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ABSTRACT

In this thesis, we apply tools from algebra and algebraic geometry to prove new results con-
cerning extractors for algebraic sets, AC°-pseudorandomness, the recursive Fourier sampling
problem, and VC dimension. We present a new construction of an extractor which works for
algebraic sets defined by polynomials over F; of substantially higher degree than the previ-
ous state-of-the-art construction. We exhibit a collection of natural functions that behave
pseudorandomly with regards to AC? tests. We also exactly determine the Fy-polynomial
degree of the recursive Fourier sampling problem and use this to provide new partial results
towards a circuit lower bound for this problem. Finally, we answer a question posed in
[MR15] concerning VC dimension, interpolation degree and the Hilbert function.
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Chapter 1

Introduction

1.1 Pseudorandomness

1.1.1 Algebraic Extractors

For a finite domain 2 and a collection of distributions C over 2, we say that a function
E : Q — {0,1}™ is an extractor (sometimes called a deterministic extractor) for C if, for
every random variable X distributed according to any distribution in C, E(X) is close to the
uniform distribution. We call each distribution C € C a source. Of course, in order to have
any hope of the collection of distributions C to have an extractor, some sort of condition must
be satisfied by the sources. While it is trivial to exhibit simple conditions on C such that a
random function will, with high probability, be an extractor, the problem becomes far more
interesting when one requires an explicit construction of E (that is to say, a construction
realizable by some deterministic polynomial time Turing machine). The natural question is
then: for which C do there exist explicit constructions of extractors?

Numerous versions of this question have been considered. In this thesis, we consider
the case, originally introduced in [Dvil2], where each source is the uniform distribution over
the set of common zeros of a collection of polynomials defined over some field. Such a set is

called an algebraic set and such a source is called an algebraic source. Algebraic sources are a



natural generalization of affine sources (see, for instance [GR05] and [Bou07]) and bit-fizing
sources (see, for instance, [GRS04] and [KZ03]) and build naturally on the earlier work of
efficiently samplable sources (see, for instance, [TV00], [KRVZ06], and [DGWOT]).

To be precise, for a finite field F, and a positive integer d, we consider algebraic sets
V C F™ where V is the set of common zeros of a collection of polynomials fi,...,f; €
Flzy,...,x,] such that deg(f;) < d. We say that V has density p if |[V| > p|F"|. We say
that a function f : F* — F is an extractor for algebraic sets defined by polynomials of
degree at most d and density p if f is close to uniform on every such algebraic set. A closely
related weaker notion is that of a disperser for algebraic sets, where we say that a function
f:F* — F is a disperser for algebraic sets defined by polynomials of degree at most d and
density p if, for every such algebraic set V, the image of f : V' — F (the restriction of f to
V) is F. Clearly any extractor is also a disperser.

As shown in 4[Dvi12], there exist explicit extractors for polynomials of degree d defined
over moderately sized fields, where |F| = poly(d), and density p = 2% as well as over large
fields, where |F| = d® and very small density. However, very little is known about the
extreme case in which F = Fs, the two element finite field. To the best of our knowledge, the
current state of the art construction for extractors and dispersers is that of [CT13], in which
an explicit construction was exhibited for an extractor for algebraic sets defined by at most
(log log n)z_le polynomials each of degree at most 2, as well as for a disperser for algebraic sets
defined by at most ¢ polynomials each of degree at most d = (1 — o(l))lloi:u(.—?—zl (in particular,
when ¢t < n* for some « < 1, then the requirement on degree is d < (1 — a — o(1)) log®! n).

In this thesis, we focus on the case in which F = F,, and exhibit explicit extractors
(and hence explicit dispersers) for algebraic sets defined by polynomials of substantially
higher degree than any previous construction. We now formally state our results. For any

set V C Fy, we say that a function f : F} — F» has bias € on V' if

bias(flv) == [Eenr[(—1)/@]| < €.



A function f : F§ — T, is called an extractor for algebraic sets defined by polynomials of
degree at most d of density p with bias € if bias(f|y/) < € for every such algebraic set V. We
show that any J-versatile function, which is a certain natural generalization of the concept

of a versatile function [Kopll], is an extractor.

- Theorem 1. Let f : F3 — F be §-versatile (on F3), where § > % —n” for some 0 < v < 1.

Then, there is a constant ¢ > 0 such that, for any constants o, 5 such that 0 < d, B < %, and
PR o e(n+diog(Y)) .

for anyd < n® and p > 2™, f is an extractor with bias 7 for algebraic sets of

density at least p that are the common zeros of a collection of polynomials each of degree at

most d.

Much as was the case in [Dvil2] and [CT13], our construction relies on statements
involving the set of zeros of a single low degree polynomial defined over . The key distinc-
tion between our construction and earlier constructions, which allows our construction to
work even for rather high degree polynomials over Fy, is that our construction exploits the
structure of this set of zeros, rather than simply bounds on the size of the set of zeros that
follow directly from the degree of the polynomial (fhat is to say, bounds that follow directly

from the fundamental theorem of algebra, or, in other words, Schwartz-Zippel type bounds).

1.1.2 AC°-pseudorandomness

Random-like behavior occurs naturally in many places in mathematics. For example, the
binary representations of numbers 7, e and v2 look random. Various conjectures about
the distribution of prime numbers and the number of prime factors of an integer say that
these behave randomly. However, very little progress has been made in proving that such
behaviors are indeed pseudorandom in any formal sense. For example, it is not known that
the binary representations of 7, e or v/2, contain all substrings with the expected frequencies
or even that the substring 11 appears infinitely often.

In this thesis, we propose to study the pseudorandom characteristics of naturally

occurring mathematical functions by using the tools of complexity theory. The theory of
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pseudorandom generators provides a good starting point, but there the motivation is some-
what different than ours. Pseudorandom generators are used to good effect in cryptographic
protocols and in derandomizing probabilistic algorithms, and they are designed with those
goals in mind. Our objective is to study the basic operations themselves, such as Boolean
convolution and integer multiplication, for their pseudorandom properties. These functions
occur naturally—they have not been specifically designed to have pseudorandom behaviour—
yet we can show that they do exhibit such behavior.

We use the integer multiplication function as a motivating example. Let X and Y
be n-bit binary strings representing non-negative integers and let Z be the 2n-bit string
representing Z = X x Y. Take X and Y to be selected uniformly at random from 0 to
2™ — 1, and consider the characteristics of Z. Does Z look random? The low-order bit
of Z certainly does not; it is 0 with probability 3/4. The other very low order bits look
non-random for a similar reason. The very high order bits of Z likewise appear non-random.
However, if we discard these problematic very low and very high order bits from Z, the result
could conceivably be pseudorandom in some appropriate sense.

We show that, for uniformly randomly selected X, Y, the string consisting of X,Y and
all 2n bits of X x Y, except the lowest and highest n® bits, for any o > 0, is indistinguishable
from truly random strings by AC? circuits. In fact, we show something even stronger: for
almost all Y, the string consisting of X and all 2n bits of X X Y, except the lowest and
highest n® bits, is indistinguishable from random by AC? circuits that have Y built-in (the
circuit is allowed to depend on Y).

AC? circuits are circuits consisting of AND, OR, and NOT gates of unbounded fan-
in, such that the size of the circuit (the total number of gates) is polynomial in the size of
the input and the depth of the circuit (the number of gates on the longest path from the
input to the output) is a constant. Techniques for proving strong lower bounds on low-depth
circuits [Ajt83],[FSS84],[Yao85],[Has86] enable us to prove the ACC%-pseudorandomness of

explicit functions without using any unproven complexity-theoretic assumptions. Moreover



AC? is powerful enough to describe basic tests for pseudorandomness.

We now formally define what it means for a function to look random to ACP circuits.
For ease of exposition, we consider functions that operate on strings of a spéciﬁc length,
whereas we really have in mind a family of functions and their asymptotic properties. For
a function f : {0,1}™ x --- x {0,1}™ — {0,1}*, define the function g : {0,1}™ x --- x
{0,1}™ — {0,1}", where n = my + --- + my, + k, such that g(z1,...,23) = z10---0
zp o f(xq,...,z1) is the concatenation of zy,...,z, and f(z1,...,z1). Let p, denote the
distribution of g(z1, ..., zs), when each z; is drawn uniformly at random from {0, 1}™. For
any binary predicate P, : {0,1}" — {0,1}, let E, [P,] denote the expected value of P, when
inputs are drawn according to the distribution p, and E[P,] denote the expected value of
P, when inputs are drawn uniformly at random from {0,1}". We say that the distribution
tn €-fools the function P, if |E,,,[P,] — E[P,]| < € and that the original function f is AC°-
pseudorandom if the corresponding distribution u, e-fools every P, that is computable in
AC®, where € = O(2™™"), for constant x > 0. This is, of course, quite similar to the standard
pseudorandom generator model for AC? circuits (see, for instance, [Nis91], [NW94]), with
the exception of the fact that we impose the stronger requirement that both the input
and output of the function together are indistinguishable from random bits, instead of only
requiring that the output is indistinguishable. Also, while the focus of this thesis is the
pseudorandomness of functions, not the difficulty of actually computing the functions, it
is still worth noting that the functions considered can be computed in a low complexity
class such as AC°[2] (ACP circuits that are allowed unbounded fan-in parity gates) or TC°
(constant depth circuits with unbounded fan-in majority gates), but still produce strings
that are indistinguishable from truly random strings by ACP circuits.

A somewhat similar question was considered in [Grel2], concerning the Mdbius func-
tion u : N — {-1,0,1}, which is defined such that u(1) = 1, u{(z) = 0 when z has a
nontrivial perfect square factor, and p(z) = (—1)¥, when z has no nontrivial perfect square

factors, where k is the number of distinct primes in the prime factorization of z. It was shown



that u is asymptotically orthogonal to any AC® computable function f : N — {—1,1} (that
is to say + Eivzl f(z)u(z) = o(1)). Tools from complexity theory were used to show that
a naturally occurring function looks random to AC? circuits. It is worth noting that the
functions considered in our thesis have much longer output than the Mébius function; we
- consider functions which, on an n bit input, produce a Q(n) bit output, while the Mobius
function maps an n bit input to only a constant sized output.

Another example of a natural problem studied for its pseudorandom properties is the
algebraic number problem, which, as noted in [KLL84|, was initially proposed by Manuel
Blum. An algebraic number is a root of a polynomial with integer coefficients. For example,
v2,4/3, and (1 + v/5)/2 are all algebraic numbers. The algebraic number problem involves
selecting, uniformly at random, an algebraic number ( of bounded degree d and height
H (where the degree of ( is the degree of the (unique) primitive irreducible polynomial
that has ( as a root, and the height is the Euclidean length of the coefficient vector of
that polynomial). The string to be considered is a portion of the binary expansion of the
fractional part of ¢. In [KLL84], it was shown that, given the first O(d? + dlog H) bits of an
algebraic number (, it is possible, in deterministic polynomial time to determine the minimal
polynomial of {. Since the next bit of the binary expansion of { can easily be obtained if
given the minimal polynomial of ¢, this immediately implied that such strings do not pass all
polynomial time tests. We consider a closely related problem, which is identical to the above
problem, except that we select ¢ only from the ring of integers of certain algebraic number
fields. By the argument used in [KLL84], this variant also does not pass all polynomial time
tests. However, we show that it does pass all AC? tests. While this is certainly far away
from showing anything about the pseudorandomness properties of a single value, such as
V/2, it might be a step in that direction.

