
commutativity For instance, private caches can buffer and coalesce multiple updates. However, current

memory hierarchies can understand only reads and writes, which prevents hardware from recognizing
and accelerating commutative operations.

The key insight this thesis develops is that, with minor hardware modifications and minimal extra
complexity, cache coherence protocols, the key component of communication and synchronization in

shared-memory systems, can be extended to allow local and concurrent commutative operations. This
thesis presents two techniques that leverage this insight to exploit commutativity in hardware.

First, Coup provides architectural support for a limited number of single-instruction commutative
updates, such as addition and bitwise logical operations. CouP allows multiple private caches to
simultaneously hold update-only permission to the same cache line. Caches with update-only permission
can locally buffer and coalesce updates to the line, but cannot satisfy read requests. Upon a read request,
Coup reduces the partial updates buffered in private caches to produce the final value.

Second, CoMMTM is a commutativity-aware hardware transactional memory (HTM) that supports
an even broader range of multi-instruction, semantically commutative operations, such as set insertions

and ordered puts. COMMTM extends the coherence protocol with a reducible state tagged with a user-
defined label. Multiple caches can hold a given line in the reducible state with the same label, and
transactions can implement arbitrary user-defined commutative operations through labeled loads and
stores. These commutative operations proceed concurrently, without triggering conflicts or incurring any
communication. A non-commutative operation (e.g., a conventional load or store) triggers a user-defined
reduction that merges the different cache lines and may abort transactions with outstanding reducible
updates.

CouP and CoMMTM reduce communication and synchronization in many challenging parallel work-
loads. At 128 cores, CouP accelerates state-of-the-art implementations of update-heavy algorithms by
up to 2.4x, and COMMTM outperforms a conventional eager-lazy HTM by up to 3.4x and reduces or

eliminates wasted work due to transactional aborts.

Thesis Supervisor: Daniel Sanchez
Title: Assistant Professor

3

4

Contents

Abstract

Acknowledgments

1 Introduction
1.1 Contributions

2 Background
2.1 Commutativity in Parallel Systems
2.2 Reducing Communication and Synchronization

2.2.1 Privatization-based Techniques
2.2.2 Delegation-based Techniques

2.3 Reducing Communication and Synchronization

2.3.1 Software Techniques
2.3.2 Hardware Techniques

2.4 Summary

3 Coup

3.1 CouP Example: Extending MSI
3.1.1 Structural changes
3.1.2 Protocol operation

3.2 Generalizing Coup
3.3 Coherence and Consistency

3.4 Implementation and Verification Costs .
3.5 Motivating Applications

3.5.1 Separate Update- and Read-Only

3.5.2 Interleaved Updates and Reads .
3.6 Evaluation

3.7
3.8

3

7

in Non-speculative Parallelism

in Speculat
.
ive Parallelism .
.
.
.

Phases

3.6.1 Methodology
3.6.2 Comparison Against Atomic Operations .
3.6.3 Case Study: Reduction Variables
3.6.4 Case Study: Reference Counting.....

3.6.5 Sensitivity to Reduction Unit Throughput

Additional Related Work
Summary

9
10

13
13
13
13
14
15
16
16
16

19
19
20

21

22

24

25
26
27
28
28
28
31
32
33
34
34

35

5

CONTENTS 6

4 CoMMTM
4.1 CoMMTM Programming Interface and ISA
4.2 CoMMTM Implementation.

4.2.1 Eager-Lazy HTM Baseline .
4.2.2 Coherence protocol
4.2.3 Transactional execution ...
4.2.4 Reductions
4.2.5 Evictions
Putting it all Together: Overheads .
Generalizing CoMMTM
CoMMTM vs Semantic Locking . . .
Avoiding Needless Reductions with
Experimental Methodology.....
CommTM on Microbenchmarks
CommTM on Full Applications ...

Additional Related Work
Summary

.

.

.

.

.

.

.

.

.
Gather Requests
.
.
.
.
.

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

37
. 38
. 39
. 39
. 39
. 40
.. 42
.. 44
. 44
. 45
.. 45
. 46
. 48
.. 49
. 51
. 52
.. 54

5 Conclusion

Bibliography

55

64

CONTENTS 6

.

Acknowledgments

First and foremost, I would like to thank my research advisor, Professor Daniel Sanchez. Two years ago,
I came to MIT and started working in computer architecture. Since then, Daniel has been a constant
source of excellent advice and patient encouragement, guiding me to overcome stress before conference
presentations or fight against crashed simulations. He helped me get started in this area and directed
me towards important and challenging problems. His rich knowledge and positive attitude helped me so
much that I cannot imagine how this thesis would have happened without his guidance.

I am thankful for the support of our research group. I am especially grateful to my great co-authors:
Webb Horn and Virginia Chiu. Working with them was such an enjoyable experience. I also learned a
lot from the rest of our group: Professor Joel Emer, Nathan Beckmann, Harshad Kasture, Mark Jeffrey,
Suvinay Subramanian, Po-An Tsai, Anurag Mukkara, and Maleen Abeydeera. It is my great pleasure to
receive their valuable feedback on my work and discuss all kinds of fun topics.

I would also like to thank Professor David Perreault, my academic advisor, who helped me select
courses and pursue the S.M. degree. Additionally, I thank EECS and Math Professors Michael Sipser,
Daniel Sanchez, Joel Emer, Gregory Wornell, Stefanie Jegelka, and Samuel Madden. I was fortunate to
learn from their excellent lectures.

Last but not least, I thank my friends, both in the U.S. and in China, and my family for their support
and encouragement. Particularly, I owe thanks to my mom Yanxia Liu, who always succeeds in alleviating
my pressure and making me confident. Finally, I thank my girlfriend Huan Shao for her constant love
across the twelve-hour time difference.

7

CONTENTS 8

Introduction

This thesis focuses on exploiting commutativity in hardware to minimize communication and synchro-
nization in shared-memory systems. Parallel systems are limited by the high costs of communication
and synchronization. For instance, at 28nm, a 64-bit floating-point multiply-add operation requires
20pJ, while shipping its operands across the chip consumes 300pJ, 15x higher [33, 53, 101]. Moreover,
these overheads are increasing with system size, and conventional systems will not scale to handle the
growing communication and synchronization. Much recent work has focused on reducing the cost of
synchronization, but a more promising approach is to eliminate synchronization altogether.

Historically, exploiting commutativity has been a fruitful approach to do so. Commutative operations
produce the same final result regardless of the order they are performed in. These operations need
not read the data they update, so they do not introduce true data dependencies and therefore can
be processed concurrently and coalesced locally before the data is read. Hence, updates can proceed
concurrently, without communication or synchronization.

Many software techniques have exploited commutativity to improve parallelism, but unfortunately
they incur high runtime overheads, which significantly offset their benefit and limit their applicability.
For example, privatization is a software approach that lowers the cost of commutative updates by using
thread-local variables [12, 29, 77]: each thread updates its local variable, and reads require reducing the
per-thread variables. Privatization suffers from both slow transition between read-only and update-only
phases and large memory footprint [52], and therefore can only be applied selectively. Moreover, in
speculative parallelization techniques, semantic locking [91, 111] allows multiple semantically commutative
operations on the same object to acquire its corresponding lock in a compatible mode, so they execute
concurrently. But such software techniques incur high runtime overheads, typically 2-6x in software
transactional memory [20].

Ideally, it would be desirable to implement commutativity support in hardware to avoid high over-
heads. In fact, hardware already provides much of the functionality that is required to exploit commu-
tativity. For example, private caches can be used to buffer and coalesce multiple updates. However,
exploiting commutativity in hardware is still challenging. The key reason is that current memory hierar-
chies support only two primitive operations: reads and writes. Therefore, updates must be expressed
as read-modify-write sequences, even when they are commutative. As a result, hardware is unable
to recognize and accelerate commutative operations, and thus frequent updates to shared data incur

significant communication and synchronization. For example, consider a shared counter that is updated

by multiple cores. On each update, the updating core first fetches an exclusive copy of the counter's

cache line into its private cache, invalidating all other copies, and modifies it locally using an atomic

operation such as fetch-and-add, as shown in Figure 1.1a. Each update incurs significant traffic and

serialization: traffic to fetch the line and invalidate other copies, causing the line to ping-pong among

updating cores; and serialization because only one core can perform an update at a time.

9

1.1. CONTRIBUTIONS 10

Legend A: 20 Line with exclusive permission Line with update-only permission a Add operation

Shared ca Initial Shared cache
state A: 20 ALU

A: 20 A=+ A:+o
Coe/ 0 Core/$ I Core/$ 0 Core/$ 1[~$Core/$ 1 ~ ~ p d I$

add(A, 1) add(A 1)0 *add(A, 2)add(A, 1).Vadd(A, 1)4 Vadd(A, 2)

Aadd(A, 2)

(a) Conventional coherence (b) COUP

Figure 1.1: Example comparing the cost of commutative updates under two schemes. Two cores add
values to a single memory location, A. (a) With conventional coherence protocols, A's fetches and
invalidations dominate the cost of updates. (b) With Coup, caches buffer and coalesce updates locally,
and reads trigger a reduction of all local updates to produce the actual value.

Contributions

The key insight of this thesis is that with minor modifications and minimal additional complexity, cache
coherence protocols, the key component of communication and synchronization in shared-memory
systems, can be extended to process commutative updates locally and concurrently. We present two
hardware techniques that leverage this insight to reduce communication and improve concurrency.
Specifically, we make the following contributions:

Coup (Chapter 3) is a general technique that extends coherence protocols to allow local and concurrent
commutative updates. Specifically, Coup decouples read and write permissions, and introduces a limited
number of commutative-update primitive operations, in addition to reads and writes. With Coup,
multiple caches can acquire a line with update-only permission, and satisfy commutative-update requests
locally, buffering and coalescing updates. On a read request, the coherence protocol gathers all the local
updates and reduces them to produce the correct value before granting read permission. For example,
multiple cores can concurrently add values to the same counter. Updates are held in their private caches
as long as no core reads the current value of the counter. When a core reads the counter, all updates are
added to produce the final value, as shown in Figure 1.1b.

Coup provides significant benefits at minimal cost. Coup introduces minor hardware overheads, pre-
serves coherence and consistency, and imposes small verification costs. We identify several update-heavy
parallel applications where current techniques have clear shortcomings, and discuss how Coup addresses
them. Specifically, CouP supports a limited number of single-instruction commutative operations, such
as addition and bitwise logical operations. We evaluate Coup under simulation, using single- and
multi-socket systems. At 128 cores, Coup improves the performance of update-heavy benchmarks by
4%-2.4x and reduces traffic by up to 20x.

CoMMTM (Chapter 4) is a commutativity-aware HTM that extends Coup to support an unlimited num-
ber of user-defined commutative operations that cannot be expressed as single instructions. Specifically,

11 CHAPTER 1. INTRODUCTION

X0 IdA

4tA Id A lxi XO Id[ADDI A Id[ADD] A X1
abort st[ADD] A st[ADD] A

commit re start commit commit
Id A

X2flIdA bort st A. X2 Id[ADD] A Id[ADD] A X3
comtcommit st[ADD] A st[ADD] Acomt commit

restart I Id A commit

st abort IA X3X4 Id[ADD] A I

commi ___check Id Acommit
restart

0=rX4 IId A commit st[ADD] A X5

V 1d A _b t st A
I e t r

commit

Id

restartI IdA IdA X5
st A-mcmi

abort

commit
Id A restart

commit

(a) Conventional HTM (b) CoMMTM

Figure 1.2: Example comparing (a) a conventional HTM and (b) COMMTM. Transactions XO-X4 increment
a shared counter, and X5 reads it. While conventional HTMs serialize all transactions, CoMMTM allows
commutative operations (additions in XO-X4) to happen concurrently, serializing non-commutative
operations (the load in X5) only.

CoMMTM supports a much broader range of multi-instruction, semantically commutative operations,
such as set insertions and ordered puts. We find that commutativity and transactional memory are
complementary: transactions benefit commutativity by guaranteeing the atomicity of multi-instruction
operations, and commutativity benefits transactions by avoiding unnecessary conflicts and wasted work,
as shown in Figure 1.2.

CoMMTM extends the coherence protocol with a reducible state that generalizes Coup's update-only
state. Lines in this state must be tagged with a user-defined label. Multiple caches can hold a given
line in the reducible state with the same label, and transactions can implement commutative operations
through labeled loads and stores that keep the line in the reducible state. These commutative operations
proceed concurrently, without triggering conflicts or incurring any communication. A non-commutative
operation (e.g., a conventional load or store) triggers a user-defined reduction that merges the different
cache lines and may abort transactions with outstanding reducible updates.

We explore several variants of CoMMTM that trade precision for hardware complexity. We first present
a basic version of CoMMTM that achieves the same precision as software semantic locking [59, 111]. We
then extend CoMMTM with gather requests, which allow software to redistribute reducible data among
caches, achieving much higher concurrency in important use cases.

We evaluate CoMMTM with microbenchmarks and full TM applications. Microbenchmarks show
that CoMMTM scales on a variety of commutative operations, such as set insertions, reference counting,
ordered puts, and top-K insertions, which allow no concurrency in conventional HTMs. At 128 cores,
CoMMTM improves full-application performance by up to 3.4x, lowers private cache misses by up to
45%, and reduces or even eliminates transaction aborts.

In summary, CouP and COMMTM enable parallel systems to exploit commutativity without the
overheads of software techniques. This allows parallel systems to approach the minimal communication
and synchronization truly required by the algorithms they run.

1.1. CONTRIBUTIONS 12

Background

Commutativity in Parallel Systems

Commutativity [111] has been widely exploited in parallel systems, such as databases [12, 77], paral-
lelizing compilers [81, 92], and runtimes [59, 81]. Operations are commutative when they produce the
same final result regardless of the order they are performed in. Thus, commutative operations introduce
neither fundamental data dependencies nor necessary communication. As a result, they can be processed
concurrently and coalesced locally to reduce traffic and serialization.

Commutative updates are common in many cases. Strictly commutative operations produce exactly the
same final state when reordered. For instance, consider two additions to a counter. Reordering them does
not affect the final result at all, and therefore integer addition is strictly commutative. Besides addition,
multiplication, minimization, maximization and bitwise logical operations are all strictly commutative.

An even broader concept is semantic commutativity [111]. Semantically commutative operations
produce results that are semantically equivalent when reordered, even if the concrete resulting states
are different. For example, consider two consecutive insertions of different values a and b to a set s im-
plemented as a linked list. If s . insert (a) and s . insert (b) are reordered, the concrete representation
of these elements in set s will be different (either a or b will be in front). Thus, these set insertions are
not strictly commutative. However, since the actual order of elements in s does not matter (a set is an
unordered data structure), both representations are semantically equivalent, and insertions into sets
semantically commute. Other examples include ordered puts and top-K insertions.

Reducing Communication and Synchronization in Non-speculative Paral-
lelism

Conventional shared-memory programs update shared data using atomic operations for single-word

updates, or normal reads and writes with synchronization (e.g., locks or transactions) for multi-word

updates. Many software and hardware optimizations seek to reduce the cost of updates. Though often

presented in the context of specific algorithms or implementations, we observe these techniques can be

classified into two categories: they are either privatization-based or delegation-based.

Privatization-based Techniques

Privatization is a software technique that exploits commutativity to reduce the costs of updates. Privati-

zation schemes buffer updates in thread-private storage, and require reads to reduce these thread-private

updates to produce the correct value. Privatization is most commonly used to implement reduction

variables efficiently, often with language support (e.g., reducers in MapReduce [36], OpenMP pragmas,
and Cilk Plus hyperobjects [42]). Privatization is generally used when updates are frequent and reads

are rare.

13

2.2. REDUCING COMMUNICATION AND SYNCHRONIZATION IN NON-SPECULATIVE PARALLELISMi

COUP
MESI-atomic operations

MESI-software privatization
1.0

(D
0.8

o 0.6-

0.4-

0.0
0 5K 10K 15K 20K 25K 30K

Number of bins

Figure 2.1: Performance of parallel histogram implementations using atomics, software privatization,
and Coup. More bins reduce contention and increase privatization overheads, favoring atomics. Coup
does not suffer these overheads, so it outperforms both software implementations.

Privatization is limited to commutative updates, and works best when data goes through long update-
only phases without intervening reads. However, privatization has two major sources of overhead. First,
software reductions are much slow, making finely-interleaved reads and updates inefficient. Second,
with N threads, privatized variables increase the memory footprint by a factor of N. This makes
naive privatization impractical in many contexts (e.g., reference counting). Dynamic privatization
schemes [29, 77, 115] can lessen space overheads, but add time overheads and complexity.

These overheads often make privatization underperform conventional updates. For instance, Jung
et al. [52] propose parallel histogram implementations using both atomic operations and privatization.
These codes process a set of input values, and produce a histogram with a given number of bins. Jung et
al. note that privatization is desirable with a few output bins, but works poorly with many bins, as the
reduction phase dominates execution time and hurts locality. Figure 2.1 shows this tradeoff. It compares
the performance of histogram implementations using atomic fetch-and-add, privatization, and Coup
(Chapter 3), when running on 64 cores (see Section 3.6 for methodology details). In this experiment, all
schemes process a large, fixed number of input elements. Each line shows the performance of a given
implementation as the number of output bins (x-axis) changes from 32 to 32 K. Performance is reported
relative to Coup's at 32 bins (higher numbers are better). While the costs of privatization impose a
delicate tradeoff between both implementations in software, Coup robustly outperforms both. In fact,
CouP is the hardware counterpart of privatization.

