
Wattsworth:
A Vision for Cyber Physical System Design

by

John Donnal

B.S.E., Princeton University (2007)
M.S., University of Maryland University College (2009)

M.S., Massachusetts Institute of Technology (2013)
Eng., Massachusetts Institute of Technology (2015)

MASACHUS1ETTS INSTITUTE
OF TECHNOLOGY

JUL 122016

LIBRARIES

ARCHNES

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

Massachusetts Institute of Technology 2016. All rights reserved.

Signature redacted
Author..........

Departmen/of t trical Engineering and Computer Science

Certified by Signature redacted
Certified0by

May 20, 2016

Steven B. Leeb
Professor of Electrical Engineering and Computer Science

Signature redacted Thesis Supervisor

Accepted by
' / #Leslie A. Kolodziejski

Chair, Committee on Graduate Students

I I I' lop I MR MRXRm"Im I Ric rm"I

Wattsworth: A Vision for Cyber Physical System Design

by

John Donnal

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The combination of powerful and inexpensive embedded computers, advanced sensor
technology, and high speed wireless networks could revolutionize how we interact
with our physical environment. Sensor networks that provide real time feedback offer
significant value in terms of energy reduction, fault detection, equipment diagnostics,
monitoring, security and more. This revolution will not happen in a positive way
without a clear vision of how sensor, network, and control technologies can be applied
to enhance human abilities and improve our lives.

Such systems have been frustratingly difficult to implement. An old dilemma is
becoming increasingly apparent. Networking provides remote access to information
and control inputs. Gathering useful information, however, may require the instal-
lation of an expensive and intrusive array of sensors. Without this array, networked
control provides colorful but minimally useful real information. Technological marvels
like solid-state or micro-electromechanical sensors may ultimately reduce the cost of
individual sensors through mass-production. They may not, however, reduce instal-
lation expense. They also do nothing to recover waste of resources. Even with the
array, it may be difficult for a facilities operator to make informed control and main-
tenance decisions that intelligently affect mission critical components. Large datasets
remain difficult to use.

This thesis presents a design approach for creating cyber physical infrastructure
that addresses these challenges to delivering actionable real time feedback. At the
core of the system is a suite of non-intrusive sensors that dramatically reduce the
cost of data acquisition. These sensors process and store data locally, without any
dependency on external servers. This removes the security and privacy concerns that
plague conventional sensor networks. A decentralized cloud infrastructure securely
connects users to sensor platforms and provides powerful visualization and program-
ming interfaces to customize data presentation.

This works covers the complete system design from embedded analog sensors
to enterprise grade backend server architecture, to the frontend human computer
interface. Such a wholistic design approach is critical to ensure a cyber physical
system delivers quantifiable value to the end user. Several case studies illustrate the
success of this design approach, including an automatic watch stander system for the

3

US Coast Guard, an energy monitoring platform for a US Army Base, and realtime
equipment diagnostic platforms installed in a wide variety of environments including
an Army hospital and a local elementary school.

Thesis Supervisor: Steven B. Leeb
Title: Professor of Electrical Engineering and Computer Science

4

Acknowledgments

None of this research would have been possible without my advisor, Professor Steven

Leeb. Thank you for your mentorship and thoughtful guidance throughout my grad-

uate studies. Your passion for teaching is infectious and has inspired me to pursue

a career in academics. I look forward to a career of exciting collaborations. I also

wish to thank Professor Steven Shaw, Professor Leslie Norford, and Professor James

Kirtley for their input and assistance throughout my research and for serving on my

thesis committee. This work would not have been possible without their help.

Essential support for this research was graciously provided by the MIT Energy

Initiative, the BP-MIT Research Alliance, The Grainger Foundation, the Office of

Naval Research, and the Massachusetts School Board Authority.

I am extremely grateful to everybody who has worked to bring this research out

of the lab and make it a practical reality. In particular Ken Wertz and Scott Schertz

of Cottage Elementary School, the Coast Guard crews of the USCGC SPENCER,

USCGC ESCANABA, and USCGC SENECA, the US Navy crews of the LPD SAN

DIEGO, LCS INDEPENDENCE, and DDG MICHAEL MURPHY, Robert Strong,

Michael Mobley, and Richard Lucas of MIT Maintenance and Utilities, the support

staff from the Base Camp Integration Lab at Fort Devens, especially Bill Singleton,

and the many family and friends who opened their apartments and homes for this

project.

I would also like to extend thanks to my many peers and colleagues including

Mark Gillman, Ryan Zachar, William Cotta, Pete Lindahl, Greg Bredariol, Kristen

Severson, David Lawrence, Bart Sievenpiper, Katy Gerhard, Chris Schantz, Jin Moon,

Arijit Banerjee, Yiou He, Uzoma Orji, Kawin Surakitbovorn, and Dan Vickery. Dr.

James Paris provided the foundation of this work and continues to be a deep technical

collaborator. He is not only a great colleague but a great friend.

Finally and most importantly, thank you to my family for their endless and un-

conditional encouragement. Nicky, thank you for letting me stay in school so long.

This is my last degree! Promise! John Wadsworth, now it's your turn.

5

6

Contents

1 Introduction

1.1 Non-Intrusive Sensors .

1.2 Embedded Signal Processing .

1.3 Distributed Cloud Architecture .

2 Non-Intrusive Sensors

2.1 Introduction .

2.2 Non-Contact Current Sensor

2.2.1 Hall Effect Sensor

2.2.2 Tunneling Magnetoresistive Sensor

2.3 Non-Contact Voltage Sensor

2.3.1 Principle of operation

2.3.2 Analog implementation

2.3.3 Digital signal processing

2.3.4 Experimental results

2.4 Ancillary Sensor Platforms

2.4.1 Captcha: A Vibration Diagnostic Platform

2.4.1.1 Hardware

2.4.1.2 Firmware

2.4.1.3 Software

2.4.1.4 Operational Verification

2.4.2 Hottee: A multi-domain thermal imager .

2.4.2.1 System Architecture

27

. 27

. 28

. 28

. 3 1

. 36

. 38

. 40

. 44

. 50

. 56

. 57

. 58

. 59

. 6 1

. 6 1

. 63

. 63

7

19

. 20

. 22

. 25

2.4.2.2

2.4.2.3

2.4.2.4

Signal Processing

FPGA Implementation

Image Reconstruction

3 Signal Processing

3.1 Introduction .

3.2 Non-Contact Power Measurements

3.2.1 Multi-Conductor Power Systems

3.2.1.1 Monitoring a Circuit Breaker Panel

3.2.1.2 Cables with Neutral Return Path

3.2.1.3 Example Reconstruction

3.2.2 System Calibration

3.2.2.1 Single Phase Systems

3.2.2.2 Multiphase Systems

3.2.2.3 Rapid Calibration

3.2.3 Power Measurement Example

3.3 Vibration Transfer Function

3.3.1 M otivation .

3.3.2 Background .

3.3.3 Sensor Measurements and eVTF Generation . . .

3.3.3.1 Data Collection

3.3.3.2 Short-Time Fourier Transform Analysis

3.3.4 Tests on Purpose Built Machine Set

3.3.5

3.3.6

. 64

. 66

. 67

69

. . . . 69

. . . . 70

. . . . 70

. . . . 70

. . . . 72

. . . . 73

. . . . 74

. . . . 75

. . . . 80

. . . . 82

. . . . 82

. . . . 86

. . . . 86

. . . . 87

. . . . 91

. . . . 91

. . . . 95

. . . . 100

3.3.4.1 Comparison of Spin-down eVTF and Steady-state eVTF100

3.3.4.2 eVTFs with Condition Changes 102

Field Tests on U.S. Navy Equipment 104

Conclusions . 108

4 Distributed Cloud 109

4.1 Introduction . 110

4.2 NILM Virtual Private Network . 111

8

4.3 Web Platform 113

4.4 Data Visualization . 113

4.4.1 Stream Configuration . 113

4.4.2 Presentation . 115

4.5 Data Processing . 116

4.5.1 Management and Preprocessor 117

4.5.1.1 Multistream Wrapper 117

4.5.1.2 Resampler . 118

4.5.2 Stream Iterators . 118

4.5.3 R eports . 119

4.5.4 NILM Manager IDE . 121

4.6 Designing Energy Apps . 122

4.6.1 Cycling System App . 122

4.6.2 Power Quality App . 124

4.6.3 Adding Control to an Energy App 127

5 Case Studies 131

5.1 Cottage Elementary: Energy Scorekeeping 131

5.1.1 Electrical System Background 132

5.1.2 Load Disaggregation . 135

5.1.3 Case Study Results . 138

5.1.4 Implications . 143

5.2 US Army: Continuous Commissioning 144

5.2.1 Fort Devens, MA . 145

5.2.2 Fort Polk, LA . 146

5.2.3 Top-Down Monitoring for Energy Savings 146

5.2.3.1 HVAC Operation Schedule 147

5.2.3.2 Misconfigured ECUs 148

5.2.4 Bottom-Up Fault Detection and Diagnostics 149

5.2.4.1 ECU Fault . 149

9

5.2.5 Im plications .

5.3 US Coast Guard: Equipment Monitoring

5.3.1 Shipboard Automatic Watchstander

5.3.2 Automatic Logging .

5.3.2.1 A Bellwether for Crew Performance

5.3.2.2 Ensuring Compliance with Operating Procedures .

5.3.3 Installation on the USCGC SPENCER

5.3.4 Signal Processing and Transient Identification

5.3.5 Case Study Results .

5.3.6 Im plications .

A Documentation

A. 1 User Quick Start Guides .

A. 1.1 Setting Up a Contact Meter

A.1.2 Setting up a Non-Contact Meter

A.1.3 Configuring Smart Plugs .

A.1.4 Adding Custom Datasets

A.2 User Reference .

A.2.1 Hardware Configuration .

A.2.2 Software Configuration .

A.2.3 Smart Plugs .

A.2.4 NILM Administration .

A.2.5 Data Explorer .

A.2.6 Desiging NILM Filters .

A.2.7 Desiging NILM Analyzers

A.2.8 Automatic Transient Finder

A.2.9 NILM Process Manager .

A.2.10 Command Line Interface .

B Implementation

B .1 Flex Sensor .

10

151

151

152

152

154

155

156

160

166

169

171

172

173

176

179

181

183

183

. . 188

200

215

220

. . 226

242

252

255

259

287

288

B.1.1

B.1.2

B.2 NILM

B.2.1

B.2.2

B.2.3

B.2.4

B.3 NILM

B.3.1

B.3.2

B.3.3

B.3.4

B.4 Server

B.4.1

B.4.2

B.4.3

B.4.4

B.4.5

B.4.6

B.4.7

PCB Design

Selected Firmware Files ...

Smart Plug

PCB Design

Bill of Materials

Assembly Notes

Selected Firmware Files . . .

Software Stack

Data Capture

B.3.1.1 Standalone Capture

B.3.1.2 Embedded Capture

Embedded Management . . .

NILM Board Schematics . . .

NILM Board Bill of Materials

Architecture

Firewall

Backbone

W eb

M etrics

Archive

Devops

Git

11

.291

293

299

302

304

305

307

317

.319

.319

. 322

324

327

.341

. 342

342

342

343

343

343

343

344

12

List of Figures

1 Introduction

1-1 Non-Intrusive Sensor Designs .

1-2 Retrofit flow sensor for utility water meter

1-3 Vibration diagnostic sensor for rotating machinery

1-4 Hardware renderings of the Wattsworth power meter

1-5 Distributed cloud architecture .

. 21

. 22

. 23

. 24

. 26

2 Non-Intrusive Sensors

2-1 Non-contact Hall Effect sensor . 29

2-2 Hall Effect non-contact sensor prototype 29

2-3 Experimental setup for sensor characterization 30

2-4 Hall Effect Linearity Plot . 31

2-5 Uncompensated TMR response . 32

2-6 TMR compensation circuit . 33

2-7 TMR feedback technique . 33

2-8 Compensated TMR Linearity Plot . 34

2-9 Utility water meter . 35

2-10 Compensated TMR schematic for water flow 35

2-11 Retrofit flow meter using TMR sensors 36

2-12 Circuit for differential non-contact sensing of an AC voltage

2-13

2-14

Non-contact A voltage sensors schematic and 3D PCB stackup .

Non-contact voltage sensor theory of operation

. . . . 38

. . . . 41

. . . . 42

13

. .

Impulse response h, for N = 25 .

Impulse response h2 for N = 25 .

2-15

2-16

2-17

2-18

2-19

2-20

2-21

2-22

2-23

2-24

2-25

2-26

2-27

2-28

2-29

2-30

2-31

2-32

2-33

2-34

. . 46

. . 47

Filter magnitudes for N = 25

Relative deviation from ideal frequency response for

Simulated filter response to an impulsive disturbance

Simulated response of each filter to the same sequen

Non-contact power meter experimental setup

Data collected by non-contact and traditional power

Non-contact voltage sensor experimental setup . . .

Response to electromagnetic disturbance

"Captcha" vibration diagnostic platform

"Captcha" sensor on USS SAN DIEGO (LPD 22)

Functional groups on vibration sensor circuit board

Captcha circuit board

Accelerometer chip mounted with a pipe clamp . .

Custom sensor package adhesively mounted

Composite thermal overlay

Thermal imager system architecture

Thermal imager colormap

Composite thermal overlay

3 Signal Processing

3-1 Magnetic field sensor versus contact current sensor

3-2 Monitoring a circuit breaker panel with TMR sensors

3-3 Corrected magnetic field sensor versus contact current sensor

3-4 PWM calibration load as detected by a non-contact sensor .

3-5 Monitoring a three phase power line with non-contact sensors

3-6 Visualization on non-contact sensor vectors

3-7 Three phase non-contact measurements

3-8 Electromechanical machinery and mount system

14

. 47

N = 25 48

. 48

-e of pink noise . . 49

. 5 1

meters 52

. 53

. 54

. 57

. 58

. 59

. 60

. 62

. 62

. 63

. 64

. 67

. 68

. . . . 71

. . . . 71

. . . . 73

. . . . 75

. . . . 83

. . . . 84

. . . . 85

. . . . 88

3-9 Non-contact back-EMF speed sensor 93

3-10 Example time-domain signals used for eVTF generation 96

3-11 Windowed virtual input . 97

3-12 Hanning Windows and Masked Inputs and Outputs 97

3-13 FFT of Masked Inputs and Outputs 99

3-14 Test platform for eVTF diagnostics . 101

3-15 Spin-down versus Steady State eVTF's 102

3-16 Diagnostic trends in the eVTF . 103

3-17 Mine countermeasure ship eVTFs . 106

3-18 Auxiliary seawater pumps 1 and 2 spin-down generated eVTFs 107

4 Distributed Cloud

4-1 NILM Manager system architecture .111

4-2 NILM network topology as visualized by Nagios 112

4-3 The NILM configuration interface. 114

4-4 Data visualization using the web plotting tool 114

4-5 NILM Manager plot types . 116

4-6 The stages of a NILM report . 120

4-7 NILM Manager IDE for designing Energy Apps 121

4-8 Example NILM report . 123

4-9 Training the load identifier on shop equipment 125

4-10 Identifying large shop loads . 126

4-11 Energy App to identify the causes of voltage transients. 128

4-12 Smart plugs allow the NILM to monitor and control loads 129

4-13 Power Quality App protecting the 3D printer 130

5 Case Studies

5-1 Cottage NILM Schematic and Installation 132

5-2 Cottage Heating System . 133

5-3 Loads monitored by NILM at Cottage Elementary School 134

15

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

5-13

5-14

5-15

5-16

5-17

5-18

5-19

5-20

5-21

5-22

5-23

5-24

5-25

5-26

5-27

5-28

5-29

5-30

5-31

16

One hour of real power data at Cottage 135

Load transients modeled with step functions 136

Comparison of original signal with modeled signal 137

Average Usage and Cost per machine over 6-day period 139

Cost comparison of Boiler 1 to Boiler 2 141

Voltage transient caused by VFD . 142

An example training FOB located at Fort Polk 145

Loads at Fort Devens itemized by energy consumption 146

Power usage at Fort Devens over an occupied weekend. 147

Fort Polk ECU conflict . 149

Fort Polk healthy versus damaged ECU 150

Typical USCG engine room watch . 154

The USCGC Spencer: 270ft Famous Class Cutter 156

Standard Coast Guard exhaust fan. 157

USCGC SPENCER engine room . 158

Controllable Pitch Propeller Pump . 158

MPDE prelube pump . 159

A month of electrical power data . 160

Monitoring data from 10 December 2014 161

The MPDE starting as observed by the nonintrusive SAW. 162

Characteristic CPP on and off event. 162

Monitoring data from 10 December 2014 163

MPDE Stop Sequence . 164

Image of unusual readings from CPP pump after maintenance. 165

Unusual readings from CPP pump during mooring 166

Startup transients for USCGC SPENCER equipment 167

Machinery log maintained by crew . 168

Automatically generated machinery log 169

B Implementation

B-1 Mylar pickup schematic

B-2 Mylar pickup

B-3 Host PCB

B-4 Complete flex sensor

B-5 Control PCB top view......

B-6 Control PCB bottom view . .

B-7 Solid state meter detail

B-8 Smart Plug components.....

B-9 Embedded NILM Hardware . . .

B-10 NILM data capture

B-11 Sensor reader

B-12 Embedded data capture.....

B-13 Embedded system management

. 288

. 289

. 289

. 290

. 300

. 300

. 301

. 301

. 319

. 320

. 321

. 323

. 326

17

18

IMP -, Rqmq Mrp pkg Im''m

Chapter 1

Introduction

Much of the current thinking for making systems "smart" takes advantage of inex-

pensive hardware and fast wireless networks in a loose design approach that gives

little thought to the actual problems facing the end user. In energy monitoring, for

example, utilities have installed millions of smart meters that provide little or no

actionable information to the facilities owner to help manage or reduce consumption.

Engine rooms of modern naval vessels bristle with sensors, each generating data that

is faithfully recorded, and typically ignored. Data meant to help becomes a hindrance

when operators have to debug hundreds of sensors to find the source of a false alarm.

From the smart home to the smart grid, sensors generate clouds of data that over-

whelm instead of inform. Databases storing this information have grown so large that

analyzing them has become an academic discipline in itself. Even sophisticated play-

ers in the data analysis market find themselves unable to capitalize on the promise

of cyber-physical systems with both Microsoft and Google canceling their respective

energy monitoring projects soon after inception [1]. Designing truly functional cyber-

physical systems requires both an analytic mastery and practical expertise. Industry

fails to appreciate the complexities of sensor design, looking for quick profit with

off-the-shelf components, while academics focus on isolated algorithms and circuits

at the expense of the system. This research combines analytical rigor with attention

to the practical details required to deploy a complete system from the front-end sen-

sor and signal processing to the back-end network encryption and server architecture

19

necessary to bring actionable information to the end user. This work is running in

homes, ships, military bases, and schools.

1.1 Non-Intrusive Sensors

System design begins with the sensor. Real time electricity meters enable energy con-

servation but require current and voltage sensors that are expensive and inconvenient.

These sensors require Ohmic contact to measure voltage and geometric isolation of

each phase to measure current. Installing such a system involves a trained electri-

cian and a service interruption that often costs more than the savings promised. To

make these systems practical I designed non-contact sensors that can measure both

current and voltage from outside the insulation of a power line making it safe and

easy to install. The sensor measures voltage by sampling the electric field with the

differential capacitive design shown in Figure 1-la. The currents are extracted from

the magnetic field, which is a superposition of the phase and neutral lines. These

currents produce zero net flux outside the cable, but sensitive devices like tunneling

magnetoresistive (TMR) elements can detect the magnetic dipoles that escape due to

the wire geometry. TMR elements offer high sensitivity but poor linearity, a draw-

back that I resolved with magnetic feedback to set a zero bias operating point at the

sensor interface (see Figure 1-1b) [2].

Multiple magnetic sensors along two flexible arms collect linearly independent

measurements, and recover the current in each conductor through an inversion matrix.

The complete sensor, shown in Figure 1-4a, costs thirty dollars and takes less than

five minutes to install and calibrate.

Water flow meters are similarly intrusive, requiring a plumber to insert monitoring

equipment inline with the pipe. Working with a mechanical engineer I designed

a retrofit sleeve that converts a standard meter used for utility billing into a high

bandwidth flow rate monitor (see Figure 1-2). The system attaches with a zip tie and

matches the accuracy of industry standard inline devices [3]. Two compensated TMR

elements on the sleeve track the rotation of the magnetic displacement wheel within

20

Capacitive Pickup

High voftage wWe
rejects

senses

(a) Non-intrusive voltage sensor

1WC HCO,, + HM ft 0

(b) Non-intrusive current sensor

Figure 1-1: Non-Intrusive sensors provide access to rich datasets with minimum in-
stallation cost and no service interruption.

the meter's brass enclosure. Using a version of the Hilbert transform this rotational

frequency provides a precise flow rate measurement [4].

Both the energy meter and flow rate sensors are designed to be accurate as well as

non-intrusive. As hardware costs continue to decrease sensor installation and main-

tenance begin to dominate the total cost of ownership, making non-intrusive designs

particularly advantageous. Non-intrusive systems also provide exciting possibilities

for in-situ diagnostics where physical and operational constraints make traditional

sensor platforms impractical. For example, the US Navy and Coast Guard want to

develop better ways to perform diagnostics on ship motors and generators. Current

practice requires intrusive instrumentation. Sensors developed in this thesis can pro-

vide similar diagnostics without electrical or mechanical connection to the equipment

which means they can run underway [5,6]. Figure 1-3 shows these sensors installed

aboard the USS SAN DIEGO. This gives operators real time assessment of machin-

21

Figure 1-2: Retrofit flow rate sensor for a utility water meter

ery health in forward deployed environments where such information is critical for

survivability.

1.2 Embedded Signal Processing

Non-intrusive implies reducing total sensor count. By applying the appropriate signal

processing a single sensor placed in the right location can provide data equivalent to

dozens of distributed sensors that would require complex communication protocols,

power, and of course installation. When only one sensor is required, more resources

can be devoted to its design. Recent advancements in mobile computing have lowered

the cost and power consumption of microcontrollers to the point where powerful 32 bit

systems with floating point DSP can be directly embedded in the sensor platform. The

next generation of sensors should not just measure and transmit; they should process

their own data locally. This design enables richer signal acquisition because data

does not have to move across a network. It also eliminates the ethical complexities

of using external storage providers like Microsoft and Google, who may have ulterior

motives with user data. Current smart meters report power consumption at most

once per second, but electrical diagnostics and load identification require sampling

22

Figure 1-3: Vibration diagnostic sensor for rotating machinery

at a kilohertz or more. I have devoted a large portion of my research to the design

of a power meter that is not constrained to these low sample rates by using highly

optimized signal processing to store and process meter data locally. The Wattsworth

power meter shown in Figure 1-4 uses non-contact sensors to measure current and

voltage at 3kHz, which on a three-phase system generates over 2GB of data per

day [7]. An embedded Linux device the size of a card deck (Figure 1-41)) processes

all of this data locally. Manipulating high bandwidth data on an embedded system

instead of a desktop or server requires very efficient data structures and algorithms.

The processor reads thousands of samples per second off the sensor, transforms the

magnetic field measurements to currents, phase aligns these to the sensed voltage,

uses the combination to compute real (P) and reactive (Q) power, and extracts the

envelope of the first, third, fifth and seventh harmonic for both P and Q each line

cycle. This data is then time stamped by microsecond and stored in a custom database

optimized for high bandwidth time series [8, 9]. As implemented, this entire signal

processing chain consumes less than 10% of the embedded system's resources.

23

Non-contact
Voltage Sensor

ARM Cortex M4

USB DeViCA

4w

Flex Circuit
Non-contact
Current Sensors

(a) non-contact flex sensor

USB Host

Auxilary Sensor
Input

Gigabit Ethernet -

iMX6 quad core
2GB DDR3 RAM

512GB mSATA drive

External SD card slot -

(b) single board computer

Figure 1-4: Hardware renderings of the Wattsworth power meter system.

24

1.3 Distributed Cloud Architecture

Retrieving actionable data from these embedded sensors presents a different chal-

lenge. Without a means to communicate, non-intrusive sensors, however sophisti-

cated, would not provide a practical solution to any problem. This thesis introduces

a cloud architecture that connects end users with remote sensors. In typical usage

"cloud" describes a central server hosting content that is consumed by remote clients.

When the content is located on the sensors themselves, the "cloud" acts as an inter-

mediary instead of a repository. Figure 1-5 illustrates this distributed architecture.

Sensors and users authenticate to a trusted server that authorizes transactions be-

tween the two. Encrypted tunnels between the sensor and user ensure that data

remains confidential. This is in stark contrast to current cloud models where users

have little to no control over where or how their data is used. In addition to enforcing

authorization policies, the servers also provide powerful tools for users to visualize

and manipulate sensor data. A powerful plotting interface supports data visualiza-

tion. Embedded processors at each sensor cache iteratively decimated copies of the

raw data.

These decimated versions are used to construct plots matching the resolution of

the client's screen. Devices return higher resolution data as the requested time range

decreases. Dynamic pan and zoom controls populate the interface with new data

seamlessly, giving the impression that all of the data is available on the user's local

machine. The cloud servers coordinate this visualization between multiple sensors

allowing users to simultaneously plot data that resides across multiple different phys-

ical locations. With this tool, the user can plot data from any of sensor over any

timescale using minimal network resources. To deliver truly actionable information,

sensor platforms must be customizable. Not only are the requirements of residential,

commercial and industrial consumers quite diverse, they also change quickly. In cen-

tralized frameworks users are at the mercy of the service provider for data processing

and analytics. By moving the data and processing tools out of the cloud and onto the

sensor, this new distributed framework supports an unprecedented level of customiza-

25

LPD San Diego

Cottage School

IAcqre ProcessI Storej

Report
Diegnosti
and Aler

Figure 1-5:
Wattsworth

Distribute

platforms

- Manager ----.--

- Network VPN server
- Web application server
- Authorization server

s low bandddth traffic Web Browser
CS -- uur-code deployed to snsor Visualization
s - mavuabon data 1mm sensor Code Designer

d cloud architecture securely connects end users with remote

tion. To realize the benefits of this new design approach I have developed a complete

suite of development tools to support user-designed signal processing and data visu-

alization on embedded sensors. This work has two primary components. First, an

application programlming interface (API) allows users to inject custom code or "apps"

into the sensor's data processing pipeline. User apps can create new data streams,

generate graphic reports, alert based on particular conditions, and more. The second

component is a web-based integrated development environment (IDE) where users can

write, debug and share sensor apps enabling a new type of decentralized interaction

where data is private but the code is collaborative [10].

26

jAcquirej Process or

Acquirel Process ISimie

Chapter 2

Non-Intrusive Sensors

2.1 Introduction

Advances in MEMs and integrated fabrication and nanotechnology have both in-

creased sensor resolution and decreased sensor cost. This has led to a proliferation

of commercial products that promise to make it easy to fully instrument a facility

for any metric of interest. However the cost of the sensor itself is only a fraction

of the total "cost of ownership". The cost of installation and maintenance is often

significantly greater than the hardware itself. This is because installation can in-

volve equipment downtime and require skilled professional labor for installation. In

many environments bringing equipment offline is prohibitively expensive or simply

not possible, as in the case of Navy ships or Army bases.

In order to realize the benefits of this new technology, the sensor platform must be

non-intrusive. That is, the sensor should retrofit or "design-in" to existing and new

equipment, and installation should involve no skilled labor or equipment downtime.

The sensors presented in this Chapter meet these requirements. They have been

deployed in real world environments where traditional sensor platforms are at best

inconvenient, and at worst infeasible.

Section 2.2 presents a non-contact current sensor that monitors current flow in an

multi-conductor wire bundle by measuring the magnetic field. Section 2.3 discusses

the design of an electric field sensor that can measure the voltage of an AC conductor

27

with no Ohmic contact. This work was done in collaboration with David Lawrence

and also appears in [11]. Together these non-contact sensors provide a complete

power monitoring solution. Section 2.4 presents two other non-intrusive sensor designs

that have been developed to augment the non-contact power monitor in particular

applications.

2.2 Non-Contact Current Sensor

One of the primary difficulties in non-contact power monitoring is designing a sensor

capable of measuring current flow at a distance. Ampere's Law establishes the linear

relationship between magnetic fields and current, but without a closed path around

the conductor, accurately measuring this magnetic field is a challenging task. On the

surface of a circuit breaker and the exterior of a power cable, the magnetic fields are

not uniform or symmetric, and depending on the particular geometry, can be very

small- less than 1 Gauss for bench top load currents in typical wires. Sections 2.2.1

and 2.2.2 introduce two circuit topologies that can accurately sense these small fields

and can do so even in the presence of DC offsets introduced by nearby magnetic

elements such as steel breaker panels, and the Earth itself.

The first circuit, based on a Hall Effect sensor, is a cost effective solution suit-

able for measuring larger loads or in situations where the wire topology exposes a

relatively strong magnetic field. The second non-contact circuit uses a Tunneling

Magnetoresistive (TMR) element (a recently introduced sensor technology [12]) with

an inductive feedback technique to accurately measure extremely small fields.

2.2.1 Hall Effect Sensor

The schematic for this circuit is shown in Figure 2-1 and the fabricated prototype

is show in Figure 2-2. The Hall Effect is widely known and used in many current

sensor designs. One of the most sensitive devices available in quantity is Allegro

MicroSystem's A1362 Hall Effect sensor [13]. The A1362 has a programmable gain

which can be set up to 16 mV/G, sufficient to resolve the magnetic fields around a

28

IMM poll low I

Allegro 1362

2.2pF 49.9k0 1 k(
VCC - -- -

-AD 86 7 >AD851 AD8513

Figure 2-1: Schematic of Hall Effect non-contact sensor

(a) Fabricated prototype (b) Magnetics for flux concentration

Figure 2-2: Hall Effect non-contact sensor prototype. Ferrite legs focus the field onto
the sensor surface

standard power line. The quiescent output level is also programmable but not tightly

controlled. Therefore, in order to measure small fields without saturating the output,

we add a high pass filter with a cutoff at 1.5 Hz to AC-couple the sensor to the

inverting amplifier gain stage. The large capacitive input of the filter stage requires

a follower to buffer the sensor output. Overall gain can be adjusted by tuning the

feedback leg of the gain stage.

The circuit is evaluated in the experimental setup shown in Figure 2-3a. A signal

generator coupled with a power amplifier drives a solenoid at 200Hz to generate

a magnetic field around the sensor. The circuit's output is compared to the field

strength as measured with a fluxgate-magnetometer (an Aim Instrument I-prober

520). Results are shown in Figure 2-4. Two levels of field strength illustrate the

degree of hysteresis in the sensor response. Steeper slope reflects higher sensitivity.

In situations where the geometry of the fields is approximately known, the response

of the Hall Effect circuit can be improved by attaching magnetic material parallel to

29

(a) Hall Effect Sensor (b) TMR Sensor

Figure 2-3: Non-contact current sensors are placed in an air core solenoid to evaluate
their sensitivity and linearity to applied magnetic fields.

the field lines around the A1362 chip. The prototype in Figure 2-2 uses two ferrite

segments to form a partial torus around the sensor package. This geometry captures

radial fields near the surface of a multiconductor cable such residential and commercial

power lines.

As Hall Effect technology continues to improve, new commercial sensors offer

higher sensitivity at a similar cost and footprint. The non-contact sensor described

in this section has been significantly improved by the substitution of the Allegro IC

with the Melexis MLX91206 Triaxis IMC-Hall Current Sensor [14]. This sensor offers

improved sensitivity- up to 40mV/G in a SOIC 8 package. At this sensitivity the

sensor can be directly connected to an ADC without intermediate analog gain stages.

See Appendix B.1 for a reference design.

Hall Effect Sensor Response

High B Field
4- Low B Field

3-

2-

0-

-2

-3 --

-4-

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Magnetic Field (mT)

Figure 2-4: Response of Hall Effect-based sensor to applied fields

2.2.2 Tunneling Magnetoresistive Sensor

The TMR effect describes the change in resistance of a particular material due to

applied magnetic fields. An explanation of the effect was first published in the 1970's

but garnered little interest because practical implementations generated relatively

small changes in material resistance [15] . Recent advancements using new materials

and advanced fabrication techniques have improved the sensitivity of TMR devices.

Modern state of the art sensors have a tunnel magnetoresistance ratio of over 600%

at room temperature [16,17]. Interest in these devices has increased as they have

become integrated into high density magnetic disk drives and MRAM [18].

The STJ-340 is a TMR Wheatstone bridge sensor produced by MicroMagnetics.

The sensor has four active TMR elements, arranged in a Wheatsone bridge architec-

ture. Changes in the field induce an imbalance in the bridge which can be measured by

a differential amplifier [12]. While the STJ-340 can detect very small fields (25mV/G

as constructed), there are two significant challenges in using it as a current sensor.

First, as with the Hall Effect-based sensor, DC offset errors quickly saturate the sen-

sor output. The offset errors from the environment and from imbalance in the bridge

itself (which can be up to 10%) must be removed before applying any significant gain

31

Uncompensated TMR Sensor

7 - TMR Sensor
- True Current

6 - .

5 -

Q_

E

0)

C

0 5 10 15 20 25 30

Time (sec)

Figure 2-5: Non-linear response of an uncompensated TMR-based sensor. The sensor
does not have a consistent response to a given change in current.

to the output. More troubling is that the TMR sensor's response to large changes

in magnetic field is inconsistent and non-proportional; that is, there is no constant

ratio between the change in the magnetic field and the resulting change in the sensor

output. Figure 2-5 compares the true current as measured by a commercial current

sensor (an LEM LA-55-P) to the output of an uncompensated TMR-based sensor.

Even with proper amplification and DC offset removal, step changes in the load cur-

rent produce non-linear responses in the sensor output.

The circuit shown in Figure 2-6 addresses both the DC offset and the non-linearity

problems of the TMR sensor. The DC offset error is corrected by an integrator

connected to the REF pin of the instrumentation amplifier. Any DC component is

subtracted from the amplifier output resulting in a purely AC signal. This output

is then fed through a high gain stage which drives an air core solenoid wrapped

around the STJ-340. The current through this solenoid builds a magnetic field that

opposes the applied field, creating a feedback loop that zeros the operating point

of the STJ-340. Keeping the sensor element exposed to very small fields improves

the sensor linearity and increases its range of operation. The current driven in the

compensation solenoid is sensed as a voltage across a 150Q resistor. The final stage

32

VCC
500kO

R R+AR -500

STJ-340 R~R-ref 2pF851k

Isen

Vee
-- r" AD8512

50 turns+
38 AWG ~-

1 CO M P2 5 0 kO

V AD851 +

150j S

Figure 2-6: Schematic of the compensated TMR-based current sensor

is a high pass filter and gain stage that removes any offset not compensated for in

the integrator.

The conceptual operation of the feedback topology is shown in Figure 2-7. In

steady-state operation the sensed H..c and driven H fields are approximately

equal and the TMR element is exposed to only a very small residual field. The air-

core solenoid has proven remarkably effective because closed-loop feedback is used to

control the compensation coil.

The circuit is evaluated using the same procedure as the Hall Effect circuit. The

HFgr + H 0

Figure 2-7: Illustration of TMR feedback technique

33

TMR Sensor Response
5

4- High B Field
Low B Field

2-

- --

--4

-2

-1 -0.8 -0.8 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Magnetic Field (mT)

Figure 2-8: Response of compensated TMR sensor to applied fields

experimental setup is presented in Figure 2-3b. The results in Figure 2-8 show the

high sensitivity (relative to the Hall Effect sensor in Figure 2-4) and linear response

of the compensated TMR-based sensor. The saturation effects are due to the power

rails and not the operation of the circuit itself. The hysteresis in the high field data

series is also a result of the power rail limits. The feedback loop cannot drive sufficient

current to eliminate the magnetic field at the sensor surface thus, exposing the TMR's

inherent non-linearities.

The high sensitivity of the compensated TMR circuit makes it useful for applica-

tions outside of power monitoring. In particular the sensor can be used to measure

water flow rate by retrofitting it onto a commercial utility water meter. The majority

of utility water meters share a common core design. A solid brass enclosures with a

positive displacement paddle wheel spins as water flows through the meter. As shown

in Figure 2-9, the paddle wheel has a magnet on its axle that couples to a similar

magnet on the billing hardware outside the brass enclosure. Usually the billing hard-

ware is a simple mechanical accumulator. Using magnets instead of a mechanical

coupling ensures the structural integrity of the pipe and reduces the chance for leaks.

The TMR sensor measures the small magnetic fields that escape the meter en-

closure. The frequency of oscillation is proportional to the flow rate of the water.

34

Field T

10

E -
E 0

-10
15 10 5

mm

Figure 2-9: Utility water meter. Internal paddle wheel couples magnetically to billing
hardware outside the watertight enclosure.

Unlike current, signals which are fixed at the line frequency (50 or 60 Hz), the fre-

quency of the field generated by the meter varies from zero up to the maximum pipe

flow rate. The feedback design in the compensation circuit eliminates low frequency

components of the magnetic field. By adding an additional output from the ref pin

of the instrumentation amplifier, these low frequency components can be recombined

with the sensor output in software. The adjusted circuit is shown in Figure 2-10

The signal processing for this application was developed by Chris Schantz and is

presented in [4]. The complete prototype is shown in Figure 2-11. This design uses

Vcc
5OOkO

STJ-340+
R+AR TMR

'R G ADB220 .
38 AW+ ref 513

R aR- 22F 10kC)

1500Fg e I

Figure 2-10: Compensated TMR schematic for water flow monitoring

Two compensated TMR sensors

Heterodining Filter and Final IF Estimate

U)

0

Filtered z(t) Fine IF (Hz) 6

4
(d)
2

U0 10 20 30 40

Figure 2-11: Retrofit flow meter using compensated TMR sensors

two TMR sensor elements to generate an analytic signal which allows for more robust

frequency estimation and provides information about direction of flow as well as rate.

2.3 Non-Contact Voltage Sensor

Non-contact measurement of electric potential has proven useful for circumstances in

which it is difficult to establish Ohmic contact with the conductors in question. Non-

contact sensors offer ease of installation and robust high-voltage isolation in exchange

for lower accuracy and increased susceptibility to external disturbances.

Non-contact measurement of static electric potentials was first proposed by [19] in

1928. A vibrating plate is placed near an unknown potential, forming a time-varying

capacitance. The voltage of the vibrating plate is adjusted until the vibrations induce

no current through the plate, indicating that the plate's potential is equal to the

unknown potential. The bandwidth of the sensor is limited by the vibration frequency

of the plate. Reference [20] proposes a method by which the residual current through

the sensor plate is integrated to determine the higher frequency components of the

unknown potential.

Recent work has focused on capacitive sensors that do not vibrate. The induced

current is integrated to obtain the unknown potential at all frequencies of interest.

Reference [21] uses a capacitor to perform the integration. References [22] and [23]

are optimized for the geometry of high voltage transmission lines. However, the gain

36

of non-vibrating capacitive sensors is dependent upon the distance to the unknown

conductor. Two sensor plates can be separately measured to compensate for this

dependence [24]. Alternatively, large sensor plates can be placed close to a wire in

order to enter a regime of operation in which the transfer function is not dependent

on the separation distance [25].

The unique challenge of non-contact voltage sensing is reconstructing the input

signal while rejecting pickup from other sources. Specifically, the currents induced by

the input signal must be integrated in order to recover the input voltage. However, the

currents induced by other sources have significant low-frequency components, which

are amplified by an ideal integrator. There is a fundamental trade-off between the

accuracy of voltage measurements and a sensor's signal-to-noise ratio.

This design is a non-contact sensor that takes a differential measurement of two

vertically stacked non-vibrating sensor plates in order to maximize the dependence of

gain on plate-to-wire distance, so that the signal from a nearby wire is selected and

the signals from more distant wires are rejected. The sensor is especially well suited

measurements that do not require the absolute scaling factor to be determined (e.g.

total harmonic distortion and line regulation).

A three layer capacitor with a uni-polar analog circuit improves the design pre-

sented in [2] in both resolution and cost. The sensor uses a digital FIR filter opti-

mized for measuring 60 Hz line harmonics with improved behavior across the range

of worldwide utility frequencies relative to the previous analog design. The FIR filter

has an exceptionally short impulse response for a digital integrator which improves

the rejection of electric field impulses generated by voltage discontinuity in large

inductive loads (eg when a motor is turned off). Cost reduction is achieved with care-

ful component selection, uni-polar operation, and a board design that incorporates

the capacitive pickups directly into the PCB layers rather than requiring copper foil

applied as a post processing step.

37

CP1 R -C

CP2 VO

V1 O\ R C

Figure 2-12: Circuit for differential non-contact sensing of an AC voltage. Equation
(2.3) provides the transfer function of this circuit.

2.3.1 Principle of operation

A parasitic capacitance Cp develops between a sensor plate and a nearby wire (Cpl

and CP2 in Figure 2-12). The sensor plate is attached to AC ground by a resistance

R and a capacitance C. The transfer function from the wire voltage to the sensor

plate voltage is given by
V0(s) sRCp
Vi(s) sR(C+Cp)+1 (2.1)

Conventional capacitive-divider sensors choose R to be very large. The transfer

function is then approximated by

VO(s) C,
V(s) ~ + CP

If C is kept much smaller than C, (which requires careful construction), the equation

simplifies further to V(s) ~ V(s). Unfortunately, this approach is not practical for

the new sensor because C, is tiny and the resistance required would impractically

large. Instead, the new sensor operates in the regime where

JsR(C + Cp)l < 1

38

I T, WMI- 7 '11111PIP "Mifto 1.0 ' 1. "_?'.rV0?1VWT "

and so

V(s) sRC (2.2)
V,(s) sRP

The sensitivity of the sensor is proportional to frequency. It is inversely proportional

to the distance d between the wire and the sensor plate, because

1

d*

Note that the sensor measures the input signal v, relative to its own ground, which

must be connected (or at least AC coupled) to the input signal's ground.

As proposed in [2], improved localization is obtained by taking a differential mea-

surement from two stacked sensor plates. This arrangement is shown in Fig. 2-12.

Parasitic capacitance between the two plates is neglected from this model because

in the differential mode it is equivalent to additional capacitance between each plate

and ground.

The full transfer function of the differential sensor is given by

VO(s) _ sR(Cp2 - Cp1)(sRC + 1) (2.3)
Vi(s) (sR(C + Cp1) + 1)(sR(C + Cp2) + 1)'

For frequencies satisfying IsRCJ < 1, the transfer function is approximated by

V (S)V(s) sR(Cp2 - C 1) (2.4)
V (s)

which is analogous to (2.2) for the single-plate sensor.

If the sensor plates are at a distance d from the wire and separated from each

other by a distance do < d, the differential capacitance is

1 1 do
CP2 - Cp 10C - - ~2-0 d d +do d2

Therefore the sensitivity of the differential sensor is inversely proportional to the

square of the distance between the wire and the sensor plates.

An alternative approximation aids in understanding the frequency-dependent be-

39

havior of the differential sensor. When Cp1 < C and Cp2 < C, the transfer function

is roughly

Vo(s) s R(Cp2 - C) (2.5)
Vi(s) sRC + 1

The input voltage is recovered by integrating the output voltage-in other words, the

zero at the origin is canceled by a new pole at the origin. At low frequencies, the

remaining pole at s = -1/RC has minimal effect. As the signal frequency increases,

first order low-pass behavior will be observed.

Once the output is integrated, the differential capacitance Cp2 - Cpi must be

determined in order to identify the sensor gain and recover the original input signal.

If this capacitance is not known, the output will include an unknown constant scaling

factor.

2.3.2 Analog implementation

There are two factors which determine the sensitivity and performance of the sensor:

the geometry of the sensor plates, and the quality of the differential amplifier that is

attached to them. Since the sensor should measure the voltage on one nearby wire

without mixing in voltages from more distant wires, the sensor plates should not be

made too large.

Based on the size of service entry cable and typical clearance constraints around

existing wiring, the sensor plates are designed to have an area of 1 cm2 . To minimize

the cost of fabrication, the plates are built into the bottom two layers of a standard

1.6 mm four-layer printed circuit board (PCB). In a standard FR4 PCB, the bot-

tom two layers are separated by 0.25 mm of laminate with a dielectric constant of

approximately 4.5. Therefore the inter-plate capacitance is

Cip = 4.5 - o c = 15.9 pF.
0.25 mm

The prepreg thickness can be adjusted to fine tune the inter-plate capacitance but

in practice the default fabrication thickness senses line voltage well and is optimal in

terms of production cost.

40

till' 111111111MMOP- g- . P, -

INA332

plate 1

1'te 9

1

2

3

4
lop i- M

RG EN

IN- V+

IN+ OUT

V- REF

8

7

output

6
10k

5100n

I LM4041

+3.3V

A-

Ground Plane

Sensor Plate

Sensor Plate

Figure 2-13: Non-contact voltage sensor schematic and 3D view of PCB stackup.

The board dimensions are 1 cm by 2 cm. From top to bottom, layers contain: (1)
connector, instrumentation amplifier, and supporting components, (2) ground plane,
(3) negative differential sensor plate, (4) positive differential sensor plate and Hall

effect IC.

41

I1

tp

Ground Shield

Sensor Plates

o0
High voltage wire High voltage wire

Figure 2-14: The sensor plate geometry selectively targets conductors directly below
the sensor surface, shown on the left. The ground shield blocks fields originating
above the sensor and the differential pickup rejects common mode fields originating
on the sides of the sensor as illustrated on the right

With this information, the differential capacitance between the sensor plates and

a nearby wire can be estimated. Suppose that the effective area of overlap between a

wire and the sensor plates is 0.5 cm 2 , and the wire and the closer plate are separated by

1 mm of insulation with a dielectric constant of 2.1 (such as Teflon). The capacitance

between the wire and the closer plate is

CP2 = 2.1 - E0 - 0.5 cm2 1 mm = 0.930 pF.

Then C,> is given by the series combination of Cp2 and Cip, i.e.

1 1 1

CpI Cp2 Cjp

and the differential capacitance is

C2
CP2 - Cp1 _ p2 0.051 pF.

Cip + Cp 2

The amplifier's input bias currents must be much smaller than the currents in-

jected into the bias resistors by CP1 and Cp 2 . (This requirement is independent of

the resistor values.) The limiting case is the lowest voltage of interest at the lowest

frequency of interest for design purposes, a 1 V signal at 60 Hz. The differential

42

current produced by this signal is

27rf(Cp 2 - C)V = 27r -60 Hz. 0.051 pF- 1 V = 19 pA.

To avoid distorting the signal, the amplifier's input bias currents should not exceed

about 1 pA. The Texas Instruments INA332, meets this specification and is signifi-

cantly less expensive than the AD8421 used in [2].

In the differential mode, the inter-plate capacitance of Cip is equivalent to a ca-

pacitance between each plate and ground of

2Cip = 31.8 pF.

This capacitance reduces the bandwidth of the sensor and should be kept as small as

possible. However, the amplifier is susceptible to common-mode disturbances which

cause its inputs to exceed their allowable voltage range. In order to have some capac-

itive filtering of common mode inputs, an additional capacitance of 10 pF is provided

between each sensor plate and ground. This gives a total differential mode plate-to-

ground capacitance of

C = 41.8 pF.

The last design task is to select the bias resistors attached to the sensor plates.

The sensor gain is given by sRCd, so to maximize sensitivity R should be as large

as possible. However, larger values of R increase the time constant RC and decrease

the sensor bandwidth. A good balance between these requirements is achieved by

R = 1 MQ. The breakpoint of the input network is placed at

1
= 3.81 kHz

27rRC

which is significantly faster than the signals of interest, but the sensor gain remains

large enough to obtain usable voltage signals out of the amplifier.

43

Using (2.5), the transfer function of the specified analog sensor is

V,/(s) s - 51ns

V(s) s - 42 ps+1 (2.6)

For sufficiently low frequencies, (2.4) applies and

VOW~ s - 51ns.
14(s)

The final analog sensor schematic is given in Fig. 2-13 and the PCB is depicted

in Fig. 2-14. Because of the high impedances present on the PCB, special care must

be taken to include guard traces around sensitive nodes and to clean conductive

residue from the board after assembly. (Because the new voltage sensor is intended

for non-contact power metering applications, this PCB also includes footprints for

a Hall effect-based magnetic field sensor, an EEPROM, and a connector for cabled

attachment to a microcontroller.)

2.3.3 Digital signal processing

The sensor output must be integrated to recover the original voltage being mea-

sured. Past implementations have used an analog integrating filter [2], but better

performance is possible by performing the integration digitally. The design of the

integrating filter presents a fundamental tradeoff between accuracy and disturbance

rejection. Specifically, there are three design requirements:

1. The filter must faithfully reconstruct the voltage being measured.

2. The filter must reject low frequency disturbances, such as those caused by ther-

mal drift.

3. The filter must recover quickly from impulsive disturbances.

These requirements correspond to the following three properties of a linear filter:

1. The filter should act as an integrator at line voltage and its harmonics. That is,

the frequency response should be inversely proportional to the frequency, and

44

IIIII IIIIRIIII I . 'mm"IN IR M Ise, .,F MMMTF-

introduce 90 degrees of phase lag, for every frequency present in the voltage

being measured.

2. The filter's frequency response should roll off quickly below the frequencies of

interest.

3. The filter's impulse response should be short.

These goals have previously been realized by a cascade of two analog filters: a high-

pass filter which admits the signals of interest but blocks low frequency disturbances,

followed by an integrator to recover the original voltage signal. The challenge is that

a causal analog filter cannot have a sharp transition between its stop band and pass

band without introducing significant phase distortion-but if the transition to the

stop band is gradual, low frequency disturbances will be admitted and amplified by

the integrator.

Throughout this section, w refers to a normalized angular frequency with units of

radians per sample. Suppose that there are 2N samples per line cycle, so that the

frequency of the nth harmonic is 7rn/N radians per sample. The frequency response

of an ideal integrating filter is given by

Hi(w) = . (2.7)
jwN

(This filter is "ideal" only in that it integrates signals perfectly and has a unit mag-

nitude response at line frequency. It does not satisfy the second and third filter

requirements.)

If the sampled line frequency of 7r/N radians per sample corresponds to 60 Hz in

continuous time, the frequency response of the analog filter in [2] is given by

jw7r/N
(jw + 1/To)(jO + 1/T)(

45

0.08

0.06

0.04

0.02

0.00

-0.02

-0.04

-0.06

-0.08

FIR 1 impulse response

-LLL-

-20 -10 0
Time (samples)

10 20

Figure 2-15: Impulse response hi[t] for N = 25. The impulse response is zero when
It| > 25.

with

=ro (2.2 pF) - (12.1 kQ) - (60 Hz) -2N

-1= (2.2 pF) - (47kg) - (60 Hz) -2N.

This analog filter is compared with two digital finite impulse response (FIR) filters.

The FIR filters have antisymmetric impulse responses (such filters are known as "Type

3" FIR filters). As a consequence, they have zero group delay, introduce 90 degrees

of phase lag at all frequencies, and do not pass signals at zero frequency or at the

Nyquist rate.

The first FIR filter is the Type 3 filter with 2N - 1 taps whose frequency response

H1 satisfies
/rni 1

Hi =- n E Z, 1 < In| < N.N jn

The second FIR filter is the Type 3 filter with 4N - 1 taps whose frequency response

H2 satisfies

n E Z, 1 nj <2N

46

H2(7rn
2cn

2N jn

FIR 2 impulse response
0.08

0.06

0.04

0.02

0.00

-0.02

-0.04

-0.06

-0.08

Figure 2-16: Impulse response

tl > 50.

20

15

10'

5

0

-5

-10

h2 [t] for N = 25. The impulse response is zero when

Filter frequency responses. ., , ., , , 1
id

aan
F

-- F

-15

10-3

alog line frequency
Ri1
R 2

3rd harmonic

10-2 10-1

Frequency (radians per sample)

100

Figure 2-17: Magnitude behavior of the filters for N = 25. Note the logarithmic
horizontal scale. The analog filter introduces phase distortion which is not depicted
on this plot. Amplification of low frequency disturbances is roughly proportional to
the area under the left half of the response curve.

47

-20 0

Time (samples)

-40 20 40

I

fly

Deviations from ideal frequency response

-I

0

-10

-20

-30

-40

-50

-60

-70

-80

0.

analog
FIR 1
FIR 2

1.0

Figure 2-18: Magnitudes of the relative deviations from the ideal frequency response
for N = 25. Both of the FIR filters have zero error at line frequency and its harmonics.
Deviation from the ideal response is necessary and desirable at frequencies below line
frequency.

3

2

0

-2

Simulated response to a sine wave with frequency mismatch and impulsive disturbance

00 -100 0 100

Time (samples)

200 300 400

Figure 2-19: Simulated response of the filters to an impulsive disturbance with mag-
nitude 30 at t = 0. The disturbance affects FIR 1 for -25 < t < 25 and FIR 2 for
-50 < t < 50, but the analog filter has not yet recovered from the disturbance at
t = 400. The filters are designed for a line frequency of 50 Hz with N = 25, but the
input signal is provided at 60 Hz to demonstrate that the filters perform well even
when line frequency is not known in advance.

48

I
0.2 0.4 0.6 0.8

Frequency (radians per sample)

I

-- ideal --- -analog FIR I - FIR 2

0

-3 L
-2

Response to one second of pink noise
60

40

0 500 1000 1500 2000
Time (samples)

Figure 2-20: Simulated response of each filter to the same sequence of pink noise.
The pink noise was generated as the cumulative sum of a sequence of numbers chosen
uniformly at random between -0.5 and 0.5.

with

1/2 Inj = I

cn 1 2 < Inj < 2N - 1

3/4 Inj = 2N - 1.

The filter impulse responses are computed using the inverse discrete Fourier trans-

form:

-sin - t
N

sin -)

where t is an integer representing the discrete time. The impulse responses are plotted

in Fig. 2-15 and Fig. 2-16.

By definition, HI(w) = H2 (w) = Hi(w) at line frequency and all of its harmonics

below the Nyquist rate. Therefore these filters are optimal for the target application

of sensing line voltage harmonics. hi is the shortest impulse response whose Fourier

49

20

0

-20

-40

-60

-80

- -

- - -- analog -
SFIR I

- I, FIR 2

2500 3000

1
h1 [t] = I

N
n=1

2N-1

h2[t] = I -
N E n

n=1

|t| < N

|t| < 2N

(2.9)

(2.10)

transform has this property, and h2 is designed to have a smoother frequency response

at the expense of being twice as long as hl.

From the impulse responses, the discrete time Fourier transform gives the contin-

uous frequency responses. The analytical expressions are omitted here because they

provide no additional insight. Fig. 2-17 shows the magnitude response of each filter

and Fig. 2-18 shows the relative magnitude of the difference between each filter's

response and the ideal response. We consider the response of each filter to the signal

x[t] = sin(7rt/N . 60/50) + 30S[t].

This represents the case where the digital filters were designed for a line frequency of

50 Hz but the actual frequency is 60Hz, and an impulsive disturbance of magnitude

30 occurs at time t = 0.1 These responses are plotted in Fig. 2-19 and exemplify the

benefits and drawbacks of each type of filter.

Lastly, to illustrate the superior disturbance rejection of the digital filters, the

output of each filter is computed for the same input sequence of pink (i.e. 1/f)

noise. The results are plotted in Fig. 2-20. Clearly, the analog filter exhibits a greater

amount of error amplification.

Although the FIR filters are non-causal, both become causal when composed with

a finite time delay. It is therefore possible to implement them, with the caveat that

the output will not be known in real time. In particular, the first FIR filter delays

its outputs by half of a line cycle and the second FIR filter delays its outputs by one

full line cycle.

2.3.4 Experimental results

Three experiments are re'Viewed in this section to demonstrate the improved perfor-

mance of the new voltage sensor. As the design is optimized for sensing line voltage,

'Such disturbances often occur when a large inductive load is disconnected, resulting in a high
instantaneous rate of voltage change on the inductor. This produces a powerful electric field which
causes the sensor plate voltages to briefly exceed the common-mode input range of the amplifier.
The INA332 drives its output to the positive rail when this condition occurs.

50

Tw

/

Figure 2-21: Non-contact power meter using the new voltage sensors installed on a

service entrance cable for power metering.

the experiments use an additional set of non-contact current sensors to illustrate the

performance of the sensor in a power monitoring application. In the first experiment,

the sensor is used to extract harmonic envelopes of real power in a three phase cable

bundle. The second experiment illustrates the improved performance of the FIR filter

versus the previous analog filter across a wide range line frequency harmonics. Finally

the third experiment shows the improved disturbance rejection of the FIR filter to

variations in the electric field generated by inductive appliances.

The first experiment illustrates the utility of the voltage sensor in a power mon-

itoring application. The voltage sensor was installed along with non-contact current

sensors on a three phase bundle shown in Figure 2-21. A traditional power meter

using commercial voltage sensors and current transformers was installed in parallel

so that the results could be compared. Various electrical loads were switched on and

off in order to obtain the time series data depicted in Figure 2-22. Mismatch between

the traditional power meter and the non-contact power meter did not exceed 10 W

over a dynamic range of 1000 W, showing that the new voltage sensor was able to

accurately distinguish real and reactive power.

In order to obtain more detailed results showing the performance of the new

51

Real power on three line conductors
--

(hi)
) (()

-I - -

I it

S--

OV)Traiional)

- -- ---- - - - ------- - --- ------

- -*

No-cnac

- Taiioa

II-

II-

- -

4 6 8 10

Time (seconds)

Figure 2-22: Data collected by non-contact and traditional power meters. The turn-
on transients depicted are from (i) a 250 W incandescent light bulb, (ii) a 1500 W
space heater, (iii) an 0.25hp induction motor, and (iv) a 600W bank of dimmable
incandescent light bulbs.

52

COD

1200
1000
800
600
400
200

0

1200
1000
800
600
400
200

0

1200
1000
800
600
400
200

0

0 2

Figure 2-23: Non-contact voltage sensor attached to an 18-AWG computer power
cable powered by an HP 6834B AC source. The ribbon cable leads to a printed
circuit board which implements the analog filter and two digital FIR filters.

digital filters, the voltage sensor was attached to an 18-AWG computer power cable

with line voltage supplied by an HP 6834B AC source. (This cable was chosen because

thinner conductors produce the smallest coupling capacitance and therefore pose the

most difficult sensing challenge.) This experimental setup is shown in Figure 2-

23. The sensor was attached to an Atinel SAM4S microcontroller, which sampled

the sensor with its built-in ADC at a sample rate of 3 kHz and a desktop Linux

installation processed the signal using both of the FIR filters. The analog filter of [2]

was constructed using a Texas Instruments OPA4376 operational amplifier and its

output was connected to a second ADC channel. The output from all three filters

was streamed from the microcontroller to a computer. With a line frequency of 60 Hz,

there were 50 samples per line cycle and N = 25.

The output voltage from each filter was measured for sinusoidal inputs at vari-

ous voltages and frequencies. Equation (2.4) was solved to find that the differential

capacitance was 1.22 pF at 120 V and 60Hz. At other voltages and frequencies, the

percent magnitude error was computed for the output of each filter. The phase error

of the analog filter relative to the (zero-phase) digital filters was also computed. This

data is given in tables 2-1 and 2-2.

The collected data shows that the digital filters significantly outperform the analog

53

Response to an electromagnetic disturbance
500

400 ----- analog
300 -~~ FIR I
200 - FIR 2
100 -'IIfl

tl0

-100

-200 , ' 0' 0.58
0.46 0.48 0.50 0.52 0.54 0.56 .58

800
700
600
500
400
300
200
100

0
0.0 0.2 0.4 0.6 0.8 1.0

Time (seconds)

Figure 2-24: Response of the voltage sensor to a 100 mA fan motor being turned
off 30 cm away from the sensor at t ~~ 0.5. The digital filter recovers from the
electromagnetic disturbance quickly, so non-contact power metering is not affected by
the disturbance.

54

0

'-4 hown abo\,-
-.1O effect

--

FIR 2
% error

2.3
1.6
0.0
0.0
1.2
0.8

-0.0
-0.1

0.3
0.5

Analog phase
error, degrees

8.92
9.04
9.07
9.09
9.11
9.16
9.21
9.29
9.34
9.40

Table 2-1: Output error from each filter for various input voltages at 60 Hz.

FIR 1
% error

2.3
-1.7
-2.7
-3.8
-4.2
-5.2
-6.2
-7.6
-9.1

-11.2

FIR 2
% error

2.3
-1.7
-2.7
-3.8
-4.2
-5.2
-6.2
-7.6
-9.1

-11.2

Analog phase
error, degrees

8.92
4.98
3.69
3.06
2.69
2.48
2.33
2.22
2.16
2.14

Table 2-2: Output error from each filter for various input frequencies at 30 V RMS.

55

Input

V RMS
30
60
90
120
150
180
210
240
270
300

Analog
% error

5.7
3.7
1.1
0.3
1.0

-0.5
-2.2
-3.3
-3.8
-4.5

FIR 1
% error

2.3
1.6
0.0
0.0
1.2
0.8

-0.0
-0.1

0.3
0.5

Input
Hz

60
120
180
240
300
360
420
480
540
600

Analog
% error

5.7
2.9
2.5
1.9
1.6
0.8
0.1

-1.3
-2.8
-4.8

, ,

filter with respect to phase lag and voltage linearity. As predicted by (2.5), all filters

suffer from frequency-dependent gain, with a slightly more pronounced effect for the

digital filters. Finally, the disturbance rejection of each filter was tested by turning

off a 100 mA fan motor at a distance of 30 cm away from the sensor. (The motor does

not have a clamp circuit, so an inductive voltage spike generates a strong electric field

every time it is turned off.) The response of the three filters to this situation is shown

in Fig. 2-24. There is good agreement with the simulated behavior in Fig. 2-19. The

digital filters are only affected by the disturbance for one or two line cycles, but the

analog filter has not recovered after many line cycles. Fig. 2-24 also shows that the

digital filters prevent the disturbance from affecting power metering.

2.4 Ancillary Sensor Platforms

The previous sections have presented sensors designed for electric power monitoring.

While a great deal of information can be extracted from power signals, some systems

are better characterized by other physical metrics. Rotating machines (pumps, mo-

tors, generators) produce vibrations related to their mechanical health and mount

condition. In many systems temperature indicates pending failures. A hot spot in

a breaker panel indicates a loose or corroded connection. A hot gear or rotor in a

transmission may indicate a bearing failure. In these situations augmenting electric

power data with ancillary metrics can greatly improve the diagnostic capability of a

sensor system.

Augmenting a non-intrusive platform must be done carefully. The total number

of sensors must be minimal and the additional sensors must be easy to install without

skilled labor or equipment downtime. The Captcha, developed in collaboration with

Jim Paris is a vibration sensor designed to capture motor dynamics, and "Hottee"

explores how multi-domain images can provide high resolution thermal information.

56

101 ON I ORMPP"M

Figure 2-25: "Captcha" vibration diagnostic platform

2.4.1 Captcha: A Vibration Diagnostic Platform

One of the most interesting parameters to measure with large machinery is vibration.

This is appealing because vibration naturally radiates through a structure allowing a

sensor to be placed in an easily accessible location, and a large body of work supports

the use of vibration monitoring as a diagnostic tool. This work was performed in

close collaboration with the the US Navy and Coast Guard to develop pump vibration

monitoring tools that enable underway diagnostics. Shipboard applications have a

unique set of requirements. The sensors are installed on pumps before an underway

cruise, left running for the duration of the cruise and then recovered. Therefore,

the sensors must be rugged enough to withstand the harsh operating environment

of a ship engine room, they must supply their own power, and they must be able

to record large amounts of data. The "Captcha", developed with Jim Paris, is a

battery powered platform that uses an ADXL345 MEM's accelerometer which records

vibration measurements to a micro SD cards at 3.2 kHz. Such high bandwidth data

transfer to an SD card is non-trivial when constrained to a low power micro controller

57

Figure 2-26: "Captcha" on USS SAN DIEGO (LPD 22)

and significant effort has gone into the firmware and hardware design of the board to

enable this high data rate. The sensor and its batteries are sealed in a rugged plastic

enclosure and adhesively mounted to the pump's exterior housing. Figure 2-25 shows

the first revision of the circuitry mounted in its plastic enclosure. Figure 2-26 shows

the fully assembled sensor mounted to pumps onboard the Navy ships.