This thesis illustrates two techniques for derhonstrating that functions are AC?-
pseudorandom. The first technique makes use of the result in [Bra09] that resolved the

long standing Linial-Nisan conjecture [LN90]. We use this technique to show that almost



all “reasonably sized” homomorphisms are AC-pseudorandom, and, moreovef, that convo-
lution, integer multiplication and matrix multiplication are AC?-pseudorandom.

Our second technique involves reducing the (provably hard) problem of computing
parity to the problem of distinguishing certain distributions from random. The second tech-
nique is related to the method in [Nis91],[NW94], in that we show that the structure of certain
multiplication problems is a naturally occuring example of the combinatorial designs they
employ. We use this technique to show that an alternate form of the multiplication problem,
where one multiplicand is substantially longer than the other, is AC®-pseudorandom. One
consequence of this result will be the existence of a simple, multiplication-based pseudo-
random generator with the same stretch and hardness parameters as the Nisan-Wigderson
generator. An additional consequence is the fact that no AC? circuit can compute the prod-
uct of an n-bit number and a superpolylog(n)-bit number (that is to say, a sequence of
numbers whose length grows faster than log®n, for all constants ¢ > 0). This shows that the
result from [CSV84], which states that an ACP circuit can compute the product of an n-bit
and a O(log°n)-bit value, is optimal.

Additionally, we show, via a reduction from the multiplication problem, that a certain
variant of the algebraic integer problem looks random to AC°. These same techniques can
be used to show that a variety of additional problems, such as finite field multiplication and
division, matrix inversion, computing determinants, and an iterated version of convolution
are also AC°-pseudorandom.

We prove the following theorems:

Let Hom({0,1}™,{0,1}*) denote the set of homomorphisms from {0,1}"™ to {0, 1}*

(or, in other words, the linear maps from the vector space {0, 1}™ to the vector space {0, 1}¥).
P )

Theorem 2. If k = m*, for any fized constant u > 0, then all but an exponentially small

fraction of all f € Hom({0,1}™, {0, 1}*) are AC®-pseudorandom.

Let CONV,, : {0,1}" x {0,1}* — {0,1}* denote the Boolean convolution function,
which takes a X € {0,1}" and Y € {0,1}* to the middle k-bits of the r + s — 1 bit long
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convolution of X and Y.

Theorem 3. If s = r* and k = v + s — (MIN(r, s5))*, for any fized constants u > 0 and
0<ax<l, then CONV, ;) is AC?-pseudorandom. In particular, if r = s and k = 2r — r?,

forany 0 < a <1, then CONV, 5 is AC®-pseudorandom.

Let MULT, . : {0,1}" x {0,1}* — {0, 1}* denote the integer multiplication function,
which takes a X € {0,1}" and Y € {0,1}® to the middle k-bits of the r + s bit long product
of X and Y.

Theorem 4. If s = r* and k = r +.s — (MIN(r, s))*, for any fized constants u > 0 and
0 < a <1, then MULT, s is AC®-pseudorandom. In particular, if r = s and k = 2r — r®,

for any 0 < a < 1, then MULT, ,,, is AC®-pseudorandom.

Let MATRIX-MULT,, : {0,1}" x {0,1}"* — {0,1}*" denote the matrix multiplica-
tion function, which, on input a s X 7 matrix A and a r X s matrix B (both of which are

encoded as strings in {0,1}" in the obvious way), produces the s x s matrix AB.

Theorem 5. If s = r*, for any fixed constant u > 0, then MATRIX-MULT,, is AC°-

pseudorandom.

1.2 Polynomial Degree

- 1.2.1 Recursive Fourier Sampling

The recursive Fourier sampling problem is one of the most well studied problems in quantum
complexity theory. This problem was first defined, along with the complexity class BQP
(Bounded-Error Quantum Polynomial Time), in [BV93], the foundational work of quantum
complexity theory. In that thesis, this problem, whose formal definition we delay for now,
was used to exhibit an oracle A relative to which BQP is not contained in NP or even MA,

that is to say an A such that BQP4 ¢ NP4 and BQP# ¢ MA“. Such oracle separations are
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interesting both because they are, perhaps, suggestive of a unrelativized separation, as well
as because they concretely exhibit a measure of complexity in which quantum computers
provably outperform classical computers: query complexity, where the resource of interest is
the number of queries to the (very long) input string. |

For this reason, it is natural to seek oracle separations between BQP and increasingly
larger classical complexity classes. However, very little progress in this direction has been
made. While some results are known, such as the fact, proven in [Aarl0], that there is an
oracle A such that BQP4 ¢ BPPgaﬂ1 and BQP# ¢ SZK“, even the question of whether
or not there exists an oracle A such that BQP? ¢ AM“ remains open, as does, of course,
the substantially stronger question of whether or not there exists an oracle A such that
BQP4 ¢ PHA.

It is this potential oracle sep;aration between BQP and the polynomial hierarchy that
we now focus on. The natural approach to this problem, which has been used successfully
to show many other similar oracle separations betwéen certain complexity classes and the
polynomial hierarchy, is to exploit the connection betvs}een relativized separations from the
polynomial hierarchy and lower bounds against constant depth circuits [FFSS84],[Yao85].
Here, the key idea is to reinterpret the 3 and V quantifiers of a PH machine as OR and AND
gates, respectively, to convert a PH machine solving some oracle problem on a 2™ bit long
oracle string, into a constant depth, 2P?¥(™) sized circuit, consisting of AND, OR, and NOT
gates that solves the same problem. Using this idea, and a 2¢®°#(™) Jower bound on the size
of a constant depth circuit computing the PARITY function (on an input of size 2"), one
concludes that there is an oracle A relative to which ®P# ¢ PHA. The same idea can, and
has, been used to show other such relativized separations.

Therefore, given this connection between relativized separations from the polynomial
hierarchy and lower bounds against constant depth circuits, and the powerful techniques that
exist to show lower bounds against constant depth circuits, [FSS84],[{Ajt83],[Has86],[Raz87],[Smo87],

* one might very naturally ask why the question of whether or not there exists an A such that
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BQP4 ¢ PH“ remains open. Most fundamentél]y, the problem is that, in order to show
that a particular function f cannot be computed by a small circuit, all of these circuit lower
bound techniques either explicitly (in the case of [Raz87] or [Smo87]) or implicitly (in the
case of [FSS84],[Ajt83],[Has86] as shown by [LMNO93]) argue that f cannot be well approxi-
mated by a low-degree polynomial. This is a problem because, as shown in [BBC*98], any
function that can be computed by an efficient quantum algorithm is well approximated by
a low degree polynomial.

More precisely, however, [BBC*98] only guarantees the existence of a low-degree
polynomial over R, whereas the non-existence of a low-degree polynomial over any field F
would suffice (via the Razborov-Smolensky method) to prove a circuit lower bound, and so
this certainly does not completely doom the application of traditional circuit lower bound
techniques. Nevertheless, the result of [BBC*98] does suggest that a deeper understanding
of approximation by low-degree polynomials may be necessary to resolve the question of
whether or not there exists an oracle A such that BQP4 ¢ PH4. It is this issue ‘that we
focus on within this thesis.

As has been observed by many authors (for instance [BV93],[BV97],[Aar03],[Joh08],[Aar10])
the recursive Fourier sampling problem (or a slight variant) is a prime candidate for exhibit-
ing an oracle A such that BQP4 ¢ PH#, as this problem seems to perfectly exploit the
advantages of a quantum computer at the expense of a classical one.

We delay the formal definition of the recursive Fourier sampling problem. For the
moment, we will simply state that it is a promise problem (that is to say, a partial Boolean
function whose value is only defined on a portion of the input space, called the promise)
which is known to have an efficient quantum algorithm. By the result of [BBC*98], this
immediately implies that there is a low degree real polynomial that well approximates the
recursive Fourier sampling problem on the promise. In fact, from the standpoint of proving
a circuit lower bound, the situation is even “worse” than this, due to the result of [Johl1],

which shows that there is an even lower degree real polynomial than the one guaranteed by
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[BBC*98] which exactly represents the recursive Fourier sampling problem on its promise.
Moreover, [Johl1] proves exactly matching upper and lower bounds on any real polynomial
that represents the recursive Fourier sampling problem on its promise, thereby completely
resolving the question of the polynomial degree of the recursive Fourier sampling problem,
with respect to polynomials over R.

In this thesis, we consider the question of the polynomial degree of the recursive
Fourier sampling problem for polynomials defined over Fo. That is to say, we consider the
question of what is the lowest degree polynomial defined over F, that represents the recursive
Fourier sampling problem on its promise. Before proceediﬁg further, we briefly note that
this question is only non-trivial because the recursive Fourier sampling problem is a promise
problem. For any total function g : F3 — F,, there is a unique multilinear polynomial
f € Fy[z;,...,x,] that agrees everywhere with g; the degree of f is, of course, the minimal
degree of any polynomial in Flx,,...,z,] that agrees everywhere with g. For a promise
problem, however, there can be many multilinear polynomials, of varying degrees, that all
agrée on the promise.

Over 5, there is a simple, though relatively high degree, polynomial that exactly
computes the recursive Fourier sampling problem. Our key result, stated in the following
theorems, is that, for a certain appropriate settings of the parameters, this simple polyno-
mial is, in fact, the lowest degree polynomial that agrees with recursive Fourier sampling
everywhere on its promise. In fact, we show something even stronger: no polynomial of lower
degree can even non-trivially one-sided agree with the recursive Fourier sampling problem
(that is to say, if a polynomial is zero everywhere (on the promise) that the recursive Fourier
sampling problem is zero, then that polynomial must be zero on the entire promise). We
then use these results to prove new statements about the ability of constant depth circuits

to compute the recursive Fourier sampling problem.

Theorem 7. For any positive integers k, h, Let n = 25 — 1 and let RFS,%’;” denote the

recursive Fourier sampling function with majority. Then g € Falxy,...,Zm| such that
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deg(g) < (912“—1-)h and g(z) = RFSMH(x) Ve € UYL, Moreover, if any g € Fa[z1,. .., 2]

such that deg(g) < (%)h vanishes everywhere on U}, it vanishes everywhere on UMAY.