Delegation-based Techniques

Delegation-based techniques send updates to a single location to reduce data movement and hence the
cost of updates. Unlike privatization-based techniques, delegation-based techniques do not leverage
commutativity. This limits their performance benefits, but makes them applicable for non-commutative
operations.

Specifically, in software, delegation schemes send updates to a single thread [18, 19]. They divide
shared data among threads and send updates to the corresponding thread, using shared-memory
queues [18] or active messages [96, 107]. Delegation is common in architectures that combine shared
memory and message passing [96, 113] and in NUMA-aware data structures [18, 19]. Although delegation
reduces data movement and synchronization, it still incurs global traffic and serialization.

15 CHAPTER 2. BACKGROUND

Legend A: 20 Line with exclusive permission 5 Add operation

Shared cache
A: 20 ALU

Core/$ 0 Core/$ I

add(A, 1) ADDA
ADD Apo .2 add(A, 2)

add(A, 1) add(A, 2)
aadd(A, 2)add(A, 1) Aadd(A, 2)

load(A) FETCH

.29I

Figure 2.2: With remote memory operations, cores send updates to a fixed location, the shared cache in
this case.

Remote memory operations (RMOs) [43, 49, 99, 118] are the hardware counterpart of delegation.
Rather than caching lines to be updated, update operations are sent to a fixed location, as shown in
Figure 2.2. The NYU Ultracomputer [43] proposed implementing atomic fetch-and-add using adders in
network switches, which could coalesce multiple requests on their way to memory. The Cray T3D [55],
T3E [99], and SGI Origin [65] implemented RMOs at the memory controllers, while TilePro64 [49] and
recent GPUs [112] implement RMOs in shared caches. Prior work has also proposed adding caches to
memory controllers to accelerate RMOs [118] and data-parallel RMOs [6].

Although RMOs reduce update costs for both commutative and non-commutative operations, they
suffer from two issues. First, while RMOs avoid ping-ponging cache lines, they still require sending every
update to a shared, fixed location, causing global traffic. RMOs are also limited by the throughput of the
single updater. For example, in Figure 2.2, frequent remote-add requests drive the shared cache's ALU
near saturation. Second, strong consistency models are challenging to implement with RMOs, as it is
harder to constrain memory operation order. For example, TSO requires making stores globally visible in
program order, which is feasible with local store buffers, but much more complicated when stores are
also performed by remote updaters. As a result, most implementations provide weakly-consistent RMOs.
Timestamp-based order validation [62, 5] allows strong consistency with RMOs, but it is complicated.

Reducing Communication and Synchronization in Speculative Parallelism

Many software and hardware techniques, such as transactional memory (TM) or speculative multi-
threading, rely on speculative execution to parallelize programs with atomic regions. For example,
transactional memory lets programmers define transactions, regions of code that are executed atomically.
For instance, in the following function, the read-modify-write sequences of account balances are placed
in a transaction, which must appear atomic to ensure correctness.

void transfer(Account& from, Account& to, int amount) {
atomic {
to.balance += amount;
from.balance -= amount;

}
}

2.4. SUMMARY

Speculative execution techniques run multiple atomic regions concurrently, and a conflict detection
technique flags potentially unsafe interleavings of memory accesses (e.g., in transactional memory, those
that may violate serializability). Upon a conflict, one or more regions are rolled back and reexecuted to
preserve correctness.

Ideally, conflict detection should (1) be precise, i.e., allow as many safe interleavings as possible to
maximize concurrency, and (2) incur minimal runtime costs. Software and hardware conflict detection
techniques satisfy either of these properties but sacrifice the other: On the one hand, software techniques
can leverage program semantics to be highly precise, but they incur high runtime overheads. On the other
hand, hardware techniques incur small overheads, but leave a great amount of concurrency unexploited.

Software Techniques

Software conflict detection schemes often exploit semantic commutativity [59, 60, 77, 81, 91, 111].
Most work in this area focuses on techniques that reason about operations to abstract data types. Prior
work has proposed a wide variety of conflict detection implementations [45, 59, 81, 91, 111]. Not
all commutativity-aware conflict detection schemes are equally precise: simple and general-purpose
techniques, such as semantic locking [59, 91, 111], flag some semantically-commutative operations as
conflicts, while more sophisticated schemes, like gatekeepers [59], incur fewer conflicts but have higher
overheads and are often specific to particular patterns.

Specifically, semantic locking [91, 111], also known as abstract locking, generalizes read-write locking
schemes (e.g., two-phase locking): transactions can acquire a lock protecting a particular object in one
of a number of modes; multiple semantically-commutative methods acquire the lock in a compatible
mode, and can proceed concurrently. For instance, the deposit operations to the same account are
commutative. Therefore, multiple deposit operations can hold the lock of the account in addition mode
at the same time, and can proceed concurrently without blocking one another. Semantic locking requires
additional synchronization on the actual accesses to shared data, e.g., logging or reductions. However,
such software techniques incur high runtime overheads (e.g. 2-6x in software TM [20]).

Hardware Techniques

Hardware can implement speculative execution at minimal costs by reusing many existing components:
private caches to buffer speculative data, and the coherence protocol to detect conflicting speculative

accesses. In fact, after an intensive period of research [21, 44, 46, 72, 84, 85], hardware transactional

memory has been quickly adopted in commercial processors [76, 109]. Likewise, hardware already has

much of the functionality that is necessary to support commutativity. However, exploiting commutativity
in hardware conflict detection is still challenging because conventional coherence protocols can reason

only reads and writes. Therefore, commutative updates to the same data, e.g. deposits to the same

account, trigger unnecessary conflicts, as shown in Figure 1.2a. This lack of precision can significantly

limit concurrency, to the point that prior work finds that commutativity-aware software TM (STM)

outperforms hardware TM (HTM) despite its higher overhead [59, 60].
CoMMTM bridges the gap between software and hardware and solves this precision-overhead

dichotomy By extending the coherence protocol and the conflict detection scheme, CoMMTM provides

commutativity support for hardware speculation, and avoids the overheads of software techniques.

Summary

Table 2.1 summarizes the characteristics of Coup, CoMMTM and other related software and hardware

techniques. In general, CouP makes single-instruction commutative updates as inexpensive as normal

16

I
17 CHAPTER 2. BACKGROUND

Hardware or Reduces speculative Exploits strict Exploits semantic Reduces
Techniques software? conflicts? commutativity? commutativity? communication?

Delegation SW IX
RMO HW IX

Privatization SW /
COUP HW X

Semantic locking SW //
CoMMTM HW

Table 2.1: Summary of Coup, CoMMTM and related work.

reads, and COMMTM allows multi-instruction commutative operations to be processed concurrently and
without conflicts.

2.4. SUMMARY 18

CouP

In this chapter, we present COUP, a general technique that extends coherence protocols to allow local

and concurrent commutative updates. CouP allows multiple caches to acquire a line with update-only

permission, and satisfy commutative-update requests locally, buffering and coalescing updates. Upon a

read, the coherence protocol collects all the local updates and reduces them to produce the correct value

before granting read permission.
CouP confers significant benefits over RMOs, especially when data receives several consecutive

updates before being read. Moreover, CouP maintains full cache coherence and does not affect the

memory consistency model. This makes CouP easy to apply to current systems and applications. Note

that Coup's advantages come at the cost of a more restricted set of operations: CouP is limited to

commutative updates, while RMOs support non-commutative operations such as fetch-and-add and

compare-and-swap.
CouP also completes a symmetry between hardware and software schemes to reduce the cost of

updates. Just as remote memory operations are the hardware counterpart to delegation, CouP is the

hardware counterpart to privatization. CouP has two benefits over software privatization. First, transitions

between read-only and update-only modes are much faster, so CouP remains practical in many scenarios

where software privatization requires excessive synchronization. Second, privatization's thread-local

copies increase memory footprint and add pressure to shared caches, while Coup does not.

We demonstrate Coup's utility by applying it to improve the performance of single-word update

operations, which are currently performed with expensive atomic read-modify-write instructions.

Overall, we make the following contributions:
- We present Coup, a technique that extends coherence protocols to support concurrent commutative

updates (Section 3.1 and Section 3.2). We show that CouP preserves coherence and consistency

(Section 3.3), and imposes small verification costs (Section 3.4).
- We identify several update-heavy parallel applications where current techniques have clear short-

comings (Section 3.5), and discuss how CouP addresses them.
- We evaluate Coup under simulation, using single- and multi-socket systems (Section 3.6). At 128

cores, Coup improves the performance of update-heavy benchmarks by 4%-2.4x, and reduces

traffic by up to 20x.
In summary, CouP shows that extending coherence protocols to leverage the semantics of commutative

updates can substantially improve performance without sacrificing the simplicity of cache coherence.

COUP Example: Extending MSI

We first present the main concepts and operation of CouP through a concrete, simplified example.

Consider a system with a single level of private caches, kept coherent with the MSI protocol. This system

has a single shared last-level cache with an in-cache directory. It implements a single commutative-update

19

Shared cache/dir Reduction unit
Track update-only C
or read-only mode

Private Private
Cache 0 Cache N-1 Update-only state

- - *.- - - Commutative update o
Core 0 Core N-1iL instructions

Figure 3.1: Summary of additions and modifications needed to support CouP.

operation, addition. Finally, we restrict this system to use single-word cache blocks. We will generalize
Coup to other protocols, operations, and cache hierarchies in Section 3.2.

Structural changes

CouP requires modest changes to hardware structures, summarized in Figure 3.1 and described below.

Commutative-update instructions: In most ISAs, CouP needs additional instructions that let programs
convey commutative updates, as conventional atomic instructions (e.g., fetch-and-add) return the latest
value of the data they update. In this case, we add a commutative-addition instruction, which takes an
address and a single input value, and does not write to any register.

Some ISAs may not need additional instructions. For instance, the recent Heterogeneous System
Architecture (HSA) includes atomic-no-return instructions that do not return the updated value [2].
While these instructions were likely introduced to reduce the cost of RMOs, Coup could use them directly

Update-only permission: Coup extends MSI with an additional state, update-only (U), and a third
type of request, commutative update (C), in addition to conventional reads (R) and writes (W). We call
the resulting protocol MUSI. Figure 3.2 shows MUSI's state-transition diagram for private caches. MUSI
allows multiple private caches to hold read-only permission to a line and satisfy read requests locally (S
state); multiple private caches to hold update-only permission to a line and satisfy commutative-update
requests locally (U state); or at most a single private cache to hold exclusive permission to a line and
satisfy all types of requests locally (M state). By allowing M to satisfy commutative-update requests,
interleaved updates and reads to private data are as cheap as in MSI.

MUSI's state-transition diagram shows a clear symmetry between S and U: all transitions caused by
R/C requests in and out of S match those caused by C/R requests in and out of U. We will exploit this
symmetry in Section 3.4 to simplify our implementation.

Directory state: Conventional directories must track both the sharers of each line (using a bit-vector
or other techniques [23, 94, 116]), and, if there is a single sharer, whether it has exclusive or read-only
permission. In Coup, the directory must track whether sharers have exclusive, read-only, or update-only
permission. The sharers bit-vector can be used to track both multiple readers or multiple updaters, so
MUSI requires only one extra bit per directory tag.

Reduction unit: Though cores can perform local updates, the memory system must be able to perform
reductions. Thus, Coup adds a reduction unit to the shared cache, consisting of an adder in this case.

3.1. COUP EXAMPLE: EXTENDING MSI 20

21 CHAPTER 3. COUP

Legend

Transitions Initiated by own core (gain permissions)
T ---+ Initiated by others (lose permissions)

States Update-only Sc uy

Requests Read Write Commutative update

M MSI M-, MUS1

W R W ' W
A R C A

W S w w S , R

R
U)R W W C W, R ,

R C

Figure 3.2: State-transition diagrams of MSI and MUSI protocols. For clarity, diagrams omit actions that
do not cause a state transition (e.g., R requests in S).

Protocol operation

Performing commutative updates: Both the M and U states provide enough permissions for private
caches to satisfy update-only requests. In M, the private cache has the actual data value; in U, the cache
has a partial update. In either case, the core can perform the update by atomically reading the data
from the cache, modifying it (by adding the value specified by the commutative-add instruction) and
storing the result in the cache. The cache cannot allow any intervening operations to the same address
between the read and the write. This scheme can reuse the existing core logic for atomic operations.
We assume this scheme in our implementation, but note that alternative implementations could treat
commutative updates like stores to improve performance (e.g., using update buffers similar to store
buffers and performing updates with an ALU at the Li).

Entering the U state: When a cache has insufficient permissions to satisfy an update request (I or S
states), it requests update-only permission from the directory. The directory invalidates any copies in S,
or downgrades the single copy in M to U, and grants update-only permission to the requesting cache,
which transitions to U. Thus, there are two ways a line can transition into the U state: by requesting
update-only permission to satisfy a request from its own core, as shown in Figure 3.3a; or by being
downgraded from M, as shown in Figure 3.3b.

When a line transitions into U, its contents are always initialized to the identity element, 0 for
commutative addition. This is done even if the line had valid data. This avoids having to track which
cache holds the original data when doing reductions. However, reductions require reading the original
data from the shared cache.

Leaving the U state: Lines can transition out of U due to either evictions or read requests.
Evictions initiated by a private cache (to make space for a different line) trigger a partial reduction,

shown in Figure 3.3c: the evicting cache sends its partial update to the shared cache, which uses its
reduction unit to aggregate it with its local copy.

3.2. GENERALIZING COUP

Private caches A: 20
Add operation 0'

Initial state

Shared cache
A: ShU{]}: 20

add(A, 1)

add(A, 1)i
add(A, 1):

Shared cache
A: ShU{Fn}: 20

Core/$ 0 Core

Final state

Legend
+Update-only :X 1< S'

Address Data

Initial state

Red. Shared cache Red.
Unit A: Ex{} Unit

e/$ I oe$0 oe$1
add(A, 1) Gnu A

Sadd(A, 2)

add(A, 1)1 *Iadd(A, 2)
add(A, 122

Red. Shared cache Red.
Unit FA: ShU{0,1}: 24 Unit |

/$ 1Core/$ 0 Core/$ 1
Final state

Sharer peTmissions (Ex: exclusive, ShR: read-only,
Shared cache /: ShU{1,?}: 2Q> ShU: update-only)

Address Sharers Data

Initial state
Shared cache Red.

A: ShU{0,1}: 24 Unit

Share cEA .

Core/$ 0 Core/$ J
PUTU A

ICore/$ 1

Final state

Initial state
Shared cache Red.

A: ShU{1,2}: 20 Unit

| Cre/ 0 Core/$ I Core/$ 2

Ioad(A) G1lS A

AA:+

A,3

Shared cache Red.
A: SkR{0}: 31 Unit

Core/$ 0$ $2
Final state

(a) Upgrade to U caused by(b) Downgrade caused by(c) Partial reduction (d) Full reduction caused by read re-
commutative-update request commutative-update request caused by eviction quest

Figure 3.3: MUSI protocol operation: (a) granting update-only (U) state; (b) downgrade from M to U
due to an update request from another core; (c) partial reduction caused by an eviction from a private
cache; and (d) full reduction caused by a read request. Each diagram shows the initial and final states in
the shared and private caches.

The shared cache may also need to evict a line that private caches hold in U. This triggers a full
reduction: all caches with update-only permission are sent invalidations, reply with their partial updates,
and the shared cache uses its reduction unit to aggregate all partial updates and its local copy, producing
the final value.

Finally, read requests from any core also trigger a full reduction, as shown in Figure 3.3d. Depending
on the latency and throughput of the reduction unit, satisfying a read request can take somewhat longer
than in conventional protocols. Hierarchical reductions can rein in reduction overheads with large core
counts (Section 3.2). In our evaluation, we observe that reduction overheads are small compared to
communication latencies.

Generalizing CouP

We now show how to generalize Coup to support multiple operations, larger cache blocks, other protocols,
and deeper cache hierarchies.

Multiple operations: Formally, CouP can be applied to any commutative semigroup (G, o).1 For example,
G can be the set of 32-bit integers, and o can be addition, multiplication, and, or, xor, min, or max.

Supporting multiple operations in the system requires minor changes. First, additional instructions
are needed to convey each type of update. Second, reduction units must implement all supported
operations. Third, the directory and private caches must track, for each line in U state, what type of
operation is being performed. Fourth, COUP must serialize commutative updates of different types,
because they do not commute in general (e.g., + and * do not commute with each other). This can be

'(G, o) is a commutative semigroup iff o : G x G - G is a binary, associative, commutative operation over elements of set G,
and G is closed under o.

22
22

23 CHAPTER 3. COUP

Legend
Ta .to Initiated by own core (gain permissions)

Transitions - -- + Initiated by others (lose permissions)

States Update-only S$

Requests Read Write Commutative update

M 4-W, C- E

WCR R R
WR

1.W, C W R W

/

R

Figure 3.4: State-transition diagram of MEUSI. Just as MESI grants E to a read request if a line is

unshared, MEUSI grants M to an update request if a line is unshared. For clarity, the diagram omits

actions that do not cause a state transition (e.g., C requests in U).

accomplished by performing a full reduction every time the private cache or directory receives an update

request of a type different from the current one.