2.4.1.1 Hardware

The sensor board has several components that work together to provide the embedded

data logging functionality. Figures 2-28a and 2-28b show the current revision of the

hardware. Figure 2-27 lists the functionality of each area of the board. Power is

provided by a 3.7 volt rechargeable Lithium-Ion battery which provides 3-Amp hours

of charge. This is enough to run the data capture continuously for approximately

5 days. The charge management circuity (B) recharges the battery over USB. A

buck/boost converter (C) maintains the 3.3 volt power rail required by the digital

circuitry. This allows the device to operate while recharging (when the charging

circuitry raises the battery to over 4 volts) and also guarantees a stable voltage

across the lifespan of the battery. The SD card has variable response times to write

58

Annotation Function
A High speed USB management chip
B Lithium-Ion battery charging
C Power converter for 3.3V circuitry
D ISP programming header
E Coin cell backup for RTC
F 8MB of non-volatile FRAM
G Panel button and status light
H Micro SD Card (32 GB)
I Real time clock (RTC)
J AVR microcontroller (AT90USB)
K ADXL345 3-axis accelerometer

Figure 2-27: Functional groups on vibration sensor circuit board

requests and periodically stalls for hundreds of milliseconds. In order to prevent

data loss while the SD card is not accepting writes, extra data is stored on an 8MB

FRAM chip (F). This memory can buffer several seconds of accelerometer data and

flush out the data to the card when it is ready again. A real time clock with internal

oscillator (I) provides accurate time stamps for all of the data. A coin cell backup (E)

maintains the clock time even if the main battery is fully discharged or disconnected.

The accelerometer (K) is placed between two mounting points to ensure a stable

and accurate vibration measurement. An AT90USB1286 AVR micro controller (J)

coordinates all of these parts and is programmed using a standard ISP header (D),

although it can also run a boot loader which accepts programming commands over

USB.

2.4.1.2 Firmware

In addition to recording vibration data to the SD card, the micro controller provides

a terminal interface when connected over USB. This allows the user to view the status

of the device, the number of files currently stored, and issue commands to start and

stop data capture. The firmware also has a self test diagnostic feature that reports

the status of all of the different components of the board. In addition to acting as a

terminal emulation device, the sensor can be mounted as a high speed USB storage

device if it is plugged into a computer while depressing the panel button (G). In this

59

\ V

(a) Top

(b) Bottom

Figure 2-28: Captcha circuit board

60

mode the USB management chip (A) connects the SD card (H) directly to the host

computer which can then transfer data off the device just like a portable thumb drive.

2.4.1.3 Software

To improve the write speed and storage capacity of the device, all of the samples

and timestamps are stored in a binary stream. A simple python script converts the

binary data to standard ASCII text. The resulting file has one line per sample with

4 columns: time stamp, x-axis force, y-axis force, and z-axis force. This data file can

be directly loaded into Matlab for further analysis.

2.4.1.4 Operational Verification

Vibration measurements are traditionally taken from accelerometers which are hard

fixed to the machine under inspection. Some pumps have threaded mount points for

specialized sensors but most do not and technicians affix the sensor to the machine

with "super glue" or epoxy adhesives. The Captcha is designed to be easily installed

and removed from a wide variety of pump equipment as non-intrusively as possible.

In order to minimize the impact to the machine under test the Captcha enclosure

is secured with adhesive tape pads instead of glue. In order to verify that using

adhesives rather than epoxy or bolts does not distort the vibration signal, several

different mounting techniques were tested in the lab. For a baseline an accelerometer

was mounted directly to the body of a standard ventilation fan which was power

cycled three times. A spectrogram of the collected data is shown in Figure 2-29. This

was compared to the signal recorded by an adhesively mounted Captcha also on the

fan body. The Captcha spectrogram is shown in Figure 2-30. Both spectrograms

show the same general information with some attenuation present in the adhesively

mounted device- which is to be expected. Given that the dominant vibration modes

occur at frequencies on the order of motor rotation the adhesive mounts are suitable

for this application. Indeed since the adhesive mounts act as a low pass filter, they

can help in preventing aliasing of high frequency content into the sampled data.

61

Hard Mount Accelerometer
150

100 -

50

0-
0 20 40 60 80 100 120 140 160 180 20

Time (secs)

150

100

50

0 I I
0 20 40 60 80 100 120 140 160 180 200

Time (secs)

Figure 2-29: Accelerometer chip mounted with a pipe clamp

Adhesive Mount Accelerometer
150

I 100

50

0

150

20 40 60 80 100 120 140
Time (secs)

100

50

0 -- i - I - - I I -_ I

0 20 40 60 80 100 120
Time (secs)

Figure 2-30: Custom sensor package adhesively mounted

62

140

a)

x

0

a)

xa

0

a)

(a) Combined video + IR (b) MLX90620 64 pixel IR, module

Figure 2-31: System output synthesizing thermal and RGB data sets in realtime video

2.4.2 Hottee: A multi-domain thermal imager

Thermal video records infrared energy and produces heat maps of the imaged ob-

jects. Thermal images of motors and electric power distribution equipment can help

identify mechanical faults before they become dangerous failures. Traditional ther-

mal cameras are prohibitively expensive but a new compact device manufactured by

Melexis, the MLX90620, provides a resolution of 16x4 in a compact package that can

be connected to an FPGA or traditional microcontroller with I2C. This device is a

combination EEPROM and IR Array in a single TO-39 package. The low resolution

limits the utility of the device as a standalone sensor but when the thermal data is

superimposed against a visual spectrum video of much higher resolution the effective

thermal resolution can be greatly increased. This is because the high resolution image

can be used to infer the dominant source of temperature in a low resolution thermal

pixel.

2.4.2.1 System Architecture

"Hottee" uses low resolution thermal video and high resolution visual spectrum video

to provide realtime thermal diagnostics. The prototype in Figure 2-31 uses a USB

webcam for visual video and an AVR microcontroller to interface with the MLX90620.

The AVR enurmierates as a USB device similar to the webcam. Processing high resolu-

63

ATMega32u4

12C FPGA + BlueSpec

USB--

USB SCEMI

Figure 2-32: Thermal imager system architecture

tion video can be difficult in a microcontroller so the prototype design is implemented

on an FPGA which is expected to perform the signal processing algorithms faster

and with higher effeciency. To facilitate the production of the prototype the Bluespec

hardware design language was used to program the FPGA. This imposed some limi-

tations on the prototype architecture. The Bluespec interface does not support USB

directly so a host computer is used to process the camera images and send them to

the FPGA for processing over the Scemi buffer (a Bluespec bus architecture). This

toolchain is illustrated in Figure 2-32

2.4.2.2 Signal Processing

The thermal sensor output is a nonlinear function of IR intensity and each pixel has

separate scaling coefficients that are calibrated by the factory and stored in the sensor

EEPROM. The pixels also have a dynamic offset relative to the die temperature so

the sensor temperature itself must be calculated. These operations require significant

computational resources but can be optimized to run in hardware using the Bluespec

floating point modules.

The signal processing consists of three main steps:

1. Computation of die temperature

2. Per pixel compensation

64

3. Pixel temperature calculation

Once the die temperature is computed the pixel calculations are independent and can

be run in parallel as hardware resources allow. In most situations the die temperature

should change at a much lower rate than the object being imaged. In this case the

computation is fully parallel for the duration the die temperature is unchanged (which

is easy to detect by simply reading the PTAT register value).

Die Temperature The die temperature is calculated by (2.11) using a PTAT sensor

on the camera module (VTH). Coefficients KT1 and KT2 are stored factory calibrations

stored in EEPROM.

Ta - -KT + -KV - 4 KT2[VTH - PTATdata] (2.11)
2KT2

Pixel Compensation The pixel voltages are relative to the die temperature so to

recover absolute temperature the voltages must be offset by Ta. The size of this offset

varies by pixel. The pixel offset to temperature is calculated at the factory and stored

in EEPROM as a pair of constants Ai and Bi per pixel (i, j).

VIR(iJ)_OFF_COMP = VIR(ij) (Ai(ij) + Bi,,D (Ta - Tao)) (2.12)

Each pixel voltage is then compensated for thermal gradient correction again using

coefficients stored in EEPROM.

VIR(i)_TGCCOMP = IR(i,j)OFFCOMP - TGCX IRCPOFFCOMP (2.13)

Additionally, if the emissivity E of the material being imaged is known this can be

included in the compensation calculation to improve the temperature accuracy.

VIR(i,j)_COMPENSATED = VIR(,j)TGCCOMP (2.14)

Pixel Temperature The 64 compensated pixel voltages are then used to compute

the per-pixel temperature. The voltage temperature relationship is nonlinear and

65

unique to each pixel. Each pixel is scaled by a factory calibrated coefficient acomputed

by (2.15).

ao + a(ij)(
= 2coSCALE 2AaSCALE (2.15)

Combining the compensated pixel voltage, scaling coefficient, and die temperature,

(2.16) provides temperature imaged by the pixel.

TO(ij) = 4 VIR(ij)COMPENSATED + (Ta + 273.15)4 - 273.15 (2.16)
CI(ili)

2.4.2.3 FPGA Implementation

As suggested above the operations to calculate temperature are best done with float-

ing point. The presence of powers of 4 and square roots make fixed point implemen-

tations very difficult and error prone. The FPGA is programmed using the Bluespec

software suite which does not support floating point natively so a set of Verilog li-

braries provided by Xilinx are used instead. The AWB/Leap computing group in

CSAIL has published a set of wrappers to expose the floating point modules to Blue-

spec [26]. One drawback of using raw Verilog is that designs can no longer be run in

Bluesim (the Bluespec simultation environment). This makes working with floating

point much more difficult because everything must be synthesized and run directly

on the FPGA to check if it works. In order to preserve the ability to use Bluesim for

other parts of the FPGA design there are two versions of the "Hottee" temperature

calculation module. The first uses floating point modules to calculate the temper-

ature, and the second fills the temperature vector with a set of dummy values and

does no other math. The dummy module can be used for quick simulations and the

real module is substituted in for synthesis. The Xilinx libraries are exposed as mod-

ules with a server/client interface. Modules receive requests with either one or two

operands, and produce responses containing the result as well as the floating point

status flags.

This design use the following floating point modules: addition, multiplication,

66

I1 -- P R RTI l~

Figure 2-33: Thermal imager colormap used for video overlay

division, square root, integer to double precision conversion, and double precision to

integer conversion. Constants are stored as reals and converted to floats statically

using the helper function $realtobits(. One additional complication with the Xilinx

libraries is that the Verilog files are only headers and cannot be synthesized. The

actual functional code is in a set of *.ngc files which is done to protect the Xilinx IP.

Unfortunately the standard build utility for Bluespec does not allow the inclusion of

additional *.ngc files. so a custom build script had to be designed. The build script

adds the necessary flags to the Xilinx tool chain to incorporate the libraries. This is

wrapped in custom build.sh and can be called just like the normal build command.

2.4.2.4 Image Reconstruction

The result from both the thermal and visual video pipelines must be combined to

create a single image. The visual video pipeline has 3 channels for R, G, and B but

the thermal pipeline only has the temperature values. To convert the temperatures

to colors a color map lookup table is used. The color map based off the common Jet

profile using Matlab's color map editor. This provides an intuitive interface to assign

colors to values. The reds are placed around human body temperature and the blues

around the freezing temperature of water since this covers the majority of the images

we expect to encounter, although the sensor provides readings from -50 to 300 C. The

color map is show in Figure 2-33.

The map has 70 entries and the temperatures in Fahrenheit are indexed into this

table. Any temperature outside [30, 100) is fixed to the respective max or min. The

next step is to map each thermal pixel to the region of pixels it matches on the visual

image. This is a set of static offsets and scale factors that are specified at compile

time since the cameras are physically attached so the aspect does not change with

time.

67

\ camnera

(a) Stubbed floating point for Bluesim (b) Full floating point implementation

Figure 2-34: System output synthesizing thermal and RGB data sets in realtime video
of a cold water glass (left) and hot glue gun (right)

Finally the thermal image (now three-channel RGB) must be masked with the

visual image. This is done with alpha compositing which is simplified from its general

form with the assumption that the background image is opaque [27]:

OUtRGB = srcRGB x src0 + dstRGB X (1 - srca) (2.17)

The final combined image is sent back to the user via a SCEMI port. This is fully

implemented in Bluespec and works on the FPGA.

68

Scamera

Chapter 3

Signal Processing

3.1 Introduction

Nonintrusive sensing can impose an extra signal processing burden to extract and

process useful information from an aggregate data stream. Recent advances in micro

processors driven primarily by the smart phone market has resulted in powerful,

energy efficient processors that can perform sophisticated signal processing in an

embedded environment. By combining the non-intrusive sensor with an embedded

processor programmed to run the signal processing algorithm, non-intrusive systems

can serve as drop in replacement for conventional sensors.

Section 3.2 presents the signal processing algorithms required to convert data from

the non-contact sensors in Sections 2.2 and 2.3 into current and voltage. This requires

a calibration process but it can be performed on a completely live system by an end

user without any specialized training.

Section 3.3 presents the signal processing algorithms that provide underway di-

agnostics for ships using the vibration diagnostic platform in Section 2.4.1 and a

modified non-contact voltage sensor. This work was done in collaboration with Ryan

Zachar and Pete Lindahl. The experimental setup is presented in detail in [28] and

the algorithm and results are published in [29].

69

3.2 Non-Contact Power Measurements

Non-contact sensors provide measurements of magnetic and electric fields, not cur-

rent and voltage. In a single conductor system the fields are linearly proportional to

current and voltage making this conversion trivial, but in many systems of interest

there are multiple conductors and multiple phases so that both the electric and mag-

netic fields are a superposition of several currents and voltages. In this case signal

processing can be used to dissaggregate these fields to provide the current and voltage

data.

3.2.1 Multi-Conductor Power Systems

In many systems of interest there are multiple current-carrying conductors. If the

magnetic fields of the conductors overlap, the output of any single non-contact sensor

will be a combination of these fields, misrepresenting the current flowing in the nom-

inal conductor of interest. Figure 3-1 compares the output of Hall Effect non-contact

sensors to traditional LEM current sensors on two conductors in close proximity. Each

non-contact sensor picks up significant interference from current in the neighboring

conductor. This section introduces techniques to accurately measure individual cur-

rents with non-contact sensors in environments with complex, superposed magnetic

fields.

3.2.1.1 Monitoring a Circuit Breaker Panel

Due to the close proximity of circuits on a breaker panel and the steel construction

of the panel itself, the magnetic fields are often fully mixed so that any single sensor

detects some portion of every current flowing through the panel or cable. Even if a

precise location for minimal interference could be determined, the narrow dimensions

of many breaker panels limit placement options as seen in Figure 3-2. Assuming the

breaker currents are linearly independent, the number of sensors (X) must be equal

to the number of breakers (Y) in order to calculate the currents in the panel. The

xth sensor output for such a system can be expressed as:

70

2

EI)

2

1

C,)

E

Phase A Power
0

- Non-Contact Sensor
- True Current

0-

5

0

0 5 10 15 20 25 30 35 40 4

Time (secs)

Phase B Power
0

- Non-Contact Sensor
5True Current

0-

5-

0 5 10 15 20 25 30 35 40 45

Time (secs)

Figure 3-1: Comparing actual current to Hall Effect non-contact sensors on a multi-
conductor cable. Interfering magnetic fields the corrupt non-contact sensor measure-
ments.

Figure 3-2: Monitoring a circuit breaker panel with TMR sensors

71

1

1

-
5

1

SX = MX 1I1 + Mx 2I2 + .. . + MxyIy (

Or, equivalently using the inverse relationship, the yth breaker current can be

expressed as:

Iv = K1yS1 + K 2VS2 +... + KxySx (3.2)

The full system can be expressed in matrix form where the current flowing in the

breaker directly under each sensor is represented by the diagonal K values and the

interference terms are the off-diagonal K's.

12

13

Ki1

K 2 1

K31

K12

K22

K32

K13

K23

K33

x

S1

S2

S3
(3.3)

3.2.1.2 Cables with Neutral Return Path

The equations are slightly different for a multiple conductor power cables. These

systems do not have fully independent conductors and are subject to the additional

constraint of Kirchoff's Current Law (KCL):

I1+12 + I3 +... + Ineutral = 0 (3.4)

This equation reduces the dimension of the solution space. Standard power cables

have only two current-carrying wires- hot and neutral. In this simple case only a

single sensor is needed. The equations to find current are:

Ihot = KS
(3.5)

Ineutral = -Ihot

The same technique can be extended for multiple phases and a common neutral.

72

(3.1)

Co

E<CL

20

15

10

5

0

-5

20

15

10

5

0

r5

Phase A Power

- Non-Contact Sensor
- True Current

0 5 10 15 20 25 30 35 40 4
Time (secs)

Phase B Power

5

0 5 10 15 20 25 30 35 40 45
Time (secs)

Figure 3-3: By applying the appropriate fit matrix interfering magnetic fields can be
corrected to correctly measure line currents

For a three phase power cable, such as the one shown in Figure 3-5, there are four

current carrying wires so the full matrix has 16 elements but KCL reduces the number

of unknown currents by one. A nine element matrix using only three sensors is enough

to determine all the currents. The equations for a three phase power cable are:

F"]
I2

I13

[Ku

K 2 1

K3 1,

K 1 2

K 2 2

K3 2

K13 S]

K 23 x 2

K3 3 S3 j (3.6)

Ineutral = -(I1 + 12 + 13)

3.2.1.3 Example Reconstruction

By applying the fit matrix [K] for the waveforms in Figure 3-3 the non-contact sensors

accurately measure the true current waveforms in each line.

73

- Non-Contact Sensor
-- True Current-

-

-

-

3.2.2 System Calibration

Equations (3.3), (3.5) and (3.6) can calculate all currents of interest in complex sys-

tems, but they cannot be used until the K., terms in the fit matrix are determined.

If only one current is present, the calibration matrix [M] reduces to a set of equations

relating the current to the output of a specific sensor (S,):

S M1 M12 MA13 Ii

S2 M 2 1 M 22 M 23 0
x

S 3 MA31 M32 M33 ... 0

4 (3.7)

Si = M I1

S 2 = M21I1

S3 = M3111

Iterating with a known current on each conductor produces the full matrix [M]. The

fit matrix can be found as

[K] = [M]- 1 (3.8)

While technically correct, this method places an undue burden on the user to

first shut down all connected loads and then connect a single known load to each

conductor in sequence. If the system of interest is a circuit breaker panel this type of

calibration is unrealistic - a homeowner or facilities manager is unlikely to shut off

the power and walk around in the dark connecting test loads. In environments with

mission critical equipment, such as a microgrid on an Army Forward Operating Base

(FOB), this type of calibration is impossible.

In order to calculate the elements of the [M] matrix without interrupting service,

a known current must be separated from the background environment. This can be

done by applying pulse width modulation (PWM) to a calibration load to create an

identifiable pattern in the current waveform. There are a variety of methods to design

74

Thl Prgel~m I . . A: 1.00mV
@: -3.OOmV

....m A: 3.00 Hz

@: 6.01 Hz

M[40_.0ms Al Ch4 r OOOVI
0. 50.V 26 Mar 2014

11:25:37

Figure 3-4: PWM calibration load as detected by a non-contact sensor

a PWM load. Our calibration load tracks the input voltage and draws power for 15 out

of every 20 line cycles generating a 75% duty cycle. The full design of the calibration

load is presented in [30]. On a 60 Hz service this corresponds to a PWM frequency

of 3Hz as shown in Figure 3-4. Assuming there are no other significant loads cycling

at 3Hz, the calibration load can be differentiated from the background environment

using spectral analysis. A complete calibration procedure using this PWM load is

developed first for a single phase system and then extended for multiphase systems.

3.2.2.1 Single Phase Systems

To determine the coefficients of matrix [M] for a given system of conductors, the

calibration load is introduced in turn to each of the conductors. In each case, the

outputs of the non-contact voltage and currents sensors are fed to a preprocessing

algorithm which calculates real and reactive current flow. The preprocessor, fully

described in [9,31] uses the positive zero crossings of the voltage waveform to compute

estimates of real (P) and reactive (Q) current each for line cycle. If all conductors

are on the same phase (as in the case of a single phase breaker panel), then the zero

crossings of the line voltage correspond exactly to the zero crossings of the non-contact

voltage sensors. The calibration load is resistive, drawing purely real power, so only

the P output of the preprocessor is used for the calibration procedure.

75

TerPreVu [

The preprocessor computes P and Q each line cycle and the calibrator PWM

waveform is also defined by line cycles (rather than absolute frequency) which allows

the same calibration procedure to be performed on both 50 and 60Hz services and is

also robust against line frequency variation during calibration.

If the calibration load is operated in isolation, the real component of the prepro-

cessor output is a line cycle time series that can be defined as follows:

Pca[n] = Ial, |n| |7|

0, 7 < jnj < 10

and

Pcaj[n + 20] = Pcaj[n]

where lcal is the known current draw of the calibration load and n is the line cycle.

There is a subtle caveat in the case where the non-contact sensor is 180 degrees out

of phase with the true current. Since the preprocessor computes P and Q on positive

zero crossings the edges of the Pcai pulse will be 0.5Icl instead of Ical In practice

this distortion contributes negligible error to the calibration process and can safely

be ignored (see Figures 3-3 and 3-7).

In a live environment other loads draw arbitrary power throughout the calibration

process. Therefore the real component of the preprocessor output for a sensor x is

the combination of the calibration load on a conductor y plus an unknown amount

of background load:

P[[n] = Mx,(P.1, [n] + Pbkagd[n]) (3.10)

where My is the unknown scale factor representing non-contact sensor x's response

to the calibration load on conductor y and Pbkgd is the current drawn by other loads

in the system. The goal of this analysis is to find the value of M'.. These coefficients

are used to form the matrix [M].

First Pbkgd must be removed from the signal. At the harmonics of the calibration

waveform, Pbkgd is 0 based on the assumption that the calibrator is the dominant load

76

.Wq' M "FRI P I M- P"I"

at its PWM frequency. Using the Discrete Fourier Transform (DFT) defined as:

N-I

ink] = 1 N-2 (3.11)
n=o

and only considering k's corresponding to harmonics of Pcai, the signal measured by

the non-contact sensor can be represented in the frequency domain as:

Px[k] = MxyF{PcaV [n]} (3.12)

Using a 200 point DFT and considering only the fundamental of the calibration

waveform , Eq 3.12 becomes:

Px[10] = M y X Pcal,[10] (3.13)

Pcal[10] is a constant defined by the structure of the calibration waveform. The

Fourier Series coefficients of a unit amplitude rectangular pulse with period T and

width T are [32]:

ak = sin[(27rk/T)(Ti+ (3.14)
2T1+1 k +T 2T),...

T

Pcal, [10] corresponds to term a1 . With the parameters of the load defined in Eq

3.9:

Pcal,[10] = sin(3/4) C (3.15)
20 sin(7r/20)

where C1 is introduced for notational convenience. Substituting Eq 3.15 into Eq 3.13

yields an equation for Mxy:

MXY = PX [10]1 (3.16)
Cl

The magnitude of Px[10] is required in Eq 3.13 because the calibration waveform

detected by the pickup is actually Pcal,[n + no] where no is an uncontrolled time

shift due to the fact that the calibration load is not time aligned with the sampling

77

interval. This time shift becomes a phase shift in the frequency domain [33] making

P,[10] complex:

'[10] = MYCie-jk(21r/ 2)no (3.17)

= MXYCie-l6 (3.18)

where k = 1 and 4 is an unknown phase shift. By using only the magnitude in Eq

3.16 this phase term is eliminated, but the sign of P-,[10] is eliminated as well.

Fortunately, the sign can be recovered by using higher harmonics of the calibration

waveform. In a 200 point DFT the second calibration harmonic is present at Px[20].

Expressing the second harmonic in the same form as Eq 3.18 yields:

Px[20] = MxyC2e- 22P (3.19)

where C2 corresponds to P, [20] which, like C1, is a constant that can be determined

using Eq 3.9 and Eq 3.14.

The compensated phase difference between Px[10] and P, [20] can be used to re-

cover the sign of Mxy. We define the compensated phase difference between the

fundamental and the kth harmonic in a Fourier Series as:

Aph(k) = kZai - Zak (3.20)

In the case where My is positive, the phases of these two terms are:

ZPX[10] = -4 (3.21)

ZPx[20] = -24 (3.22)

The compensated phase difference between these terms is:

Aph(2) = 2(-,) - (-2() (3.23)

=0

78

-WIMMON"9111M

However if M,, is negative, the phases of the same two terms are:

ZP[10] =r - <D

ZP [20] = 7r - D

which results in a compensated phase difference of:

Aph(2) = 2(7r - 4D) - (7r - 2D))

Thus the final expression for My incorporating both magnitude and sign is:

lnc[10]1
C,

IPnc[10]|
C,

Aph(2) = 0

(3.27)

Aph(2) = r

= 2ZP- [10] - ZP[20]

This analysis relies on the presence of even harmonics in Pcal. In the case of

a symmetric waveform with no even harmonics, the compensated phase difference

cannot be used to determine the sign of Mxy. To see why this is the case consider the

first two non-zero terms of the Fourier Series for a symmetric waveform:

positive: aie-.+a3e ja3 -

negative: -aie-'-a 3 e-j3 4'

(3.28)

(3.29)

The compensated phase difference between the fundamental and the third harmonic

is:

Aph(3) = 3Zai - Za3 (3.30)

79

(3.24)

(3.25)

(3.26)

where

Aph(2)

Substituting in the phases for each coefficient yields:

positive: 3(-D) - (-3D) = 0 (3.31)

negative: 3(7r - P) - (7r - 34D) = 27r = 0 (3.32)

The compensated phase difference is the same for both positive and negative wave-

forms. Intuitively this makes sense because the polarity of a symmetric waveform

is ambiguous without a DC component (ao). This is why the calibration load has a

PWM duty cycle of 75% rather than 50%.

3.2.2.2 Multiphase Systems

The preprocessor requires accurate voltage phase information to calculate real (P)

and reactive (Q) current. In single phase systems the electric field is always in phase

(7r) with the line voltage regardless of the number of conductors. In multiphase

systems this is not necessarily the case. In typical three phase systems the voltages

of the conductors are mutually offset by 60 degrees resulting in a basis for the electric

field that spans R2. To accurately measure phase in these complex environments, a

correction factor must be applied to the non-contact voltage sensor output.

Once the voltage waveforms for each phase are known, the calibration procedure

to find the M, coefficients for the non-contact current sensors is identical to the

single phase procedure described previously.

To understand the difficulty in voltage reconstruction, consider the output of a

non-contact voltage sensor in a three phase system:

vne[n] = S1v 1 + S2v 2 + S3v3 (3.33)

where S,, is sensitivity to the field produced by voltage v,. The v. terms can be

expressed as complex sinusoids with the following form:

VX = V e jwt+4
Tn (3.34)

80

I 1 11 11 1 F 01 11 1 111 11 1" 111 111111111 M oil' P11 ORIN I'll" P"I W P1

Because all of the v_ terms have the same frequency (w), Eq 3.33 can be rewritten as:

=nc[n] =e-{ew(S1Ve + S 2 V2 e"2 + S3V3e*3)} (3.35)

The sum of S,Vejn terms can be represented as a single complex exponential:

vnc[n] = RJ{Aewei$} (3.36)

where A is the amplitude of the sensor output and # is the phase. Depending on the

particular geometry of the system there may be degenerate nodes where the electric

fields contributed by each phase sum to zero. In this case A = 0 and the sensor should

be repositioned.

If the voltage amplitude V is a known constant for all phases, the output of a

single non-contact sensor can be used to reconstruct the line voltages:

v 1 [n] = vnc[n] (Lei4 ') (3.37)

v 2[n] = Vn,[n](eej2) (3.38)

V3[n] = vnc[n](Lel 3) (3.39)

The only unknowns are the correction terms (0,,) which align the measured phase (#)

to a particular line phase.

The correction terms can be calculated to within t7r using the calibration load.

The calibration load draws only real power so the output of the preprocessor at the

PWM frequency should be all P and no Q. However, a misalignment between the line

phase and the phase of the non-contact sensor will cause the preprocessor to compute

a different ratio of P and Q. The correction factor On is the rotation required to

produce all P and zero Q. This is simply the negative of the power factor angle

calculated by the preprocessor:

= -tan-(Q) (3.40)
PX

81

Due to the interference of background loads, Equation 3.40 is only valid at the PWM

frequency and its harmonics. Using a 200 point DFT to measure the fundamental

frequency of P and Q gives the following equation for 0,,:

x = tan-l(")(3.41)
132[10]

It is important to note that this procedure calculates Ox to within a factor of

t7r which means the sign of the voltage waveform cannot be uniquely determined.

However, this does not affect the accuracy of the preprocessor's calculation of real (P)

and reactive (Q) power. Conceptually an offset of 7r in Ox is equivalent to a current

sensor being flipped 180 degrees spatially. Both introduce the same apparent phase

difference between sensed voltage and sensed current. Eq 3.28 associates a sign to

each term of the fit matrix [M] to correct for this difference. Therefore the computed

real (P) and reactive (Q) power is always correct despite the ambiguity in '/.

3.2.2.3 Rapid Calibration

To more efficiently compute the fit matrix in a multi-conductor system, calibration

loads can be connected to each phase and run simultaneously. This is advantageous

when multiple phases are available at a single point such as the 240V dryer outlets in

residential environments and three phase outlets in industrial environments. Simulta-

neous calibration requires that each load toggle at a distinct frequency such as 0.5Hz,

3Hz, and 7Hz so that the Fourier coefficients of the fundamentals do not interfere and

their harmonics do not overlap.

3.2.3 Power Measurement Example

In Figure 3-5, three non-contact sensor prototypes are mounted with custom enclo-

sures to a three phase power cable. The close proximity of the conductors causes

significant overlap in the magnetic fields outside the cable. A visualization of the

non-contact current sensor vectors is shown in Figure 3-6. The "traditional" current

sensors form an orthonormal basis shown in dashed lines. Despite the mixed fields,

82

RIP FM Wfil 100IMPFORI Imm'"Paq

Figure 3-5: Monitoring a three phase power line with non-contact sensors

the non-contact sensors are still linearly independent and span R3. After applying

the calibration load to each phase, the fit matrix [K] was calculated using the process

described. Figure 3-7 shows a comparison between standard current sensors and the

non-contact sensors for loads on all three phases.

83

Normalized Non-Contact Sensor Vectors

A

-- Sensor Vectors
-+Orthonormal Basis

0.5

0.5
0

0

-0.5 -0.5

Figure 3-6: Visualization of normalized sensor vectors versus the orthonormal phase
basis

84

0.5

0

-0.5

3 Phase Power Monitoring

A Non-Contact
- A True

B Non-Contact
B True
C Non-Contact
C True

-11
0 20 40 60 80

Time (secs)
100 120 140

Figure 3-7: Hall Effect non-contact sensors and traditional current sensors on a 3
phase system

85

7

6

5

4

3

2

1

0

U)
0.
E

(D

3.3 Vibration Transfer Function

The non-contact voltage sensor of Section 2.3 enables a fresh approach to another

critical electromechanic diagnostic technique, vibration monitoring. Applying the

voltage sensor for back-EMF sensing allows an electromagnetic machine to be used

as its own mechanical network analyzer for structural diagnostics. This section intro-

duces a signal processing technique to estimate this vibration transfer function from

non-intrusive sensors.

3.3.1 Motivation

Profiles for the maintenance of electromechanical systems arise from essentially three

different engineering management strategies. Maintenance can occur when a sys-

tem breaks or becomes excessively revealing, essentially deferring costs to a "day of

reckoning" when the system is guaranteed to be unavailable. Alternatively, critical

maintenance can occur on a scheduled or routine basis to attempt to ensure system

availability though with recurring expenses. Or lastly, one can attempt to opti-

mize maintenance costs and system availability by working to predict needed repairs

before systems become extreme failures [34-36]. This third option, often referred

to as condition-based maintenance, is appealing in the sense that, if the requisite

condition-monitoring is efficient and effective, a desired degree of mission capability

can be achieved with well-reasoned expenses [34,35].

For electromechanical systems, vibration measurements are often utilized as an

input to condition-based maintenance decision-making [34-37], and many organiza-

tions have issued standards for mechanical vibration and condition-based mainte-

nance [38, 39]. Further, researchers continue to develop condition monitoring and

diagnostic procedures which utilize vibration sensors. For examples, using various

signal processing techniques, vibrational monitor outputs can be used to detect fre-

quency modulations characteristic of ball bearing defects [40-43], and to supplement

traditional motor current signature analysis in detecting rotor faults [44,45].

The majority of these vibration-based algorithms rely on measurements taken at

86

rated speeds. As such, the information gained for diagnostic purposes is limited to

discrete excitation frequencies, i.e. the electrical and mechanical fundamental, har-

monic, and modulated frequencies. This information, while clearly useful for specific

diagnostic purposes, may lack the richness to distinguish actuator pathologies from

degraded mechanical structure, e.g. the vibration mounts. A machine's vibrational

transfer function (VTF), which relates excitation, e.g. rotor speed, to vibration over a

range of operating speeds, offers a more complete view of the system and is commonly

used to determine diagnostic information such as the natural resonance characteristics

as well as noise transfer paths [46].

Empirical characterization of vibrational frequency responses in mechanical sys-

tems typically requires special experimentation, e.g. a strike-hammer or a shaker

for wide-band excitation [46,47]. This paper presents an alternative, less intrusive

approach for VTF characterization that takes advantage of a machine's spin-down.

During turn-off, a machine's operation covers a continuous wide-frequency band, i.e.

from rated operating speed to stand-still. This operating interval of swept operation

allows the estimation of the machine's VTF in-situ and with minimal sensor instal-

lation. This paper describes this minimal set-up and the signal processing methods

utilized for VTF extraction, and demonstrates spin-down estimation of the VTF in

laboratory experiments and field applications aboard serving U.S. Navy warships.

3.3.2 Background

From a simplified perspective, an electric motor or generator mounted on resilient

mounts can be modeled as a spring-mass-damper system with an eccentric mass

vibration [47], as depicted in Figure 3-8.

The equation which governs the motion of the actuator mass is,

mim(t) + c&m(t) + kxm(t) = F.(t), (3.42)

where m is mass, xm is the position of the system, k is the spring constant, c is the

damping ratio associated with the mount, t is time, and Fm(t) is a forcing function.

87

Fm

k x0

FT k

Figure 3-8: Free body diagram for electromechanical machinery and mount system.

This equation can be rewritten in terms of system acceleration as,

mam(t) + c am(-r)dT + k Jj am(T)dr = Fm(t), (3.43)

where am(t) is the acceleration of the motor. Taking the Laplace transform of this

equation and rearranging into transfer function form, reveals the Laplace-domain

relationship between the acceleration, Am(s), and the system forcing, Fm(s), as,

Am(s) 8 2

_ = m (344)
Fm(S) 2 + +

where s is the Laplace transform operator.

For a rotating machine with an eccentric mass under steady-state conditions, this

system forcing, Fm(t), takes the form,

Fm(t) = Cw2 cos(Wmt), (3.45)

where C is a constant related to load mass and imbalances, and Wm is the speed of

88

the rotating shaft. A proportionally related virtual input function can be defined as,

<Dm(t) = w 2cos(wmt), (3.46)

and its corresponding Laplace representation substituted into (3.44) to get,

Am (s) C 8=) m (3.47)
<Dm(S) s2+ As+k

This is the equation we refer to as the vibration transfer function (VTF) with units

of kg- 1 assuming (3.46) maintains the units of (3.45).

(3.46) is a function that can be derived from the motor speed, Wm. When combined

with accelerometer measurements, this information can generate (3.47). This VTF is

a transfer function that contains the same dynamic properties, e.g. natural frequency,

as (3.44), and also scales as the forcing coefficient, C, changes, e.g. due to an increased

load imbalance. During a motor spin-down when the speed is reducing from the

motor's steady-state operating speed to stand-still, speed and vibration sensors can

be used to generate an empirical representation or "eVTF" of (3.47) in that frequency

range. The properties of this eVTF can then be used for machinery diagnostics.

Example Application: Machine Radiated Noise

One area of concern to many machinery operators is the force transmitted from the

machine to the surface underneath, FT (Figure 3-8). For example, a Navy ship may

need to maintain its radiated acoustic noise at a minimum to avoid detection, and

an increase in force transmitted from the machine can lead to increased noise levels.

With knowledge of w,, an estimation of the force transmitted by the machine through

its mounts to the supporting structure, relative to a value when the force is known to

be acceptable, can be made from single accelerometer measurements on the machine

system itself.

In steady-state, an electromechanical machine has a transmissibility in the isola-

tion range that is similar to that for zero damping. Therefore, c can be ignored as long

89

as the operating speed is away from resonance [48,49]. This means the force trans-

mitted through the mounts to the baseplate occurs primarily through the stiffness of

the mounting (the spring in Figure 3-8), and follows Hooke's law,

FT ~-l k -x (t). (3.48)

From (3.47), the natural frequency of this 2nd order system is given by W, = .

Since the machine is following simple harmonic motion with acceleration described

as a(t) = Am,,, cos(w,,t), where the ss denotes steady state conditions, (3.48) can be

written in terms of m, wn, wss, and a(t), as,

mwa(t)
FT = (3.49)

For diagnostic purposes, only the magnitude of FT is of concern; taking the magnitude

of (3.49) yields,

IFTI=m n2m,s8, (3.50)
WSS

where Am is the magnitude of the acceleration. In many situations, the system mass,

m, and the machine's steady-state operating speed, w,,, are consistent whenever the

machine is in normal operation. As such, an estimate of the ratio of force transmis-

sions from a time when the machine is in a known "good" condition, IFT , to the

present condition, FT I', can be achieved from only acceleration and speed measure-

ments of the motor, i.e.

FI n wA~,ss (3.51)
IFTI W2Am,ss

Here, w2 and Am,,, are values from when the machine is in the "good" condition and
,2 and A' are derived from the most recent measurements. Practically, (3.51)Wn 7 m ssPrcialk')

indicates the value of estimating the eVTF for (3.47) during machine spin-down.

From the eVTF, it is possible to estimate the transfer function peak or, essentially

90

the natural frequency of the system from the observed resonant peak. Estimation

of the natural frequency of the mount from the eVTF makes it possible to distin-

guish machine imbalance from degradation of the mount, both of which can cause

increased transmitted vibration that might be indistinguishable from steady-state

measurements alone. Changes in the forcing function, e.g. the vibration energy cre-

ated by operating the machine, will generally increase the magnitude of the entire

eVTF. Aging or degradation of the mount alone will shift the resonant frequency of

the eVTF. Comparison of successively observed eVTF's can be used to distinguish

progressive imbalance from aging of the mount.

3.3.3 Sensor Measurements and eVTF Generation

In practice, estimation of the eVTF requires knowledge of the actuator vibration and

speed during spin-down or during a similar operating sweep. We have developed an

electronic sensor that can generate an eVTF without installation of a tachometer,

strictly from relatively non-intrusive electrical measurements.

3.3.3.1 Data Collection

A single-axis accelerometer mounted vertically is used to measure vibration. This

stream is considered the "output" of the system and requires little preprocessing

other than scaling the output from mV to m/s 2 to provide the estimate, Am(t).

The "input" to the system, (3.46), is estimated from the motor speed. This speed

is inferred using a back-EMF sensor measuring winding voltages on the machine.

A back-EMF sensor is the preferred method for gathering spin-down speed as it is

accurate, portable, and easy to install in the field. When a motor is disconnected

from its power supply, or the prime mover is turned off in the case of a generator, the

rotor will continue spinning due to its inertia. Residual magnetism generates voltage

on the stator. The characteristics of this voltage, e.g. amplitude and zero-crossings,

can then be used to estimate rotor speed.

The back-EMF sensor Figure 3-9 employed in this study uses non-contact differ-

ential capacitive sensing to detect the electric field generated by the phase lines of

91

the machine. Three copper plates, shown in Figure 3-9a, are secured against the

insulating jackets of the phase lines inside the machine's terminal box. These plates

are also electrically connected to a circuit with the simplified schematic shown in Fig-

ure 3-9b. Here, plate A (PA) connects to the (+) side of the first AD8421 differential

amplifier, plate B (PB) connects to the (-) side of the first AD8421 as well as the (+)

side of the second AD8421, and plate C (Pc) connects to the (-) side of this second

amplifier. These plates capacitively couple to the phase line voltages, VA, VB, and

VC, respectively. A more detailed explanation of the non contact voltage sensor can

be found in [2].

Under this configuration, the voltages generated at the outputs of the back-EMF

sensor are given by,

Vo1 = ga1VA - gblVB + gnlVn, (3.52)

and,

Vo 2 = gb2VB - 9c2 VC + 9n 2 Vn. (3.53)

In these equations, V represents a common-mode background noise present at the

output of the circuit, and the g terms represent combined gains of the capacitive

coupling and amplifier stages of the circuitry. The ratio, r = g' can be estimated by

performing a scalar fit of Vol = rgVo2 with measurements achieved when the machine

is at stand-still and the phase voltages are zero. Then, the differential calculation,

Vo = Vo - rgVo2, gives the voltage measurement,

Vo = (galVA - gblVB) - rg (gb2VB - gc2Vc) , (3.54)

which has the common-mode noise term eliminated. While this voltage signal does

not have a physical meaning related to the system, it is linearly proporitional to the

rotor's back-EMF voltage.

This mechanical speed can be estimated from (3.54) in a number of ways based

on the signal's amplitude and/or frequency. For this research project, if the following

conditions are met,

92

- RMI' 1 0 1 "IROMM

(a) Photo of Sensor Plates

1 MO -- 47k()

-- 2.2k()

+(3O AD82 1
AD)

1MO 2.2pF
+2.0k

AD8513

1 MO 47kQ

1 MO 2.2pjF
021GA-

(b) Back-EMF Sensor Schematic.

Figure 3-9: The non-contact back-EMF sensor system used for estimating motor

speed.

93

" There is no clipping in the back-EMF sensor waveforms during steady-state

operation, and

" There is no active electromagnetic control (e.g. braking) applied to the system

during spin-down,

then the machinery spin-down speed profile is extracted from the signal envelope using

a Hilbert transform based method. Here, the Hilbert transform produces a waveform

linearly related to the signal amplitude. This waveform is then scaled to match the

mechanical excitation speed, wi, based on knowledge of the machine's steady-state

speed rating. Further information on this method is given in [5, 50].

If these conditions are not met however, then the signal amplitude is not linearly

related to speed throughout the entire spin-down. In this case, the electrical-speed,

We, profile is achieved based on signal frequency estimates gained from a zero-crossing

detection procedure. In this procedure, the kth zero-crossing is identified by a change

of sign between two adjacent waveform samples at t, and tn+1 , and its time-location,

t[k] estimated based on the zero-value of the linear interpolation of the signal values

V0(tn) and V(tn+1). Then, the signal frequency at time instance, t[k], is estimated

as,
27r

we(t[k]) = t[k.1]-t[k-1]' (3.55)

In the discussion above n represents the sample time-index, and k represents the time

indexing of zero-crossings.

In general, this method may be less noise-immune than the Hilbert transform

method as it is prone to uncertainty around zero-crossings, particularly at low fre-

quencies as the signal amplitude also decreases with speed. While many methods

exist for accurate zero-crossing detection in noisy environments, e.g. [51-53], for the

purpose of gaining eVTF estimates here, all zero-crossings including those generated

by additive noise were detected as described above and outliers removed prior to the

frequency estimation of (3.55). From the COe estimates, the mechanical speed esti-

mate, C m, is calculated based on the number of pole-pairs in the machinery. Then,

this stream is linearly interpolated to match the sampling rate of the original mea-

94

IMPIP"W"11 In 1,11-mm m"P""m

surements for calculating the virtual input function, Pm(t), from (3.46). Finally, the

virtual input is calculated. In the case where the vibrational excitation is provided

directly from eccentricities in the machine's rotor, 1Jm (t) is estimated from Jm(t) as,

(m(t) = c2i(t) cos (jO m(r)d T) (3.56)

An example of the two time-domain signals required for the eVTF are shown in

Figure 3-10. The top plot shows the measured acceleration of the machinery during

the spin down, which starts around the 1 second mark as noted by the beginning of the

attenuation of the speed curves in the bottom plot. Here, the curves are normalized

by their peak values for simultaneous plotting. The blue curve shows the estimated

speed, in this particular case, based on the Hilbert transform procedure. The orange

curve is the square of the blue curve, and the yellow curve is the calculated virtual

input, Dm (t).

3.3.3.2 Short-Time Fourier Transform Analysis

In accordance with (3.47), the time-domain spin-down signals of Figure 3-10 need

to be transformed into frequency domain signals. Empirically estimating a transfer

function through spin-down analysis can be susceptible to noise from other nearby

machinery [49]. Further complicating the process, the excitation frequency changes

continuously with rotor speed. As such, the Short-time Fourier Transform (STFT) is

used to process the signals to reduce the uncorrelated noise and minimize frequency of

excitation spreading in the analysis. Under this method, the time domain waveforms

are windowed at a series of time locations during the spin down process, and the Fast

Fourier Transform (FFT) is used to process each modified time signal resulting in a

time-binned frequency representation of the original signals.

For this STFT application, a Hanning window is used as the mask for the input and

output waveforms. This window is tunable through two parameters, the time-width

of the window, T, and the overlap between adjacent windows, o,. The Hanning win-

dows are multiplied with the input and output waveforms to create "masked" versions.

95

E

0

w.-
Cii

20

15

10

5

0

-5

-10

-15

-20 L
0

E
0

z

q]1'' '1

I I I I I I I 1 11
1 2 3 4 5 6 7 8 9 10

Time (sec)

(a) Vibration Sensor Output

1.5
-Hilbert Speed Envelope

1 - -Hilbert Speed Squared
Virtual Input

0.5

0

-0.5

-1 -

-1.5 I
0 1 2 3 4 5 6 7 8 9

Time (sec)

(b) Speed Estimate and Virtual Input

10

Figure 3-10: Example time-domain signals used for eVTF generation.

As an example, the windowing of the virtual input at the 1.5 second mark during a

motor spin-down is shown in Figure 3-11. The same processes is also performed on

the output.

A full series of Hanning windowed inputs and outputs for a motor during spin-

down is shown in Figure 3-12. Here, the tunable parameters are set to T,,= 1

second and for clarity, o, = 0%. The top plot shows the individual windows and their

time locations, the middle plot shows the series of resulting masked virtual input

waveforms, and the bottom plot the series of masked vibrational output waveforms.

Via the Fast Fourier Transform (FFT), each Hanning-windowed input and output

allows for the generation of a frequency spectrum specific to a short period of time

during the spin down process. These spectrums can be indexed as D,,j(jW) and

Am,i(jW), respectively, where i denotes the Hanning window index. A corresponding

96

I .

Virtual Input and Hanning Window

0 0.5 1 1.5 2 2.5 3

Masked Input

1 1.5 2 2.5 3
Time (seconds)

Figure 3-11:
1.5 seconds.

A Hanning window masking of the normalized virtual input centered at

Hanning Window Masks

1 2 3 4 5
Masked Input

"*H %-

1 2 3 4 5 6
Masked Output

1 2 3 4 5 6
Time (seconds)

6 7 8 9

7 8 9

7 8 9

Figure 3-12: Hanning Windows and Masked Inputs and Outputs

97

1

0.E

E
o -0.5z

-1

1

E

E
0

0.5 -

-0.5 I

-1
0 0.5

0
1 -

-O.5-
E
< 0

0

-

.o 2

_) 5 0

-2

1

0

-1
0

)

.

0 |

"center" frequency for each index can be defined as,

wi = argmax Ami (jw) (3.57)
W IDm,i(JW)

To generate the eVTF, first all the output spectrums are "masked" around the

corresponding center frequencies such that,

0 W w w- w/2

Ami(jw) = A,i(jw - w/2 + w/2, (3.58)

0 W > w+ w/2

where the variable w limits the "valid" vibrational response frequencies to those

around the frequency of virtual input excitation. This is done to preserve linear-

ity in the eVTF and to ignore sources of noise at extraneous frequencies. Maximum

envelope excitation and response spectrums are then defined as,

'Denv(jW) = max argmaxk4m,i(jw)] , (3.59)

and

Aen,(jw) = max argmaxIA' i(jw)i , (3.60)

respectively. That is, at a given frequency, these envelopes are defined as equal to

the corresponding indexed spectrum with the maximum magnitude at that particular

frequency. The eVTF is then determined as,

Am (iw) _Aenv (iw)
Am =(j) - .env(jW> (3.61)
(m UL4) 4Denv(UW)

Generating the eVTF in this manor allows the maximum amount of information

gained during the STFT based analysis to be passed on to the eVTF while also

ensuring linearity.

Figure 3-13 shows a graphical representation of this process. In this figure, the

98

''1 11, 1 1.1-11 IN 111111111111, IRR11 I o il 11P.11 IF"

-- Single Window Input FFT I I I
Single Window Output FFT

0-8 - Max Envelope Input
Max Envelope Output

_/

0.6 --

E -
0 0.2 -

-

0
0 10 20 30 40 50 60

Frequency (Hz)

Figure 3-13: Fast Fourier Transform of Masked Inputs and Masked Outputs with

Envelopes

magnitudes shown on the y-axis are normalized to the maximum values of each input

and output spectrum series, <bmi(jw) and Am (jW), respectively. The dashed curves

represent the STFT envelopes of (3.59) and (3.60), while the solid lines represent

individual spectrums from a windowed time segment roughly half-way through the

spin-down. This period also corresponds to the peak resonance in the system. The

figure shows that the FFT for the virtual input signal has a maximum at around

31.5 Hz while the resulting FFT for the output vibration signal has a maximum

at around 33 Hz. This offset is due to the fact that there is a time delay in the

vibrational response to the forcing input. For this analysis, the width parameter, w,

for the output response is set to 6 Hz. As such, the indexed response spectrum is

cut off at the frequencies of 28.5 Hz and 34.5 Hz to ensure the maximum envelope is

created from the linear vibrational response while still allowing the capturing of the

delayed peak response. This particular analysis results in the eVTF plot for the 50A

durometer mounts inFigure 3-16.

99

3.3.4 Tests on Purpose Built Machine Set

To test the method for generating the eVTFs as described in the previous section,

and to showcase application of this hardware and signal processing for machinery

diagnostics, a test stand consisting of a prime-mover, inertia, and generator was

constructed. This test stand, shown in Figure 3-14, centers around a DC permanent

magnet motor with dual couplings. One end is coupled to a three-phase induction

machine, and the other is connected to a single phase synchronous AC motor, which

is disabled and acts only as a flywheel. The three machines are mounted onto a single

metal sub-base as is typical for many industrial actuator installations. The sub-base

is mounted to a steel box girder with vibration reducing mounts at eight points. A

second shaft coupler is attached to the induction motor as an attachment point for

an imbalance. This is done to simulate a rotor imbalance, a type of machinery fault,

which should appear in the eVTF as an increase in vibration magnitude at resonance.

Five commercial vibration dampening mounts of different durometer (30A, 40A, 50A,

60A and 70A) were used to emulate a scenario where the mounts' stiffness increases

or decreases over time, the effect of which should appear in the eVTF as a shift in

resonance.

3.3.4.1 Comparison of Spin-down eVTF and Steady-state eVTF

Initial tests were performed on a subset of mounts to validate the eVTFs generated

during the machinery spin-down by comparing them against eVTFs generated from

steady-state measurements. A Python script is used to automate the steady-state

measurement collection by commanding a series of DC-voltages from a power supply

connected to the DC motor. At each discrete voltage level, the script reads motor

speed from a shaft encoder and measures the sub-base vibration with a standard in-

dustrial accelerometer. The script removes data collected prior to when the machines

reach steady-state at each voltage level, and the remaining vibration data is analyzed

using Welch's power spectral density estimate [54]. At each voltage level, the peak of

the power spectral density at a frequency closest to but greater than the measured

100

Single phase AC DC permanent magnet 3-phase induction Back EMF sensor
synchronous motor ("Prime Mover") motor installed in motormotor (flywheel to ("Generator") terminal boxextend spin-down)

8 evenly spaced bolts with Connection point to add Industrial vibration
3 s8" alumInum swappable vibration an imbalance sensor with tapped

subbase reducing sandwich connection to
mounts subbase

Figure 3-14: Image showing the purpose built machine set for testing eVTF generation

and machinery trends useful in diagnostics

speed of the motor is taken as the vibration magnitude at the measured speed. Fi-

nally, each corresponding measured operating speed is squared to generate a virtual

input for generation of the steady-state eVTF.

Figure 3-15 gives a comparison of a spin-down eVTF with a steady-state eVTF for

the 60A durometer mounts and machine setup described above. For this particular

test, the DC motor was run in steady-state at 105 discrete voltage levels with 4 seconds

of steady-state operation at each resulting motor speed. The spin-down eVTF was

calculated from the data collected following the motor's power supply turning off after

the maximum voltage level was reached. This spin-down process took approximately

10 seconds, arid the analysis parameters were set to T, = is, o, = 90%, and w = 3

Hz.

As seen in the figure, the two curves are very similar and show the same resonant

peak, indicating that the spin-down procedure accurately captures the important fea-

tures of the system's VTF. The spin-down eVTF appears much smoother with less

variance in measurements because the virtual input is derived from the Hilbert Trans-

form and lowpass filtered rather than calculated directly from speed measurements

101

-90- Steady State
-Spin-Down

-Q -95-

-100 - 0)

-- -110 -

-115 --

-120
15 20 25 30 35 40 45 50 55 60

Frequency (Hz)

Figure 3-15: Comparison of a spin-down derived eVTF and steady-state measurement,
derived eVTF.

as is the case for the steady-state eVTF. This particular result is well representative

of the results gained from other durometer mounts.

It should be noted that the number of features present in the eVTFs exceeds those

allowed by the second order model described in Section 3.3.2. This is due to the

fact that the model assumes a single-degree of freedom and linearity in the system,

while real-world machinery systems have three-degrees of freedom and many sources

of non-linearity. Nevertheless, for the purposes of diagnostics, e.g. sensing changes

in transferrable noise, the measured eVTF around the resonant peak approximates a

second order system and provides useful parametric estimations as illustrated below.

3.3.4.2 eVTFs with Condition Changes

With confidence in the eVTF method described, the process was applied to a total

of 10 conditions across the 5 mount types and with and without a 17 g imbalance

attached to the rotor system. These tests were done to show the utility of the eVTF

method towards machinery diagnostics in accordance with the example application

described in Section 3.3.2. The premise of this method is that eVTFs gained op-

portunistically during a machinery spin-down can provide useful information, e.g.

changes in vibration amplitude and resonant frequency, indicative of system failures,

102

_10

0)
0) I % *

LL

> 10-5

%
'4

5 10 15 20 25 30 35 40 45
Frequency (Hz)

Figure 3-16: eVTFs from tests of the 30A and 50A mounts showing a shift in natural
frequency with a change in durometer, and an increase in amplitude due to an increase
in system imbalance.

i.e. machinery imbalance and mount degradation, respectively.

Figure 3-16 illustrates this premise with eVTFs gained during testing. In this

figure, the solid black curve shows the eVTF gained during machinery spin-down when

the 30A mounts were installed and no additional imbalance applied to the system.

This curve shows a resonant peak just above 22 Hz at a magnitude of approximately

3.2 x 10- kg- 1 . When the 17g imbalance was added to the shaft, the magnitude

of the vibration increased significantly, but without a significant shift in resonance

as shown by the dashed red plot, which has a peak around 1.4 x 10-4 kg-- at just

under 22 Hz. However, when 50A durometer mounts were used without an imbalance,

while the magnitude of the eVTF remained similar (approximately 3.6 x 10-5 kg- 1),

the resonant frequency shifted significantly to 33 Hz (dot-dashed blue curve). Thus,

the spin-down generated eVTF increases the amount of distinguishing information

available to an operator in diagnosing issues in the machinery system.

Table 3-1 compiles the results from all tests involving the 5 mount types described

103

-- 3A no imbalance
30A w/ imbalance
50A no imbalance

10-3

Table 3-1: Comparison of eVTF characteristics for various durometer mounts and
rotor imbalances.

Duro- Imbalance Number Natural Peak

meter (g) of Tests Frequency (Hz) Amplitude (kg- 1)
[mean (std)] [mean (std)]

30A 0 4 22.3 (0.170) 32.5 (1.98) x 10-6

17 4 21.8 (0.153) 136 (1.45) x 10- 6

40A 0 4 26.1 (0.117) 39.9 (0.463) x 10-6

17 4 25.6 (0.125) 158 (1.38) x 10-6

50A 0 4 32.7 (0.193) 36.1 (0.386) x 10-6

17 2 31.2 (0.155) 143 (2.20) x 10-6

60A 0 4 38.5 (0.108) 33.2 (0.387) x10-6

17 3 36.4 (0.122) 134 (10.55) x10-6

70A 0 5 44.3 (0.195) 41.2 (0.887) x10-6

17 4 41.4 (0.083) 161 (1.92) x 10-6

above. The 3rd column of this table indicates the total number of tests performed on

each mount and imbalance. Mean values from each set of tests for the system's natural

frequency and peak eVTF amplitude are given in columns four and five, respectively.

Also, in each of these columns the accompanying standard deviations are included to

give an indication of repeatability. As observed there, the tests are very consistent

for each configuration with the standard deviation in measured natural frequency less

than 1% of the mean value and that of the peak amplitude less than 8% for all tests.

3.3.5 Field Tests on U.S. Navy Equipment

A series of field tests were conducted on an active U.S. Navy mine countermeasures

ship (MCM). The ship has 3 ship service diesel generators (SSDGs) each rated at

375 kW. Each generator set is mounted on a metal sub-base, which is attached to

the hull of the ship via 8 resilient mounts in a configuration similar to the laboratory

setup described in the previous section. The U.S. Navy is interested in non-intrusive,

in-situ characterization of these mounts for tracking changes in the vibration energy

104

Table 3-2: Statistical characteristics for the eVTFs gained during MCM generator
spin-down.

passed to the hull of the ship. The work described here is part of a larger project to

integrate a self-sustaining sensor [5,6,55] inside the SSDG terminal box, which would

alert the operator when the mounts are beginning to degrade. For this experiment

however, the standard industrial accelerometers and the back-EMF sensors described

earlier were used.

Each generator set contains a 6-cylinder, 4-stroke diesel engine for driving the

prime mover at 30 Hz (1800 RPM). The cylinders are fired in pairs at 15 Hz with a 120

degree phase shift between pair firings. This generates significant vibrational energy

at 45 Hz. For the subsequent analysis presented here, this vibrational component from

the piston firing rather than the rotational speed of the shaft was used to generate

the eVTF plots, with the virtual input appropriately scaled so that,

<Dm(t) = (1.54Zm(t)) 2 cos 1.5 jt7m(r)dr) , (3.62)

Additionally, during these tests the back-emf sensor outputs were observed to be

clipping in the steady-state so the zero-crossing method was used for estimating Wm.

The spin-down of these generators took approximately 25 seconds, and the analysis

parameters were set to T = 1s, o, = 90%, and w = 4 Hz.

A total of 14 spin-downs were measured on the generators under various ship

conditions including while the ship was in-port with no other machinery operating,

and under-way when several other pieces of machinery were simultaneously operating.

Fig. 3-17 shows example eVTFs gained during spin-down of each of the three ship

105

Natural Peak
Generator NumberIIe of Tests _Frequency (Hz) Amplitude (kg-1)
Number of TestsFrqec(H)Apiuekg)

[mean (std)] [mean (std)]

1 5 18.4 (0.146) 136 (9.12) x 10-6

2 5 19.0 (0.109) 103 (7.77) x 10-6

3 4 19.2 (0.0618) 96.8 (4.35) x10-6

3 - Generator 1
10- Generator 2

---- Generator 3

0-0)

Cz

10-6
10 15 20 25 30 35 40

Frequency (Hz)

Figure 3-17: Mine countermeasure ship generator eVTFs as measured during genera-
tor spin-downs.

generators, and Table 3-2 compiles the statistical characteristics for all the eVTFs

tests performed. Fig. 3-17 shows clear resonant peaks in all three generators around

19 Hz and all with a similar amplitude of approximately 10- kg-. These curves

are well representative of all the eVTFs gained for each corresponding generator,

regardless of the ship's condition, and simultaneous electromechanical load use. This

is confirmed by comparing the standard deviations in resonant peak amplitude and

frequency locations with their corresponding mean values in Table 3-2. Here, for all

tests, the standard deviation in peak amplitude estimates was less than 8% of the

mean, while those in the peak amplitude frequency locations were less than 1% for

each test. Thus, while there is little exposed by these tests to differentiate any physical

characteristics of each generator, the consistency in each test gives confidence in the

repeatability of the method. Additional research is required to track the evolution of

the eVTF characteristics over a longer period of time, and plans are in place to do so

as a part of future self-sustained sensor developments discussed in [5, 6, 55].

In addition to the generator experiments, vibrational analysis tests were performed

106

25 30 35 40
Frequency (Hz)

45 50 55

Figure 3-18: Auxiliary seawater pumps 1 and 2 spin-down generated eVTFs

Table 3-3: Statistical characteristics for the eVTFs
pump spin-downs.

gained during auxiliary seawater

Natural Peak
Pump Number
Numbe oTes Frequency (Hz) Amplitude (kg- 1)

N u m b e r_ _1 _o f _T e s t s m e a n (s t d)] [m e a n (s t d)]

1 8 44.7 (0.328) 26.0 (0.359) x 10-6

2 8 50.9 (0.629) 20.4 (0.750) X 10-6

on two of the ship's auxiliary seawater (ASW) pumps. Each pump operates at 59 Hz

(3545 RPM) and is driven by a 3-phase induction motor rated at 15 kW (20 HP). The

crew had noted that one of the ASW pumps (Pump 2) had recently been overhauled,

while the overhaul date of the other pump (Pump 1) was unknown. The spin-down

times for these pumps were approximately 4 seconds. As such, the window-width

parameter, T, was shortened to 0.25s, the overlap parameter, o,, was increased to

95%, and the masking width, w, set to 8 Hz. Example eVTFs resulting from this

analysis are shown in Figure 3-18, while Table 3-3 give the statistical characteristics

107

I

x10-53
2.8
2.6

2.4

2.2

0)2

1.8

c-1.60)

1 .4

1.2

1

ASW Pump 1
-ASW Pump 21-

20 60

of all tests performed.

As can be seen in Figure 3-18, there are characteristic differences between the two

pump eVTFs with the recently overhauled ASW Pump 2 showing a peak magnitude

about 14% lower than ASW Pump 1 and at a frequency about 6 Hz higher. The

results shown here are well representative of all the tests performed on the two pumps

as observed in Table 3-3, which shows the standard deviation in the resonant peak

amplitude was less than 4% of the mean and that of its frequency location less than

1.5% of the mean for both pumps.

While Figure 3-18 shows more compelling differences between machines than the

eVTFs generated from the generator spin-downs (Figure 3-17), concrete conclusions

on the causes of these differences cannot be made. The most recently overhauled

pump (ASW 2) does show a decreased magnitude in its eVTFs compared with those

of ASW 1, though their resonant peak frequency locations are increased, which as

shown in Section 3.3.4 would suggest a stiffening of the rubber typical of aging mounts.

Still, these characteristic differences were clear and repeatable for all tests.

3.3.6 Conclusions

This section has demonstrated the value of a non-intrusive vibration measurement

and analysis technique for use during an electromechanical machine's spin-down pro-

cedure. As the speed of the machine decreases from its normal operating speed to

stand-still, the process inherently provides vibrational-excitation swept across a range

of frequencies, permitting estimation of the vibrational transfer function (eVTF). As

shown in laboratory tests, this transfer function reveals characteristics useful for ma-

chinery diagnostics which are unavailable for estimation during steady-state oper-

ation. The consistency of the field test results combined with the interpretability

of laboratory test results demonstrates that this analysis method can provide useful

information for electromechanical machinery diagnostics. Specifically, the eVTF ap-

proach with back-EMF sensing can be deployed as part of a self-contained sensor that

provides effective and useful information about both electromechanical machinery and

the health of an associated mount.

108

Chapter 4

Distributed Cloud

The final challenge is providing secure, reliable access to the information acquired

by non-intrusive sensors to the end user in a format that is both informative and

actionable. The Wattsworth system provides this mechanism through NILM Man-

ager, a web application that allows users to visualize their data and design "Energy

Apps" that customize the operation of their non-intrusive sensors. NILM Manager

is a distributed application that operates very differently than traditional sensor net-

work platforms. Traditional sensor networks centralize data storage and processing in

large server centers. This presents significant security and privacy concerns and also

requires a persistent Internet connection for both users and sensors. Many locations

such as military or industrial facilities are unwilling or unable to install such a sensor

network. The Wattsworth system requires no central storage and control and as such

can be deployed and scaled with much greater flexibility. Non-intrusive monitors can

join a NILM Manager instance running on the public Internet, hosted on a private

network, or even running locally on the monitor itself. This section presents the

Wattsworth distributed cloud architecture and describes how NILM Manager can be

used for both visualization and control. See Appendix B.4 for a discussion of the

servers and configurations used for a Wattsworth cloud deployed at MIT.