Theorem 8. For any positive integers d,n, h such that d|n, and n > d(2¥ +d - 1), Let
RF S,f {LP""' denote the recursive Fourier sampling function with generalized inner product.
Then Ag € Fazy, ..., Tm] such that deg(g) < d* and g(z) = RFSHG, ff"""(m) Vx € UPC"‘,:P"'“‘.
Moreover, if any g € Falzy, ..., x.,] such that deg(g) < d* vanishes everywhere on UOC:',fP"'d,

. ) GIP,
it vanishes everywhere on Ul,h e,

1.2.2 VC Dimension

We say that a subset J C [n] is shattered by a family of vectors C C {0,1}" if, Vs : J —
{0,1}, 3¢ € C such that ¢; = s(j) Vj € J (in other words, if one considers the set of
all substrings of elements of C' comprised of the positions indexed by J, this collection of

substrings is precisely {0,1}!). We then write
str(C) = {J C [n] : J is shattered byC}

to denote the sets that are shattered with respect to C. We then define the VC dimension
of C as
VC(C) = max{|J] : J € str(C)}.

For a field F and a set C' C {0,1}", the interpolation degree of C, denoted by reg(C) is the
minimum d such that every function f : C' — FF can be expressed as a multilinear polynomial
in Flzy,...,z,) of degree at most d.

Recently, in [MR15], a very interesting connection between VC dimension and in-
terpolation degree was demonstrated. A simple characterization of sets with interpolation
degree 1 was provided. This naturally raised the question of whether a similar characteri-
zation exists for sets with interpolation degree r, for arbitrary . In this thesis, we provide

such a characterization, in terms of the rank of a certain inclusion matrix, which will be
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defined precisely in §2.

Theorem 9. A set C C {0,1}" has reg(C) = 7 if and only if v is the smallest positive
integer such that ranks, M(C, (g)) =|C]|.

16



Chapter 2

Algebraic Geometry Tools

2.1 Preliminaries

We begin by recalling several standard definitions from algebraic geometry. Let F denote a
(not necessarily algebraically closed) field and F[z,,...,z,| denote the ring of polynomials
in n indeterminates. An algebraic set in F" is the set of common zeros of a collection
of polynomials in F[zy,...,x,]. More precisely, given a set of polynomials fi,...,fx €

Flxy,...,z,]|, we denote their set of common zeros by V(fi,..., fr) where

V(fi,- - fi) = {(z1,.. ., 2) € F*: fi(x1,...,1,) = 0 Vi}.

Rather than working with an arbitrary set of polynomials, it will often be convenient
to consider an algebraically nicer object: an ideal. For I an ideal in Flzy,...,z,], let V(I)

denote the common zero set of all polynomials in I, that is to say
V() ={(z1,...,z,) €EF*: f(z) =0Vf €I}

Given a set of polynomials fy,..., fx € Flxi,...,z,), let (f1,..., fk) denote the ideal which
they generate in F[zi,...,z,]. Clearly, V({fi,..., fx)) = V(fi,..., fx). For an algebraic

17



set V, let its vanishing ideal I(V') be the ideal of Flz1, ..., z,] consisting of all polynomials
which vanish on V' and let R(V) = F[z1,...,z,]/I(V) denote its coordinate ring.

For a polynomial f € F[z1, ..., Zx], let deg(f) denote its total degree. Let Flzy,...,z.)<qa
denote the vector space of polynomials over F with degree at most d. For an ideal I, let
Iy =INF[zy,...,2,)<q denote the subspace consisting of all polynomials in I of degree at
most d. For an algebraic set V', with vanishing ideal I = I(V') and coordinate ring R = R(V),
let R<q =Fz1,...,2n]<a/I<q. The affine Hilbert function h*(R,d) of R is then given by

ha(R, d) = dimF(RSd).

By slight abuse of notation, we will use the term affine Hilbert function of an algebraic set
V, which we will denote h%(V,d), to simply be the affine Hilbert function of the coordinate
ring R(V).

Throughout this thesis, we consider only zero-dimensional algebraic sets V' (that is
to say, V is finite). For such a V, we define its regularity reg(V) to be the minimal value
of d such that h*(V,d) = |V|. Equivalently, reg(V) is the minimal value of d such that
every function V — F can be realized as a polynomial of degree at most d. This quantity is
frequently referred to as interpolation degree. In the case of zero-dimensional algebraic sets,
this quantity is equivalent to the Castelnuovo-Mumford regularity of R(V') (see, for instance
[Eis02] Thm.4.1). |

Fora = (a,...,a,) € N*, we define z* to be the monomial 23" - - - 2~ € F(z1, ..., Zxs)-
For any J C [n] we define the (multilinear) monomial z; by z; = [[;c;z;. A degree
compatible term order < is a total order on the monomials x* which respects multipli-
cation (z* < 7 = 2%z < 2Pr Vz* 2P 27 € Flxy,...,z,]) and is degree compatible
(deg(z*) < deg(a?) = 2* < 2P V2, 2f € F[zy, ..., z,]). For a degree compatible term order
<, and polynomial f € F[z,,...,z,], we define its leading monomial Im(f) to be the largest

monomial in f with respect to <. Similarly, for an ideal I in Flzy,...,z,], we define its
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leading monomials to be

LM(I) = {lm(f) : f € I}

and its standard monomials to be
SM(I) = {z® : @ € N*} \ LM(I).

For an algebraic set V, we define LM(V) = LM(I(V)) and SM(V) = SM(I(V)). We
also define

SM(V,d) = {z* € SM(V) : deg(z®) = d}

and

LM(V,d) = {z* € LM(V) : deg(z®) = d}.

Standard monomials provide an extremely convenient tool for computing both the
Hilbert function of an algebraic set and its regularity, as illustracted in the following lemma

(these are well known facts in algebraic geometry; see, for instance [Fel07]).
Lemma 1. (a) h*(V,d) = 3% |SM(V,3)|

(b) reg(V) = maxzaesmv) deg(z®)

(c) |SM(V)| = V]

(d) Vi € V2 = SM(V1) C SM(V2)

(e) Vi € Va = LM(V1) 2 LM(V2)

Let M,, denote the semigroup of all monomials in n indeterminates. That is to say, as
a set M, = {z® : o € N*} with multiplication between monomials defined in the usual way.
An ideal U of M,, is simply an upwardly closed subset of M, (z* € U = z°z® € U Vo, ).
For an algebraic set V C F*, LM(V) is an ideal of M,,. Similarly, SM(V) is a dual ideal. In
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other words, if & € LM(V), then z°z® € LM(V) and if 2* € SM(V') then z# € SM(V) for
any divisor 2 of z°.

For I an ideal of F[x,...,z,], let a(I) denote the minimal degree of any g € I
such that g consists of only monomials from SM(F"). For an algebraic set V = V(I), let
a(V) = a(I). The following lemma, proven independently in [Fel07] and [PRO8], provides an
extremely useful relationship between reg(V') and a(V), where V denotes the complement

of V.

Lemma 2. [Fel07], [PROS]

If V CF" is a nonempty zero-dz'mensional'algebraz’c set, then a(V) + reg(V) = n.

Lastly, we consider another useful tool for computing the Hilbert function: inclusion
matrices. Let F, denote the finite field of two elements. Let 2(* denote the collection of all
subsets of [n] = {1,...,n}, and let F,G C 2[" denote two families of subsets. The inclﬁsion
matric M(F,G) is a |F| x |G| matrix, with entries in F;, where for any F € F and G € §
the (F,G) entry is 1 precisely when G C F. Let ([S",]c) denote the family of all subsets of [n]
of size at most k.

Given an algebraic set V' C F3, we associate it with a family of subsets in the natural
way: for each z = (zi,...,%,) € V the subset {i : ; = 1} is included in the set family.
By a slight abuse of notation, we will also denote this set family by V. The following is
immediate from definitions (as a nontrivial linear combination of the columns corresponds

to a polynomial in I(V') and hence a leading monomial).

Lemma 3. For any algebraic set V C F3, we have

he(V,d) = ranks, M <V, ( i} )) .

<d

Throughout this thesis, our key object of interest will be the affine Hilbert function of
an algebraic set. We briefly note that this is a slight departure from the typical situation in

algebraic geometry in which one considers the “ordinary” Hilbert function (which is defined

20



similarly to the affine Hilbert fuﬁction, but in which one considers the space of homogeneous
polynomials of a particular degree, rather than arbitrary polynomials of a particular degree)
of a variety {which is an algebraic set in which the ground field F is algebraically closed).
Much as was the case in [Smo93], this is done in order to allow a better intuitive connection
between the Hilbert function and the questions from complexity theory that we consider.
However, it should be noted that it is very straightforward to convert between statements
involving the affine Hilbert function of an algebraic set and the Hilbert function of a variety
as, firstly, one can harmlessly extend the ground field (and, in particular, extend it to its
algebraic closure), and, secondly, one can straightforwardly express the value of the affine
Hilbert function at degree d as the sum of values of the Hilbert function 0f degree at most
d. While it is true that certain basic statements that would hold over an algebraically closed
ground field do not necessarily hold over arbitrary fields, these statements are either facts
that we explicitly exploit in the proof (such as the number of roots a particular degree d
polynomial has in a particular algebraic set) or are statements that can easily be modified to
analagous statements when the ground field is a finite field (for example, Hilbert’s Nullstel-
lensatz, which establishes a bijection between varieties and radical ideals can be modified to

a bijection between algebraic sets and radical ideals that contain the field polynomials).

2.2 Generalization of Versatile Functions

In this section, we consider a certain natural generalization of the concept of versatile func-
tions (as defined in [Kopll], see also [Smo87] for the concept of UE — complete elements) to

promise problems. We begin with a definition.

Definition 1. A function f : Fy — Fy is Versatile if, Vg : Fy — Fo, Ju,v € Falzy,...,2,]

where deg(u), deg(v) < % and g(z) = u(z) f(x) + v(z) Yz € F3.

Versatile functions admit a particularly simple characterization in terms of regularity

(this is essentially the same notion as “degree-m independent sets” as considered in [Smo93]),
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as shown in the following lemma.

Lemma 4. For a function f : F3 — Fa, let Uy = f71(0) and Uy = f~'(1). Then f is

versatile if and only if reg(Uy), reg(Us) < 3.

Proof. 1f f is versatile, then, by definition, Vg : F§ — Fs, Ju,v € ]Fz[xl,...,’a:n] where
deg(u),deg(v) < % and g(x) = u(zx)f(z) + v(z) Vz € F3, and so g(z) = v(x) Yz € U and
9(z) = u(z) +v(z) Yz € U;. Since deg(u + v) < max(deg(u), deg(v)), it immediately follows
that reg(Up), reg(U;) < %.

If reg(Up), reg(Uy1) < %, then, by definition, Vg : F3 — Fp, 3u/,v" € Folzy,. .., zn)
where deg(u’), deg(v’) < % such that g(z) = v'(x) Vz € Up and g(z) = v'(z) Vz € Uy. There-
fore, g(z) = u(x) f(z) +v(z) Vo € F3, where u = v/+v' and v = v'. Since deg(u),deg(v) < %,

f is versatile.