Larger cache blocks: Supporting multi-word blocks is trivial if (G, o) has an identity element (formally,

this means (G, o) is a commutative monoid). The identity element produces the same value when applied

to any element in G. For example, the identity elements for addition, multiplication, and, and min are

0, 1, all-ones, and the maximum representable integer, respectively.

All the operations we implement in this work have an identity element. In this case, it is sufficient

to initialize every word of the cache block to the identity element when transitioning to U. Reductions

perform element-wise operations even on words that have received no updates. Note this holds even

if those words do not hold data of the same type, because applying o on the identity element produces

the same output, so it does not change the word's bit pattern. Alternatively, reduction units could skip

operating on words with the identity element.

In general, not all operations may have an identity element. In such cases, the protocol would require

an extra bit per word to track uninitialized elements.

Finally, note we assume that data is properly aligned. Supporting commutative updates to unaligned

data would require more involved mechanisms to buffer partial updates. If the ISA allows unaligned

accesses, they can be performed as normal read-modify-writes.

Other protocols: Coup can extend protocols beyond MSI. Figure 3.4 shows how MESI [79] is extended

to MEUSI, which we use in our evaluation. Note that update requests enjoy the same optimization that

E introduces for read-only requests: if a cache requests update-only permission for a line and no other

cache has a valid copy, the directory grants the line directly in M.

Deeper cache hierarchies: CouP can operate with multiple intermediate levels of caches and directo-

ries. Coup simply requires a reduction unit at each intermediate level that has multiple children that

can issue update requests. For instance, a system with private per-core Ls and L2s and a fully shared

L3 needs reduction units only at L3 banks. However, if each L2 was shared by two or more LiDs, a

reduction unit would be required in the L2s as well.

Hierarchical organizations lower the latency of reductions in Coup, just as they lower the latency of

sending and processing invalidations in conventional protocols: on a full reduction, each intermediate

level aggregates all partial updates from its children before replying to its parent. For example, consider

a 128-core system with a fully-shared L4 and 8 per-socket L3s, each shared by 16 cores. In this system, a

full reduction of a line shared in U state by all cores has 8 + 16 = 24 operations in the critical path-far

fewer than the 128 operations that a flat organization would have, and not enough to dominate the cost

of invalidations.

Other contexts: We focus on single-word atomic operations and hardware cache coherence, but note

that CouP could apply to other contexts. For example, CouP could be used in software coherence

protocols (e.g., in distributed shared memory).

Coherence and Consistency

COUP maintains cache coherence and does not change the consistency model.

Coherence: A memory system is coherent if, for each memory location, it is possible to construct

a hypothetical serial order of all operations to the location that is consistent with the results of the

execution and that obeys two invariants [32, 5.1.1]:2

1. Operations issued by each core occur in the order in which they were issued to the memory system

by that core.
2. The value returned by each read operation is the value written to that location in the serial order.

In CouP, a location can be in exclusive, read-only, or update-only modes. The baseline protocol that

CouP extends already enforces coherence in and between exclusive and read-only modes. In update-only

mode, multiple cores can concurrently update the location, but because updates are commutative, any

serial order we choose produces the same execution result. Thus, the first invariant is trivially satisfied.

Moreover, transitions from update-only to read-only or exclusive modes propagate all partial updates

and make them visible to the next reader. Thus, the next reader always observes the last value written to

that location, satisfying the second property Therefore, CouP maintains coherence.

Consistency: As long as the system restricts the order of memory operations as strictly for commutative

updates as it does for stores, CouP does not affect the consistency model. In other words, it is sufficient

for the memory system to consider commutative updates as being equivalent to stores. For instance, by
having store-load, load-store, and store-store fences apply to commutative updates as well, systems with

relaxed memory models need not introduce new fence instructions.

2 Others reason about coherence using the single-writer, multiple-reader and the data-value invariants [105], which are
sufficient but not necessary. COUP does not maintain the single-writer, multiple-reader invariant.

3.3. COHERENCE AND CONSISTENCY 24

I

25 CHAPTER 3. COUP

S------Legend Im-
xM States

Stable Transient xMN

IS - -- - Split Race IN s--- -
IM xMI

S M N E M
Transitions initiated by
Own request (R,WCwback) NN

WBI;- WB Response to own request WBI WB

------ - -- inval/downgrade request

(a) MESI (b) MEUSI with generalized N state

Figure 3.5: COUP implementation: (a) full state-transition diagram for the Li cache on the baseline

two-level MESI protocol; (b) corresponding MEUSI state-transition diagram. The non-exclusive state, N,
generalizes S and U, and requires only an extra transient state and four transitions over MESI.

Implementation and Verification Costs

While we have presented CouP in terms of stable states, realistic protocols implement coherence trans-

actions with additional transient states and are subject to races, which add complexity and hinder

verification. By studying full implementations of MESI and MEUSI, we show that CouP requires a

minimal number of transient states and adds modest verification costs.

We first implement MESI protocols for two- and three-level cache hierarchies. Our implementations

work on networks with unordered point-to-point communication, and use two virtual networks without

any message buffering at the endpoints. In the two-level protocol, the Li coherence controller has 12

states (4 stable, 8 transient), and the L2 has 6 states (3 stable, 3 transient). Figure 3.5a shows the

state-transition diagram of the more complex Li cache. In the three-level protocol, the Li has 14 states

(4 stable, 10 transient), the L2 has 38 (9 stable, 29 transient), and the L3 has 6 (3 stable, 3 transient).

Generalized non-exclusive state: While we have introduced U as an additional state separate from S,
both have a strong symmetry and many similarities. In fact, reads are just another type of commutative

operation. We leverage this insight to simplify Coup's implementation by integrating S and U under

a single, generalized non-exclusive state, N. This state requires minor extensions over the machinery

already described in Section 3.2 to support multiple commutative updates.

Multiple caches can have a copy of the line in N, but all copies must be under the same operation type,
which can be read-only or one of the possible commutative updates. An additional field per line tracks its

operation type when in N. Non-exclusive and downgrade requests are tagged with the desired operation

type. E and M can satisfy all types of requests; commutative updates cause an E->M transition. N can

satisfy non-exclusive requests of the same type, but requests of a different type trigger an invalidation (if

starting from read-only) or a reduction (if starting from a commutative-update type) and cause a type

switch. Invalidations and reductions involve the same request-reply sequence, so they can use the same

transient states.

Implementing two-level MEUSI this way requires 13 states in the Li and 6 states in the L2. Compared

to two-level MESI, MEUSI introduces only one extra Li transient state. Figure 3.5b shows the Li's

state-transition diagram, which is almost identical to MESI's. The new transient state, NN, is used when

moving between operation types (e.g., from read-only to commutative-add or from commutative-and

to commutative-or). Our three-level MEUSI protocol is also similar to three-level MESI: the Li has 15

states (one more transient than MESI, NN), the L2 has 43 (five more transient states than MESI, which,
similarly to NN, implement transitions between operation types), and the L3 has 6.

3.5. MOTIVATING APPLICATIONS

Verification time

DI<1os Elj<100s <1300s Out of memory (>16GB)

MESI _

2 2
4 4
6 6

MEUSI 8 8
comm 10
ops= 12

14 1

16 1
18 18
20 20

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8

Cores Cores
(a) Two-level protocols (b) Three-level protocols

Figure 3.6: Coup exhaustive verification costs for two- and three-level protocols. Costs grow much more

quickly with the number of cores and levels than the number of commutative updates.

Verification costs: We use Murphi [38] to verify MESI and MEUSI. We adopt common simplifications

to limit the state space, modeling caches with a single 1-bit line; self-eviction rules model a limited

capacity. In three-level protocols, we model systems with a single L2 and a single L3, and simulate traffic

from other L2s with L3-issued invalidation and downgrade rules. Even then, Murphi can only verify

systems of up to 4-8 cores, a well-known limitation of this approach [119, 120].

MEUSI's verification costs grow more quickly with the number of cores and levels than the number

of commutative operations. Figure 3.6 reports the verification times for two- and three-level MESI and

MEUSI protocols supporting 2-20 commutative-update types. We run Murphi on a Xeon E5-2670, and

limit it to 16 GB of memory. Murphi can exhaustively verify MESI up to 7-9 cores and MEUSI up to 3-7
cores depending on the number of levels and commutative updates. This shows that MEUSI can be

effectively verified up to a large number of commutative updates. Moreover, just as protocol designers

assume that modeling a few cores provide reasonable coverage, verifying up to a few commutative

operations should be equally reasonable.

Motivating Applications

In this work, we apply Coup to accelerate single-word updates to shared data. To guide our design, we

first study under what circumstances Coup is beneficial over state-of-the-art software techniques, and

illustrate these circumstances with specific algorithms and applications.

As discussed in Section 2.2, Coup is the hardware counterpart to privatization. Privatization schemes

create several replicas of variables to be updated. Each thread updates one of these replicas, and threads

synchronize to reduce all partial updates into a single location before the variable is read.
In general, CouP outperforms prior software techniques if either of the following two conditions

holds:
- Reads and updates to shared data are finely interleaved. In this case, software privatization has

large overheads due to frequent reductions, while Coup can move a line from update-only mode

to read-only mode at about the same cost as a conventional invalidation. Thus, privatization needs

many updates per core and data value to amortize reduction overheads, while CouP yields benefits

with as little as two updates per update-only epoch.

- A large amount of shared data is updated. In this case, privatization significantly increases memory

footprint and puts more pressure on shared caches.

26

CHAPTER 3. COUP

We now discuss several parallel patterns and applications that have these properties.

Separate Update- and Read-Only Phases

Several parallel algorithms feature long phases where shared data is either only updated or only read.
Privatization techniques naturally apply to these algorithms.

Reduction variables: Reduction variables are objects that are updated by multiple iterations of a loop
using a binary, commutative operator (a reduction operator) [87, 88], and their intermediate state is not
read. Reduction variables are natively supported in parallel programming languages and libraries such
as HPF [58], MapReduce [36], OpenMP [39], TBB [89], and Cilk Plus [42]. Prior work in parallelizing
compilers has developed a wide array of techniques to detect and exploit reduction variables [51, 87, 88].
Reductions are commonly implemented using parallel reduction trees, a form of privatization. Each
thread executes a subset of loop iterations independently, and updates a local copy of the object. Then,
in the reduction phase, threads aggregate these copies to produce a single output variable.

Reduction variables can be small, for example when computing the mean or maximum value of an
array. In these cases, the reduction variable is a single scalar, the reduction phase takes negligible time,
and Coup would not improve performance much over software reductions.

Reduction variables are often larger structures, such as arrays or matrices. For example, consider a
loop that processes a set of input values (e.g., image pixels) and produces a histogram of these values
with a given number of bins. In this case, the reduction variable is the whole histogram array, and the
reduction phase can dominate execution time [52], as shown in Figure 2.1. Yu and Rauchwerger [115]
propose several adaptive techniques to lower the cost of reductions, such as using per-thread hash
tables to buffer updates, avoiding full copies of the reduction variable. However, these techniques add
time overheads and must be applied selectively [115]. Instead, Coup achieves significant speedups by
maintaining a single copy of the reduction variable in memory, and overlapping the loop and reduction
phases.

Reduction variables and other update-only operations often use floating-point data. For example,
depending on the format of the sparse matrix, sparse matrix-vector multiplication can require multiple
threads to update overlapping elements of the output vector [6]. However, floating-point operations
are not associative or commutative, and the order of operations can affect the final result in some
cases [106]. Common parallel reduction implementations are non-deterministic, so we choose to support
floating-point addition in Coup. Implementations desiring reproducibility can use slower deterministic
reductions in software [37].

Ghost cells: In iterative algorithms that operate on regular data, such as structured grids, threads
often work on disjoint chunks of data and only need to communicate updates to threads working on
neighboring chunks. A common technique is to buffer updates to boundary cells using ghost or halo
cells [56], private copies of boundary cells updated by each thread during the iteration and read by
neighboring threads in the next iteration. Ghost cells are another form of privatization, different from
reductions in that they capture point-to-point communication. CouP avoids the overheads of ghost cells
by letting multiple threads update boundary cells directly.

The ghost cell pattern is harder to apply to iterative algorithms that operate on irregular data, such
as PageRank [78, 98]. In these cases, partitioning work among threads to minimize communication can
be expensive, and is rarely done on shared-memory machines [98]. By reducing the cost of concurrent
updates to shared data, Coup helps irregular iterative algorithms as well.

27

3.6. EVALUATION

Interleaved Updates and Reads

Several parallel algorithms read and update shared data within the same phase. Unlike the applications
in Section 3.5.1, software privatization is rarely used in these cases, as software would need to detect
data in update-only mode and perform a reduction before each read. By contrast, CouP transparently
switches cache lines between read-only and update-only modes in response to accesses, improving
performance even with a few consecutive updates or reads.

Graph traversals: High-performance implementations of graph traversal algorithms such as breadth-
first search (BFS) encode the set of visited nodes in a bitmap that fits in cache to reduce memory
bandwidth [5, 26]. The first thread that visits a node sets its bit, and threads visiting neighbors of the
node read its bit to find whether the node needs to be visited.

Existing implementations use atomic-or operations to update the bitmap [5], or use non-atomic
load-or-store sequences, which reduce overheads but miss updates, causing some nodes to be visited
multiple times [26]. In both cases, updates from multiple threads are serialized. In contrast, Coup allows
multiple concurrent updates to bits in the same cache line.

Besides graph traversals, commutative updates to bitmaps are common in other contexts, such as
recently-used bits in page replacement policies [31], buddy memory allocation [57], and other graph
algorithms [63].

Reference counting: Reference counting is a common automatic memory management technique.
Each object has a counter to track the number of active references. Threads increment the object's
counter when they create a reference, and decrement and read the counter when they destroy a reference,
When the reference count reaches zero, the object is garbage-collected.

Using software techniques to reduce reference-counting overheads is a well-studied problem [28,
29, 40, 70]. Scalable Non-Zero Indicators (SNZIs) [40] reduce the cost of non-zero checks. SNZIs keep
the global count using a tree of counters. Threads increment and decrement different nodes in the tree,
and may propagate updates to parent nodes. Readers just need to check the root node to determine
whether the count is zero. SNZIs make non-zero checks fast and allow some concurrency in increments
and decrements, but add significant space and time overheads, and need to be carefully tuned.

Refcache [28] delays and batches reads to reference counts, which allows it to use privatization.
Threads maintain a software cache of reference counter deltas, which are periodically flushed to the
global counter. When the global counter stays at zero for a sufficiently long time, the true count is
known to be zero and the object is deallocated. This approach reduces reference-counting overheads,
but delayed deallocation hurts memory footprint and locality.

COUP enables shared reference counters with no space overheads and less coherence traffic than
shared counters. CouP also allows delayed reference counting as in Refcache without a software cache
(Section 3.6.4).

Evaluation

Methodology

Modeled systems: We perform microarchitectural, execution-driven simulation using zsim [95]. We
evaluate single- and multi-socket systems with up to 128 cores and a four-level cache hierarchy, shown
in Figure 3.7. Table 3.1 details the configuration of these systems. Each processor chip has 16 cores.
Each core has private Lis and a private L2, and all cores in the chip share a banked L3 cache with an
in-cache directory. The system supports up to 8 processor chips, connected in a dancehall topology to

28

CHAPTER 3. COUP

lills 1 1 l lfiii lIMllR ll

L4 cache L4 cache L4 cache
& global & global - & global
dir chi dir chip dir chip

Processor Processor Processor
chip chip chiPJ

1-8 processor and L4 chips

to L4 chips

I
I

I

Shared L3 and chip directory

L2 0 L2 15

L11 LID ... L11 LiD

Core 0 Core 15

Processor chip organization

Figure 3.7: Architecture of the simulated system.

Cores 1-128 cores, 16 cores/processor chip, x86-64 ISA, 2.4 GHz, Nehalem-like
000 [95]

Li caches 32 KB, 8-way set-associative, split D/I, 4-cycle latency

C L2 caches 256 KB private per-core, 8-way set-associative, inclusive, 7-cycle latency
C.)
0 32 MB, 8 banks, 16-way set-associative, inclusive, 27-cycle latency, in-cache

P4 31 caches directory

Off-chip Dancehall topology, 40-cycle point-to-point links between each processor and
network L4 chip

L4 & dir .chip 128 MB, 8 banks/chip, 16-way set-associative, inclusive, 35-cycle latency,
in-cache directory

Coherence MESI/MEUSI, 64 B lines, no silent drops

Main memory 4 DDR3-1600-CL1O channels per L4 chip, 64-bit bus, 2 ranks/channel

Table 3.1: Configuration of the simulated system.

the same number of L4 chips. Each of these chips contains a slice of the L4 cache and global in-cache
directory, and connects to a fraction of main memory. This organization is similar to the IBM z13 [110].

We compare MESI and MEUSI (Figure 3.4). With MEUSI, each L3 and L4 bank has a reduction
unit. We perform hierarchical reductions as described in Section 3.2: on a full reduction, each L3
bank invalidates all its children, aggregates their partial updates, and sends a single response to the L4
controller.

CouP operations and data types: We add support for eight commutative-update types:
- Addition of 16, 32, and 64-bit integers, and 32 and 64-bit floating-point values.
- AND, OR, and XOR bitwise logical operations on 64-bit words.