109

4.1 Introduction

Recording current and voltage with enough resolution to identify load characteristics

requires sampling at relatively high rates. NILMs capable of interesting diagnostics

and load recognition typically generate very large data sets. (4.1) can be used to

estimate the storage requirements for a typical installation:

R = 2NO x f, x Base (4.1)

where R is the data rate in bytes per second, No is the number of phases (usually two

for residential and three for industrial environments), f, is the sampling frequency,

and Badc is the ADC resolution, or the number of bytes used to represent a sample

measurement (usually about two). The product of these factors is multiplied by two

because both current and voltage waveforms are recorded for each phase.

Using (4.1), a NILM running at f, = 8kHz will produce over 5GB of data per day

for a standard home. Data sets of this size are difficult to transmit over a residential

network. In NILMs deployed in [56], for example, equipment operators mailed hard

drives and DVD's back to the lab for analysis. The cost in resources and man-hours

make this type of installation impractical for all but the most limited deployment

scenarios. Even if data can be reliably collected, plotting the current and voltage

over a single day involves billions of individual samples which is beyond the capability

of many standard software packages (such as Excel). Previous work has focused on

using signature detection to reduce the dataset size, storing only equipment "on" and

"off" events instead of current and voltage [57-59]. However, such an aggressive data

reduction step without a clearly defined outcome or monitoring objective artificially

limits the utility of the NILM.

NILM Manager, a cloud platform that enables quick and easy access to NILM

data, solves the access and analysis challenges created by high bandwidth or "big

data" power monitoring. A "remote" NILM is installed at a facility to be monitored.

Desktop-power computing is readily available in "deck of cards" sized hardware that

110

Remote NILM Installations

Private VPN

Management
Retrieve Data Node Issue Commands

Public Internet

Authenticated Clients

Figure 4-1: NILM Manager system architecture. The management node relays re-

quests from authenticated clients to remote NILMs over a secure VPN. Clients can

issue commands and retrieve data over a web interface.

can be installed quickly at a site with terabytes of local storage, at prices comparable

to those of a modern solid state electricity meter. Data collected by this remote

NILM is never fully transmitted from the site, minimizing network traffic. Rather,

data is managed locally on the site computer by custom high-speed database software,

NilmDB, described in [8]. NILM Manager provides a central management node that

connects multiple remote NILMs with a virtual private network (VPN) and hosts a

website that allows authorized users to view and analyze data collected by NILM

systems.

4.2 NILM Virtual Private Network

NILM Manager controls the computing "center" of a virtual private network that se-

curely connects remote NILMs, each running NilmDB, to the management node. The

network is virtual in the sense that all communication occurs over the public Internet

but is encrypted so only NILMs and the management node can decipher the content.

Extensive computation on acquired data is relegated to local computing managed by

111

Management Node
Web Archive Metrics

Internet

Firewall

Devops Git Backbone

NILM VPN

r

C154 BDCB A447 8C2D F746 4A2C

Figure 4-2: NILM network topology as visualized by Nagios [60]. Servers in the
management node are outlined in the labeled box. NILM's connect to the manage-
ment node through the backbone server. Nagios provides realtime visibility of the
network enabling rapid fault detection and diagnosis. The two NILM's marked with
red crosses indicate they are down for maintenance.

NilmDB at on the non-intrusive monitor itself. New programs or "energy apps" can

be downloaded from NILM Manager to a NilmDB installation. New analysis results

can be uploaded from a remote site to NILM Manager for web presentation, which

can of course be through secure connections. Small energy apps and small reports or

analysis results, typically a few kilobytes, can provide full, powerful access to remote

high bandwidth data with minimal network data requirements. A (low technology)

cell phone can and has provided more than enough bandwidth for managing a full

industrial monitor in our experiments.

Figure 4-1 shows a conceptual view of the NILM VPN. Users can request data

from a NILM and send it commands all without any physical access to the machine.

The management node coordinates VPN traffic and ensures that only authorized

users have access to NILM systems.

112

4.3 Web Platform

Users interact with NILMs though a website hosted by the management node. The

website is available over the public Internet which means it is accessible from any con-

nected device including tablets and cell phones. Users authenticate with a username

and password although certificate based authentication or other forms of protection

could be implemented if additional security is required.

By presenting users with a web interface rather than a direct connection (for

example via SSH) to the remote meter, the user interaction tools (NILM Manager)

are decoupled from NILM system tools. This means NilmDB and other backend

software on the NILM can be updated without affecting how the user interacts with

the NILM data.

4.4 Data Visualization

One of the primary difficulties in Nonintrusive Load Monitoring is visualizing the

high bandwidth data collected by the current and voltage sensors. A NILM produces

thousands of data points each second. Tools such as Excel and MATLAB consume

significant system resources to produce plots for datasets of this size. Complicating

matters further, NILMs often have limited network bandwidth making transmission

of the raw data to a workstation difficult or impossible. NILM Manager solves this

problem by using a decimation algorithm to visualize large datasets.

4.4.1 Stream Configuration

NILMs connected to the management node are configured through the web interface

shown in Figure 4-3. This interface presents the data collected by the NILM as a

series of files organized into directories. Users can navigate through the data on the

NILM just as they would navigate folders on their desktop. While they appear as flat

datatypes on the web interface, each file corresponds to a hierarchy of streams on the

NILM itself.

113

NiIms Info Database Processes

Version 1.10.0
URL http://devensl.vpnwattsworth.net/nilmdb

C Refresh

Disk Usage
NItmDB: 779GiB Other: OGiB

Plot Resolution: 1994 pts

- @ Ft Devens 1
f] Temporary Group
C Devensi

I prep-a
El0 prep-b
[3 prep-c
0 raw
C sinefit

Figure 4-3:

File prep-a
Time Range
Total Rows
Total Time

Size on Disk
Database Path

The NILM configuration interface.

2014 Feb 03 10:53:44 - 2014 Dec 22 15:30:08
1572098455
303.67 days
109.32 GiB
/data/prep-a

The plot resolution slider controls
how many data points are displayed in data visualization tool (shown in Figure 4-4).

IV: 10 -+- 0 -+-

1-W

2013 Sep 17

Figure 4-4: Data visualization using the web plotting tool
Data visualization using the web plotting tool. The upper plot shows 24 hours of
power data and the lower plot shows a higher resolution view of the highlighted
segment. This view represents 5.1M samples but is drawn using just 2K decimated
samples (less than 0.05% of the raw samples)

114

W '!"'i "

As the NILM adds data to a stream, it simultaneously computes a decimated

child stream. For every four elements in the parent stream, the child contains a single

[min, max, mean] tuple. This process is performed recursively with each successive

child containing a factor of four fewer elements than its parent. When this process

is carried out to completion (the final child containing only one sample), the total

storage requirement only increases by a factor of two [8].

The plot resolution slider in the top right of the interface sets the number of data

points returned by the NILM when a user requests an interval of data. NILM Manager

checks how many data points are contained in the requested interval and returns the

lowest decimated child stream that fits within the configured plot resolution. The raw

data is only returned if the interval requested is small enough that there are fewer

raw samples than the plot resolution setting.

4.4.2 Presentation

The NILM Manager website provides an intuitive plotting interface shown in Fig. 4-4.

Note that this figure shows real data from a monitoring site in our research program.

The system has been running for nearly two years, and the remote monitor contains

tremendously detailed data, down to the envelopes of individual electrical transients

as shown in the figure. Nevertheless, access to this data is almost instantaneous from

any web connection anywhere. The interface uses decimated streams to allow users

to view any dataset from any remote NILM at any time scale. Panning and zooming

through the data operates like Google Maps with progressively higher resolution data

returned as a user "zooms in" to a particular area of a waveform. Progressive views

are delivered essentially instantaneously.

The plotting interface is implemented in Javascript which runs in the client browser.

The code is derived from the open source "Flot jQuery" plugin although it has been

highly customized for this application [61]. The plotting code has three display modes.

If the time interval is short enough that the raw data fits within the plot resolution

setting, a simple line graph is displayed. If, as is usually the case, the raw data

contains too many samples, data from the selected decimation level is displayed as a

115

200v Volts) V B (volts)I C (vl(volts) I V C volts)

100

.100

-200

1010 10:20 10:30 1040 10:50 1100 1035:34 10:35:35 10:35:36 1035:37 0:8:400,

a b c

Figure 4-5: NILM Manager automatically adjusts the plot type based on how many
points are in the selected dataset. (a) When a stream has too much data and no
available decimations a solid line indicates the plot cannot be displayed. (b) If deci-
mations are available an envelope of the dataset is shown, and (c) if the time interval
is short enough, the raw data is plotted directly.

[min,max] envelope around the mean which is plotted as a line graph. The envelope

is the same color as the mean with added transparency. This provides feedback about

the structure of the data without obscuring other time series on the same plot (as in

the case of Matlab or Excel). Finally if a time interval contains too much data in all

available decimation levels (which occurs when a NILM has not yet decimated a new

stream), a thick horizontal line is drawn in place of the data and an asterisk is added

to the legend indicating the inability to plot the particular stream at the selected time

scale. Figure 4-5 shows the three plot display styles. The client code automatically

switches between styles as the user navigates between datasets and timescales.

4.5 Data Processing

Current smart meters typically transmit their measurements wirelessly to a central

monitoring node which limits their resolution, as these links generally cannot carry

sufficiently large amounts of data [62-64]. Exposing raw data also exacerbates pri-

vacy concerns. The on-board CPU cores in even a low-cost NILM process data locally.

116

I V A * (volts)
I V A *(lts)

I V A (volts) I V A (vofts)

Data need never be moved in bulk from the monitoring site. Short, actionable reports

and analyses can be transmitted to a facilities manager or service provider as privacy

restrictions permit. The information can also be used locally for control. Moving com-

putation from a centralized server to a distributed embedded environment requires an

efficient data processing framework. The following sections describe this framework,

and illustrate how "apps" on distributed NILM energy boxes can analyze, report on,

and control power systems.

4.5.1 Management and Preprocessor

NILMs support remote management through a specialized application programming

interface (API), which allows clients to upload and execute custom scripts. This API

is exposed to the management node over HTTP with security provided by the VPN

tunnel. The management node uses this API for system administration tasks such as

database cleanup, software updates and system diagnostics. The management node

establishes a sandbox on top of this API in which end users can execute their own

scripts called "Energy Apps." These scripts use input hooks to link to data streams

stored on the NILM. An app can use data from multiple streams, each of which

may have different intervals of data and sampling rates. The NILM runs a two-stage

preprocessor that consolidates input data from diverse source streams into a single

time stamped array which makes it easier to write energy processing algorithms.

4.5.1.1 Multistream Wrapper

Data streams may be electrical measurements, data from secondary sensors, or out-

puts from other NILM processes. For processes that require inputs from multiple

streams care must be taken to schedule the process appropriately and only run it

over time intervals where all of its input streams are available. Sensor data may

arrive in bursts with significant lag, and streams produced by other processes create

scheduling dependencies. The multistream wrapper manages these dependencies and

ensures that a process is only run over intervals where its inputs are available.

117

4.5.1.2 Resampler

Once the input streams have been assembled, the resampler produces a single com-

posite data set with timestamped rows where each column is a process input. If all

inputs come from a common source stream then this array is straightforward to assem-

ble, however apps using inputs from different streams generally require resampling.

For example, an app that uses outside temperature and real power consumption as

inputs (to compute energy usage as a function of weather for example) must use ei-

ther down-sampled energy measurements or up-sampled temperature measurements.

When multiple streams are used as inputs the user specifies a"master" stream and

resampler runs a linear interpolator or a decimator on the other inputs to create a

uniformly sampled dataset.

The stream iterator framework makes it easy to write custom applications that

use this dataset to run analysis and control algorithms.

4.5.2 Stream Iterators

Each "energy app" is based around a stream iterator which enables computation on

large NILM datasets. Traditional iterators such as for and while loops operate on

static datasets, but NILM data arrives continuously. Stream iterators provide the

ability to operate on continuous datasets by combining a traditional looping iterator

with a persistent state. When the stream iterator has finished processing the available

data it saves its state variables so that when it runs on the next chunk of data, it can

pick tip exactly where it left off. This allows the programmer to treat the datasets

as continuous streams while giving the NILM flexibility to choose chunk size and

processing rate based on the available system resources.

Listing 4-1: The setup function for a NILM stream iterator
a = [...]; b = [...] #filter coeffs
def setup(state):

zi = [...] #initial state for filter
state.initializeSlot("filter_zi",zi)

Building a stream iterator is a two step process. First, the user defines a setup

118

function (see Listing 4-1). This function initializes a state object which provides

persistent storage between process runs. Data is stored in slots which are accessed by

string identifiers, similar to a dictionary. This function only runs the first time the

app is executed. The setup function in Listing 4-1 initializes state for an example

app which runs a linear filter on a NILM data stream. The filter coefficients do not

need to be stored in state because they are constants which do not change between

runs of the process.

Listing 4-2: The run function for a NILM stream iterator

#data is 2 column array: [timestamp, sample]
def run(data, state, insert):

#initialize filter with saved zi values
zi = state.retrieveSlot("filter zi")
#run filter against this chunk of data
(y,zf)=scipy.signal.lfilter(b,a,data[:,1],zi=zi)
data[:,1=y #update data in place
insert(data) #save output
state. saveSlot(zi, "filterzi") #update zi

After initializing the app state in setup, the user then defines a run function. This

function receives the resampled input streams from the preprocessor and performs the

actual data processing (see Listing 4-2). In this function traditional iterators and third

party libraries can be used to build complex signal processing algorithms. Listing 4-

2 shows a simple exarnple which runs a linear filter using SciPy, an open source

Python library. More advanced code could perform load identification, equipment

diagnostics or a variety of other data analysis. The insert argument is a function

handle for saving results to an output data stream. After processing the input, any

variables that should persist between runs are stored in the state object. The NILM

repeatedly runs this function as more input data becomes available.

4.5.3 Reports

In addition to generating output data streams (such as the filter example in Listings 4-

1 and 4-2), "energy apps" can also produce reports. Reports run over a specific

interval of data and produce an HTML document that can contain custom text,

plots, and tables. After the stream iterator has processed the specified duration of

119

Client Web Browser12EF
2 NILM Manager 4

PY =MySQL.py

Remote NILM
3a 3b 3c

NiImDB
.html

Figure 4-6: The stages of a NILM report. 1: The end user designs a report in the
Web IDE. 2: The management node adds support code to build an executable script
which it then sends to the remote NILM. 3a-b: The script links to streams in the
NilmDB, and runs to completion. 3c: The HTML report and associated figures are
sent back to rianagement node. 4: The management node stores the report in its
MySQL database. 5: Authorized users can view the report in their web browser.

data (eg: hour, day, week, etc.), an HTML generator produces the report document.

A report is defined by an analysis function and an HTML template. The analysis

function uses the process state to compute summary statistics and figures. These

are injected into the report template to create a full HTML document.

Figure 4-6 shows the process of creating an energy app report. In step 1, the

user defines the stream iterator, analysis function, and HTML template. Next, the

management node adds the support code making an executable script which is sent

to the target NILM. In steps 3a-3c the NILM runs the energy app which generates

an HTML document and associated figures. The NILM returns these files to the

management which stores them in a MySQL database and makes them accessible

through the web interface to authorized users. Hosting the report document on the

management node rather than the NILM insulates the NILM from external network

traffic providing an additional layer of security and reducing the demand for its limited

bandwidth. If privacy is a greater concern than network bandwidth, the NILM can

120

NILMManager x

4 C nilmdb.com/filters/1 =

Filter .t il,

--1 to-. Ge neratod. Do Not Remcyna orModi
2data as a pythton array whtere oacti clamant ts a nampy array

3 of timestamped values (tinostanps are 6 bit nicrcaacacids)

5 Access data in input array with these anes:
F; input i input

Accss data %otput arrav wffh tlase ramres
a output: a output
S, -- '- Mea''iter
10 Windowed inedaf tite,

I import scipy sitit
Ic dot ftfter~dat. kftrvaL args. iunr ttgt. stala)
16 ' data i a python array wnere .aUF olomet Lsa rmp af y

I T oftimestanVed vales Ilirnestarmois are 54 btil rnItccrL;Ps!

I data[D3: inpLt array ts, value..

print p rocessing nte aal . nuin mrvalhuma stringo
d - datmiO d

dl1- scipy.igna~rvnd1d.11.25)
insert func(d)

1Se up 2Test 0Help

= .1 L

1 4t~ ! *E P F,

i1372073684207721 - 1379973G684436)
processing iterval. Fi, 13 Sep 2013 58:91:24.297721 -04 Fri, 13 Sep 2013

W6:2.8 4MOG IaU

complete

.-A

2013 Sep 13 08:01

OfN inputs Left Right

inpur PI

Figure 4-7: NILM Manager IDE for designing Energy Apps

retain the report in local storage instead.

4.5.4 NILM Manager IDE

The NILM Manager website provides a complete integrated development environment

(IDE) to write, test, and deploy "energy apps". Figure 4-7 shows the app designer

interface. The left hand panel is a syntax highlighting code editor with multiple tabs

for app initialization, stream iterator definitions, and report templates. To run the

app in development mode the user selects input streams and a time range using the

plotting window on the bottom right. Text output generated by the app is contin-

uously retrieved from the NILM and displayed in the upper right hand panel. This

panel also displays debugging information in the event of an error. In development

121

Off Outputs Left Right

Output

mode the output stream is temporarily allocated on the remote NILM, and each time

the app runs, it overwrites the previous output.

Once the user is satisfied with the app's performance, the code can be deployed to

one or more target NILMs and scheduled as a continuous process. The management

node tracks deployed processes and archives system logs and metrics so that users

can manage the computational resources on their NILMs appropriately. When an

app is deployed in production mode its output stream is permanently allocated on

the target NILM and made available to other users either to plot or use as an input

to other apps.

4.6 Designing Energy Apps

Users with appropriate security permissions can now design useful applications on

the NILM to monitor and control their power systems. "Energy apps" run entirely

on the NILM itself and do not rely on external services or high bandwidth network

connections. The following example shows examples of how these apps are designed

at real monitoring sites.

4.6.1 Cycling System App

Reports present actionable information to end users turning NILMs into powerful

monitoring and diagnostic tools. Consider a standard cycling system such as a shop

air compressor. This system requires periodic maintenance based on hours of op-

eration and excessive runtimes may indicate leaks or abnormal usage, but adding

sensors to track air compressor runs is generally too expensive for the benefit it pro-

vides. NILM is the cost effective solution. A single NILM can monitor multiple

air compressors, and indeed any electric machine in a shop, eliminating costly (and

maintenance-prone) sensor networks [65].

Figure 4-8 shows an example of a report for tracking trends in air compressor

runtime. The report is built in two stages. First a stream iterator, defined by setup

and run functions, processes data over a specified time interval. The stream iterator

122

Report for Air Compressor
120 runs for a total operating time of 197 minutes

3C Distribution of Runtimes

25

20

15
E
z

100

5

40 60 0 100 120 140 160
Runtime (seconds)

Machine status: maintenance required

Figure 4-8: Example of a NILM report for monitoring an air compressor (generated
by Listing 4-4)

identifies machine turn on and turn off events by tracking transients in the power

waveform. When a machinery run is detected it is added to an array stored in the

process state.

After the stream iterator processes the data, the analysis function in Listing 4-

3 generates summary statistics and builds a histogram of machine runtines. The

statistics are added to the process state, and the saveFigure function saves the plot

using a similar string-tag syntax.

Finally the HTML generator builds the report using the template shown in List-

ing 4-4. Markdown is used for simplicity although raw HTML and CSS can be mixed

in for finer grained control of the document format. Content from the process state

is injected into the template using double braces {{ }} and the insertFigure corn-

mand embeds plots as HTML images.

The HTML document and plot image are sent back to the management node and

hosted through the web interface. Reports like this example, can be scheduled to

123

0

Listing 4-3: The analyze function for a report process
def analyze(state, savefig):
#retrieve data calculated by [run] function
runtimes = state.retrieveSlot("runtimes)
#calculate statistics
mins = int(np.sum(runtimes)/60) #minutes
state.initializeSlot("time",mins)
state.initializeSlot ("runs",len (runtimes))
#if any runtime > 3 hours raise alarm
if(np.max(runtimes)>180)

state.initializeSlot("status",
"maintenance required")

else
state.initializeSlot("status","OK")

#make a histogram of the runtimes
fig = plt.plot(runtimes)
savefig("runtimehistogram",fig)
#... additional plot formatting not shown

Listing 4-4: Template for report HTML
Report for Air Compressor

{{runs}} runs for a total
operating time of **{{time}}** minutes

{{insertFigure("hist") }}

####Machine status: {{status}}

run once or run continuously. When set for continuous operation the user specifies

a repeat interval and duration. For example a report can be set to run every hour

using the past 24 hours of data. The web interface provides a navigation tool to

browse series of reports which can be help identify trends and spot abnormalities in

equipment operation.

4.6.2 Power Quality App

In modern machine shops sensitive devices like CNC tools and 3D printers are co-

located with other large equipment that can interfere with the line voltage causing

droops and harmonics. In this experiment, a 3D printer shares shop space with a

laser cutter and an air compressor, both of which introduce power quality problems

including voltage sags. Shop preference is to avoid sharp voltage sags of more than

two volts during operation of the 3D printer. A NILM monitors the aggregate current

and voltage for the entire shop. Figure 4-9 shows the power consumption of the shop

124

Identify transients:
Xet'4'? :; rc+ Add

Off Exemplars Left Right

Laser On 0 Edit Remove

Laser Off Edit Remove

Compressor On Remove

Compressor Off Remove

Figure 4-9: Training the load identifier on shop equipment. The cross correlator pre-
sented in [8] uses exemplars to identify turn-on/off events of machines. The exemplar
for "Compressor Off" is shown in the popup window.

during normal operation. A cross correlator (discussed in [8]) is trained to identify

these loads. The turn-on and turn-off events are indicated in the figure by colored

bars. Here, four transients are identified corresponding to a run of the laser cutter

and air compressor respectively. The lower power cycling waveform is the PWM bed

heater of the 3D printer. Energy apps on the NILM can both quantify the shop's

power quality and and improve the power quality to the 3D printer during operation

by ensuring proper scheduling of the loads.

Over this time interval the NILM detected voltage disturbances large enough to

interfere with the 3D printer's operation. Figure 4-11 shows the power waveform as

well as the line voltage as measured by the NILM. The app outlined in Listing 4-5

identifies voltage transients larger than 2V. When such a transient occurs the app

checks the machine events identified by the cross correlator to determine which piece

of equipment caused the transient. If no events occurred at the time of the transient,

the voltage disturbance is due to an external load not monitored by the NILM. Such

information can be used to quantify power quality complaints when negotiating with

the utility. The bars on Figure 4-11 indicate voltage transients and the colors assign

responsibility either a piece of equipment in the machine shop or to the utility in the

case of external loads.

While the laser cutter does create a large voltage droop it does so gradually and

so does not disturb the printer. The air compressor has much more rapid transients

125

'3:1B 13:19 1320 13:21 13:22

2015 Jul 22 13:17 - 13:25

Figure 4-10: Identifying large shop loads. The cross correlator identifies
machines in the shop that might interfere with the 3D printer.

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2,0

-2.5

-3.0

Listing 4-5: Energy App pseudo code for identifying and assigning responsibility for
voltage transients. findequipment_t ransient is implemented by the cross correlator
trained in Fig 4-9
def run(data, state, insert): #pseudo-code
for dv in diff(volts):

if (abs (dv)>2) : #Voltage transient > 2V
eqp = findequipment_transient(dv)
if(eqp==None): #no equipment turn-on/off

insert("utility")
else

insert (eqp. name)

126

a P1 (W)

3000

2000

1000

0

N Laser On (event)
M Laser Off (event)
* Compressor On (event)

Compressor Off (event)

j -~

13:23 13:24 13:25

transients of

and is identified as an interfering load by the app. There is also a voltage transient

that cannot be associated with machines in the shop and the app assigns the transient

to the "utility". In fact this transient was due to a nearby shop vac that, while not

physically located in the machine shop, did cause voltage disturbances on the line.

This type of disturbance is typical of power quality problems induced by operations

"outside" of the facility. The NILM, configured as an energy box, is not only capable

of controlling load sequencing within a facility, it is also able to recognize internal

versus external power quality offenders.

4.6.3 Adding Control to an Energy App

As desired, energy apps can also control loads directly using smart plugs. Smart plugs

connect to a WiFi network and allow remote clients to control an embedded relay to

switch a load on or off. These plugs are available from a variety of vendors [66,67]

but use proprietary protocols that make them difficult to use outside of their private

commercial ecosystem. The plug in Figure 4-12 is a modified Belkin WeMo Insight.

The stock Insight only communicates with a smart phone app and provides limited

metering capability. We designed a drop-in replacement control PCB that provides

the stock functionality as well as persistent storage to an SD Card, a battery backed

real time clock, and high bandwidth metering. This plug interfaces directly with the

NILM so energy apps can monitor and control individual loads.

The app outlined in Listing 4-6 uses one of these smart plugs attached to the air

compressor to improve the power quality to the 3D printer. When the 3D printer

turns on (as detected by the cross correlator), the app turns the air compressor off.

When the printer has been inactive for at least WAITTIME seconds, the compressor is

turned back on. The actual compressor runs are determined by a pressure gauge on

the machine itself.

127

. Download fl Save Output

13:18 13:19 13:20 13:21 13:22 13:23 13:24

2015 Jul 22 13:14 - 13:33

Off Inputs

Power (P1]

Voltage (P1]

Left Right

0
0

Off Outputs

Utility

Laser

160

150

140

130

120

110

100

13:25 13:26

Gk Disabled

Left Right

0

0

Figure 4-11: Identifying the causes of voltage transients. An Energy App correlates
machine turn-on/off events with voltage transients. If a transient occurred without a
matching machine event, the disturbance is assigned to the utility.

128

initializing state
[1437595429669952 -> 1437585933669953)
Air Compressor at: Wed, 22 Jul 2915 13:21:41,652139 -9400
Air Compressor at: Wed, 22 Jul 2915 13:22:19.323992 -0400
Utility at: Wee, 22 Jul 2015 13:22:19.323992 -0480
Utility at: Wed, 22 Jul 2015 13:22:19.323992 -8499

Complete!

2000

'000

0

1000

0 P1 (w) Utility (V)
Laser M

* Compressor (V)

M P hV
1 .,AJ

& ~-1. I

I
un

Listing 4-6: Energy app pseudo code that only allows the air compressor to run when
the 3D printer is off. The app identifies the 3D printer by the bed heater waveform
and only enables the smart plug relay for the air compressor with the bed has been
off WAITTIME or longer.

def run(data, state, insert): #pseudo-code
if(detect_printer(data)):

#printer is running: disable the compressor
set compressor_relay(OFF)
lastrun = curtime

elif(curtime-lastrun > WAITTIME):
#printer has been off at least WAITTIME:
enable the compressor
set compressor_relay(ON)

Custom Contro
PCB

5V
Tra

Load Relay

Figure 4-12: Custom smart plugs allow the NILM to monitor and control individual
loads. This plug is a commercial Belkin WeMo [66] retrofitted with a custom control
PCB. Energy Apps can control the plug relay and read the embedded solid state
meter.

129

1500

1000

500

0

m Pi (W)

3

2

0

-1

-2

13:10 13:15 13:20 13:25 13:30 13:35 13:40 13:45 13:50 13:55

2015 Jul - Aug G Enabled

Figure 4-13: The Power Quality App in action: running the code in Listing 4-6
protects the 3D printer by disabling the air compressor during print jobs.

130

0 Compressor Enabled (event)
* Compressor Disabled (event)
* Bed Heating (event)

Bed Cooling (event)

n

[r-ILMLJJRLutuL

Chapter 5

Case Studies

This chapter explores the real world applications of non-intrusive power monitoring

using NILM and the Wattsworth infrastructure. These deployments were done in close

collaboration with numerous graduate students and the facilities staff at each of the

respective locations. Section 5.1 shows how a NILM can track energy consumption by

load and quantify energy savings measures. This work was done with Mark Gillman

and James Paris and is covered in greater detail in [68]. Section 5.2 uses a NILM to

diagnose configuration problems and equipment failures that are difficult to detect in

an operational building. This work was done with William Cotta and Mark Gillman

and is covered in detail in [69]. Section 5.3 uses a complete Wattsworth system to

provide automatic ship logs to the crew of a Coast Guard cutter. This work was done

with Greg Bredariol and is presented in [70].

5.1 Cottage Elementary: Energy Scorekeeping

The Cottage Elementary School in the Sharon School District in Massachusetts has

served as a fascinating and representative test bed to demonstrate the NilmDB/NILM

Manager approach for monitoring. The school is actively used by hundreds of stu-

dents and teachers. The load sizes, types, and levels of automation seen here are

uncommon to residences. Many of the devices are systems of loads, an extension of

multistage loads. The boiler, for instance, has a draft fan, blend pump, actuators,

131

Bnafr eabimt

Ground connectioi, W-

l 'p2 (A - Unused breaker
or other voltage
attachment point

Current
transducers C

-4-80V mgeasukreienit.

Power entry --- -- power supply

Current measurement ---

Ethernet connection N

to computer Loid Moiii

Figure 5-1: Cottage NILM Schematic and Installation

burner controls, and a transformer igniter. Each component has a unique signature

and a prescribed sequence of operation in non-pathological operation.

An electrician installed the NILM system using traditional contact voltage and

current sensors on a 3-phase subpanel known as the emergency panel (EBPP). Fig-

ure 5-1 shows the connection scheme. The EBPP is the critical electrical node servic-

ing the school's communications, heating system, kitchen appliances, septic system,

and other important loads. In the event of a power outage, the backup generator

supplies power to this panel enabling the school to provide shelter, heat, food, and

communication capabilities to the surrounding community. There are more than 30

subpanels at Cottage, but the EBPP accounts for about 1/4th of the school's total

electrical power consumption during winter months.

5.1.1 Electrical System Background

In cold weather. the largest power draw on this panel is from the machinery involved in

creating and distributing heat. Cottage's heat system is a closed-loop reverse-return

hot water system regulated by an integrated building control system (see Figure 5-

2). Operation of the heat system depends on several user-established inputs. If the

132

Supply Loop

VFD Thermostat
Circulation
Pump

Pressure
Differential

* ~ Boiler

Blend
Pump

P u m p eturn L o o p n it OV e n tila to r
Return Loop ______________

Figure 5-2: Cottage Heating System

outside air temperature is below 55 'F, the boilers will operate according to water

temperature settings in the loop. If the return-loop temperature is below 170 'F, the

boilers will operate until it reaches 185 'F. To prevent cracking inside the boiler,

a blend pump mixes return water with supply water. Cottage's boilers heat water

using natural gas, but the electrical signatures of the draft fan and blend pump

are detectable during operation. The Variable Frequency Drive (VFD) circulation

pumps pressurize the supply loop and move the water through the piping system to

the school. The VFD operational speed depends on system pressure. Head pressure,

like voltage, maintains the desired flow inside the system. Upper and lower limits

are set and measured by the pressure differential. When the pressure is too low or

too high, the pumps will speed up or slow down by increasing or reducing voltage

frequency.

Cottage's emergency panel has many other loads unrelated to the heat system,

including the IT Room, hot water pumps, large kitchen appliances, etc. These are

listed by circuit-breaker number in Figure 5-3. The minimum and maximum kW

values correspond to the range of their unloaded and loaded power draw. Some

devices, including lights, are frequently on or off, while others continuously operate.

133

Load Min Max
(kW) (kW)

IT Room:
Extreme

UPS-
IT Room:

SMC

Sonic Wall Video
AC Pump 0

UPS
IT Room:

cable amplifier II

PA/clocks .
deskto CPU

a le CPU
server
UPS-
UPS

IT Room

unknown
off/on a lot
unknown

208V
unknown

208V

security

generator controls

25 freezer

unknown
27 17 min run time

Boiler System:
Boiler 1 Draft Fan

0

I Breaker
2

Load Mn Max
S(kW) j(kW)

septic pumps 0 1 1.3
4 _ septic pumps 0 1.3I 6 septic pumps~13
8 VFD circ pumps 0 1.5
10 VFD circ pumps 0 1.5
12 VFD circ pumps 0 1.5
14 freezer 0
16 chairlift

0.06 18
20

Make Up Air Fan
Make Up Air Fan

0
0

0.28
0.28

22 Make UpAirFan 0 10.28
24 fire protection 0
26 heat control-
28 0
30 liht j0j1
32 elev rm outlets
34 boiler rm lights 1 0

1.37

0.9

0.25

0

0

0

1.2

0.6

0.86
Boiler 2 Draft Fan 0 0.74

Transformer 1
Low-flame solenoids 1

Transformer 2
Low-flame solenoids 2
High-flame solenoid 1
High-flame solenoid 2

control OW&A
Boiler:

31 Boiler 1 Blend Pump 0 0.35
Boiler 2 Blend Pump 0 0 54

boiler control 0 13
33 Y-pumpKitchen 0.i
35 R-pump 0.07
37 Y-pump School 0.11

36
38
40

42

boiler rm outlets 0
sum uM
sump pump

unknown 0.56

Legend

Figure 5-3: Loads monitored by NILM at Cottage Elementary School

134

Breaker

3

5

7 1

9

13

15

21

23

29

1

30

0

Phase A Power Consumption

10 3040 so 60

VTime (minutes)

Figure 5-4: One hour of real power data at Cottage. A refrigerator turning on is one

of several events during this period

Others quietly consume power keeping their internal systems running on standby,

even when not in full use. Also of note is the number of 3-phase loads, indicated by

multiple breakers with the same label, such as the Make-Up Air fan in the kitchen.

The total draw from such loads is the sum of the power drawn on each phase. For

instance, the circulation pumps are 3-phase VFD motors drawing a maximum of 1.5

kW per phase, or 4.5kW total. Other loads in the building create a base load present

on the panel electrical phases. Loads not of interest for tracking the heat system,

to include smaller pumps and much of the electronic equipment in the IT room,

were purposely set aside to draw attention to the larger, more energy-consuming

equipment.

5.1.2 Load Disaggregation

Power signals at a central point are simply the sum of each individual load's power

draw. As an example, Figure 5-4 depicts one hour of the collective power signal on

phase A on Monday, March 26, 2013, from 12:00-1:00 PM. Two Python programming

scripts developed for Cottage filtered the preprocessed data. The following figures

demonstrate how the filters decompose this signal into its individual loads. With the

135

'04

........

...

..

..

04
Ohm... 1.411

now

8

Boiler 2 Transient

Boder 2 data

5.5

5'

4.5.

4

10

t0

7-

0a-23

2
Timne (s)

Septic Transient

4 5

septic data

Time (s)

Figure 5-5: Load transients

0 i 2 3 4 5
Trne (8)

Septic Transient Model Boiler Transient Model

- -

* *
irne (Minutes) ime (Minuos)

Refngerator Transient Model DC Ofset

-V , (Fit
Twos (Minutes) (Minutes)

modeled with step functions

DC offset removed, each transient is then modeled with a step function, the super-

position of which effectively reconstructs the original signal. The filtering software

detected 23 transients during this hour. Two key features are apparent from the graph:

the transients and the baseline. One refrigerator transient is circled. The baseline,

about 3.2 kW, is the power draw of all machines that remained on for the entire hour.

Graphically, it is the low point on the plot. From Figure 5-5, the other phase-A loads

that make up the baseline are the Freezer, Make-Up Air Unit, circulation pumps, and

several smaller loads (control equipment, communications equipment, etc.).

Step functions with a magnitude equal to the average delta kW values for each

device were used to model the changes in steady state power level as loads activated.

Actual turn-on transients for most machines are not clean step functions but in fact

vary according to the physical task it performs [71]. In Cottage, most loads were

distinguishable using relatively simple characterizations of the "load transient," i.e.,

just the change in steady power consumption.

136

boder 2 step fundlon

Refrigerator Transient
9,

rotgerator data
-rgraor step funclon

7

51

31

0

-- -----

Comparison of Measured Signal to Transient Model

Mea ured Sign*l
- -- Trwnsi ent M odelj

06

10 20 30 40 50 60

Time (Minutes)

Figure 5-6: Comparison of original signal with modeled signal

For example, see Figure 5-5. The Boiler Pump must physically move water that is

initially static and thus requires more force at first to overcome inertia. As more lam-

inar flow is reached., however, the power requirements on the pump quickly approach

steady state operation. Inrush current peaks at about 2 kW for fractions of a second.

Power fluctuates for another few milliseconds before leveling off at a level that is

somewhere in the range of 0.46 -0.58 kW at steady state. The other transients follow

similar patterns for moving air and sewage. Given that these transients each reach a

quasi-steady state within a few seconds and given that the operating durations are on

the order of minutes, the step function is a good approximation (less than 5% error)

to use to determine kWh consumed. Recalling that real power consumption is the

area under the power curve, the turn-on and turn-off transients disclose the duration

of each machine's operation. Using this logic, the boiler 1 pump can be modeled

using a step function of 0.51 kW, the refrigerator 0.89 kW, and the septic pump

1.38 kW. The baseline, or the DC offset, is about 3.2 kW. Each machine's operation

over this one-hour period, graphed separately, is shown in the bottom right corner of

Figure 5-5.

The superposition of these three individual transient models closely approximates

137

the original power signal (Figure 5-6), validating the efficacy of this modeling method.

Once the edges can be detected, named, and kWh can be approximated, we can then

keep score of each machine's activity and cost.

5.1.3 Case Study Results

The NILM system detected some 5100 events over a period of 6 winter days in 2013

(11-13 March and 24-26 March). Peak hours featured more than 50 events, while the

minimum number in a one-hour period was 18. Software corroborated the results.

When events were classified, flags were raised if the same machine turned on twice

without turning off in between. All such errors were checked graphically. In total,
more that 98% of the events were classified without error. Most often, the issue

was simultaneous events. A few events were also missed because they occurred too

close to the hour (within a few samples). This issue has been remedied for future

experiments by eliminating the one-hour file sizes, opting instead to concatenate

stored file segments into one large file. With the errors visually corrected, daily run

times, cycle durations, and power consumption costs were tallied based off of the

NILM output. The results are shown in Figure 5-7. From the monthly power bill,
Cottage paid just over 9 cents per kWh to the utility company.

The heat system represents the highest cost on the EBPP, more than $10 per day.

It is made up of the 3-phase circulation pumps and the boilers. Broken down into

its subsystems the largest single loads are the circulation pumps. One VFD pump

is always on while the heating system is on, though the speed and thus power draw

fluctuates. From recorded data, these pumps consume, as a rough average, 1.3 kW

per phase costing over $8 per day. Combined, the creation and transmission of heat

represented almost 11% of the monthly bill in March. Note that this does not include

the contribution of the uni-vents in all of the classrooms that distribute the heat to

the tenants.

In this experiment, NILM showed promise as a plausible sensor for natural gas sub-

metering. Since the burner specifications and boiler hours-of-operation are known,
then the amount of natural gas consumed by the boilers is estimable. Therefore

138

Boiler 1 Boiler 1 Boiler 2 Boiler 2 Circulation
Pump Fan Pump Fan Pumps

Times used per day 15.3 15.3 63.5 63.5 1.0
Duration ON per cycle (min) 9.7 9.7 7.2 7.2 1440.0
Duration ON per day (min) 289.7 289.7 544.2 544.2 1440.0
Daily Cost $0.15 $0.37 $0.44 $0.63 $8.71 I

Head End Refrig- Make-Up
Septic Room Freezer erator Unknown Air

Times used per day 2.5 1.0 120.0 69.7 19.2 0.8
Duration ON per cycle (min) 2.7 1440.0 8.0 16.2 21.9 420.0
Duration ON per day (min) 6.7 1440.0 957.3 1075.8 412.2 478.7
Daily Cost $0.04 $2.61 $1.23 $2.11 $0.31 $0.62

Figure 5-7: Average Usage and Cost per machine over 6-day period

even though natural gas is not sub-metered at Cottage the gas consumption can

be estimated. Using this method as an estimate, the Gas utility billed the school for

6554 ccf during the month monitored. Using data from the six-day period highlighted

above, the combined (both boilers) average run-time is 8 minutes and 25 seconds per

cycle. This is the duration that the draft fan is operating. From the burner manual

(Gordon-Piatt R-8 Model), the first 90 seconds (on a timer) of fan time purges the

system. No gas flows into the boiler. For the next 10 seconds afterwards, low-flow

gas is injected into the burner to facilitate ignition. Considering only the high gas

consumption time, there are 6.75 minutes per cycle. From the results, the boilers run

an average of 90 cycles per day, which equates to 10.1 hours of high-gas operation

time per day. The firing rate of the burner is 2136 MBH according to the data plate,

which represents the maximum numbers of BTUs per hour through the burner. Thus,

the total number of MBTUs per month is

2136MBTU/hr x 10.1hr/day x 30day/month = 647.208 x 106 MBTU/month (5.1)

From the utility statement, the gas conversion rate is 1 cf = 1.02 MBTU. Converting

the MBTUs to cf, we estimate the monthly gas consumption of the boilers during

this month to be 6345 cf, which closely resembles the 6554 ccf utility bill. There are

other gas appliances whose combined capacity is about 25% of a boiler burner, but

139

it is interesting to note that this estimate produces a close approximation and merits

further study.

Another result made possible by the NILM is a comparison between the boilers.

Each has two main electrical components, a draft fan motor and a blend pump. The

make and model of the two draft fans are dissimilar between boilers. The blend pumps

also differ in model. It is common practice to set unoccupied times on building such

as this school. It allows the school to maintain a colder temperature during off hours.

As the the temperature dips lower more energy is required to warm the building

back up the next morning. This ramp-up period was monitored closely so that a

comparison between the boilers could be made. Boiler use is frequently alternated

between Boiler 1 and 2 for maintenance purposes. On March 11th, Boiler 1 operated

alone from midnight to 8AM. On March 12th and 13th, Boiler 2 ran alone during the

same time frame. The temperature profiles for those days being similar (lows of 36,

38, and 32 degrees, respectively), we determined that while Boiler l's blend pump

uses 20% less power, the draft fan uses 50% more power when running. The duration

times of operation varied drastically, with Boiler 1 staying on nearly 2 hours longer

to create (presumably) the same amount of heat. Their operation profile differed as

well. Boiler 1 ran 15 times with an average duration of about 22 minutes compared

to Boiler 2, which ran 26 and 29 times on consecutive days, respectively. Figure 5-8

contains a summary of their head-to-head statistics, revealing that Boiler 1 is about

22% more expensive to operate than Boiler 2 and also puts more about 28% more

hours on the machinery for comparable work.

The NILM also measured the effect of a major change to the system. On 25

March, the weather turned warmer. This led to complaints from the teachers about

the heat in the rooms. In response, the maintenance technicians throttled all heat

valves remotely from their central control station. A corresponding three-phase power

reduction of 2.7 kW was observed instantly (Figure 5-9). Because the VFD pumps

are pressure controlled, a sudden decrease in demand caused an increase in pressure,

and the active pump responded by slowing down significantly. This decrease was

observed for the remainder of the school day (about 6 hours), only to increase again

140

Draft Fan
(Make Modefl)

Boiler I Boiler 2 Boiler 2
11 March 12 March 13 March

General Elec Marathon Elec
MndeM 5KC49N Model EPL 56B34D202BEP

h 1.5 1.5
FLA (I15V 9.2 6.7

kW 0.83 0.71
ON duration (min 337 262 257

cos $0.42 $0.28 $0.28

Blend Pump aco Taco
(Make, Model) Model 0012-F4-1 Model 0012-F4-1

h 1/8 1/8
FLA I15V 18. 13.4

k 0.33 0.51
ON duration_(nin 337 262 257

cost/da $0.1 $0.20 $0.20

Figure 5-8: Cost comparison of Boiler 1 to Boiler 2

during the evening hours when the weather cooled off and demand again increased.

In total, this saved about $1.50. Knowing the actual savings, rather than relying on

assumptions or rumors, empowers the customer with actionable feedback for future

decision-making.

The power study uncovered useful information during the training phase as well.

First, there are at least 24 loads that are always drawing power, 14 of which are in

the Head-End room housing all of the network switches and other communications

equipment. Including the Uninterrupted Power Supply (UPS), they draw a collective

1.2 kW at rest (while school is not in session). The UPS was in permanent bypass

mode because it was not operating correctly, which the network administrator knew.

It was already scheduled for replacement. What was not known was that, even in

bypass, the UPS continued to draw about 0.4 kW at a monthly cost of about $26 just

to cool itself and maintain standby posture. Measurements of the total load connected

to the UPS also led to the recommendation to reduce the size of the replacement UPS

from 1OkVA to between 5-8 kVA as their maximum load was less than 2 kW.

The reconstructed model in Figure 5-6 accurately models the original signal, val-

idating NILM's disaggregation method. While the model is visually similar in its ba-

sic shape, there are elements of the original that are clearly not in the reconstructed

model. First, the power peaks, including their peak amplitudes, are not shown as

141

Phase A

Time (Minutes)
Phase B

I -

Time (Minutes)
Phase C

3:2.......................
..........

14 -
0 I', * * ' I I

42 42.1 42.2 42.3 42.4 42.5Time (Minutes)

Figure 5-9: Significant three-phase power drop when the VED denmand drops suddenly

142

explained in Section II. Second, the slow, smooth fluctuations, such as the subtle

changes in the variable speed drive, are not accounted for. In general, these represent

room for improvement but do not invalidate the approach. While important, the

precision of the kWh measurements is secondary to the accuracy of cataloging the

individual device patterns from an aggregate feed.

Understanding the details of electrical systems empowers decision makers to make

changes without service interruptions or sacrificing environmental comfort levels. Sys-

tems like Cottage that employ integrated control systems are commissioned when first

emplaced. Over time, as equipment or conditions change, these settings require up-

dates to keep the system optimal. U.S. Department of Energy calls this "continuous

commissioning," or updating system controls over time as conditions change [72].

NILM is able to provide early warning that conditions have changed.

Some limitations became obvious from this experiment. The higher the load count,

the higher the likelihood of ambiguous results. Two (or more) loads may turn on, off,

or one-on/one-off at the exact same time. Higher sampling frequency could improve

resolution, but this would bring the added requirement of more memory. Previous

research has advocated collecting all questionable identifications after filtering in order

to run "anomaly" algorithms. These make successive comparisons of the anomaly

delta kW against both combinations of known transient delta kWs and known machine

states (on or off) [71]. Also, only changes are visible with the NILM. If loads rarely

(or never) cycle, i.e. they are always on, then they are not uniquely distinguishable.

The sum of continuous loads comprises the baseline load, which can be discretely

determined only by shutting everything off and then back on one at a time.

5.1.4 Implications

The study at Cottage demonstrated a new software architecture for nonintrusive

power system monitoring that takes advantage of low-cost in-situ or on-site com-

puting. Detailed appliance-level consumption feedback is possible through NILM.

The hardware footprint is minimal, a low cost embedded computer and and asso-

ciated sensors. Network bandwidth requirements are very small. A commercial or

143

industrial setting with or without automation could benefit greatly from the energy

scorekeeping provided by the NILM software suite. This field test also demonstrated

the ability of the NILM to "derive" details of other utility consumption like natural

gas. This directly points out the value of increased local "intelligence" or signal pro-

cessing in unraveling the "big data" problem associated with consumption feedback

and diagnostic monitoring.

The NILM system is uniquely suited for austere electrical networks where loads are

standardized. It may be a spectacular tool for assisting with micro grid control and

economization. For small or islanded networks, the library of loads can theoretically

be pre-set, reducing the extent or possibly eliminating the need for a training phase.

In terms of network requirements, the bandwidth required for communication is very

tractable. We have already begun to examine this approach in oil refineries, and other

possible examples include oilrigs, solar plants, wind farms, industrial parks, and other

micro grid installations such as military forward operating bases. In the military's

case, where there is already a mandate to reduce consumption [73,74], accountability

is made available quickly and inexpensively.

5.2 US Army: Continuous Commissioning

Current building and facility commissioning methods and maintenance/FDD pro-

grams focus on providing top down or bottom up analysis of building systems, re-

spectively. The NILM combines functionality of both methods, and does so without

requiring a network of machine sensors typical of conventional monitoring systems.

Additionally, the NILM provides a platform which can be further developed. Us-

ing only new software, an entirely new suite of monitoring tools can be uploaded to

provide additional monitoring functionality. Moreover, the back end database allows

comparison of different NILM installations allowing best practices to be analyzed

against similar facilities.

Two main site locations were utilized for NILM installations and real-world demon-

stration of NILM methods for identifying energy inefficiencies. These locations are

144

Figure 5-10: An example training FOB located at Fort Polk

described below.

5.2.1 Fort Devens, MA

Fort Devens, MA houses the Army's Base Camp Integration Lab, a test bed for

new technology and a training site for Army reserve units. This facility includes

climate-controlled insulated tents., latrines, showers, laundry, and electric kitchen and

dining facility. This rapidly deployable package, capable of supporting 150 troops,

is powered from two three-phase 120 V, 600 A electrical panels, both monitored

by NILM systems. The primary power-consuming loads at the base are the HVAC

systems, water pumps, kitchen refrigeration units, and lighting systems.

145

Power Consumption (kWh)
during the training weekend

Extracted from

Vents/Ughts Frudle
Pope Heater Cables 65 kWh 10 5 kW h

23 kWh 13% 01% 1 ~
Space Heaters 0.47% 0.37%

472 kWh r Pumps
9,68%1 b

L ~~ k87 kh

* 48 hour time period, Nov 2013

Figure 5-11: Largest loads at Fort Devens itemized by energy consumption

5.2.2 Fort Polk, LA

Fort Polk, LA is an active duty Army post and home to one of the Army's three

Combat Training Centers. This training center has several FOB base camps used to

emulate conditions in current theaters of operation. Figure 5-10 shows an aerial view

of one FOB camp. At Fort Polk, the FOB electrical service is distributed with each

panel receiving feeders directly from pole-mount transformers and typically serving

three structures. As such, a single NILM cannot monitor all loads in the camp from

the same location. In the interest of relating energy monitoring to occupant usage

trends, two panels were monitored: one powering three buildings all used as sleeping

quarters (outlined in blue in Figure 5-10), and one powering two headquarter buildings

and one sleeping quarter (outlined in white). These two building types are equivalent

in size and major loads, i.e. environmental control units (ECUs) and lighting systems,

but their usage schedules differ.

5.2.3 Top-Down Monitoring for Energy Savings

Energy saving objectives at U.S. Army FOBs are driven by the high financial and

casualty costs of resupply missions [75,76]. However, any implemented energy savings

146

15 E Panel Phase 1 Unoccupied Panel 2Phase A P

M Panel 1 Phas B P1 Panel 2 Phase B P1I
12.5 M Panel 1 Phase C PI Panel 2 Phase C PI

3 10 Actual Use
T_ 913 kWh

7.5

5 l

If conserved
2.5 at baseline

208 kWh

0900 1700 0100 0900 1700 0100 0900
Friday I Saturday I Sunday

Figure 5-12: Power usage at Fort Devens over an occupied weekend. The shaded area

represents unnecessary power usage during a time when the unit was away from the

base.

measures are constrained by the necessity to perform critical mission tasks. As such,

the data collected at the Fort Devens and Fort Polk FOB test sites were used to test

top-down approaches towards ongoing commissioning. Specifically, these approaches

were designed to provide a local commander whole-system and disaggregated energy

usage data for easy comparison with unit schedules and building occupancies. This

sort of information allows the commander to make informed decisions aimed at re-

ducing energy expenditures through changes in human activity without sacrificing

the unit's ability to perform critical tasks or use critical equipment.

5.2.3.1 HVAC Operation Schedule

A first example comes from Fort Devens, MA, when a 90 person Army unit occupied

the base from 08-10 November, 2013, for a weekend of training. The average tem-

perature for the weekend was 40'F, with a high of 55'F and low of 26'F. The unit

occupied the FOB continuously for 48 hrs with the exception of a training session

conducted on the weapons range from 0900 to 1700. The NILM itemized the power

consumption of the largest loads over the weekend as seen in Figure 5-11. 73% of

the energy went towards ECU heating coils; an additional 15% went to the supply

fans, which circulate air across the heating coils. Overall 88% of the energy cost was

attributed to the 11 ECUs. Adding in the smaller space heaters, which include the

147

window unit air conditioners used in the showers, latrines, and kitchen, 98% of the

total cost was attributed to HVAC.

When viewing the base's power usage (Figure 5-12) while considering the unit's

schedule, it's clear energy savings measures were not employed when the unit attended

training at the weapons range. In fact, the NILM detected heater runs during this

time period. Considering the minimally insulated buildings that compose a FOB,

this represents a large inefficiency. As depicted in Figure 5-12 by the shaded region,

the actual energy use during the unoccupied period was 913 kWh; overlaid during

the unoccupied time is the "ideal" power draw, i.e. the estimated power draw of

only baseline loads. Based on a similar-temperature day when only these loads were

operating, the minimal energy use for the unoccupied 8 hours was estimated as 208

kWh. The difference of 705 kWh over 8 hrs represents 14% of the total energy

consumption for the weekend.

5.2.3.2 Misconfigured ECUs

A second example comes from the monitored FOB at Fort Polk. Within the same

sleeping quarters two ECUs were set in opposition to each other, with one set to

heat mode and the other set to cool mode while the building was unoccupied. The

NILM was able to detect the transient pattern of a heater and an air-conditioner

each cycling on/off. Figure 5-13 shows the real power streams of the two-phase

distribution system for this sleeping quarter over an 8-hour period during which the

outside temperature remained relatively constant between 70'F-750 F. In this figure,

the transient signatures for the heater and A/C cycling are identified. The NILM

reveals a limit-cycle type operation where the the two ECUs "dual," with the heater

operating and increasing temperature for approximately 16 minutes and the A/C

responding to decrease temperature for about 24 minutes. Thus, every hour during

this otherwise idle period represents an energy waste of 4.3 kWh, with the heater

drawing around 10kW (5 kW per phase) when on and the compressor about 4 kW

(2kW per phase). For the run-time shown in Figure 5-13 alone, user negligence

contributed up to 40 kWh of energy inefficiency.

148

U P1_A
10 N P1_B

0

0
Heater A/C

01:08 02:08 03:08 04:08 05:08 06:08 07:08 08:08

Figure 5-13: Heater and air conditioner in the same room dueling over temperature

5.2.4 Bottom-Up Fault Detection and Diagnostics

The two top-down monitoring examples of Section 5.2.3 display the utility of NILM in

identifying energy efficiency improvements through a reduction in user negligence. In

contrast, bottom-up methods are adept at detecting and diagnosing machinery faults

(FDD) as monitoring occurs at the subsystem level [77]. Once FDD is performed, the

implications on top-level optimizations, e.g. building energy use or occupant comfort,

can be assessed to determine the proper course of action.

Using conventional monitoring techniques, bottom-up commissioning requires ma-

chinery sensors on all systems of interest. However, the NILM affords virtual sub-

metering on any load with a detectable transient. This provides the opportunity

for bottom-up methods without the complicated network of machine sensors. In the

example here, data collected by the NILMs was used to perform FDD on an HVAC

system at Fort Polk and to estimate the energy implications of a missed detection.

5.2.4.1 ECU Fault

On the morning of March 28, 2014 at Fort Polk, a wall-mounted ECU faulted when

the supply fan ceased to work. This caused a change in the characteristic signature

of the ECU unit, and thus appeared as a previously unidentified load on the NILM.

Specifically, two deviations from the known on and off transient characteristics oc-

149

M P1_A
* P1 _B

-2 12 -
Supply fan

ECU on turn-off event
event

o -----

0

6

14:13 14:14 14:15 14:16 14:17 14:18 14:19
(a) Healthy ECU On/Off Cycle

0 P1_A
6 0 P1_B No supply fan

turn-off event

4 ECUon
event

0
2

ai ~1.7kW

0
23:08 23:12 23:16 23:20 23:24

(b) Broken ECU On/Off Cycle

Figure 5-14: Fort Polk ECU AC mode real power on/off transients for a (a) healthy
ECU and (b) broken ECU. The offset between P1IA and P1_B in (a) is due to a
simultaneously running single-phase load.

curred, which allowed the NILM users to detect the fault.

Figure 5-14 shows a comparison of full on/off cycle data collected a few days prior

to the fault (Figure 5-14a) and just following the fault (Fig. 5-14b). As noted in the

figures, a change in the off transient was detected as the fan off signature was missing

from all transients following the fault. Further, the power consumed by the ECU after

the fault was approximately 600 W (300 W per phase) less than before. Compared

to a healthy ECU, the fault resulted in power consumption dropping from about 4

kW (2 kW per phase) to around 3.4 kW. This difference is equal to the consumption

of the supply fan.

Without the supply fan circulating the cool air out of the ECU could only cool

150

the room through unforced ventilation, a significantly less effective method than the

forced convective cooling with the fan. For a 5-hour period, the hottest part of the day

during March 29th, the broken ECU had a cumulative on-time of 3.1 hours. During

that same period, a healthy ECU operating in a different sleeping quarter and at the

same temperature set point operated for only 1.4 hours total, less than half the time

of the broken ECU. Thus, due to the machinery failure, the broken ECU required

almost double the energy of the normally functioning ECU.

Without the NILM, this broken ECU may have gone unnoticed as the room was

still cooled to a comfortable temperature, just at a significantly larger energy cost.

With the NILM however, the unit commander knows that replacement of the ECU

can enact an improvement in long-term FOB energy efficiency.

5.2.5 Implications

Each of these examples represents value-added information for actionable feedback

towards improving whole facility energy efficiency. For the unit commanders at Army

FOBs, acting on this information results in energy savings translating directly into

a reduced demand for fuel convoys, and a concomitant reduction in casualties. For

an industrial facility or commercial building manager, the NILMs instead provides

energy efficiency insight towards lowering utility bills and increased profits; for the en-

vironmentally conscious homeowner, the NILM gives positive reinforcement towards

reducing their carbon footprint. Thus, while the Army FOB camps provided the envi-

ronment for these NILM research and demonstration projects, the monitors, software

platforms, and energy-saving commissioning and FDD techniques described here are

easily extendable across many sectors and useful for a variety of optimization goals.

5.3 US Coast Guard: Equipment Monitoring

Modern Navy, Coast Guard, and commercial maritime crew sizes continue to shrink as

there is a shift to "optimally" and minimally manned crews completing more complex

and varied mission sets. Smaller crews rely on sensors and automatic operation to

151

perform a host of duties once completed manually. This generates a substantial

need for monitoring systems to ensure proper operation of equipment and maintain

safety at sea. These systems require a significant infrastructure of sensors, wires, and

intermediate panels or data collation sites. Because conventional monitoring systems

rely on a substantial, distributed hardware installation, communications losses and

sensor failures can become commonplace and crippling. Reduced manning may also

mean reduced repair hours, and crews with complex but difficult to maintain sensor

systems may effectively be left without needed monitoring equipment.

The NILM poses interesting possibilities for shipboard use and maintenance [78].

In particular, the NILM can serve as a "shipboard automatic watchstander" or SAW

for tracking machinery operation. This case study demonstrates the operation of a

NILM as a watchstander aid during underway operation of USCG SPENCER, a 270

foot Famous-class cutter.

5.3.1 Shipboard Automatic Watchstander

The NILM offers several important benefits to both increasing the precision and au-

tomation of Coast Guard watchstanders. First, NILM systems can discern machinery

status and automatically generate a log of operation. Second, they can compare ma-

chinery operation and sequencing, reflecting the demands of the crew, to a known

operational status to relay to decision makers crew fatigue and operational tempo.

Third, the NILM can ensure that operational procedures are followed and that auto-

matic functions of machinery are operating as designed to improve or maintain the

life of machinery. Because NILM systems require limited access from an aggregate

measurement in the power system, they provide a single robust monitoring point that

doesn't rely on complex networks of sensors.

5.3.2 Automatic Logging

In the USCG the current method for keeping machinery logs is manual entry. This

approach relies heavily on accurate human observation and annotation. Logs are for-

warded to maintainers and operational commanders, and accurate log keeping is an

152

important function for the USCG. Logs are critical for recording operational history

and supporting maintenance decisions, and are entered as official legal documents.

Generally, watchstanders maintain a "rough log" which is a handwritten document

containing times of events and operations including fuel transfers, machinery status

changes (starts and stops) and other key events. This is then periodically transferred

to a typed document, an overall method that is clearly open to flaws. Watchstanders

can be extremely taxed while making normal rounds on equipment. Verifying oper-

ation, safety, performing maintenance, training new crew members, and performing

casualty response are just some of the watchstander's normal duties. Accurate log

keeping can become an afterthought in stressful or repetitive situations. Manual

logging also poses the possibility of distracting the watchstander from the equally

important task of monitoring machinery health, possibly allowing for a casualty to

go unnoticed.

This case study presents results from a SAW based on nonintrusive monitoring

technology for automatically logging start and stop times of machinery operation.

This technology reduces the impact of human error and potentially allows human

watchstanders to focus on more important and less repetitive tasks. As budget con-

straints tighten and technologies increase to allow for remote operation of systems

as well as increased automation, crew sizes have decreased, in some cases to 50% of

manning on legacy assets. Each remaining crew member performs a new multitude

of tasks. It is not uncommon for a single crew member to be responsible for moni-

toring machinery health through frequent rounds, wipe up oil, complete oil viscosity

tests, check oil levels, check temperatures, verify pressures, start generators, pump

sewage, refill head tanks, and other duties. A SAW creating automatic logs could

improve safety and efficiency by decreasing the amount of time a crew member has

to spend logging machinery operation manually. Additionally, precision could be in-

creased through logging of exact times and ensuring that no or relatively few events

are missed.

Hourly tracking of operations underlies the USCG's maintenance planning, as

many maintenance tasks are based on accumulated operating time, e.g., for major

153

Figure 5-15: Typical USCG engine room watch. Notice the logbook, termed the
"rough log," used to keep machinery operation times and log critical events. Also
note the watchstanders monitoring equipment while simultaneously attempting to
maintain logs.

overhauls, oil changes, and other cyclical maintenance. Accurate, automated track-

ing could greatly improve maintenance planning, decreasing costly corrective mainte-

nance completed after casualties. Also, current systems rely on maintainers receiving

aggregated reports from operators on a bi-annual or annual basis. Infrequent infor-

mation flow easily creates disparities between projected hours and actual operational

hours and creates a gap in planning. Automated tracking could ease data collation

and access for decision making.

5.3.2.1 A Bellwether for Crew Performance

Certain operations pose increased risk. These "special evolutions" include events such

as flight operations, anchoring, maneuvering close to shallow waters, towing, battle

quarters, refueling at sea, and law enforcement operations, among other higher risk

154

evolutions. For these evolutions, vessels institute a condition of operation called the

Restricted Maneuvering Doctrine (RMD) that sets additional precautions to mitigate

risk. This doctrine is a balance, in that a majority of the crew receive complex or

additional duties, creating a potentially fatiguing burden. As crew fatigue increases,

the likelihood for mishaps increases. Whenever possible operational commanders

should be aware of cumulative time spent at RMD to properly evaluate risk when

assigning missions.

There is currently no objective metric to measure fatigue. In the naval community,

the USCG employs the GAR model which evaluates crew fatigue on a subjective 1-10

scale. This metric is difficult to evaluate objectively. The aviation community, on the

other hand, has a more objective metric, accounting hours of operation and requiring

hours of rest [79].

5.3.2.2 Ensuring Compliance with Operating Procedures

When setting RMD, certain pieces of equipment are generally energized and an equip-

ment status is prescribed. Knowing this status and equating it to RMD, a SAW could

sense the amount of time a vessel spends at RMD, providing operational comman-

ders a hard metric for crew fatigue when evaluating risk and gain for missions. Also,

the SAW can evaluate compliance with prescribed operating procedures and detect

deviations in crew performance. Each piece of machinery has a specified or "stan-

dard operating procedure" (SOP). These SOP's contain step by step instructions on

machinery alignment and operation. In several systems, the order of operations is ex-

tremely important to ensure that catastrophic damage does not occur. For instance,

the reverse osmosis feedwater pumps must be started before high pressure pumping

commences. Deviations remove cooling and impellers or high pressure pistons could

be destroyed. Similarly, diesel engines must be prelubed before starting to ensure

lubrication of parts. If a NILM can detect these sequences to prevent or warn an

operator when they have missed a step in the sequence, millions of dollars in costly

corrective maintenance could be saved across the USCG's fleet assets. Also, devia-

tions from SOP could potentially serve as an additional indicator of crew fatigue.

155

, lhaU

Figure 5-16: USCGC SPENCER is a 270ft long Famous Class Cutter whose primary
missions include search and rescue, law enforcement, and living marine resources.

5.3.3 Installation on the USCGC SPENCER

To explore these possible uses, a SAW system was installed on the USCGC SPENCER

(WMEC-905) shown in Figure 5-16 from November 2014 to December 2014. USCGC

SPENCER is a 270ft Famous Class cutter stationed in Boston, MA. Two nonintrusive

systems were installed, one on the #2 Main Propulsion Diesel Engine (MPDE) aux-

iliary supply panel in the engine room, and another on the main exhaust fan for the

engine room. These monitoring systems collected data during underway operations

to test the potential for automatic event logging and centralized data analysis from

the ship power system to classify the status of the vessel and its machinery.