O

As shown in [Kopll], the Majority function (the function MAJ : F} — F, where
MAJ(z) = 1 when wt(z) > % and MAJ(z) = 0 when wt(x) < %, where wt(z) denotes the
number of 1s in z) is versatile. As a first illustration of the utility of standard monomials,

we present a new short proof of this fact.
Lemma 5. The function MAJ : Fy — Fy is versatile.

Proof. Let Up = {z € Fy: MAJ(z) = 0}. Let S = {z%: a € {0,1}",wt(a) < §}. We will
show that SM(Up) = S. Since |S| = |Uy| = [SM(Uy)|, it suffices to show S C LM(Up). To
see this, note that for any J C [n], where |J| > %, we clearly have z, € I(Up) (because,
for any =z € Uy, a strict majority of the z; are 0 and so any sufficiently large product
z; = ], must vanish on Up) and so z; € LM(Up). Trivially, :c? € LM(Uy) V9, as, of
course, x? +z; € I(Up) V5. Due to the fact that LM(Up) is upwardly closed, the previous
two facts iﬁmediately imply S C LM(Uy), as desired.

Similarly, if Uy = {z € F§ : MAJ(z) = 1}, then, by the same logic as above,
SM(U;) = {z* : o € {0,1}", wt(a) < 2}. Therefore, by definition, reg(Uy), reg(U1) < %.
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We now generalize the notion of versatility to functions of the form f : U — F,,
for some U C F3. As shown above, a versatile function partitions the set Fj, which has
regularity n, into two pieces, the preimage of 0 and the preimage of 1, which each have
regularity at most 5. We will call a function f d-versatile on U if the function f induces
a partitioning of U with a regularity gap of at least 6. This notion is formalized in the

following definition.

Definition 2. For a function f: U = Fs, let Uy={z € U : f(z) =0} and Uy ={zr € U :
f(z) =1}. We say that f is §-versatile on U if 6 < reg(U) — reg(Uy), reg(U) — reg(Uy).

Clearly, this notion generalizos the concept of versatility as a versatile function is
5-versatile on F3. We now prove several useful properties of J-versatile functions which will

be used throughout the thesis.

Lemma 6. If f : U — Fy is §-versatile on U then, Bg € Fs|zy,...,z,] where deg(g) <
and g(z) = f(x) Vx € U.

Proof. Assume, for contradiction, that such a g exists. By the definition of regularity, there"
exists at least one function h : U — Fs such that, Vg € Fa[zy, ..., z,] with deg(q) < reg(U),
3z € U such that h(z) # q(z).

Let Ug = {x € U : f(z) =0} and U; = {z € U : f(z) = 1}. Due to the fact
that f is d-versatile on U we have, by definition, reg(Uy), reg(U;) < reg(U) — 8. Therefore,
Ju,v € Fy[zy,. .., z,] where deg(u),deg(v) < reg(U) — 6 and h(z) = u(z) Vz € Uy, h(z) =
v(z) Vo € Uy. If we then define ¢ € Fy[zy,...,2,] by ¢ = u(g + 1) + vg, we clearly have
deg(q) < max(deg(u)+deg(g), deg(v) +deg(g)) < (reg(U) — ) +deg(g) < (reg(U) —6)+4d =
reg(U) and h(x) = u(z)(g9(z) + 1) + v(z)g(z) = ¢(z) Yz € U, which is a contradiction.

O

Next, we consider the behavior of é-versatile functions f : U — Fs where the set U

has a certain special property. Given any U C F7, there is, of course, a unique multilinear
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polynomial (recall that a polynomial is multilinear if every monomial has degree at most
1 in each variable) ry € Fy[zy,...,z,] such that ry(x) = 1 if and only if z € U. Clearly,
ry € I(V). Moreover, each monomial of ry is in SM(F%) (due to the fact that the standard
monomials of F? are precisely the multilinear monomials), and so we immediately conclude

that a(V) < deg(ry). We call an algebraic set U critical if a(V') = deg(ry).

Lemma 7. Let U C F} be a critical algebraic set, let f : U — Fy be d-versatile on U, and
letUy={z€U: f(x) =0} and Uy = {z € U : f(z) = 1}. Then, Vq € Fa[z1,...,x,] such
that deg(q) < 68, q € I(Up) if and only if g € I(Uy).

Proof. We show that\Vq € Fs[z, ..., z,], where deg(q) < 4, ¢ € I(Up) = q € I(Uh); the
reverse implication follows by symmetry. Assume, for contradiction that ¢ € I(Up) but
q & I(Uy). Let Y = {z € U : gq(zr) =1}. Clearly Y C U; and Y is nonempty. Let t €
Fa[z1, . .., z,] denote the unique multilinear polynomial such that t(z) = ry(z)q(z) Vz € F3,
then t € I(Y) and deg(t) < deg(ry) + deg(q). Using Lemma 2, we have

reg(Y) =n — a(Y)
> n — deg(t)
> n — deg(ry) — deg(q)
= reg(U) — deg(q)
> reg(U) — &
> reg(Uh).

However, we cannot possibly have reg(Y") > reg(U;) because, as noted above, Uy C U,
and so, by Lemma 1(b,d) we must have reg(Y) < reg(U;).
O

The following lemma provides an extremely useful characterization of the behavior of
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a d-versatile f on the intersection of a critical U with a certain simple algebraic set, namely

the union of the vanishing sets of a collection of low degree polynomials.

Lemma 8. Let U C F} be a critical algebraic set, let f : U — Fy be d-versatile on U, and
letUy={z€U: f(z) =0} and Uy = {z € U : f(z) = 1}. For any d < 6 and for any
91, -- -9k € Falzy,...,x,] where deg(g:;) < d Vi, let G =U;V(g;). Then,

SM(UN G, j) = SMUyNG,5) = SMU,NG,j)Vj<6—d

Proof. Clearly, UyNG C UNG, U;NG C UNG and so by Lemma 1(d), SM(UpNG), SM(U1N
G) € SM(U N G), from which it immediately follows that SM(Us N G, j),SM(U; N G, j) C
SM(U N G, j). |

We will now show SM(UyNG, 7), SM(U1NG, j) 2 SM(UNG, j)Vj < § —d, which will
complete the proof. Consider any j < d —d. Due to the fact that, for any particular algebraic :
set, every monomial is either a leading monomial or a standard monomial, if suffices to show
LM(UpNG,5),LM(U; NG, ) CLMUNG,j).

To see that LM(Uy N G, j) € LM(U N G, j), assume, for contradiction, that this is
not the case. Then Jz* € LM(Uy N G,35) N SM(U N G,j). Due to the fact that z* €
LM(Up N G, 7) we have, by definition, that 3¢ € Fa[zy,...,x,] such that ¢ € I(Uy N G)
and lm(q) = z*. Clearly, deg(q) = j < 6 ~ d. Due to the fact that z® € SM(U N G, 3),
we have, by definition ¢ ¢ I(U N G). This immediately implies ¢ ¢ I(U; N G) because
UNG = (UgUU))NG = (UynN G)U (U NG), and so if g did vanish on U; N G, then it
would vanish on U N G (because, by construction, it vémishes on Uy N G). Moreover, since
UiNG = Uy N(UV(g)) = Ui(Uy N V(g;) we conclude i such that ¢ € I(U; NV (g;)). Fix
such an ¢ and consider the set Y = {z € U : ¢(z) = 1 and g;(z) = 0}. Notice that due
to the requirements that z € U and g¢;(z) = 0, we immediately have Y C U N V(g;), and
since g vanishes on Uy NV (g;), we then have Y C U; NV (g;). Let t € Fa[xy, ..., ] be the

(unique) multilinear polynomial equal to (ry)(g)(g; + 1). By construction, t(z) = 1 if and
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onlyif z €Y, and so t € I(Y). We then have
a(Y) < deg(t)

< deg(rv) + deg(q) + deg(gi + 1)
<a(U)+ (6 —d)+d
= a(U) + 6.

Applying Lemma 2, we then have

reg(Y) =n — a(Y)
>n— (a(0) +6)
=(n—a(l)) -

= reg(U) — 6
2 reg(Uh),

where the last inequality holds due to the fact that f is d-versatile. However, we cannot
possibly have reg(Y') > reg(U;) because, as noted above, U; C U, and so, by Lemma 1(b,d)
we must have reg(Y) < reg(U1). This contradiction allows us to conclude LM(Up NG, j) C
LM(U NG, j). By a precisely symmetric argument, LM(U; NG, 7) € LM(U N G, j), which

completes the proof.
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Chapter 3

Pseudorandomness

3.1 Algebraic Extractors

In this section, we exhibit a new construction for an extractor for algebraic sets with ex-
tremely strong parameters. We begin with the following lemma, which provides a useful

bound on the Hilbert function.

Lemma 9. Let V C F3 satisfy reg(V') > § —v/n. Then, there is a constant c > 0 such that,

for any B > 0 and any k < n3~#, we have

h*(V,reg(V)) — h*(V,reg(V) — k) < — |V|

\/_
Proof. Let r = reg(V) and set ¢ to be the unique value r — k + 1 < ¢t < n such that
(k) S ISM(Vir —k+ 1)) < (5,).

First, notice that |[SM(V,4)| > (), Vi<r—k+ 1. This follows by a straightforward
induction on j = r —k+1—¢. The case in which j = 0 follows from the above definition of ¢.
If SM(V,r—k+1—j)| > (r—k-tn—j) , then we immediately have a set S C SM(V,r—k+1—j)
such that |S| = (__ k-tu—j)' Define the set AS to consist of all monomials that lie immediately

below some monomial in S in the monomial order (this is frequently called the shadow of
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S),
A(S) = {z*: deg(z*) =r —k+1—(j+1) and Iz” € S such that z* < z"}.

Due to the fact that SM(V) is a dual ideal, we note that S C SM(V) = A(S) C SM(V),
from which we immediately conclude A(S) C SM(V,r —k+ 1 — (j + 1)). We then have

t

ISM(V,r —k +1—(j + 1))| > |A(S)| > (r—k+1—(j+1))’

where the last inequality follows immediately from Lovédsz’s version [Lov79] of the Kruskal-
Katona theorem.
By a precisely analogous argument, we also have |SM(V, )| < (“21) Vi>r—k+1.

By Lemma 1(a) and the above,

r—k r—k
B 2 heWr -0 = S sMv 2 Y (1) 2 a2,

=0 =0

for some constant ¢; > 0 (where the last inequality follow_s from the fact that r — k >
2-2/n>1%- 2v/t combined with elementary bounds on the sum of binomial coefficients).