We observe multiplication update-only operations are rare, so we do not support multiplication. We also
observe min and max are often used with scalar reduction variables (e.g., to find the extreme values of
an array). Coup would provide a negligible benefit for scalar reductions, as discussed in Section 3.5.1.
Thus, we do not support min or max. Finally, we support a single word size for bitwise operations,
because this suffices to express updates to bitmaps of any size (smaller or larger).

29

I

3.6. EVALUATION 30

Input set Commutative operations Sequential runtime

hist GRiN [1], 512 bins 32b int add 2720 Mcycles
spmv rmalO [35] 64b FP add 94 Mcycles

fluidanimate simlarge [13] 32b FP add 5930 Mcycles
pgrank Wikipedia (2007) [35] 64b int add 2850 Mcycles

bfs cage15 [35, 67] 64b OR 5764 Mcycles

Table 3.2: Benchmark characteristics.

Commutative-update instructions: We add an instruction for each supported operation and data type.

Each instruction takes two register inputs, with the address to be updated and the value to apply, and

produces no register output. We encode these instructions using x86-64 no-ops that are never emitted

by the compiler.

The x86 (TSO) memory model specifies that atomic instructions have an implicit store-load fence [100];

for consistency, we also add an implicit fence to commutative-update instructions. We implement con-

ventional atomic operations and commutative updates using a four-puop sequence: load-linked, execute

(in one of the appropriate execution ports), store-conditional, and store-load fence.

Reduction unit organization: Since functional units for the required operations are relatively simple,
we assume a 2-stage pipelined, 256-bit ALU (4x 64-bit lanes). This ALU has a throughput of one full

64-byte cache line per two clock cycles, and a latency of three clock cycles per line. We explore the

sensitivity to reduction unit throughput in Section 3.6.5.

Hardware overheads: In summary, our CouP implementation introduces modest overheads:

1. Eight additional commutative-update instructions.
2. Four bits per line to encode the non-exclusive operation type, either read-only or one of eight

commutative-update types (Section 3.4).
3. One reduction unit per L3 and L4 bank.

Workloads: We use a set of five multithreaded benchmarks that cover the cases described in Section 3.5:

* hist is the TBB-based OpenCV [17] histogramming program (version 2.4.11).

- spmv is a sparse matrix-vector multiplication kernel, where the matrix is encoded in compressed

sparse column (CSC) format. CSC requires multiple threads to perform scattered additions to

the output vector. Other input formats, such as EBE, also cause scattered adds in matrix-vector

multiplication [6].
* fluidanimate, from the PARSEC suite [13], is a regular iterative algorithm (Section 3.5.1). We

optimize the default implementation, which uses locks to guard updates to shared cells, to use

atomic operations instead.
" pgrank is a PageRank implementation similar to the shared-memory optimized version of Satish

et al. [98].
- bfs is a parallel breadth-first search algorithm. Our implementation extends PBFS [67] with a visited

bit-vector to reduce memory traffic (Section 3.5.2), similar to state-of-the-art approaches [5, 26].

Table 3.2 details the input sets, commutative-update operations used, and sequential runtime of each

benchmark.

All the baseline benchmark implementations use atomic operations. We also compare against a

privatization-based variant of hist (implemented using TBB reductions) in Section 3.6.3, and develop

reference-counting microbenchmarks to compare Coup against SNZI and Refcache in Section 3.6.4.

303.6. EVALUATION

COUP MESI

100 - 50 - 70 - 25 6C

60- 50
80 -4- 60 20-

42 -
4

--50 a .2
0

- -

) 0 -
130 40 - 35 --) () st) (s0

a a2 3 Of-hpnewr L43nvadaions L4.ainmmr

1o40 1 U) 20 - - -- 1 2 2-

0 -
- 220 1

2 ..- 1 1 5- - -

0 - C0 - C0
1 r 32 6r 96 128 1'6 32 6r 128 1 32 6'4 96 12 1 32 64 96 128 1e 32 64 96 126

Cores Cores Cores Cores Cores

(a) hist (b) spmv (c) fluidanimae (d) pgrank (e) bfs

Figure 3.8: Per-application speedups of Coup and MESI on 1-128 cores (higher is better)

e L2 L3 m Off-chip network L4 invalidations an L4 ipMain memory

12 (e g.1.4 - 3 0 s

8 - 08 -20
oE 05 o

E 6 2-EoE 1.E1o

perfores oes 128 res orhev2e 19 cofes n3 ce@ int rval 128rs%. e 2coe 2 oe oes3 oe 2 oe

(am haisn Abs At in c) ferati

Figure 3.9: Breow ofe verrae memor ccessbiltenyMT of COUn ouentnad MESI pot8, 32 Eand
128-cor systems.t AMAT is sngoemapliedtio, Coup' eac8cores (lowherap ishoetter).maese

fWe port resltscm onME-12 ores.UWe ase tnumber of p rocesofrm an L4 chip on-rus) with mre
cores e 1rtie run use arngle otessoriatind L4 chi, 32core runsdue twoI. eah, ndmbes on),

whihr also scaehe badthU ofways meorytp emams ME4I caaty. Tobsachievey sttiticll rsgifcant

operforms noug run to4 achie 95% ondence inteval 1%udaiae.24 n grn, n

Figur C3U8 coaete paebforymtan andscaaiiyo opan ovninlMEIpooo.Ec
graph shos esulybca for asnl application ahnehrd eahdieante grapshowsghowg prfor-ance scales.

numbese ae reaivt thet runme and the rapk.licatio on ahr single ores undr MEnsantighe mvnumbersweee

UFigdre st.8e ashowes thateCu alwaysc terformitedI btecofetin substatiallyAtP12 corntaes CS ou
outperforsMEfIcan2.4xnloy shstd 3e% n spn,0 nfluidanimateexpeien lgredony pga addte0%
onasessbutMoryoveracthe gap cebetaeeeshaEe and suaofendwies s te umbaer foresgrbowsg showing
th ah Cupdhasterl scaseit sthCaU MrvES asaspeu ve EI

UFadgSstes. asices updeisgh ant chekte vsited bit-veorn (tobreakd2), oua'eradvantaeiy loes

latency (AMAT). Each graph shows results for a single application. Each set of two bars shows results

31 CHAPTER 3. COUP

3.6. EVALUATION 32

COUP Core-level privatization Socket-level privatization

100 100

80 80 -

60 - - 60 -

u) 40 ... 0 - A

2 0 -2 0 -.. ..-

01 32 64 96 128 01 32 64 96 128
Cores Cores

(a) 512 bins (b) 16K bins

Figure 3.10: Speedups of hist with Coup and both core- and socket-level privatization, using small
(512) and large (16 K) numbers of bins.

for Coup and MESI for a given system size (8, 32, or 128 cores). The height of each bar is the average
memory access latency of all loads, stores, and instruction fetches issued from the Lis, normalized to the
AMAT that Coup achieves at 8 cores. Each bar is broken down into time spent at the L2, L3, off-chip
network, L4, coherence invalidations from the L4, and main memory. This breakdown shows critical-path
delays only (e.g., the time spent on invalidations is not the time spent on every invalidation, but the
critical-path delay that L4 requests suffer because other sharers need to be invalidated or downgraded).

Figure 3.9 shows that Coup substantially reduces AMAT over MESI. At 128 cores, Coup's AMAT is
lower than MESI's by 12.6x on hist, 10% on spmv, 12% on fluidanimate, 3.0x on pg rank, and 24%
on bf s. CouP mainly does this by reducing invalidations and serialization. The effect of this reduction
on the overall AMAT depends on how the application uses the memory system. For instance, CouP
nearly eliminates invalidation traffic in hist, spiv, and pg rank. In hist and pg rank, invalidations are
the dominant contributor to AMAT, so eliminating them has the largest impact. But AMAT in spmv is
dominated by L4 and main memory accesses, so the overall impact of eliminating invalidations is smaller.

Beyond reducing AMAT, CouP also lowers traffic: at 128 cores, CouP incurs lower off-chip traffic
than MESI by a factor of 20.2x on hist, 18% on spmv, 18% on fluidanimate, 4.9x on pg rank, and
20% on bf s.

Finally, even though Coup's benefits are significant, these benchmarks execute a relatively small
fraction of commutative-update instructions: at 128 cores, commutative-update instructions are 1.0% of
all executed instructions on hist, 2.4% on spmv, 0.96% on fluidanimate, 4.9% on pg rank, and 0.40%
on bf s. Their impact is significant because, at large core counts, each atomic read-modify-write to a
contended memory location can take several hundred cycles.

Case Study: Reduction Variables

All baseline benchmarks use atomic operations instead of privatization. To compare CouP with software
privatization, we modify hist to make the histogram a reduction variable, and vary the number of bins
(elements) in the histogram. We evaluate both core-level privatization, where each thread has its own
variable, and socket-level privatization, where each socket has its own variable, shared and updated by
all threads running in that socket using atomic operations. Socket-level privatization seeks to balance
the overheads of the fully-shared and fully-privatized implementations.

Figure 3.10 compares the performance and scalability of Coup with core-level and socket-level
privatization on hist. Figure 3.10a shows that, with a small number of bins, CouP outperforms core-
level privatization by 3% and socket-level privatization by 38%. Core-level privatization works well

33 CHAPTER 3. COUP

90 90 200
80 - COUP 80 COUP COUP

70 SNZI 70 SNZI Refcache
0 XADD) 150

c 6 0

_~0 0 560 -..... Z
0 E) 100 -

40 - 40 -

30 - C)30 (
20 20 50
10 10
0 oil 01
1 32 64 96 128 1 32 64 96 128 0 200 400 600 800 1000

Cores Cores Updates per epoch per core
(a) Immediate dealloc, low count (b) Immediate dealloc, high count (c) Delayed dealloc

Figure 3.11: Performance of Coup on reference counting microbenchmarks: (a, b) immediate deallocation
and (c) delayed deallocation.

in this case because each thread performs many updates to each histogram bin (128 on average), so
reduction overheads are highly amortized.

In contrast, Figure 3.10b shows that, with a large number of bins, CouP outperforms core-level
privatization by 2.5x and socket-level privatization by 51%. In this case, core-level privatization is
dominated by the cost of reductions, as each thread performs a small number of updates to each histogram
bin (2 on average).

Finally, privatization also increases footprint and adds pressure to shared caches. If we grow both
the number of bins and the image size (so the number of updates per bin and thread, and thus reduction
overheads, stay constant), we see an additional performance degradation of 9% in the core-level
privatized version when the aggregate size of all privatized histograms overflow the L3 caches, while
Coup does not suffer this degradation.

Case Study: Reference Counting

We use two microbenchmarks to compare Coup's performance on reference counting against the software
techniques described in Section 3.5.2. The first microbenchmark models immediate-deallocation schemes,
and we use it to compare against a conventional atomic-based implementation and SNZI [40]. The second
microbenchmark models delayed-deallocation schemes, and we use it to compare against Refcache [28].

Immediate deallocation: In this microbenchmark, each thread performs a fixed number of increment,
decrement, and read operations over a fixed number of shared reference counters. We use 1 to 128
threads, 1 million updates per thread, and 1024 shared counters. On each iteration, a thread selects a
random counter and performs either an increment or a decrement and read.

SNZI uses binary trees with as many leaves as threads. The performance of SNZI depends on the
number of references per object-a higher number of references causes higher surpluses in leaves and
intermediate nodes, and less contention on updates. To capture this effect, we run two variants of this
benchmark. In the first variant (low count), each thread keeps only 0 or 1 references per object, while in
the second mode (high count), each thread keeps up to five references per object.

To achieve this, in low-count mode, when a thread randomly selects an object, it will always increment
its counter if it holds no references to that object, and it will always decrement its counter if it holds one
reference. In high-count mode, threads will increment with probability 1.0, 0.7, 0.5, 0.5, 0.3, and 0.0 if
they hold 0, 1, 2, 3, 4, and 5 local references to that counter, respectively.

3.7. ADDITIONAL RELATED WORK

For updates, CouP and XADD use commutative-add and atomic fetch-and-add instructions, respec-
tively.

Figure 3.11a and Figure 3.11b show the results for these experiments. In the low-count variant
(Figure 3.11a), SNZI incurs high overhead when counts drop to zero, so both CouP and XADD outperform
SNZI (by 50% and 17% at 128 cores, respectively). By contrast, in the high-count variant (Figure 3.11b),
SNZI enjoys lower contention and outperforms CouP (by 35% at 128 cores). CouP outperforms XADD
in both cases.

We conclude that, in high-contention scenarios, CouP provides the highest performance, but in
specific scenarios, software optimizations that exploit application-specific knowledge to avoid contention
among reads and updates can outperform Coup. We also note that it may be possible to modify SNZI to
take advantage of CouP and combine the advantages of both techniques.

Delayed deallocation: In the delayed-deallocation microbenchmark, 128 threads perform increments
and decrements (but not reads) on 100,000 counters. We divide the benchmark into epochs, each with a
given number of updates per thread. When they finish an epoch, threads check whether counters are
zero, simulating delayed-deallocation periods as in Refcache [28].

Our CouP implementation updates counters with commutative-add instructions and maintains a
bitmap with a "modified" bit for each counter. The bitmap is updated with commutative-or instructions.
Between epochs, cores use ordinary loads to read the value of marked counters and check whether the

counters are zero. Refcache uses a per-thread software cache (a hash table) to maintain the deltas to
each modified counter. Threads flush this cache when they finish each epoch.

Figure 3.11c shows the performance CouP and Refcache on the delayed deallocation microbenchmark
as the number of updates per epoch (x-axis) grows from 1 to 1000 updates per thread and epoch. CouP
outperforms refcache across the range, by up to 2.3 x.

We conclude that CouP primarily helps delayed-deallocation reference counting by allowing a simpler,
lower-overhead implementation to capture the low communication costs of prior software approaches

(in this case, using counters and bitmaps instead of hash tables).

3.6.5 Sensitivity to Reduction Unit Throughput

Coup is barely sensitive to reduction unit throughput. We compare the default 256-bit ALU, which

has a throughput of one cache line per 2 cycles, with a simpler, unpipelined 64-bit ALU, which has a

throughput of one line per 16 cycles. The maximum performance degradation incurred with the slower
ALU is 0.88% at 128 cores on bf s. Smaller systems incur somewhat lower worst-case degradations (e.g.,
0.76% at 64 cores).

3.7 Additional Related Work

Loosely consistent memory (LCM) [64] is a software-controlled coherence protocol built on top of

Tempest [90] that allows multiple caches to hold writable copies of the same line. These copies can

become incoherent, and software must explicitly reconcile them in a later merge phase. Unlike LCM, CouP

preserves cache coherence and transparently merges partial updates, requiring no software intervention.

Moreover, several cache-coherence optimizations reduce the cost of updates, though that is not their

primary purpose: self-invalidations, done with either hardware predictors [66] or software protocols [27,
54], remove invalidations from the critical path; adaptive-granularity coherence schemes [61, 117, 121]
reduce both false sharing and the amount of dirty data sent on invalidations; and speculation and fast

34

networks can reduce the cost of atomic operations [41]. These schemes are orthogonal to Coup, which
could be used in conjunction with them to improve performance.

While we have focused on shared-memory systems, exploiting commutativity is also common with
message passing. The BlueGene/L and BlueGene/Q supercomputers feature specialized collective
networks that perform reductions completely in hardware, using ALUs embedded in network routers [8,
24]. In contrast to COUP, their main advantage is minimizing the latency of scalar or short reductions
across a very large number of nodes.

Summary

We have presented Coup, a technique that exploits commutativity to reduce the cost of updates in
cache-coherent systems. Coup extends conventional coherence protocols to allow multiple caches
to simultaneously hold update-only permission to data. We have introduced an implementation of
Coup that uses this support to accelerate single-instruction commutative updates. This implementation
requires minor hardware changes and, in return, substantially improves the performance of update-heavy
applications.

Beyond this specific implementation, a key contribution of Coup is to recognize that it is possible
to allow multiple concurrent updates without sacrificing cache coherence or relaxing the consistency
model. Thus, Coup attains performance gains without complicating the parallel programming.

35 CHAPTER 3. COUP

3.8. SUMMARY 36

CoMMTM

As illustrated in Section 2.3, there is a dichotomy between software and hardware conflict detection

schemes: software techniques, such as semantic locking, can leverage program semantics to be highly

precise, but they incur high runtime overheads; meanwhile, hardware techniques incur small overheads,

but are imprecise because they rely on conventional coherence protocols, which can reason in terms of

only reads and writes, to detect conflicts.

To solve this dichotomy, we now present the CoMMTM commutativity-aware HTM. The key idea

behind CoMMTM is to extend the coherence protocol and conflict detection scheme to allow multiple

private caches to simultaneously hold data in a user-defined reducible state. Transactions can use labeled

memory operations to read and update these private, reducible lines locally without triggering conflicts.

When another transaction issues an operation that does not commute given the current reducible

state and label (i.e., a normal load or store or a labeled operation with a different label), CoMMTM

transparently performs a user-defined reduction before serving the data. This approach preserves

transactional guarantees: semantically-commutative operations are reordered to improve performance,

but non-commutative operations cannot observe reducible lines with partial updates.