The machinery plant of the cutter consists of three ALCO V-18 propulsion diesel

engines and two electric diesel generators rated for 475KW as well as an emergency

generator rated for 500KW. It carries a crew of approximately 100 and maintains a

rigorous schedule of over 185 days deployed per year [80].

156

Figure 5-17: Standard Coast Guard exhaust fan.

The installed nonintrusive monitors observed the exhaust fan pictured in Figure 5-

17 and the #2 MPDE auxiliary supply panel. Mission critical loads fed from this

supply panel include the #2 Main Propulsion Diesel Engine (MPDE) prelube pump,

the #2 "C" Controllable Pitch Propeller Pump, the MPDE lube oil heater, and the

MPDE Jacket Water Heater. The location and placement of the monitoring boxes

can be seen in Figure 5-18. By observing data from these monitors, the machinery

plant status can be reconstructed, as shown in the next section. This reconstruction

can be compared with required operating procedures. For example, the exhaust fan

should be turned on prior to the MPDE starting in order to ventilate the space. The

fan is deactivated when the MPDE is not running to keep the engine warm while

offline.

The CPP "C" pump motor is a 3 phase motor nominally rated at 440V, 13.6

Amperes, and 10 lip. Figure 5-19 shows the motor. The MPDE prelube pump motor

is a 440 V 3 phase 4.9 ampere and 3 hp motor and can be seen in Figure 5-20. The

two heaters connected to the system, the MPDE jacket water heater and the MPDE

lube oil sump heater, are both 440 V, 3 phase resistive heaters. The JW heater is

rated at 9KW and the lube oil sump heater is rated at 12 KW.

The monitored equipment works separately and together to ensure that the MPDE

functions correctly. For example, the monitored prelube pump runs continuously

when the engine is offline, but does not run while the engine is online. The Lube Oil

heater will automatically energize when required and then turn off when temperatures

157

Figure 5-18: USCGC SPENCER engine room. Nonintrusive monitors are installed
forward of the #2 MPDE just above the monitored panel.

Figure 5-19: CPP "C" pump motor that supplies pressure to vary the pitch on the
blades of the propeller. These pumps are energized when RMD is set and the vessel
enters a time of increased risk and fatigue for the crew.

158

Figure 5-20: The 3 hp motor for the MPDE prelube pump. It is continuously ener-
gized when the MPDE is off and automatically stops when the engine is started. By
monitoring its status (on/off) the engine's status can be inferred.

are adequate, maintaining oil temperature between 90 and 120 degrees Fahrenheit).

The jacket water (JW) heater works in the same fashion, automatically energizing

when required. When the engine shuts down, the prelube pumps turn on, the JW

heater turns on, and the exhaust motor should be turned off by the crew. When the

engine starts, the prelube pumps turn off, the JW heater turns off and the exhaust

motor should be turned on.

The controllable pitch propeller is powered by a hydraulic loop. Hydraulic pressure

is sent through a hollow shaft to the blades of the propeller, altering blade angle to

quickly alter speed. Hydraulic pumps control the amount of hydraulic oil sent to the

propellers to change pitch (by changing pitch the speed/direction of ship movement

is controlled). The "C" Controllable Pitch Propeller (CPP) pump is unique in that it

is energized for "Special Evolutions" that require that RMD be set. By energizing the

"C" pumps, the operators are given greater handling performance and faster response.

During special evolutions the restricted maneuvering doctrine (RMD) is set and a

prescribed machinery status is initiated. The nonintrusive SAW can detect machinery

status by identifying the transients and recognizing equipment used uniquely during

RMD. High level mission commanders could receive automatically logged summaries

of times and durations when operational tempo increased. This could move the

50 M Pi

Mai

40

30

20

10 L

Nov 21 Nov 24 Nov 27 Nov 30 Dec 03 Dec 06 Dec 09 Dec 12 Dec 15 Dec 18 Dec 21 Dec 24

2014 Nov - Dec

Figure 5-21: One month of electrical power data collected by a NILM installed on
the USCGC Spencer.

surface fleet towards the aviation model where given a certain number of hours would

equate to a certain level of crew fatigue. It is not uncommon for watchstanders to go

without rest due to special evolutions combined with normal routine.

The next section illustrates the findings of a prototype SAW examining underway

data obtained from the USCGC SPENCER.

5.3.4 Signal Processing and Transient Identification

The SAW's functionality is critically dependent on its ability to disaggregate and

identify transients of interest. This signal processing problem of extracting individ-

ual transients from aggregate data is an intellectually exciting and mathematically

tractable problem for power systems of the size found on SPENCER, for example.

Aggregate power data for a window of time aboard the SPENCER is shown in Fig. 5-

21. The data clearly shows a complex mix of events occurring on the ship power

system, and hints at the challenges in disaggregating transients.

Careful examination of the ship's data reveals that start/stop events can be iden-

tified given exemplars representing individual load transients. During the cruise sum-

marized by Figure 5-21, the cutter participated in an extended training period during

which it made frequent port calls. This made monitoring interesting, with many tran-

sient load activations. The data from 10 December 2014 is one example, shown in

160

60
U P1 (A)

50 UP 1 (A)

Engine stop

-0 ngine start
Prelube pumnpqT

20 Jacket water heater
2- 0 Lube oil heater

10 CPP pump CPPpump CPP pump

02:00 04:00 06:00 08:00 10:00 12.00 14:00 16:00

2014 Dec 10 00:00 - 23:59
Date & Time

Figure 5-22: Data retrieved from monitoring on 10 December, 2014.

Figure 5-22 below.

For example, on this day from 0000 local time until 0600, the ship is in-port on

shore power, with a collection of loads operating that would be typical for "bravo

status," i.e., the ship is active but not underway. The step function in power is the

jacket water (JW) heater turning on and off. The prelube pump is also running.

Figure 5-23 shows the first crew action for getting underway, the starting of the

engine shown in Figure 5-23 at 0601. At this time, the prelube pump is deactivated

in preparation for engine start.

At 0601 on SPENCER, nothing on the observed panel is operating. The MPDE

is on at this time, providing its own lubrication with an attached shaft-driven pump.

The electrical support loads are off, therefore, at this time. As described earlier, also

on this panel is the CPP "C" pump which is energized when the cutter enters a special

operational status of perceived higher risk, or RMD. The first "on" event for this can

be seen at 0720 where the pump energizes as shown in Figure 5-24. This corresponds

to the cutter leaving port, and RMD condition.

The data from the CPP can be highly telling as it relates directly to a condition

of steaming of the vessel, the setting and securing of RMD. From the data, one can

extrapolate that the cutter was at RMD from 0720 to 0903, 0919 to 1055, and 1426

161

30 * P1 (Ai Start sequence initiated
M P1 (Al

-*5

20 Prelube Prelube pump
pump, lube remains on during
S oil heater, start, heaters turn En ine started, prelube pump off
and jacket off

O5 water heater -
0 on

07:04 15 07 04:16 0704-17 07 0418 0704: 19

2014 Dec 16 07:04

Date & Time

07:04 20 07 04:21 070422

Figure 5-23: The MPDE starting as observed by the nonintrusive SAW. Note that
there is a progression as the heating elements turn off once the start sequence initiates.
The prelube pump remains energized until after the start sequence is completed to
ensure lubrication during start (approximately 2-3 additional seconds).

*PI Ai

SPI (Al

CPP Pump energized

09:20 09830 09-10 0950 1000 1010 1020 10,30

2014 Dec 10 09:10 - 11:10
Date & Time

1040 10:50 11:00 11.10

Figure 5-24: Characteristic CPP on and off event. The CPP motor is rated for 13.6A.

162

I

0~

C
U,
I-

0

31X

25

20

15

10)

0

10 December 2014 Events

M 71A M .00M 1W-IooA 150M ::PM ::0 M

Prelube Pump D

CPP or *
61010-AM 8:25:00 AM 1049:OOAM 113 00 PM 3:37D PM 6:0100 PM

MPDE O NjNDERWAY

REMD "ElMUMI

Figure 5-25: This figure shows the data taken from 10 December 2014 from the
SPENCER SAW.

to 1607. For that day alone, the cutter was at a heightened state of readiness for 5

hours. This is a telling metric for mission commanders and planners and shows that

there is a high probability of fatigue for this crew on this day. In evaluating the risk

for an additional potential evolution, this metric could be crucial to weighing the risk

and gain of a proposed mission. These start and stop times match manually logged

start and stop times. Figure 5-25 shows the data on MPDE start and stop times as

well as CPP times taken from the NILM box sensing of the prelube pump status and

the CPP pump status.

Nonintrusively acquired and interpreted power data can be more reliable than

human entry. Human entry relies upon an already overtaxed watchstander to log

items. This leaves a high probability that during high stress or high tempo times,

the log becomes an estimate at best, at worst a distraction to a watchstander trying

to maintain equipment. An example of this is missed entries in the log. Taking the

log from 10 December for an example, the SAW was able to identify two key events

(the setting of RMD denoted by starting the CPP "C" pumps) that were not logged

in the watchstander's log. Thus the NILM offers a way to deconflict the work of the

watchstander while still providing an accurate log, in this case more reliable than one

created by human entry. It is important to note that the NILM also provides exact

163

40 PI1A)

EPI Al

Additional heater energizesa-2 Engine Stopped

C: 0

Heater energizesPrelube pump energizes

20

1700 17:30 180 18:30 19:00 19:30 2000 20'30

2014 Dec 02 16:57 - 20:49
Date & Time

Figure 5-26: MPDE Stop Sequence

time data whereas the logs were off from the NILM data by up to 15 minutes.

When the MPDE is stopped, there is a similar sequence of relevant transients

and load activations. The prelube pump should start immediately upon engine stop.

Other loads associated with the MPDE (JW heater and lube oil heater) will not start

immediately as these are controlled by temperature thermostats. The engine stopping

can be seen in Figure 5-26. Then, approximately 15 minutes later, the heater loads

activate as shown.

The SAW is able to identify sequences and ensure prerequisites for proper load

activation and operation are met. On Famous Class cutters the prelube pumps are

continually running. However on many ships, such as the USCG 210ft Reliance Class

cutters, prelubing must be done manually before starting the MPDE's or increased

wear will develop on the MPDE. This requires a human input that may be skipped if

the operator is not following the SOP correctly. An installed NILM would be able to

sense the prelube pump and ensure it is started before starting the MPDE. This has

many applications as many systems work in this manner where prerequisites should

be met before other steps are taken or damage can occur to the system. On newer

ships, many of these fail safes are built into the systems. For example, on the newest

USCG cutter, the WMSL, the controls software will not allow start of the MPDE

without prelube to a specified pressure; however on legacy class cutters this function

does not exist and they rely on human input, which, especially during high stress

164

Standard CPP activation

2014Nov2511:12 - 11:24 2014Dec1009:11-10:57

Figure 5-27: Image of unusual readings from CPP pump after maintenance.

situations, can result in errors. The SAW can be used to ensure proper steps are

followed, producing a warning signal if proper sequencing is riot observed.

The nonintrusive SAW also offers opportunities for tracking machinery health.

There are characteristic start up and steady state signatures associated with each

piece of machinery. If these signatures change, then there may be an identifiable main-

tenance issue. For example, punip damage can occur when pumps are run without a

pumping medium (run "dry"). This situation occurred with a CPP pump onboard

SPENCER during the cruise under observation here. After performing maintenance,

the CPP pump was started and run without a medium for several seconds (system was

purged of fluid during maintenance). Figure 5-27 shows power fluctuations possibly

caused by loss of suction in the pump. By identifying these events, the nonintrusive

monitor can be used for health monitoring.

Another example of this is when the cutter moors (enters port) or leaves port.

During these evolutions, there are rapid calls for rudder and propeller commands.

These rapid movements can be seen in unusual patterns in the CPP's power draw

as the motor is worked aggressively. This can cause damage to the pump or mo-

tor beyond normal expectations and, depending on conditions, could indicate that

operators should be encouraged to decrease command frequency. At a minimum,

these records can be used as a kind of "odometer" to indicated the potential need for

maintenance. Figure 5-28 shows these heavy use patterns.

Unexpected oscillations 3

After logged maintenance

2(2)

M P1 (A)

MO 01 (A)

0

50

Unusual oscillations in hydraulic motor
During increased maneuvering

00
12:02 12:04 '2:06 2:08 12 10 12 12 12 14 12.16 12:18 12:20

2014 Nov 30 12:00 - 12:21

Figure 5-28: Image of unusual readings from CPP pump during mooring; oscillations
indicate aggressive operation of the pump motor.

5.3.5 Case Study Results

Each piece of machinery on the ship can be characterized on initial installation of the

SAW during a training phase. There are a variety of methods for acquiring training

data. During the training phase, for example, readings are taken on three phases

A-B-C while loads on-board the ship are activated or observed during dock-side op-

eration. Power signatures are recorded in real and reactive power and higher current

harmonics, associated as fingerprints for each load of interest. Different machinery

draws different amounts of real and reactive power and harmonics consistent with the

different physical tasks performed by different machines. Each piece of equipment may

also exhibit unique turn-on transients. For example, Figure 5-29a shows the real and

reactive power demanded during the startup transient of a CPP pump. For compari-

son, Figure 5-29b shows the turn-on transient of a lube-oil heater. These distinctive,

predictable, and reproducible waveforms can serve as fingerprints for recognizing and

disaggregating load operating schedule by examining the aggregate power feed to the

loads, even when several loads are operating at the same time.

Some machines operate with strong periodicities, such as heaters that have a pe-

riod of operation where they are on for a relatively constant amount of time and then

166

il

2014 Dec 1009:19 2014 Dec 15 19:36

(a) Startup for CPP pump. (b) Startup for SSDG lube oil heater.

Figure 5-29: Startup transients for USCGC SPENCER equipment

off for a constant and relatively predictable amount of time for certain underway

conditions. Other machines follow a predictable sequence of events, e.g., if one piece

of machinery starts, another should start at a given interval later, e.g. the pumps in

a reverse-osmosis water system. Through knowledge of proper system operation and

prediction of events, an expert system can be developed that uses non intrusively ob-

served power transients to identify not only particular loads but also particular cycles

of operation or ship state, such as an engine start. The Wattsworth programming

environment can be used to flexibly implement an expert system that analyzes and

summarizes ship state and condition based on observed load transients and opera-

tion. First, by running a load identification filter over an incoming set of data, load

events can be identified and tagged. Streams of tagged events can be further ana-

lyzed to identify sequences of load operation that correspond to correct or improper

use of a multi-load system. These analyses can be summarized automatically as log

reports, providing high accuracy automated replacements for human generated logs,

unburdening the crew of this labor. For example, Figure 5-30 shows an actual log

report from a SPENCER watchstander during a recent underway cruise. The SAW

onboard SPENCER automatically generated the log shown in Figure 5-31. Note the

similarities and the more exact times found by the NILM system.

Additional metrics can be parsed from this data. For example, fuel oil transfer

pumps periodically transfer diesel fuel to a ready service tank feeding propulsion and

power generating prime movers. These fuel pumps deliver a relatively consistent flow

rate. The SAW is capable of tracking the operating time of the fuel pump electri-

cally, and then deriving the implied fuel transferred to the service tank, essentially

167

DEPARTMENT OF HOMELAND SECURITY
U.S. COAST GUARD

CG-2616G (Rev 12/21/12) Sheet A

MACHINERY LOG
U.S. Coast Guard Cutter SPENCER (WMEC 905) Date: 10 DEC 14

WATCH OFFICER'S REMARKS:
0000-0400

Vessel Is moored at the above location. Ship's status is B-12. Electrical power, potable water, and sewage discharge are being supplied via
shore-tie. Reviewed Tag-Out Log and the following machinery is listed as OOC: Oily water separator system, Bridge window heater STBD
center, #2 MG set, VCT suction valve, Clutch control PLTHS pushbutton and STBD CPP L/O Heater. All other machinery is IAW the
Midnight Machinery Status sheet. 0345 Carried out the watch routine.

0400-0800
Vessel is moored as before. 0425 Energized the pre-lube pumps for both SSDG's. 0430 Started both SSDG's and secured the pre-lube
pumps. 0500 Shifted from shore power to ship's power. 0501 Paralleled the #1 SSDG to the main bus. 0535 Conducted round of the ship
and the pier, all secure. 0545 Conducted round of the ship and the pier, al secure. 0550 Conducted blow downs of BMDE's. 0600 Started
BMDE's. 0630 Shifted BMDE's from E-MAN to ECC Auto. 0700 Completed Light-Off Schedule. 0720 Set the Special Sea Detail. Set RMD in
the Engine Room. 0735 Clutched in BMDE's, placed in PHC Auto. 0745 Carried out the watch routine.

0800-1200
Vessel Is moored as before. 0814 Vessel U/W. 0825 Conducted round of the E/R, all secure. 0855 Secured from Special Sea Detail, secured
from RMD in the E/R. 0905 Secured BCPP C Pumps. 0906 Energized BMDE and BSSDG L/O spinners. 0921 Set Restricted Maneuvering
Doctrine and Set GE. 0922 Energized BCPP C Pumps. 0924 Energized #1 and #2 Fire Pumps. 1055 Secured from GE and Secured from
Restricted Maneuvering Doctrine. 1056 Secured #1 and #2 Fire Pumps. 1057 Secured BCPP C Pumps Carried out the watch routine.

Figure 5-30: The machinery log generated manually by the ship's crew by logging
events and times.

automating the tracking of fuel consumption. Currently, fuel transfer amounts are

discovered through manual soundings or an Automatic Tank Level Indicator (TLI)

on newer vessels. This approximation from the SAW can be a check of these readings.

In heavy weather, manual soundings and TLI readings are extremely unreliable and

difficult to achieve due to the motion of the vessel. In rough seas the NILM is capable

of providing the most accurate fuel consumption estimate. Several other metrics like

this can be developed as well, including machinery hours (an important maintenance

factor), crew fatigue from hours at heightened alert, proper sequencing and alignment

of multi-pump systems like RO, and metrics on days underway.

The robust nature and simplicity of the NILM system offers several advantages

to the distributed sensor network currently used by USCG, USN and commercial

fleets. Communications losses are common place in distributed systems with long

cable runs, large numbers of complex sensors, and complex communications systems

168

DEPARTMENT OF HOMELAND SECURITY
U.S. COAST GUARD
CG-2616G(Rev 12/21 /1 2) Sheet A

Date: 10 Dec 14

MACHINERY LOG

U.S. Coast Guard Cutter SPENCER (WMEC 905)
0000-0400

Vessel is moored as before. Watch procerly ro4,eved, carried out watch routine.

0400-0800

Vessel is moored as before. 05:01: Started 02 SSDG. 07:20 Set RMD. Watch properly relieved.
carried out watch routine.

0800-1200

Vessel is noored as before. 07.37. Securec Inport ASW pump. Vessel Underway. 09:03: Secured
RMD 09-07: Secired #2 SSDG. 09:21. Set RMD. 10:55: Secured RMD 11:29: Started #2 SSDG.
Watch properly relieved, carried out watch routine.

1200-1600

Vessel is underway as before. 13:56:Started #2 Main Proputsion Dese Engine Prelube Pump
14:1:Stopped #2 Main Propulsion Diesel Engine Prelube Pump 14:04: Shifted to Underway ASW
pump. Underway 14:04: Started #2 SSDG. 14:26: Set RMD Watch aropety relieved. carried out
watch routine.

Figure 5-31: Automatic machinery log generated by a SAW onboard SPENCER.

involving repeaters. Compared to these systems, the nonintrusive approach requires

much less maintenance, requires less equipment, and is a fraction of the price to

purchase and to install.

5.3.6 Implications

Observation from the USCGC SPENCER field data indicates that nonintrusive power

monitoring can have an important role in ship operation and maintenance. Here,

we observed a single important breaker panel with eight systems during a month of

underway operation. The nonintrusive SAW accurately tracked all systems. The SAW

also developed derived metrics using "expert" knowledge of the combined operation

of ship systems. For example, the SAW tracked MPDE auxiliaries to determine when

the MPDE was online and offline as well as track the usage of the CPP "C" pumps.

By tracking the auxiliaries systems of the MPDE, order of operations can be verified

to ensure health of the machinery as well as proper start up and securing procedures.

169

Using this information, top level commanders can easily see the exact state of the

vessel, underway, at RMD, or other modes of operation. Work is currently underway

to install a NILM system on the USCGC SPENCER to monitor the entire, ship-wide

machinery status by placing the NILM at the ship's central power distribution panel.

In preliminary observation, loads were observed turning on and off, similar to the

observations from the single panel experiment described here. Future work is aimed

at expanding the ability of the NILM to detect events in more complex aggregate

data streams, and produce comprehensive logs and reports for the entire ship.

170

Appendix A

Documentation

This appendix covers the installation and operation of non-intrusive power monitors

and the usage of the NILM Manager web platform. This appendix is available in

its entiriety in the NILM Manager Help section. From a standalone system visit

http://nilm.standalone/help or from any Internet connected device visit http://

www.wattsworth. net/help. Appendix A.1 provides quick start guides to common

operations. This covers the installation and configuration of non-contact and contact

power meters as well as smart plugs. Appendix A.2 is a comprehensive guide to all

of the Wattsworth hardware and software arranged as follows:

Hardware Configuration Setup and install contact or non-contact power meters

Software Configuration Configure data capture with one or more power meters

Smart Plugs Setup and use smart plugs with a NILM system

Administration Manage databases, processes, and global settings

NILM Explorer View data streams in the web browser plotting interface

NILM Filter Run custom python scripts that create new data streams

NILM Analyzer Run custom python scripts that generate HTML reports

NILM Finder Find and identify loads using exemplars

171

Processes Automate NILM filters and analyzers

Command Line Interface Low level command line tool to interact with the NILM

172

Quickstart Guide To
Setting up a Contact Meter

1. Install current and voltage sensors

Configure the resistor settings for the current sensors

The LEM current sensors are converted to voltages by a resistive load on the meter circuit board. The value of this load is set

by a series of DIP switches for each current sensor. See Setting up a Contact Meter for details on setting the DIP switches. The

load resistance should be set to spread the expected signal as widely as possible across the +/- 5V input range. The upper limit

on the load resistance is specified in the LEM datasheet. See LA 55-P datasheet for an example.

Connect the LEM current sensors and mount the meter

The voltage sensor wires and current sensors must be installed by a trained electrician. Make sure all equipment if fully de-

energized and tagged out before installation. It is best practice to install the voltage sensors on a seperate breaker so the meter

can be de-energized without shutting off other applicances. Use the illustration in Setting up a Contact Meter to determine the

mapping of voltage and current sensor phases to the LabJack indices. This information will be required Step 3.

2. Setup the ethernet connection

Ptck a network topology

Single Meter: If there is only one contact meter in the installation, it should be directly connected to the host computer's built

in ethernet port or to a USB to ethernet converter. No special configuration of the LabJack IP address is required. The host

computer interface must be a unique address on the same subnet. With a LabJack set to factory defaults the host address

should be 192.168.1. 200. see an example

Multiple Meters: If multiple contact meter connect to the same host there are two possible network configurations. Both

require reconfiguration of the LabJack IP address.

Switched Subnet: In this topology the meter's and the host computer connect to a common network switch. The meters and

the host computer must be on the same subnet and each LabJack must have a unique address. see an example

Multiple Interfaces: In this topology each meter connects directly to the host computer either to a built-in ethernet port or

through a USB to ethernet converter. Each meter and its host interface share a subnet and must have unique addresses. see an

example

Configure the LabJack IP address

The LabJack settings are configured with LJStream. This is a Windows only application. Check the company website for the

latest release or download the local copy of LabJack-2015-11-19.exe. The Windows machine can be configured to talk to the

LabJack over ethernet or the LabJack can be physically removed from the meter and connected to the Windows machine by

USB.

173

Configure the Host IP address

The host computer IP address is configured with Network Connections. One way to access Network Connections is through

the Dash (see example). This will bring up a dialog with all of the current network connections. Select the interface used by the

LabJack and follow the steps in Network Configuration to change the IP address settings.

3. Configure the host computer

Set up a secondary hard drive

The NILM database (NilmDB) should be stored on a seperate hard drive if possible. This protects the main system from being

completely filled by NiImDB and becoming unstable (although a properly configured meters .ymi should prevent the database

from growing too large). Placing NiImDB on a seperate drive also makes it possible to get data off a meter by simply removing

the drive and replacing it with a new one. See Setting Up Storage for more details.

Add configuration to meters . yml

Open meters. ymi (on the Desktop) in a text editor or simply double click the file icon to use the default editor. Copy the

template and follow the instructions in Setting up a Contact Meter. Note: If you are configuring multiple meters, each meter

needs a unique name (meter1, meter2, ... meterN). Adjust the template configuration accordingly.

Configure BIOS for Auto-Boot

NILM's installed at remote sites should be configured to restart if power is lost and later restored (auto-boot). By default the

BIOS will leave a computer off if power is lost, requiring a manual button press to turn the system back on. Each BIOS is

different but most can be configured by holding F12 or DEL during system boot. It is best practice to install an uninterruptible

power supply (UPS) with the meter both to reduce the chance of power failure and to record current and voltage signals during

the power glitch for later diagnostics. Make sure the UPS is configured to restart automatically if it is discharged entirely before

power is restored.

4. Verify the configuration

Check meters . ymi

Use nilm-check-config to check meters.yml for syntax errors and configuration warnings. Run this command from a

terminal window (how to access the terminal). Make sure there are no errors and that you fix or fully understand any warnings.

The configuration check also displays the amount of storage required. It is best pratice to use only 80% or less of the available

space even if NilmDB is on on a seperate drive. This keeps space available for data generated by filters or snapshots of

interesting data that would otherwise be erased by the keep settings in meters . yml.

Check the sensors

Use niim-scope to check the sensors. Run this command from a terminal window (how to access the terminal). Check the

relative phases of the current and voltage to make sure the sensor indices in meters.ymi are correct. Note that the currents

will not line up exactly with the voltages if the power factor is less than unity. This is common when there are large motors or

other inductive loads on a phase.

174

5. Start capturing data from the meter

Start nilm-capture service

Start (or re-start) the nilm-capture service using the terminal (how to access the terminal).

Check the system logs

Check the files in /var/log/nilm periodically for error messages. See NILM System Logs for details.

6. View meter data from the website

Refresh the web manager

Open the Installation Administration E page, select the "Database" tab, and click E= twice. This will update the web

interface with the new meter. You should the new meter and its data streams appear in the navigation tree. See Managing the

NILM Database for more details.

Plot meter data

Open the Data Explorer C? and select one or more streams from the new meter. Click Start Live Update to view the latest data

and verify that the data is being captured and processed correctly. Edit meters. yml to fix any of the following errors:

" If the ratio of P and Q are wrong adjust the phase's sinef it-rotation angle.

* If current or voltage scales are incorrect adjust the respective sensor_scales. Each phase can be fine tuned by using an

array of scale factors instead of a single value.

" If the amplitude of prep is wrong but the current and voltage are correct adjust the nominal-rms-voltage setting.

See Configuring a Contact Meter for more details. Note that you must restart the nilm-capture service for changes in

meters. yml to take effect.

175

Quickstart Guide To
Setting up a Non-Contact Meter

1. Install the non-contact sensors

Select a sensor configuration

Select the type of sensor platform you want to use. The Flex Sensor is an all-in-one platform that is ideal for multiple conductor

powerlines where the location of each conductor inside the bundle is not known. The D-A-Y board is ideal for monitoring

multiple physical conductors or where the location of each conductor in a wire bundle is known. In general the D-A-Y board

package provides a more flexible solution and is the recommended platform. The non-contact sensor (D-Board) has four input

ports. Sensor boards (A Boards) can connect directly to these input ports. Each A Board provides a current and a derivative of

voltage signal. Connecting a sensor to each input port provides a total of four current measurements and four derivative of

voltage measurements. This is the recommended configuration. If you want a different combination of sensor inputs or want

true voltage rather than derivative of voltage you can use a Y Board to adjust the sensor configuration. The Y-Board connects

to any input port on the D-Board and provides two connection ports for sensors (A-Boards). A set of jumpers selects which

signals are passed back to the D-Board. See the a close up of the jumper configuration diagram here.

Attach sensors

If using the D-A-Y board platfrom, attach the A-Boards to the powerline with zip ties. Multiple A-Boards can be connected with

a single zip tie or each board can be connected individually as shown in the example figures. Make sure each board is

connected securely to ensure accurate measurements. Connect the ribbon cable plugs to the D-Board before putting the D-

Board in its enclosure. Once all cables are seated, connect the USB cable and seal the D-Board in its enclosure. If using the

Flex Board secure the sensor to the powerline two zip ties, one at the base and the other around the flexible arms.

2. Configure the host computer

Set up a secondary hard drive

The NILM database (NilmDB) should be stored on a seperate hard drive if possible. This protects the main system from being

completely filled by NiImDB and becoming unstable (although a properly configured meters .yml should prevent the database

from growing too large). Placing NiImDB on a seperate drive also makes it possible to get data off a meter by simply removing

the drive and replacing it with a new one. See Setting Up Storage for more details.

Add configuration to meters. yml

Open meters . ymi (on the Desktop) in a text editor or simply double click the file icon to use the default editor. Copy the

template and follow the instructions in Configuring a Non-Contact Meter. Note: If you are configuring multiple meters, each

meter needs a unique name (meter1, meter2, ... meterN). Adjust the template configuration accordingly.

Configure BIOS for Auto-Boot

176

Meters deployed to remote sites should be configured to restart if power is lost and later restored (auto-boot). By default the

BIOS will leave a computer off if power is lost, requiring a manual button press to turn the system back on. Each BIOS is

different but most can be configured by holding F12 or DEL during system boot. It is best practice to install an uninterruptible

power supply (UPS) with the meter both to reduce the chance of power failure and to record current and voltage signals during

the power glitch for later diagnostics. Make sure the UPS is configured to restart automatically if it is discharged entirely before

power is restored.

3. Verify the configuration

Check meters .ymi

Use ni im-check-config to check meters.yml for syntax errors and configuration warnings. Run this command from a

terminal window (how to access the terminal). Make sure there are no errors and that you fix or fully understand any warnings.

The configuration check also displays the amount of storage required. It is best pratice to use only 80% or less of the available

space even if NilmDB is on on a seperate drive. This keeps space available for data generated by filters or snapshots of

interesting data that would otherwise be erased by the keep settings in meters .yml.

Check the sensors

Use ni Im-scope to check the sensors. Run this command from a terminal window (how to access the terminal). Check that

the magnetic sensors have strong signals and show a diverse response to currents on different phases. Adjust the sensor

location if the signal is low or the sensor responses appear too similar. Check that the voltage sensor has a strong and stable

signal. If you are using an A-Board connected directly to the meter the signal will look like a "messy" sine wave. If you are using

a Y-Board with integration the signal should be a "clean" sine wave. The legend labels the sensors by type. Make sure the

magnetic sensor channels are labeled "current" and the voltage sensor channel is labeled "voltage". Any channel not in the

meters . yml configuration will be labeled "--unused--". Note that all channels are stored in the sensor data stream

regardless of sensor type.

4. Calibrate the non-contact sensors

Run the nilm-calibrate program

Use nilm-calibrate to finish setting up the non-contact meter. Run this command from a terminal window (how to access

the terminal). Calibration requires a NILM smart plug and a resistive load like an incandescent light bulb and a micro USB cable.

5. Start capturing data from the meter

Start nilm-capture service

Start (or re-start) the nilm-capture service using the terminal (how to access the terminal).

Check the system logs

Check the files in /var/log/nilm periodically for error messages. See NILM System Logs for details.

6. View meter data from the website

177

Refresh the web manager

Open the Installation Administration E, page and click the local repository = button. On the Repository Management

page, select the "Database" tab, and click s twice. This will update the web interface with the new meter. You should

see the new meter and its data streams appear in the navigation tree. See Managing the NILM Database for more details.

Plot meter data

Open the Data Explorer 2- and select one or more streams from the new meter. Click Start Live Update to view the latest data

and verify that the data is being captured and processed correctly. If the data is correct but noisy or shows significant "cross

talk" between phases try adjusting the sensor position and recalibrating. If the data looks incorrectly calibrated try increasing

the duration of the calibration and/or the power of the calibration load. You can re-calibrate the system at any time by

running nilm-calibrate.

178

Quickstart Guide To
Smart Plugs

1. Hardware Setup

Configure Wireless Router

The plugs will work with most commercial routers. The plug documentation provides detailed instructions on configuring a TP-

Link modem.

Connect Plug

Before using a plug it must be configured over USB. Power up the plug by placing it in an outlet and connect it to the NILM

using a micro USB cable. The status LED will alternate between green and blue. Wait until the LED is solid green before

continuing to step 2. See a closeup view of the USB connection here

2. Configure the Plug

Plug Command Line nterface (CLI)

From a terminal window, open up the plug command line interface by running the command below (how to access the

terminal). NOTE: If multiple plugs are connected to the same NILM over USB then you must specify the /dev/NODE name of

the plug. See USB Plugs for details.

I $ nilm-plug --cli

2 /dev/smart-plug, 115200 baud

3 ^C to exit

4 -----------

5 Wattsworth WEMO(R) Plug v1.0

6 [help] for more information

8 >

Disabling Calibration Mode optional

If the plug is configured as a calibration load it will not operate as a smart plug until you explicitly stop the calibration. Run the

commands shown below. (documentation for calibrate, config, restart)

1 > calibrate stop

2 > config set standalone false

3 > restart

179

This will restart the plug and you will have to enter the command line interface by running the nilm-plug -- cli command

again

Configuring Wifi Parameters

The plugs will work on most standard WiFi networks. They will operate on 802.11 a/b/g with WPA2, WEP or no encryption.
WPA2 is recommended for the best security. Run the following commands replacing network-name and network _password
with the appropriate values. Ignore the password setting if your network is not protected. (documentation for config)

> config set wifi ssid networkname

2 > config set wifipwd network_password

This is all that's needed to get the plug on your network. To check the plug connectivity run the following commands to view

debug output from the plug as it connects to the network: (documentation for debug, wifi)

> debug 5

I > wifi on

You should see several AT commands and ultimately a success message with an IP address. This should match the address
reservation on the wireless modem as configured in Step 1. Alternatively you can look at the plug log which should end with
an entry similar to the following: (documentation for log)

> log read

... other entries ...

3 [2016-03-04 20:26:55]: Joined [MIT] with IP [18.111.127.86]

3. Using the Plug

Control from a terminal window with nilm-plug

Once the plug is configured for the wireless network it can be disconnected from the NILM and placed in any outlet within
range of the WiFi access point. After the plug has connected to the network you can interact with it from a terminal window
using nilm-plug. This command lets you read the power meter data, and set the relay.

Control with Python scripts

An application programming interface (API) is available in Python. See Plug API for full details. Python scripts using the API can
be executed directly from the command line or built into NILM Filters and Reports.

180

Quickstart Guide To
Adding Custom Data

1. Format Data and Add Timestamps

NILM data is organized as rows of timestamped measurements. A measurement may be multiple columns. All values must be

numeric. No string sequences are allowed. For example a three axis accelerometer could generate three columns of data

corresponding to X, Y, and Z measurements, or a weather station might record barometric pressure, windspeed, wind angle,

and temperature. The first column of each row must be a a microsecond Unix microsecond timestamp. Each timestamp must

be unique and the set must be monotonic and ascending. All values must be space seperated. The example below shows

sample timestamped data with five floating point values:

1360262088608397 0.0543 0.3084 0.5181 0.0917 0.1640
1360262088625069 0.0864 0.5944 0.6732 0.2295 0.7166
1360262088641741 0.2242 0.8805 0.6136 0.3385 0.9002
1360262088658413 0.1411 0.6335 0.2040 0.2504 0.0136
1360262088675085 0.7833 0.1320 0.3238 0.1469 0.1157
1360262088691756 0.2791 0.7644 0.2437 0.2097 0.1057
1360262088708428 0.8472 0.3904 0.1049 0.0328 0.4186

2. Create a New Database Stream

Stream Naming Convention

Data is stored in uniquely named streams. The name has two components, group_name and filename. These are

seperated by a forward slash similar to a Unix path name:

/groupname/file_name

Streams are indexed according to these names. Streams store a fixed number of columns of a particular datatype. See the

NilmDB reference for a full list of valid data types. The naming convention is typecolumns where columns is the number of

values in a sample not including the timestamp. The data in Step 1 above could be stored in a stream with the following data

format:

float32_5

Create Group Stream optional

If you want to have your dataset appear in the same group as other streams already on the system, use the same group name

as these other streams. If you want your dataset in its own group you will need to create an additional group stream. Use the

nilmtool create command replacing groupname with a unique lowercase alphabetic string as shown below:

1 $ nilmtool create /groupname/info uint8_1

Create Data Stream

Determine the datatype and the number of columns (not including the timestamp) for the stream. If you are unsure of the

datatype use float32. Create the stream replacing groupname, filename, and columns with the appropriate values.

181

i $ nilmtool create /group name/file name float32_columns

3. Write Data to the Stream

Determine Start and End Timestamps

Data is stored as bounded intervals. In order to add raw data to a stream you must specify the interval of time that it covers.

The minimum valid interval is first timestamp in the data to one microsecond past the last timestamp in the data. For example

the data in Step 1 could be inserted with the following interval:

start: 1360262088608397 end: 1360262088708429

Write the Data

Use the nilmtool insert command to write the data into the new stream as shown below replacing data. txt with the

timestamped data created in Step 1 and the appropriate timestamps for start and end:

1 $ nilm-insert /group name/file name -s start -e end < data.txt

4. Decimate Stream (optional)

In order to plot streams using NILM Explorer they must be decimated. This roughly doubles the disk space required by the

stream so if you do not need to plot it, skipping this step will save space. Use the nilm-deciarrte-auto command as shown

below:

$ nilm-decimate-auto /groupname/file name

5. Configure Stream Attributes

Open the Administration window and refresh the database twice. If you do not see the new stream make sure that the

groupname matches an existing group or if you wanted to create a new group make sure you added the group stream in Step

2. Select the new file and update the stream attributes, in particular select the plottable checkbox if you want to use it in NILM

Explorer. See Administration for more details.

182

Hardware Setup

Introduction

Non-Intrusive Load Monitors (NILM) collect data using one or more hardware meters. There are two

different kinds of meters: contact and non-contact. The contact system uses commercial current and

voltage sensors and should be installed by an electrician. The non-contact system uses electromagnetic

field sensors to measure current and voltage without touching the powerline. The contact system is more

accurate but expensive and difficult to install. The non-contact system can be installed quickly and easily

but requires an additional calibration step. A single NILM can manage one or more of either type of meter.

Contact Meter

The contact meter uses LEM voltage and current sensors. The sensors are digitized by a UE9 LabJack.

The LabJack has multiple input channels. The sensor to LabJack channel mapping (index) is show in the

figure below. The current sensors connect to the PCB with Molex plugs. Trace the twisted cable from the

plug to the panel mounts and label the outside of the box before installing the system. This will make it

easier to assign the correct channel mappings.

Connections

SCurrent

1Current
2 Current

3 Voltage
4] Voltage

5 Voltage

The sensors must be scaled correctly to convert the measurements to volts and amps. The voltage scale

factor is set in hardware to 0 . 0919 and the current scale factor can be calculated using the formula in

the figure below. alphaLEM is the Conversion ratio found on the LEM sensor datasheet. This is usually

on the order of 1000. See LA 55-P datasheet for an example. R is the load resistance set by the channel

DIP switches (see the chart below).

Conversion Factors

183

S O Va-u

1 80(0

2 40f0

3 20 0

4 10 0

5 50

ON switches add 0 0C

Current Conversion Factor

5.07 - (-5.18) X aLEM
216 R

aLEM: from LEM datasheet

Voltage Conversion Factor

0.0919 (fixed)

Write down the LabJack index to sensor mapping and the scale factor required for each sensor. Once

the meter is installed and connected to the host machine, enter these values into meters . yml. See

Setting up a Contact Meter for details.

Non-Contact Meter

The non-contact meter uses magnetic and electric field sensors to indirectly measure the current and

voltage in a powerline. This system is easier to install than a contact meter but requires an additional
calibration step. There are two different non-contact sensor hardware platforms. The Flex Board and the

D-A-Y Boards.

Flex Board

The Flex Board is an all-in-one platform with both sensors and a microcontroller for data acquisition. The
main PCB has an electric field sensor, and a magnetic field sensor. There is also compensation circuitry to
provide an integrated electric field output which is proportional to the line voltage. The magnetic sensor
also contains a PTAT (proportional to absolute temperature) sensor. The flexible arms hold four more
magnetic sensors. The microcontroller samples all eight sensor outputs and provides the values over
USB. The sensor indices are provided in the figure below. Unless there is a need for a hardware

integrated signal, the raw electric field output (index 0) with digital integration is the recommended

configuration.

header

0 A Voltage

1 Current

2 Current

3 Current

4 Current

5 Current

6 Voltage

7 PTAT

Flex board index to sensor mapping. See the board silk screen header pinout.

184

D-A-Y Boards

The other non-contact platform is a suite of three seperate boards. The standard configuration is a data

acquisition (D) Board and at least as many analog sensor (A) boards as phases (eg 3 phase system = 3 or

more A Boards). Each A-Board has a current sensor and a "derivative of voltage" sensor. The figure below

shows the channel to sensor mapping when A-Boards are connected directly to the D-Board. Only one of

the four A-Boards is used by the NILM to determine the line voltage. Once you have configured the meter

in meters .yml, use the nir-scope utility to determine which A-Board has the strongest reading and use

its index as the voltage: sensor-index in meters. yml.

Header 0 1 2 3

0 0 A Voltage
1 0 Current

2 1 A Voltage
3 1 Current

4 2 A Voltage
5 2 Current

6 3 A Voltage
7 3 Current

D-Board index to sensor mapping. Each A-Board measures current and the

derivative of voltage

Securely connect each A-Board to the power cable using a zip tie as shown. The accuracy of the meter

depends on the stability of this connection. If the A-Boards rotate after installation the meter will need to

be recalibrated. The quality of the output depends on how well the sensors are positioned. If the location

of the conductors is visible try to align each A-Boards to a separate conductor. If the conductor geometry

is not known use the nilm-scope utility once you have set up the meter in meters . yml to determine

optimal sensor placement. Loads on each phase should exicte a different "mix" of the sensors.

Capture the ribbon cable and securely attach to

ILn
Multiple sensors can be connected with a

185

the powerline

Using the Y Board

The non-contact meter can adapt to a wide variety of installation types through the use of the Y Board

adapater. The Y Board multiplexes two A Boards into a single pair of channels and provides optional

hardware integration. The lefthand figure below shows a cartoon of the Y Board schematic. Zero ohm

0603 jumpers are used to select which of the six available inputs are placed on each output (S1 and S2).

Note: only use one jumper per channel

VvII 11 V2 jSv2 12

V1 2fV1 1S11 V2 Sv2 12

Y Board configured for V1 and integrated V1 Y Board jumper pinout. Use 0603 zero ohm

output resistors

Calibration

Non-contact meters must be calibrated before they can collect current and voltage measurements. You

will need a resistive load, a smart plug and a micro-USB cable. The resistive load should be greater than

200W- incandescent light bulbs work well. Once you have chosen a load and the sensors are installed,

configure the meter in the meters. ymi file as described in Setting up a Non-Contact Meter. To calibrate

the meter, open a terminal window and run nilm-calibrate with the name of the meter in

meters.yml (meteri, meter2, etc.):

1 $ nilm-calibrate meterX

The script will first provide a summary of the meter configuration. If this looks correct, answer y. Any

other key will cancel the calibration process.Plug the smart plug into an outlet and connect it to the

computer with the USB cable. The status light will alternate between blue and green. Once it is solid

green, answer y at the prompt for programming the plug. If you already have a plug in calibration mode

you can answer n and reuse the plug for this calibration. If an error occurs programming the plug wait

until the plug LED is solid green and try again.

186

single zip tie

Once the plug is programmed (or the step is skipped) you will be instructed to connect the load to the

first phase. Connect the smart plug to any outlet and then connect the load. Once the load is turning on

and off, hit [ENTER]. Do not hit [ENTER] until the smart plug is turning on and off.

If the meter is configured for multiphase operation you will be prompted to move the plug to an outlet on

each additional phase. Do not worry about identifying which outlet is wired to which phase. The

calibration program will automatically detect if you have connected the load to a previous phase and

prompt you to move it.

Once the calibration program has run a sufficient number of measurements you will be asked if you want

to save the results. Choose y to commit the calibration or n to discard. If you do not save the results the

previous calibration values will be used (if available).

After calibration you may have to start the data capture manually, if you do the script will instruct you to

run the following command:

1 $ sudo service nilm-capture start

The meter LED will turn blue when it is actively recording data.

187

Software Setup

Introduction

The NILM Software suite provides a complete set of tools to acquire, process, and manage high

bandwidth NILM datasets. The following sections cover the software installation and configuration. Usage

of particular components of the software suite are covered separately by topic from the main help page.

For advanced use see the NILM command line interface for a full listing of available NILM programs and

commands.

Instalation

The NILM software suite is divided into data acquisition tools and the web manager. The data acquisition

tools can be installed on any Ubuntu distribution (verified up to 15). The web manager is only supported

on Ubuntu 14.04.3 LTS (Trusty Tahr). The system requires upstart support which is a proprietary Ubuntu

init protocol, therefore the system will not run on other Linux distros. The software is installed off a USB

stick. To create the installation media, format a USB stick with a single ext4 partition and copy over the

contents of the installer folder which can be found on the Desktop of any NILM system. See Storage

Setup for details on partitioning and formatting a drive.

Install Full Software Suite

Install a fresh copy of Ubuntu 14.04.3 on the system with username nilm. Once the installation is

complete restart the computer and insert the NILM USB stick. Open a terminal window and change to the

NILM USB stick directory. Then run the install script as shown below:

I $ cd /media/nilm/<name of usb stick>

2 $ bash install.sh

This will take a while to run. When it is complete you should see the following:

---------- Install Complete-------------
RESTART YOUR MACHINE
Configure meters in meters.yml on the Desktop
Go to http://nilm.standalone to manage this system

If this does not appear, an error occured. Check the log output for details and correct the error then run

the script again.

Configuration

The NILM is completely configured by the meters . yml located on the Desktop. This file lists the

configurations for each connected power meter. Both contact and non-contact meters can be set up in

this file. A single NILM can run multiple meters of either type. Meters are listed sequentially as meter 1 to

188

meterN. Any changes to this file will only on a reboot or manually restarting the nilm-capture service.

Some settings may not be changed after a meter is initialized (eg the number of phases), others may be

changed at any time (eg the amount of data to keep on disk). The next two sections explain how to

configure both types of power meters.

Setting up a contact meter

The contact meter should be installed before it is configured. Make careful note of the current sensor

connections and their relative orientations. Run the command below to check the communication link

between the computer and the meter.

1 $ ping <LabJack IP Address> -c 4

This should return with a line similar to

--- 192.168.1.209 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2998ms
rtt min/avg/max/mdev = 0.026/0.031/0.035/0.006 ms

Open meters. ymi in a text editor and copy over the example configuration below. If there is already a

meter 1, give this meter a unique index (eg meter2). If you reuse a meter name, for example change

meter1 from a contact meter to a non-contact meter, or change the meter from 2 phase to 3 phase

operation, you must either rename or completely flush the previous meter's data streams from the Nilm

database. See command line toois for details on moving and renaming streams in NilmDB.

Example Configuration

Note that all fields are required. Details about each field are itemized below the example. Standard

defaults are provided but sensorscales must be set for your specific installation (see contact meter

nardware). The nilm-scope utility is useful for ensuring the channel mappings and sinefit rotations are

correct.

189

I meterl:

2 type: contact

3 enabled: true

4 ipaddress: 192.168.1.209

D phases: 3

6 sensors:

7 voltage:

8 sensor-indices: [3,4,5]

9 sensorscales: 0.0919

10 sinefitphase: A

11 nominalrmsvoltage: 120

12 current:

13 sensorindices: [0,1,2]

sensor-scales: XX

sinefit rotations: [0,120,240]

16 streams:

sinefit:

I8 decimate: true

- keep: im

23 iv:

21 decimate: true

22 keep: 1w

prep:

decimate: true

23 keep: 3w

type

enabled

ip-address

phases

Sensor Configuration

Voltage

sensorindices

set to false to disable this metei

default LabJack address

1 - 3

maps to phase A,B,C

built-in constant

[A,B,C] voltage used by sinefit

used to scale prep to watts

maps to phase A,B,C

set by resistors and LEM, see har(

relative to sinefitphase voltage

if [false] only the base stream w:

how much data to keep as [amount]!

h: hours, d: days, w: weeks

m: months, y: years

if [false] no data will be saved

This should be set to contact

true/false If false, no data is captured from this meter

The IP address of the LabJack. This defaults to 192.168.1.209 but can be set to
another value using the LabJack software (Window's only). When more than one
Contact NILM is used or if the 192.168.1.0 subnet is unavailable you must change

this default value. Note that each LabJack must be on it's own subnet. See Network

Configuration for more details.

A value between 1 and 3. This depends on the power system being monitored.

These are the voltage sensor LabJack channels. The sensors are connected to
channels 3 4 and 5. The order of this list is used to name Phases A, B, and C. When

190

sensorscales

sinefitphase

nominalrms_. .

Current

sensorindices

sensorscales

sinefit rotation

you are installing the system note the phase connection and order this list

accordingly. See the figure in Contact Meter Connections for the voltage sensor

connections.
The scaling coeffecient to convert sensor output to Volts. This is hardwired to

0 . 0919. Seperate scaling factors may be applied to each sensor by using an array

instead of a single value: [XA, XB, XC] where X is the scale factor for each phase.

A,B,c The phase used by the sinefit processor.

This is used to scale prep to approximate power (Watts)

These are the current sensor LabJack channels. The sensors are connected to
channels 0 1 and 2. The order of this list should match the order used in the voltage

configuration. See the figure in NEMO Channel Connections for the current sensor

connections.

The scaling coeffecient to convert sensor output to Amps. See the figure in NEMO

Configuration for details on calculating this value. Seperate scaling factors may be

applied to each sensor by using an array instead of a single value: [XA, XB, XC]

where X is the scale factor for each phase.

The phase difference in degrees from the sinefit_phase voltage for each phase

(note that the coeffecient for the phase used by sinefit should be a 0 in this array)

Stream configuration

The streams configuration block determine how much data is retained for each stream and whether or

not the stream is decimated as it is collected. Once the NILM has been running for a few hours the

nilm-cleanup command line tool can be used to estimate how much space the database will take up

given the amount of data the streams are configured to store. It is very important to make sure the total

size required by the database will fit on your storage drive.

decimate true/false Whether or not the stream should be decimated. This makes the stream

plottable in the web interface but roughly doubles the amount of space required to
store this data. There is also some network overhead associated with decimation so if
you are experiencing high processor load try disabling this for some streams.

keep How much data to keep for this stream. The is specified as a coefficient and unit.

Valid units are h for hours, w for weeks, m for months, and y for years. Set to false

to discard the stream data.

Setting up a non-contact meter

There are many different configurations for the non-contact sensors. See Non-Contact Sensors on the

Hardware help page for detailed information on connecting and configuring the sensor hardware. The

nilm-scope utility can be helpful in finding optimal installation sites for the non-contact sensors.

Open meters .ymi in a text editor and copy over the example configuration below. If there is already a

meter 1, give this meter a unique index (eg meter2). If you reuse a meter name, for example change

meter1 from a contact meter to a non-contact meter, or change the meter from two phase to three phase

191

operation, you must either rename or completely flush the previous meter's data streams from the Nilm

database. See command line tools for details on removing and renaming streams in NilmDB.

meteri:

type: noncontact

enabled: true

serialnumber: meterXXXX

phases: 2

sensors:

voltage:

sensorindex: 0

digitallyintegrate: true

nominal rmsvoltage: 120

current:

sensorindices: [1,3,5,7]

#sensor-indices: [1,2,3,4,5]

calibration:

duration: 30

watts: 200

hasneutral: true

streams:

sinefit:

decimate: true

keep: 1m

iv:

decimate: true

keep: 1w

prep:

decimate: true

keep: 3w

sensor:

keep: false

set to false to disable this metei

found on the meter case

1 - 3

electric field sensor

if true, integrate using FIR filtei

used to scale the electric field

--uncomment a line below, or custor

D-Board with 4 A-Boards

Flex Board

- length of calibration in seconds

power consumed by calibration load

[false] if the system has no neutri

if [false] only the base stream w:

how much data to keep as [amount]l

h: hours, d: days, w: weeks,

m: months, y: years

if [false] no data will be saved

Nor Cuntact Meter Fieds:

type This should be set to noncontact

enabled true/f alse If false, no data is captured from this meter

serialnumber This is printed on the DBoard meter case. See DBoard Setup for more information.

phases A value between 1 and 3. This depends on the power system being monitored.

192

Sensor Configuration

Voltage

sensorindex

digitallyjintegr...

nominalrms_...

Current

sensorindices

This is the index of the electric field sensor to used to calculate the effective voltage

waveform. Use nilm-scope to determine which electric field sensor has the strongest

signal and use its index here.

true/false If the sensor specified in sensorindex does not have hardware

integration, set this to true. See non-contact sensors for information on hardware

versus software integration
The rated line voltage. This is used to scale the voltage output

These are the magnetic sensor indices. Place all available sensors in this array. There
must be at least as many sensors as phases. The order does not matter.

Calibration

duration Time in seconds to run the calibration load on each phase. Longer durations can
improve calibration results especially in environments with many background loads.
Do not use less than 30 seconds on a production system.

watts The power draw of the calibration load. This is used to scale the prep output
has-neutral true/false If the system has a neutral bus (most common), set this to true.

Stream Configuration

The stream configuration block determine how much data is retained for each stream and whether or

not the stream is decimated as it is collected. The sensor stream is the raw output from the DBoard

and is always eight channels whether or not all eight sensor inputs are used. Once the NILM has been

running for a few hours the niim-cleanup command line tool can be used to estimate how much space

the database will take up given the amount of data the streams are configured to store. It is very

important to make sure the total size required by the database will fit on your storage drive.

decimate true/false Whether or not the stream should be decimated. This makes the stream

plottable in the web interface but roughly doubles the amount of space required to
store this data. There is also some network overhead associated with decimation so if
you are experiencing high processor load try disabling this for some streams.

keep How much data to keep for this stream. The is specified as a coefficient and unit.

Valid units are h for hours, w for weeks, m for months, and y for years. Set to f alse

to discard the stream data.

Storage Setup

This section explains how to properly format and configure an extra hard drive for a NILM system. It is

usually a good idea to place the Nilm Database on a seperate hard drive. This prevents the database from

filling the primary drive to the point where the system become unusable and also makes it easy to retrieve

collected data from an installation by simply swapping out the extra harddrive.

193

Formatting a drive After installing the drive and booting the system, the first step to use the drive is to

place a usable filesystem on it. There are many tools that can be used for this but one of the easiest is

GParted. This program must be run as root. From the command line type type the following:

A Be very careful with gparted, formatting the primary drive will destroy the installation

$ sudo gparted

Select the extra drive from the dropdown menu as shown. Generally the extra drive should be /dev/sdb

but this is not always the case. If the drive already has multiple partitions this most likely means it is the

primary drive.

S wA aol OPfii.d Ide a VA. - fti- 6*

& -C Thl EEAEAL AAo h ENTIRE DISKC /deiseds

Carefully select the device node for the extra

drive

Create a new msdos partition table. This will

erase the drive.

Select Device > Create Partition Table to bring up the Create Partition dialog. Select msdos and click

Apply. Select Partition > New to bring up the New Partition dialog. Add a new ext4 partition to the drive

and assign it the full extents of the disk (this is the default). Click Add to close the dialog. Finally click

Apply to format the disk and then close the program.

Croate *W Part.11on

Minemum size: I MB Maximum size: 7799 MB

Free space precedig (MB): Create as: Primary Partition

New size (M43):
File system: ext4

Free space followeig (MiB): 0 F
Align to: Mi Label:

aancel J +ld|

Add an ext4 partition to fill the disk

To use the drive for the Nilm database it must be mounted to the correct location in the filesystem. Edit

/etc/fstab in a word processor and add the following line where /dev/sdXl is the name of the drive you

just formatted. The number one refers to the first (and only) partition. Note that you will need to run the

194

13 Id"dib Q 73 TO)a - J

word processor as root (sudo) in order to edit this file.

/dev/sdXl /opt/data ext4 errors=remount-ro 0 1

Run the following commands to mount the drive and setup the permissions. Use df to verify the

configuration:

1 $ sudo service nilm-capture stop #stop data capture if it is already runi

2 $ sudo mount -a

3 $ sudo chown -R nilm:nilm /opt/data #assign the drive to the nilm user

4 $ df -h

The output from df should look similar to that below:

Filesystem Size Used Avail Use% Mounted on
/dev/sdal 1.8T 5.3G 1.7T 1% /
... other mount points ...

/dev/sdcl 917G 72M 871G 1% /opt/data

If you have already configured your meters and want to start collecting data, run:

1 $ sudo service nilm-capture start

Network Setup

The LabJacks in contact meters require an ethernet connection. If you need more ethernet ports than the

computer has available, use a USB to ethernet adapter. While most adapters should work out of the box,

the recommended adapter is the TU2-ET100 from TRENDnet. After you connect the contact meter to the

computer note the MAC address of the USB adapter. This is found on the backside of the TU2-ET1 00 as

shown in the figure below. Open the network connection editor and configure the interface for the MAC

address used by the NILM. Each interface has a unique MAC address and it is helpful to rename the

connection to "NILM" or "Web" depending on the role of the interface. For interfaces connecting to the

web, set the IPv4 address method to DHCP from the IPv4 Settings tab.

195

Find the MAC address for the LabJack

connection. On the TU2-ET100 this is on the

bottom sticker.

\ Editing NILM

Connection name: NILM

General Ethernet 802.1x Security iPv4 Settings

Device MAC address:

cloned MAC address: D8:E9:97:BD:D4:56 (ethl)

FS:OF:41:74:30:15 (eth)
MTU:

Configure the network interface for the MAC

address associated with the LabJack.

For interfaces connected to a contact meter select the lPv4 Settings tab and set Method to manual.

Click Ca and enter an IP address on the same subnet as the LabJack. Unless you have set up an

advanced configuration the IP address should share the first three numbers as the LabJack and use a

different final number. For example, the default LabJack address is 192.168.1.209 and a valid host IP

address would be 192.168.1.200. The Netmask should be 24 or 255.255.255.0 and the Gateway should

be left blank. Note that each interface must be on a seperate subnet. If you need more than one contact

meter you will have to assign a different IP address to the additional LabJack devices. This is done with

the commercial configuration tool available through the LabJack website.

\ Editing NILM

Connection name: NILM

General Ethernet 802.1x Secuity IPv4 Settings IPv6 Settings

Method: Manua

Addresses

Address Netmask Gateway

DNS servers:

Search domains

Require Pv4 addressing for this connection to complete

R

Add

Delte

notes...

Can.. **-

Assign an address in the same subnet as the

LabJack

\ Editing NILM

Connection name: NILM

General Ethernet 802,1x Sec unty 1Pv4 Settings lPv6 Settings

Method: Manual
\ Editing IPv4 routes for NILM

Address N~etmask Gateway Metric Add

--
use this connection only for resources on its netwo

Cancel Sa.-

Select the local routing check box in the Routes

dialog

106

lPv6 Settings

For multiple LabJack installations address them as 192.168.X.209 where X is different for each device

(between 1 - 255). After you assign the IP address click 1 . and select the checkbox for local

routing only as shown in the figure. This prevents web bound traffic from getting sent to the LabJack.

Once you have completed the IP address configuration click s to close the network configuration

dialog. Open a terminal and enter the following command to reconfigure the network interfaces to use the

new values:

$ sudo service network-manager restart

Cluster Setup

The NILM system can be managed by a Wattsworth Cluster. If the system is connected to a cluster, it

cannot be managed locally. Using the local NILM Manager site (nilm. standalone) while connected to

a cluster will corrupt the NILM filters and analyzers. There are two different types of clusters: VPN and

Peer-to-Peer. The VPN cluster is managed by a central server which provides secure remote access to

any NILM with a Internet connection. The Peer-to-Peer cluster allows one NILM to manage another

NILM. This configuration can be used to manage a "headless" NILM from another NILM that has the

Manager framework installed.

1.) Stop Local Manager: Before joining a cluster, make sure that the local NILM Manager cron tasks are

disabled. Do this by commenting out the NILM Manager lines. See the comments in the crontab for more

details. To edit the crontab open a terminal and run the following command:

1 $ crontab -e

2.) Select a Cluster Type: Decide which type of cluster you want to join. The VPN cluster requires an

Internet connection and the Peer-to-Peer cluster only requires a network connection between the two

NILMs.

2) Join a PN Cluster: Open a terminal and enter the following commands below. This will require you to

enter the cluster administrator's password so have it ready before you begin.

1 $ cd -/Desktop/cluster #switch to the cluster folder on the Desktop

2 $ sudo ./join-cluster.sh clustername

The clustername is the fully qualified domain name (FQDN) of the cluster server. Omit this argument to

see a list of available clusters. Wait for about a minute and run the command:

1 $ ifconfig

197

This will display all the current network interfaces. Look for an interface that begins with tun usually this

will be tuno. Find the IP address for this interface, it will look like 10 .x. x. x. Write this down, you will

need it for the next step. If this command has no output this means the NILM was not able to join the

cluster VPN. To debug VPN problems, run the command below and fix any errors that are displayed:

1 #FOR DEBUGGING ONLY#

2 #run this if there is no tun interface and fix any errors that occur#

3 $ sudo openvpn /etc/openvpn/client.conf

2b.) Join a eer-to- eer Cluster: You must establish a network connection between the two NILMs.

Connect the systems with an ethernet cable and assign both NILM's static IP addresses on the same

subnet. Record the IP address of the managed NILM for the next step.

3.) Add the NILM: Log in to the Cluster NILM Manager site as an administrator and open up the admin

panel. Click Add to bring up the New Repository dialog. Fill in the name, description and

location fields. Uncheck the "default URL box to display the custom URL text boxes. The NilmDB URL

should be X. x. x.X/nilmdb and the Nilm Manager URL should be X. X. X. /nilmrun where x. x. x. x

is the IP address (which is found using the steps above).

New Repository

0eme

MILM So"M. 0 1-234

_ -U1; d1W.1URL .
W.06 URL twyllgo xxi'no

NMm MlanigW URL httUJ0.10.XX.,k b

4.) Leave the Cluster: If you want to remove the NILM from the cluster delete it from the Server tab in

the Global Administration panel. See Global Administration for details.

4a.) Leave a N cluster

1 $ cd -/Desktop/cluster #switch to the cluster folder on the Desktop

2 $ sudo ./leave-cluster.sh <vpn-name>

Then re-enable the local NILM Manager cron tasks by uncommenting the lines commented out in Step 1

Secondary Setup

198

The NILM supports a secondary drive that can be used to copy datasets from the primary database or

preview data collected from another NILM system. Any storage device can be used as a secondary drive

including internal SATA drives, USB flash drives, and eSATA drives. The drive must be an ext4 volume.

See Storage for details on using GParted to format a drive. Ubuntu often automounts removable media, if

it does click the eject button on the Desktop to unmount the volume. Compare the output of the following

command before and after you connect the drive to determine the assigned device name:

1 $ ls /dev/sd*

When the drive is connected the output should include an extra /dev/sd<letter>1 where <letter> is b,c,d

etc. This is the device name. Now mount the volume to the secondary disk location

1 $ sudo mount /dev/sdXX /opt/secondary

2 $ sudo chown -R nilm:nilm /opt/secondary #update drive permissions

Restart the apache web server to initialize the secondary system:

1 $ sudo apache2ctl restart

Once Apache restarts you will be able to access the backup server at

http: / /nilm. secondary/nilmdb. To view the data using the NILM Manager website refresh the

secondary database from the administration interface. See NILM Administration: Database Tab for details.

Also, any nilmtool commands can be used on the secondary server. The most useful commands are the

following:

1 $ nilm-copy-wildcard -u localhost/nilmdb -U nilm.secondary/nilmdb /meterl

2 $ nilm-copy-rename -u localhost/nilmdb -U nilm.secondary/nilmdb /meterX/7

The first will copy all streams associated with meterX to the secondary volume using the same name. The

second command renames the streams which can be helpful when using a single drive to backup

multiple NILM's each with a meterX group. Run either command with the -h flag to see a full list of

options. When you are done copying streams, run the following commands to stop the secondary server

and unmount the drive:

1 $ sudo umount /opt/secondary

2 $ sudo apache2ctl restart

199

Smart Plugs

Introducion

The NILM smart plug is a WiFi-enabled plug with a software controlled relay and solid state power meter.