Similarly, Vi > r — k + 1, we have, for some constant ¢, > 0,

s ()= (430) =22

We then have, for some constant ¢ > 0,
he(V,r) = Re(V,r = k) _ hA(V,7) — ho(V,r — k)

V] he(V,7)

_ T ISM(Y;)
Ra(V,7)

2t
< (k+1)(c2) %
- 012t
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Remark 1. The above bound can be seen to be essentially optimal, as shown by considering

the standard monomials of the function MAJORITY computed in the previous section.
We now show that any J-versatile function, for appropriately chosen 4 is an extractor.

Theorem 1. Let f : F} — Fy be d-versatile (on F}), where § > % —n" for some 0 <y < 3.

Then, there is a constant ¢ > 0 such that, for any constants a, B such that 0 < o, f < %, and
b g N )] :

for any d < n® and p > 27", f is an extractor with bias NG £ for algebraic sets of

density at least p that are the common zeros of a collection of polynomials each of degree at

most d.

Proof. Let Uy = f7%(0) and U; = f~'(1). Due to the fact that f is (2 — n”)-versatile, we
immediately have reg(Up), reg(U;) < §+n?. We also have reg(Uy), reg(U1) > % —n” because
2" = |Uyg| + |U1| = |SM(Up)| + |[SM(U1)|, and the regularity of an algebraic set is the size of
its largest standard monomial(Lemma 1(b)).

Consider any algebraic set V = V(g,..., gr) where g; € Fa[z1,...,z,] and deg(g;) <
d Vi. Using the Razborov-Smolensky method [Raz87],[Smo87], we have a collection of poly-
nomials y1, ...,y € Fa[zy,...,z,] such that deg(y;) < d, V(91,---,9x) € V(y1,...,u) and
V(y1,.-u)\V(g1,--.,gr)] <27 Settingy =1 +Hi:1(1+yi); we then have deg(y) < dl
and V(y) =V (yr,...,0)- '

Consider Uy N V(y) and U1 NV (y). By Lemma 8, we have

SM(Up NV (y), i) = SM(U: NV (y),5) = SM(V (y)) Vi < g —n? —dl.

From this, and Lemma 1(a), we immediately conclude h*(Upy NV (y), 5 —n” —dl) = h*(U1 N
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V(y), 3 —n"—dl). Clearly, UyNV(y) C U and U;NV (y) C Ui, and so, by Lemma 1(d,b), we
have reg(Up NV (y)) < reg(Up) < 5 +n”, and reg(U1 NV (y)) < reg(U1) < % +n?. Moreover,
reg(Uo NV (y)),reg(U1 NV (y)) > § — n? — dl. To see this, first notice that Lemma 2 allows
us to conclqde reg(V(y)) > n — dl (because y + 1 vanishes on the complement of V (y)),
which immediately implies that SM(V (y)) consists of an element z* of degree at least n —dl.
As SM(V (y)) is a dual ideal, we then also conclude that it consists of an element of degree
precisely 2 —n? —dl (simply take a‘nyv divisor of z* of the appropriate degree). By the above
relationship between SM(V (y)), SM(Up NV (y)) and SM(U; NV (y)), we then conclude that
both SM(Up NV (y)) and SM(U; NV (y)) contain an element of degree § — n” — dl, and so,
by Lemma 1(b), the claimed lower bound on regularity follows. In the following, for brevity,
we write H;(j) = h*(U;NV(y),j), di =5 +n"dy = § —n" —dl.

We then have

HUoNV(gy,...,g)l = U NV(gy,-..,g0)ll

V(g1 ---, 90l
< NN V)| — U0V + |V(y) \ Vig,---,95)]
- V(g g0)l
< |Ho(dy) — Hy(dy)| + 2"
B Vig,---,9x)l
_ |Ho(dz) — Hi(dz) + (Ho(ds) — Ho(dz)) — (Hi(d1) — Hi(d)) + on~—1
|V(gla s agk)l
_ |(Ho(dr) — Ho(dp) — (Hi(dy) — Hi(dp)) + 2"
IV(gla s ’gk)l
Sl%llv(gh e ge)| 27
lv(gly s agk)l
_ <@ +d) o1

+
\/ﬁ |V(g1avgk)|
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/ 01 n—l
< ¢ (2n7 4+ dl) " 2
- vn p2"
¢ (2n" + dl) LA
N p2t

Setting | = log( 3?) yields the claimed bound.

O

Next, as in [CT13], we consider a variant of the extractor model in which, rather
than explicitly considering algebraic sets which satisfy a certain density bound, we consider

algebraic sets defined by a limited number of polynomials. The following is immediate.

Corollary 1. Let f : F} — F; be §-versatile (on F}), where § > % —n” for some 0 < vy < 3.

Then, there is a constant ¢ > 0 such that, for any constants o, such that 0 < o < 8 < %,

B4 Llog(n .
and for any d < n® and k < nf~%, f is an extractor with bias (o +d(n \/; 2 lo8(n)) for algebraic

sets that are the common zeros of a collection of at most k polynomials each of degree at

most d.

Proof. Consider any algebraic set V =V (g, ..., gx) where g; € Falx1, ..., z,] and deg(g;) <
dVi Letg=1+ Hle g;- Then deg(g) < kd < n® and V = V(g). From Lemma
2 it immediately follows that reg(V(g)) > n — deg(g) > n — n®, and so, by definition
Jz* € SM(V(g)) such that deg(z*) = n — n®. Due to the fact that SM(V (g)) is a dual ideal,
every divisor of z* is also a member of SM(V (g)). As there are precisely 2"~ such divisors
we have

V] =1V(g)| = [SM(V (g))| > 2*,

and so V has density p > 2= The result then follows immediately from Theorem 1.
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3.2 AC’-pseudorandomness

3.2.1 The Linial-Nisan-Braverman Technique
Braverman’s Theorem

Braverman [Bra09] resolved the long standing Linial-Nisan conjecture [LN90]. We now
state this theorem, which provides a simple sufficient condition for a distribution to appear
random to ACP circuits. For a distribution p, with support {0,1}", we say that u, is a
(B, r)-approximation if every restriction of u, to r coordinates is S-close to the uniform
distribution on {0,1}" (two distributions are B-close if the statistical distance between therh
is at most ). The theorem states that if a distribution p, is a (8,7(s, d, €))-approximation,
for sufficiently large r and sufficiently small 3, then it e-fools all depth d AC? circuits of size

S.

Theorem. [Bra09] Every (8,r(s,d, €))-approzimation e-fools all depth d ACP circuits of size
s, where

r(s,d, €) = (10g g) o(d?)

and

> onrlea),

In particular, every (27", n%)-approximation, for constants k < § <y < 1, will 27™"-
fool polynomial sized circuits of any constant depth, for sufficiently small constant a. In this
thesis, any function f for which the corresponding distribution u,, as defined above, meets
this condition, will be said to have the Linial-Nisan-Braverman property, or LNB property
for short. In fact, many of the functions considered will have an even stronger property:
their corresponding distributions will be (0, n®)-approximations (or, in other words, every
restriction of y,, to n® coordinates will simply be the uniform distribution, rather than being

only close to the uniform distribution).
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Application to Homomorphisms

Let us now restrict our attention to homomorphisms from {0,1}™ to {0,1}*, the set of
which we denote by Hom({0,1}™, {0,1}*) (or, in other words, viewing {0,1}™ and {0, 1}*
as vector spaces, we consider the set of linear maps). It will be shown that it is particularly
simple to determine if a given homomorphism has the Linial-Nisan-Braverman property, and,
moreover, that many homomorphisms have this property, and hence appear random to AC?
circuits.

Every f € Hom({0,1}™,{0,1}*) corresponds to a k x m matrix F, with entries in
{0, 1}, such that f(X) = FX, for X € {0,1}™. Forany R C {1,...,k}and C C {1,...,m},
let Frc be the submatrix of F consisting of rows R and columns C. The following lemma
shows that having the Linial-Nisan-Braverman property is equivalent to certain submatrices

of F being full rank. As before, n =m + k.

Lemma 10. f € Hom({0,1}™,{0, 1}*) has the Linial-Nisan-Braverman property if and only
if 36 > 0 such that VR C {1,...,k},C C {1,...,m} with |R|+|C| = n®, the submatriz Fp5
is full rank, where C = {1,...,m}\ C.

Proof. First, consider a function f : {0,1}™ — {0, 1}* whose corresponding matrix F meets
the above condition. We show that f has the Linial-Nisan-Braverman property. To do this,
let X € {0,1}™ be an arbitrary element, Y € {0,1}" be the concatenation of X and f(X),
and u, be the distribution of Y given a uniformly randomly selected X. By definition, f has
the Linial-Nisan-Braverman property if p.,, is n®-independent. To see that f has this property,
imagine that an adversary selects some n’® sized subset of coordinates of Y. We must show
that the distribution u,, when restricted to these coordinates is the uniform distribution.
Each coordinate is either a coordinate of the input X or a coordinate of thé output f(X).
Of course, since X is selected uniformly at random, any such restriction on just the bits
of X yields the uniform distribution. All that needs to be shown ié that the conditional

distribution of selected output coordinates is uniform, given any value of the selected input
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coordinates, or, in other words, that if the adversary is allowed to look at only a small number
of input bits (fewer than n’) than the distribution of any small number of output bits due to
the remaining inputs bits is still uniform. To see this,I lete RC{1,...,k}and C C {1,...,m}
denote the selected coordinates of f(X) and X, respectively, where |R| + |C| = n®. Letting
f(X) g denote the bits of the output corresponding to R (that is to say, the selected bits of the
output), and defining X and X& analogously (which are then the selected and unselected
bits of the input, respectively), then we can write f(X)r = FreXc + FrzXz. Since F
meets the above condition, we know that Fj 5 is full rank, and so, as all of the (unseen) bits
of Xz vary uniformly, Fp X7 varies uniformly. One way to see this is to note that, since
Fgz is full rank, it contains a |R| x |R| invertible submatrix. Therefore, as the bits of Xz
that correspond to this invertible submatrix vary over all possible values (with the other bits
of Xz fixed), FrzX7 indeed varies uniformly. Therefore, for any fixed X¢, f(X)g varies
uniformly, and so f has the Linial-Nisan-Braverman property.

To prove the other direction, assume that F' doesn’t meet the above condition. This
means that, V§ > 0, 3R C {1,...,k},C C {1,...,m} with |R| + |C| = n? .the submatrix
Fpz is not full rank. Again, we write f(X)r = FreXc + FrpXe. Since Frgp is not full
rank, we have, by definition, that as X varies Fp X doesn’t even hit all possible values.
In fact, it must miss at least half of all values, and so f(X)g is far from uniformly randomly
distributed for any fixed X¢.

O

Using the above result, we are now able to prove Theorem 2, which states that
for any “reasonable” choice of m and k, almost every f € Hom({0,1}™,{0,1}*) is AC®-

pseudorandom. For convenience, we restate the theorem here.

Theorem 2. If k = m*, for any fized constant u > 0, then all but an exponentially small

fraction of all f € Hom({0,1}™,{0,1}*) are AC°-pseudorandom.