Like Coup, CoMMTM modifies the coherence protocol to support new states that do not trigger

coherence actions on updates, avoiding conflicts. However, Coup does not work in a transactional

context (only for single-instruction atomic updates) and is restricted to a small set of strictly commutative

operations, i.e., those that produce the same bit pattern when reordered. Instead, CoMMTM supports

the much broader range of multi-instruction, semantically commutative operations. Moreover, CoMMTM

shows that there is a symbiotic relationship between semantic commutativity and speculative execution:

COMMTM relies on transactions to make commutative multi-instruction sequences atomic, so semantic

commutativity would be hard to exploit without speculative execution; and CoMMTM accelerates

speculative execution much more than Coup does single-instruction commutative updates, since apart

from reducing communication, COMMTM avoids conflicts.

Specifically, we make the following contributions:

- We present a basic version of CoMMTM (Section 4.1 to Section 4.5) that achieves the same precision

as software semantic locking [59, 111].
- We then extend CoMMTM with gather requests (Section 4.6), which allow software to redistribute

reducible data among caches, achieving much higher concurrency in important use cases.

- We evaluate CoMMTM with microbenchmarks (Section 4.8) and full TM applications (Section 4.9).

Microbenchmarks show that CoMMTM scales on a variety of commutative operations, such as set

insertions, reference counting, ordered puts, and top-K insertions, which allow no concurrency in

conventional HTMs. At 128 cores, CoMMTM improves full-application performance by up to 3.4x,

lowers private cache misses by up to 45%, and reduces or even eliminates transaction aborts.

We first introduce COMMTM's programming interface and ISA. We then present a concrete CoMMTM

implementation that extends an eager-lazy HTM baseline. Finally, we show how to generalize CoMMTM

to support other coherence protocols and HTM designs.

37

CoMMTM Programming Interface and ISA

CoMMTM requires simple program changes to exploit commutativity: defining a reducible state to avoid
conflicts among commutative operations, using labeled memory accesses to perform each commutative
operation within a transaction, and implementing user-defined reduction handlers to merge partial updates
to the data.

In this section, we use a very simple example to introduce COMMTM's API: concurrent increments to
a shared counter. Counter increments are both strictly and semantically commutative; we later show
how COMMTM also supports more involved operations that are semantically commutative but not strictly
commutative, such as top-K insertions. Figure 1.2 shows how COMMTM allows multiple transactions to
increment the same counter concurrently without triggering conflicts.

User-defined reducible state and labels: CoMMTM extends the conventional exclusive and shared
read-only states with a reducible state. Lines in this reducible state must be tagged with a label. The
architecture supports a limited number of labels (e.g., 8). The program should allocate a different label
for each set of commutative operations; we discuss how to multiplex these labels in Section 4.4. Each
label has an associated, user-defined identity value, which may be used to initialize cache lines that enter
the reducible state. For example, to implement commutative addition, we allocate one label, ADD, to
represent deltas to shared counters, and set its identity value to zero.

Labeled load and store instructions: To let the program denote what memory accesses form a
commutative operation, CoMMTM introduces labeled memory instructions. A labeled load or store
simply includes the label of its desired reducible state, but is otherwise identical to a normal memory
operation. For instance, commutative addition can be implemented as follows:

void add(int* counter, int delta) {
tx-begin();
int localValue = load[ADD](counter);
int newLocalValue = localValue + delta;
store[ADD](counter, newLocalValue);
tx-end(;

}

load [ADD] and s t o re [ADD] inform the memory system that it may grant reducible permission with the
ADD label to multiple caches. This way, multiple transactions can perform commutative additions locally
and concurrently. Note that this sequence is performed within a transaction to guarantee its atomicity
(this code may also be called from another transaction, in which case it is handled as a conventional
nested transaction [73]).

User-defined reductions: Finally, COMMTM requires the program to specify a per-label reduction
handler that merges reducible-state cache lines. This function takes the address of the cache line and the
data from a reducible cache line to merge into it. For example, the reduction operation for addition is:

void add-reduce(int* counterLine, int[] deltas) {
for (int i = 0; i < intsPerCacheLine; i++) {
int v = load[ADD](counterLine[i);
int nv = v + deltas[i];
store[ADD](counterLine[i], nv);

}
}

4.1. COMMTM PROGRAMMING INTERFACE AND ISA 38

39 CHAPTER 4. COMMTM

1 6-tile, 1 28-core CMP
Tile Organization

Shared L3 and directory CoMMTM additions

Tile A bee
- 2l - 2 - j- - -i- reducible statesL 2 O

--

Li LiD ... Lii LiD- labeled loads/stores

I ' Core -0 Core - 7

I_________L____ L ------------------ _

Figure 4.1: Baseline CMP and main CoMMTM additions.

Unlike multi- instruction commutative operations done through labeled loads and stores, reduction

handlers are not transactional. Moreover, to ease their implementation, we restrict the types of accesses

they can make. Specifically, while reduction handlers can access arbitrary data with read-only and
exclusive permissions, they should not trigger additional reductions (i.e., they cannot access other lines

in reducible state).

CoMMTM Implementation

Eager-Lazy HTM Baseline

To make our discussion concrete, we present CoMMTM in the context of a specific eager-lazy HTM

baseline. We simulate an HTM with eager conflict detection and lazy (buffer-based) version management,
as in LTM [9] and Intel's TSX [114]. We assume a multicore system with per-core private Lis and L2s,
and a shared L3, as shown in Figure 4.1. Cores buffer speculatively-updated data in the Li cache; the
L2 has non-speculative data only. Evicting the speculative data in Lis causes the transaction to abort.

The HTM uses the coherence protocol to detect conflicts eagerly. Transactions are timestamped, and

timestamps are used for conflict resolution [72]: on a conflict, the earlier transaction wins, and aborted

transactions use randomized backoff to avoid livelock. This conflict resolution scheme frees eager-lazy

HTMs from common pathologies [16].

Coherence protocol

CoMMTM extends the coherence protocol with an additional state, user-defined reducible (U). For example,
Figure 4.2 shows how CoMMTM extends MSI with the U state. Lines enter U in response to labeled loads

and stores, and leave U through reductions. Each U-state line is labeled with the type of reducible data it

contains (e.g., ADD). Lines in U can satisfy loads and stores whose label matches the line's.

Other states in the original protocol retain similar functionality For example, in Figure 4.2, M can

satisfy all memory requests (conventional and labeled), S can only satisfy conventional loads, and I

cannot satisfy any requests. In the rest of the section we will show how lines transition among these

states in detail.
COMMTM's U state is similar to Coup's update-only stateHowever, CoMMTM requires substantially

different support from Coup in nearly all other aspects: whereas Coup requires new update-only instruc-

tions for each commutative operation, CoMMTM allows programs to implement arbitrary commutative

operations, exploiting transactional memory to make them atomic; whereas Coup implements fixed-

4.2. COMMTM IMPLEMENTATION 40

Legend

Transitions- Initiated by own core (gain permissions)s -- -+ Initiated by others (lose permissions)

States User-defined Sharcd
reducible (<a-rW)

Requests Read Write Labeled load/store

MSI CommTM-MSI
M

W R W ' W R
RL

w S W, ,R S L-U w

R L

Figure 4.2: State-transition diagrams of MSI and CommTM protocols. For clarity, diagrams omit actions
that do not cause a transition (e.g., R requests in S).

function reduction units, CoMMTM allows arbitrary reduction functions; and whereas Coup focuses on
reducing communication in a non-transactional context, CoMMTM reduces both transactional conflicts
and communication.

Transactional execution

Labeled memory operations within transactions cause lines to enter the U state. We first discuss of
permissions change in the absence of transactional conflicts, then explain how conflict detection changes.

On a labeled request to a line with invalid or read-only permissions, the cache issues a GETU request
and receives the line in U. There are five possible cases:

1. If no other private cache has the line, the directory serves the data directly, as shown in Figure 4.3a.
2. If there are one or more sharers in S, the directory invalidates them, then serves the data.
3. If there are one or more sharers in U with a different label from the request's, the directory asks

them to forward the data to the requesting core, which performs a reduction to produce the data.
Reductions are discussed in detail in Section 4.2.4.

4. If there are one or more sharers in U with the same label, the directory grants U permission, but
does not serve any data.

5. If there is an exclusive sharer in M, the directory downgrades that line to U and grants U to the
requester without serving any data, as shown in Figure 4.3b.

In cases 1-3, the requester receives both U permission and the data; in cases 4 and 5, the requester does
not receive any data, and instead initializes its local line with the user-defined identity element (e.g.,
zeros for ADD). Labeled operations must be aware that data may be scattered across multiple caches. In
all cases, CoMMTM preserves a key invariant: reducing the private versions of the line produces the right
value.

Speculative value management: Value management for lines in U that are modified is nearly identical
to that of lines in M. Figure 4.4 shows how a line in U is read, modified, and, in the absence of conflicts,
committed: (1) Both normal and labeled writes are buffered in the Li cache, and non-speculative values

41 CHAPTER 4. COMMTM

Private A: 20
MdedUser ed

cache Ue-defined
reducible

Initial state

SShared
cache

A: 24

L2 L2

Core O Core I

GETU A
load[ADD](A) [ADD)

ACK

3 .:24

Shared cache
A: O: -

12 A: 11.2

LI A: 1111

Core 0 Core 1i
Final state

(a) No other sharers

Legend
Shared
cache

Sharer permissions (Ex: exclusive;

A: ShU{1,2}: -- ShU: reducible)

Address Sharers

Initial state
Shared cache

A: Ex{1}: -

1.2 [L2 A: 24

Core 0 Core 1

GETU A
load[ADD](A) DOWNU A

Shared cache
A 1 2

11.2 A. JL2 4

Core 0 Core 1

Final state
(b) Downgrade from M to U

I

Figure 4.3: Serving labeled memory accesses: (a) the first GETU requester obtains the data; and (b)
another cache with the line in M is downgraded to U and retains the data, while the requester initializes
the line with the identity value. Each diagram shows the initial and final states in the shared and private
caches.

are stored in the private L2. @ When the transaction commits, all dirty lines in the Li are marked as
non-speculative. Q Before a dirty line in the Li is speculatively written by a new transaction, its value is
forwarded to the L2. Thus, if the transaction is aborted, its speculative updates to data in both M and U
can be safely discarded, as the L2 contains the correct value.

4

Conflict detection and resolution: COMMTM leverages the coherence protocol to detect conflicts. In
our baseline, conflicts are triggered by invalidation and downgrade requests to lines read or modified
by the current transaction (i.e., lines in the transaction's read- or write-sets). Similarly, in CoMMTM,
invalidations to lines that have received a labeled operation from the current transaction trigger a conflict.
We call this set of lines transaction's labeled set. We leverage the existing Li's status bits to track the
labeled set, as shown in Figure 4.4.

CoMMTM is orthogonal to the conflict resolution protocol. We leverage our baseline's timestamp-
based resolution approach: each transaction is assigned an unique timestamp, and requests from each
transaction include its timestamp. On an invalidation to a line in the transaction's read, write, or labeled
set, the core compares its transaction's timestamp and the requester's. If the receiving transaction is
younger (i.e., has a higher timestamp), it honors the invalidation request and aborts; if it is older than
the requester, it replies with a NACK, which causes the requester to abort. Figure 4.5 shows both of these
cases in detail for a line in the labeled set.

41 CHAPTER 4. COMMTM

U-state line: Data Speculation status bits (only in Li)
Address EA: 00 R/W: speculatively-read/written

L2 A: 3 L2 A:3 L2 A: 3 L2 A:

LI A: 3i00 LA: Ll A: 4 L1
tx_begin() tx-end() txbegin()
Id[ADD](A) (ts:0) [Id[ADD](A) TX (ts:1)

Core st[ADD](A) Core Core st[ADD](A) Core

Figure 4.4: Value management for U-state lines is similar to M. Li tag bits record whether the line
is speculatively read or written (using the state and label to infer whether from labeled or unlabeled
instructions). Upon commit, spec-R/W bits are reset to zero. Before being written by another transaction,
dirty U-state lines are written back to the L2.

Reductions

CoMMTM performs reductions transparently to satisfy non-commutative requests. There is a wide range
of implementation choices for reductions, as well as important considerations for deadlock avoidance.

We choose to perform reductions at the core that issues the reduction-triggering request. Specifically,
each core features a shadow hardware thread dedicated to perform reductions. Figure 4.6 shows the
steps of a reduction in detail: (J) When the directory receives a reduction-triggering request, it sends
invalidation requests to all the cores with U-state permissions. (Each of the cores receiving the
invalidation forwards the line to the requester. (When each forwarded line arrives at the requester, the
shadow thread runs the reduction handler, which merges it with the current line (if the requester does
not have the line in U yet, it transitions to U on the first forwarded line it receives). @ After all lines
have been received and reduced, the requester transitions to M, @ notifies the directory, and (D serves
the original request.

Dedicating a helper hardware context to reductions ensures that they are performed quickly, but
adds implementation cost. Alternatively, we could handle reductions through user-level interrupts of the
main thread [69, 96, 113], or use a low-performance helper core [10, 25].

NACKed reductions: When a reduction happens to a line that has been speculatively updated by a
transaction, the core receiving the invalidation may NACK the request, as shown in Figure 4.5b. In
this case, the requesting core still reduces the values it receives, but aborts its transaction afterwards,
retaining its data in the U state. When re-executed, the transaction will retry the reduction, and will
eventually succeed thanks to timestamp-based conflict resolution.

For simplicity, non-speculative requests have no timestamp and cannot be NACKed. Finally, even
though the request they seek to serve may come from within a transaction, reductions are not speculative:
reduction handlers always operate on non-speculative data, and have no atomicity guarantees. Trans-
actional reductions would be more complex, and they are unnecessary in all the use cases we study
(Section 4.8 and Section 4.9).

Deadlock avoidance: Because the memory request that triggers the reduction blocks until the reduction
is done, and reduction handlers may themselves issue memory accesses, there are subtle corner cases
that may lead to deadlock and must be addressed. First, as mentioned in Section 4.1, we enforce
that reduction handlers cannot trigger reductions themselves (this restriction is easy to satisfy in all
the reduction handlers we study). Second, to avoid a protocol deadlock caused by reductions, we

4.2. COMMTM IMPLEMENTATION 42

43 CHAPTER 4. COMMTM

iaes User-defined
reducible

Initial state
Shared cache
A: ShU{ ,} :-

L1 A: 4 L:

TX (ts: 5)
S [Core

NVA GETS

TX abort ACKrADDd
A:3

n reduction

Shared cache
A: Ex{T : -

|L2L2 I 3

TX (ts: 5)
CoeO Core 1

Final state
(a) INV from lower-timestamp transac-
tion

end Sharer permissions (Ex: exclusive;
chared A: ShU{1,2}: -- ShU: reducible)

Address Sharers

Initial state
Shared cache
A: ShU{0,1}: --

L2[A: 3 L2 A: 28

Li A: A L II
[TX (s:) [TX (ts9)

GETS A
INV A

NACK
TX abort

Shared cache
A: ShU{0, 1}: --

12 A: 3] 2 A:28
Li A 4 1

TX (ts: 7) F861
Final state

(b) INV from higher-timestamp
transaction

Figure 4.5: Core 0 receives an invalidation request to a U-state line in its transaction's labeled set. (a) if
requester has a lower timestamp, abort and forward data; and (b) if requester has a higher timestamp,
NACK invalidation.

dedicate an extra virtual network for forwarded U-state data. This adds moderate buffering requirement
to on-chip network routers [80], which must already support 3-6 virtual networks in conventional

protocols [14, 75, 102]. Third, we reserve a way in all cache levels for data with permissions other than

U. Misses from reductions always fill data in that way, which ensures that they will not evict data in U,
which would necessitate a reduction.

With these provisos, memory accesses caused by reductions cannot cause a cyclic dependence with
the access they are blocking, avoiding deadlock. We should note that both the corner cases and the
deadlock-avoidance strategies we adopt are similar to those in architectures with hardware support for
active messages, where these topics are well studied [4, 69, 96, 108] (a forward response triggered by a

reduction is similar to an active message).

Handling unlabeled operations to speculatively-modified labeled data: Finally, COMMTM must

handle a transaction that accesses the same data through labeled and unlabeled operations (e.g., it
first adds a value to a shared counter, and then reads it). Suppose that an unlabeled access to data

in U causes a reduction (i.e., if the core's U-state line was not the only one in the system). If the

data was speculatively modified by our own transaction, we cannot simply incorporate this data to the

reduction, as the transaction may abort, leaving COMMTM unable to reconstruct the non-speculative
value of the data. For simplicity, in this case we abort the transaction and perform the reduction with

the non-speculative state, re-fetched from the core's L2. When restarted, labeled loads and stores are

performed as conventional loads and stores, so the transaction does not encounter this case again.

Though we could avoid this abort through more sophisticated schemes (e.g., performing speculative and

43 CHAPTER 4. COMMTM

4.3. PUTTING IT ALL TOGETHER: OVERHEADS 44

Legend Sharer permissions (Ex: exclusive;
Private A: 20 User-defined Shared A: ShU{12- ShU: reducible)
caches A:cache Ireducible Address Sharers

Initial state
Shared cache

A: ShU{O,2,3}: --

11.2 L2773

ILI1 _ L I LI L

Core 0 Core 1 Core 2 Core 3

INV A INV A
INV A

A:+5 A+
user- A:_28

defined 8 FINISH
reduction

Shared cache

A: :-

L2 L2 L2 L2

LIL LI L

Core 0 Core 1 Core 2 Core 3
Final state

Figure 4.6: Core 0 issues unlabeled or differently-labeled request, causing a full reduction of As U-state
data, held in several private caches.

non-speculative reductions), we do not observe this behavior in any of our use cases.