These plugs can be controlled over a wireless network or by USB. There are three main tools to interact

with these plugs. The easiest tool is the command line nilm-plug utility which can control most plug

features over USB or WiFi. For more advanced operation the plug has a terminal mode that is accessed

using nilm-plug -- cli. See Plug CLI for more details. Finally there is a set of python modules for

scripting and integration with NILM filters. See Plug API for more details. In order to use the plugs on a

network a wireless access point should be set up with MAC address reservations and static IP bindings

for each plug. See the next section for details on configuring a wireless access point.

Smart Plug connected to a NILM over a

wireless network. The green LED indicates the

plug has authenticated to the network.

Smart Plug connected to a NILM by USB. Blue

LED indicates an active USB communication

between the NILM plug.

WiFi Setup

Any standard wireless access point can be used to interact with NILM smart plugs. This documentation

covers the TP-Link TL-WR841N. A similar sequence of steps should work on most devices. When setup

for the first time the router will advertise a default SSID. The network name and password can be found

on the back of the router as shown the figure below. Open a browser and navigate to

http: / /tplinkwifi. net. Authenticate with username [admin] and password [admin].

200

TP-LINK TL-WR841 N Wireless Router

IUlm' I",
-- Il

"no21 C Masim
-No -0-

-M. - Mm - ONO-

The default SSID and password are on the back

of the router

Change the wireless network name (SSID). Do not use spaces in the name. If you are configuring multiple

access points that will be in close proximity make sure each has a unique name. Make sure the mode

supports 802.11 a, b and g. This is the default. The broadcast SSID checkbox may be disabled if you do

not want to advertise the presence of the network. This helps prevent people casually trying to connect to

the network. Note that this does not improve the security of the network. If you change the name of the

network you will have to reconnect to the new SSID once the router restarts.

Wielees Networt Narme

Region:

Note:

Moo:

Channel With:

Channel

TP LINK F09A (ASO Caged the SSID) ---

Per FCC rogulatos, am Wp-Fi products markted tn the U. S must De fxed to te U.S regior

11bgr

Auto

AO a

Enae Vireiess Router Rad o

_ _Enabe SSIO Broadcast

Enabe WDS 8ndgng

Configuring the wireless access point for NILM smart plugs

While not strictly necessary it is strongly recommended to enable wireless security. The plugs work best

with WPA2 Personal. The authentication should be set to PSK (pre-shared key) and AES encryption.

Select a strong password and save the settings. You will have to reconnect to the network using the new

password.

201

. MI Whlsefflngs

Disable Security

- WPANWPA2 - Personal(Recommanded)

Version: WPA2 PSK
Encryption: AES

Wireless Password: tnC0oecat
_You can enter ASCI dharacters between 8 and 53 or Hexailedmal charactes
between 8 and 64.)

Group Key Update Period: 0 Seconds

lKeep ft defau" if you are not surs, minimum s 30 0 means no L.pdate)
WPAJWPA2 - Enterprise

Version: Afonaodc

Encryption: Aitomatic 3
Radius Server IP:

Radius Port: 1812 (1-65535. 0 stands or default port 1812)

Radius Password:

Grano Kav Undals P0d4 : (8n seCond. minnium is 30. G means no uCaie:

Recommended security settings for the wireless access point.

The NILM smart plugs are controlled using their IP addresses. Wireless networks by default assign

random addresses to each client. The router must be configured to assign a consistent fixed address to

each plug. Each plug as a unique MAC address which must be entered into the router to reserve an

address. The first step is to make sure DHCP services are enabled on the router and set to a range of

addresses that do not overlap with any other networks on the machine including contact meters. The

default address space should work well for most configurations. The router will use a pool of the

addresses in this space to assign to clients as they connect. This range is specified in the boxes

highlighted below. You will need to assign IP addresses to the plugs that are outside of this range. Here

the DHCP server will use addresses above *.100 leaving *. 2-* .99 available for reservations. Note that

*. 0 and *.1 are reserved and should not be used for plugs.

DHCP Server: Daitsie a Enabe

Start IP Address: 192.16880100

End IP Address: 192.1680 199

Address Lease Time: 120 mnutes (1-2880 minutes. Mhe delaut value is 120)

Default Gateway: 192.168.01

Deault Domain: (do0tonal)

Primary DNS: 00.0.0 (Opiornal)

Secondary DNS: 0.0.0.0 100tional)

Configuring DHCP services on the wireless access point.

Create and address reservation for each plug and record the mapping so that you will know which plug is

attached to which address. Note that the format for the MAC address field is xx-xx-xx-xx-xx-xx. The

first three octets are the organization identifier (OUI) and are the same for all the plugs. The last three are

unique for each plug. The MAC address is labeled on the case of each plug.

202

ID MAC Address Reserved IP Address Statue Mody

I &-FE-340-13-34 12.168.0.10 Enabled Modif Det

Al Ne. Enirae Al Daole A Do etc Al

Create address reservations for each plug. The address should not be in the DHCP

dynamic address range.

Connect the host NILM either with WiFi or to one of the local (yellow) ethernet ports on the back of the

router. If it is connected to the WAN port (blue) the NILM will not be able to communicate with the plugs.

Once the NILM and plugs are configured you should see a status similar to the figure below. All of the

plugs (recognizable by their OUI) should have reserved addresses and the computer should have a leased

address.

Qu DHCP Client List

0 Cient Parmm MAC Address Assigned IP Lease Time

I nim-OptPtex-780 D8-E-97-ELD-DS-ED 192 168,0100 015436

2 Lk*nown 18-FE-34-9D-13-SA 192.168.0.11 Pemanen8
3 Unknown 18-FE-34-9D-13-54 192.168.0.10 Peninaent

Refresh

The DHCP Client List shows the current address assignments. Plugs should have a

reserved address (Permanent)

nilm-plug

The easiest way to interact with the NILM smart plug is with the nilm-plug command line utility. It can

be used with USB or WiFi connected plugs. The program takes two arguments, an action and a

deviceaddress. If a single plug is connected over USB the address can be omitted because the

system can find the plug automatically. When multiple plugs are connected by USB or plugs are

connected over WiFi the address must be specified. For plugs connected by USB the address is

/dev/ttyACM# where # is a number dynamically assigned to the plug by the operating system. Run is

/dev/ttyACM* before and after connecting the plug. The new entry is the plug's device-address. The

deviceaddress for wirelessly connected plugs is their IP address.

Read plug data

203

nilm-plug --read [--file filename] [plug-address]

This command retrieves meter data from the plug and stores the result in a comma seperated text (CSV)

file. If no file is specified the output is written to the file plug. dat in the current directory. If the file exists,

data is appended to the end. Each row of data has eight values specified below:

ts | vrms | irms I watts I pavg I pf I freq I kwh

ts Timestamp in milliseconds since 1970 (UNIX time)
vrms RMS voltage (V)
irms RMS current (A)

watts Current power usage (W)
pavg 30 second average of power usage (W)

pf Power Factor
freq Line Frequency (Hz)

kwh Energy used since last plugged in (kWh)

The plug collects data in one minute packets. The timestamp for each packet is displayed as it is

retrieved from the plug. For plugs connected wirelessly only the most recent data packet is available. If a
wireless plug is queried before a new packet is ready it will return an empty packet and the output file will

remain unchanged. If a plug is connected by USB, the read command returns all of the data packets

stored on the SD Card. If the output file already exists, only new data is appended to the end of the file.

This command is designed to be run iteratively with each plug using a seperate output file.

If a plug is read wirelessly it still stores data to the SD Card which can be retrieved later over USB. This

allows you to query the plug over an intermittent WiFi connection and fill in any missing data packets

once the plug is connected by USB

Erase plug data (USB only)

nilm-plug -- erase [plugaddress]

This command erases all data from the plug's SD Card. Data can only be erased when a plug is

connected by USB.

Read and erase plug data (USB only)

nilm-plug --read erase [--file filename] [plugaddress]

This command is identical to running read and then erase. This is the recommended command to use

with USB plugs to prevent the SD card from filling up with data that has already been retrieved.
Control plug relay

nilm-plug --relay onloff [plugaddress]

This command turns the plug on or off. If the requested relay state matches the current relay state this

command is ignored. This works for both USB and WiFi plugs.

Display help and examples

nilm-plug -- help

204

This command displays usage examples and a copy of this documentation.

Pug API

The Plug Application Programming Interface (API) allows you to control NILM smart plugs from Python

scripts. Before you can use the API in a script you must import the nilmplug module:

1 from nilmplug import plug

This module contains a single object Plug. The constructor takes two arguments, the device-address

and a flag to indicate whether this address is a USB device. The code below shows examples of both

plug types:

I #manage the plug over a USB cable

2 myplug = plug. Plug(" /dev/NODE", usb=True)

3 # *OR* manage the plug over wifi

4 my plug = plug.Plug("192.168.1.XX")

The API provides methods to read meter data, control the relay and set the LED color over USB or WiFi.

The plug data can be erased over USB.

Read plug data

I myplug.getdata(lastts=O)

2 #return data *after* lastts

This method returns a numpy array of data. The columns are described here. If the plug has no new data

this will return an empty array. The optional argument lastts limits the returned data to samples after

this timestamp. This can be helpful when you don't want to erase the data after reading it. Setting this

value to the last timestamp received from the previous read will return only new data. Omitting this

parameter will return all data on the SD card.

Control plug relay

I myplug.setrelay(value)

2 #value "on" or "off"

This method controls the plug relay. The parameter value must be either "on" or "of f ". This method

returns 0 on success or -1 on error. Errors can be caused by a poor WiFi connection.

Control plug LED

The method controls the multicolor LED. By default the LED is green when the plug is on and running

normally, blue when it is actively connected over USB, and red if an error has occured.

205

I myplug.setled(red,green,blue,blink)

2 # red,green,blue: 0-255

3 # blink: 0 solid, rate in ms

The red, green, and blue parameters are 8 bit values (0-25 5). Many online references provide common

RGB color combinations. The blink value sets the blink rate in milliseconds. Set to 0 to disable blinking

(solid).

Erase plug data (USB only)

my_plug.erase data()

This method removes all data from the plug's SD card. This method can only be used with USB

connected plugs.

Plug CLI

NILM smart plugs provide a complete command line interface accessible with a standard terminal

emulator. The nilm-plug program provides a built-in terminal interface that is started by using the --

cli flag:

1 $ nilm-plug --cli

2 /dev/smartplug, 115200 baud

3 ^C to exit

I Wattsworth WEMO(R) Plug vl.O

[help] for more information

The following sections explain the commands available through this interface. You can also use the help

in the CLI to see a brief summary of command options.

calibrate - start or stop calibration mode

Usage

calibrate stopistart ontime offtime

Description

Run the plug in calibration mode. This disables data collection and toggles the relay with a duty cycle

of ontime and offtime milliseconds. This is used to calibrate non-contact power meters. Use the

stop flag followed by the restart command to return the plug to normal operation. This is a persistent

setting which means that a plug will remain in calibration mode until set otherwise.

Arguments

206

action stop~start

ontime duration the plug is on in milliseconds
off_time duration the plug is off in milliseconds

config - get or set a configuration parameter

Usage

config action parameter [value]

Description

Retrieve or set the plug configuration parameters. Parameters are persistent and stored on the SD card.

If a blank SD card is inserted into a plug the default parameters are empty strings unless otherwise

specified. The last three parameters are used to support DHCP environments where neither the plug or

the NILM IP addresses are fixed. If you are using IP address reservations as recommended in WiFi

Setup, these parameters should be left blank.

Arguments

action get set

parameter configuration parameter, see list below
value new value of parameter, leave blank to clear parameter setting

Parameters

wifi ssid wireless network name

wifipwd wireless network password. Leave blank for open network. (write only)

standalone [true I false] If true, do not attempt to connect to a wireless network. Default is true

serialnumberunique string to indentify the plug
nilm id the NILM associated with this plug (optional)

nilm ip the IP address of the associated NILM (optional)

mgrurl management website URL (optional)

Example

1 > config set wifi ssid nilmplug

2 Set [wifissid] to [nilmplug]

3 > config get serial-number

4 plugAD49

data - read or clear the data

Usage

data action

Description

Use this command to retrieve data packets stored on the SD card. The data is returned in the binary

format described below and should only be used in scripts, not for printing to the terminal. If you want

207

to view data from the command line, use the meter command. Use the erase flag to erase the data

file.

Arguments

action [readlerase]

Structure

Data is returned in packet chunks with the binary format shown below. End of file (EOF) is signaled by a

packet containing the character x in every byte. See the plug.py source code for an example of how to

parse this data structure in python.

i //binary structure returned by [data read] command

2 #define PKTSIZE 30

3 #define PKT_TIMESTAMPBUFSIZE 20

4 typedef struct power pkt_struct {

5 int32_t vrms[PKTSIZE]; //RMS voltage

6 int32 t irms[PKTSIZE]; //RMS current

7 int32_t watts[PKTSIZE]; //watts

8 int32_t pavg[PKTSIZE]; //Average power (30s window)

9 int32_t freq[PKTSIZE]; //Line frequency

10 int32_t pf[PKTSIZE]; //Power factor

11 int32_t kwh[PKTSIZE]; //kWh since turn on

12 char timestamp[PKTTIMESTAMPBUFSIZE]; //YYYY-MM-DD HH:MM:ss

13 uint8_t status; //struct valid flag

14 } powerpkt;

15

16 //end of file signal returned by [data read] command

17 char* EOF = (char*)malloc(sizeof(power_pkt));

18 memset (&EOF, 'x ', sizeof (powerpkt));

rtc - get or set the real time clock (RTC) value

Usage

rtc getiset year month date dw hour min sec

Description

Get or set the value of the real time clock. The battery backed rtc is used to timestamp data

collected by the plug. Query the current time using get, or set the time and specify the full date, see

the arguments below:

Arguments

208

get return the current time formatted as a string. If the battery fails this will report a corrupt

date
set set the clock value, all of the following parameters must be set to valid values for this

command to execute successfully
year year as a two digit number 2016 = 16

month two digit value 0-12

date two digit value 0-31

dw day of week 0-7
hour two digit value 0-24

min minute as a two digit value 0-59

sec second as a two digit number 0-59

Example

I > rtc set 16 02 01 01 03 16 51

2 Set time to: 2016-02-01 03:16:51

3 > rtc get

4 Time: 2016-02-01 03:16:51

log - read or clear the log

Usage

log action

Description

The SD card records a persistent log of plug events. This includes network connectivity, general

errors, and system restarts. A [general reset] occurs when the plug is connected to power and

a [software reset] is indicates the restart command was used. Use the clear flag to erase the

log file.

Arguments

action [readjerase]

Example

I > log read

2 ...

3 [2016-01-29 14:59:06]: general reset

4 [2016-01-31 03:41:41]: no requests from NILM, resetting WiFi

5 [2016-01-31 03:42:00]: Joined [nilmplug] with IP [192.168.0.11]

6 [2016-01-31 03:44:25]: software reset

relay - control the plug relay

209

Usage

relay action

Description

Control the plug relay to turn the connected appliance on or off. Executing this command with the

existing relay state has no effect.

Arguments

action onloff

Advanced Commands

The following commands are specialized diagnostic tools that are less commonly used. They are listed

alphabetically

collectdata - start or stop power logging

Usage

collectdata action

Description

Start or stop data collection from the power meter. By default the plug collects data from the power

meter. This command can be useful for debugging communication with the solid state meter

hardware.

Arguments

action [true I false]

debug - set debug level

Usage

level

Description

Controls the verbosity of console information. Set to 5 to see AT command traffic to the ESP8266.

This is useful for diagnosing network connectivity issues.

Arguments
level [0-5] Default is 0 (lowest). Level >=3 show wireless TX messages. Level >=4 echo

ESP8266 AT traffic

Example

The wireless interface is controlled by a seperate ESP8266 module which communicates with the

main processor through a UART with AT commands. The following shows the output of a successful

wireless bootup. Note that the output of this debug session also displays the plug MAC address

210

(CIFSR: STAMAC). This should be labeled on the plug case but if it is not present use the combination

of these two commands to find it.

1 > debug 4

2 debug level: 4

3 > wifi on

4 AT+RST

6 OK

7 c\xfec\xcfRSvfgj\xd7\xe2j\xd3jS&\xeaJ\xf3\x82k\xfaf\xd2fW\xf2@

8 Ai-Thinker Technology Co. Ltd.

9

1.0 ready

11 AT+CWMODE=1

12

13 OK

14 AT+CWJAP="nilmplug", "topsecret"

15

16 OK

17 AT+CIFSR

18 +CIFSR:STAIP, "192.168. 0.11

19 +CIFSR:STAMAC, "18: fe:34:9d:13:5a"

20

21 OK

22 AT+CIPMUX=1

230

24 OK

25 AT+CIPSERVER=1,1336

26

27 Joined [nilmplug] with IP [192.168.0.11]

28wifi on

29 >

echo - turn echo on or off

Usage

echo action

211

Description

Turn the prompt echo on or off. This can be useful when interacting with the plug via scripts. This

value is not persistent and defaults to on.

Arguments

action onloff

led - set the led

Usage

led red green blue blink

Description

Set the LED color and control the blink rate. This overrides the default color but any change to the

system (eg, error or USB connect event) will change the LED back the system setting. This is not a
persistent setting, it resets to the system default on powerloss.

Arguments

red [0-255]

green [0-255]

blue [0-255]

blink blink rate in milliseconds, set to 0 for no blink. Maximum value is 65536.

1S - view files on SD Card

Usage

Is no arguments>

Description

View SD card file statistics, similar to the standard linux is command. There should be three files.

The timestamp is the last modified date as recorded by the plug RTC. The files are:
log.txt system log
config. txt persistent configuration settings
power . dat data collected by the plug power meter in binary format

Example

> ls

2 FILE SIZE DATE

3 log.txt 29445 16/01/31 03:44

4 config.txt 197 16/01/28 19:41

5 power.dat 825984 16/01/31 03:43

212

memory - show memory statistics

Usage

memory no arguments>

Description

The plug firmware dynamically allocates memory using a set of reserved blocks similar to a heap.

This command is useful for debugging memory allocation. A steadily increasing allocation

percentage indicates a memory leak in the code.

Example

1 > memory

2 Allocated 200 of 11200 bytes (1%)

3 Largest free block: 1000 bytes

4 Smallest free block: 200 bytes

meter - view plug meter

Usage

meter no arguments>

Description

Displays the last full data packet collected by the meter. If the meter is not collecting data an error

message is displayed instead. This is a convience function for debugging see data command for

retrieving meter data.

Example

1 > meter

2 **this data may be up to a minute behind**

3

4 voltage I 119.25
5 current I 0.51
6 watts I 59.62

7 avg pwr 55.30

8 freq 59.59

9 pf 0.95

10kwh I 0.81

restart - software reset

Usage

213

restart bootloader

Description

This command issues a soft reset to the processor. The optional bootloader flag restarts the

processor in SAM-BA bootloader mode. This should only be used when the plug needs to be

reflashed over USB

Arguments

bootloader boot into SAM-BA firmware this should only be used for reflashing the plug

version - firmware info

Usage

version no arguments>

Description

Print the firmware version and compilation date. The firmware version is set by the VERSIONSTR

define in inc /monitor. h.

Example

> version

2 Firmware [vl.1]

3 Date: [Jan 5 2016 17:08:53]

Wifi - turn wifi on or off

Usage

wifi action

Description

Turn the wifi system (ESP8266) on or off. The wifi system is turned on a system boot if

wifi ssid!=" " and standalone==false. Issuing this command with the on will reset the

wifi module and attempt to connect to the specified network. Use in conjunction with the debug

command to diagnose network connectivity issues.

Arguments

action on Ioff

214

Administration

introduction

There are two interfaces for administration. The system administration interface and the global

administration interface. The system interface is used to configure and manage NILM systems. The

global interface is used to manage the manager site itself (this website).

The system administration interface is accessible from the dashboard (or click here to open it in a new

tab). From the main administration page find the installation you are interested in and click = . If

you are on a standalone system there will only be one installation listed. If you are on a clustered system

there may be multiple installations listed. Once you select a particular installation you will see that

installation's administration page.

The gobal administration interface is accessible from the admin link on the page header (or click here to

open it in a new tab). Note that you must have admin privileges to view this interface and the header link

will be hidden if you do not have access. The global interface allows you to configure user accounts and

add or remove NILM systems. This interface is available on all manager sites but is most useful on cluster

managers and not standalone systems.

System Administration

The System Administration interface is used to configure a particular NILM system. Access this interface

by selecting the Administration tile from the dashboard and then clicking = on a NILM system. This

button will only be available on NILM's you administer. The interface has four main tabs, Setup, Database,

Processes, and Cloud. Each of these tabs are explained below.

Setup Tab

This tab configures general information about the NILM and user permissions. See the figure below for an

example. The Name, and the Serial # must be unique, other general information fields must be present

but not necessarily unique. On a standalone system most of this information is not important, but on a

cluster this helps identify a particular machine. You must uncheck Use default URL's and configure a

custom address when adding a NILM to a cluster- see Wattsworth Clusters for details. If you would like to

set a live meter view instead of the Dashboard as the site homepage, check Show on Live Panel, then

select a meter dataset to display. Any user that has permissions on this NILM will see this meter in their

live panel. Users who do not have permissions on this NILM will not be affected. Any changes to these

settings will only take effect if you click the Save Settings buton.

215

Permissions are configured on the righthand side of the interface. There are three levels, Administrator,

Owner, and Viewer. Administrators are the highest level and Viewers are the lowest. Each level has the

following permissions:

Administratoracccess system administration interface, run processes (filters and analyzers), view
data

Owner run processes (filters and analyzers), view data
Viewer view data

To add a user to a permission group, click the + button next to the permission. To remove a permission

click the X next to the user's name. To change a user's permission level, remove the current permission

and add them back to the desired level.

Genar" Information User Penmuslon"

PiSe& F D.- Administrators

Lsction L Ft Dr m & o,

Gr G.ntson

MLM Sena* 4 Owners

Suse def" UN S NONE

snow on os pr Viewers n+

System Administration Setup Tab. Configure general information and user

permissions.

Database Tab

This tab provides information about the NILM database and has numerous tools for configuring the data

streams. The interface is divided into three sections: General Information, Database Tree, and Group/File

Configuration.

General Information: The top section shows general information about the database. The Version is the

NilmDB software version and the URL is the location of the database. This will be a localhost URL on a

standalone system and will be an IP address on a cluster system. The = button updates the

interface with the latest values from the database. The system automatically refreshes every half hour but

in some cases it is helpful to force a refresh (for example when adding and configuring new meters). The

Disk Usage chart shows how much space is used by NILM data in orange and how much space is used

by the rest of the system in blue. The keep settings in meters. yml should be set appropriately so the

disk does not fill completely with NILM data. The Plot Resolution slider configures how many samples

are displayed in in NILM Explorer plots. Higher plot resolution requires more bandwidth and processing

time on the NILM system. In general standalone systems should be configured for highest bandwidth and

216

clustered systems should be configured for a bandwidth that is appropriate for their network connection.

Adjusting this slider automatically updates the server. Adjust this slider as you work with a plot to find an

appropriate setting.

Database Tree: The left panel shows a tree view of the database. Database groups are listed below the

NilmDB node. Clicking on the triangle next to a group toggles visibility of the files beneath it. Clicking a

group or a file will select the node and display configuration options for it in the Group/File Configuration

panel. The button adds a new empty group to the database. Group names must be unique.

Groups can only be added when a connection to the NilmDB system is available which may be

intermittent on a cluster system depending on the quality of the network connection.

se D tatsba"e PmeSces cho-

V"*"0e 5'0-9-W94499" Disk Usage
URL ltiowOeve 9i V WSwoi nne am NiDB | Other OGi

Plot ResOlutiorv 1994 pts

9Oi iNDS
0 Tecoray Grup~ File prOP-a
ClODeeri I TMim Rang 2014 Fab 03 10:53:44 - 2015 Ncv 28 23:35:07

0ors" Total R&o" 241207870
SP Total Time 349 44 days
Sproc Sle on Disk I25 0 Ge

0 3"o Database Path data /prep a Mome

o unr29 430c
0 use29 Sll

M Live du op-a
0 &iw Pk-ge Abbreiateam

CJiA00 Gro Cokoum PW49gbke Discrete Nwo Un Ofset Scai Factor

0 0 DavenlsA Pi Watl 0 1

1 DowntlIAOI1 VAdS

2 & DeoersiA P3 Wafls 0

System Administration Database Tab. View and Configure the NILM database.

Group/File Configuration: The center panel is reserved for group and file configuration options. Select a

group or file to configure by clicking it in the Database Tree. If you change any values click the

button to submit the changes, or click 1= to change all values back to their current

state. To remove a group or file click the e button. This completely erases all of the data in the

group or file and is not reversible. To prevent accidental deletion, click the 9 button. This removes the

option to delete the file or group. To delete a locked object you must manually erase each stream in the

group or file from the command line using nilmtool aestroy.

When a group is selected the interface will look like the left hand figure below. The group name must be

unique and the description should be a short sentence or phrase. The time range is the maximum extent

of the files in this group, and the size is the sum of the file sizes. The Hidden checkbox controls whether

the group is visible in the NILM Explorer interface.

217

When a file is selected the interface will look like the right hand figure below. The summary information at

the top shows the extents of the data, number of samples and size on disk. Note that the total time is

covers the intervals with data which may be much than the Time Range than the extents if there are gaps

in the data. The keep settings in meters .yml track the Total Time parameter and not the Time Range.

The Database Path is the NilmDB stream name for the file. The [k button allows you to move the file

to a different group. This should only be used for static datasets. Do not move active files, that is, inputs

or outputs to a NILM process or raw streams like prep or sinefit.

The file Name must be unique in the group. Abbreviate as is an optional field that is added to the plot

legend in NILM Explorer. If it is blank the legend will just be the stream name. Below these fields is an

array of entries to configure each column (stream) of data in the file. Select Plottable to display the

stream in NILM Explorer. Select Discrete to plot the data as vertical bars instead of a line graph. Name

must be unique in the file. Units should be an SI value or descriptive word like "event". NILM Explorer

requires that all datasets on an axis share the same unit. If unit is left blank the stream will only be

plottable with other blank unit streams. The Offset and Scale fields are floating point values that can

apply a linear transform to the data. The formula for the transform is:

y = (x-offset)*scale

The transform is applied "live", that is the underlying data is never changed. The transform is used both

for NILM processes (filters and analyzers) and in NILM Explorer. Default Min and Default Max fix the

auto scale bounds to the specified values. If left blank the plot will autoscale to the extents in the plotted

dataset. This is useful if you want autoscale to provide a consistent scale to help building an intuition of

what is "large" and "small". Otherwise zooming into any dataset and clicking autoscale will make the

result fill the plot window. You must click before selecting any other file or group from the

Database Tree otherwise your changes will be lost.

File gi -prep-a
Tk Ran 2015 Dec 09 13:54:17 - 2018 FeD 19 10:16:33

Group USCGC Spencer NC TOIW Rowe 7260OW

Time Range 2015 Dec 04 15:35:41 - 2016 Feb 19 10:16:33 TomUa 7. ?O t-S
SAN On D4ek 56.73 G6 S nDs 97 I

Num USCGC Som'cer NC Oescrlption meter0003 Database Path / poncernc/prep Mm

Column Plottable D4wete Nome Units 094,0

0 5 P1 W 0

1 0 01 W 0

2 0 P3 W 0

Group Configuration options File Configuration options

Processes Tab

TODO

Cloud Tab

218

This version of NILM Manager does not provide cloud support

Global Administration

The global administration interface is used to add users or NILM's to the system. This is primarily used on

cluster systems although the interface is available on standalone systems as well. To access this interface

your user account must have administrative privileges. The interface is composed of three tabs, Servers,

Users, and Data Views. Each of these tabs is described below.

Server Tab

The server tab is used to add NILM's to the system. The only type of NILM that can be added to this

version of the manager is a Repository. Click to access the new repository dialogue. Full

details on adding NILM's to a cluster using this interface are in Wattsworth Cluster. To remove a NILM

from the system click the 8 icon. This will remove the NILM from active management by the system but

will not erase any data or settings on the NILM itself. You can add and remove the same NILM multiple

times using this interface without any problems. The Status icon indicates whether the NILM is online

(green) or not available (red).

User Tab

The user tab allows you to add, edit, and remove user accounts from the system. Note that any account

you add you must manually confirm by clicking the button next to the user account. Usually the

confirmation would be done by the user through an e-mail but this version of NILM Manager does not

have an e-mail server. The Engineer attribute is not currently used. The Admin attribute controls whether

the account has administrative privileges (i.e. the ability to use this interface). Note this is not related to

any privileges an account has on a particular NILM.

Data Views Tab

This tab displays all of the stored dataviews on the system. You can edit the name and description of the

views by clicking the C? icon and delete it by clicking the 19 icon.

219

NILM Explorer

Introduction

NILM Explorer is an interactive plotting tool that provides visualizations of remote datasets using very little
network bandwidth. This interface seamlessly combines data from one or more remote NILM systems
and is capable of plotting data at any time scale. The interface works best with a three button mouse (left,
right and scroll wheel), although a touch pad can be used. The interface consists of three main panels,
the Dataset Explorer, Navigation Plot, and Main Plot. The figure below labels each panel on the interface.
The sections below describe these panels in detail.

Dataset Explorer
i Uve Data

o Smart Pugs

Ft DMu 2
Live Data

data

Off Stream Numn Left Rgit

ODevers2A Pt 0

o Devens2A-O1

o Deve~s2A P3

Data Explorer

Navigation Plot

Main Plot

2C21 Jn 1 4

2016 Jan 151154- 15:18

The three main panels of the NILM Explorer interface: Dataset Explorer, Navigation Plot, and Main Plot

Dataset Explorer

The dataset explorer shows all the plottable datasets for all the NILM's managed by the system. If this is
a standalone system there will only be one NILM listed. On a cluster multiple NILM's are seperated by
dark grey title bars. Select which NILM's are displayed by using the U button next to the search bar.

The groups on each NILM are listed below the NILM title bar. Click the M button to expand a group and
show its files. Each file can in turn be expanded to show the streams it contains. Streams have three
radio buttons that control their visibility on the plot. By default all streams are of f meaning they are not

displayed. Plot a stream by selecting either the Left or Right radio buttons:

220

Left and Right refer to left and right Y-axes of the plot. When at least one stream is selected for plotting

both the Navigation and Main Plot panels will appear. Multiple streams may be plotted simultaneously

from any file, group or even other NILM's. However only streams must share the same unit to be plotted

on the same axis. Radio buttons are automatically disabled if the stream's unit does not match the

current axis unit. When a stream is displayed on the plot an @ is displayed next to the stream, file and

group name. Clicking this icon on the stream will remove it from the plot. Clicking this on the file will

remove any of the file's streams from the plot, and clicking it on the group will remove any stream from

any the group's files from the plot. This is a quick way to clear a plot with many streams displayed.

expand/collapse group or file

NILM LUNUN.M
Group . Meteri . Turn off streams in Group
File . P-er Turn off streams in File

Off Stream Name Left Right

Streams P1

0 0'

The Dataset Explorer interface

The first stream to be displayed sets the bounds of the plots. The x-axis is set to the full range of data in

the stream and the y-axis is set to either the range of the data or to the streams Default Min and

Default Max values if set (see Stream Configuration for this setting). If you want the plot to track the

latest data select Start Live Update This will lock the time axis of the Navigation Plot to the last hour and

the Main Plot to the last twenty minutes. Click M E= to disable time axis tracking.

Navigation Plot

The Navigation Plot shows a fixed overview of the data and highlights the portion displayed in the Main

Plot. The y-axis is fixed to the autoscale values of the data (either the range of the plotted data or the

Default Max and Default Min of the streams). In the default navigation mode is clicking and

dragging on the plot selects the subset of data displayed in the Main Plot window. This mode is animated

in the left hand figure below. The mode can be changed by clicking the 0 and selecting Lock Navplot

Selection. When this box is checked the time range of the selection is locked. Clicking and dragging the

selection window changes the fixed time range displayed in the Main Plot. This mode is animated in the

right hand figure below.

221

Data Explorer

2015 Sep 29 11:04 -2:19

Navigation Plot in default mode. Click and drag

to select a portion of data to display in the Main

Plot.

Data Explorer

20 5 Sep 29 11 43 - 12:06

Navigation Plot with Lock Navplot Selection

checked. Click and drag to move the selection

window across the data.

To change the time range of data displayed in the Navigation Plot, zoom to the desired time range in the

Main Plot, click the 0 button and select Sync Navplot to View. This will set the Navigation Plot time

range to the Main Plot time range.

Main Plot

The Main Plot interface supports pan and zoom on three axes (left and right y axis and the x axis). Click

and drag to pan, and scroll to zoom. The plot is divided into four regions as shown in the figure below.

The zoom and pan controls operate differently depending on which region the cursor is in. When the

cursor is in the center of the plot, pan and zoom operates simultaneously on all the axes.

100

Sc

U LPSIIE kW'
U i<i~i HEAL ~OWEH ~kW~

isolate
Left Axis

INo

Isolate
Time Axis

Isolate
Right Axis

2C

20

21 C21 0011 04 11 08 11

2016 Jan 07 - 09

The Main Plot interface is divided into four zones. When the cursor is close to an axis the zoom and

pan controls operate only on that axis.

222

N KP' B1 REAL POWER (kWM0LPSITE *kW1

When the cursor is placed close to an axis the pan and zoom only operate on that axis. This is indicated

visually by a yellow highlight on the isolated axis. The three animations below show demonstrations of (a)

isolating the time axis, (b) isolating the y axis, and (c) operating all axes simultaneously. In general it is

easier to navigate datasets with isolated axes rather than zooming or panning all axes together. If the

cursor is moved on top of the axis a icon appears on the axis. Clicking this icon will autoscale the axis.

On the time axis this means the bounds will change to cover all of the data from all currently plotted

streams. On the y axes this means the bounds will adjust to the maximum range of either the plotted

samples or the Default Min/Default Max settings of the streams. The cursor must remain in the

plot grid to pan or zoom, moving the cursor outside the axes will disable the plot controls.

A.) Isolated zoom on the time B.) Isolated zoom on the y C.) Simultaneous zoom on

axis. axis. both axes.

The cursor will automatically highlight datapoints on the plot with a circle overlay. This can be helpful to

determine the resolution of a particular plot. The 0 button in the plot header toggles the cursor tooltip.

The tooltip displays the numeric value of the data as the cursor moves over a plot. This is useful for

determining the exact value of a sample

The date label below the Main Plot automatically adjusts according to the range of data plotted. Click the

date to bring up the time selection overlay shown below. This allows you to specify a particular time range

of data. Click the date field to open up a calendar view or use the mouse wheel to scroll individual fields.

The overlay is translucent so you can see the data adjusting as you specify the date. If the end time is

before the start time the selection is invalid and no change will be made to the plot.

Data Explorer A

click v to expand calendar

Start'. End-

w ldi -6 1 3 J/X13 ' -

F.WroVv 2013 -
5-n Vtw I- Wed Tim F. Wa

17 4o 10 20 21 22 23
74 21, 29 Vi A8

223

Click the date below the Main Plot to open the Date

Selector Overlay

Open / Save / Download Data

The plot menu is accessed by clicking the = button in the header bar. This expands a dropdown menu

with options to Open, Save, and Download plots. To open a previously saved plot, select open and find

the desired plot in the dialogue. The search feature filters plots on description and title. Click a plot figure

to open it. To save a plot select Save and enter a title and description. The installation drop down box is

for categorizing plots by location. On a standalone system there is only one installation, but on a cluster

system there will be multiple installations listed. Note the saved plots are lightweight indexes to the

underlying datasets. Depending on the keep settings of the datastreams plots using live datasets may be

erased. It is recommended to archive sections of datasets you would like to keep to a separate stream

that will not be erased by the cleanup routine.

The Download menu allows you to retrieve the raw data behind a plot as a comma seperated value (CSV)

file. Each file must be downloaded separately since the timeseries differ between files. The downloaded

file has an informational header that describes the dataset. An example datafile is shown below

Source: Archive
Bucket archive

group: LEES' Compressor
file: prep
database:
url: http://bucket.vpn.wattsworth.net/nilmdb
path: /no-leak/prep

start: 2013-02-12 13:21:05 -0500
end: 2013-02-12 13:21:10 -0500
total time: less than a minute
total rows: 281

#The raw data file can be retrieved at the following URL:
http://bucket.vpn.wattsworth.net/nilmdb/stream/extract?path=....

to import in matlab run:
nilm = importdata('thisfilename.txt')

nilm.textdata: this help text
nilm.data: the data

The data has 2 columns with the following format:

Column 1: Timestamp (microseconds)
Column 2: P1 (W)

1360693265540800, 0.1496984
1360693265557470, 0.689765
1360693265574140, -0.2659167
1360693265590810, 0.4024591
.... data continues below

224

In many cases the plotted dataset is too large to download over an HTTP (web) connection. In this case

the download file will provide instructions for using nilmtool commands on the terminal to retrieve the

raw data. nilmtool retrieves all streams in a file and the data is not scaled. The file provides equations

to scale the streams according the their scale and of f set settings.

it,############################

Source: Archive
Bucket archive

group: LEES' Compressor
file: prep
database:
url: http://bucket.vpn.wattsworth.net/nilmdb
path: /no-leak/prep

start: 2013-02-12 14:34:53 -0500
end: 2013-02-13 23:29:51 -0500
total time: 1 day
total rows: 2969042 <==== OVER 2 MILLION ROWS

#The raw data file can be retrieved at the following URL:
http://bucket.vpn.wattsworth.net/nilmdb/stream/extract?path=...

There is too much data to download. If you really need
this data you can extract it directly using nilmtool

The data has 9 columns with the following format:

Column 1: Timestamp (microseconds)
Column 2: P1 (W) [y=(x-0.0)*-1.0)]
Column 3: 01 (prep) [y=(x-0.0)*1.0)]
Column 4: P3 (prep) [y=(x-0.0)*1.0)]
Column 5: Q3 (prep) [y=(x-0.0)*1.0)}
Column 6: P5 (prep) [y=(x-0.0)*1.0)]
Column 7: 05 (prep) [y=(x-0.0)*1.0)]
Column 8: P7 (prep) [y=(x-0.0)*1.0)]
Column 9: 07 (prep) [y=(x-0.0)*1.0)]

-- this file can be run directly as a script --

---------- -------------------------------------

nilmtool -- url http://bucket.vpn.wattsworth.net/nilmdb extract ...

The file can be run directly as a bash script which will dump the timestamped file data to standard output.

Redirect this to a file to save the data. Note that raw data can be very large, be careful with your disk

usage and the network bandwidth when retrieving datasets with nilmtool

1 #print data to the terminal

2 $ bash -/Downloads/nilm data.txt

3 1360697693233225 6.951723e-01 -2.935897e-01 9.620408e-01 ...

4 1360697693249891 1.101132e-02 4.109371e-01 -1.420663e-02 ...

5 1360697693266557 2.287447e-01 1.076953e-01 4.715213e-01 ...

6 1360697693283223 -5.571978e-01 -6.638092e-04 7.577136e-01 ...

7 data continues ...

8 #save data to text file

9 $ bash -/Downloads/nilmdata.txt > saveddata.txt

225

NILM Filter

Introduction

Filters are the NILM's data processing engine. Unlike static datasets which have a known fixed size, NILM
datasets are constantly growing and are generally too large to operate on as a single array. Filters are
iterative code blocks that allow for effecient processing on these large datasets. The tutorials below
introduce the basic concepts. See the labeled sections for more detailed information.

Tutorial 1 Hello World

This example is an introduction to the NILM Filter tool. In this example you will build a basic median filter
to smooth a dataset. This example will show you how to create a new filter, set up bindings, and test the
filter in the development environment. To get started, click the NILM Filter [2 tile on the dashboard to load
the Filter Listing page.

Filter Listing: Filters are listed by Title and Description. Filters can either be public or private. The

Editing column shows the permission setting. Private filters can only be edited by their author while

public filters can be edited by any user. The current permission is displayed as a private A or public W
icon. Click the button to toggle the permission setting. To other users private filters are marked with a Q
icon. The private and public setting only applies to editting. Any filter can be installed on any NILM by a
user with at least owner privileges on the NILM. Click the + Create a new filter button to enter the New

Filter Page.

New Filter Page: Enter a name and description for the filter. The name must be unique and the descrption
should be a short sentence that describes what the filter is doing. Filters have one or more input data
sources. Input sources are generic hooks that are bound to data streams at runtime. Enter "source" in

the input text box and click Md. The input will be added to the filter. If you mistyped the entry click
the X next to the input and type the input name again. You can add more inputs the same way, but for
now just use a single input. Do not click the "Resample streams" check box. Filters produce one or more
output data streams. The output streams are stored in a single file that is dynamically created on the
NILM at runtime. When run in the development environment this output file is stored temporarily by
default (although it can be stored permanently). When a filter is run as a NILM Process the output file is
stored permanently. For this filter add a single output named "filtered". Click M to add the
output stream to the filter. Click C =Fr to enter the Filter Development Environment.

Filter Development Environment: The development interface is divided into two main panels each with
two tabs. The left panel is a code editor and the right panel provides options for configuring and testing

the filter. Select the Setup tab on the right panel.

226

unsaved changes in (Fihter) tab

Filte * Initializat or switch to [nitialization] tab 0 Save Code

* Power Fitter Autogenerated trorn
Compute power from current and voltage filter name and description

dt ifilter(data. Witerval, arge, ttaertjunc, state):
-- --[Ato-Generated: 0o Not Remove or Modilyl
data as a python array where each eiemen!
isa numpy array of timestafped velues
(timestamps are 64 bit mictoseconds)

Index tags for
Access data in input array with these names: Inputs and outputs

Currant: i Current
Voltage: i Vottage

Access data in output array with these names
Power oi Powff

Filter Design Code Panel

Filter Development Environment (TODO: fix picture)

Filter Setup

Filters run on a particular NILM. In order to test the filter in the development environment you must pick

an available NILM and associate the filter inputs with data streams on this NILM. Select an available NILM

from the combo box. If this is a standalone installation there will only be one entry. If this is a cluster

installation there may be multiple NILMs listed. After you select a NILM, bind the filter inputs to data

streams that are available on the NILM. This filter only has one input which we will bind to a P1 stream.

Start by selecting a data group. For this tutorial select a meter group that has available data. Then select

the Prep A file and Pi stream. Next we need to configure the output stream. The output will be a filtered

copy of the input so the units should match the input stream. Pi is in watts so enter "W" in the unit field.

We want to plot the filter output so select the plottable checkbox. This will notify the filter engine that

the output must be decimated. Click s- =haMM to update the filter with these new settings. Whenever

you adjust the settings in the Setup tab you must click this button to apply the changes. A green success

message appears at the top of the tab once the save operation is complete. The setup tab also lets you

add or remove inputs and outputs to the filter. This has the same effect as adding inputs and outputs on

the New Filter Page. A filter must have at least one input and one output. Now you can begin writing code

for the filter.

Code: Filter

NILM filters are written in Python 2.7. If you are new to Python, there are many books on the subject as

well as several good websites. O'Reilly's "Learning Python" and "Programming Python" are great

introductory texts. Websites come and go, at the time of this writing, Code Academy C? is a good

resource to learn Python and many other languages. Filters rely on numpy and scipy for most signal

processing routines. The online documentation C for these tools is excellent. O'Reilly's "Python for Data

Analysis" provides a good introduction to these tools and many Python data processing packages.

Select the Filter tab in the code editor. Lines 1-3 are auto generated from the filter name and

description. Add the import statement in line 5 to your filter This imports the medfilt function from

Numpy. Lines 8-17 are auto generated from the Setup tab settings. These lines should match the auto

227

generated comments in your filter exactly. If the comments do not match check to make sure you have

not selected "Resample Streams" and that your input is named source and output is named filtered.

Correct any errors and save the changes. This comment block will automatically update. When the filter is

first created the body of the filter function is empty. Copy lines 18-29 and paste it in place of the

#TODO.. .pass lines to complete the function.

S" "" Median Filter

2 Windowed median filter

3 """

4

5 from scipy.signal import medfilt

7 def filter(data, interval, args, insert func, state):

8 """--[Auto-Generated: Do Not Remove or Modify]

9 data is a python array where each element

10 is a numpy array of timestamped values

11 (timestamps are 64 bit microseconds)

12

13 Access data in input array with these names:

14 source: _i_source

Access data in output array with these names:

16 filtered: _o_filtered

17 --

18 #filter parameters

17 WINDOWSIZE = 25

20 #shorthand to access timestamps and values

21 ts = data[_i_source][:,0]

22 vals = data[_i-source][:,1]

23 #run the median filter

24 result = medfilt(vals,WINDOW_SIZE)

25 #add timestamps to the result array by

26 #stacking it together with the ts array

27 output=np.hstack((ts[:,None], result[:,None]))

28 #insert the timestamped data into the output stream

29 insertfunc(output)

228

How it works: NILM data streams can be very large (eg billions of samples). In order to process large data

sets on a machine with limited resources we have to break the data into discrete chunks. The NILM Filter

engine handles this data chunking transparently allowing developers to write code that assumes all the

data is available as a continuous array. The framework defines two functions that must be specified by

the developer: filter, and initialize. Within filter the data can be processed like a traditional

array. The data processing engine calls filter iteratively with chunks of input data.

This example applies a windowed median filter. The median filter algorithm is imported from Numpy in line

5. Line 19 defines WINDOWSIZE which is a parameter to medfilt. Explicitly defining tunable constants

is a good way to make your code more readable and easier to maintain. Lines 21-22 set up local

variables from the input data. The data parameter is a list of Numpy arrays from each input. This filter

has only one input so a numerical index would be straight forward, but it is best practice to retrieve inputs

from data using the logical index generated by the filter framework, _i_source. The next index

operation is into the Numpy array. The Numpy array has two columns, timestamp (0) and value (1). The

[: , X] notation is shorthand for "all rows of a specific colunn". This initializes ts to a 1 D array of

timestamps and vals to a 1 D array of input values.

Line 24 applies the median filter. This is the same code used for processing "standard" continuous arrays

of data. The filter engine makes it possible to port standard signal processing algorithms directly to a

chunk-processing architecture. Line 27 applies timestamps to the median filtered data so it can be stored

as an output stream. The median filter is time invariant so the output has the same timestamps as the

input. Line 29 inserts the median filtered data into the output stream. insert_func takes one argument,

an array of timestamped values to save. Output timestamps must be monotonically increasing. This

means each element of the array must have a unique timestamp that is greater than the timestamps

before it. In this case the timestamps are copied from the input stream so we are garaunteed to meet this

requirement. Click l. . when you have finished entering the code. Whenever you have unsaved

changes to the code an * will appear next to the tab with changes. Imporant: You must save changes

before running the filter or leaving the page, otherwise any changes will be lost.

Testing the Filter

Once you have finished writing the processing code, its time to test the filter on a sample dataset. Select

the Test tab from the right panel. The tab is divided into two sections. The top section has filter controls

and displays the console output. The bottom section is a truncated NILM Explorer interface. Filter inputs

and outputs are listed below the plot window. The inputs are listed by name with the associated stream in

brackets. Plot the source[Pl j stream on the left axis. Pan and zoom the plot to a short (less than a

minute) section of data. The filter will run against the plotted time range only so selecting a smaller

amount of data will make the filter run faster. Once you have selected a suitable range click the

Eb button to lock the plot. Click M to start the filter. The console output will display

229

information as the filter runs including the output of any print statements. If an error occurs the console

will display the python debug dump. Fix any errors and run the filter again. When the filter finishes

successfully the console status will display Complete !

When the filter is finished the outputs will be plottable. Plot the filtered output on the same axis as the

input. If the axis is disabled the units do not match with the input. Go back to the Setup tab and set the

output stream units to match your input (W). Depending on how much data your filter processed, the

output may require decimation. This happens automatically but takes some time. If the decimation isn't

complete you will see an * next to the stream in the plot legend. Pan or zoom the plot to refresh the view

until the decimation process is complete. The figures below show output from this filter with different

WINDOWLENGTH settings. The development environment makes it easy to quickly iterate and tune your

filters. When you are satisfied with its performance you can set the filter up as a NILM Process to

continuously on input data.

0 Phse 'A 1 6WattS} * s- A W1 Uatts)

N 4tered (Watts) t oete tWatts

6000 6000

5500 5500 * 1

500500

4500 4bOD

4000 4000

07.3 220 074024 V 43 26 074328 07 43 30 07 -3:32 07 433 07 4336 '7 43 22 07 43 24 07 4326 0 7 43 26 0 43 30 W0 43 32 04 3- 0743 3k(

Median filter example using a window size of 15 Median filter example using a window size of 55

Tutorial 2: Calculating Power

This filter calculates instantaneous power from current and voltage inputs. Since this filter has multiple

inputs we will resample the input array to a single time series which makes the data easier to process with

standard signal processing techniques.

Resampled inputs:When a filter has multiple inputs you have the option of resampling them to a common

time series. The filter engine can automatically interpolate the inputs and create a composite input array.

The resampled input is a two dimensional numpy array where the first column is the time stamp and each

subsequent column corresponds to a filter input. See Filter Inputs for more information. The filter engine

requires a master stream to establish the time series. This is usually the highest bandwidth stream,

although some applications may require a different choice.

Filter Setup

230

Create a new filter with two inputs labeled current and voltage and select the "Resample streams"

check box. Add one output labeled power. From the filter setup panel, attach input streams to the

bindings from a raw NILM file and make the output plottable in units of watts (w) and save your changes.

Select the current input as the master stream. A note on peformance: resampling adds overhead which

can slow down filters with highbandwidth inputs. In this example a faster implementation would be to use

a single bulk input on the raw NILM file. See the Filter Inputs section for information on bulk inputs.

Code: Filter

Select the Filter tab in the code editor. Lines 1-3 are auto generated from the filter name and

description. Lines 6-18 are auto generated from the Setup tab settings. These lines should match the

auto generated comments in your filter exactly. If the comments do not match check to make sure you

have selected "Resample Streams" and that your inputs are named current and voltage. Correct any

errors and save the changes. This comment block will automatically update. When the filter is first created

the body of the filter function is empty. Copy lines 16-19 and paste it in place of the #TODO ... pass

lines to complete the function.

1 " Power Filter

2 single phase power

3 """,,

4

5 def filter(data, interval, args, insert func, state):

6 """--[Auto-Generated: Do Not Remove or Modify]

7 data is a 2D numpy array, each row is a sample

8 column[0]: 64 bit timestamp (us)

9

10 Access data in input array with these names:

11 current: _i current

12 voltage: _i_voltage

13 Access data in output array with these names:

14 power: _o_power

15 -- ""

16 power = data[: ,_icurrent]*data : , ivoltage]

17 time = data[:,O]

18 output = np.hstack((time[:,None],power[:,None]))

19 insertfunc(output)

231

How it works: The data parameter is a 2D Numpy array. Column 0 is the timestamp and the subsequent

columns are the input stream values. The resampling engine linearly interpolates the inputs to a single

timeseries so the inputs appear to be simultaneously sampled. This makes the power calculation very

straightforward. Line 16 computes the power directly by multiplying the current and voltage columns

of the array. Using logical indices for the data array makes the code self commenting and easier to

maintain if you later want to add or rearrange the inputs.

The output array is created by stacking the input timestamps with the power array in line 18. This

inserted into the output stream in line 19.

After you have entered this code, save the changes and run the filter against a short section of input data.

Notice the ripple at twice the line frequency.

Testing: changing to 3 Phase

Many industrial systems use three phase power to avoid this ripple. This filter can be easily adapted to

measure three phase power. Delete the filter inputs and add the following six inputs IA, IB, IC, VA,

VB, vc. Bind these inputs to their respective streams in the raw file and save the changes. Notice the

comment section in the filter function updates with the new configuration. Copy the new filter code

below:

232

"f"'" Power Filter

calculate power from current and voltage

def filter(data, interval, args, insert func, state):

"""--[Auto-Generated: Do Not Remove or Modify]

data is a 2D numpy array, each row is a sample

column[O]: 64 bit timestamp (us)

data in

_iIA

_iIB

_iIC

_iVA

_iIB

_iVC

data in

_oPT

input array with these names:

output array with these namesi

pA = data[:,_i_Il]*data[:,

pB = data[:, _i_12]*data[:,

pC = data[:, _i_13]*data[:,

pT = pl+p2+p3

time = data[:,O]

output = np.hstack((time[:

insertfunc(output)

_i_Vi]

_i_V2]

_iV3]

,None],pT[:,None]))

The output from this filter is shown below. Notice that the power is relatively constant. Try adjusting this

filter to have multiple outputs for PA, PB, PC. These outputs will look similar to the single phase power

plot.

233

1

2

3

4

Access

Il:

V1:

12:

V2:

13:

V3:

Access

PT:

1 Current (A) Epower(w) 15000 N gnd A (A) PT (w)

U10 0 grid B (A)

gnd C (A)

0 10000 000

5. K ' 1000

/ 0

1000

-100C

-1000C

2000

Instantaneous power for a single phase system Instantaneous power for a three phase system

So far we have only seen filters compute instantaneous metrics, many times we are interested in

cumulative metrics like energy consumption or average power. Computing these types of metrics requires

a new type of filter tool called state. See the next tutorial for information on how to build stateful filters.

Tutorial 3: Energy Consumption

This filter computes cumulative energy consumption from a prep input. This requires maintaining a

persistent running sum. The filter engine maintains persistent variables through the state object. This

object is initialized prior to the first filter run and then passed in as an argument to the filter function.

Filter State: State provides a type of "memory" between runs of the filter function. The state is passed

into filter as a parameter. The state object stores persistent data in slots. Slots must be initialized

and before they can be used. Once a slot is initialized any data type can be stored into it and retrieved

later. Slots can be used many ways but the recommended design pattern is as follows:

State Workflow:

1. Create state slots for each persistent variable in the initialize function

2. At the start of the f ilter function, retrieve state objects into local variables

3. Manipulate the local copies of the state objects

4. At the end of the filter function, return local copies back to the state

Step 4 is not necessary for mutable objects because Python passes them by reference. Immutable

objects like lists, and numbers must be returned explicity since they are passed by value. When in doubt,

return local variables to the state.

Filter Setup

234

Create a new filter with one input labeled prep. Do not select the "Resample streams" check box. Add

one output labeled energy. From the filter setup panel, attach a P1 prep stream to the input binding.

Make the output plottable in units of kilowatt hours (kWh) and save your changes.

code: Initialize

Select the Initialize tab in the code editor. Lines 1-3 are auto generated from the filter name and

description. When the filter is first created the body of the initialize function is empty. Copy lines 6-8

and paste it in place of the #TODO. . pass lines to complete the function.

1 """ Initialization for Energy Integrator

2 Tutorial filter for energy

3 """

4

5 def initialize(state):

6 #1.) --- initialize state slots---

7 state.initializeSlot("C",O)

9 state.initializeSlot("last-ts",None)

9 state.initializeSlot("lasty",None)

How it works: This function runs before the data chunks are passed through filter. This is step 1 of the

State Workflow. Slots in state are created by called initializeSlot. This function takes two

parameters, a unique string identifier and the initial value for the slot. This filter uses three state slots: C is

the integration offset. It is initialized to 0 which means the output energy stream will start at 0. The next

two slots, lastts and last_ y are the last timestamp and value of the previous data chunk. These two

slots are initializd with None to indicate they don't have a valid initial value. The next section describes

how these state variables are used.

code: Filter

Select the Filter tab in the code editor. Lines 1-3 are auto generated from the filter name and

description. Add the import statement in line 5 to your filter. This imports the cumtrapz integration

function from Numpy. Lines 8-17 are auto generated from the Setup tab settings. These lines should

match the auto generated comments in your filter exactly. If the comments do not match check to make

sure you have not selected "Resample Streams" and that your input is named source and output is

named filtered. Correct any errors and save the changes. This comment block will automatically update.

When the filter is first created the body of the filter function is empty. Copy lines 18-49 and paste it in

place of the #TODO. .. pass lines to complete the function.

i t""" Energy Integrator

2 Tutorial filter for energy

3 """

235

4

S from scipy.integrate import cumtrapz

7 def filter(data, interval, args, insert func, state):

8 "--[Auto-Generated: Do Not Remove or Modify]

9 data is a python array where each element

10 is a numpy array of timestamped values

11 (timestamps are 64 bit microseconds)

12

13 Access data in input array with these names:

14 prep: _i_prep

15 Access data in output array with these names:

16 energy: _o energy

17

18 #2.) --- retrieve state into local variables---

19 lastts = state.retrieveSlot("lastts")

20 lasty = state.retrieveSlot("lasty")

C = state.retrieveSlot("C")

22 #shorthand to access timestamps and values

23 ts = data[_iprep][:,O]

24 y = data[_i prep][:,l]

26 #3.) --- run data processing---

27 #initialize last states on first pass

28 if(lastts is None):

29 lastts = ts[O]

30 if(lasty is None):

31 lasty = y[O]

32 #append last values to current arrays

3z ts = np.insert(ts,O,lastts)

3 4 y = np.insert(y,Q,lasty)

35 #integrate 'y' with respect to 'ts'

36 # scale output to kWh

37 kwh = cumtrapz(y,ts/(le6*60*60*le3))

38 #the integration is offset by the previous

39 # run of the filter function

4- kwh += C

236

41

42 #4.) --- return local variables to the state---

43 state.updateSlot("C",kwh[-1])

44 state.updateSlot("lastts",ts[-1])

45 state.updateSlot("last_y",y[-1])

46

47 result = np.hstack((ts[1:,None],kwh[:,None]))

48

49 insertfunc(result)

How it works: This example is more complex than the previous two, but it consists of several simple

steps. The first section of this code (lines 19-22) retrieves the state slots into local variables which is step

2 of the State Workflow. Next, lines 2 4-25 provide shorthand variables into the data array so we can

easily access the timestamps (ts) and values (y).

Lines 27-41 perform the data processing which is step 3 of the State Workflow. Lines 28-32 initialize

lastts and lasty if this is the first chunk of data. The reason for these variables is somewhat subtle.

The output of a numerical integration is one element shorter than the input. This might seem insignificant,

but the filter function executes iteratively and loosing a value with each iteration will cause the output

(energy) to lag the input (power). To keep the streams in sync, the input timestamps and power are

padded with the last value of the previous input arrays. This in done in lines 34-35 with the call to

np. insert. Lines 38-41 calculate the energy integral. The cumtrapz is imported from the Numpy

integration library in line 5. This function performs effecient trapezoidal integration. The integral is offset

by C which is the value of the energy integral from the last data chunk. Without this addition the integral

would "reset" to 0 with every data chunk.

Lines 45-47 complete step 4 of the State Workflow. The slots are updated from the local variable values

with calls to updateS lot. Finally, the energy array is timestamped and passed to insert func for

insertion into the output stream.

Testing

The figures below show the filter output over two different time intervals. Gaps in the input stream

propogate to the output stream. If a filter has multiple input streams the output is only computed over the

intersection of availble input data. The state is maintained across gaps in the input data so the filter

code does not need to explicitly check for areas of missing data. If you do want to check for breaks in the

data use the args ["isEnd"] flag, see args documentation for details.

237

* AC1 Wafts (W) 0 vnefgy (kWh) MACI Waftt (W) energy (kWh)

1500
2.0

0,30

10006

5.00

1910 19.20 30 1940 19:50 20:00 2010 20:20 20:I0 06:24 08:24 1024 1224 1424 1624 1824 2024

Calculating energy from power using a stateful Gaps in the input data do not affect filter state.

filter.

Reference

Inputs

Filters have one or more inputs. For example, a filter that computes power would have two inputs-

voltage and current. Inputs are hooks that are associated with data sets on the NILM at runtime.

Hooks allow the same filter to be used multiple times with different datasets. This makes the code more

effecient and resuable. For example instead of designing a three phase median filter, an instance of the

filter from Tutorial 1 could be scheduled for each phase. In design mode, the filter inputs are bound to
datasets in the Setup tab. First select a NILM to run the filter from the dropdown box at the top of the tab

(default is Primary). Specify the binding by selecting the Group, File, and Stream for each input using

the dropdown boxes. An input is fully specified when all three boxes have a valid selection. The filter will

not run if any of its inputs are not fully specified. Filter inputs can be removed by clicking the trashcan

icon to the right of the combo boxes and new inputs can be added by typing a name in the text box

below the current inputs and clicking the + icon. All inputs must have unique names. The figure below

shows an example of the filter input binding interface:

Group FiA Stream
Inputi Live Data Mactunery heaters

vsq : Tet 3 ECU

Ilpum L Ye Data

Fully specified

Missing Stream
Missing File and Stream

Specifying filter inputs. All inputs must be specified before a filter can run.

Inputs can be presented to the filter either as a list individual Numpy arrays or a single resampled Numpy

array. Arrays are 2D structures where column 0 is a microsecond timestamp and columns 1-N are the

data. The filter receives data through the data argument. If resampling is not enabled (default), this

argument is a Python list of Numpy arrays as shown in the figure below. This example shows a three input

238

filter. The input arrays are different lengths because NILM streams do not necessarily have the same

sampling rate. Over a one minute time range for example, prep data will have 3600 samples while

sensor data will have up to 480K samples (when using a contact NILM).

1. Filter input array
data[_i_inputl]

2. Time stamped sample
data data[_i_input2][7,:]

3. Single sample
data[_i_input3 [2, 1]

timestamp

The data argument for a three input filter without resampling. Example indexing schemes for

accessing different parts of the data.

To facilitate indexing into the data array the filter engine provides index tags for each input. These tags

are inserted into the comments field below the filter declaration. They are formated as

_iinputname. Using index tags instead of integers make the code easier to read and less brittle if

inputs are added or removed later. Some common indexing techniques are shown in the figure above.

For many algorithms it is more convenient to have synchronously sampled inputs. The filter resample

feature provides exactly this capability. In this mode, a single master stream (selected by the user) is used

as the base timeseries and the other filter inputs are interpolated to fit these timestamps. In general the

highest bandwidth stream should be selected as the master to reduce the effects of aliasing. The figure

below has the same three inputs as before but uses resampling to collapse the inputs into a single array.

In the first case, input 2 is the master so inputs 1 and 3 have additional interpolated samples to match

this higher bandwidth time series. In the second case, input 1 is the master so inputs 2 and 3 are

decimated (and interpolated) to match the lower bandwidth time series. Index tags are provided and

should be used to index into the column of each sample. The righthand figure below shows some

common indexing examples.

239

Master Stream:

value

timestamp

The data argument for a resampled three input

filter. Using _i_input2 as the master stream.

Other inputs are interpolated.

Master Stream: i-inputi

n1put1

value

timestamp data[1,:]

4data[4,_i_input37]

The data argument for a resampled three input

filter. Using _i_inputl as the master stream.

Other inputs are decimated.

Resampling is useful for combining inputs from different files, but if the inputs all come from the same file

resampling is not necessary since the datasets already share a common timeseries. When you are using

more than one stream from a file it can be faster and more convenient to use a bulk input. Specify a bulk

input by selecting -- all-- from the stream dropdown box (the first entry). Bulk inputs provide every

stream from the file. Without resampling the input data will look similar to the figure below. As with normal

inputs, use the logical indexing variables to locate each input array in data.

1 input
'

data

timestampvlu

The data argument for a three input filter with two bulk inputs

(input1 and input3).

Like normal inputs, bulk-inputs can be resampled. However care must be taken when indexing into this

array becase the logical index variables are pointers to the base of the bulk input block. See the figure

below for an example.

iinputl1 iut2

value

t time stamp T
The data argument for a three input filter with

240

two bulk inputs (input1 and input3)

resampled using input1 as the master.

Outputs

Filters produce one or more outputs. These outputs are stored in a single file that is dynamically managed

by the NILM. When a filter runs in the development environment, the NILM creates a fresh output file each

time the filter runs. When you are satified with the filter's performance it can be scheduled to run as a

process. Process filters are assigned a persistent output file which is then available for plotting in the

[explorer] view and can be used as inputs to other filters or analyzers.

The filter output setup is below the filter input controls. Each filter output has optional plot settings.

Selecting the [discrete] option plots the output as sticks rather than a continuous line. The output must be

plottable to be shown (some outputs might not make sense to plot so they can be hidden from view by

unchecking this option). The units, scale factor, and offset options are optional and can be adjusted later

using the standard NILM administration interface. Like filter inputs, outputs can be removed by clicking

the trashcan icon and new outputs can be added using the controls below the current outputs.

After you make any changes to the filter setup you must click [Save Changes] to put them into effect

241

NILM Analyzers

Introduction

Analyzers produce reports from NILM data. Before working with Analyzers make sure you fully

understand NILM Filters. Analyzers iterate over input data exactly the same as filters but have an an

additional post processing step to generate an HTML report document. Reports can contain both text

and graphics. Analyzers can be installed as a NILM processes to automatically generate reports as new

data arrives. Reports generated by processes are accessible from the Report Groups dashboard tile.