Proof. Let P, denote the probability that an h x w matrix, where w > h, with entries
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drawn uniformly at random from {0,1}, is full rank (that is to say, has rank h). We have
the following useful bound, which follows from the fact that, in order for the matrix not to
be full rank, either the first row must be identically zero, or the second row is a multiple of
the first, or, in general, the i*® row lies in the span of the first 4 — 1 rows; combining these

probabilities with a union bound gives:

Pow>1-27" }li 2i-1,
i=1
For any particular m, k, the probability that a randomly selected f € Hom({0, 1}, {0, 1}*)
is AC%-pseudorandom is, by the above theorem, given by the probability that all appropri-
ately sized submatrices of a randomly selected k& x m matrix are full rank. To be precise,
we are interested in the probability that all submatrices Fip 5, where |R| + |C| = n’ are full
rank, when m, k > n®. For any h < k and w < m, the number of h x k submatrices of a

k X m matrix is given by (2) (Z)‘), and so, by a simple union bound, we have the following:

nd-1 .
Pr(f doesn’t have the LNB property) < Z (A) ( m )(1 = P} (ni—j))

S \i/\m—= (1 —7)

5
kN [(m 5y N g
< né( > ( )2—(m—n ) Z gi—1
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n n im1
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k"é m —(m—nS 5
<n (nd)! (né)!g ( )(2n 1)
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Convolution

In the previous section, it was shown that many functions in Hom({0,1}™, {0, 1}*) appear
random to AC? circuits, but no explicit example of such a function was given. This section
shows that a particular function, namely the convolution function, satisfies this property. We
begin by recalling the definition of convolution. Given some X € {0,1}" and Y € {0,1}%,
the convolutioﬁ of X and Y, which will be denoted X xY, is the Z € {0,1}"+*"! where if
X;,Y;, and Z; refer to the i*® bit (zero indexed, counting from the least significant bit up)

of X,Y, Z, respectively, then

Z = inYi—ja

=0
where X;Y;_; denotes the AND of X; and Y;_j, any X; or Y} outside of the defined range is
understood to be zero, and the sum is, of course, computed modulo 2.

The goal is to show that convolution is AC®-pseudorandom. There are several rea-
sonable ways to define this. Perhaps the most natural, immediate thought is to consider the
function f : {0,1}" x {0,1}* — {0,1}"**~1, which takes the pair (X,Y) to X *Y. Unpacking
definitions, this means we consider the distribution (when X and Y are selected uniformly at
random) of the string in {0, 1}2"*25~! where the first r bits are X, the next s bits are Y, and
the final 7 +s—1 bits are X *Y. Observe that this distribution clearly does not look random
to AC? circuits because some of the bits of X * Y can be determined exactly by an AC®
circuit. To be precise, letting n denote, as usual, the total size of the string (n = 2r +2s—1),
we see that any of the first (or last) O(log®n) bits of X *Y is simply the parity of O(log®n)
bits, each of which is the AND of some bit of X with some bit of Y. Since a parity of
O(log® n) bits can (for any constant ¢) be computed easily in AC?, we immediately conclude
that including any of these bits will cause the resulting distribution to not appear random to
AC? circuits. However, if we exclude these bits, we can show that the remainder does appear
random to AC? circuits. We consider the function CONV, . : {0,1}" x {0,1}* — {0,1}F

where now k = k(r,s) < r + s — 1, and only the k “middle bits” of X * Y are included (the
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k centermost bits). Such a function is not a homomorphism and so the technique of the
previous section does not directly apply. Instead, we will consider a variant of this problem,
to which that technique does apply. Doing so yields a stror;ger result that also immediately
implies that CONV,., ; function does, in fact, appear random to AC? circuits.

Essentially, the idea is to consider a “fixed” Y (here we mean that there is a single fixed
Y of each length; as mentioned earlier, the discussion involves the asymptotic properties of f,
defined by a sequence of Y values, one for each length), and define the function fy : {0,1}" —
{0, 1}*, (where again, as above, k = k(r) < r + s — 1) such that fy takes the r-bit value X
to the middle k bits of X %Y. The difference between these two variants can be understood
as follows. In the first variant, described in the previous paragraph, the distinguisher would
be an ACP circuit family where the circuit whose input size is 7 + s + k would be able to
distinguish the string consisting of a uniformly randomly seleéted X € {0,1}", a uniformly
randomly selected Y € {0, 1}* and the middle k(r, s) bits of X *Y from a truly random string..
In the second variant, the distinguisher can have Y built-in, and only needs to distinguish
the string consisting of a uniformly randomly selected X € {0,1}" and the middle k(r) bits
of X xY from a truly random string.

Since each fy is clearly a homomorphism, Lemma 10 applies. Moreover, if it can be
shown that, for all sufficiently large r, all but an exponentially small fraction of choices for Y’
produce an fy that is AC°-pseudorandom, then it immediately follows that the variant of the
problem described in the previous paragraph, in which both X and Y are selected uniformly
at random,. also is AC%-pseudorandom. Loosely speaking, claiming that this second variant
is AC?-pseudorandom is a stronger claim because being able to have a separate circuit for
each Y could conceivably give a distinguisher more power.

We now prove Theorem 3, which is restated below.

Theorem 3. If s = 1" and k = r + s — (MIN(r, s))*, for any fized constants v > 0 and
0<a<l, then CONV,,y is AC®-pseudorandom. In particular, if r = s and k = 2r — 19,

for any 0 < a < 1, then CONV,., is AC®-pseudorandom.
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By the above logic, it suffices to show the following lemma.

Lemma 11. For all but an exponentially small fraction of Y, the function fy : {0,1}" —
{0, 1}*, where k = 2(r—r®+1) for any small constant o > 0, has the Linial-Nisan-Braverman

property.

Proof. Let f denote an arbitrary element of the set { fy|Y € {0,1}°}. Since f is a homomor-
phism, there is a corresponding k X r matrix F such that f(X) = FX, for any X € {0,1}".
To show that, for almost all choices of Y, the corresponding function f has the Linial-Nisan-
Braverman property, it suffices, by Lemma 10, to show that the appropriate submatrices of
F are full rank.

The matrix F has a particularly simple structure, namely it has constant skew-
diagonals. That is to say, if F;; denotes the element of F' in row ¢ and column j then
F;j = Fi_1j+1. The first row of F consists of, from left to right, r — r* zeros followed by
the lowest 7 bits of Y, starting with the least significant bit of Y. Each subsequent row of
F is obtained by shifting Y one index further to the left, filling empty entries with zeros.
Consider an arbitrary submatrix Fpz where R C {1,...,k} and C C {1,...,7} such that
|R| + |C| = n® for 6 < a, where C = {1,...,7}\ C and n = r + k. For randomly selected
Y, this submatrix is full rank with overwhelming probability. To see this, note that if Fpz
is not full rank, then there is some non-trivial linear combination of its rows that adds to 0.
Let h and w be the height and width, respectively, of Fpz. Then there are 2" _ 1 potential
non-trivial linear combinations of the rows, because a linear combination is, by definition,
a sum of the rows of Fpz where each row has coefficient 0 or 1 (having all coefficients be
0 is the trivial linear combination). In other words, it is a sum of some subset of the rows
of Fpz. Consider any fixed non-trivial linear combination. Let ¢ denote the lowest row of
Fp that has coefficient 1. Note that the probability (over Y') that this particular linear
combination of the rows of FRE' is zero is very small. While this fact would be immediate
if FRﬁ were simply a random unstructured matrix, some care must be given due to the

structure of F' (constant skew-diagonals) which forces all elements of F' in the same skew-
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diagonal to be identical. To deal with this, consider the rows of Fpp one at a timé, from
left to right. In order for the linear combination of the rows to be the zero vector, it must
be the case, by definition, that the sum in each column is zxéro (where of course this sum is
only over the subset of elements selected by the linear combination). Consider the element
in position (7,j). This element is either some element of Y, if some part of Y was shifted
over position (i, §), or is simply 0, if no part of ¥ was shifted to that position. In the first
case, this value is completely independent of any previously considered entries that influence
the linear combination. This is because, even though the value of the entry in position (%, 5)
forces the values of all other entries in the same skew-diagonal (in F'), all other such entries
are either to the right of this entry, and so haven’t been considered yet, or to the left and
below this entry, in which case they have coefficient 0 in the linear combination (because
row ¢ is the lowest row with coefficient 1). Since row i has coefficient 1, flipping the value of
the element in position (i, 7) flips the value of the sum in column j, and so the sum in this
column is 0 with probability % From this, we immediately conclude that the probability
that the sum in all columns is 0 is 277, where z is the number of entries in row 7 that come
from Y (as opposed to being fixed 0s). Since each row of F' has at least r* such elements -
(because the output of f does not include the first or last * bits of X xY"), we conclude that
this particular linear combination is 0 with probability at most 27" . Applying a union
bound over all 2" — 1 non-trivial linear combinations, where h < n° < r®, and then another
union bound over all choices of R and C (as in the calculation in the previous section), we
conclude that, for all but an exponentially small fraction of Y, F has the desired property,

which completes the proof that convolution appears random to AC? circuits.

Integer Multiplication

Let MULT, , : {0,1}" x {0,1}* — {0,1}* denote the integer multiplication function, which
takes a X € {0,1}" and Y € {0,1}* to the middle k-bits of the r + s bit long product of X
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and Y. In this section, we will prove the following theorem.

Theorem 4. If s = ™ and k = r + s — (MIN(r, ))*, for any fized constants u > 0 and
0 < @ <1, then MULT, ,}, is AC®-pseudorandom. In particular, if r = s and k = 2r — r,

for any 0 < a < 1, then MULT, ,, is AC°-pseudorandom.

As was the case for convolution, there are two natural vaﬁants of the multiplication
problem to consider. In the first variant, we select X € {0,1}" and Y € {0, 1}* uniformly at
random, then produce the product P = X xY’, and finally we produce the string consisting of
X,Y, and part of P. The hope is that the distribution of that string appears random to AC°
circuits. It is necessary to include only part of P because, as was the case in convolution,
the lowest and highest bits of P do not look random to AC? circuits. For example, the
low O(log®r) bits of the product can be calculated exactly, using the technique in [CSV84].

In the second variant, we consider “fixed” Y, in the sense that we have a single Y of each
length, and the multiplication problem is defined such that a uniformly randomly selected
X € {0,1}" is multiplied by the fixed Y to produce the product P = X x Y; the string of
interest then consists of X and the middle part of P. Again, loosely speaking, the second
variant is stronger in the sense that a potential distinguisher is allowed to have Y built-in.

In this section, we focus on the second variant and show that, for sufficiently large r,
all but an exponentially small fraction of Y (of length s) lead to a multiplication problem that
looks random to AC? circuits. Therefore, by the same logic as in the convolution problem,
it immediately follows that the first variant is also AC?-pseudorandom. We consider the
function fy : {0,1}" — {0,1}*, which takes the r-bit value X to the middle k bits of
the product X x Y. We will prove the following lemma, from which the above theorem

immediately follows.