Evictions

Evictions of lines in U from private caches are handled as follows: if no other private caches have U
permissions for the line apart from the one that initiates the eviction, the directory treats this as a normal
dirty writeback. When there are other sharers, the directory forwards the data to one of the sharers,
chosen at random, which reduces it with its local line.

If the chosen core is performing a transaction that touches this data, for simplicity, the transaction is
aborted.

Finally, evictions of lines in U from the shared cache cause a reduction at one of the cores sharing the
line. Since the last-level cache is inclusive, this eviction aborts all transactions that have accessed the
line.

Putting it all Together: Overheads

In summary, our CoMMTM implementation introduces moderate hardware overheads:
- Labeled load and store instructions in ISA and cores.
- Cache at all levels need to store per-tag label bits. Supporting eight labels requires 3 bits/line,

introducing 0.6% area overhead for caches with 64-byte lines.
- Extended coherence protocol and cache controllers. While we have not verified CoMMTM's protocol

extensions, they are similar to Coup's, which has reasonable verification complexity (requiring
only 1-5 transient states by merging S and U)

- One extra virtual network for forwarded U data, which adds few KBs of router buffers across the

system [34].

- One shadow hardware thread per core to perform reductions. In principle, this is the most expensive

addition (an extra thread increases core area by about 5% [48]). However, commercial processors

already support multiple hardware threads, and the shadow thread can be used as a normal thread

if the application does not benefit from CoMMTM.

Generalizing CoMMTM 4.4

CoMMTM can be applied to other contexts beyond our particular implementation.

Other protocols: While we have used MSI for simplicity, COMMTM can easily extend other invalidation-

based protocols, such as MESI or MOESI, with the U stateIn fact, we use and extend MESI in our

evaluation.

Multiplexing labels: Large applications with many data types may have more semantically-commutative

operations than hardware provides. In this case, we can assign the same label to two or more operations

under two conditions. First, it should not be possible for both commutative operations to access the

same data. There are many cases where this is naturally guaranteed, for instance, on operations on

different types (e.g., insertions into sets and lists). Second, U-state lines need to have enough information

(e.g., the data structure's type) to allow reduction handlers to perform the right operation. This allows

CoMMTM to scale to large applications with a small number of labels in hardware.

Lazy conflict detection: While we focus on eager conflict detection, CoMMTM applies to HTMs with

lazy (commit-time) conflict detection, such as TCC [22, 44] or Bulk [21, 82]. This would simply require

acquiring lines in S or U without restrictions (triggering non-speculative reductions if needed, but

without flagging conflicts), holding speculative updates (both commutative and non-commutative), and

making them public when the transaction commits. Commits then abort all executing transactions with

non-commutative updates. For example, a transaction that triggers a reduction and then commits would

abort all transactions that accessed the line while in U, but transactions that read and update the line

while in U would not abort each other.

Other contexts: CoMMTM's techniques could be used in other contexts beyond TM where speculative

execution is required, e.g., thread-level speculation.

CoMMTM vs Semantic Locking 4.5

Just as eager conflict detection is the hardware counterpart to two-phase locking [11, 47], CoMMTM as

described so far is the hardware counterpart to semantic locking (Section 2.3). In semantic locking, each

lock has a number of modes, and transactions try to acquire the lock in a given mode. Multiple transactions

can acquire the lock in the same mode, accessing and updating the data it protects concurrently [59]

(with some other synchronization to arbitrate low-level accesses, e.g., logging updates and performing

reductions later). An attempt to acquire the lock in a different mode triggers a conflict. Each label in

CoMMTM can be seen as a locking mode, and just like reads and writes implicitly acquire read and write

locks to the cache line, labeled accesses implicitly acquire the lock in the mode specified by the label,

triggering conflicts if needed. Furthermore, CoMMTM is architected to reduce communication by holding

commutative updates to the line in private caches.

CHAPTER 4. COMMTM45

4.6. AVOIDING NEEDLESS REDUCTIONS WITH GATHER REQUESTS 46

3 Legend Sharer Permissions (Ex: exclusive;
Private A: 20 Us A: 3d Shared A: ShU{1,2}: -- ShU: reducible)
caches cache I Y

reducible Address Sharers

User-defined reduction U User-defined split
Initial state

Shared cache
A: ShU{0,1,2,3}: --

12 AO L2CA:19 12 A:O L2 A: 16

L AO A19 LL A:AO LA:16

re O C r Care 2 Core 3

sarsA StSPLIT A PLIT A

A eSPLI A sharers; 4

ACK ACK+A5

Shared cache
A: ShU{0,1,2,3}: --

12 A:-O L2 12 A

Li A:0 Li A: Li A:A

Care 0 Care 1 Care 2 Core 3
Final state

Figure 4.7: Gather requests collect and reduce U-state data from other caches. In this example, core 2
initiates a gather to satisfy a local decrement. User-defined splitters at other cores donate part of their
local deltas to core 2. For instance, core 3 splits its initial value, 16, into 12, which it retains, and 4,
which it donates.

Avoiding Needless Reductions with Gather Requests

While semantic locking is general, not all semantically-commutative operations are amenable to semantic
locking, and more sophisticated software conflict detectors allow more operations to commute [59].
Similarly, we now extend CoMMTM to allow more concurrency than semantic locking. The key idea is
that many operations are conditionally commutative: they only commute when the reducible data they
operate on meets some conditions. With CoMMTM as presented so far, these conditions require normal
reads, resulting in frequent reductions that limit concurrency To solve this problem, we introduce gather
requests, which allow moving partial updates to the same data across different private caches without
leaving the reducible state.

Motivation: Consider a bounded non-negative counter that supports increment and decrement op-
erations. increment always succeeds, but decrement returns a failure when the initial value of the
counter is already zero. inc rement always commutes, but decrement only commutes if the counter has
a positive value. Bounded counters have many use cases, such as reference counting and resizable data
structures.

In CoMMTM, we can exploit the fact that if the local value is positive, the global value must be
positive. In this case, dec rement can safely decrement the local value. However, if the local value is
zero, dec rement must perform a reduction to check whether the value has reached zero, as shown in
this implementation:

47 CHAPTER 4. COMMTM

bool decrement(int* counter) {
tx-begin();

int value load[ADD](counter);
if (value == 0) {
// Trigger a reduction

if (load(counter) == 0) {
tx-end();

return false;
}

}
store[ADD](counter, value - 1);
tx-end();

return true;
}

With frequent decrements, reductions will serialize execution even when the actual value of the counter
is far greater than zero. Gather requests avoid this by allowing programs to observe partial updates in
other caches and redistribute them without leaving U.

Gather requests: Figure 4.7 depicts the steps of a gather request in detail. Gather requests are initiated
by a new instruction, load gather, which is similar to a labeled load. If the requester's line is in U,
load-gather issues a gather request to the directory and reduces forwarded data from other sharers
before returning the value.

The directory forwards the gather request to each (U-state) sharer. The core executes a user-defined
splitter, a function analogous to a reduction handler, that inspects its local value and sends a part of it to
the requester. In our implementation, the directory forwards the number of sharers in gather requests,
which splitters can use to rebalance the data appropriately.

Splitters reuse all the machinery of reduction handlers: they run on the shadow thread, are non-
speculative, and split requests may trigger conflicts if their address was speculatively accessed.

Our bounded counter example can use gather requests as follows. First, we modify the dec rement
operation to use loadgather:

bool decrement(int* counter) {
tx-begin();
int value = load[ADD](counter);
if (value == 0) {

value = load-gather[ADD](counter);
if (value == 0)

if (load(counter) == 0) {
tx-end(;

return false;
}

}
store[ADD](counter, value - 1);
tx-end (;
return true;

}

Second, we implement a user-defined splitter that gives a fraction 1/numSharers of its counter values,
which, over time, will maintain a balanced distribution of values:

Cores 128 cores, x86-64 ISA, 2.4 GHz, IPC-1 except on Li misses

Li caches 32 KB, private per-core, 8-way set-associative, split D/I

L2 caches 128 KB, private per-core, 8-way set-associative, inclusive, 6-cycle latency

64 MB, fully shared, 16 4 MB banks, 16-way set-associative, inclusive, 15-cycle
L3 cache bank latency, in-cache directory

Coherence MESI/CoMMTM, 64 B lines, no silent drops

NoC 4x4 mesh, 2-cycle routers, 1-cycle 256-bit links

Main mem 4 controllers, 136-cycle latency

Table 4.1: Configuration of the simulated system.

void add-split(int* counterLine, int* fwdLine,

int numSharers) {
for (int i = 0; i < intsPerCacheLine; i++) {

int value = load[ADD](counterLine[i]);
int donation = ceil(v / numSharers);
fwdLine[i] = donation;
store[ADD](counterLine[i], v - donation);

}
}

Figure 4.7 shows how a gather request rebalances the data and allows a dec rement operation to proceed
while maintaining lines in U. Note how, after the gather request, the requester's local value (9) allows it
to perform successive dec rements locally. In general, we observe that, although gather requests incur
global traffic and may cause conflicts, they are rare, so their cost is amortized across multiple operations.

There is a wide array of options to enhance the expressiveness of gather operations. For example,
we could enhance load-gather to query a subset of sharers, or to provide user-defined arguments to
splitters. However, we have not found a need for these mechanisms for the operations we evaluate. We
leave an in-depth exploration of these and other mechanisms to enhance CoMMTM's precision to future
work.

Experimental Methodology

As in Chapter 3, we perform microarchitectural, execution-driven simulation using zsim. We evaluate
a 16-tile CMP with 128 simple cores and a three-level memory hierarchy, shown in Figure 4.1, with
parameters given in Table 4.1. Each core has private Ls and a private L2, and all cores share a banked
L3 cache with an in-cache directory.

We compare the baseline HTM and CoMMTM. Both HTMs use Intel TSX [114] as the programming
interface, but do not use the software fallback path, which the conflict resolution protocol makes
unnecessary. We add encodings for labeled-load, labeled-store, and load-gather, with labels
embedded in the instructions.

We evaluate CoMMTM under microbenchmarks (introduced in Section 4.8) and full-blown TM
applications (discussed in Section 4.9). We run each benchmark to completion, and report results
for its parallel region. To achieve statistically significant results, we introduce small amounts of non-
determinism [7], and perform enough runs to achieve 95% confidence intervals <; 1% on all results.

4.7. EXPERIMENTAL METHODOLOGY 48

CHAPTER 4. COMMTM

1 20

1001

80

60

40

20 . CommTM
Baseline

1 32 64 96 128
Threads

Speedup of counter microbench-

Reduction

(a ---- g-- s-e c i t r

(a) Reducing a list descriptor

7

6

5.

4 -
_0

Q 3 CommTM w/ gather
CommTM w/o gather

2 Baseline

0
1 32 64 96 128

Threads

Figure 4.9: Speedup of reference-counting mi-
crobenchmark.

Split

-b --n s

(b) Splitting a list descriptor

Figure 4.10: A linked-list descriptor contains its head and tail pointers, and can be shared in U states by
multiple caches. Each U-state copy represents a partial linked list. A reduction merges all partial lists
and generate the resulting descriptor, and a split divides the partial list into two: one only containing
the previous head element and the other containing the rest.

CommTM on Microbenchmarks

We use microbenchmarks to explore CoMMTM's capabilities and its impact on update-heavy operations.

Counter increments: In this microbenchmark, threads perform 10 million increments to a single
counter, implemented as presented in Section 4.2. Figure 4.8 shows that COMMTM achieves linear
scalability, while the baseline HTM serializes all transactions. While counters are our simplest case, prior
work reports that counter updates are a major cause of aborts in real applications [30, 93].

Reference counting: We implement a reference counter using the non-negative bounded counter
described in Section 4.6, with and without gather requests. Threads acquire and release 1 million
references in total, incrementing and decrementing the counter. Each thread starts with three references
to the object and holds up to five references. Threads behave probabilistically: each thread increments
the counter with probability 1.0, 0.7, 0.5, 0.5, 0.3, and 0.0 if it holds 0, 1, 2, 3, 4, and 5 local references,
respectively, and decrements it otherwise. Figure 4.9 shows that the baseline HTM achieves no speedup,
and CoMMTM without gather requests provides some speedup with few threads, but frequent reductions

caused by threads having zero in their U-state line result in serialized transactions. By contrast, CoMMTM
with gather requests scales to 3.7x at 128 threads. The sub-linear scalability is due to more frequent

gather requests and splits at high thread counts.

Linked lists: In this microbenchmark, threads enqueue and dequeue elements from a singly-linked list.

When order is unimportant (e.g., if the list is used as a set, a hash table bucket, or a work-sharing queue),

these operations are semantically (but not strictly) commutative. Figure 4.10a shows how CoMMTM

49

CLI
.7

Figure 4.8:
marks.

4.8. COMMTM ON MICROBENCHMARKS

CommTM Baseline

140 60

120 -50

100 -
40

80 -- - -
30

-

' 60 -
U)20 -

40

20 10-

1 32 64 96 128 1 32 64 96 128

Threads Threads

(a) 100% enqueues (b) 50% enqueues, 50% de-

queues

Figure 4.11: Speedup of linked list microbenchmark under baseline HTM and CoMMTM.

0 1 2 99 0 1 2 99 0 1 2 99

O24L '198; 1 3 5 .. 199 0O j2 ... 9?
Reduction

Figure 4.12: A top-K set descriptor with K = 100.

makes these operations concurrrent. Only the descriptor of a linked list, which contains its head and tail

pointers, is accessed with labeled loads and stores (accesses to elements use normal loads and stores).
This way, each reducible, local descriptor has its own tail pointer, and threads can enqueue/dequeue
elements locally Figure 4.10a shows how the user-defined reduction handler merges two linked-list

descriptors. Dequeues use load-gather if their local descriptor is empty, and each splitter donates the
head element of its local list, as shown in Figure 4.10b.

Figure 4.11 compares the baseline HTM and CoMMTM. In the baseline HTM, to avoid false sharing,
head and tail pointers are allocated on different cache lines. Threads perform 10 million operations: all

enqueues in Figure 4.1la, or 50% enqueues and 50% dequeues (randomly interleaved) in Figure 4.11b.
The baseline HTM scales poorly in both cases, while CoMMTM scales near-linearly on enqueues, and by
55 x on mixed enqueues/dequeues (limited again by frequent gathers).

Ordered puts: Ordered puts or priority updates are frequent in databases [77] and are key in challeng-
ing parallel algorithms [103]. This semantically-commutative operation replaces an existing key-value
pair with a new input pair if the new pair has a lower key. In CoMMTM, we simply access the key-value
pair with a labeled accesses, and define a reduction handler that merges key-value pairs by keeping the
lowest one. Threads perform 10 million ordered puts using randomly-generated 64-bit keys and values.
These fit within a cache line, but arbitrarily large key-value pairs are possible by using indirection (i.e.,
keeping pointers to the key and value in the reducible line). Figure 4.13a shows that CoMMTM scales

near-linearly, while the baseline is 3.8x slower (in this case, the baseline scales to 31 x because only

smaller keys cause conflicting writes).

Top-K: A top-K set, common in databases, contains the K highest elements of a set [77]. We implement

insertions to a top-K set similarly to the linked-list: a descriptor contains a pointer to the top-K data

(stored as a heap), and only the descriptor uses reducible states. Threads build up local top-K heaps, and

reads trigger a reduction that merges all local heaps, as shown in Figure 4.12.

50

CommTM Baseline

120 140

100 120

100

70 800
Q 60

Cln 40- 0
40

20 20
20

1 32 64 96 128 1 32 64 96 128
Threads Threads

(a) Ordered put (b) Top K

Figure 4.13: Speedups of (a) an ordered put benchmark, and (b) a top-K insertion benchmark.

Input set Uses gather? Commutative operations

boruvka usroads [35] Ix Updating min-weight edges (64b-key OPUT); Unioning components (64b MIN);
Marking edges (64b MAX); Calculating weight of MST (64b ADD)

kmeans random-n153 4-d24-1 [71] Updating cluster centers(32b ADD, 32b FP ADD)

ssca2 -s16 -ii.0 -ul.0 -19 -p9 [71] Modifying global information for a graph (32b ADD)
genome -g4096 -s64 -n640000 [71] Remaining-space counter of a resizable hash table (bounded 64b ADD)
vacation -n4 -q60 -u90 -r32768 -t8192 [71] Remaining-space counter of a resizable hash table (bounded 64b ADD)

Table 4.2: Benchmark characteristics.

Figure 4.13b shows the performance of inserting 10 million elements to a top-1000 set. While
the baseline HTM suffers significant serialization introduced by unnecessary read-write dependencies,
CoMMTM scales top-K set insertions linearly, yielding 124x speedup at 128 threads.

CommTM on Full Applications

We evaluate CoMMTM on several TM benchmarks: boruvka [59], and genome, kmeans, ssca2, and
vacation from STAMP [71]. Table 4.2 details their input sets and main characteristics. boruvka
computes the minimum spanning tree of a graph. It utilizes several commutative operations: OPUT to
record the minimum-weight edges connecting separate graph components, MIN to union two components,
MAX to mark edges added to the minimum spanning tree, and ADD to calculate the weight of the resulting
tree. kmeans performs commutative additions to shared cluster centroids. ssca2 spends little time
in commutative updates to shared, global graph metadata. We compile genome and vacation with
resizable hash tables (similar to Blundell el al.[15]), which use conditionally-commutative updates to a
bounded counter to determine when to resize.