Tutorial 1: Hello World

Analyzers use NILM data to produce reports. This example reports the average of a dataset. To get

started, click the NILM Analzer 2L tile on the dashboard to load the NILM Analyzer Listing.

NILM Analyzer Listing: Analyzers are listed by Title and Description. Analyzers can either be public

or private. The Editing column shows the permission setting. Private analyzers can only be edited by

their author while public analyzers can be edited by any user. The current permission is displayed as a

private A or public W icon. Click the button to toggle the permission setting. To other users private

analyzers are marked with a Q icon. The private and public setting only applies to editting. Any analyzer

can be installed on any NILM by a user with at least owner privileges on the NILM. Click the

+Createa new analyzer button to enter the New Analyzer Page.

New Analzyer Page: Enter a name and description for the Analyzer. The name must be unique and the

descrption should be a short sentence that describes what the analyzer is doing. Analyzers have one or

more input data sources. Input sources are generic hooks that are bound to data streams at runtime.

Enter "source" in the input text box and click +M . The input will be added to the analyzer. If you

mistyped the entry click the X next to the input and type the input name again. You can add more inputs

the same way, but for now just use a single input. Do not click the "Resample streams" check box. Click

to enter the NILM Analyzer Page.

NILM Analyzer Page: The NILM Analyzer interface is divided into two main panels each with three tabs.

The left panel is a code editor and the right panel provides options for configuring and testing the

analyzer. Select the 1 Setup tab on the right panel.

Analyzer Setup

Analyzers run on a particular NILM. In order to test the analyzer during development you must pick an

available NILM and associate the analyzer inputs with data streams on this NILM. Select an available

NILM from the combo box. If this is a standalone installation there will only be one entry. If this is a cluster

installation there may be multiple NILMs listed. After you select a NILM you must bind the analyzer inputs

to data streams that are available on the NILM. This analyzer only has one input which we will bind to a

242

P1 stream. Start by selecting a data group. For this tutorial select a meter group that has available data.

Then select the Prep A file and P1 stream. Click ME to update the analyzer with these new

settings. Whenever you adjust the settings in the Setup tab you must click this button to apply the

changes. A green success message appears at the top of the tab once the save operation is complete.

The setup tab also lets you add or remove inputs to the analyzer. This has the same effect as adding

inputs on the New Analyzer Page. An analyzer must have at least one input. Now you can begin writing

code for the analyzer.

Code: Iteration

Select the Iteration tab in the code editor. Lines 1-3 are auto generated from the Analyzer name and

description. Lines 6-12 are auto generated from the Setup tab settings. These lines should match the

auto generated comments in your analyzer exactly. If the comments do not match check to make sure

you have not selected "Resample Streams" and that your input is named source. Correct any errors and

save the changes. This comment block will automatically update. When the analyzer is first created the

body of the iteration function is empty. Copy lines 13-28 and paste it in place of the #TODO ... pass

lines to complete the function.

243

" " " Average

2 Compute the average of a dataset

3

4

5 def iteration(data, interval, args, state):

6 ""--[Auto-Generated: Do Not Remove or Modify]

7 data is a python array where each element is a numpy array

8 of timestamped values (timestamps are 64 bit microseconds)

9

10 Access data in input array with these names:

11 source: i source

12

13 #shorthand to access values in _i_source

la vals = data[_i_source][:,l]

1 #local variables initialized from the state

3 avg = state.retrieveSlot("avg")

i count = state.retrieveSlot("count")

13 #compute the local average

9 local avg = np.mean(vals)

2,. if(avg==None):

2- avg = localavg

2z. else:

23 #... or compute the weighted average

2 avg = avg*count/(count+len(vals)) +

2" local avg*len(vals)/(count+len(vals))

26 #update the state from the local variables

27 state.updateSlot("count" ,count+len(vals))

28 state.updateSlot("avg",avg)

How it works: The analyzer iteration function is very similar to the filter function in NILM Filters.

You should already be comfortable with NILM Filters. In line 14 we extract the values from the input

stream into val. The data parameter is a list of Numpy arrays from each input. This analyzer has only

one input so a numerical index would be straight forward, but it is best practice to retrieve inputs from the
data list using the logical index generated by the analyzer framework, _i_source. The next index
operation is into the Numpy array. The Numpy array has two columns, timestamp (0) and value (1). We are
only interested in the values so we strip out the second column and store it in the local vals variable.

244

In lines 16-17 we retrieve the analyzer state into local variables. This analyzer has two state slots, avg

and count. avg stores the average and count stores the number of samples in the average. Lines 18-

25 perform the averaging computation. The Numpy built-in np. mean (x) is used to compute the average

of the vals array. If this is the first data chunk through the analyzer the avg state variable will be None

and we simply store the local avg as the avg (line 21). If this is not the first data chunk, avg will be the

average of the previous samples and we have to take the weighted combination of the previous average

with the average of the new data. This is done in lines 24-25.

In lines 27-2 8 the state slots are updated from the local variables. count is incremented by the length of

the vals array and avg is set to the new average.

Code: Support

Select the Support tab in the code editor. Lines 1-3 are auto generated from the Analyzer name and

description. This tab defines two functions: initialize and analyze. The initialize function runs

before the data is processed by iteration. Like NILM Filters, this function is used to set up state slots.

This analyzer has two slots, avg and count. The value for avg is unknown until the data has been

processed so this slot is initialized to None. The count slot is used to store the total number of samples

in the average and is initialized to 0.

The analyze function runs after the data is processed by iteration. This function can uses the values

stored in state to compute statistics on the data and produce plots with the matplotlib library. For

this tutorial we simply print the average and number of samples processed.

1 """ Initialization for Average

2 Compute the average of a dataset

3,,,,

4

5 def initialize(state):

6 state.initializeSlot("count",O)

7 state.initializeSlot("avg",None)

8

9 def analyze(state, saveFigure, args):

10 #retrieve state into local variables

11 avg = state.retrieveSlot("avg")

12 count = state.retrieveSlot("count")

13 #display result in the terminal

14 print "Processed %d values"%count

15 print "The average is: %f"%avg

Code: Report

245

Select the Report tab in the code editor. This is the report template. Reports are written using Markdown

which is a simplified version of HTML. See markdown syntax for details. Lines 1-3 are autogenerated

from the analyzer name and description. Lines 5-6 display our result. state values are injected into the

report with double braces. Any state variable with a string representation can be injected into a report.

Click jt when you have finished entering the code for all three tabs.

I Average

2 --------------

3 Compute the average of a dataset

I Processed {{count}} values

6 The average is {{avg}}

Testing the Analyzer

Once you have saved the code it is time to test the analyzer on a sample dataset. Select the Test tab

from the right panel. The test tab is divided into two sections. The top section has analyzer controls and

displays the console output. The bottom section is a truncated NILM explorer interface. Analyzer inputs

are listed below the plot window. Plot the source stream on the left axis. Pan and zoom the plot to a

short (less than a minute) section of data. Once you have selected a suitable range click the i

button to lock the plot. Click = to start the analyzer. The console output will display information as

the analyzer runs including the output of any print statements. If an error occurs the console will display

the python debug dump. Fix any errors and run the analyzer again. When the analyzer finishes

successfully the console status will update to Complete!

After the analyzer has run successfully select the output tab on the right. This tab displays the analyzer

report. You should see the number of values processed and the overall average. Try changing the report

template or the time range in the plot and run the analyzer again. Remember to click the save code

button to commit any changes.

Tutorial 2: Pump Health

This analyzer example generates diagnostics for an air compressor. Air compressors maintain the

pressure in a tank. During normal operation the compressor runs intermittently. If there is a leak it the

system the frequency of runs will increase. If the compressor itself has a fault the duration of the runs will

increase since the compressor is less effecient. By plotting a histogram of runtimes we can detect these

types of error conditions before they become a critical failure. The input to this analyzer is a stream of

pump turn on and off events identified by NILM Finder.

246

Pump Run

Source data for Tutorial 2. The pump transients are

identified by NILM Finder.

100

0

20~

60 so 100 120 140 100 180 200
Rutime iecs)

The runtime histogram indicates pump

health.

Analyzer Setup

This analyzer requires two inputs but both of the inputs are part of the same file so we can use a single

bulk input binding. Create a new Analyzer and add a single input, Events. Do not click the "Resample

streams" check box. From the Setup tab bind the input to the -- all-- stream on the events file

generated by NILM Finder, and save the changes.

Group
Events Pump

Fule Strearr

Events : --all--

Use -- all-- to create a bulk input from all

streams in the file.

Code: Iteration

Select the Iteration tab in the code editor. Lines 1-3 are auto generated from the Analyzer name and

description. Lines 6-12 are auto generated from the Setup tab settings. These lines should match the

auto generated comments in your analyzer exactly. If the comments do not match check to make sure

you have not selected "Resample Streams" and that your input is named events. Correct any errors and

save the changes. This comment block will automatically update. When the analyzer is first created the

body of the iteration function is empty. Copy lines 13-38 and paste it in place of the #TODO. . . pass

lines to complete the function.

1 """ Cycling Systems Analysis

2 Create histograms of runtime

3,"""

4

5

6

7

8

def iteration(data, interval, args, state):

"""--[Auto-Generated: Do Not Remove or Modify]

data is a python array where each element is a numpy array

of timestamped values (timestamps are 64 bit microseconds)

247

9

10 Access data in input array with these names:

11 Events: _i_Events

12

13 #indices into bulk input _i events

1 ON = 1; OFF = 2

15 #local variables initialized from the state

16 turnontime = state.retrieveSlot("turn ontime")

I7 is-on = state.retrieveSlot("ison")

18 runtimes = state.retrieveSlot("runtimes")

19 #compute runtimes

20 for d in data[_iEvents]:

21 if(d[OFF]):

22 if(ison):

2_; #machine turned off, add a runtime statistic

24 runtimes.append((d[O]-turn_ontime)/le6)

ison = False

-6 else:

27 #machine turned off twice??

28 print "double turn OFF at ",timestamptohuman(d[0])

29 if(d[ON]):

30 if(ison):

31 #machine turned on twice??

32 print "double turn ON at ",timestamptohuman(d[0])

turn on time = d[Q]

ison = True

35 if(args["isEnd"] and is-on):

36 #machine must be off at the end of an interval

37 is-on = False

38 print "forcing off at end of interval"

39 #update the state from the local variables

4C state.updateSlot("turnontime",turnon time)

4 state.updateSlot("ison",is on)

42 state.updateSlot("runtimes" ,runtimes)

248

How it works: Line 14 sets up logical indices for the bulk input events. In lines 16-18 we retrieve the

analyzer state into local variables. This analzyer uses three state slots: turnontime is the timestamp

from the last ON event, ison is the pump state (true/ false), and runtimes is an array of the pump

runtimes in seconds. Lines 20-34 loop over the input to calculate the pump runtimes. A runtime starts

with a turn on event and ends with a turn off event. Each element in the input array is an event (ON or

OFF). If the event is an OFF event (line 21) and ison is true (line 22) this is the end of a runtime. The

runtime is the difference between turnontime and the time of the OFF event. This is converted to

seconds and appended to the runtimes array (line 24). Line 25 sets ison to False to indicate the

pump is off.

If the event is an ON event (line 29) turnon time is set to the event time (line 33) and is-on is set to

true (line 34). Two additional clauses catch spurious transients. If the pump is off according to ison,

and another OFF event occurs, a warning is printed to the console and the event is ignored (line 28).

Similarly, if the pump is on according to is_on and another ON event occurs a warning is printed (line 32)

and turnontime is set to the more recent ON event (because the execution falls through to line 33).

Line 35 forces is-on to false at the end of an interval. This check is necessary because the data

stream is intermittent. Ideally we would have continuous data but in reality sensors fail periodically so we

have some gaps in the event stream. If the pump is on when the sensor stops recording we will have an

ON event with no matching OFF Without this check the runtime will extend until the sensor is back online

and has recorded another OFF transient. Finally lines 40-42 update the state slots from the local

variables.

Code: Support

Select the Support tab in the code editor. Lines 1-3 are auto generated from the Analyzer name and

description. The initialize function defines the three state slots. runtimes is initialized to an empty

array, is-on is initialized to false because we assume the pump is off before the event stream starts. If

it is actually on we ignore the first OFF transient (line 27 in iterate) and start tracking runtimes with the

first ON transient. The turn on time is left blank since we can't provide a valid initial value.

249

1 """ Initialization for Cycling Systems Analysis

2 Create histograms of runtime

3 """

4

5 def initialize(state):

6 state.initializeSlot("runtimes",[])

state.initializeSlot("ison",False)

8 state.initializeSlot("turn on time",None)

9

10def analyze(state, saveFigure, args):

1i #retrieve state into local variables

12 runtimes = state.retrieveSlot(" runtimes")

13 #compute histogram of runtimes

4 (hist,bins) = np.histogram(runtimes,bins=15)

5 center = (bins[:-1]+bins[1:])/2

#create a matplotlib figure with histogram

plt.figure()

fig = plt.plot(center,hist)

19 plt.xlabel("Runtime (secs)")

20plt.ylabel("Counts")

21 #store total number of runs

22 state.initializeSlot("count",len(runtimes))

#save figure for use in report

saveFigure(fig,"runtimes")

The analyze function generates a histogram plot from the runtimes array. In line 12 the runtime state

slot is retrieved into a local variable. Lines 14-15 compute the histogram using Numpy's builtin

histogram function. See the numpy documentation for a full list of arguments. This function returns the

counts per bin in hist and the bin edges in bin. To plot the count per bin we compute the bin centers in

lines 15. center and hist have the same length so they can be plotted together. Analyzers use

matplotlib to generate graphics. Matplotlib's pyplot module is imported as pit. Line 17 creates a new

figure and line 18 plots the histogram in this figure. Lines 18-19 set up the plot labels. Line 22 initializes a

new state slot to store the total number of runtimes. This slot is used to populate the report template. Line

24 uses the saveFigure function to store the plot image so it can be used in the report template. This

function takes two arguments, the figure and a unique string identifier.
Code: Report

Select the Report tab in the code editor. Lines 1-3 are auto generated from the Analyzer name and

250

description. The double brackets in lines 5-6 indicate code injection. Line 5 displays the total number of

runs by using the count state slot initialized in line 22 of analyze. Line 6 adds the histogram plot.

insertFigure takes a single argument, the unique string identifier of a figure.

1 Cycling Systems Analysis

2 ---------------------

3 ### Histogram of runtime duration

4

5 Total number of runs: {{count}}

6 {{insertFigure("runtimes")}}

Testing the Analyzer

Select the Test tab from the right panel. Plot the turn ON and turn OFF events on the left axis and select

a region of time to run the analyzer over. Notice there are several gaps in the data indicating times when

the NILM was offline. Even if you expect to have an uninterrupted dataset it is always best to design the

analyzer to support these kinds of gaps (eg with check at line 35 of analyze). Click M to start the

analyzer. Select the Report tab to see the result. The histogram becomes smoother as more pump

runtimes are included in the analysis. Try to display the max and min runtimes in the report. Experiment

with different numbers of bins in np. histogram and different lengths of input data. Remember to click

to update changes before running the analyzer again.

Tutorial 3: Energy Dashboard

Analyzers use the matplotlib package to provide powerful plotting and graphical presentation tools.

Matplotlib's pyplot is imported by default as pIt. The code below shows how to create a basic graph

using these tools.

1 fig = plt.figure()

2 x = np.arange(0,2*pi)

3 y = np.sin(x)

4 plt.plot(x,y)

5 #save the figure

6 saveFigure(fig, "example")

7

251

NILM Finder

Introduction

The NILM Finder uses exemplar pattern matching to identify load transients. Exemplars are short sections

of a waveform that correspond to a load turn on or turn off event. Users identify and label exemplars and

can then run a load identification filter across a dataset to extract matching transients. The exemplar

engine uses a cross correlation algorithm to determine match events. An exemplar can consist of multiple

streams (eg P1, Q1, P3, etc) but they must all be part of the same file.

Exemplar Groups

Exemplars are classified into groups. The NILM Finder page lists available exemplar groups. Click a group

to enter the exemplar matching page (shown in the figure below). You can create a new exemplar group

by clicking the blue button at the bottom of the group list. Each group must have a unique name. The 1

button deletes the group.

Identify Loads

The Exemplar Matching interface has three main panels labeled in the figure below. Start by finding an

isolated transient in the data using the embedded NILM Explorer interface (click the link for details about

this interface). A transient exemplar can consist of multiple streams but all streams must be in the same

file. Once you have zoomed in to just the section of data corresponding to a transient enter the name of

the transient (eg Fridge On) in the Exemplar List and click I= . Click the name of an exemplar to

display a thumbnail of the transient. Click the name again to hide the thumbnail. E displays the

transient waveform in the NILM Explorer interface where you can change the bounds of the transient and

add or remove streams. Once you are done adjusting the transient click to to update the exemplar

with the new transient waveform. Click = to delete an exemplar from the group.

252

Identify transients:
+ Addt

Off Exemplars Left f

Exemplar List

S ComprWW off

Edio

Edit

Edit
RetmoVV

n C oSavel utOpt

2~ Console Output

b WaterNim

P DDG Michael Murphy

b Fort Devens Exemplar$n

P Fort Devens

P USCGC Escanaoa

P LCS Independence

NILM Explorer

Exemplar matching interface

0

Match Loads

After you have built a list of exemplars you can then search a dataset for matches. The exemplar

matching engine runs across the range of data plotted in the NILM Explorer interface. The exemplars do

not have to be part of the dataset you are matching against but the target file must have all of the streams

required by the exemplar. Therefore if a transient is defined as a section of P1 and Q1 waveforms it can

be used to match any prep file that also has P1 and Q1 streams. Click Fin to start the exemplar

matching engine. Once the process has completed you can plot the identified exemplars on the left or

right axis by selecting the appropriate radio button in the Exemplar List. By default the matches are only

stored in a temporary stream, if you want to save the match results click l.a p and select a

destination group and file name before running the matching engine.

SP. so

03'D 3 32'0 10 13V 3' '32 2 3 1'2 2-5 3 321

20;51 J 22 13.21

An off transient defined by P1, Q1 and Q3.

Transients should be 30 seconds or less and all

2015 Jut 22 '38 13 23

NILM Finder automatically identifies loads

based on exemplar transients. Matched

253

*L30vCffwt,32

.co-.Wls Or Ala-C
C r os On (-1,n

E23L00p332

I cs13 22 30 3 23 M 13 23 30

exemplars are plotted as vertical pipes.

254

streams must be in the same file.

Process Manager

Introduction

Filters and Analyzers can be installed as NILM processes and run automatically. The NILM Process

Manager shows currently installed processes and allows users to schedule new processes on demand.

The NILM process framework is based around NilmRun, a remote execution service integrated with the

NILM. The nilmrun server provides command line tools but these are only for advanced diagnostics and

debugging.

The Process Manager interface is available to any user with privileges on the NILM but only admins and

owners can schedule new processes. admins can remove currently executing processes using the

Administration interface.

Process List

The Process Manager overview shows all installed processes. On a standalone system the only NILM

listed will be the local device, but on a cluster this view will contain process listings from all of NILM's in

the cluster. The Process column shows the type of process (Filter or Analyzer) and the name. The Owner

is the name of the user who installed the process. Nilm is the serial number of the NILM holding the

process. Status provides information about the state of the process. A green icon @ indicates a running

process and a red icon 0 indicates an inactive process. Processes may be inactive for several reasons.

The process may be waiting for more data, finished if it is a one shot process, or halted with an

error condition. If the process has failed with an error the return code is displayed in brackets.

Processes can be scheduled to execute as one shot or to repeat as new data becomes available. Repeat

processes are indicated with a V in the Repeat column. Click 2 to view the console output from a

process. The 12 button uninstalls the process from the NILM.

Process Manager
Process Owner Nom Status Repeat Action

Filter [Power Quality) John Ladner nIm1234 *Error I11

Filter [Median Fliterl John Ledner nilm1234 0 waiting 9

Analyzer [Load Usagel Sam Fellows n,1m6621 *running

Analyzer [Pump Health] Jim Nance nrlmF923 *running

Filter [Harmonios) John Leaner ninm1234 0 weiting V

Analyzer [FOB Dashboard] Alex Trusn nilmF923 *running V

Filter [HmaoniCs) Alice Fox nim8631 0 rrorTl' -

Click the date below the Main Plot to open the Date Selector Overlay

255

New Processes

To install a process click the N = button at the bottom of the Process Manager page. There are

two different types of processes, filters and analyzers. See NILM Filters and NILM Analyzers for more

details. Select which type of process you would like to install. Next specify the start and end times for the

process. There are several different time options. The start time can be set to Earliest available or to a

specific date. If there is a large amount of data in the input streams and you only want to process new

data going forward, set the start time to the current date. The end time can also be set to a specific date

or to Latest Available. If you select Latest Available then you can also select Repeat Process which will

continue to run the process indefinitley as new data becomes available. Selecting all three check boxes

will process all data that is currently available and all future data as it arrives.

Process Type: Process Type:

Filter Filter

Start Time Start Time

Earliest available A A 0 Earliest available

2016-03-10 15 : 17 End Time

O Latest availableV

End Time FJ Repeat process?

Latest available A A

2016-03-11 15 : 17

V9 V

Process just the data bounded by the start and Process all available data and and any new

end times. data as it arrives.

Filter Process

Select "filter" from the Process Type combo box to display the filter specific configuration options. Select

the filter and the NILM you want to run it on. Any filter can be installed on any NILM. Filters have one or

more inputs. These must be bound to data streams that are available on the NILM. If the filter was

designed on the same NILM, the stream binding will be populated with the values used in the filter editor.

Finally you must create an output file for the process. Clicking the 1% button brings up the file selector.

Click the group where you want to store the file and enter a name for the file.

Once all of the settings are correct click Create Filter Process. The process will be automatically installed

on the NILM and started. You will be redirected to the Process Manager page where you can check the

status of the new process.

256

Select Filter
,neal5"lae, Create New File on nilm1 234a

Select Nim:

"Mi234a Current Groups New File Properties
set Saum di sno. A 0 NikT6 raut-

GMOp Fe Steam r i
row er I Prep 0 P I C)Thre porary Grwo

Master Bleom: raw : met, o

Output file:

Filter Process configuration Select a destination group and a unique file
panel

name

Analyzer Process

Select "analyzer" from the Process Type combo box to display the analyzer specific configuration

options. Select the analyzer and the NILM you want to run it on. Any analyzer can be installed on any

NILM. Analyzers have one or more inputs. These must be bound to data streams that are available on the

NILM. If the analyzer was designed on the same NILM, the stream binding will be populated with the

values used in the analyzer editor.

Next you must configure the report group structure. The group must have a unique name and description.

The group should also be correlated with an installation. The installation should match the NILM where

the process will be installed. The analyzer is run repeatedly across the data to generate reports which are

stored in this group. The Create Report Every setting controls the frequency of reports and the Each

Report Covers setting controls how much data is processed by each report. The figure below shows

how these settings can be combined to create several different types of report structures. The units for

these settings can be set to minutes, hours, or days.

Once all of the settings are correct click reate Analyzer Process . The process will be automatically installed

on the NILM and started. You will be redirected to the Process Manager page where you can check the

status of the new process.

257

Selit Analyz.r
Pumo Health

Select im:

I ~d200
S.t Stream Bekdng:

Group Fe Strnwm
iput cala Dfrep-i P1

Seup eport Gro:up

Pomo Healtm

Descrpoon

RtUrme statsIs for vaCUrphmp

WMNton

Lao Bencn

Gmate Acport Ewray

2

Eam Repor GVers:

24

hours -

hours .

Filter Process configuration panel

Report Every 3 Hours Each Report Covers 1 Hour

I 1 I
12:00 AM 1:00 2:00 3:00 4:00 5:00 6:00 7:00 800 9-00 10:00 11.00 12:00 PM

Report Every 3 Hours Each Report Covers 3 Hours

I I I
12:00AM 1:00 2:00 3:00 4:00 5:00 600 7:00 800 9-00 10:00 11:00 12:00 PM

Each Report Covers 6 Hours

12:00 AM 1:00 2:00 3:00 4:00 500 6-00 7:00 8:00 9-00 1000 1100 1200 PM

Filter Process configuration

panel

258

Each Report Covers I HourReport Every 3 Hours

WNWm

Report Every 3 Hours

NILM Command Line Interface

Introduction

Command-line arguments can often be supplied in both short and long forms, and many arguments are

optional. The following documentation uses these conventions:

* An argument that takes an additional parameter is denoted -f FILE.

" The syntax -f FILE, -- file FILE indicates that either the short form (-f) or long form (--file) can

be used interchangeably.

" Square brackets (]) denote optional arguments.

" Pipes (A I B) indicate that either A or B can be specified, but not both.

" Curly braces ({ }) indicate a list of mutually-exclusive argument choices.

Many of the programs support arguments that represent a NilmDB timestamp. This timestamp is

specified as a free-form string, as supported by the parse-time client library function, described in

Section 3.2.2.4 of the NilmDB reference guide. Examples of accepted formats are shown in Table 3-19 on

page 133 of that document.

NLM Diagnostics

nilm-capture is the global NILM service that manages data capture from all of the meters (contact and

non-contact). This service is automatically managed by the NILM. The rest of the functions are diagnostic

utilities that are useful when setting up an installation. nilm-scope provides a realtime waveform viewer

similar to an oscilloscope. nilm-calibrate calibrates non-contact meters. nilm-check-config

verifies the meters. yml syntax, checks if the specified meters are correctly connected, and estimates

the disk usage required by the keep settings. usbstream prints non-contact USB meter data to

standard output and ethstream does the same for the contact meters. The tools are designed to be

used for temporary measurements while a user is setting up the system. All of these tools will disable

nilm-capture while they are running. Finally, NILM logs describes the structure and location of log files

generated by the NILM. These logs are useful for diagnostics and debugging installed systems.

nilm-capture - NILM system service

Usage

sudo service nilm-capture action

Description

This program controls the entire NILM acquisition and signal processing pipeline. It runs as a system

259

service. When nilm-capture is running data is collected from the meters, processed and stored as

streams into NilmDB. When this service is not running the meters are idle and available for use by other

diagnostic utilities. nilm-capture will automatically start on system boot. Stop data capture by

issuing the stop action. After any change to the meters. yml file you must restart the daemon.

Arguments

action

start stop restart I status (specify a single action)

Example

I $ sudo service nilm-capture restart #reload the meters.yml file and stari

n ilm- scope - View sensor waveforms

Usage

nilm-scope meter -c

Description

NILM scope can display the sensor waveforms for either a non-contact or contact meter in realtime.

For a contact installation this can help determine the phase pairings between the current and voltage

sensors and for a non-contact installation this can help when placing the sensors to ensure strong

magnetic and electric field pickup. The program requires two parameters, the meter name from the

meters. yml configuration file and a list of channels to display. A legend is automatically built using the

configuration in meters. yml.

Arguments

meter

meter name from meters. yml (meterl,meter2, etc)

-c CHANNELS

Space seperated list of channel indices to plot [0-5] for contact meters and [0-7] for non-

contact meters

Example

$ nilm-scope meteri -c 2 4 #display channels 2 and 4 from meteri

260

I

Raw data from contact meter [192.168.1.2091

121 Curren
[41 Voltage

40001

2000

0

-2000

-4000

N\L + ni

NILM Scope running on a contact meter

nilm-check-config - verify meters . yml syntax and disk usage

Usage

nilm-check-config

Description

This command verifies the syntax of meters. yml. This command should be run after any change to

the meters. yml file to ensure that the configuration is valid. If they syntax is valid, it then checks if the

specified meters are connected to the NILM. Finally it calculates the disk space required by the keep

settings and displays the estimated disk usage. If more space is required than currently available,

adjust the keep settings for the meter streams and run this command again.

Arguments

none

Example

1 $ nilm-check-config #syntax error in meters.yml

2 [CONFIGURATIONERROR]: meterl error in [streams][sinefit][keep] bad synti

3

4 $ nilm-check-config #no syntax errors, but warning that meterl is missin(

5 [CONFIGURATIONWARNING]: meterl device [meterOO12] is not connected

6 This configuration will require -176.68 GiB

7 This is 41% of the available space on the disk

nilm-calibrate - caibrate non-contact meters

Usage

261

Raw data from non-contact meter (meterog121

13) Current
151 Voltage

oo

NILM Scope running on a non-contact meter

nilm-calibrate meter

Description

This command calibrates a non-contact meter. The meter must be configured in meters. yml. The

calibration routine requires you to connect a smart plug to an outlet on each phase. Before running this

command make sure you have a smart plug, micro USB cable, and a resistive load like an

incandescent lightbulb. Configure the meters .yml calibration section with the load watts and

calibration duration in seconds. Longer durations generally improve the calibration result. In general

use around 30 seconds for a house and 90 seconds or more a ship or larger building. The calibration

wattage should be at least 5% of the background load with higher wattages producing more reliable

calibration results. If the power system does not have a neutral bus (eg on a ship) set hasneutral to

false otherwise leave it as true. This command can be used to calibrate a meter multiple times so

you can experiment with different load sizes and calibration durations until the result is accurate.

Arguments

meter

meter name from meters. yml (meter1,meter2, etc)

Example

Before running this command make sure the meters. ymi file is configured for this meter. In particular

adjust the calibration section to match your setup. See Setting Up a Non-Contact Meter for details

on configuring meters. yml

meteri:
... other configurations...
calibration:

duration: 30 # length of calibration in seconds
watts: 200 # power consumed by calibration load
has-neutral: true # [false] if the system has no neutral bus

... other configurations...

Once you have configured meters .ymi run nilm-calibrate as shown below:

262

1 $ nilm-calibrate meteri

3 Calibrating meteri

4 + The power system has 2 phases and neutral

5 + Digitally integrating sensor 0 for voltage measurement

6 + Using sensors 1,3,5,7 for current measurements

7 + Calibration load is 200W and will run for 30 seconds

8 + The reference voltage is 120V rms

9 + The meter serial number is [meterOO01]

10 Is this correct? (y/n) y #answer n to cancel calibration

Set up a smart plug for calibration? (y/n) y #smart plug must be connected

12#... calibration continues ...

usbstream - Stream raw sensor data non-contact meter (D-Board)

Usage

usbstream meter

Description

This command returns timestamped sample data from a non-contact meter D-Board. The meter must

be configured in meters. yml before running this command. All eight channels are sampled at 3kHz

and printed to standard output. The first column is a Unix microsecond timestamp. This commmand

does not apply any scaling or calibration to the sensor values, the output is the raw ADC reading. This

command stops the nilm-capture process.

Arguments

meter

meter name from meters. yml (meterl,meter2, etc)

Example

263

I $ usbstream meter1

2 1457475967447218 -7071 551 -7090 501 -7048 482 -16247 -16248

3 1457475967447551 -7071 558 -7087 501 -7048 483 -16246 -16248

4 1457475967447885 -7069 566 -7088 504 -7049 486 -16247 -16249

5 1457475967448218 -7067 561 -7089 505 -7046 478 -16248 -16249

6 1457475967448551 -7066 557 -7084 502 -7045 479 -16247 -16250

Y 1457475967448884 -7064 561 -7082 504 -7046 484 -16248 -16251

8 ^Ccaught signal [2], stopping #hit Ctrl-C to stop

S closed usb sensor

G

1$usbstream meterl > output.dat #save values to a file

ethstream - Stream raw sensor data from contact meter (LabJack)

Usage

ethstream [options]

Description

This command returns raw sample data from a LabJack UE9. The contact meter sensors are

connected to channels 0-6 on the LabJack. See Contact Meter for a mapping of sensors to LabJack

channels. There are many options to this command but the most useful for NILM debugging is -a

address, -C channels, and -L to force LabJack mode. The default sample rate is 8kHz. The full

options are listed below. Use the -x flag to show complete usage examples. Before running this

command you must manually stop the nilm-capture service. When you are done manually

interacting with the LabJack, restart the nilm-capture service.

Arguments

-a, -- address stringhost/address of device (192.168.1.209)
-n, -- numchannels n sample the first N ADC channels (2)
-C, -- channels a,b,csample channels a, b, and c
-r, -- rate hz sample each channel at this rate (8000.0)
-L, -- labjack Force LabJack device
-t, -- timers a[:A] , b[:B]set LabJack timer modes a,b and optional values A,B
-T, --timerdivisor

--nerdj ack

--detect

--range a,b

--gain a,b,c

--oneshot

--forceretry

--convert

--converthex

--showmem

nset LabJack timer divisor to n
Force NerdJack device
Detect NerdJack IP address
Set range on NerdJack for channels 0-5,6-11 to either 5 or 10 (10,10)
Set Labjack AIN channel gains: 0,1,2,4,8 in -C channel order
don't retry in case of errors
retry no matter what happens
convert output to volts/temperature

convert output to hex
output memory stats with data (NJ only)

264

I

-N,

-d,

-R,

-g,
-0,

-f ,

-H,

-m,

-1, -- lines num if set, output this many lines and quit
-h, -- help this help

-v, -- verbose be verbose

-V, -- version show version number and exit
-i, -- info get info from device (NJ only)
-x, -- examples show ethstream examples and exit

Example

1 $ ethstream -a 192.168.1.209 -C 0,1,2 -L #record channels 0,1,2 (current sen

NILM Logs - System logging

Description

The NILM processes record logging information to a set of log files located in /var/log/nilm. The

logs are automatically rotated daily and compressed. Logs older than 10 days are removed. View the

logs using tail. Each meter has a log and the supervisor NILM daemon has a log.

supervisor .log

Global data NILM system events. This log is produced by the nilm-capture service.

meterX.log

Individual meter events. Each of these logs is produced by the nilm-capture-daemon threads

spawned by the globale nilm-capture service.

Example

The logs are flat text files but due to their large size it is often easiest to view them using tail which

displays the last 10 lines of a file (the most recent log events). Use the -f flag to follow the file and

display new logging events as they are recorded.

Supervisor Correct Operation: Supervisor log indicates that a capture process has been spawned for

eteri

1 $ tail /var/log/nilm/supervisor.log

2 2016-03-09 09:06:56,524:INFO:STDOUT:-------- Starting Supervisor ---------

3 2016-03-09 09:06:56,589:INFO:STDOUT:[supervisor]: waiting 2 minutes to avoi

4 2016-03-09 09:06:57,591:INFO:STDOUT:[supervisor]: starting capture for [met

Supervisor Error Condition: Supervisor log indicates that eter .y 1 is empty

265

I $ tail /var/log/nilm/supervisor.log

2016-03-07 13:01:27,386:INFO:STDOUT:--------- Starting Supervisor ---------

32016-03-07 13 :01:27,387:INFO:STDOUT:[CONFIGURATIONERROR]: meters.yml is em

4 2016-03-07 13:01:27,388:INFO:STDOUT: see [http://nilm.standalone/help/so

2016-03-07 13:01:27,388:INFO:STDOUT:## Configuration has errors.

6 2016-03-07 13:01:27,388:INFO:STDOUT:## Run [nilm-check-config] to verify me

Meter Correct Operation: Meter log indicates that data capture has started on eterl

I $ tail /var/log/nilm/meterl.log

22016-03-09 11:57:11,374:

3 2016-03-09 11:57:11,374:--------------starting capture on meterl-----------

42016-03-09 ll:57:16,768:[meterl]: beginning interval

Meter Error Condition: Meter log indicates that the non-contact meter (D-Board) is not connected

eteri

1 $ tail /var/log/nilm/meterl.log

3 2016-03-09 11:56:51,378:--------------starting capture on meterl-----------

32016-03-09 11:56:51,735:######## ERROR ########

4 2016-03-09 11:56:51,735:[meterl] Cannot find USB meter with serial number

3 2016-03-09 11:56:51,735: check USB connection or set enabled=False in m
2016-03-09 11:56:51,735: could not open port /dev/serial/by-id/usb-MIT_

nilmtool

Tools for interacting with the nilm database are wrapped in nilmtool, a monolithic multi-purpose

program that provides command-line access to most of the NilmDB functionality. Global operation is

described first followed by specific documentation for each subcommand.

n ilmtool - Multipurpose NilmDB management tool

Usage

nilmtool [-h] [-v] [-u URL] {help, info, create, rename, list, intervals,

metadata, insert, extract, remove, destroy} ...

Description

Multipurpose tool that provides command-line access to most of the NilmDB functionality. The

command-line syntax provides the ability to execute sub- commands: first, global arguments that affect

266

the behavior of all subcommands can be specified, followed by one subcommand name, followed by

arguments for that subcommand. Each defines its own arguments and is documented inde- pendently.

Arguments

-u URL, -- url URL

(default: http://localhost/nilmdb/) NilmDB server URL. Must be specified before the subcommand.
subcommand ...

The subcommand to run, followed by its arguments. This is required.
-h, -- help

Print a help message with usage information and details on all supported command-line arguments.
This can also be specified after the subcom- mand, in which case the usage and arguments of the
subcommand are shown instead.

-v, -- version

Print the nilmtool version.

Environment Variables: Some behaviors of nilmtool subcommands can be configured via environment

variables.

NILMDBURL

(default: http://localhost/nilmdb/) The default URL of the NilmDB server. This is used if --url is not
specified, and can be set as an environment variable to avoid the need to specify it on each
invocation of nilmtool.

TZ

(default: system default timezone) The timezone to use when parsing or displaying times. This is
usually of the form America/NewYork, using the standard TZ names from the IANA Time Zone
Database

nilmtool help - Print hetp for a subcommand

Usage

nilmtool help [-h] subcommand

Description

Print more specific help for a subcommand. nilmtool help subcommand is the same as nilmtool

subcommand -- help.

nilmtool info - Server information

Usage

nilmtool info [-h]

Description

Print server information such as software versions, database location, and disk space usage.

Example

267

1 $ nilmtool info

2 Client version: 1.9.7

3 Server version: 1.9.7

3 Server URL: http://localhost/nilmdb/

3 Server database path: /home/nilmdb/db

5 Server disk space used by NilmDB: 143.87 GiB

I Server disk space used by other: 378.93 GiB

I Server disk space reserved: 6.86 GiB

9 Server disk space free: 147.17 GiB

nilmtool create - create a new stream

Usage

nilmtool create[-h] PATH LAYOUT

Description

Create a new empty stream at the specified path and with the specified layout.

Arguments

PATH

Path of the new stream. Stream paths are similar to filesystem paths and must contain at least two
components. For example, /foo/bar.

LAYOUT

Layout for the new stream. Layouts are of the form <type>_<count>. The <type> is one of those
described in Section 2.2.3 of the NilmDB Reference Guide, such as uint16, int64, or float32.
<count> is a numeric count of how many data elements there are, per row. Streams store rows of
homogeneous data only, and the largest supported <count> is 1024. Generally, counts should fall
within a much lower range, typically between 1 and 32. For example, float32_8.

nilmtool rename - Rename a stream

Usage

nilmtool rename [-h] OLDPATH NEWPATH

Description

Rename or relocate a stream in the database from one path to another. Metadata and intervals, if any,

are relocated to the new path name.

Arguments

OLDPATH

Old existing stream path, e.g. /foo/old
NEWPATH

New stream path, e.g. /foo/bar/new

268

Notes

Metadata contents are not changed by this operation. Any software tools that store and use path

names stored in metadata keys or values will need to update them accordingly.

nilmtool list - List streams

Usage

nilmtool list [-h] [-E] [-d] [-s TIME] [-e TIME] [-T] [-l] [-n] [PATH [PATH

Description

List streams available in the database, optionally filtering by path, and optionally including extended

stream info and intervals.

Arguments

PATH

(default: *) If paths are specified, only streams that match the given paths are shown. Wildcards are
accepted; for example, /sharon/* will list all streams with a path beginning with /sharon/. Note that,
to prevent wildcards from being interpreted by the shell, they should be quoted at the command
line; for example:

I $ nilmtool list "/sharon/*"

2 $ nilmtool list "*raw"

-E, --ext

Show extended stream information, like interval extents, total rows of data present, and total
amount of time covered by the stream's intervals.

-T, -- timestamp-raw

When displaying timestamps in the output, show raw timestamp values from the NiImDB database
rather than converting to human-readable times. Raw values are typically measured in
microseconds since the Unix time epoch (1970/01/01 00:00 UTC).

-1, -- layout

Display the stream layout next to the path name.
-n, -- no-decim

Omit streams with paths containing the string "-decim-", to avoid cluttering the output with
decimated streams.

-d, -- detail

In addition to the normal output, show the time intervals present in each stream. See also nilmtool

intervals in Section 3.2.3.7 of the NilmDB Reference Guide, which can display more details about

the intervals.
-s TIME, -- start TIME

Starting timestamp for intervals (free-form, inclusive).
-e TIME, -- end TIME

Ending timestamp for intervals (free-form, noninclusive).

nilmtool interval S - List intervals

Usage

269

nilmtool intervals [-h] [-d DIFFPATH] [-s TIME] [-e TIME] [-T] [-o] PATH

Description

List intervals in a stream, similar to nilmtool list -- detail, but with options for calculating set-

differences between intervals of two streams, and for optimizing the output by joining adjacent

intervals.

Arguments

PATH

List intervals for this path.
-d DIFFPATH, -- diff DIFFPATH

(default: none) If specified, perform a set-difference by subtract the intervals in this path; that is, only
show interval ranges that are present in the original path but not present in diff path.

-s TIME, -- start TIME

Starting timestamp for intervals (free-form, inclusive).
-e TIME, -- end TIME

Ending timestamp for intervals (free-form, noninclusive).
-T, --timestamp-raw

(default: min) (default: max) When displaying timestamps in the output, show raw timestamp values
from the NiImDB database rather than converting to human-readable times. Raw values are typically
measured in microseconds since the Unix time epoch (1970/01/01 00:00 UTC).

-o, -- optimize

Optimize the interval output by merging adjacent intervals. For example, the two intervals [1 -* 2)
and [2 -- 5) would be displayed as one interval [1 - 5).

nilmtool metadata - Manage stream metadata

Usage

nilmtool metadata [-h] PATH [-g [KEY ...J -s KEY=VALUE [...] -u KEY=VALUE

[...] I -d [KEY ...]]

Description

Get, set, update, or delete the key/value metadata associated with a stream.

Arguments

PATH

Path of the stream for which to manage metadata. Required, and must be specified before the
action arguments.

Action Arguments: These actions are mutually exclusive.
-g [KEY ...], -- get [KEY ...]

(default: all) Get and print metadata for the specified key(s). If none are specified, print metadata for
all keys. Keys are printed as key=value, one per line.

-s [KEY=VALUE ...], -- set [KEY=VALUE ...]

Set metadata. Keys and values are specified as a key=value string. This replaces all existing
metadata on the stream with the provided keys; any keys present in the database but not specified
on the command line are removed.

-u [KEY=VALUE ...], -- update [KEY=VALUE ...
Update metadata. Keys and values are specified as a key=value string. This is similar to --set, but
only adds or changes metadata keys; keys that are present in the database but not specified on the

270

command line are left unchanged.
-d [KEY ...], --delete [KEY ...]

(default: all) Delete metadata for the specified key(s). If none are specified, delete all metadata for
the stream.

Example

I $ nilmtool metadata /temp/raw -- set "location=Honolulu, HI" "source=NOAA"

2 $ nilmtool metadata /temp/raw --get

3 location=Honolulu, HI

4 source=NOAA

5 $ nilmtool metadata /temp/raw -- update "units=F"

6 location=Honolulu, HI

7 source=NOAA

8 units=F

nilmtool insert - Insert data

Usage

nilmtool insert[-h] [-qi [-t] [-r RATE] t-s TIME I -f] [-e TIME] PATH [FILE]

Description

Insert data into a stream. This is a relatively low-level interface analogous to the /stream/insert HTTP

interface described in Section 3.2.1.13 on the N1rnDB Reference Guide. This is the program that should

be used when a fixed quantity of text-based data is being inserted into a single interval, with a known

start and end time. If the input data does not already have timestamps, they can be optionally added

based on the start time and a known data rate. In many cases, using the separate nilm-insert

program is preferable, particularly when dealing with large amounts of pre-recorded data, or when

streaming data from a live source.

Arguments

PATH

Path of the stream into which to insert data. The format of the input data must match the layout of
the stream.

FILE

(default: standard input) Input data filename, which must be formatted as uncompressed plain text.
Default is to read the input from stdin.

-q, -- quiet

Suppress printing unnecessary messages.

Timestamping: To add timestamps to data that does not already have it, specify both of these arguments.

The added timestamps are based on the interval start time and the given data rate.

-t, -- timestamp

Add timestamps to each line
-r RATE, --rate RATE

Data rate, in Hz

271

Start Time: The start time may be manually specified, or it can be determined from the input filename,
based on the following options.

-s TIME, -- start TIME

Starting timestamp for the new interval (free-form, inclusive)
-f, -- filename

Use filename to determine start time

End Time: The ending time should be manually specified. If timestamps are being added, this can be

omitted, in which case the end of the interval is set to the last timestamp plus one microsecond.
-e TIME, -- end TIME

Ending timestamp for the new interval (free-form, noninclusive)

nilmtool extract - Extract data

Usage

nilmtool insert[-h] -s TIME -e TIME [-B] [-b] [-a] [-m] [-T] [-c] PATH

Description

Extract rows of data from a specified time interval in a stream, or output a count of how many rows

are present in the interval.

Arguments

PATH

Path of the stream from which to extract data.
-s TIME, -- start TIME

Starting timestamp to extract (free-form, inclusive)
-e TIME, -- end TIME

Ending timestamp to extract (free-form, noninclusive)
Output Formatting

-B, -- binary

Output raw binary data instead of the usual text format. For details on the text and binary
formatting, see the documentation of HTTP call /stream/insert in Section 3.2.1.13.

-b, -- bare

Omit timestamps from each line of the output.
-a, -- annotate

Include comments at the beginning of the output with information about the stream. Comments
are lines beginning with #.

-m, -- markup

Include comments in the output with information that denotes where the stream's internal
intervals begin and end. See the documentation of the markup parameter to HTTP call
/stream/extract in Section 3.2.1.14 for details on the format of the comments.

-T, -- timestamp-raw

Use raw integer timestamps in the --annotate output instead of human- readable strings.
-c, -- count

Instead of outputting the data, output a count of how many rows are present in the given time
interval. This is fast as it does not transfer the data from the server.

nilmtool remove - Remove rows of data

272

Usage

nilmtool remove[-h] -s TIME -e TIME [-q] [-c] PATH [PATH ...]

Description

Remove all data from a specified time range within the stream at /PATH/. Multiple streams may be

specified, and wildcards are supported; the same time range will be removed from all matching

streams.

Arguments

PATH

Path(s) of streams. Wildcards are supported. At least one path must provided.
-s TIME, -- start TIME

Starting timestamp of data to remove (free-form, inclusive, required).
-e TIME, -- end TIME

Ending timestamp of data to remove (free-form, noninclusive, required).

Output Format
-q, -- quiet

By default, matching path names are printed when removing from multiple paths. With this option,
path names are not printed.

-c, -- count

Display a count of the number of rows of data that were removed from each path.

Example

1 $ nilmtool remove -s @1364140671600000 -e @1364141576585000 -c "/sh/raw*

2 Removing from /sh/raw

3 7239364

4 Removing from /sh/raw-decim-4

5 1809841

6 Removing from /sh/raw-decim-16

7 452460

nilmtool destroy - Destroy a stream

Usage

nilmtool destroy[-h] [-R] [-q] PATH [PATH ...

Description

Destroy the stream at the specified path(s); the opposite of nilmtool create. Metadata related to the

stream is permanently deleted. All data must be removed before a stream can be destroyed.

Wildcards are supported.

Arguments

PATH

Path(s) of streams. Wildcards are supported. At least one path must provided.
-R, -- remove

If specified, all data is removed before destroying the stream. Equivalent to first running

273

nilmtool remove -s min -e max path.

-q, --quiet

Don't display names when destroying multiple paths

Data Processng

The following section documents a variety of programs useful for processing and interacting with NILM

data. Each program begins with the prefix nilm-.

Many of these programs are filters that process input from one or more source streams into a

destination stream. Only regions of time that are present in the source, and not yet present in the

destination, are processed. These programs can therefore be re-run with the same command-line

arguments multiple times, and they will only process the newly available data each time.

nilm-copy - copy data between streams

Usage

nilm-copy[-h] [-vi [-u URL] [-U DESTURL] [-D] [-F] [-n] [-s TIME] [-e TIME]

SRCPATH DESTPATH

Description

Copy data and metadata from one stream to another. The source and destination streams can reside

on different servers. Both streams must have the same layout.

Arguments

-u URL, -- url URL

(default: http://localhost/nilmdb/) NiImDB server URL for the source stream.
-U DESTURL, -- dest-url DESTURL

(default: same as URL) NiImDB server URL for the destination stream. If unspecified, the same
URL is used for both source and destination.

-D, -- dry-run

Just print intervals that would be processed, and exit.
-F, --force-metadata

Metadata is copied from the source to the destination. By default, an error is returned if the
destination stream metadata conflicts with the source stream metadata. Specify this flag to
always overwrite the destination values with those from the source stream.

-n, -- nometa

Don't copy or check metadata at all.
-s TIME, -- start TIME

(default: min) Starting timestamp of data to copy (free-form, inclusive).
-e TIME, -- end TIME

(default: max) Ending timestamp of data to copy (free-form, noninclusive).
SRCPATH

Path of the source stream (on the source server).
DESTPATH

Path of the destination stream (on the destination server).

274

I

nilm-copy-wildcard - copy multiple streams

Usage

nilm-copy-wildcard[-h] [-v] [-u URL] [-U DESTURL] [-D] [-F] [-n] [-s TIME]

[-e TIME] PATHS [...]

Description

Copy data and metadata, from multiple streams, between two servers. Similar to nilm-copy, except:

" Wildcards and multiple paths are supported in the stream names.

" Streams must always be copied between two servers.

* Stream paths must match on the source and destination server.

* If a stream does not exist on the destination server, it is created with the correct layout

automatically.

Arguments

Most arguments are identical to those of nilm-copy (reference it for more details).
PATHS

Path(s) to copy from the source server to the destination server. Wildcards are accepted.
Example

1 $ nilm-copy-wildcard -u http://bucket/nilmdb -U http://pilot/nilmdb /bp/

2 Source URL: http://bucket/nilmdb/

3 Dest URL: http://pilot/nilmdb/

4 Creating destination stream /bp/startup/info

5 Creating destination stream /bp/startup/prep-a

6 Creating destination stream /bp/startup/prep-a-decim-4

7 Creating destination stream /bp/startup/prep-a-decim-16 ... etc

nilm-decimate - Decimate a stream one level

Usage

nilm-decimate[-h] [-v] [-u URL] [-U DESTURL] [-D] [-F] [-s TIME] [-e TIME]

[-f FACTOR] SRCPATH DESTPATH

Description

Decimate the stream at SRCPATH and write the output to DESTPATH. The decimation operation is

described in Section 2.4.1; in short, every FACTOR rows in the source are consolidated into one row

in the destination, by calculating the mean, minimum, and maximum values for each column.

This program detects if the stream at SRCPATH is already decimated, by the presence of a
decimate-source metadata key. If present, subsequent decimations take the existing mean,

minimum, and maximum values into account, and the output has the same number of columns as

275

the input. Otherwise, for the first level of decimation, the output has three times as many columns as

the input.

See also nilm-decimate-auto (Section 3.4.2.5) for a simpler method of decimating a stream by
multiple levels.

Arguments

-u URL, -- url URL

(default: http://localhost/nilmdb/) NilmDB server URL for the source stream.
-U DESTURL, -- dest-url DESTURL

(default: same as URL) NilmDB server URL for the destination stream. If unspecified, the same
URL is used for both source and destination.

-D, -- dry-run

Just print intervals that would be processed, and exit.
-F, -- force-metadata

Overwrite destination metadata even if it conflicts with the values in the "metadata" section
below.

-s TIME, -- start TIME

(default: min) Starting timestamp of data to decimate (free-form, inclusive).
-e TIME, -- end TIME

(default: max) Ending timestamp of data to decimate (free-form, noninclusive).
-f FACTOR, -- factor FACTOR

(default: 4) Set the decimation factor. For a source stream with n rows, the output stream will have
n/FACTOR rows.

SRCPATH

Path of the source stream (on the source server).
DESTPATH

Path of the destination stream (on the destination server).
Metadata: The destination stream has the following metadata keys added:
decimatesource

The source stream from which this data was decimated.
decimate_factor

The decimation factor used.

nilm-decimate-autO - Decimate a stream completely

Usage

nilm-decimate-auto[-h] [-v] [-u URL] [-F] [-f FACTOR] PATH [...]

Description

Automatically create multiple decimation levels using from a single source stream, continuing until

the last decimated level contains fewer than 500 rows total. Decimations are performed using nilm-

decimate (Section 3.4.2.4). Wildcards and multiple paths are accepted. Destination streams are

automatically named based on the source stream name and the total decimation factor; for

example, /test /raw-decim-4, /test/raw-decim-16, etc. Streams containing the string

276

"-decim-" are ignored when matching wildcards.

Arguments

-u URL, -- url URL

(default: http://localhost/nilmdb) NiImDB server URL for the source and destination streams.
-F, -- force-metadata

Overwrite destination metadata even if it conflicts with the values in the "metadata" section
above.

-f FACTOR, -- factor FACTOR

(default: 4) Set the decimation factor. Each decimation level will have 1/FACTOR as many rows
as the previous level.

PATH [...]

One or more paths to decimate. Wildcards are accepted.

nilm-insert - insert data from an external source

Usage

nilm-insert [-h] [-v] [-u URL] f-D] f-s] [-m SEC] [-r RATE I -d] [-1 I -

f] [-o SEC] [-0 SEC] PATH [INFILE ...]

Description

Insert a large amount of text-formatted data from an external source like eth- stream. This is a

higher-level tool than nilmtool insert in that it attempts to intelligently manage timestamps. The

general concept is that it tracks two timestamps:

1. The data timestamp is the precise timestamp corresponding to a particular row of data, and is

the timestamp that gets inserted into the database. It increases by data-delta for every row of

input. data-delta can come from one of two sources. If --delta is specified, it is pulled from the

first column of data. If -- rate is specified, datadelta is set to a fixed value of 1/RATE.

2. The clock timestamp is the less precise timestamp that gives the absolute time. It can come

from two sources. If -- live is specified, it is pulled directly from the system clock. If --file is

specified, it is extracted from the input file every time a new file is opened for read, and from

comments that appear in the files.

Small discrepancies between data and clock are ignored. If the data timestamp ever differs from

the clock timestamp by more than max-gap seconds:

" If data is running behind, there is a gap in the data, so the timestamp is stepped forward to

match clock.

" If data is running ahead, there is overlap in the data, and an error is returned. If --skip is

specified, then instead of returning an error, data is dropped and the remainder of the current

file is skipped.

Arguments

-u URL, -- url URL

(default: http://Iocalhost/nilmdb/) NilmDB server URL.

277

-D, -- dry-run

Parse files and print information, but don't insert any data. Useful for verification before making
changes to the database.

-s, -- skip

Skip the remainder of input files if the data timestamp runs too far ahead of the clock
timestamp. Useful when inserting a large directory of existing files with inaccurate timestamps.

-m SEC, -- max-gap SEC

(default: 10.0) Maximum discrepancy between the clock and data timestamps.

Data timestamp

-r RATE, -- rate RATE

(default: 8000.0) datadelta is constant 1/RATE (in Hz).
-d, -- delta

datadelta is provided as the first number on each input line.

Clock timestamp
-1, -- live

Use the live system time for the clock timestamp. This is most useful when piping in data live

from a capture device.
-f, -- file

Use filename and file comments for the clock timestamp. This is most useful when reading
previously saved data.

-o SEC, -- offset-filename SEC

(default: -3600.0) Offset to add to timestamps in filenames, when using -- file. The default

accounts for the existing practice of naming capture files based on the end of the hour in which

they were recorded. The filename timestamp plus this offset should equal the time that the first

row of data in the file was captured.
-o SEC, -- offset-comment SEC

(default: 0.0) Offset to add to timestamps in comments, when using -- file. The comment

timestamp plus this offset should equal the time that the next row of data was captured.

Path and Input
PATH

Path of the stream into which to insert data. The layout of the path must match the input data.
INFILE [...]

(default: standard input) Input data filename(s). Filenames ending with .gz are transparently
decompressed as they are read. The default is to read the input from stdin.

nilm-prep - Spectral envelope preprocessor

Usage

nilm-prep[-h] [-v] [-u URL] [-U DESTURL] [-D] [-F] [-s TIME] [-e TIME] [-

c COLUMN] [-n NHARM] [-N NSHIFT] [-r DEG -R RAD] SRCPATH SINEPATH

DESTPATH

Description

Perform the spectral envelope harmonic coefficient calculation described in Sec- tion 4.3.3. Two

source streams are provided, one with the raw current data and one with marked zero crossings,

typically created by nilm-sinefit (Section 3.4.2.10). The filter processes regions of time that are

present in both source streams, and not present in the destination stream.

278

Arguments

-u URL, --url URL

(default: http://localhost/nilmdb/) NilmDB server URL for the source stream.
-U DESTURL, -- dest-url DESTURL

(default: same as URL) NiImDB server URL for the destination stream. If unspecified, the same
URL is used for both source and destination.

-D, --dry-run

Just print intervals that would be processed, and exit.
-F, -- force-metadata

Overwrite destination metadata even if it conflicts with the values in the "metadata" section
below.

-s TIME, -- start TIME

(default: min) Starting timestamp of data to filter (free-form, inclusive).
-e TIME, -- end TIME

(default: max) Ending timestamp of data to filter (free-form, noninclusive).

Preprocessor Arguments

-c COLUMN, -- column COLUMN

Column number in SRCPATH to use for the raw data. The first data column is 1.
-q NHARM, -- nharm NHARM

(default: 4) Number of odd harmonics Nharm to compute and store. For example, Nharm = 2
will store P1, Q1, P3, and Q3.

-N NSHIFT, -- nshift NSHIFT

(default: 1) Number of shifted FFTs Nshift to compute, per period of the raw data. If the input
frequency is 60 Hz, the data rate of the preprocessor output is Nshift x 60 Hz.

Note that the calculation used by the similar Kalman-filter preprocessor, described in [54], is

equivalent to Nshift = 2.

-r DEG, -- rotate DEG

(default: 0.0) Apply the additional rotation $extra to the FFT output, in degrees. Typically used
to account for known phase offset between voltage and current. This is equivalent to adding a
lag of $pextra degrees to the zero crossing data.

This is also useful for three-phase systems. For example, the zero crossings can be calculated

once with nilm-sinefit on PA voltage. Then, nilm-prep can be run on $)A, $)B, and PC currents

using rotations of 0, 120, and 240 degrees. The order in which to apply these shifts will depend

on the phase ordering in the measured system.

-R RAD, -- rotate-rad RAD

(default: 0 rad) Like -- rotate, except specified in radians instead of degrees.
SRCPATH

Path of the raw source stream, for example, /foo/raw.
SINEPATH

Path of the sinefit source stream, for example, /foo/sinefit.
DESTPATH

Path of the prep output, for example, /foo/prep. The destination stream must have 2 - Nharm

columns.

Metadata:The destination stream has the following metadata keys added:

prep_rawsource

The source stream of the raw data from which these envelopes were calculated.
prep sinef it source

279

The source stream of the marked zero crossings used for this data.
prepcolumn

The column number of the raw data in the raw data source.
prep-rotation

The applied rotation $extra for this data, in radians. prep-nshift The number of shifted FFTs
Nshift for this data.

nilm-sinefit - Sinusoid fitting

Usage

nilm-sinefit[-h] [-v] [-u URL] [-U DESTURL] [-D] [-F] [-s TIME] [-e TIME]

[-c COLUMN] [-f FREQ] [-m MINFREQ] [-M MAXFREQ]. [-a MINAMP] SRCPATH

DESTPATH

Description

Perform the 4-parameter sinefit fit calculation described in Section 4.3.2. Given a rough estimate of

the frequency, this filter looks at successive windows of approximately 3 - 4 periods of the input

waveform. For each window, it computes the least-squares best fit sinusoid.

At each of the positive zero crossings ($p = 0) of the fit, the timestamped values fO, A, and C

corresponding to the subsequent period are stored.The output stream will have one row of output

per period of the input stream. The window sliding algorithm is designed to ensure that zero

crossings do not occur near the window boundaries in order to reduce error. The fitted sinusoid is

checked against frequency and amplitude limits. If the fit falls outside the given bounds, no data

points are inserted into the destination stream for that particular window.

General Arguments

-u URL, -- url URL

(default: http:/llocalhost/nilmdb/) NilmDB server URL for the source stream.
-U DESTURL, -- dest-url DESTURL

(default: same as URL) NiImDB server URL for the destination stream. If unspecified, the same
URL is used for both source and destination.

-D, -- dry-run

Just print intervals that would be processed, and exit.
-F, -- force-metadata

Overwrite destination metadata even if it conflicts with the values in the "metadata" section
below.

-s TIME, -- start TIME

(default: min) Starting timestamp of data to filter (free-form, inclusive).
-e TIME, -- end TIME

(default: max) Ending timestamp of data to filter (free-form, noninclusive).
Sinefit Arguments

-c COLUMN, -- column COLUMN

Column number in SRCPATH to use for the source data. The first data column is 1.
-f FREQ, -- frequency FREQ

(default: 60.0) Rough estimate of the input frequency, used only to determine the size of the

280

window to analyze and to set defaults for the minimum and maximum frequency. Given an
average sampling rate fs of the input data, the sine wave fit is performed against windows of N
= 3.5 - fs/FREQ points.

-m MINFREQ, -- min-freq MINFREQ

(default: fest/2) Minimum valid frequency fO of the fitted sinusoid.
-m MAXFREQ, -- max-freq MAX FREQ

(default: fest - 2) Maximum valid frequency fO of the fitted sinusoid.
-a MINAMP, -- min-amp MINAMP

(default: 20.0) Minimum valid amplitude A of the fitted sinusoid.
SRCPATH

Path of the raw source stream, for example, /foo/raw.

DESTPATH

Path of the fitted output parameters, for example, /foo/sinefit.

Metadata:The destination stream has the following metadata keys added:

sinefitsource

The source stream of the raw data used to fit these parameters.
sinefitcolumn

The column number used from the source stream.

Advanced Command Line Tools

These tools provide low level access to the NILM and are not required for normal system use. Be

very careful running these commands.

Nilm Database

The primary NILM database is run as a daemon process and does not require any user interaction.

However the primary database or any other database can be run from the command line using the

nilmdb-server command. Like any complex data storage system, NilmDB is subject to corruption

if not shutdown properly. The command line utility nilmdb-fsck is designed to verify database

consistency and fix most problems that might arise. The primary cause of database corruption is a

powerloss while the system is recording data. The management daemon automatically runs fsck

when a corrupt database is detected. Therefore, this command should be used only on secondary or

backup databases. To prevent NILM data from over flowing the available space the system

automatically removes old data based off keep settings in meters . yml. The cleanup service can be

run manually using nilm-cleanup.

nilmdb-server - Standalone NilmDB server

Usage

nilmdb-server [-h] [-v] [-a ADDRESS] [-p PORT] [-d DATABASE] [-q] [-t] [-

y]

281

Description

Run the standalone NilmDB server. Note that the NilmDB server is typically run as a WSGI process

as described in Section 3.1.1.3. This program runs NilmDB using a built-in web server instead.

Arguments

-v, -- version

Print the installed NilmDB version.
-a ADDRESS, -- address ADDRESS

(default: 0.0.0.0) Only listen on the given IP address. The default is to listen on all addresses.
-p PORT, -- port PORT

(default: 12380) Listen on the given TCP port.
-d DATABASE, -- database DATABASE

(default: .1db) Local filesystem directory of the NilmDB database.
-q, -- quiet

Silence output.

Debug Options

-t, -- traceback

Provide tracebacks in the error response for client errors (HTTP status codes 400 - 499).
Normally, tracebacks are only provided for server errors (HTTP status codes 500 - 599).

-y, -- yappi

Run under the yappi profiler and invoke an interactive shell afterwards. Not intended for normal
operation.

nilmdb-f sck - Database check and repair

Usage

nilmdb-fsck [-h] [-v] [-f] [-n] DATABASE

Description

Check database consistency, and optionally repair errors automatically, when possible. Running

this may be necessary after an improper shutdown or other corruption has occurred. This program

will refuse to run if the database is currently locked by any other process, like the Apache

webserver; such programs should be stopped first.

Arguments

DATABASE

Local filesystem directory of the NilmDB database to check.
-f, -- fix

Attempt to fix errors when possible. Note that this may involve removing intervals or data.
-n, -- no-data

Skip the slow full-data check. The earlier, faster checks are likely to find most database
corruption, so the data checks may be unnecessary.

-h, -- help

Print a help message with usage information and details.
-v, -- version

Print the installed NilmDB version. Generally, you should ensure that the version of nilmdb-fsck
is newer than the NilmDB version that created, or last used, the given database.