Lemma 12. For all but an exponentially small fraction of Y € {0,1}°, where s = r*, the
function fy : {0,1}" — {0,1}*, where k = r + s —2r* for any small constant a > 0, has the

Linial-Nisan- Braverman property.
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Proof. 1t suffices to establish the claim for almost all odd Y (because adding w trailing zeros
to Y simply shifts the product X x Y by w bits to the left; all but an exponentially small
fraction of Y have fewer than r® trailing zeros), and so we restrict our attention to the case in
which Y is odd. We begin by establishing some notation. Let n=r+k. Let Z=2,---Z,
be the distribution of the set of all strings of the form X o fy(X) (strings that are the
concatenation of X with fy (X)), where X is an r-bit string. Then, by definition, fy has the
Linial-Nisan-Braverman property if Z is a (27", n®)-approximation for appropriate small
constants 0 < § < v < 1, which is to say that, for every set of n® coordinates the restriction
of p, to those coordinates is 27""-close to the uniform distribution over {0, 1}"5. To show
this, we begin by recalling that the bias of a distribution Z on some set I C {1,...,n} is
defined to be
bias;(Z) = E[(—1)%er %],

We make use of the following lemma, variants of which appeared in, for example [Vaz86] and

[AGM02)].

Lemma 13. [Vaz86], [AGM02] Every distribution Z that has bias as most € on every non-
empty subset I of size at most h is a (2"2¢, h)-approzimation.

We will then show that Z has bias at most 27", for some constant v > 0, on

9. The above lemma implics that Z is a (27", nf)-

all non-empty sets of size at most n
approximation, as desired (for any § < v < v). To see why, let X; denote the " bit of X
and let fy; : {0,1}" — {—1,1} be defined such that fy;(X) = 1 when the j*" bit of X x Y’
is 0 and fy,;(X) = —1 when the j™ bit of X x Y is 1 (note that fy; corresponds to the 5t
bit of X x Y not the j* bit of fy(X), where fy(X) consists of all bits of X x Y except the

lowest and highest 7%; this is done because it will be much cleaner to refer to bits by their

position in the entire product). Clearly,
fri(X) = (=1)leTl,
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For any S Q- {1,...,7} let fy, ;(S) denote the Fourier-Walsh coefficients of fy;, which

are given by

Fri(8) = E[fy (X)(=1)Zes¥1].

These are the Fourier coefficients of a function on Fj (we use the term Fourier-Walsh to
avoid confusion with the “ordinary” Fourier coefficients o% a function defined on R, which
will be used shortly). We partition the set I as I = SU J, where S C {1,...,r} are the
indices of Z that correspond to bits of X and J C.{r +1,...,n} are the indices of Z that
correspond to bits of fy(X).

There are two cases. First, if J is empty, then the set I consists only of bits of
X, and so, trivially, Z has bias exactly 0 on this set, because X is uniformly random.
The interesting case is when J is non-empty. For notational convenience, define the set
JC{r*+1,...,7r+ s — 7%} such that J' = {j|j' + r — r* € J} (simply the set J shifted
appropriately to index bits of X X Y). Let fy,y(X) = [L;c fr,j(X). Then the bias of Z on
I is simply fy, 7(8S). This follows from the fact that

biasy(Z) = E[(—1)>er %]
= Pr[@®ic1Z; = 0] — Pr[®ic1Z; = 1]
= Pr[@ses Zs = ®jesZj] — Pr®@sesZs # ®jesZ;]
= Pr(=1)>=es** = fy,p(X)] = Pr[(=1)>ees % £ fy 50(X)]
= Pr[(~1)>es % fy 5(X) = 1] = Pr{(—1)%ees ™ fy, 5 (X) = —1]
= E[fy,y (X)(=1)Zses %]
= fr.r(9).

Rather than compute fy. 5+ (S) directly, we instead compute the Fourier coefficients of

fv,s» when viewed as a function on {0, ...,2"—1} (instead of on F%), and exploit a connection
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between these two types of Fourier coefficients. For a function f : {0,...,2" —1} — {-1,1},

define

2nikt

f(k) = E[f(t)e= 7 |,

where k£ € Z. We have the folloWing lemma, from [Grel2] (see also [Kat86]), which has been
modified to fit our notation. We say that an integer k is a (b, m)-sparse number if it can be

written in the form k = k2" + - -+ + k2™ where each k; € Z, |ki| < m, h; € N.

Lemma 14. Let f : {0,...,2" — 1} — {—1,1} be a function such that 3S C {1,...,7} with
Fourier-Walsh coefficient f(S) of magnitude at least €, where 0 < € < 3. Then there is a

([S l, (}—Qe‘ﬂ))-sparse number k such that the Fourier coefficient f(k) has magnitude at least

~\4IS]
€
(10|S[) .

Applying this lemma to the function fy, -, with sets S of size at most n’, we im-

mediately conclude that, in order to establish the necessary bounds on the Fourier-Walsh
coefficients (which then implies that multiplication has the Linial-Nisan-Braverman prop-
erty), it suffices to show that, for all (n®, 10n92"")-sparse numbers k, |fy. (k)| < 2= for
a fixed constant p such that p > 6§ + v. We say that a particular Fourier component is
negligible if its magnitude has such a bound.

We now show that, for almost all Y, the required bound on fy’ s+(k) holds. The main
idea is that, for each j, fy,; is simply a downsampled version of a square wave. This fact
allows us to express the Fourier coefficients of fy;; in terms of the Fourier coefficients of a
square wave. This is useful because the Fourier coefficients of a square wave are particularly
simple. In the following, we make use of several standard facts about the Discrete Fourier
Transform, which can be found in essentially any text that deal with Fourier Analysis, for
example [OSB99]. We begin with a few definitions. Let Dy = {0,...,Y2™* — 1}, Let

sj : Dy — {—1,1} be the perfect square wave of period 27,
s;(t) = (fl)t'ﬁéﬂ-
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Let py : Dy — {0,1} be a pulse train with interval Y,

1, t=0 modY

0, t£#0 modY

Let hy(t) : Dy — {0,1} be the step function

1, t<Y2r
hy(t) = .
0, t>Y2r

Finally, let gy,»(t) = Y2°hy (t)py (t) HjeJ/ s;(t)-
We then have

27-1
21nkt

Fro(k) = > Z fr(t)e™ 7

= A
- o (H( 1)[2—,'_1' ) 6—2—’;#‘—‘

t=0 \jeJ’

Y2r—-1
= Z py(t) (H( 1)[;,'?1']) — 2Znikt

eJ'

Z pr(t) (H Sg(t)> tEa

jeJ’

Y2r+s 1
1 2#12 kt
Y or+s Z Y2°hy (t)py (t) (H 8; (t)) e Yarts

JjEJ’
1 vt 27i2%kt
= yor+ Z gy (t)e” vorss
Y 2r+s —
= gy, (2°K).

Therefore, it suffices to show that gy, (2°k) is sufficiently small for the k values of
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interest. The convolution theorem implies that

gy, (k) = Y2 hy (k) ® py (k) ® Q) 3;(k),

jeJ!

where ® denotes cyclic convolution.

Notice that, for each j, §;(k) has a particularly simply structure.

2J

1 i
, , k=2u+1)Yy2rts
9i-2 (1_6" 2«1!20—4}-1!) ( )

8i(k) =

0, otherwise

Notice that §;(k) is only nonzero at few locations; specifically, the odd multiples of Y 27+577.

Moreover, notice that the magnitude of the nonzero values falls off quickly. To be precise,

3 15(@2v+ 1)Y2H) = 027)
[2v+11|]>2”'r

for constants n and 7 such that § <7 < 7 < 1. In other words, the only non-negligible part
of §;(k) is at values k given by small odd multiples of a shift of Y (Y shifted to the left by
T+ s — j bits).

We then consider @), 8;(k). We split 3;(k) into a large low frequency component

and a small high frequency component. That is to say, we write $;(k) = 4;(k) +7;(k), where

k= (20+1)Y2r+i |20+ 1| < 27

2j_2 ( 1rzs2v+1!
(k) = 7

0, otherwise
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and

“mmmmy, k= 0+ Y2 2u 1] > 27
27—2 (1——6 2J )
0, otherwise

Therefore,

&) 3;(k) = Q) (@; (k) + 2;(k))

jeJ’ jeJ’
- % (@) (@u0).
J1,J2 JEJ1 jEJ2
JiUJe=J"

Notice that there are at most 2* terms in the above expansion (because |J'| < n%). The
term @) @;(k) is only nonzero at k values of the form (2v; +1)Y27+791 + ... + (20 +
1)Y 275791 where each v; satisfies |2v; + 1] < 2%, All other terms are extremely small
everywhere. To be precise, when J; # J’, every such term involves at least one ¥;(k)
factor and so we can write <®je 5 ’&j(k)) ® (®je I ﬁj(k)) = (k) ® (k) for some function
q: Dy — {-1,0,1}. By combining the bound Y, |9;(k)| = O(2™™") with the trivial bound
|G(k)| < 1, we obtain | (®j€ N aj(k)) ® (@ie " @j(k)) | = O(2™™"). Therefore, the total
~contribution of all terms except &), @;(k) is negligible (0(2-®"-n)). From the above,
it is immediate that the only non-negligible Fourier components are values k of the form
(20 +1)Y27+s0 - - 4 (2u) + 1)Y 27579151 where each v; satisfies |2v;+ 1] < 2" Recall
that each j satisfies r* < j < r + s — r®. Therefore, these values k are of the form Y&/,
where k' is a (]J’|, 2" )-sparse number with at least r* trailing zeros and at most r + s — r*
trailing zeros.

Next, we consider gy (k). We have

dv,r(k) = Y2°hy (k) ® py (k) @ R) 3, (k)
jeJ’

=Y 2hy (k) ® py (k) @ Qs (k) + 9;(k))

JeJ’
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=Y2hy (k) @pr(k)® (@@(k))@ ®ﬁj(k))

J1,J2 JEJ j€J2
JUJe=J"
= Y Y2Zh(k)@iv(k)® (@ @(k)) ® (@ @j(k)) .
Ji,J2 JjEN JjEJ2
JiUJa=J'

By the same logic as above, the total contribution of every term in the sum except the
J1 = J’ term is negligible everywhere (has total magnitude 0(2‘("‘"‘"5)) at all k) and so if
we define the function é’ny,(k) = Y2hy(k) @ py (k) ® & e @i (k), it suffices to show that

gA’ v,y is small at the k values of interest.