Figure 4.14 compares the performance and scalability of CoMMTM and the baseline HTM. Each graph
shows the speedups of the baseline HTM and CoMMTM for a single application from 1-128 threads
(x-axis). As before, all speedups are relative to the performance of a sequential execution in the baseline
HTM. Figure 4.14 shows that CoMMTM always outperforms baseline HTM, often significantly At 128
threads, CoMMTM outperforms the baseline by 35% on boruvka, 3.4x on kmeans, 0.2% on ssca2, 3.Ox
on genome, and 45% on vacation. Moreover, the gap between baseline HTM and CoMMTM often widens
as the number of threads grows, demonstrating the better scalability of CoMMTM.

CoMMTM is especially beneficial on update-heavy applications. For instance, kmeans introduces a
large number of commutative updates within transactions. With conventional HTMs, these updates
must be serialized. Thus, as the number of threads increases, serialized updates bottleneck the whole

51 CHAPTER 4. COMMTM

application. CoMMTM, however, makes these updates local and concurrent, achieving significant speedup.
As the update contention decreases, the benefit of COMMTM decreases. For applications such as ssca2,
where there is little concurrent modification to shared data, CoMMTM yields a negligible improvement
over the baseline HTM.

Figure 4.15 gives more insight into these results by showing the breakdown of total cycles spent by
all threads for each application. Each cycle is either non-transactional or transactional, and transactional
cycles are divided into useful (committed) and wasted (aborted) cycles. Each graph shows the breakdown
of cycles for both CoMMTM and the baseline HTM on 8, 32, and 128 threads for a single application.
Cycles are normalized to the baseline's at 8 threads. Lower bars are better.

Figure 4.15 shows that CoMMTM substantially reduces wasted transactional cycles. At 128 threads,
CoMMTM's wasted cycles is lower than the baseline's by 25x on kmeans, 6.6% on ssca2. 8.3x on genome,
and 2.6x on vacation. In boruvka, CoMMTM eliminates all aborts and hence eliminates all wasted
transactional cycles.

The breakdown of total cycles explains why CoMMTM has little impact on performance of ssca2:
contention is rare and therefore only a small fraction of cycles are spent on aborted transactions.

Figure 4.16 further details the cause of wasted cycles. In the baseline HTM, wasted cycles are
almost always caused by read-after-write dependency violations. For applications with ample semantic
commutativity, such as bo ruvka and kmeans, most of these dependencies are superfluous and COMMTM
avoids them entirely.

Beyond improving concurrency, CoMMTM also reduces traffic, as applications with significant data
reuse benefit substantially from buffering updates in private caches. Figure 4.17 shows the breakdown
of GET requests between L2s and L3 for boruvka and kmeans, the two applications with a significant
reduction in traffic. At 128 threads, CoMMTM reduces L3 GET requests by 13% on boruvka and 45%
on kmeans. This also explains why non-transactional cycles are lower in Figure 4.15 (15% lower on
boruvka and 48% on kmeans).

Finally, though CoMMTM improves performance significantly, labeled memory operations are rela-
tively rare. At 128 threads, the fraction of all labeled instructions, including labeled loads, stores and
gather requests, over all executed instructions are 0.13% on boruvka, 1.2% on kmeans, 0.000059%
on ssca2, 0.042% on genome, and 0.057% on vacation. Though rare, their impact is substantial: on
conventional HTMs, these operations cause conflicts that abort whole transactions, which include many
other (conventional) instructions, wasting a large amount of cycles.

Additional Related Work

Prior work in hardware speculation, especially HTM, has proposed a wide set of techniques to reduce

the number of conflicts and their impact. These techniques are orthogonal to CoMMTM, as they do not
leverage commutativity, and detect conflicts through reads and writes.

Several HTMs, such as DATM [86], SONTM [11], Wait-n-GoTM [50], and OmniOrder [83], reduce

aborts by letting transactions continue execution after they conflict and trying to commit them in the

order imposed by the data dependence that caused the conflict. These designs can substantially improve

performance when dependences are acyclic, but semantically-commutative updates often consist of
read-modify-write chains that cause cyclic dependencies.

SI-TM [68] relaxes serializability and implements snapshot isolation, which only flags write-write
dependences as conflicts. SI-TM, like other schemes that weaken serializability [3, 104], can allow more
concurrency on reads and writes to the same data but requires programs to be rewritten to work under a

less intuitive concurrency model. SI-TM also relies on an expensive multiversioned main memory. Finally,
SI-TM also cannot handle conflicting read-modify-write operations, which cause write-write conflicts

4.10. ADDITIONAL RELATED WORK 52

53 CHAPTER 4. COMMTM

CommTM Baseline
80 80 14 140 35
70 - 70 - 12 - 120 30
60 - 610 100 25.

CL 50 - 507 / 8 -~80 ~
(40 - 40 . a a

300 C -C
r)30 -- 30 -- 60 15

20 20 4 40 10

10 10 2 20 - 5
01 0 0- 0. 0,1 32 64 96 128 1 32 64 96 128 1 32 64 96 128 1 32 64 96 128 1 32 64 96 128Threads Threads Threads Threads Threads

(a) boruvka (b) kmeans (c) ssca2 (d) genome (e) vacation

Figure 4.14: Per-application speedups of CoMMTM and baseline HTM on 1-128 threads (higher is
better).

Non-transactional Transactional, committed - Transactional, aborted
16 5 18 3.0
14 16 - -5-

41412 14 2I
10 - _3 -0

.30 10 01
U08 - 15 -

00 00

. 0 6 - 2 - - - - - -- -- - - - .0 --- - 1 0 -
E0 4 E E E -- E

11,4 ,,0 0,
Z

2 --

0 -9D
0.2 0 , 0

[I M -- -- ---

... cl<.' .- C

8 threads 32 threads128 threads 8 threads 32 threads 128 threads 8 threads 32 threads128 threads 8 threads 32 threads128 threads 8 threads 32 threads128 threads

(a) boruvka (b) kmeans (c) ssca2 (d) genome (e) vacation

Figure 4.15: Breakdown of total cycles for CoMMTM and baseline HTM for 8, 32, and 128 threads (lower
is better).

Read after Write Write after Read Gather after Labeled access Others
18 300 25 12 10016 .116 - -.250 - -0

14 20 - -80 -
12 - - 200 - 8 -1015 - 60 -

8 - - - - -- ------- -1 5 0 - ------6 ----------

10 - 40
- -- 0 - -02 t!4

0
so 2 0 ---

8 threads 32 threads 128 threads 8 threads 32 threads128 threads 8 threads 32 threads128 threads 8 threads 32 threads 128 threads 8 threads 32 threads128 threads

(a) boruvka (b) kmeans (c) ssca2 (d) genome (e) vacation

Figure 4.16: Breakdown of wasted cycles for CoMMTM and baseline HTM for 8, 32, and 128 threads
(lower is better).

(e.g., unlike COMMTM, SI-TM bottlenecks on kmeans [68]).
Other techniques focus on reducing the cost of mispeculation. ReSlice [97] reexecutes only the

conflicting load and its dependent instructions, and RetCon [15] performs symbolic reexecution of
simple, conflicting auxiliary updates (e.g., updates to shared counters that are not used elsewhere in
the transaction). Unlike these schemes, CoMMTM does not trigger conflicts to begin with, avoiding
superfluous communication and serialization. COMMTM is also much cheaper than ReSlice and allows a
broader range of operations than RetCon.

Finally, open-nested transactions [73, 74] can provide some of the benefits of commutativity Un-
like conventional (closed) nested transactions, which remain speculative until their parent commits,
open-nested transactions commit when they end, and specify an abort handler to undo their effects
if their parent later aborts. While open-nested transactions make their parents less vulnerable, the
nested transactions still suffer from conflicts and serialization. By contrast, CoMMTM can support truly
concurrent and communication-free updates to the same data. Moreover, open nesting is only practical

4.11. SUMMARY

GETX =~~ GETS = GETU

1.2

C7)

0.8 -- -

1- 0.6

06

'CZ~04 -- _

E 0-2

8 threads 32 threadsl 28 threads

(a) boruvka

1.4

1-0 -

00.8 ---

tt 0.6 - -
a])

0.4 - -.

0.2 - --

Z0.0

8 threads 32 threadsl28 threads

(b) kmeans

Figure 4.17: Breakdown of total number of GET requests between L2s and L3 for CoMMTM and conven-
tional HTM on 8, 32 and 128 threads (lower is better).

when operations are easy to undo, which commutative operations may lack (e.g., top-K in Section 4.8).

4 Summary

We have presented CoMMTM, an HTM that exploits semantic commutativity to allow multiple transactions
updating shared data concurrently and without conflicts. CoMMTM extends the coherence protocol
and the conflict detection scheme and preserves transactional guarantees. Moreover, CoMMTM's basic
scheme allows as much concurrency as semantic locking. Gather requests allow COMMTM to reduce
conflicts even further.

COMMTM bridges the precision-overhead dichotomy of hardware vs software conflict detection: As
a result, CoMMTM scales many operations that serialize in conventional HTMs, such as set insertions,
reference counting, and top-K insertions, while retaining the low overhead of HTMs. At 128 cores,
CoMMTM outperforms an eager-lazy HTM by up to 3.4x and reduces or even eliminates aborts.

54

j

Conclusion

This thesis has presented novel techniques to exploit commutativity in shared-memory systems without
the overheads of software techniques. In particular, we have presented the following contributions:

Coup is a general technique that extends coherence protocols to allow local and concurrent single-
instruction commutative updates. Specifically, CouP decouples read and write permissions, and
introduces commutative-update primitive operations, in addition to reads and writes. With Coup,
multiple caches can acquire a line with update-only permission, and satisfy commutative-update
requests locally, buffering and coalescing updates. On a read request, the coherence protocol
gathers all the local updates and reduces them to produce the correct value before granting read
permission.

COUP integrates seamlessly into existing coherence protocols, requires inexpensive hardware,
preserves coherence and does not affect the memory consistency model. Simulation results on a
128-core system show that Coup accelerates update-heavy applications by up to 2.4x. Meanwhile,
Coup lowers traffic by up to 20x and reduces memory access latency by up to 12x.

- CoMMTM is a hardware transactional memory that exploits semantic commutativity to avoid
conflicts that limit scalability in prior hardware speculation techniques. CoMMTM extends the
coherence protocol and conflict detection scheme to allow multiple cores to perform an unlim-
ited number of user-defined multi-instruction commutative operations concurrently and without
conflicts. COMMTM preserves transactional guarantees: CoMMTM triggers reductions when non-
commutative operations access the same data as commutative ones, so they never observe any
partial state or out-of-order updates. We have shown that COMMTM's basic scheme allows as
much concurrency as semantic locking, and gather requests allow COMMTM to reduce even more
conflicts.

CoMMTM bridges the precision-overhead dichotomy of hardware vs software conflict detection. In
return, CoMMTM scales many operations that serialize in conventional HTMs, while retaining the
low overhead of HTMs. As a result, at 128 cores, COMMTM outperforms an eager-lazy HTM by up
to 3.4x and reduces or even eliminates aborts.

These contributions enable shared-memory systems that understand and exploit both strict and
semantic commutativity. Beyond these specific implementations, a key contribution of this thesis is to
recognize that it is possible to make the memory interface more expressive to exploit high-level properties
of operations with reasonable extra complexity. In return, the improved expressivity enables parallel
systems to approach the minimal communication and synchronization truly required by the algorithms
they run.

CouP and COMMTM open exciting avenues for future research. Prior work has developed a rich
set of conflict detectors that go beyond COMMTM's current capabilities. Since CoMMTM demonstrates

55

56

that hardware speculation can also benefit from conflict-detection techniques that have traditionally
been considered software-only. It would be interesting to see how many of these techniques can also
be easily adapted by hardware. Moreover, while this thesis focuses on commutativity, exploiting other
high-level properties is promising. This may include topics such as utilizing idempotence or eliminating
dynamically dead updates. We leave these explorations to future work.

Bibliography

[1] GReat Images in NASA (GRiN), http://grin.hq.nasa.gov.

[2] HSA Platform System Architecture Specification. Technical report, HSA Foundation, 2015.

[3] A. Adya. Weak consistency: a generalized theory and optimistic implementations for distributed
transactions. PhD thesis, Massachusetts Institute of Technology, 1999.

[4] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim, K. Macken-
zie, and D. Yeung. The MIT Alewife machine: architecture and performance. In Proc. of the 22nd
annual Intl. Symp. on Computer Architecture (ISCA-22), 1995.

[5] V Agarwal, E Petrini, D. Pasetto, and D. Bader. Scalable graph exploration on multicore processors.
In Proc. of the ACM/IEEE conf on Supercomputing (SC) 0), 2010.

[6] J. H. Ahn, M. Erez, and W Dally Scatter-add in data parallel architectures. In Proc. of the 11th
IEEE intl. symp. on High Performance Computer Architecture (HPCA- 11), 2005.

[7] A. Alameldeen and D. Wood. IPC considered harmful for multiprocessor workloads. IEEE Micro,
26(4), 2006.

[8] G. Almasi, P Heidelberger, C. Archer, X. Martorell, C. C. Erway, J. E. Moreira, B. Steinmacher-
Burow, and Y Zheng. Optimization of MPI collective communication on BlueGene/L systems. In
Proc. of the Intl. Conf on Supercomputing (ICS'05), 2005.

[9] C. S. Ananian, K. Asanovi', B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded transactional
memory. In Proc. of the 11th IEEE intl. symp. on High Performance Computer Architecture (HPCA- 11),
2005.

[10] T. M. Austin. DIVA: A reliable substrate for deep submicron microarchitecture design. In Proc. of
the 32nd annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-32), 1999.

[11] U. Aydonat and T. S. Abdelrahman. Hardware support for relaxed concurrency control in transac-
tional memory. In Proc. of the 43rd annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-43),
2010.

[12] P Bailis, A. Fekete, M. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Coordination avoidance
in database systems. VLDB, 8(3), 2014.

[13] C. Bienia, S. Kumar, J. P Singh, and K. Li. The PARSEC benchmark suite: Characterization and
architectural implications. In Proc. of the 17th Intl. Conf on Parallel Architectures and Compilation

Techniques (PACT-17), 2008.

57

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, et al. The gem5 simulator. ACM SIGARCH Computer Architecture News,
39(2), 2011.

[15] C. Blundell, A. Raghavan, and M. M. Martin. RETCON: transactional repair without replay. In

Proc. of the 37th annual Intl. Symp. on Computer Architecture (ISCA-37), 2010.

[16] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, and D. A. Wood. Performance

pathologies in hardware transactional memory. In Proc. of the 34th annual Intl. Symp. on Computer

Architecture (ISCA-34), 2007.

[17] G. Bradski and A. Kaehler. Learning OpenCV Computer vision with the OpenCV library. O'Reilly,
2008.

[18] I. Calciu, D. Dice, T. Harris, M. Herlihy, A. Kogan, V Marathe, and M. Moir. Message passing or

shared memory: Evaluating the delegation abstraction for multicores. In PODC. 2013.

[19] 1. Calciu, J. Gottschlich, and M. Herlihy. Using elimination and delegation to implement a scalable
NUMA-friendly stack. In HotPar, 2013.

[20] C. Cascaval, C. Blundell, M. Michael, H. W Cain, P Wu, S. Chiras, and S. Chatterjee. Software
transactional memory: Why is it only a research toy? Queue, 6(5), 2008.

[21] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation of speculative threads in
multiprocessors. In Proc. of the 33rd annual Intl. Symp. on Computer Architecture (ISCA-33), 2006.

[22] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W Baek, C. Kozyrakis, and
K. Olukotun. A scalable, non-blocking approach to transactional memory. In Proc. of the 13th
IEEE intl. symp. on High Performance Computer Architecture (HPCA-13), 2007.

[23] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS directories: A scalable cache coherence
scheme. In Proc. of the 4th intl. conf on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IV), 1991.

[24] D. Chen, N. Eisley, P Heidelberger, R. M. Senger, Y Sugawara, S. Kumar, V Salapura, D. L.
Satterfield, B. Steinmacher-Burow, J. J. Parker,.et al. The IBM Blue Gene/Q interconnection
network and message unit. In SC, 2011.

[25] S. Chen, P B. Gibbons, M. Kozuch, and T. C. Mowry. Log-based architectures: using multicore to
help software behave correctly. ACM SIGOPS Operating Systems Review, 45(1), 2011.

[26] J. Chhugani, N. Satish, C. Kim, J. Sewall, and P Dubey Fast and efficient graph traversal algorithm
for cpus: Maximizing single-node efficiency. In Proc. of the 26th IEEE Intl. Parallel and Distributed

Processing Symp. (IPDPS), 2012.

[27] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V Adve, V S. Adve, N. P Carter,
and C.-T Chou. Denovo: Rethinking the memory hierarchy for disciplined parallelism. In Proc. of
the 20th Intl. Conf on Parallel Architectures and Compilation Techniques (PACT-20), 2011.

[28] A. Clements, M. F. Kaashoek, and N. Zeldovich. RadixVM: Scalable address spaces for multi-
threaded applications. In EuroSys, 2013.