282

nilm-cleanup - Clean up old data from streams

Usage

nilm-cleanup[-h] [-v] [-u URL] [-yI [-e] CONFIGFILE

Description

Clean up old data from streams, using a configuration file to specify which data to remove. The

configuration file is a text file in the following format:

1 [/stream/path]

2 keep = 3w # keep up to 3 weeks of data

3 rate = 8000 # optional, used for the -- estimate option

4 decimated = false # whether to delete decimated data too

5 [*/prep]

6 keep = 3.5m # or 2520h or 105d or 15w or 0.29y

Stream paths are specified inside square brackets ([]) and are followed by configuration keywords

for the matching streams. Paths can contain wildcards. Supported keywords are:

keep

How much data to keep. Supported suffixes are h for hours, d for days, w for weeks, m for
months, and y for years.

rate

(default: automatic) Expected data rate. Only used by the -- estimate option. If not

specified, the rate is guessed based on the existing data in the stream.
decimated

(default: true) If true, delete decimated data too. For stream path /A/B, this includes any stream
matching the wildcard /A/B-decim*. If specified as false, no special treatment is applied to
such streams.

Arguments

-u URL, -- url URL

(default: http:I/localhost/nilmdb/) NilmDB server URL.
-y, -- yes

Actually remove the data. By default, nilm-cleanup only prints what it would have removed, but
leaves the data intact.

-e, -- estimate

Instead of removing data, print an estimated report of the maximum amount of disk space that
will be used by the cleaned-up streams. This uses the on-disk size of the stream layout, the
estimated data rate, and the space required by decimation levels. Streams not matched in the
con- figuration file are not included in the total.

CONFIGFILE

Path to the configuration file.

Notes

The value keep is a maximum amount of data, not a cutoff time. When cleaning data, the oldest

data in the stream will be removed, until the total remaining amount of data is less than or equal to

keep. This means that data older than keep will remain if insufficient newer data is present; for

example, if new data ceases to be inserted, old data will cease to be deleted.

283

Nilm Run

NilmRun includes a command line program that allows the server to be run in a standalone mode,
using a built-in web server. Additionally, a set of tools is offered for running, listing, and removing

processes.

nilmrun- server - Standalone NilmRun server

Usage

nilmrun-server[-hJ [-v] [-a ADDRESS] [-p PORT] [-qi [-t]

Description

Run the standalone NilmRun server. Note that the NilmRun server is typically run as a WSGI
process, as described in Section 3.1.2.3. Running it in standalone mode may be insecure, as no
access control or authentication is supported.

Arguments

-v, -- version

Print the installed NilmRun version.
-a ADDRESS, -- address ADDRESS

(default: 0.0.0.0) Only listen on the given IP address. The default is to listen on all addresses.
-p PORT, -- port PORT

(default: 12381) Listen on the given TCP port.
-q, -- quiet

Silence output.

Debug Options

-t, -- traceback

Provide tracebacks in the error response for client errors (HTTP status codes 400 - 499).
Normally, tracebacks are only provided for server errors (HTTP status codes 500 - 599).

nilmrun-ps - List processes

Usage

nilmrun-ps[-h] [-v] [-u URL] [-n]

Description

List processes on a remote NilmRun server. Shows overall system information as well as detailed
information about each process.

Arguments

-u URL, -- url URL

(default: http://localhost/nilmrun/) NilmRun server URL. For servers that require authentication,
it can be included in the URL in the form http://user:password@host/.

-n, -- noverify

Disable SSL certificate verification.

Environment Variables

284

NILMRUNURL

(default: http:/localhost/nilmdb/) The default URL of the NilmRun server.

Output

The output of nilmrun-ps includes overall system information about the number of running

processes, CPU usage, and memory usage on the server. Output fields are described below:

PID

Process ID.
STATE

Process status. This is "alive" if the process is still running, "done" if it has exited successfully, and
"error" if it has exited with an error.
SINCE

Date and time that the process was started.
PROC

Number of operating system processes associated with this NilmRun process.
CPU

CPU usage of this process as a percentage of a single CPU core.
LOG

Length, in bytes, of the stored output for the process. This output can be retrieved when the
process is removed with nilmrun-kill.

Example

1 $ nilmrun-ps

2 procs: 2 nilm, 157 other

3 cpu: 29% nilm, 96% other, 200% max

4 mem: 623 MiB used, 3965 MiB total, 16%

5 PID STATE SINCE PROC CPU LOG

6 76d81854-feca-1le2-9b2c-000000002559 alive 08/06-15:00:30 2 3 1337

7 8168f08f-feca-11e2-87fe-00000000255c alive 08/06-15:00:48 1 26 4505

nilmrun-run - Run a command on a NilmRun server

Usage

nilmrun-run[-h] [-v] [-u URL] [-n] [-dl CMD [ARG [...]]

Description

Run a command on a NilmRun server. By default, this program will poll the command's output log

and display it while waiting for the process to exit.

Arguments

-u URL, -- url URL

(default: http://localhost/nilmrun/) NilmRun server URL. For servers that require authentication,
it can be included in the URL in the form http://user:password@host/.

-n, -- noverify

Disable SSL certificate verification.

Remote Program

285

-d, -- detach

Run process and return immediately, without printing the command output. The process must
be later removed with nilmrun-kill.

CMD [ARG [...]]

Remote command to execute, with arguments.

Environment Variables

NILMRUNURL

(default: http://localhost/nilmdb/) The default URL of the NilmRun server.

nilmrun-kill - Kill/remove a process

Usage

nilmrun-kill[-h] [-v] [-u URL] [-n] [-q] PID [[...]

Description

Kill or remove a process from the NilmRun server. This terminates all system- level processes that

are running and removes the entry from the NilmRun process listing. Stored log output of the

command, if any, is displayed after the process is removed.

Arguments

-u URL, -- url URL

(default: http://localhost/nilmrun) Nilmrun server URL. For servers that require authentication, it
can be included in the URL in the form http://user:password@host/.

-n, -- noverify

Disable SSL certificate verification.

Remote Program

-q, -- quiet

Omit display of the command's final output log.
PID [...]

One or more process IDs to remove. Process IDs should be those listed by nilmrun-ps.

Environment Variables

NILMRUNURL

(default: http://localhost/nilmdb/) The default URL of the Nilmrun server.

286

Appendix B

Implementation

This appendix contains design files, bill of materials, and selected source code for

the hardware associated with this work. There are four sections in this appendix.

Appendix B.1 covers the Flex Sensor. The Flex Sensor source code works on the

D-Board hardware described in [111 with adjustments to the Makefile as described

in the code README. Appendix B.2 covers the NILM Smart Plug. The board

design is a drop in replacement for the control PCB in the Belkin WeMo. There are

two hardware versions deployed as of this writing. They can be distinguished by the

labeling on the front face of the plug. Plugs with "Belkin" work without modification,

plugs with "wemo" require a custom interconnect cable described in the assembly

section. Appendix B.3 covers the NILM Board, a single board computer designed to

run the NILM software. The NILM Board a combined microcontroller and Freescale

iMX6 platform that runs the NILM host software. This board uses an analog input

channel for the sensor. It is recommended to use a commercial single board computer

(eg Raspberry Pi) with the Flex Sensor since this sensor has an onboard ADC and

connects over USB. Finally, Appendix B.4 covers server configuration for the currently

deployed management cluster. These are implemented on a set of Dell servers running

the Xen hypervisor.

287

RepcjIIS. 1, 4) R~,pcattS. 1.4)

REPLAT4I) I L.4JV- REPEATOI) 1

SI1

12 S2
6 S3 S3

44 44

GND GND

Connwcor Connuctor

(a) FPC Connector (b) Hall Effect Sensor

Figure B-1: Mylar pickup consists of an FPC connector (left) and four sensors (right)

B.1 Flex Sensor

The flex sensor integrates multiple magnetic sensors and an electric field sensor with

an ARM microcontroller to provide a complete set of non-contact measurements to

a NILM system. The sensor uses USB for both power and communication making

it easy to connect to any standard computing platform including embedded devices,

laptops, and desktop machines. The sensor enumerates as two TTY serial devices.

The first serial device is for sensor data and the second interface is for I/O control of

the button and LED which is used by embedded NILMs to provide feedback to the

end user. Any standard serial program can be used to communicate with the sensor.

The software designed in this thesis uses Python's pySerial package which is an open

source serial module available on Window's, OS X., and Linux platforms.

The hardware consists of two components, the host PCB and a flexible Mylar

pickup. The pickup connects to the host board with a friction fit FPC connection.

The connection provides electrical connectivity but does not mechanically affix the

pickup to the board. An adhesive should be applied to the pickup in order to assure

a solid connection with the host PCB. Additionally, it is best practice to passivate

both boards to prevent electrical shorts or corrosion of the circuits in a deployed

environment.

The following pages present schematics, bills of material and CAD renderings for

both the host PCB and Mylar pickup.

288

Stiffner to 0.2mm height

(a) Assembly Drawing

(b) As Built

Figure B-2: Flexible Mylar pickup

Assembly Bottom

. M M

Assembil Top

J5

90 p

LED Polarit,4

(a) Assembly Drawing
(b) As Built

Figure B-3: Flex sensor host PCB

289

I
-I

(b) As Built

(a) CAD Rendering

Figure B-4: Flex sensor prototype. The sensor (right) is coated in Plasti Dip for
electrical passivation and increased mechanical resilience

290

2 3

+4V5 U5

VDD2 VSS
C VDIGT100 19 MUSTI

00n MLX91206

+4V5

U6A

LM4041CIM7-1.2

Rig

1 K+1V2

TEMPOUT
MUSTO

TESTOUT
OUT/PWM

Tem

7 47
6
5 - R16

2k

C20 R17
-- 7 3k

U6B

NC 2
NC -
NC 5

LM4041CIM7-1.2

12 +3V3

R24 U
8 INA332AIDGKT

CAP2

CA. +

C27
lop

ID GND

+1 V2

IR23

P-26C24 100
10 J R

A
CD

Cr2
CD

cj~
0

Imain

+3V3 +3V3

R19 OCW

V47k

U7D 2.2k

R21 13 OPA4376A[PV R U7C

449 - j4 R2 9 _OPA4376AIPWR
+IV2 12 +k 8T - -+IV2 10- - V

34

KA8 +25 R29
1,lK +3V3 2.2u +_1V2 1K9

U7B R 1QK I
6 OPA43 6AIPWR

7 R31
5 +1V2 12.1k

GND
Title

U7A
OPA4376AIPWR

C

Size Number

A

Date: 9/18/2015
File: C:\Usen\..\analog.SchDoc

D

Revision

Sheet of
Dmwn By:

A

B

+1V2

-R25
-IM

C

- -C26

GOPG
61)DG61

D

+1

V

I

F
lex

 S
en

so
r

P
C

B
 D

esig
n

0--m
--

>1
-ls

+
9

z

A
+

M

0
,

0

z0

0
I----

C
4

>'3

z
'0

000
000

-ab
-ab-

IV
"'
n -

C4MF

> >

>
0

> M~

+

C4M
I 111

53E0LI

pq

-
-|4

IIA

.
InlI-Il.a

m
z z

P,>
U

U
U

U

c
o

o

>jL
~

-
It,

F
-!H

-
I

X
1

I

--
le-

H
H

[r
"

.
.
.
.

.
.
.

r
 0

0

'T

l

3
A

;i
>

M
MM

j

e-
c
o
-

882
8888M

-8

.L
CL$%

LILi.L

L
 C L. <

isi
i

2
2

|
2

j
R

j j0 IM 4 C

o0
0

3032
0

-1 1
J

0zI

u
292

f4

W -w
>

M
u

0 0,Bt
rA

W
0

B.1.2 Selected Firmware Files

Listing B-1: /src/main. c: System initialization and main loop.

Git repository: http://git.wattsworth.net/nilm/iv-sensor
Filename: s r c/main .c
Revision: master

#include <efc.h>
#include <pmc.h>
#include <sysclk.h>
#include <udi cdc.h>
#include <wdt.h>
#include <board.h>
//#include <ioport.h>
#include <pio.h>
#include <twi.h>

#include "analog.h"
#include "buffer.h"
#include "debug.h"
#include "led.h"
#include "usb.h"
#include "pots.h"

void usbledupdate(void);
static void buttonhandler(void);

int main(void) {
// Switch over to the crystal oscillator
sysclkinit);

// Disable the built-in watchdog timer
wdtdisable(WDT);

I/Board LED's
//piosetoutput(PIOA,PIOPA7, HIGH, DISABLE, DISABLE);
//pioset(PIOA,PIO_PA7);

// Initialize peripherals
usbinit();
analog_init);
ledinit(;

I/Button
pmc_enableperiphclk(IDPIOA);
pio_setinput(PIOA, BUTTONPIN, PIO_PULLUP);
piohandler_set(PIOA, IDPIOA, BUTTONPIN, PIOITEDGE, buttonhandler);
pio enableinterrupt(PIOA, BUTTONPIN);
NVICEnableIRQ(PIOAIRQn);

// Default LED state
ledset(IOLED, LEDOFF, 0);
ledset(DATALED,LEDGREEN,O);

for (;;) {
// Transmit data if we can
while(udicdcmultiis_tx_ ready(DATAPORT)) {

uint16_t data;
if(pop(&data) != BUFFEROK) // buffer empty

break;
udicdcmulti write buf (DATAPORT, &data, sizeof(data));

}

293

if (bufferfull()) {
led set(DATALED,LED_RED,O);

}
// Receive data in our free time
uint8_t c;
I/First check DATAPORT interface
if (udicdcmulti_is_rxready(DATAPORT)) {
c = udi_cdc multigetc(DATA_PORT);
if (c < 0) {

print("Read error");
}
switch(c){
case DATASTART:

analogstart();
ledset(DATALED, LED_BLUE, 0);
break;

case DATASTOP:
analogstop();
ledset(DATA_LED,LEDLTGREEN,O);
break;

case DATA_BOOTLOADER:
// Clear GPNVM 1 to boot from ROM instead of flash
efcperformcommand(EFCO, EFCFCMDCGPB, 1);
break;

default:
//ledset(IOLED, LEDBLUE, 0);
print("unknown command");

}
}
I/Next check USERICPORT interface

if (udicdcmultiisrxready(USERIOPORT)) {
C = udicdc multigetc(USERIOPORT);
if (c < 0) {

print("Read error");
}
switch(c){
case IORGBLED:

usbledupdate();
break;

default:
// led set(IOLED, LEDRED, 0);
print("unknown command");

}
}

}
}

static void button handler(void){
static int bstate = -1; /button starts out unknown
/grab the USB port
while(!udicdcmulti istxready(USERIOPORT));
//if its pressed AND the state is NOT pressed
if (pioget(PIOA, PIOINPUT, BUTTONPIN) == 0 && bstate!=1){
udicdcmultiputc(USERIOPORT,'p');
pio set(PIOA, PIOPA7);
b_state = 1; /new state is pressed

}
//if its released AND the state is NOT released
else if(bstate!=0){
udicdcmultiputc(USERIOPORT,'r');
pio clear(PIOA, PIOPA7);
b_state=0; /new state is released

}

294

void usbledupdate(void){
I/expect 4 bytes to specify new LED setting
// [RED,GREEN,BLUE,BLINK]
uint8_t red, green, blue, blink;
while(!udicdcmultiisrxready(USERIOPORT));
red = udi_cdcmultigetc(USERIOPORT);
while(!udicdcmultiisrx-ready(USERIOPORT));
green = udicdc multigetc(USERIO PORT);
while(!udicdcmultiisrxready(USERIOPORT));
blue = udicdcmulti getc(USERIOPORT);
while(!udicdcmultiisrx ready(USERIOPORT));
blink = udicdcmultigetc(USERIO PORT);
ledset(IOLED,red,green,blue,blink);

Listing B-2: /src/analog. c: ADC data capture and digital filtering.

Git repository: http://git.wattsworth.net/nilm/iv-sensor
Filenane: /s rc/analog. c
Revision: master

#include <adc.h>
#include <armmath.h>
#include <buffer.h>
#include <pio.h>
#include <pmc.h>
#include <sysclk.h>
#include <tc.h>

#include "analog.h"
#include "led.h"
#include "firfilter.h"

// ADC runs at 96 kHz per channel. There are 8 channels.
// Data is low-pass filtered by a zero-phase FIR filter which
// passes frequencies below 660 Hz and rejects above 1.5 kHz.
// Result is decimated by 32x and output at 3 kHz per channel.

// Raw ADC values are between 0 and 4095 inclusive.
// We subtract 2048 and the filter applies a DC gain of 8,
I/ so output values are nominally between -16384 and 16383.
// The filter L-infinity norm is 1.035, so pathological inputs
I/ can produce outputs ever so slightly outside of this range
// (but they will still fit comfortably in signed 16 bits).

// Frequency Filter gain (/8)
// 60 Hz 0.9967
// 180 Hz 0.9951
// 300 Hz 0.9938
// 420 Hz 0.9915
I/ 540 Hz 0.9801
// 660 Hz 0.9443
I/ 1500 Hz 0.0501

#define NUMCHANNELS 8

//----------two current production boards----------
#if(DBOARD)
/mapping depends on sensor configuration
static enum adcchannelnumt channels[NUMCHANNELS] = {4,5,6,7,8,2,9,3};
#elif (FLEXSENSOR)
// 0:dV, 4:V, 6:T, 3:11, 2:12, 8:13, 9:14, 5:IM
static enum adcchannelnumt channels[NUMCHANNELS] = {0,3,2,9,8,5,4,6};
#else

295

#error "Define D_BOARD or FLEXSENSOR (see README)"
#endif

// Stage 1: decimate 8 times with a 16-tap FIR.
#define DECi 8
#define NTAPS1 16
static const ql5_t coeffsl[NTAPS1] = { // see util/fir.py

2305, 2296, 4354, 6819, 9420, 11818, 13661, 14663,
14663, 13661, 11818, 9420, 6819, 4354, 2296, 2305

static qlSt bufferl[NUMCHANNELS][2*NTAPS1];

// Stage 2: decimate 4 times with a 32-tap FIR.
#define DEC2 4
#define NTAPS2 32
static const ql5_t coeffs2[NTAPS2] = { // see util/fir.py

64, 147, 234, 261, 139, -195, -715, -1257,
-1529, -1196, 0, 2105, 4880, 7823, 10297, 11710,
11710, 10297, 7823, 4880, 2105, 0, -1196, -1529,
-1257, -715, -195, 139, 261, 234, 147, 64

static ql5_t buffer2[NUMCHANNELS][2*NTAPS2];

// The output format consists of the eight 16-bit channel values
// followed by the alignment word Ox8O7F and a 16-bit status word.
I/ (Note that it is never possible for 0x8 or Ox7F to be the
// most significant byte of the channel value or status word.)

static volatile int fifo_running;
static uint16_t statusmask;
static int fifo write(uintl6_t value) {

int r = push(value);
if (r = BUFFEROK) {

status_mask 1= ERRORFIFO;
}
return r;

}

void analoginit(void) {
// Enable the switch
pmcenableperiphclk(ID_PIOA);
piosetinput(PIOA, PIO_PA23, PIO_PULLUP);

// Initialize the ADC
pmcenableperiphclk(IDADC);
adc_init(ADC, sysclkget-cpuhz(, 20000000, ADCSTARTUPTIME 8);
adcconfiguretiming(ADC, 0, ADCSETTLINGTIME_0, 1); / "fast"

// Set up ADC channel sequence
adcconfiguresequence(ADC, channels, NUMCHANNELS);
adcstartsequencer(ADC);
for (int i = 0; i < NUMCHANNELS; ++i)

adcenablechannel(ADC, i); // by *sequence #*, not channel #

// Enable end-of-conversion (EOC) interrupt for the last channel
adc enableinterrupt(ADC, 1 << channels[NUMCHANNELS-1]);
NVICEnableIRQ(ADCIRQn);

// Trigger from timer 0
pmcenableperiphclk(IDTCO);
tcinit(TCO, 0, // channel 0

TCCMRTCCLKSTIMERCLOCK1 // source clock (CLOCK1 = MCLK/2)
I TCCMRCPCTRG // up mode with automatic reset on RC match

296

TCCMRWAVE // waveform mode
TCCMRACPACLEAR // RA compare effect: clear
TCCMRACPCSET); // RC compare effect: set

tc_write_ra(TCO, 0, 1);
tc_writerc(TCO, 0, 625); // frequency = (120MHz/2)/625 = 96 kHz
adcconfiguretrigger(ADC, ADCTRIGTIOCH_0, 0);

// Start everything
adcstart(ADC);

1. tcstart(TCO, 0);
}

void analogstart(void) {
flush();
statusmask = 0;
fiforunning = 1;

}

void analogstop(void) {
fifo running = 0;
flush();

}

void ADCHandler(void) {
static uint32_t sampleindex; // counts up forever

/voltage detection variables
#define WINDOWSIZE 1000
#define VOLTAGETHRESH 100000
static int32_t windowindex = 0;
static int32_t lastmean = 0;
static int32_t rawbucket = 0;
static int32_t sqr bucket = 0;

I int32_t signed-result = 0;

for (nt i = 0; i < NUM CHANNELS; i++) {
qi5_t adc = adcget channelvalue(ADC, channels[i]) - 2048;
// TODO: make ADC error logging PER-CHANNEL.
if (adc < -2000 11 adc > 2000)
statusmask 1= (1 << i);

bufferl[i][sample index & (2*NTAPS1-1)] = adc;
s}

// Update the switch status
if (pioget(PIOA, PIOINPUT, PIO_PA23) == 0)

status-mask 1= SWITCHPRESSED;

II We distribute the computational load of running FIR filters
I/ so that the USB interrupt never gets delayed too long.
II Let N = sampleindex. Run stage 1 on channel N % 8.

> /If N % 4 = 0, run stage 2 on channel (N/4) % 8.
jI, // This computation is hard-coded for NUMCHANNELS = DEC1.
n // Quantities DEC1, DEC2, NTAPS1, NTAPS2 must be powers of 2.

16-

i/ STAGE 1
int base = (sample_index / DECi) * DECi;

S int channel = sampleindex & (NUMCHANNELS-1);
ql5_t result = fir filter(coeffsl, NTAPS1, bufferl[channel], base);
buffer2[channel][(base / DECi) & (2*NTAPS2-1)] = result;

1k // STAGE 2
71 if (!(sampleindex & (DEC2-1))) {

17 base = (sample_index / DECi / DEC2) * DEC2;
channel = (sample index / DEC2) & (NUMCHANNELS-1);
result = fir_filter(coeffs2, NTAPS2, buffer2[channel], base);

17 /
1/ II/ Output result to the FIFO.

297

// If the status word is successfully written, clear it.
if (fifo_ running) {

if (channel == 0) {
if (fifowrite(0x807F) == BUFFEROK &&

fifowrite(statusmask) == BUFFEROK) {
statusmask = 0;

}
}
// If the buffer is full, stop writing data to the buffer.
// The host will have to issue a new "start" command to resume.
if (fifo write(result) != BUFFEROK) {

fifo running = 0;
}

//--------voltage detection code-----------
if(channel==0){

signedresult = result;
rawbucket+=signed result;
if(lastmean!=0)

sqrbucket+=(signedresult-lastmean)*(signed_result-last mean);
windowindex++;
if(windowindex>=WINDOWSIZE){

/run the voltage detection routine
if(lastmean!=0){

if((sqrbucket/WINDOW SIZE)>=VOLTAGETHRESH)
led set(GREENLEDLEDGRNON);

else
ledset(GREENLEDLEDGRNOFF);

}
/update the mean
lastmean = rawbucket/WINDOWSIZE;
/reset the buckets and index
rawbucket = 0;
sqr_bucket = 0;
windowindex = 0;
}

}
//-------end voltage detection code--------

}
++sampleindex;

Listing B-3: Makefile: Makefile for Non-Contact Sensor. Set flags for serial
number and hardware platform

Git repository: http://git.wattsworth.net/nilm/iv-sensor
Filename: Makefile
Revision: master

#----------CONFIGURE THESE FLAGS (see README)------------------

**** Board Serial Number *
CFLAGS = -D'SERNO="meterXXXX"
**** Board Type (select one) *
#CFLAGS += -D'D_BOARD' # D-Board with A-board sensors
CFLAGS += -D'FLEXSENSOR' # Flex all in one board

298

#------------DO NOT EDIT BELOW THIS LINE-----------------------

Makefile for Atmel SAM4S using cmsis and GNU toolchain.

The variables $(SRC), $(INC), $(LIB) are defined in path.mk.
include path.mk

Object file location and linker script
OBJ = $(SRC:%.c=obj/%.o) $(LIB)
LDSCRIPT = asf/sam/utils/linker-scripts/sam4s/sam4s4/gcc/%.ld

Compiler and linker flags. Here be dragons.
CFLAGS += -mlittle-endian -mthumb -mcpu=cortex-m4
CFLAGS += -g -03 $(INC:%=-I%) -std=c99 -Wall
CFLAGS += -DARM MATH CM4 -D' _SAM4S4B_ ' -D'BOARD=USERBOARD'
LFLAGS = $(CFLAGS) -T$(@:bin/%.elf=$(LDSCRIPT))
LFLAGS += -Wl,--entry=ResetHandler -Wl,--gc-sections

Targets
PHONY: all clean gdb
SECONDARY: $(OBJ)

all: bin/flash.bin bin/flash.elf
clean:

-rm -rf obj bin
gdb: bin/flash.elf

@arm-none-eabi-gdb
Sbin/%. bin : bin/%. elf

arm-none-eabi-objcopy -O binary $< $@
bin/%.hex: bin/%.elf

arm-none-eabi-objcopy -0 ihex $< $@
bin/%.elf: $(OBJ)

@mkdir -p $(dir $@)
$(info LD $@)
@arm-none-eabi-gcc $(LFLAGS) -o $@ $(OBJ)

obj/%.o: %.c
@mkdir -p $(dir $@)
$(info CC $<)
@arm-none-eabi-gcc $(CFLAGS) -c $< -o $@

B.2 NILM Smart Plug

The NILM smart plug is a retrofitted Belkin WeMo. The stock control PCB is

removed and replaced with a custom PCB that adds several additional features. With

the custom control PCB the plug can store up to four years of power measurements

and accurately timestamp each measurement using a battery backed real time clock.

The smart plug connects to a NILM over USB or WiFi and can both transmit power

data and receive commands to turn on and off the plug or set the RGB LED to a

particular color or pattern. The stock control PCB only reports the power usage of

the plug, but the solid state power meter chip (Figure B-7) actually collects many

more metrics. The custom control PCB unlocks these additional metrics recording

299

Assembly Top

DC/DC --
Conv

Prog
Header

0 1W
.'' . ii I "IME L uSD TCard

RGB LED

(a) Board Components (b) Assembly Drawing

Figure B-5: Custom smart plug control PCB top view

Assemblyj Bottom

SAM4Z1 *
rimneto U1 E11

PC M

(a) Board Components (b) Assembly Drawing

Figure B-6: Custom smart plug control PCB bottom view

not only wattage but also line frequency, voltage, current, and power factor. The

following figures show the design and construction of the custom PCB and how it

fits into the WeMo plug. See Appendix A.2.3 for documentation on configuring and

using these smart plugs with a NILM system.

300

(a) Meter attached to WeMo
(b) Meter PCB

Figure B-7:
the control

5V
Tra

The WeMo uses a solid state power meter board that communicates with

PCB by optically isolated UART

5V
Trari Load

Relay

(a) as viewed from top (b) as viewed from bottom

Figure B-8: Assembled smart plug with custom control PCB

301

2

+1V2

Cl C2 C3 C4

A 0.lu 0.Iu 0.lu 0.lu

+3V3
T

C5 C6 C7
0.lu 0.lu 0.lu

UlB

VDDCORE
24 VDDCORE

VDDCORE

18 VDDIO

VDDIO

64 VDDPLL

GND 2
GND
GND
GND -0

DAP 65

ATSAM4S4BA-MU-N

i1

VCC
SWDIO/TMS

nRESET
SWCLK/TCK

GND
SWO/TDO

+3V3
+3V3

Ri

2 SWDIO .7k
3 NRST
4 SWCLK
5

TC2030-MCP-NL

J3
MCDAO 7 DATO

B MCDAI 8 DATI
MCDA2 I DAT2
MCDA3 2 DAT2

CD/DAT3
MCCK 5
MCCDA 3 CLK

CMD
DM3CS-SF

uSD C urd

tDSD-016G-AFFP-A

VDD
CD

VSS
GND
GND
GND
GND

+3V3

R21

4 +3V3 10k
13 CD
6 12CSDA

12C_SCL

C8
C9 22u

--. 0Tu u

C

MCDA2
MCDA3
MCCDA
MCCK
MCDAO
MCDA1

+V3

+R16

SI
D -i

2-1437565-9

+3V3 +3V3

R5 ,R6 WIFIRST 48
4.7k -4.7k _

44,
43-.
36--
35
34.
32.
31.

WIFITX 30 -
WIFI RX 29-
WIFI GPO 28
WIFIGPI -

RELAY -2-

20 -
19'

LED DATA9
10 -

+3V3 CD 13
16.

14..

R8,.R9, RIZ2RI Rul 15.
10k 10k: -10k -10k 10k 23

3i6- -
37--
38--
4'
42
52.

+3V3
U4

LED DAT D A
2 DUT

28085

JIA

PAO/PGMENO
PAI/PGMENI
PA2/PGMEN2
PA3
PA4/PGMNCMD
PAS/PGMRDY
PA6/PGMNOE
PA7/XIN32/PGMNVALID
PA8/XOUT32/PGMMO
PA9/PGMMI
PAIO/PGMM2
PAll/PGMM3
PAl2/PGMDO
PA13/PGMDI
PA14/PGMD2
PA15/PGMD3
PA16/PGMD4
PA I 7/PGMD5/ADO
PAl8/PGMD6/ADI
PA19/PGMD7/AD2
PA20/PGMD8/AD3
PA21/PGMD9/AD8
PA22/PGMD1O/AD9
PA23/PGMDII
PA24/PGMD12
PA25/PGMD13
PA26/PGMD14
PA27/PGMD15
PA28
PA29
PA30
PA31

TSAM4S4BA-MU-ND

VBUS RZ.,27k I
USB-, .. Y27 2
USB+ Rj7 3

''4
5

PBO/AD4
PB1/AD5
PB2/AD6
PB3/AD7
TDI/PB4

TDO/TRACESWO/PBS
TMS/SWDIO/PB6
TCK/SWCLK/PB7

XOUT/PB8
XIN/PGMCKIPB9

DDMIPBIO
DDP/PBI I

ERASEPBI2
PB 13/DACO
PBI4/DAC

ADVREF

VDDIN
VDDOUT

NRST

TST

JTAGSEL

J2

VCC
D-

IDI
- -3 _

*4-

E

-
* - -WEMOTX

614105150621
- 33_

- 49 SWO
51 SWDIO

- 53 SWCLK
61 XOUT XU
62 XIN XIN 1 10 3 XOUT
56 USB-
57 USB- CIO C11
55 lop 2 4 lop

-59 -' US 253 1168-1-N
63 BTN R7

47k

- _ _ -

LOOTn+3V3 +1V2

7 587-4189- I-NT
8

.. 39 NRST C13
4.7u

40
-0

Title

Size Number

A

Date: 12/3/2015
File: C:\Uscrs\..\wemo board.SchDoc

2

Revision

Sheet of
Drawn By

4

A

D

2

RTC w/ Battery Backup
F:D4

BAT54C FBI U2

SC14 7 VDD X1 2 1 4

100 @ loom 22u 3 RQl X2 5
C15 4 IRQ2 SDA 6 12CSDA 3 2 3

-i .lu GND SCL 12CSCL 3 CPFBk2C4-32.768KD6
B- ISLI257RUZ-T

B I
BK-879

+3V3 +5V

T -- 3.3V VCC
WEMOTX RX VCC6 NC GND

RELAY RELAY GND 5S2 SHLD SHLD

B8B-ZR-SM4-TF(LFSN)j

+3V3 +3V3
+3V3

T18
VCC 8 R19
RST ' WIFIRST :4.7k

CHPD 6
GND

Coin Cell

ML-621 S/ZTN
+5V

U3 L2 +3V3

VIN SW

C18 C19 5E VBT6 F 3.3u 33I C17
J-C EN VBST T32 2

1 GND VFB 40u Fl0u TPS562209DDCT
R20I =- -=- -I -

M3

WIFI RX 4 RX
WIFI TX 3 TX
WIFI GPO 2 GPIOO
WIFIGPI 2 GPIOI

ESP8266

Title

Size Number

A

Date: 12/3/2015
File: C:\Users\..\wemo_board2.SchDoc

3

+3V3

A

-

B

A

B

C

D

C

D

Revision

Shet of
Drawn By:

4

WEMO Control Board BOM

Parts Qty $100 _$100 Production Mfg NK Production P/N NK Production DescriptionNK
B1 1 0.30000 0.30000 MPD BK-879 RETAINER 6.8MM COIN CELL SMD
C17 1 0.21000 0.21000 TDK C3216X5ROJ226K/1.6 CAP CER 22UF 6.3V X5R 1206
J2 1 1.66000 1.66000 WOrth Elektronik 614105150621 CONN RCPT USB TYPE AB
J3 1 1.29360 1.29360 Hirose DM3CS-SF CONN MICRO SD CARD HINGED TYPE
J4 1 0.67070 0.67070 JST B8B-ZR-SM4-TF(LF)(SN) CONN HEADER ZH TOP 8POS 1.5MM
L2 1 0.23660 0.23660 TDK MLP2012S3R3MTOS1 FIXED IND 3.3UH 900MA 190 MOHM
S1 1 0.45500 0.45500 APEM MJTP1138CTR SWITCH TACTILE SPST-NO 0.05A 12V
Ul 1 4.94170 4.94170 Atmel ATSAM4S4BA-MU IC MCU 32BIT 256KB FLASH 64QFN
U2 1 1.81770 1.81770 Intersil ISL120571RUZ-T IC RTC CLK/CALENDAR 12C 8-UTDFN
U3 1 1.09020 1.09020 Texas Instruments TPS562209DDCT IC REG BUCK ADJ 2A SYNC SOT-23-6
X1 1 0.40820 0.40820 Cardinal Components CPFBZ-A2C4-32.768KD6 CRYSTAL 32.7680KHZ 6PF SMD
Y1 1 0.47000 0.47000 AVX CX3225GB12000POHPQCC Crystals 12000kHz 20pF With Thermistor
R3, R4 2 0.00570 0.01140 Yageo RC0603FR-0727RL RES SMD 27 OHM 1% 1/1OW 0603
C16 1 0.02320 0.02320 Yageo CC0805KRX7R9BB104 CAP CER 0.1UF 50V X7R 0805
C18, C19 2 0.10050 0.20100 Yageo CC0805KKX5R8BB106 CAP CER 1OUF 25V X5R 0805
C8, C14 2 0.09040 0.18080 Yageo CC0805MKX5R5BB226 CAP CER 22UF 6.3V X5R 0805
C10, C11 2 0.01520 0.03040 Yageo CC0603JRNPO9BN100 CAP CER 1OPF 50V NPO 0603
C13 1 0.04760 0.04760 Yageo CC0603KRX5R6BB475 CAP CER 4.7UF 1OV X5R 0603
D4 1 0.10330 0.10330 NXP Semiconductors BAT54C,215 DIODE ARRAY SCHOTTKY 30V SOT23

L1, FB1 2 0.04760 0.09520 Murata BLM18AG121SN1D FERRITE BEAD 120 OHM 0603
R1, R5, R6, R18,
R19 5 0.00270 0.01350 Yageo RC0603JR-074K7L RES SMD 4.7K OHM 5% 1/10W 0603
R2 1 0.00570 0.00570 Yageo RC0603FR-0730KL RES SMD 30K OHM 1% 1/10W 0603
R7 1 0.00440 0.00440 Yageo RC0603JR-0747KL RES SMD 47K OHM 5% 1/1 OW 0603
R17 1 0.00570 0.00570 Yageo RC0603FR-0733K2L RES SMD 33.2K OHM 1% 1/10W 0603

R8, R9, R10, R11,
R12, R16, R20, R21 8 0.00348 0.02784 Yageo RC0603FR-071OKL RES SMD 10K OHM 1% 1/10W 0603
C1, C2, C3, C4, C5,
C6, C7, C9, C15,
C12 10 0.00715 0.07150 Yageo CC0603KRX7R9BB104 CAP CER 0.1UF 50V X7R 0603
U4 1 0.00000 Consignment WS2812B RGB LED

Sub-Total

Production loss

14.37524
0.71 876

Supplier Shipping Cost 0.60000
PARTS TOTAL 15.69400

ItOq

Cable Pinout for Version 2

windows facing
up (dark squares)

1 2 3 4 5 6 7

connector

cable

* No connection between 7 and 1

Connector: 455-1199-ND
Pin: SZH-002T-PO.5

cJ

cj~

S

z
01

8

Pinout*
A-> B
1 -> 8
2 -> 7
3 -> 4
4 ->6
5 ->5
6 ->3
8 ->2

wemo

WEMO Plug Version 1 (original)

belkin

I I

Connect with existing cable

WEMO Plug Version 2 (new)

wemo

Side B to control board Side A to plug PCB

cf~
cj~

I

B.2.4 Selected Firmware Files

Listing B-4: firmware/s rc/wifi.c: Driver for ESP8266. AT+ Command logic
for wifi interface

Git repository: http://git.wattsworth.net/nilm/wemo-firmware
Filenarne: firmware/src/wifi.c
Revision: master

#include <asf.h>
#include <stdio.h>
#include "string.h"
#include "wifi.h"
#include "monitor.h"
#include "conf membag.h"

//wifi rx and tx data structures
//
//resp-buf: uart interrupt fills this buf
// when rxwait==true && datatxstatus==TXIDLE
//respcomplete buf: short string we expect wifi module
// to respond with before the timeout
uint8_t *respbuf=NULL;
uint32_t respbufidx = 0;
char *respcompletebuf; I/expected response of command to ESP8266

bool rx wait = false; /we are waiting for response
bool rxcomplete = false; /flag set by UART int when rxcompletestr matches

int datatxstatus = TXIDLE;
/index into incoming data buffer (data from another server)
// this is local to wifi module because the core only gets
// the buffer after the full flag is set
uint32_t wifirxbufidx = 0;

//**declared in header b/c monitor calls this when NILM IP addr changes
/int wifi send ip(void);

int wifisenddata(int ch, const uint8_t* data, int size);
/try to set the baud to 9600 since they come from the factory at 115200
int wifisetbaud(void);

int wifi init(void){
uint32_t BUFSIZE = MDBUFSIZE;
uint8_t tmp; /dummy var for flushing UART
char *buf;
char *tx_buf;

/allocate static buffers if they are not NULL
if(respbuf==NULL){

resp_buf=coremalloc(RESPBUFSIZE);
S}

if(resp complete buf==NULL){
respcompletebuf=coremalloc(RESPCOMPLETEBUFSIZE);

S}
if(wifi_ rx_buf==NULL){
wifi_rx_buf = coremalloc(WIFIRXBUFSIZE);

S}
//if we are standalone, don't do anything
if (wemo config. standalone) {

printf("warning: wifi-init called in standalone mode\n");
return 0;

}

307

I/initialize the memory
buf = coremalloc(BUFSIZE);
txbuf = coremalloc(BUFSIZE);

/set up the UART
static usart serialoptionst usart_options = {

.baudrate = WIFIUARTBAUDRATE,

.charlength = WIFIUARTCHARLENGTH,

.paritytype = WIFIUARTPARITY,

.stopbits = WIFIUARTSTOPBITS

gpioconfigurepin(PIOPA9_lOX, (PlOPERIPHA IODEFAULT));
gpioconfigurepin(PIOPA9_IDX, (PIO_PERIPH_A I PIODEFAULT));
pmcenableperiphclk(IDWIFIUART);
sysclk enableperipheral clock(IDWIFIUART);
usartserialinit(WIFIUART,&usart_options);
/flush any existing data
while(usartserial is rxready(WIFIUART)){

usartserial_getchar(WIFIUART,&tmp);
}
// Trigger from timer 0
pmcenableperiphclk(IDTCO);
tcinit(TCO, 0, // channel 0

TCCMRTCCLKSTIMERCLOCK5 // source clock (CLOCK5 = Slow Clock)
| TC_CMR_CPCTRG // up mode with automatic reset on RC match
I TCCMRWAVE // waveform mode
I TCCMRACPACLEAR // RA compare effect: clear
I TCCMRACPCSET // RC compare effect: set

TCO->TCCHANNEL[0].TCRA = 0; // doesn't matter
TCO->TCCHANNEL[0].TCRC = 64000; // sets frequency: 32kHz/32000 = 1 Hz
NVICClearPendingIRQ(TC0_IRQn);
NVICSetPriority(TC0 IRQn,1);/high priority
NVICEnableIRQ(TCOIRQn);
tcenableinterrupt(TCO, 0, TCIERCPCS);
/reset the module
if(wifisendcmd("AT+RST","ready",buf,BUFSIZE,1)==0){

printf("Error reseting ESP8266\n");
//free memory
corefree(buf);
corefree(txbuf);
//if the baud rate was wrong try to set it to 9600
//wifisetbaud(); **disabled on production firmware**
return -1;

}
/set to mode STA
if(wifisendcmd("AT+CWMODE=l","OK",buf,BUFSIZE,1)==0){
printf("Error setting ESP8266 mode\n");
core free(buf);
corefree(txbuf);
return 0;

S}
/try to join the specified network
snprintf(txbuf,BUFSIZE, "AT+CWJAP=\"%s\",\"%s\"",

wemo config.wifi ssid,wemoconfig.wifipwd);
if(wifisendcmd(txbuf,"OK",buf,BUFSIZE,20)==0){

printf("no response to CWJAP\n");
I/free memory
core free(buf);
corefree(txbuf);
return -1;

}
/make sure the response ends in OK
uint8_t len = strlen(buf);
if(len<2 I| strcmp(&buf[len-2],"OK")!=0){
snprintf(txbuf,BUFSIZE,"failed to join network [%s]: [%s]\n,

wemoconfig.wifi-ssid, buf);

308

printf(txbuf);
corelog(tx buf);
//f ree memory
core free(buf);
core free(tx buf);
return -1;

}
/see if we have an IP address
wifi sendcmd("AT+CIFSR","OK",buf,BUFSIZE,2);
if(strstr(buf,"ERROR")==buf){
printf("error getting IP address\n");
I/free the memory
corefree(txbuf);
corefree(buf);
return -1;

}
/try to parse the response into an IP address
I/expect 4 octets but *not* 0.0.0.0
int al,a2,a3,a4;
if(!(sscanf(buf,"+CIFSR:STAIP,\"%d.%d.%d.%d\"",&al,&a2,&a3,&a4)==4 && al!=O)){
printf("error, bad address: %s\n",buf);
//free the memory
corefree(txbuf);
core-free(buf);
return -1;

}
/save the IP to our config
snprintf(buf,BUFSIZE,"%d.%d.%d.%d",al,a2,a3,a4);
memset(wemoconfig.ipaddr,OxO,MAXCONFIGLEN);
strcpy(wemo config.ipaddr,buf);
/set the mode to multiple connection
wifi sendcmd("AT+CIPMUX=l","OK",buf,BUFSIZE,2);
/start a server on port 1336
wifi sendcmd("AT+CIPSERVER=1,1336","OK",buf,BUFSIZE,2);

//if we know the NILM IP address, send it our IP
if(strlen(wemoconfig.nilmipaddr)!=O){
if(wifisend_ip()==TX ERR_MODULE_RESET){

return TXERRMODULERESET;
}

}else{
/get the NILM IP address from the manager
/once we know the NILM address we send it ours
coregetnilmipaddr();

aa}
I/log the event
snprintf(buf,BUFSIZE,"Joined [%s] with IP [%s]",

wemoconfig.wifissidwemoconfig.ip_addr);
printf("\n%s\n",buf);
core_log(buf);
//free the memory
core free(tx buf);
corefree(buf);
return 0;

}

int wifisendip(void){
1' int TXBUFSIZE = LGBUFSIZE;

int PAYLOADBUFSIZE = LGBUFSIZE;
int r;

1n1 char *tx_buf,*payload_buf;
txbuf = coremalloc(TXBUFSIZE);
payloadbuf = core malloc(PAYLOADBUFSIZE);
snprintf(payloadbuf,PAYLOADBUFSIZE,

" {\ " se rial -numbe r\": \ "%s \", \ ip-add r\": \ %s\ }"
wemoconfig.serialnumber,wemo_config.ipaddr);

Vc snprintf(txbuf,TXBUFSIZE,

309

"POST /config/plugs/update HTTP/1.1\r\n"
"User-Agent: WemoPlug\r\n"
"Host: NILM\r\nAccept:*/*\r\n"
"Connection: keep-alive\r\n"
"Content-Type: application/json\r\n"
"Content-Length: %d\r\n"
"1\r\n%s" ,
strlen(payload buf),payload buf);

/send the packet!
r = wifi transmit(wemoconfig.nilmip_addr,80,txbuf);
corefree(txbuf);
corefree(payloadbuf);
return r;

}

int wifisetbaud(void){
corelog("setting ESP8266 baudrate to 9600");
I/reconfigure UART for 115200
static usartserialoptionst usart_options = {

.baudrate = 115200,

.charlength = WIFIUARTCHARLENGTH,

.paritytype = WIFIUARTPARITY,

.stopbits = WIFIUARTSTOPBITS

/send baudrate command
char* cmd = "AT+CIOBAUD=9600";
usartserialinit(WIFIUART,&usart_options);
usartserial_writepacket(WIFIUART, (uint8_t*)cmd,strlen(cmd));
I/terminate the command
usart serial putchar(WIFIUART,'\r');
usartserialputchar(WIFIUART,'\n');
/wait 1 second
tcstart(TCO, 0);
rxwait=true;
while(rx_wait);
I/reconfigure UART for 9600
usartoptions.baudrate = WIFIUARTBAUDRATE;
usart serial init(WIFIUART,&usartoptions);
printf("reset baudrate\n");

int wifitransmit(char *url, int port, char *data){
int BUFSIZE = MDBUFSIZE;
char *cmd;
char *buf;
int r;
I/allocate memory
cmd = coremalloc(BUFSIZE);
buf = coremalloc(BUFSIZE);
I/sometimes the port stays open, so check for both
/conditions
char *successstr = "4,CONNECT";
char *connectedstr = "ALREAY CONNECT"; /sic
I/open a TCP connection on channel 4
snprintf(cmd,BUFSIZE,"AT+CIPSTART=4,\"TCP\",\"%s\",%d",

url,port);
wifi sendcmd(cmd,"4,CONNECT",buf,100,5);
/check if we are able to connect to the NILM
if(strstr(buf,"ERROR\r\nUnlink")==buf){
printf("can't connect to NILM\n");
corefree(cmd);
corefree(buf);
return TXBADDESTIP;

//if we are still connected, close and reopen socket
if(strstr(buf,connectedstr)==buf){
wifisendcmd("AT+CIPCLOSE=4","Unlink",buf,100,1);

310

/now try again
wifisend cmd(cmd,"Linked",buf,100,2);

}
/check for successful link
if(strstr(buf,successstr)!=buf){

printf("error, setting up link\n");
corefree(cmd);
core free(buf);
return TXERROR;

}
/send the data
if((r=wifisendtxt(4,data))!=O){
printf("error transmitting data: %d\n",datatxstatus);
corefree(cmd);
corefree(buf);
return r;

/connection is closed *after* we receive the server's response
S/this is processed by the core and we discard the response

//wifisendcmd("AT+CIPCLOSE=4", "Unlink",buf,100,1);
corefree(cmd);
corefree(buf);
return r; /success!

//**** These are the accessor functions to transmit data ***//
int wifisendtxt(int ch, const char* data){

return wifi send raw(ch,(uint8 t*)data,strlen(data));
}

int wifi send raw(int ch, const uint8_t* data, int size){
int BUFFERSIZE=1000;
int i=0;
int r;
char *txbuf;
txbuf = coremalloc(MDBUFSIZE);

for(i=0;i<size;i+=BUFFERSIZE){
if(i+BUFFERSIZE<size)

r=wifisend data(ch,&data[i],BUFFERSIZE);
/2 else

r=wifisend data(ch,&data[i],size-i);
if(r!=TX SUCCESS){ I/exit early

corefree(tx buf);
return r; /fail!

n}
2, }

core free(tx buf);
return r;

//*** Private method that actually sends data **//
s2Fint wifisenddata(int ch, const uint8_t* data, int size){
30 int cmdbufsize = MDBUFSIZE;

char *cmd;
int timeout = 7; /wait 7 seconds to transmit the data
/allocate memory

31 cmd = coremalloc(cmdbufsize);
snprintf(cmd,cmdbufsize,"AT+CIPSEND=%d,%d\r\n",ch,size);
datatxstatus=TXPENDING;

3 6 rxwait=true;
resp-bufidx = 0;
memset(respbuf,OxO,RESPBUF SIZE);
memset(wifirxbuf,OxO,WIFIRXBUFSIZE); /to make debugging easier

2 wifi rxbufidx=0;
usart_serial_write_packet(WIFI_UART, (uint8_t*)cmd,strlen(cmd));

2. delayms(250); /wait for module to be ready to accept data

311

usartserialwritepacket(WIFIUART,(uint8_t*)data,size);
/now wait for the data to be sent
while(timeout>O){

/start the timer
tcstart(TCO, 0);
/when timer expires, return what we have in the buffer
rx wait=true; /reset the wait flag
while(rxwait && datatx status!=TXSUCCESS);
tc_stop(TCO,0);
/the success flag is set *before* we receive the server's response
//core_processwifidata receives the response but discards it
if(datatxstatus==TXSUCCESS){
datatxstatus=TXIDLE;
rxwait = false;
//free memory
corefree(cmd);
return TXSUCCESS;

}
timeout--;

}
/check if this is a timeout error
if(strlen((char*)resp-buf)==0){

printf("timeout error\n");
corelog("timeout error");
datatxstatus = TXTIMEOUT;

}
I/an error occured, see if it is due to a module reset
else if(strcmp((char*)resp_buf,"\r\nready\r\n")==0){

/module reset itself!!!
printf("detected module reset\n");
corelog("module reset");
datatxstatus = TXERRMODULERESET;

} else {
datatxstatus=TXERROR;
corelog("TX error:");
corelog((char*)respbuf);
datatxstatus = TXERROR;

}
//free memory
corefree(cmd);
return datatxstatus;

}

int wifisendcmd(const char* cmd, const char* respcomplete,
char* resp, uint32_t maxlen, int timeout){

resp bufidx = 0;
uint32_t rxstart, rxend;
/clear out the response buffer
memset(resp,OxO,maxlen);
memset(respbuf,OxO,RESPBUFSIZE);
/setup the rxcomplete buffer so we know when the command is finished
if(strlen(respcomplete)>RESPCOMPLETEBUFSIZE-3){

printf("respcomplete, too long exiting\n");
return -1;

}
strcpy(resp completebuf,resp complete);
strcat(respcompletebuf,"\r\n");
I/enable RX interrupts
usartenableinterrupt(WIFIUART, USIERRXRDY);
NVICSetPriority(WIFIUARTIRQ,2);
NVICEnableIRQ(WIFIUARTIRQ);
/write the command
rxwait=true; /we want this data returned in respbuf
rxcomplete =false; /reset the early complete flag
usart_serial_writepacket(WIFI_UART,(uint8_t*)cmd,strlen(cmd));
/terminate the command
usart serial putchar(WIFIUART,'\r');

312

usart serial putchar(WIFI_UART, '\n');
/wait for [timeout] seconds
while(timeout>O){

/start the timer
tc start(TCO, 0);
/when timer expires, return what we have in the buffer
rxwait=true; /reset the wait flag
while(rx wait);
tcstop(TCO,0);
if(rxcomplete) //if the uart interrupt signals rx is complete

4 C break;
timeout--;

j) }
/now null terminate the response
respbuf[respbuf_idx]=OxO;
/remove any ECHO

41 if(strstr((char*)respbuf,cmd)!=(char*)respbuf){
d printf("bad echo: %s\n",resp-buf);

return 0;
}
rxstart = strlen(cmd);
/remove leading whitespace
while(respbuf[rx-start]=='\r'l I respbuf[rxstart]=='\n')

rxstart++;
/remove trailing whitespace
rxend = strlen((char*)respbuf)-1;
while(resp buf[rxend]=='\r'|I resp buf[rx end]=='\n')

rxend--;
/make sure we have a response
if(rx_end<=rx_start){
printf("no response by timeout\n");
return 0;

}
/copy the data to the response buffer
if((rxend-rxstart+1)>maxlen){

memcpy(resp,&resp buf[rx start] ,maxlen-1);
resp[maxlen-1]=0x0;
printf((char*)respbuf);
printf("truncated output!\n");

} else{
memcpy(resp,&respbuf[rx start],rxend-rxstart+1);
/null terminate the response buffer
resp[rxend-rx_start+1]=0x0;

- }
return rx end-rx start;

-4- }

I/Priority 0 (highest)
ISR(TCOHandler)
{

4: rxwait = false;
4- //clear the interrupt so we don't get stuck here
a tc_get status(TCO,0);
4- }

I/Priority 1 (middle)
ISR(UARTOHandler)

1- {
uint8_t tmp, i;

/state machine vars for handling RX'd data
static int rx_bytesrecvd = 0;

s- static bool rxinprog = false;
4 static int rxbytesexpected = 0;

static int rxchan = 0;
char *action buf;

1 int ACTIONBUFSIZE = MDBUFSIZE;

313

usart-serial-getchar(WIFIUART,&tmp);
//if debug level is high enough, print the char
if(wemoconfig.debuglevel>=DEBUGINFO)

coreputc(NULL,tmp);
/check whether this is a command response or
/new data from the web (unsollicted response)
if(rxwait && datatxstatus!=TX PENDING){

if(resp-buf idx>=RESPBUF SIZE){
printf("error!\n");
return; /ERROR!!!!!

}
respbuf[respbufidx++]=(char)tmp;
/check for completion str to indicate completion of command
/this is just a speed up, we still timeout regardless
/of whether we find this string
if(respbufidx>4){
if(strstr((char*)resp_buf,resp_complete buf)==

(char*)&resp-buf[respbuf_idx-strlen(respcompletebuf)]){
rx_complete = true; I/early completion!
rxwait = false;

}
}

} else if(rxwait && datatxstatus==TXPENDING){
/we are transmitting, no need to capture response,
/after transmission we receive SEND OKrln, responses
I/are captured by wifi rxbuf and processed by the core
/just wait for SEND OKr~n, use a 9 char circular buffer
if(resp-buf-idx>8){
for(i=O;i<8;i++)

respbuf[i]=respbuf[i+1];
respbuf[8]=tmp;
if(strstr((char*)resp-buf,"SEND OK\r\n")==(char*)resp-buf){

datatxstatus=TXSUCCESS;
}

} else{
respbuf[respbufidx++]=tmp;

S}
}else { /data txstatus == TXIDLE

/this is unsollicted data, incoming from Internet,
/process into wifirxbuf and pass off to the the core
/when the reception is complete
if(wifirxbuffull){

printf("error, wifirxbuf must be processed by main loop!\n");
return; I/ERROR!!!

}
if(wifi rx bufidx>=WIFIRXBUFSIZE){

printf("too much data, wifi_rx_buf full!\n");
I/empty the buffer
wifirxbufidx = 0;
return; I/ERROR!!!!

}
/store the data in the rx buffer
wifi rx buf[wifirxbufidx++=(char)tmp;
//if a reception is in progress...
if(rxinprog){

rxbytes-recvd++;
if(rxbytesrecvd==rx_bytesexpected){

/data is ready for processing, set flag so main loop
/runs core_processwifi data
wifi_ rxbuffull=true;
wifi rx buf idx=O;
rx_inprog = false;
return;

}
}
I/otherwise check for control sequences....

314

if(wifi_rxbufidx>=6 && !rxin_prog){
/check for incoming data

2" char dummy;
if(sscanf(wifirxbuf,"\r\n+IPD,%d,%d:%c",
&rxchan,&rx bytesexpected,&dummy)==3){

rx-inprog = true;
rx bytesrecvd = 1; /reset the RX counter so we know when we have all the data
return;

}
/check for link and unlink
actionbuf = coremalloc(ACTIONBUFSIZE);
if(sscanf(wifi_ rxbuf,"%d,%s\r\n",&rxchan,actionbuf)==2){

if(strcmp(actionbuf,"CONNECT")==O){
corewifilink(rxchan);
wifirxbufidx=O;

}
if(strcmp(actionbuf,"CLOSED")==O){

core wifi unlink(rxchan);
wifi-rx buf idx=O;

S}
}
//if wifi rxbuf is longer than 20 chars we must be out of sync,
I/look for Irn sequence and flush the buffer
if(wifirxbufidx>20){

if(strcmp(&wifi_ rxbuf[wifirxbufidx-2],"\r\n")==0){
wifi rx buf idx = 0;
printf("flushed wifirxbuf, out of sync\n");

}
}
core free(action buf);
return;

}
}

}

//****NOTE: error when startup misses a character so wifirxbuf is out of sync**

Listing B-5: firmware/src/wemo.c: Driver for WEMO hardware. Solid state
meter and relay logic

Git repository: http://git.wattsworth.net/nilm/wemo-firmware
Filename: firmware/src/wemo. c
Revision: master

#include <asf.h>
#include "string.h"
#include "wemo.h"
#include "monitor.h"

------ Theory of Operation----------
The server listens for relay commands over TCP
and pushes out updates from the power meter over TCP
----- Relay Commands-------
relayon: turn the relay on
relayoff: turn the relay off
---- Power Meter----------
Read the wemo power chip every second. check if data in the power struct
is valid, if so send it I/otherwise flush it and start listening to
the UART. The UART waits for the sync byte OxAE then reads 29 more
bytes computes the checksum and parses the data into the power
struct if the checksum is good and everything is stored the valid

315

flag is set

powersample wemosample;
uint8_t wemobuffer [30];
/take 30 byte buffer from WEMO and fill power sample struct
uint8_t processsample(uint8_t *buffer);

void wemo-init(void){
/allocate memory for the server buffer
/set up the power meter UART
static usartserialoptionst usart_options = {

.baudrate = WEMOUARTBAUDRATE,

.charlength = WEMOUARTCHARLENGTH,

.paritytype = WEMOUARTPARITY,

.stopbits = WEMOUARTSTOPBITS

gpioconfigurepin(PIOPB2_IDX, (PIOPERIPH_A I PIODEFAULT));
pmcenableperiphclk(IDWEMOUART);
sysclk enableperipheral clock(IDWEMOUART);
usartserialinit(WEMOUART,&usart_options);
NVICSetPriority(WEMOUARTIRQ,4); I/lowest priority
NVICEnableIRQ(WEMOUARTIRQ);

uint8_t processsample(uint8_t *buffer){
/process 30 byte data packet buffer
uint8_t checksum = 0;
uint8_t bytes[3];
int32_t vals[9];
int i;
//1.) check for header and length
if(buffer[0]!=0xAE 11 buffer[1]!=0xlE){

return false;
}
/12.) compute checksum
for(i=0;i<29;i++){
checksum += buffer[i];

}
checksum = (-checksum)+1;
if(checksum!=buffer[29]){
corelog("bad checksum");
return false;

}

/13.) Parse raw data into values
// Data is 3 byte signed LSB
for(i=0;i<9;i++){

bytes[0] = buffer[3*i+2];
bytes[l] = buffer[3*i+3];
bytes[21 = buffer[3*i+4];
vals[i] = bytes[0] I bytes[1]<<8 I bytes[2]<<16;
if((bytes[2]&0x80)==0x80){

vals[i] I= OxFF << 24; /sign extend top byte
}

}
/14.) Populate the power struct
wemo_sample.vrms = vals[2];
wemo_sample.irms = vals[3];
wemosample.watts= vals[41;
wemosample.pavg = vals[5];
wemosample.pf = vals[6];
wemosample.freq = vals[7];
wemo sample.kwh = vals[8];
/15.) Set the valid flag

316

2 - wemosample.valid = true;
/all done

T, return true;

C void wemo read power(void){
o /start listening to the WEMO

wemo sample.valid=false;
q4 usartenableinterrupt(WEMOUART, USIERRXRDY);

1 ISR(UARTlHandler)
OF {
T- uint8_t tmp;
icu static uint8_t buf[30]; 1/30 byte packet
10 static uint8_t buf idx=O;
10' usartserial getchar(WEMOUART,&tmp);

switch(buf-idx){
1o0 case 0: /search for sync byte

if(tmp==0xAE){
10 //found sync byte, start capturing the packet
o buf[buf_idx++]=tmp;
Co }

break;
Im case 30: /sample is full, read checksum and return data

if(process_sample(buf)){
- /success, stop listening to the UART

11 usartdisable interrupt(WEMO_UART, USIERRXRDY);
/reset the index
bufidx=0;

} else { /failure, look for the next packet
bufidx=0;

}
break;

case 1: /make sure the packet length is valid
if(tmp!=0x1E){
bufidx = 0;
break;

} I/else, add to buf
default: I/reading packet

buf[buf_idx++]=tmp;
}

S}

B.3 NILM Software Stack

The NILM software stack can run on a wide variety of hardware platforms from com-

modity desktop and laptop machines to low cost embedded single board computers

(SBC). There are two main variants of the software stack: standalone and embedded.

The standalone suite is designed for relatively high power desktop or laptop machines

with a keyboard, mouse and monitor. This configuration provides a a local distri-

bution of NILM Manager for data visualization and control which means there is no

dependency on an Internet connection.

The embedded version is a stripped down software stack optimized to run on

317

resource constrained embedded systems. This variant does not have a local distri-

bution of NILM Manager and must have a network connection to a NILM Manager

instance in order to run. Embedded systems usually do not have input/output devices

like a mouse, keyboard, or monitor, so this stack uses a locally hosted web page for

configuration. When the system is in configuration mode, users can connect to the

"Wattsworth Config" ssid and visit www.wattsworth.net to view and edit the system

settings. The flex sensor LED indicates the state of the system. The colors are as

follows:

Solid Green Normal operation: System is in run mode, and securely connected to

a NILM Manager server

Blinking Red Error: System is in run mode but has a configuration error

Blinking Orange Busy: System is booting or switching between modes

Solid Blue Configuration mode. Connect to "Wattsworth Config" WiFi network to

manage the system.

The flex sensor button is used for basic input tasks. When the system is in run mode,

press the button once to transition to configuration mode. Press and hold the button

for three seconds to shut down the system. When the system is shutting down, the

LED will blink red quickly. When the LED turns off it is safe to unplug the system.

The standalone software stack has been verified on Ubuntu 14 LTS. The core data

capture, analysis and storage software has been verified on Ubuntu 15. Currently

the NILM Manager software only runs on Ubuntu 14. The embedded stack is tightly

coupled to the hardware platform and has been deployed on a custom built single

board computer as well as the Raspberry Pi 2 (Figure B-9). The custom single board

computer was designed as a reference embedded NILM, but as commercial single

board computers have improved this has reduced the need for a custom design. The

full schematics and bill of materials for the custom NILM Board are included at the

end of this appendix for completeness.

318

Power supply must battery backed real Use"HostS*'sor
be grounde time clock (RTC) USI Host

Gigabit Ethernet -

sMX6 quad core
2GB DDR3 RAM

512GB mSATA drive

External SD card slot -

USB WIFi Adapter:
Edimax EW-7811 Un

(b) NILM Board (Appendix B.3.3)

(a) Raspberry Pi 2

Figure B-9: Hardware platforms supported by the NILM embedded software stack

B.3.1 Data Capture

The NILM software stack is primarily designed to capture and store data collected by

contact or non-contact (flex sensor) power meters. Both the standalone and embedded

stacks implement a similar data capture service illustrated in Figure B-10. The source

code for all data capture processes can be found in /opt/nilmcapture. All file names

listed in this section are relative to this folder. When the system boots, the OS

spawns a supervisor process (nilmcapture/supervisor.py). The supervisor loads

the system configuration from the meters.yml file, and spawns a capture process

(nilmcaptu re/captured. py) for each meter that is present and calibrated. If any

capture process stops due to an error, the supervisor tries to restart it. If all of

the capture processes fail, the supervisor assumes the database is corrupt and runs

nilmdb-fsck before restarting the capture processes.

B.3.1.1 Standalone Capture

The captu re processes differ between the standalone and embedded implementations.

The standalone software supports both contact and non-contact sensors and also al-

lows storing more types of data than the embedded implementation. This section

covers the standalone capture and the following section covers the embedded capture.

Figure B-10 shows the standalone capture implementation. The capture process first

319

supervisor.9y:
captureaprocs = [I

for each meter in meters.yml:
captureprocs append(

run "captured.py meter")

monior aptre roeses-

while (True);
#restar' any processes !hat fa11
for each proc in captureproas

if(proc.stopped?)
proc.restart

ton corriptson be rS.. tartifng
if allstopped?

run 'nilmdb.feck"

meteri meter2 2 meterN

capturod.py:
tf(not streamsexist?)
buildstreama(meter conf ig)

if(type--CONTACT):
reader - new ethernetsensor

else

reader = new usbsensor * cc

for block in reader:
if(keep-raw): Asso La5 dlLd
insert(rawstream,block)

ivdata - reconstruct(block)
iflkeep iv): 1 2 and t data

insert (iv stream, iv data)
sinefitdata = sinefitiblock)
if(keep-sinefit):

5
sav,

insert(sinefitstream,sinefitdata)
prepdata = prep(sinefitdata,block)

alwayS sale prep asta
insert(prepstream,prepdata)

exit 1 Yviz o caCzed n dat,, :tvaI

Figure B-10: NILM data capture. The supervisor process manages a capture process
for each meter on the NILM

creates a data reader object. The class of this reader depends on whether the me-

ter is contact (ethernet sensor) or non-contact (usb sensor). The capture process

starts the reader as a new process and runs in a loop requesting blocks of data from

the reader as it becomes available. Each block runs through several data processing

stages. The raw (ADC counts) data is first reconstructed to current (amps) and volt-

age (volts). For a contact sensor the conversion values are specified in meters. yml, and

for a non-contact sensor these values are calculated during calibration. The recon -

struct function is implemented in nilmcapture/reconstructor.py. The data is then

passed through sinefit (/opt/nilmtools/nilmtools/sinef it. py) to detect the line fre-

quency and zero crossings. Both the reconstructed data and the sinefit data are then

passed to prep. Prep (nilmcapture/auto prepper.py) is implemented as a stateful

object instead of a NILM filter to facilitate streaming decimation. The algorithm

is identical to the NILM filter version found in /opt/nilmtools/nilmtools/prep.py.

320

ethernet sensor.pyt

init()
to - Time.now ri, microseconds
pipe - run("ethstream -L ... ")
worker - Thread(read(pipe)).start

getblock)
data - worker_queue.get()
if(data--None):

return None
tsdata = [timestamp, data)
return ts_data

read(pipe)
while(True)t

ascii - socket.read()
if(NODATA):
workerqueue.put(None)

else:
data = int(ascii)
worker queue.put(data)

PIPE

ethatream: compiled C binary

E SOCKET

/dev/eth @ 192.168.1.200

ETHERNET

NEMO Box

(a) Ethernet Sensor (Contact Meter)

Figure B-11: Pseudo

OBJECT

I (b) USB Sensor (Non-contact Meter)

code for sensor reader processes

The result of each data processing step can be optionally inserted into the database

depending on the settings in meters. yml.

On average, the capture process consumes data faster than it arrives (a require-

ment for realtime processing), but it only polls for new data once it has finished

processing a block. Depending on the system architecture the kernel may not have

sufficient internal buffers to store incoming sensor data while the capture process is

working on a block. To prevent a buffer overflow in the kernel, capture relies on a

reader object to continuously poll the kernel for sensor data. The reader has sufficient

buffer space to hold the data until capture is ready for it. The reader implementations

are discussed below.

Contact Sensor Figure B-11a illustrates the reader structure for contact sensors.

The contact sensors use a LabJack UE9 data acquisition board. Following the diagram

321

ush sensor.py:

init(

ts = Time.now 9it micxosecomds

worker - Thread(read sensor).start

get block()
bytes - workerqueue.get()
if(bytes-None):

return None
data = numpy.parse(bytes)
ts_data = (timestamp, data]
return tsdata

read_sensor()
while(True):

bytes = serial.readblock
if(NODATA):
worker queue.put(None)

else:
worker_queue.put(bytes)

PIPE

/dev/nilm/meterXXX data

USB

D-Board

32

from the bottom up, data acquisition board connects to the NILM via Ethernet. The

kernel's network drivers expose the connection as a device node to user space. A

pre-compiled binary, ethst ream, connects to the board using a socket to the device

node and streams data from it. The reader spawns a thread that continuously polls

ethstream for new data. This data is accumulated in a thread-safe queue. capture

retrieves data from the reader by calling the get_block function which dequeues a

block of data. If a sensor error has occurred the reader returns a None element to

capture which causes it to shut down. The supervisor detects this and restarts the

capture process which in turn re-initializes the sensor to clear the error. The only

error that is likely to occur is a buffer overrun which happens when the reader thread

is not polling the sensor frequently enough. This indicates that the system has too

many processes running. If this happens frequently, reduce the number of processes

running (eg NILM filters or analyzers), or switch to a faster hardware platform.

Non-contact Sensor Figure B-11b illustrates the reader structure for non-contact

sensors. The data flow is similar to the contact sensor reader described above. The

main difference is that the non-contact sensors connect to the NILM by USB instead

of Ethernet. Like Ethernet, the kernel drivers expose the connection as a device

node to user space. However instead of a network connection, the device is a serial

line (TTYACM). The reader polling thread connects to the device node using the

pySerial module included in the default Python installation. The rest of the data

flow is identical to the contact sensor.

B.3.1.2 Embedded Capture

The data capture process is structured differently in the embedded software stack

because embedded systems do not have the processing power to run a full sinefit and

prep toolchain in Python. The embedded stack uses a similar supervisor but has a

different capture process as illustrated in Figure B-12. A separate compiled binary

written by David Lawrence runs the prep algorithm directly on the sensor data. This

"s-prep" data is fed into the capture process by block. Since the prep transform is

322

embeddedcaetured.gV:
if(not streamsexist?):

build streams(meterconfig)

reader - run('sensorprep")
iruns as long as sensor keeps sendinp data
for block in reader:

#ift vltvge vecto!

5 = v/IvI
unmix currents sth calibration matr'x

pqcurrents = sensors*calmatrix
#rotate P and Q by calibrated siniEct anglle
pqcurrents *- sinefitangles
#align to voltage vector
pqcurrents /- 0
*save data to prep stream
insert(prep stream, pqcurrents)

PIPE

sensorprep3 compiled binary

returns Sl: (P1,Q1,P3,Q3,....
S2: (P1,Q1,P3,Q3 ... I

SB: [P1,Q1,P3,Q3, ...

PIPE

/dev/nilm/meterXXXXdata

USB

D-Board

Figure B-12: Embedded data capture

linear, the calibration matrix can be applied directly to s-prep with the same result

as if it was applied to the time domain sensor data. The advantage of applying the

calibration to s-prep is that this stream arrives at a much lower data rate than the

time domain data (60 Hz vs 3kHz). Two rotations are then applied. The ratio of

P and Q for each phase are corrected by the sinefit rotation angle computed during

calibration, and the ratio of P and Q is aligned to the electric field sensor. This pair

of rotations is equivalent to running sinefit.

The prep output is stored in the database. Unlike the standalone software stack,

there is no option to store intermediate data streams like raw or sinefit as these are

never directly computed.

323

B.3.2 Embedded Management

The embedded stack runs a global management daemon which controls the system

operation. This daemon is illustrated in Figure B-13. When the system boots this

daemon is started automatically (in the standalone stack the supervisor is started

automatically).

Configuration The daemon first checks to see if the system has been configured.

If not, it switches to configuration mode and starts a WiFi access point at

"Wattsworth Config". The user connects to the access point and configures the

system with information about the wireless network to use (SSID and password),

a name and description of the installation, and an e-mail to associate with the

NILM owner. Once this information is entered, the daemon restarts the system.

Network Setup If the daemon detects that the configuration values are present and

valid, it attempts to connect to the specified network. If this is unsuccessful, it

sets the flex sensor LED to blinking red and waits for the user to press the flex

sensor button to enter to configuration mode.

Registration If the network connection is successful, the daemon sets up an en-

crypted virtual private network (VPN) with the NILM Manager server. The

keys for this connection are pre-installed on the system. Once it has joined

the VPN, the daemon checks to see if the NILM has been registered with the

manager. If this is the first time the NILM has connected to the manager, it

registers by sending the e-mail address of the NILM owner as entered by the

user during system configuration. The manager then associates the NILM with

the user's account. If the e-mail does not belong to an existing account, the

manager sends the user an e-mail with instructions how to create an account

and claim the NILM.

Calibration After connecting to the NILM Manager server, the daemon checks if

its meters have been calibrated. If not, it starts a calibration server instance

and waits for the user to connect the NILM Manager to begin the calibration

324

process. If the meters are calibrated, the daemon starts the supervisor process

described in Appendix B.3.1.

325

System Boots4

attsworthd.py

no
4onfigured?'

yes

configure
network
interfaces

no

,Connected? -)

yes.

restart on
configuration
complete

local access point with DNS
wattsworth.net -> localhost

User presses
config button
to fix error

Flash red LED

join VPN at vpn.wattsworth.net
using pre-installed certificates

run calibration
server

yes

no
registered? -f

no
calibrated?

yesj

POST owner e-mail to
www.wattsworthnet

L-__

owner has no
account?

yes
create account
and send e-
mail

run supervisor.py associate NILM
with user account

Figure B-13: Embedded system management

326

cali5ration
complete

NILM Board
Variant: [No Variations]

I
Page

2

3

4

5
6

7

8

9

10

Index Page

COVER PAGE 11
BLOCK DIAGRAM 12

iMX6SOM 13

iMX6 SOM (continued) 14

STORAGE 15

NETWORK & USB 16

ANALOG and DEBUG UART 17

MICRO and SDRAM 18

STORAGE 19

MISC MODULES 20

Index

MISC MODULES (CONT)

REVISION HISTORY

..

..

..

..

..

..... I.......................................

..

..

DESIGN CONSIDERATIONS

design M oTes T

Wattsworth CONFIDENTAL D not duitnbu". D

TM NILM Bo.rd IN ariaions
101] -COVER PAGE.SchD- Chekdby

s- 100
se. own9

1-

4/22/2016
V112

[~Q

Index
.
..
..
..
..
..
..
..
..
..

Index
.
..
..
.................................I...........
..
..
..
..
..
..

Page

21

22

23

24

25

26

27

28

29

30

Page

31

32

33

34

35

36

37

38

39

40

Exampl tex fr criticalliryot guidelines.

B

I5

NILM Board

Page 4

POWgEeR

Page 3

Page 5

Gb Ethernet

Page 5

mSATA

~Pa e7

iMX6 SOM

NHLM B.rd

[02) - BLOCK DIAGRAKLSdda

4/22/2016

CONFIDENAL. Doo diWWibe. D

Cbeakd by

S 2 d 11 7

3 4 1 5 6 7

AU

[~Q
00

A

"I

P.1 F.E"..

iMX6 SOM

I I

UART / 12C

UARTI RX(GPIO5[29])
UART] TX(GPIO5[28])
UARTIRTS(GPIO3[20])
UARTICTS(GPIO3[19])

BASE PER-3V3 UART2_TXD(GPIO3[26])

51 UART2_RXD(GPIO3[27])
R25 R26 5 UART2_RTS(GPIO3[29])
4k7 4k7 UART2_CTS(GPIO3[28])

88
87 I2CISCL(GPIO5[27])

7 I2C ISDA(GPIO5[26])

174 12C2_SCL176 I2C2_SDA

7 -SENSOR SCL iMX6 Connector

7 $ENSOR SDA

UART3 TXD(GPI03[24])
UART3_RXD(GPIO3[25])

UART3_CTS(GPIO3[23])
UART3_RTS(GPIO2[3 1])

CSPI I MOSI(GPIO4[7])
CSPI tMISO(GPIO4[8])

CSPI _CLK(GPIO4[6])
CSPIICSO(GPIO4[9])

CSPIICSt(GPIO4[10])

l2C3_SCL(GPIOl[5])
I2C3_SDA(GPIO7[I I])

56 XMEGA RX8

55 XMEGA TX 8
XMEGA CTS 8
XMEGA RTS 8

BASE PER_3V3
45
41
43 R23 R24
39 4k7 4k7
487

92
90

12C3 SCL 10
L 12C3 SDA , 10

Ethernet
JIE

44
9 SD1 CD CAN] TX(GPIO[7])
9 SDI WP CAN]_RX(GPIOI[8])

9 SD2 CD CAN2_TX(GPI4[14])
8- 2 CAN2_RX(GPIO4[15])

1616 GETH LED I
DGND i5 GETHLED2

6 GETH LEDI
6 (_GETH LED2 MX6 Connector

MDI_A+
MDI_A-
MDI B+
MDIB-
MDI_C+
MDI_C-
MDI D+
MID-

3 GETH TRO P GETH TROP 6

9 GETH TRO P GETH TRON 6
GETH TRIP >611 GETH TRI N GTTIl l GGETHTR IN)64 GETH TR2 P EHT2

6 GETH TR2 N GETH TR2P 6
GTHRP GETH TR2N 6

12 GETH TR3 N GETH TR3P 6
2 GEHTR GETH TR3N)6

Power
JIK _ ____

202 F GND GND
- GND GND

GND GND

8_ . GND GND

13_ GND GND
14 GND GND

19' GNU GND

27 GND
28 GND VCC_3V3_IN

GND VCC_3V3_IN
3 GN VCC_3V3 IN

GND VCC_3V3_IN
37 GND VCC_3V3_IN
37 GND VCC_3V3_IN
47 GND VCC_3V3_IN
58 GND VCC_3V3_IN
59 GND VCC_3V3_IN
66 GND
6 GND 3V3 PER
76GN
78 1GNU

GND AGND

95 GND AGND
GNU

101 GND NC2
112 GND NCt

126 GND
132 GND CLKO2

138 GND PORB
139GND

149 GND BOOT_SELO(GPIO3[7])
158 GND BOOT SELI(GPIO3[13])158 GND PWM(GPIO4[30])

iMX6 Connector

DGND

203
159
169
172
178
179
185

32
34
36
38
103
105
107
109
III

49

195

DGND

3V3 SOM

OM PER_3V3

3V3 SOM
74

30
R27 R28

29 4k7 4k7

98

42
40
17

BOOTSELO 10

,SOM RESET 10

D WiFi Antenna r r7cbe]
001-0001 080-0001 iMX6SOM

iMX6 SOM

Title

Size Number Revision

A

Date: 4/22/20 16 Sheet of
File _ C:\Users\ \[03-]-SOM.SchDoc Drawn By:

3 4

4

B

A

CA2

C

B

C

D

2 3

7 MX6 RX) 0
7(MX6 TX 84
7(MX6 RTS 86

7MX6 CTS

iMX6 SOM

A

SATA
JIJ ___________

PCIERXP SATA RXP SATARX P 9136 PCIE _RXM SATARXN 91 SATARX N SATARX N 9

130 97 SATATX P K x~
128 PCIE TXP SATA TXP SATATX SATATXP 9

PCLE TXM SATATXN 9 ATX SATATX N 9

102 CLKI_P
100 CLKI_N

iMX6 Connector

SD Cards
JIG

9 SDI DATAO SDIDATAO(GPIOI[16])
9 SDI DATA! 71 SDI_DATAI(GPIOI[17])
9 SDI DATA2 70 SDI DATA2(GPIOI[19])
9 -SDIDATA3 73 SDDATA3(GPIOI[21])

9< SD CLK i 72 SD CLK
9 SDI CMD 69 SDICMD(GPIOI[18])

iMX6 Connector

USB
JIF

6 USBH D P USBH D P 110[USB HOST DP
6< USBH USBHOSTDN

116
114

79
94

(GPIO 1 [2])SD2_DATA3 1SD2 DATA3 9
(GPIOI[13])SD2_DATA2 SD2 DATA2) 9
(GPIOI[14])SD2 DATA1 62 SD2 DATA 9
(GPIOI[15])SD2_DATAO SD2 DATAO 9

SD2 CLK 60 SD2 CLK)9
(GPIOI[II])SD2_CMD 64 SD2 CMD 9

Re

10, 8LP

USB
USB

USB_
USB

USB HI VBUS

5V

104

OTG DP USBOTGVBUS 106
OTGDN

H _OC(GPIO3[30])
OTG_ID(GPIOI [4])

iMX6 Connector

0 SOM RED 124
10 SOM BLUE 175
10 OM GREEN 115

10, 81 SWMODE 173
117

R37 113
0 96

122
set uC 81

177)I CLK 120

GPIO
JID

CSIO DATI2(GPIO5[30])
CSIO DAT3(GPIO5[31]) CSI D3M
CSIODAT4(GPIO6[0]) CSID3P
CSIODAT5(GPIO6[I]) CSI_D2M
CSIODAT16(GPIO6[2]) CSI D2P
CSIODAT7(GPIO6[3]) CSI DIM
CSIODAT8(GPIO6[4]) CSI_DIP
CSIODAT19(GPIO6[5]) CSIDOM

CS-_DOP
CSIO DATA EN(GPIO5[20])
CSIOHSYNCH(GPIO5[19]) CSICLKOM
CSIOPIXCLK CSICLKOP
CSIOVSYNC(GPIO5[21])

iMX6 Connector

Unused Components
JIA

HDMIDOP 143
HDMIDOM DSIDOP 141
HDMI_DIP DSI_DOM 147
HDMI DIM DSI DIP 147
HDMID2P DSIDiM
HDMID2M

140
HDMI CLKP DSICLKOP 142
HDMICLKM DSICLKOM

HDMIDDCCEC
HDMIHPD

iMX6 Connector

JIC

189 TS X+ TS Y+ 191
187 TSX- TSY- 193

iMX6 Connector

JIH

SPDIFIN(GPIO3[21])
SPDIFOUT(GPIO3[22])

18 DMICCLK
DMIC DATA

LINEINI LP 422
LINEINIRP 199

HPROUT 200
HPLOUT 198

'6
2 AUDMUX4 TXD(GPIO5[15])

AUDMUX4 RXD(GPIO5[17])
AUDMUX4_TXC(GPIO5[14])

24 AUDMUX4_RXC(GPIO5[13])
24 AUDMUX4 TXFS(GPIO5[16])

AUDMUX4_RXFS(GPIO5[12])

iMX6 Connector

163
161

162
160 |

166

165

JIB

LVDSOTXO_P
LVDSOTXO_N
LVDSOTXI_P
LVDSOTX IN
LVDSO TX2 P
LVDSOTX2 N
LVDSOTX3_P
LVDSO TX3 N

170 LVDSOCLK P
LVDSO CLK_N

iMX6 Connector

LVDSI
LVDSI
LVDSI
LVDSI_
LVDSI
LVDSI
LVDSI
LVDSI

TXO_P
TXO_N
TX!_P
TX _N
TX2_P
TX2_N
TX3_P
TX3 N

LVDS _CLK P
LVDSI CLK_N

186
184
190
188
194
192
181
183

182

Title

Size Number Revision

Date: 4/22/2016 Sheet of
File C:\Users\..\f04]-SOM2.SchDoc Drawn By

3 4

4

B

A

B

C

155
157
146
148
151
153

152
150

156
154

D

131
133
129
127
123
125
121

137
135

C

D

4

Power Supplies

+3.3V SMPS

F3

CPFC85NP-WHO4 C44
330u 3R5UR

L2

DGND

J2
3 GND

2 GND
V+

PJ- I02A

Fused Input

6

DC Wall Adapter

LPSA120200U-P5P- Z

Ul TPS54527DDAR

8 i
VIN VBST

Rl SW
EN

10K

2 541-10-0KLDKR-ND 3
R MI. I -ND VREG5 VFB

10uF 4 | Sg
45-4052-]-ND GND PAD

C5 C6
luF 8.2nF

490-3890-1- 90-1311-1 -ND-

G ND PGND PGND PGND PGND

3V3

445-1265-1-ND
Cl 0.T uF

1

2 2uH6

445-6578-1-ND
R2

2 C3 73.2K
5.1 pF 541-73.2KLDKR-ND

490-5945-1-N P73.2KLCT-ND

RMCF0402FT'22KI CT-1

PGNiD PG

Bipolar Analog Supply
+ 12V U2F

+Vin +1Vout 60

2 -Vout 5 -ANA
Vin Com

22

RD- 1205D-=-3
PG;ND PGND I 00mA 200

DGND

DGND

2

+5V LDO
Bypass Bipolar

+12V 5V +ANA

Ul5F10 T00mAU15 - I QOmA
1 3

0.33u IN OUT 0
2 GND

C48
MC78MO5CDTX .lu

DGND DGND DGND

Title

Size Number Revision

A
Date: 4/22/2016 - Sheet of
File: C:\Users\. \[051-POWER SchDoc _ Drawn B -

3 4

A

B

C

SOM

C4
22uF

490-1719-1-ND

D

ND

A

B

C

D D

U=

I

Network and USB
U3

3,6(GETH TROP D+
A

GND

3, 6< GETH TRON D-

TPD2EUSB30ADRTR
U4

3,6(GETH TRIPF-J D+

GND

3,6< GETH TRIN D-

V;?2EUSB30ADRTR

3, 6(GETH TR2P> D+

3,6(GETH TR3P D+

Myl2EUSB30ADRTR

3,6< GETH TR3P D+

GND 3

3, 6(GTT3 D-

TPD2EUSB3OADRTR -
DGND

B

Gigabit Ethernet
J3 ___

3,6C GETH TROP TRI
3,6 GETH TRON TRI-

3,6(GETH TRIP TR2+
3, 6 GETHTR IN TR2-

3, 6 GETH TR2P TR3+
3,6< GETHTR2N TR3-

3, 6(GETH TR3P TR4+
3, 6 GETH TR3N TR4-

12 TRC
6 TR

TRC
TRC

JOG-0
7 C8 C9 10O

DluF luF luF luF
445-1265--ND
445-1265-1-ND
445-1265-1-ND
445-1265-I-ND

DGND DGND DGND DGND

TI
'T2
T3
T4

Y+

G-0-

SHI
SH2

009NL

13 GEHEi3-3K -- < HL-ED2 3
BASE PER_3V3

R8
14T

17 49.9

- GETH LEDI1 3

R9
16

49 9

18

DdND

Bypass Caps for Micro and SDRAM
BASE PER 3V3

C C32 C33 C34 C35 C36 C37 C38 C39
0.lu 0.u lu 0.u 0.u 0lu 0 u 0.lu

DGND DGND DGND DGND DGND DGND DGND DGND

BASE PER 3V3

C25 C26 C27 C28 C29 C30 C31 C55 C56
0.1u Olu 0.1u 0.lu 0.u 0.lu .lu 1 .lu .u

D DDG

D6ND DG-ND DdND D-ND DdND D&ND DdND DND DND

USB Host
VBUS MHI

4K USBH D N U- H2
4< USBH D P)U- D+ MH

D+ D 3
N H

DGND

TPD2EUSB3OADRTR

DGND

Title

Size Number Revision

A

Date: 4/22/2016 VSheet of
File: C:\Users\. A06]-NTW K USB.SchDoc Drawn By:

3 4

A

B

C

D

3

2 3 4

ADC INPUT and DEBUG UART

BASE PER 3V3

UART to

ADC

+ANA -ANA
JI 0

B ADC] 13 6
ADC2 4 A2 - V

4 A3 RX SENSOR SCL 3

ADC4 2 A4 TX 8 SENSOR SDA 3

ADC6 15 7
ND7IA6 GND 12ADC7 A7 GND

ADC8 16 5

1-1634689-6

AGND

5V U5

1 AVDD DVDDO
\ 22 AVDD DVDD

ADC 3 CHO DIN
ADC2 3 CHI DOUT
ADC3 4 CH2 SCLK
ADC4 6 CH3 CS

ADC6 7 CH4 SSTRB

ADC7 8 CR5
ADC8 9 CH7 REFCAP

21 AGND
24 AGND DGND
23 AGND DGND

MAX1300AEUG+

AGND

J7

L MP4 GND 5
8MP3 ID 4

6MPI D-
VBUS

67503-1020

DGND

BASE PER 3V3 D
5V

18 T
11 ADC MOSI 8
14 ADC MISO 813 ADC CLK 8
10 ADCCS 8

20 5V 5V 5V BASE
19

C49 C50 C51 C52 C53
16 0.lu lu 0.l 0.lu 0.u
15 DGN D D D N

DGND DGND DGND DGND DGND DGND D

USB

0 lu

U6 1 0.10

RESET VC 1VCCIR4 27 3V3c0 8

6 D+ GND 3 "=
R5 27 7 D-DGND

2N~D DGDDNDII

GND DGND

7 3 M6_ RX TXD CBUSO
3MX6 TX ~6 D 5U 1

3MX6 RTS CTS CBUS3

FT-230XQ-T WD2 fD3
!I TyiLA KK2NM

R7 C12 C13
10K 47p 47p BASE PER_3V3 R14 R15

C14 C"5 C16
O.lu 0. 4.7u

3ND DdND DGND

DGND DGND DGND

PER 3V3

L C54

GND
Title

Size Number Revision

A

Date 4/22/2016 1 Sheet of
File C:\Users\ \[07]-ANALOG UART.SchIci)rawn By:

2 4

A A

C

D

B

4K

C

D

3 42

UAS IS TH E WRONG C fP**
U7A

Micro and SDRAM

A 95

98>

9-
100

_____5

5

3 XMEGA RT -
3 XMEGA CT$' --

8 JTAG TMS>->
8 JTAG 1
8 JTAG TCK
8 JTAG TDO

15

-
3 XMEGARX -j.
3 XMEGA TX
7 ADC CS
7 ADC CLK
7 ADC MISO 2,
7 ADC_MOSI

25
- 26

8DEBUG R Z
8(DEBUG TX 28--]

30

C

35

389
10 LED RED
10 LED BLUE 40
10 ED GREEN 41>
8 SDRAM CS

D

ATxmegal28AI-AU
BASE PER_3V3

U8B
IVDD VSS 6
3VDD VSS 1

94 VDD VSS 28
17 VDD VSS 461

437 VDD VSS 526
49 VDD VSS 542

49VDD VSS 5

40NC NC - -

IS42SI6800E-7TL DGND

PF0/SYNC/OC0A/SDA S W MODE>
4C6PF I/SYNC/OC0B/XCKO/SCLAfD[11

PA0/SYNC/ADCO/ACO/AREF
PA 1/SYNC/ADC1/ACI
PA2/SYNC/ASYNC/ADC2/AC2/DACO
PA3/SYNC/ADC3/AC3/DAC 1
PA4/SYNC/ADC4/AC4
PA5/SYNC/ADC5/AC5
PA6/SYNC/ADC6/AC6
PA7/SYNC/ADC7/AC7/ACOOUT

PB0/SYNC/ADC0/AC0/AREF
PBl/SYNC/ADCl/ACl
PB2/SYNC/ASYNC/ADC2/AC2/DAC0
PB3/SYNC/ADC3/AC3/DAC I
PB4/SYNC/ADC4/AC4/TMS
PB5/SYNC/ADC5/AC5/TDI
PB6/SYNC/ADC6/AC6/TCK
PB7/SYNC/ADC7/AC7/AC0OUT/TDO

PC0/SYNC/OC0A/OCOALS/SDA
PCI /SYNC/OCOB/OC0AHS/XCKO/SCL
PC2/SYNC/ASYNC/OCOC/OC0BLS/RXDO
PC3/SYNC/OCOD/OCOBHS/TXDO
PC4/SYNC/OC0CLS/OC I ATSS
PC5/SYNC/OC0CHS/OC 1 B/XCK I /MOSI
PC6/SYNC/OC0DLS/RXD I /MISO
PC7/SYNC/OCODHS/TXDI/SCK/CLKOUT/EVOU

PD0/SYNC/OC0A/SDA
PD l/SYNC/OCOB/XCK0/SCL
PD2/SYNC/ASYNC/OC0C/RXDO
PD3/SYNC/OCOD/TXDO
PD4/SYNC/OCI A/SS
PD5/SYNC/OCI B/XCKl/MOSI
PD6/SYNC/RXDI/MISO
PD7/SYNC/TXD I /SCKICLKOUT/EVOUT

PE0/SYNC/OC0A/OC0ALS/SDA
PE I/SYNC/OCOB/OC0AHS/XCK0/SCL
PE2/SYNC/ASYNC/OC0C/OCOBLS/RXDO
PE3/SYNC/OCOD/OCOBHS/TXDO
PE4/SYNC/OCOCLS/OC I A/SS
PE5/SYNC/OCOCHS/OC I B/XCK I /MOSI
PE6/SYNC/OC0DLS/RXD I /MISO
PE7/SYNC/OCODHS/TXD I/SCK/CLKOUT/EVOU

ATxmegal28Al-AU -"
DGND

Date: 4/22/2016
File: _ C:\Users\..\[08]- MICRO SchDoc

Sheet of
Drawn By.

A

B

PF2/SYNC/ASYNC/UC0C/RXD0
PF3/SYNC/OCOD/TXDO < >-

PF4/SYNC/OCIA/5S <.9 ADDR8 U8A

PF5/SYNC/OC1B/XCKI/MOSI 50 ADDR9 ADDR 1 35 All DQM 39 D
PF6/SYNC/RXDI/MISO - 10 ADDRO 22 A10 DQML

PF7/SYNC/TXDl/SCK 2 ADDR9 34 A9
ADDR8 33 A8

PHO/SYNC WE 8 A 3 DQ15 -3
PHI/SYNC/CAS/RE CAS 8 ADDR6 31 A6 DQ14 51 --

PH2/SYNC/ASYNC/RT/ALE1 RAS 8 ADDR5 30 A5 DQI3 50
PH3/SYNC/DQM/ALE2 58 D M 8 ADDR4 29 _A4 DQ12 48

PH4/SYNC/BA0/CSO/Al6 BAO 8 ADDR3 26 A3 DQI2 1
PH5/SYNC/BAI/C S/A17 61 BAl 8 ADDRI 24 A2 DQI0 44
PH6/SYNC/CKE/CS2/A18 6, CKE 8 ADDRO 23 AI DQ9 4
PH7/SYNC/CLK/CS3/A 19 6 CLK 8 AO DQ8

PJ0/SYNC/DO/A0/A8 65 DATA 8 BAO BAO
PJl/SYNC/Dl/Al/A9 -166 DATAI 8 BA 21 BAI DQ7 13 DATA7

PJ2/SYNC/ASYNC/D2/A2/A 10 67 DATA2 DQ6 1 DATA6
PJ3/SYNC/D3/A3/A I DATA3 C DATA4

PJ4/SYNC/A8/D4/A4/A2 69 DATA4 CE D4 DATA

700

DATA 3
5 DATA2PJ5/SYNC/A9/A/A 1 DD 8 CE C DQ3 DATA3

P/SYNC/A/A/A1 DATA DAT

PJ/SYNC/A/D7/A7/A13 2 DA7 CS CS DQA DT718 6 WE6D18 2 DATA2

PKO/SYNC/A/A8/A 16 75 ADDR6

PKl/SYNC/A/A9/A7 76 ADDR IS42SI6800E-7TL
PK2/SYNC/ASYNC/A2/A I /A 18 7 ADDR2

PK3/SYNC/A3/All/A]9 9 ADDR3 407
PK4/SYNC/A4/A12/A20 ADDR4
PK5/SYNC/A5/A13/A2
PK6/SYNC/A6/A I 4/A22 81 ADDR6

PK7/SYNC/A7/A I 5/A23 82 ADDR7 J610
5 8 JTAG TMS pinil pinO ITAG TD>8

PQI/SYNC/TOSC2
8

PDI DATA - pin2 pin9 JTAG TCK
PQ8 /SYNC/TSC2 ASE P 8 PDI CLK $ pin3 pin8 TAG TDO 8
PQ2/SYNC/ASYNC 3 -

pin4 pin7 EB TPQ3/SYNC 5 pin5 pin6 DEBUG RX

PRO/SYNC/XTAL2 - TC2050-IDC-FP
P/YN/TL 92 NGND

PRI/SYNC/XTALI 403C35D12M00000
89 - - - --

PDI/PDI_DATA PDI DATA 8 1
RESET/PDICLOCK C21 PDICLK 8 9 C24

27p 27p
BASE PER_3V3

U7B 2 4

14 VCC GND3
24 VCC GNU 13

VCC GND 23
44 VCC GND
54 VCC GND 43
74 VCC GND 53 DGND DGND
64 VCC GND 63 Title
83 VCC GND 73

GND 84
AVCC GN 93 Size Number

4 AVCC A

D

U

C

QM7 8

4

STORAGE
A

mSATA

BASE PER 3V3

TSATA retainer
rMM6O-EZHO39-B5-R85O

2

4 ATATX P) C17 10n SATATX2 P 33
SATATX2 N 31

4 SATATX N) C18 In SATARX2 P 23
4(SATARX P C19 IOn SATARX2 N 25

4<'ATARX N i C20 n 51

30
32
49

J8

+3.3V
+3.3V

TX+
TX-

RX+
RX-

DETECT

P9j&02

TWI DATA
DA/DSS

+3.3V
+3.3V
+3 3V

GND
GND
GND
GND
GND
GND
GND
GND
GNU

GND

cn

SD Card

BASE PER_3V3

C SD Card
R48 RI
IOK IOK

tDSDB-004G-AFFP
J5

4 7, D DATO VDD WP--- --
4 SD9A~ DATI WP CDSDI WP)3
4 SDI DATA2 CSD CD 3
4 SDI_DATA3 CD/DAT3 VSS 6

5 10 BASE PE
4 SDI CLK CLK GND 10
4 SDI CMD 2 CMD GND

10067847-001 RLF .

DGND

D

DdND

R_3V3

C58
22u

IdD

BASE PER

24

39

4
9
I5
18

50
43
40
37
35
34

3V3

uSD Card: bootable volume, not user accessible
SD Card: auxiliary storage, user accessible
mSATA: auxiliarv storace. not user accessible

uSD Card

DGND BASE PER_3V3

uSD Card 1D L 24 R12
DSDQ U-016G -AFFP-A

J9

4 SD2 DATAO ' DATO VDD
4 SD2 DATA] 8 DATI CD 13 SD2 CD 3
4 1-- 6

< SD2 DATA2 DAT2 VSS2 9
4 SD2 DATA3 CD/DAT3 GND BASE PER 3V3

GND 12 BSPEV5 10
4 SD2 CLK CLK GND
4 SD2 CMD) 3 CMD GND C23

DM3CS-SF 22u 0.lu

DCND

DGND DGND

Title

Size Number

A

Date: 4/22/2016
File

3

Revision

C:\Users\ \[09] STORAGE.SchDoc
]- Sheet of
I Drawn By:

4

A

B

C

D

U

3

4

MISCELLANEOUS

BASE PER_3V3

CPFBZ-A2C4-32.768KD

BAT54C FBI U12

Z 8 VD I IX1
C45 C42 7 1 i,

100 @ 100 MHz 22u 0. lu IRV I2 AA> 5 RQ1 X2
4 IRQ2 SDA 6 323SD 2I Z GND SCL 12C3 SCL 3

I -ISLI2057IRUZ-T

DDND DG
JBT R -=- D=-
S8201-46R DGND DGND

I
DGND

Power LED
3V3 SOM

D5

R21

499 LTST-C191KGKT

DGND

BASE PER_3V3

R13 Mode Switc
C 10K

SW MODE 4, 8

2 2

0781710002

M8
Crimps: W

D C

DGND
078172000

BASE PER_3V3

Per Power 3V3 SOM

Q2
AON7407

R19 --
10K

SOM PER_3V3

R20
Q3' NDS331N

10K

DGND
BASE PER_3V3

Micro LED DI 7
R16 200 2

R17200 RI VDD
8 LED RED RED
8 LED GREEN 3 GREEN Light Pipe
8 LED BLUE BLUE

R18 200 Light Pipe SMFLP6.0
CLVI A-FKB-CJI MlFt BB7R4S31
492-1293-ND

492-1293-ND

M9AT

16POS Connector t C ell

1658622-3 BR-1225

Boot Select
S3

ED4

Fiducials
F4 F5 F6

FID FID FID

F7

FMD

F8

FMD

R22

0 =
PGND DGND

R32

DGND AGND

Title

RevisionSize Number

A

Date: 4/22/20I6
File: C:\Users\. \[I0} - MISC.SchDoc I Drawn By.

3 BOOTSELO |

2-1437565-9

U13
PGBI010402KR

DGND DGND

BASE PER_3V3
41 R36

Reset Mgmt IK
BASE PER_3V3

S2
U-l-

5 D STM
D

CPO R
2-1437565-9

g41

C43 CPRU14
0.Iu G 3 PGB1010402KR

ISL880 111H531 Z-TK

C46 - -:=
DjND 22p DGND DGND

Net Connections
DGND

RTC w/ Battery Backup

E

B

4

A

B

C

D

M3992CT-ND

2

F9

FMD

I Sheet of

6

ND

DOC: REVISION HISTORY

-I

NILM Bd [No Vans]

[121 -. DOC REX1SION MSTORY.SDoc) C-k~d by

I 2 3 V112

I

B

4

MISCELLANEOUS (CONT)

B

R29 SOM LED
0

Q1200
S2312BDS-TI-E3

BASE PER 3V3

R30 D6
DGN 2VDD

DGNDD

200 RE
-4 3 GREEN]

S2312BDS-TI-E3 BLUE

ighit Pipe SMIFLP6.0
CLVI A-FKB-CJIMI F1BB7R4S3
492-1293-ND

DGND

0200

12312BDS-TI-E3

DGND

Title

Size Number Revision

A

Date: 4/22/2016 Sheet of
File: C:\Users\. \l JjMISC2.SchDoc Drawn By:

C

D

A

B

c

D

339

340

NILM Board BOM
Source Data From BOM.B-Doc

Project NILM Board.PrIPcb

Variant: N;

............ IV:1W -.... 1Mwfdf.W YK
------------------------ - ------

...........

AW4 A IMAM) -------------------- VfM)1W1WdAX1 YM id;o I
Dgi-K, clo .10

............ ---------------- tsvRi ---------------- -----------------
Tm - 70065

.......... -------------------------------------- ---------------- A KW i-M ------------------ if 84 0
-NEW 0)N ON

............ b7f6 610-W M flnkl 221k * - ------------------------ f tfi;gi atfracun-'No ty-W Him

1 3 2 IM -- =
...........)M'(%'AAtA ----------- * ------------------------- * Aiii!W trrf11WAfddM61* --------- ----

MnwxfUbw - --- -- M7

7 W.Nrl WRT11"U" -
It Piiinaiinc--W gg.*,,n AAM WOM011M M '"', 1:45zi; pigsw * 'I'sis fm

.-- q -------------------- ------ ------- ------- rnMrWl ----------------------------- ------------------------- i ------ --- w 'rc --------- ?ZYZTMU -------------- ---------------- fnt -------- ---16 wawt- ;;w ----- tEvpplm w ---------------------- W ALUM W -Idv Wsw i ---------------- wici --- ------------ fiix ------------------- d4lt b'W

21 ------- ----------------- -- ----------------------- 19 ---------------- ----------------- 1W My --------------------------- MM ----------------- 5 ,
n ?iaia ---------------------------- --------- -------- -- ----------------------- ---------------- ---------------- iff 134v,:,w ------------- ------------- pJw vdire d N
2l MMRWnAMMA r6r I cr;-Z M 11"

------ ----------------- w---- 14 Y WKaW ---------------------- TWKfJ'xxbwW -------------------- --------------- - ------- Drg w ----- ----- -- , ',, --------- am brx
-- ----------- --------- --- 13irz; ----------------- ---------------------------- !-,ff ------------------- -Tr

9;6 ---- ----------- - ---- --- --- -- - ----- - ------- 7- ---------- ----------- - ------ -1-79,fff ---------- I ------- b7d,
------- ---------- * ------ M ----------- I ------

--------------- ---------------- --------------- I WliWTIrtli- - --------------
"WINhWif -------------------- W U.4 7pvw gww w s ------------------------ I ---------------- ---------- - - ------------- -- aml --- YM

---------------- ------------------------ f --------- 3irRK ---------------- U nu-!-Fw ---------------------------- wif ------------------ -Sf7 --- rT
?WaTTWJwM YW - --- i

rU try'MNPv"I --------------- * ------ Pmpr wxw K;JL" -------------------------- I ---------------- bry wi ---------------- n%- liny T-V6 - --------- ---- * ---------- n fit
'W., RW, --- YKW519 - - --------- - ------- - T - -- (YPW - - ---------- W%40.0-

33 rm"vfi;pz; w U7
1 DO-K,,y -79

.. I
........... W WW -------------- 6

*A-rVgr-- - C"g.-i<ay
6,-R;; Y'N f,17 'AUC, i 16

----------------------- -------------------------- ---------------------------- I ---------------- -------------- ---------------- --------------------

41 wf

............. ------------- * I - w ----------------- ----------- -------------- On'A -------------------
,7 VaA-vr 7,12nM 712-M-1-ND - -2=
.. 1-- e ON

--- 16 ------------------- ------------- --------- ----------- I ---------------- ffPW ------ --------
.........

--------------- ----------------------- T,-75 --itl T 1,1IF. T WP -------------------- i U'r, W --- -- 1AW , 'MI
--------------- ----------------------- ---- ------------------ --- "f ---------- ----------------- --------------------- - ------ 7w ------------------ .ff

--------- ----------- ---- - --- ------- - - -- f ------ - - ------ --------- --------

------------------- - ------------ --------- ----------

7 ON
I'Mimr -------------------------- tw 9erw = C-amn -------------------------- f- -------------- 12jow ----------------- ?"Uniz ------------------------ - - vC ---------- -6(-- lu
I1L6K,1i1Hil3 7K 51

...............
IMMfil --- --- --- 1-1-1-1 ----------- I fyg;w -------------- ---------------- bw ------------------- 1111 YGrf

--------------- iM --------- - ------ ",
.................. ihKFCi f ---------------- --------- --------------- A2,M ------------------ -6..............

Hl7 -X w J6 r IMM
.... 66)1w, ,Tff 17...- [w"I'Mak LYU)"'It" AW W41WO&Y 2 ----- -WY.7 My4mllw ZrOw

160,11 I ND 028
.......... i Ui V...................... - -------- 79viy- -

60 iky1m: 11, W 126
mrM III -uD -TM- 044 Oll

Q i6iiiwzw - - - ------- I - - --
................... ----------------------- I Ytw ---

& A0W
CV.KiiTZ. -- f..

tA ------------------ bw ov," A

ww

uii: ----------------
fmmfw ----------------------------

5 ZIM Ta -- --- ----- PTC K, , FO, ill ill DO; K" l I'll OIi
.... 69 tk:- - W9 0-6 bwv w .U00,66ty * 4 Ugiw W&XL.: 16 dfilw ------------------- 636, -bw

E7 RC - I - L 4M, R V II 7 ,,1,1JdX-b11bf1L y-bb Iiiiii IV ------- At
T.-v. RC 02RO--, - IV- I -, 11 - PTT571 I lA&'Mi

gi&W Xi&W W wOz a7aa W W6w fAwwUw 2 cciw ----- v,.A ------------------ w s b-M
71 Y.,. 2 DK, " - N =077 OM

Pii illi&RKEUA ----- I UJEWnbl* w * 02MICIN6 sirm ----------- I b. .6m
-------- - ------------- - ----- -------- -------------- -------- 17Frm i,7w 74ir 002

........... Ati:M W471MC 1W? M6W 1Abw1w6w - - -W U, nu
71

y"Ns"MY9. --------- - Jim I brm 56

wg5l6bri .A-Axsdfs -- ----------- ---------- ---------------- w Hwf-Nff- .1- ------ --------- -- ,15 ------ - ---------- --

x [M t r ----- - ----------------- --------------- w v y ------ -ir'T5riz -------------

--------------- *3111 ------------------ Tin

-- ---------------- -- --- - ---------------- ISFUY ----------- ---- - ----- -------- - -sm% -------------------
- ------------------ -- - ---------

ow. NF1.19W. MC kWjAp, T MAW ---- - --------- --------------- - ------------------- I
. -------------------------------------- ------ ------- ---------- 354 58 J

,pproved Note,

5 pcs: Tota I F -s 3 5 4 --5 81 U S D

Contact

John Donnal
77M-achusetsAveR, 10-007

dnn,1fbd i,.d,

4/22'2016 10 47 20 AM

iA&i I ND a9706 i I I
.......... t6SbWbUW FA jMw * YsK -- su

4125,16

341

Waftswofth
10

h1lJI-fl-orth m,(

B.4 Server Architecture

Creating a secure and reliable infrastructure to manage the remote energy monitors

requires more than a web server with VPN software. NILM Manager is in fact a clus-

ter of seven separate servers, illustrated on the following page. These servers work

together to provide a complete suite of management tools. In our experimental im-

plementation, these servers run as virtual machines (VM's) on two Dell R320 servers

with Xen hypervisor. All VM's are paravirtualized Ubuntu 14.0 images. The servers

are named according to their roles, described next.

B.4.1 Firewall

The firewall is the only machine with a public network connection. Incoming traffic

is analyzed against a set of rules that determines whether the particular packet is

allowed and where it should be routed. The firewall VM does not run any services

itself making it easier to secure against attack.

B.4.2 Backbone

The backbone manages communication between servers in the management node and

remote NILM's. NILM's authenticate with the backbone using SSL certificates. Cer-

tificates (unlike passwords) allow for two-way authentication meaning NILM's verify

the identity of the management node and vice versa. This prevents impostor manage-

ment nodes from accessing NILM's and rogue NILM's from accessing the management

node. Once a NILM authenticates, the backbone assigns it an IP address and host-

name which uniquely identifies it on the VPN. Other servers on the management node

can access the NILM by requesting its IP address from the backbone using a domain

name resolution service (DNS).

342

B.4.3 Web

The web server hosts the NILM Manager website. The firewall directs all inbound

HTTP requests to this VM using port address translation. This protects the web

server from unsolicited (and potentially malicious) traffic. One of the advantages to

deploying the web server in a VM is that resources can be scaled with user demand.

If web traffic increases, the Xen Hypervisor can reassign processor cores and memory

to handle the additional load [81].

B.4.4 Metrics

Metrics runs Nagios [60] and Ganglia [82] monitoring services. Nagios periodically

checks the health of remote NILM's and Ganglia provides a trending report of memory

usage, CPU load, and other metrics for each NILM machine . This enables rapid

detection and diagnosis of faults in deployed NILM systems. Additionally it provides

profiling information that helps in designing hardware for future NILM's based on

their real world usage.

B.4.5 Archive

Archive holds NILM data for long term storage. This server is used to backup valuable

data sets collected by deployed NILM's. The archive server is useful for testing

and evaluating different data processing techniques as the machine has significant

hardware resources as well as a reliable network connection (neither of which can be

assumed for remote NILM's).

B.4.6 Devops

Devops (a portmanteau of "development" and "operations") provides configuration

management for remote NILM's. All of the settings, packages, and scripts needed

by a NILM are stored on this server using Puppet, an open source management

tool [83]. Puppet automatically mirrors updates to these files to every NILM on the

VPN ensuring they have consistent and up-to-date configurations. Without such a

343

service any update to a setting or script would have to be manually applied to each

NILM- a tedious and error prone process.

B.4.7 Git

This server hosts git repositories [84] for all the software developed for NILM's and

NILM Manager. Git provides version controlled storage and enables collaborative

work on the NILM code base.

Together these servers create a reliable and secure infrastructure for managing

NILM systems. They permit access to remote database storage located at different

monitoring sites. Visualizations or other results of data analysis can be returned from

a remote monitor. Python or Octave-style analysis code can be transmitted to re-

mote monitors to provide new analytical capabilities or requests. In both directions,

network bandwidth is minimized, as large data streams never have to be transmitted

from the remote monitoring sites. The next two sections describe how this infrastruc-

ture makes it possible to view and process almost unlimited amounts of NILM data

with very little exchange of information over a network.

344

Physical Hardware

xenl xen2

int_1 int_2-

ext 1. ext2

R320 R322J

internal external

nas

int 4

ext 3

Synology

DNS for '.local
VPN
NAT

PPTp

Management Interfaces

*.local interface ip address

xenl ethi 10.0.1.101

xen2 eth1 10.0.1.102

nas eth2 10.0.1.100

DOM 0 Configuration
xenl and xen2 management interfaces
use nas as default gateway Physical Servers implement

a private cloud using XEN

Private Cloud

(generic servers]

LAN

VM

backbone

LAN

00,,I

OpenVPN VM

Network ip subnet DNS space

LAN

NILM's

admin
PPTP

10.10.0.X/24 *.

10.10 1.X/24 *.nilm.

10.10.100.X -

\LM vpn is 10.10.2 X/24 under
domain *.vpn.wattsworth.net

NILM is assigned a domain name
XXXX where X-hex character that is

illedir)wdv!O .. N IV' gW
VPN

0-1

firewall

WAN

LAN

VM

1.010 firewall
metrics
git
devops
nilm-archive
backbone
web
mail
archive

10.10.0.1
10.10.0.2
10.10.0.3
10.10.0.16
10.10.0.x
10.10.0.15
10.10.0.14
10.10.0.5
10.10.0.6

1e

346

Bibliography

[1] K. Fehrenbacher. 5 reasons why microsoft hohm didn't take off. Gigaom, July

2011.

[2] J. S. Donnal and S. B. Leeb. Noncontact power meter. IEEE Sensors Journal,

15(2):1161-1169, Feb 2015.

[3] C. Schantz, J. Donnal, B. Sennett, M. Gillman, S. Muller, and S. Leeb. Water

nonintrusive load monitoring. IEEE Sensors Journal, 15(4):2177-2185, April

2015.

[4] C. Schantz, J. Donnal, S. Leeb, P. N. Marimuthu, and S. Habib. Nwattsworth:

Monitor electric power anywhere. WIT Transactions on the Built Environment,

139:125-136, 2014.

[5] J. Donnal, U. Orji, C. Schantz, J. Moon, S. B. Leeb, J. Paris, A. Goshorn,

K. Thomas, J. Dubinsky, R. Cox, and J. Moon. Vampire: Accessing a life-blood

of information for maintenance and damage assessment. In American Society of

Naval Engineers Day, pages 132-142, February 2012.

[6] J. Moon, J. Donnal, J. Paris, and S. B. Leeb. Vampire: A magnetically self-

powered sensor node capable of wireless transmission. In Applied Power Elec-

tronics Conference and Exposition (APEC), 2013 Twenty-Eighth Annual IEEE,

pages 3151-3159, March 2013.

347

[7] J. Donnal and S. B. Leeb. Wattsworth: Monitor electric power anywhere. In

Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-

Ninth Annual IEEE, pages 2223-2230, March 2014.

[8] J. Paris, J. S. Donnal, and S. B. Leeb. Nilmdb: The non-intrusive load monitor

database. IEEE Transactions on Smart Grid, 5(5):2459-2467, Sept 2014.

[9] J. Paris, J. S. Donnal, Z. Remscrim, S. B. Leeb, and S. R. Shaw. The sinefit

spectral envelope preprocessor. IEEE Sensors Journal, 14(12):4385-4394, Dec

2014.

[10] John Donnal, Jim Paris, and Steve Leeb. Energy apps. Provisional US Patent

62/242618, October 2015.

[11] D. Lawrence. Hardware and software architecture for non-contact, non-intrusive

load monitoring. Master's thesis, Massachusetts Institute of Technology, Depart-

ment of Electrical Engineering and Computer Science, February 2016.

[12] Micro Magnetics. STJ-340: Four Element Bridge Magnetic Sensor Data Sheet,

May 2010.

[13] Allegro. Allegro 1362 Data Sheet, December 2013.

[14] Melexis. Melexis MLX91206 Data Sheet, December 2013.

[15] M. Julliere. Tunneling between ferromagnetic films. Phys. Lett., 54A: 225226,

1975.

[16] S. S. P. Parkin et al. Giant tunnelling magnetoresistance at room temperature

with mgo (100) tunnel barriers. Nat. Mat., 3 (12):862867, 2004.

[17] S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsun-

oda, F. Matsukura, and H. Ohno. Tunnel magnetoresistance of 604% at 300 K by

suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed

at high temperature. Applied Physics Letters, 93(8):082508, August 2008.

348

[18] B. Hoberman. The Emergence of Practical MRAM. Crocus Technologies, April

2009.

[19] W. A. Zisman. A new method of measuring contact potential differences in

metals. Review of Scientific Instruments, 3:367-370, March 1932.

[20] W. E. Vosteen. A high speed electrostatic voltmeter technique. In Industry

Applications Society Annual Meeting, pages 1617-1619, October 1988.

[21] D. Grant, G. Hearn, W. Maggs, and I. Gonzalez. An electrostatic charge meter

using a microcontroller offers advanced features and easier atex certification.

Journal of Electrostatics, 67:473-476, May 2009.

[22] L. Wu, P. Wouters, E. van Heesch, and E. Steennis. On-site voltage measurement

with capacitive sensors on high voltage systems. In IEEE Trondheim PowerTech,

pages 1-6, June 2011.

[23] J. Bobowski, S. Ferdous, and T. Johnson. Calibrated single-contact voltage

sensor for high-voltage monitoring applications. IEEE Trans. Instrum. Meas.,

64:923-934, April 2015.

[24] K. M. Tsang and W. L. Chan. Dual capacitive sensors for non-contact ac voltage

measurement. Sensors and Acturators A: Physical, 167:261-266, June 2011.

[25] D. Balsamo, D. Porcarelli, L. Benini, and B. Davide. A new non-invasive voltage

measurement method for wireless analysis of electrical parameters and power

quality. In IEEE Sensors, pages 1-4, November 2013.

[26] A. Parashar; M. Adler; K. E. Fleming; M. Pellauer; J. S. Emer. Leap: A

virtual platform architecture for fpgas. In CARL 2010: The 1st workshop on the

Intersections of Computer Architecture and Reconfigurable Logic, 2010.

[27] T. Horie. Alpha blending tutorial, June 2002.

349

[28] R. Zachar. Naval applications of enhanced temperature, vibration and power

monitoring. Master's thesis, Massachusetts Institute of Technology, Department

of Mechanical Engineering and Engineering Systems Division, June 2015.

[29] R. Zachar, P. Lindahl, J. Donnal, W. Cotta, C. Schantz, and S. B. Leeb. Utilizing

spin-down transients for vibration-based diagnostics of resiliently mounted ma-

chines. IEEE Transactions on Instrumentation and Measurement, PP(99):1-10,

2016.

[30] J. Donnal. Home NILM: A Comprehensive Non-Intrusive Load Monitoring

Toolkit. Master's thesis, Massachusetts Institute of Technology, Department

of Electrical Engineering and Computer Science, June 2013.

[31] J. Paris. A Comprehensive System for Non-Intrusive Load Monitoring and Di-

agnostics. PhD thesis, Massachusetts Institute of Technology, Department of

Electrical Engineering and Computer Science, September 2013.

[32] Alan V. Oppenheim, Alan S. Willsky, and Ian T. Young. Signal and Systems.

Prentice-Hall, 1997.

[33] Alan V. Oppenheim and Ronald W. Schafer. Discrete Time Signal Processing.

Prentice-Hall, 2009.

[34] S.K. Yang. A condition-based failure-prediction and processing-scheme for pre-

ventive maintenance. Reliability, IEEE Transactions on, 52(3):373-383, Sept

2003.

[35] Andrew K.S. Jardine, Daming Lin, and Dragan Banjevic. A review on ma-

chinery diagnostics and prognostics implementing condition-based maintenance.

Mechanical Systems and Signal Processing, 20(7):1483 - 1510, 2006.

[36] Aiwina Heng, Sheng Zhang, Andy C.C. Tan, and Joseph Mathew. Rotating

machinery prognostics: State of the art, challenges and opportunities. Mechanical

Systems and Signal Processing, 23(3):724 - 739, 2009.

350

M111PROPIPM11"MR111MIRNMRM 11 R- WRx""'Immm !R""RR"R"1F JR111pp"I -9rM.- 11

[37] S. Nandi, H.A. Toliyat, and Xiaodong Li. Condition monitoring and fault diag-

nosis of electrical motors-a review. Energy Conversion, IEEE Transactions on,

20(4):719-729, Dec 2005.

[38] International Organization for Standardization. ISO/TC 108 condition monitor-

ing and diagnostics of machine systems.

[39] U.S. Department of Defense. MIL-STD-167-1A: Department of defense test

method standard: Mechanical vibration of shipboard eequipment (type i en-

vironmental and type ii internationally excited), 2005.

[40] J.R. Stack, R.G. Harley, and T.G. Habetler. An amplitude modulation detec-

tor for fault diagnosis in rolling element bearings. Industrial Electronics, IEEE

Transactions on, 51(5):1097-1102, Oct 2004.

[41] C. Bianchini, F. Immovilli, M. Cocconcelli, R. Rubini, and A. Bellini. Fault

detection of linear bearings in brushless ac linear motors by vibration analysis.

Industrial Electronics, IEEE Transactions on, 58(5):1684-1694, May 2011.

[42] I. Bediaga, X. Mendizabal, A. Arnaiz, and J. Munoa. Ball bearing damage

detection using traditional signal processing algorithms. Instrumentation Mea-

surement Magazine, IEEE, 16(2):20-25, April 2013.

[43] A. Soualhi, K. Medjaher, and N. Zerhouni. Bearing health monitoring based on

hilbert-huang transform, support vector machine, and regression. Instrumenta-

tion and Measurement, IEEE Transactions on, 64(1):52-62, Jan 2015.

[44] C. Concari, G. Franceschini, and C. Tassoni. Differential diagnosis based on

multivariable monitoring to assess induction machine rotor conditions. Industrial

Electronics, IEEE Transactions on, 55(12):4156-4166, Dec 2008.

[45] V. Climente-Alarcon, J.A. Antonino-Daviu, F. Vedreno-Santos, and R. Puche-

Panadero. Vibration transient detection of broken rotor bars by psh sidebands.

Industry Applications, IEEE Transactions on, 49(6):2576-2582, Nov 2013.

351

[46] Anders Brandt. Noise and Vibration Analysis; Signal Analysis and Experimental

Procedures. John Wiley & Sons, Ltd, 2011.

[47] Zhangjun Tang, P. Pillay, and A.M. Omekanda. Vibration prediction in switched

reluctance motors with transfer function identification from shaker and force

hammer tests. Industry Applications, IEEE Transactions on, 39(4):978-985,

July 2003.

[48] Leo L. Beranek and I. L. Var, editors. Noise and vibration control engineering:

principles and applications. Wiley, 1992.

[49] Christopher James Schantz. Methods for non-intrusive sensing and system mon-

itoring. PhD thesis, Massachusetts Institute of Technology, 2014.

[50] Julius 0. Smith III. Mathematics of the Discrete Fourier Transform (DFT): with

Audio Applications - Second Edition. W3K Publishing, 2007.

[51] D. Grillo, N. Pasquino, L. Angrisani, and R. Schiano Lo Moriello. An efficient

extension of the zero-crossing technique to measure frequency of noisy signals.

In Instrumentation and Measurement Technology Conference, 2012 IEEE Inter-

national, pages 2706-2709, May 2012.

[52] R.W. Wall. Simple methods for detecting zero crossing. In Industrial Electronics

Society, 2003. IECON '03. The 29th Annual Conference of the IEEE, volume 3,

pages 2477-2481 Vol.3, Nov 2003.

[53] 0. Vainio and S.J. Ovaska. Digital filtering for robust 50/60 hz zero-

crossing detectors. Instrumentation and Measurement, IEEE Transactions on,

45(2):426-430, Apr 1996.

[54] Peter D. Welch. The use of fast Fourier transform for the estimation of power

spectra: A method based on time averaging over short, modified periodograms.

IEEE Transactions on Audio and Electroacoustics, 15(2):70-73, June 1967.

352

'P1 I I III I I 1111040"1110 R MOR11111 RI "ORM O"W" 1, 1 OR _ _ - MR" "PI, 1_11 . _'- I I

[55] Jinyeong Moon and S.B. Leeb. Analysis model for magnetic energy harvesters.

Power Electronics, IEEE Transactions on, 30(8):4302-4311, Aug 2015.

[56] J. Paris, Z. Remscrim, K. Douglas, S. B. Leeb, R. W. Cox, S. T. Gavin, S. G.

Coe, J. R. Haag, and A. Goshorn. Scalability of non-intrusive load monitoring

for shipboard applications. In American Society of Naval Engineers Day 2009,

National Harbor, Maryland, April 2009.

[57] N. Amirach, B. Xerri, B. Borloz, and C. Jauffret. A new approach for event

detection and feature extraction for nilm. In Electronics, Circuits and Systems

(ICECS), 2014 21st IEEE International Conference on, pages 287-290, Dec 2014.

[58] A.N. Milioudis, G.T. Andreou, V.N. Katsanou, K.I. Sgouras, and D.P. Labridis.

Event detection for load disaggregation in smart metering. In Innovative Smart

Grid Technologies Europe (ISGT EUROPE), 2013 4th IEEE/PES, pages 1-5,

Oct 2013.

[59] Ming Dong, P.C.M. Meira, Wilsun Xu, and C.Y. Chung. Non-intrusive signa-

ture extraction for major residential loads. Smart Grid, IEEE Transactions on,

4(3):1421-1430, Sept 2013.

[60] D. Josephsen. Nagios: Building Enterprise-Grade Monitoring Infrastructures for

Systems and Networks. Prentice Hall, second edition, 2013.

[61] Flot. Attractive javascript plotting for jquery. Available http: //www. flotcha rts.

o rg/. Accessed 2015-01-29.

[62] PG&E. Smartmeter network- how it works. Available http: //www. pge. com/en/

myhome/customerservice/smartmeter/howitworks/index.page. Accessed 2015-

01-09.

[63] ComEd. Smartmeters: Empowering you to save energy and money. Avail-

able https://www.comed.com/Documents/technology/What%20is%20a%20SMart%

20Meter. pdf. Accessed 2015-01-09.

353

[64] BGE. How smart meters work. Available http://www.bge.com/smartenergy/

smartgrid/smartmeters/Pages/How-Smart-Meters-Work.aspx. Accessed 2015-

01-09.

[65] J. Paris, J. S. Donnal, R. Cox, and S. Leeb. Hunting cyclic energy wasters. IEEE

Transactions on Smart Grid, 5(6):2777-2786, Nov 2014.

[66] Belkin. Wemo insight switch. Available http: //www. belkin. com/us/p/P- F7C029/.

Accessed 2015-08-28.

[67] DLink. Wi-fi smart plug. Available http://us.dlink.com/products/

connected-home/wi-fi-smart- plug/. Accessed 2015-08-28.

[68] M. Gillman. Interpreting human activity from electrical consumption data

through non-intrusive load monitoring. Master's thesis, Massachusetts Institute

of Technology, Department of Electrical Engineering and Computer Science, June

2014.

[69] W. Cotta. Machinery diagnostics and characterization through electrical sensing.

Master's thesis, Massachusetts Institute of Technology, Department of Mechan-

ical Engineering, June 2015.

[70] Shipboard Automatic Watchstander. Greg bredariol, john donnal, william cotta,

and steven leeb. In American Society of Naval Engineers Day, February 2016.

[71] C. Laughman, Kwangduk Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, and P. Arm-

strong. Power signature analysis. IEEE Power and Energy Magazine, 1(2):56-63,

Mar 2003.

[72] H. Friedman; A. Potter; T. Haasl; and D. Claridge. Persistence of benefits from

new building commissioning. Technical report, California Energy Commission,

October 2003.

[73] M. Schwartz; K. Blakeley; R. O'Rourke. Department of defense energy initiatives:

Background and issues for congress. Technical report, Congressional Research

Service, December 2012.

354

[74] Report of the defense science board task force on dod energy strategy, "more

fight, less fuel". Technical report, Office of the Under Secretary of Defense For

Acquisition, Technology, and Logistics, February 2008.

[75] Noblis. Sustainable forward operating bases. Technical report, Strategic Envi-

ronmental Research and Development Program (SERDP), 2010.

[76] Eady, D.S., Siegel, S.B., Bell, R.S., and Dicke, S. H. Sustain the mission project:

Casualty factors for fuel and water resupply convoys. Technical report, Army

Environmental Policy Institute, 2009.

[77] International Energy Agency. Annex 47: Report 2 commissioning tools for ex-

isting and low energy buildigns. Technical report, Organisation for Economic

Co-operation and Development, 2010.

[78] Mark Augustin Piber. Improving shipboard maintenance practices using non-

intrusive load monitoring. Master's thesis, Massachusetts Institute of Technology,

2007.

[79] COMDTINST. 3500.3 operational risk management, 1999.

[80] John Pike. 270-foot medium endurance cutter (wmec) famous cutter class,

November 2015.

[81] Daniel Tosatto. Citrix XenServer 6.0: Administration Essential Guide. Packt

Publishing, Birmingham, UK, 2012.

[82] M. Massie, B. Li, B. Nicholes, V. Vuksan, R. Alexandar, et al. Monitoring with

Ganglia: Tracking Dynamic Host and Application Metrics at Scale. O'Reilly

Media, 2012.

[83] S Krum, W.V. Hevelingen, B. Kero, J. Turnbull, and J. McCune. Pro Puppet.

Apress, second edition, 2013.

[84] S. Chacon. Pro Git. Apress, second edition, 2014.

355