BIBLIOGRAPHY 58

[29] A. T. Clements, M. F Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The scalable commutativity
rule: Designing scalable software for multicore processors. In Proc. of the 24th Symp. on Operating
System Principles (SOSP-24), 2013.

[30] C. Click. AzulaAZs experiences with hardware transactional memory. In Transactional Memory
Workshop, 2009.

[31] E J. Corbato. A Paging Experiment with the Multics System. In MIT Project MAC Report MAC-M-384,
1968.

[32] D. Culler, J. Singh, and A. Gupta. Parallel computer architecture: a hardware/software approach.
Morgan Kaufmann, 1999.

[33] W Dally GPU computing: To exascale and beyond. Invited talk. Supercomputing, New Orleans,
2010.

[34] W J. Dally and B. P Towles. Principles and practices of interconnection networks. Elsevier, 2004.

[35] T A. Davis and Y Hu. The University of Florida sparse matrix collection. ACM Transactions on
Mathematical Software (TOMS), 38(1), 2011.

[36] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. In Proc. of
the 6th USENIX symp. on Operating Systems Design and Implementation (OSDI-6), 2004.

[37] J. Demmel and H. D. Nguyen. Fast reproducible floating-point summation. In ARITH, 2013.

[38] D. Dill, A. Drexler, A. Hu, and C. H. Yang. Protocol verification as a hardware design aid. In Proc.
of the 10th Intl. Conf on Computer Design (ICCD), 1992.

[39] A. Duran, J. Corbalin, and E. Ayguade. Evaluation of OpenMP task scheduling strategies. In
IWOMP-4, 2008.

[40] F Ellen, Y Lev, V Luchangco, and M. Moir. SNZI: Scalable nonzero indicators. In PODC, 2007.

[41] S. Franey and M. Lipasti. Accelerating atomic operations on GPGPUs. In NOCS-7, 2013.

[42] M. Frigo, P Halpern, C. Leiserson, and S. Lewin-Berlin. Reducers and other Cilk++ hyperobjects.
In Proc. of the 21st ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), 2009.

[43] A. Gottlieb, R. Grishman, C. Kruskal, K. P McAuliffe, L. Rudolph, and M. Snir. The NYU Ultra-
computer: Designing a MIMD Shared Memory Parallel Computer. IEEE Trans. Comput., 100(2),
1983.

[44] L. Hammond, V Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional memory coherence and consistency. In Proc. of the
31st annual Intl. Symp. on Computer Architecture (ISCA-31), 2004.

[45] M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-concurrent
transactional objects. In Proc. of the ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPoPP), 2008.

[46] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free data
structures. In Proc. of the 20th annual Intl. Symp. on Computer Architecture (ISCA-20), 1993.

59 BIBLIOGRAPHY

[47] M. D. Hill. Is transactional memory an oxymoron? Proceedings of the VLDB Endowment, 1(1),
2008.

[48] G. Hinton, D. Sager, M. Upton, D. Boggs, et al. The microarchitecture of the Pentium@ 4 processor.
In Intel Technology Journal, 2001.

[49] H. Hoffmann, D. Wentzlaff, and A. Agarwal. Remote store programming. In Proc. of the 5th intl.
conf on High Performance Embedded Architectures and Compilers (HiPEAC), 2010.

[50] S. A. R. Jafri, G. Voskuilen, and T. Vijaykumar. Wait-n-GoTM: improving HTM performance
by serializing cyclic dependencies. In Proc. of the 18th intl. conf on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XVIII), 2013.

[51] N. Johnson, H. Kim, R Prabhu, A. Zaks, and D. I. August. Speculative separation for privatiza-
tion and reductions. In Proc. of the ACM SIGPLAN Conf on Programming Language Design and
Implementation (PLDI), 2012.

[52] W Jung, J. Park, and J. Lee. Versatile and scalable parallel histogram construction. In Proc. of the
23rd Intl. Conf on Parallel Architectures and Compilation Techniques (PACT-23), 2014.

[53] S. W Keckler, W J. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and the future of parallel
computing. In Proc. of the 44th annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-44),
2011.

[54] J. Kelm, D. Johnson, M. Johnson, N. Crago, W Tuohy, A. Mahesri, S. S. Lumetta, M. I. Frank, and
S. J. Patel. Rigel: an architecture and scalable programming interface for a 1000-core accelerator.
In Proc. of the 36th annual Intl. Symp. on Computer Architecture (ISCA-36), 2009.

[55] R. Kessler and J. Schwarzmeier. CRAY T3D: A new dimension for Cray Research. In COMPCON,
1993.

[56] F. Kjolstad and M. Snir. Ghost cell pattern. In Workshop on Parallel Programming Patterns, 2010.

[57] K. Knowlton. A fast storage allocator. CACM, (8), 1965.

[58] C. Koelbel. HPF handbook. MIT Press, 1994.

[59] M. Kulkarni, D. Nguyen, D. Prountzos, X. Sui, and K. Pingali. Exploiting the commutativity lattice.
In Proc. of the ACM SIGPLAN Conf on Programming Language Design and Implementation (PLDI),
2011.

[60] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P Chew. Optimistic
parallelism requires abstractions. In Proc. of the ACM SIGPLAN Conf on Programming Language
Design and Implementation (PLDI), 2007.

[61] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and L. Shannon. Amoeba-cache:
Adaptive blocks for eliminating waste in the memory hierarchy. In Proc. of the 45th annual
IEEE/ACM intl. symp. on Microarchitecture (MICRO-45), 2012.

[62] G. Kurian. Locality-aware Cache Hierarchy Management for Multicore Processors. PhD thesis, MIT,
2014.

BIBLIOGRAPHY 60

[63] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-Scale Graph Computation on Just a PC.
In Proc. of the 10th USENIX symp. on Operating Systems Design and Implementation (OSDI- 10),
2012.

[64] J. Larus, B. Richards, and G. Viswanathan. LCM: Memory system support for parallel language
implementation. In Proc. of the 6th intl. conf on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VI), 1994.

[65] J. Laudon and D. Lenoski. The SGI Origin: a ccNUMA highly scalable server. In Proc. of the 24th
annual Intl. Symp. on Computer Architecture (ISCA-24), 1997.

[66] A. Lebeck and D. Wood. Dynamic self-invalidation: Reducing coherence overhead in shared-
memory multiprocessors. In Proc. of the 22nd annual Intl. Symp. on Computer Architecture
(ISCA-22), 1995.

[67] C. Leiserson and T. Schardl. A work-efficient parallel breadth-first search algorithm (or how to
cope with the nondeterminism of reducers). In Proc. of the 22nd ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), 2010.

[68] H. Litz, D. Cheriton, A. Firoozshahian, 0. Azizi, and J. P Stevenson. SI-TM: reducing transactional
memory abort rates through snapshot isolation. In Proc. of the 19th intl. conf on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XIX), 2014.

[69] K. Mackenzie, J. Kubiatowicz, M. Frank, W-J. Lee, W Lee, A. Agarwal, and M. F Kaashoek.
Exploiting two-case delivery for fast protected messaging. In Proc. of the 4th IEEE intl. symp. on
High Performance Computer Architecture (HPCA-4), 1998.

[70] M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE TPDS, 15(6),
2004.

[71] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional applications
for multi-processing. In Proc. of the IEEE Intl. Symp. on Workload Characterization (IISWC), 2008.

[72] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, D. A. Wood, et al. LogTM: log-based transactional
memory. In Proc. of the 12th IEEE intl. symp. on High Performance Computer Architecture (HPCA-12),
2006.

[73] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit, M. M. Swift, and D. A. Wood.
Supporting nested transactional memory in LogTM. In Proc. of the 12th intl. conf on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XII), 2006.

[74] J. E. B. Moss. Open nested transactions: Semantics and support. In Workshop on Memory
Performance Issues, 2006.

[75] S. S. Mukherjee, P Bannon, S. Lang, A. Spink, and D. Webb. The Alpha 21364 network architecture.
In Hot Interconnects 9, 2001., 2001.

[76] T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, and H. Tomari. Quantitative comparison of
hardware transactional memory for blue gene/q, zenterprise ec12, intel core, and power8. In
Proc. of the 42nd annual Intl. Symp. on Computer Architecture (ISCA-42), 2015.

[77] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase reconciliation for contended in-memory
transactions. In Proc. of the 11th USENIX symp. on Operating Systems Design and Implementation
(OSDI-11), 2014.

61 BIBLIOGRAPHY

[78] L. Page, S. Brin, R. Motwani, and T Winograd. The PageRank citation ranking: Bringing order to
the web. Technical report, Stanford InfoLab, 1999.

[79] M. Papamarcos and J. Patel. A low-overhead coherence solution for multiprocessors with private
cache memories. In Proc. of the 11th annual Intl. Symp. on Computer Architecture (ISCA- 11), 1984.

[80] L.-S. Peh and W J. Dally A delay model and speculative architecture for pipelined routers. In
Proc. of the 7th IEEE intl. symp. on High Performance Computer Architecture (HPCA-7), 2001.

[81] P Prabhu, S. Ghosh, Y Zhang, N. P Johnson, and D. I. August. Commutative set: A language
extension for implicit parallel programming. In Proc. of the ACM SIGPLAN Conf on Programming
Language Design and Implementation (PLDI), 2011.

[82] X. Qian, W Ahn, and J. Torrellas. Scalablebulk: Scalable cache coherence for atomic blocks
in a lazy environment. In Proc. of the 43rd annual IEEE/ACM intl. symp. on Microarchitecture
(MICRO-43), 2010.

[83] X. Qian, B. Sahelices, and J. Torrellas. OmniOrder: Directory-based conflict serialization of
transactions. In Proc. of the 41st annual Intl. Symp. on Computer Architecture (ISCA-41), 2014.

[84] R. Rajwar and J. R. Goodman. Transactional lock-free execution of lock-based programs. In Proc.
of the 10th intl. conf on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-X), 2002.

[85] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory. In Proc. of the 32nd annual
Intl. Symp. on Computer Architecture (ISCA-32), 2005.

[86] H. E. Ramadan, C. J. Rossbach, and E. Witchel. Dependence-aware transactional memory for
increased concurrency. In Proc. of the 41st annual IEEE/ACM intl. symp. on Microarchitecture
(MICRO-41), 2008.

[87] L. Rauchwerger and D. Padua. The privatizing doall test: A run-time technique for doall loop
identification and array privatization. In Proc. of the Intl. Conf on Supercomputing (ICS'94), 1994.

[88] L. Rauchwerger and D. Padua. The LRPD test: Speculative run-time parallelization of loops with
privatization and reduction parallelization. IEEE TPDS, 10(2), 1999.

[89] J. Reinders. Intel Threading Building Blocks: Outfitting C++for multi-core processor parallelism.
O'Reilly, 2007.

[90] S. Reinhardt, J. Larus, and D. Wood. Tempest and Typhoon: User-level shared memory. In Proc.
of the 21st annual Intl. Symp. on Computer Architecture (ISCA-21), 1994.

[91] R. F Resende, D. Agrawal, and A. El Abbadi. Semantic locking in object-oriented database systems.
In Proc. of the ACM SIGPLAN Conf on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 1994.

[92] M. C. Rinard and P C. Diniz. Commutativity analysis: A new analysis framework for parallelizing
compilers. In Proc. of the ACM SIGPLAN Conf on Programming Language Design and Implementation
(PLDI), 1996.

[93] W Ruan, T Vyas, Y Liu, and M. Spear. Transactionalizing legacy code: An experience report using
GCC and memcached. In Proc. of the 19th intl. conf on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XIX), 2014.

BIBLIOGRAPHY 62

[94] D. Sanchez and C. Kozyrakis. SCD: A scalable coherence directory with flexible sharer set encoding.
In Proc. of the 18th IEEE intl. symp. on High Performance Computer Architecture (HPCA-18), 2012.

[95] D. Sanchez and C. Kozyrakis. ZSim: fast and accurate microarchitectural simulation of thousand-
core systems. In Proc. of the 40th annual Intl. Symp. on Computer Architecture (ISCA-40), 2013.

[96] D. Sanchez, R. Yoo, and C. Kozyrakis. Flexible architectural support for fine-grain scheduling.
In Proc. of the 15th intl. conf on Architectural Support for Programming Languages and Operating

Systems (ASPLOS-XV), 2010.

[97] S. R. Sarangi, W L. Torrellas, Y Zhou, et al. Reslice: Selective re-execution of long-retired
misspeculated instructions using forward slicing. In Proc. of the 38th annual IEEE/ACM intl. symp.

on Microarchitecture (MICRO-38), 2005.

[98] N. Satish, N. Sundaram, M. Patwary, J. Seo, J. Park, M. A. Hassaan, S. Sengupta, Z. Yin, and

P Dubey Navigating the maze of graph analytics frameworks using massive graph datasets. In
SIGMOD, 2014.

[99] S. Scott. Synchronization and communication in the T3E multiprocessor. In Proc. of the 7th intl.

conf on Architectural Support for Programming Languages and Operating Systems (ASPLOS-VII),
1996.

[100] P Sewell, S. Sarkar, S. Owens, E Z. Nardelli, and M. 0. Myreen. x86-TSO: a rigorous and usable
programmer's model for x86 multiprocessors. Communications of the ACM, 53(7), 2010.

[101] J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing technology challenges. In High

Performance Computing for Computational Science-VECPAR 2010, pages 1-25. Springer, 2010.

[102] K. S. Shim, M. Lis, M. H. Cho, I. Lebedev, and S. Devadas. Design tradeoffs for simplicity and
efficient verification in the Execution Migration Machine. In Proc. of the 31st Intl. Conf on Computer

Design (ICCD), 2013.

[103] J. Shun, G. E. Blelloch, J. T Fineman, and P B. Gibbons. Reducing contention through priority
updates. In Proc. of the 25th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA),
2013.

[104] T Skare and C. Kozyrakis. Early release: Friend or foe. In Workshop on Transactional Memory

Workloads, 2006.

[105] D. Sorin, M. Hill, and D. Wood. A primer on memory consistency and cache coherence. Synthesis

Lectures on Computer Architecture, 6(3), 2011.

[106] 0. Villa, D. Chavarria-Miranda, V Gurumoorthi, A. Marquez, and S. Krishnamoorthy Effects of

floating-point non-associativity on numerical computations on massively multithreaded systems.

Cray User Group, 2009.

[107] T. Von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: a mechanism for

integrated communication and computation. In Proc. of the 19th annual Intl. Symp. on Computer

Architecture (ISCA-19), 1992.

[108] T. Von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: a mechanism for

integrated communication and computation. In Proc. of the 19th annual Intl. Symp. on Computer

Architecture (ISCA-19), 1992.

63 BIBLIOGRAPHY

[109] A. Wang, M. Gaudet, P Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera, and M. Michael.

Evaluation of Blue Gene/Q hardware support for transactional memories. In Proc. of the 21st Intl.

Conf on Parallel Architectures and Compilation Techniques (PACT-21), 2012.

[110] J. Warnock, B. Curran, J. Badar, G. Fredeman, D. Plass, Y Chan, S. Carey, G. Salem, E Schroeder,

F Malgioglio, et al. 22nm next-generation IBM System z microprocessor. In Proc. of the IEEE Intl.

Solid-State Circuits Conf (ISSCC), 2015.

[111] W E. Weihl. Commutativity-based concurrency control for abstract data types. Computers, IEEE

Transactions on, 37(12), 1988.

[112] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi GF100 GPU architecture. IEEE Micro, 31(2),
2011.

[113] H. Wong, A. Bracy, E. Schuchman, T M. Aamodt, J. D. Collins, P H. Wang, G. Chinya, A. K. Groen,
H. Jiang, and H. Wang. Pangaea: a tightly-coupled IA32 heterogeneous chip multiprocessor. In
Proc. of the 17th Intl. Conf on Parallel Architectures and Compilation Techniques (PACT-1 7), 2008.

[114] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance evaluation of Intel@ transactional

synchronization extensions for high-performance computing. In Proc. of the ACM/IEEE conf on

Supercomputing (SC13), 2013.

[115] H. Yu and L. Rauchwerger. Adaptive reduction parallelization techniques. In Proc. of the Intl. Conf

on Supercomputing (ICS'00), 2000.

[116] J. Zebchuk, M. Qureshi, V Srinivasan, and A. Moshovos. A tagless coherence directory. In Proc. of

the 42nd annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-42), 2009.

[117] J. Zebchuk, E. Safi, and A. Moshovos. A framework for coarse-grain optimizations in the on-
chip memory hierarchy. In Proc. of the 40th annual IEEE/ACM intl. symp. on Microarchitecture

(MICRO-40), 2007.

[118] L. Zhang, Z. Fang, and J. Carter. Highly efficient synchronization based on active memory
operations. In Proc. of the 18th IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS), 2004.

[119] M. Zhang, J. Bingham, J. Erickson, and D. Sorin. PVCoherence: Designing flat coherence
protocols for scalable verification. In Proc. of the 20th IEEE intl. symp. on High Performance
Computer Architecture (HPCA-20), 2014.

[120] M. Zhang, A. Lebeck, and D. Sorin. Fractal coherence: Scalably verifiable cache coherence. In
Proc. of the 43rd annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-43), 2010.

[121] H. Zhao, A. Shriraman, S. Kumar, and S. Dwarkadas. Protozoa: Adaptive granularity cache
coherence. In Proc. of the 40th annual Intl. Symp. on Computer Architecture (ISCA-40), 2013.

64BIBLIOGRAPHY