We have
) 1, k=u2"ts
py(k) =
0, otherwise
and
) 1 1 _ _27r§k
Y2 hy (k) c

EERT—

Therefore, the only non-negligible values of é’y, 5(k) are those that are “close” to values of
the form Yk’ mod 2™"%. More precisely, the only non-negligible values of g}’y’ g are of the
form k = Yk’ + u mod 2"+, where |u| < 2°*™", and so the only non-negligible values of
fy; »(k) = gy y(2°k) are at values k such that 2°k = YK’ + v mod 275, Or equivalently,
values k where 3%', v’ where k' is (as above) a (]J’|, 2" )-spare number with at least r* trailing
zeros and at most r + s — r trailing zeros, |u’| < 2™ such that k + v’ is equal to the high
2" bits of YK’ mod 274,

Therefore, for a particular value Y, the required bound on | fy’ (k)| holds if, for
every (n?, 10n2"")-sparse number k, we do not have k + u’ equal to the high 2" bits of Y ¥/
mod 27+, for any (|J'|,2"" )-sparse number k' with at least r* trailing zeros and at most
r 4+ s — r® trailing zeros. To see that this holds for all but an exponentially small fraction of
Y, first notice that if & is a (n®, 10n%2")-sparse number, then k + v/ is a (r® + 1,10n2"")-

sparse number. Set the constants 7 and v small enough such that n¥*” < r® (this can be
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done because n = 2r + s — 2r® = 2r + r* — 2r® and so n is polynomial in r). Therefore,
it suffices to show that, for almost all Y, if ¥’ is a (|J’|, 2" )-sparse number with at least 7%
trailing zeros and at most r + s — r trailing zeros then the high 27 bits of Y&’ mod 27+*
is not a (n® + 1, 10n°2™")-sparse number. To see this, notice that, for each pair of sparse
numbers &, k”, there is at most a fraction -2—1-4- of all Y such that the high 2" bits of Yk’

mod 2" are equal to k” and so a simple union bound completes the proof.

Matrix Multiplication

We now show that matrix multiplication is AC°-pseudorandom. Let MATRIX-MULT,, :
{0,1}* x {0,1}"* — {0,1}*" denote the matrix multiplication function, which, on input a
s X r matrix A and a r X s matrix B (both of which are encoded as strings in {0,1}" in the

obvious way), produces the s x s matrix AB.

Theorem 5. If s = r*, for any fized constant u > 0, then MATRIX-MULT,, is AC°-

pseudorandom.

As was the case for the convolution and multiplication problems, we consider a
stronger variant where one of the matrices is held fixed. We then prove the following lemma,

from which the above theorem immediately follows.

Lemma 15. For an s x 7 matriz A, let f4 : {0,1}™° — {0,1}*" denote the function that, on
input a v X s matrix B produces the s X s matrix Z = AB. Then all but an exponentially

small fraction of A yield an f4 that is AC®-pseudorandom.

Proof. To see that almost all such f4 are AC°-pseudorandom, let B; and Z; denote the ith
column of B and Z, respectively. Then, of course, Z; = AB;, and so we can interpret this
problem as the concatenation of s independent instances of the homomorphism problem.
That is to say, if we let f), : {0,1}" — {0, 1} be the homomorphism corresponding to A,
then Z; = f/'(B;). The result then follows from Theorem 2.
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3.2.2 The Reduction Technique
Next-Bit Test and Parity

In this section, another technique for proving that a function appears random to AC? circuits
is presented, specifically, reducing a known hard problem to the next-bit test. The next-bit
test is defined as follows. Given a distribution g, with support {0,1}", we say that yu, passes
the next-bit test if, given the first ¢ bits of a string selected according to p,, no AC? circuit
can predict the (¢ + 1)*" bit with non-negligible advantage, for any i. Formally, for any
Z €{0,1}", let Z; denote the j*" bit of Z (1 indexed, counting from left to right) and Zj; 4
denote the substring of Z from positions j to k, inclusive. Then we say that u, passes the
next-bit test if, for all 7 € {1,...,n}, and for all functions Q; : {0,1}*~! — {0, 1} computable :
by AC® circuits, |Pr(Qi(Zpi—y) = i) — %l = O(27"), for some constant k¥ > 0, where the s‘
probability is taken over values of Z € {0,1}" drawn according to the distribution p,. It
is known [Yao85] that a distribution p, passes the next-bit test if and only if p, O(27™")-
fools all AC? circuits (strictly speaking, the result in [Yao85] was proven for probabilistic
polynomial time algorithms, but the same technique applies just as well to AC? circuit
families). Since, as stated in §1, we say that a function f is AC?-pseudorandom if the
distribution u,, corresponding to it O(27"")-fools all AC? circuits, showing that p, passes
the next-bit test is sufficient to prove the corresponding f is AC°-pseudorandom.

The natural next question is how to prove that distributions arising from particular
functions pass the next-bit test. One idea is to reduce a problem that is known to be hard
for AC?, such as the parity problem, to the next-bit test. The parity problem is defined as
follows: given some X € {0,1}*, compute ) ; X; mod 2. In other words, the parity of a
string’is 1 if there are an odd number of 1s in the string and 0 if there are an even number of
1s in the string. It is known that no AC? circuit family can compute parity [FSS84],[Ajt83].

In fact, parity can’t even be non-negligibly approximated in AC° [Has86]. To be precise, if
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we define h(s, d,n) to be the function such that no depth d circuit of size 2° computes parity
correctly for more than a % + h(s,d,n) fraction of the inputs, then we have the following

(Theorem 8.L.iii in [Has86])
Theorem. [Has86] h(s,d,n) < 2“9((3)#T) ford>2 and s < na.

The goal is then to reduce the parity problem to the problem of computing the next
bit of a string drawn according to p,, or, in other words, show that if some AC? circuit
could predict the next bit with non-negligible advantage, then it could be used to produce
another ACP circuit that approximates the parity problem, with non-negligible advantage.
Since the parity problem cannot be approximated by such a circuit, we could then conclude

that the original distribution must pass the next-bit test.

Integer Multiplication

As was already shown in Theorem 4, the function MULT, ;s is AC®-pseudorandom when
s=r"and k =1+ s — (MIN(r, s))*, for constants u > 0 and 0 < a < 1. This was done
by considering a variant of the multiplication function in which one of the multiplicands
is held fixed. Specifically, for Y € {0,1}°, we defined the function fy : {0,1}" — {0,1}*
which takes a value X € {0,1}" to the middle k bits of X X Y. As shown in Lemma 12,
fy is AC’-pseudorandom for all but an exponentially small fraction of Y, when s = r* and
k =r+s— (MIN(r, s))*. In this section, we will be interested in results that hold when s is
much greater than r. Specifically, we are interested in the case when s > r* for all constants
u > 0, but r > log®s for all constants ¢ > 0. Recall that we say a given function looks
random to AC? circuits if the distribution corresponding to it can only be distinguished (by
ACP circuits) from the uniform distribution with advantage O(2~""). In this section we relax
this condition only slightly, and only require a bound on the advantage of the form o(27198°")
for all constants ¢ > 0 (in other words, we require that no AC? circuit can distinguish with
advantage one over any quasipolynomial in n). We show that, for certain Y, fy is AC®

pseudorandom with these parameters. This has several interesting consequences. Firstly,
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this yields a simple, multiplication based pseudorandom generator with the same stretch
and security parameters as the Nisan-Wigderson generator [Nis91]. Secondly, this shows
that the result in [CSV84], which states that an AC? circuit can multiply an n-bit value Y
by a O(log®n) bit value X is tight,

We restrict our attention to Y € {0,1}® that are “sparse”, in the sense that only a
small number of the bits of Y are 1s. Specifically, we generate Y as follows: each bit is set
to be 1 with probability 7=, for a constant 0 < € < 3. As before, let fy : {0,1}" — {0,1}*
be defined such that fy takes the value X to the middle k& bits of the product X x Y, where

here k = r + s — 2r?. We prove the following theorem.

Theorem 6. With high probability (where the probability is over the selection of Y according
to the above distribution, and the statement high probability means within an exponentially

small distance from probability 1), fy is AC®-pseudorandom.

Proof. As usual, we consider strings of the form X o fy-(X). For convenience, we assume that
both X and the substring of Z = X x Y produced by fy are written from least significant
bit to most significant bit, when read from left to right. We let n denote the total length of;
the string, and so n = 2r+s—2r%. Consider the nekt—bit test applied to strings generated in
this manner. Since the first r bits of the string are bits of the uniformly randomly generated
number X, we conclude, for information theoretic reasons, that there is no hope of any AC°
circuit predicting the *® bit, given the first i — 1 bits, for 4 € {1,...,r}. All that remains is
to prove the same claim for i € {r+1,...,n}, which will be done by showing that any AC?
circuit that predicts such a bit with non-negligible advantage can be used to approximate the
parity function, with non-negligible advantage, which we know is impossible. We assume,
for contradiction, that we have an AC? circuit, call it C, that can predict some next-bit of
our pseudorandom string, call it bit i, given the first ¢ — 1 bits. Using the circuit C, we will
p‘roduce an AC" circuit D that predicts (with non-negligible advantage) the solution to a
parity problem T of size r¥, for some v > 0, which is impossible.

Begin by noting that, if ¥; denotes the j*! bit of ¥ (0 indexed, counting from least
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significant bit up), then we have X xY = X Z;;(l) Y2 = Z;;(l) XY;29. Thus, we can
understand the multiplication of X by Y as the sum of many shifts of X, where the amount
that X is shifted in determined by the locations of the 1s in Y. To be precise, for each j
such that Y; = 1, we include a copy of X shifted left by j indices. To produce the product

X xY, we then sum all copies of X. This is illustrated in the figure below.

i
HNEEEEEEEEEEEREERE

'Each column contains certain bits of X. One way to characterize which bits appear
in each particular column is to imagine sliding the strings X and Y®FY past one another,
where YREV ig the string Y flipped left-to-right. To be precise, start by aligning X and
YREV such that the least significant bits of X and Y line up, and no other bits initially line
up. To determine which bits of X lie in column j (where we number the columns from right
to left, starting with 0), slide Y®FY j bits over; exactly the bits of X that lines up with a 1
in Y appear in column j. This is illustrated in the figure below.

& TTTITI11™
" EREEN 1

Define sets U; C {0,...,r — 1} such that U; consists of all indices of X that appear
in column j. Let S; C {0,...,s — 1} be a collection of indices of Y. The exact manner in
which the S; are selected will be specified shortly. Let V; C U; be indices of X that appear
in column 7 because they lined up with a 1 in Y at one of the indices S;. As noted above,
we must have i € {r + 1,...,n} (the portion of the string containing bits of the product
Z = X xY), and so we are predicting bit ¢ — r + 72 — 1 =: k of the product. Notice that,
if it weren’t for the fact that there are carries when computing the sum of the various shifts
of X, bit k£ of the product would simply be the parity of the bits of X selected by Ui. The

key idea will be to construct the sets Vi so that they are individually large, |Vi| > log®s, for
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g(s), if 3s € {0,1}" such that f(z) =z -s Vz
FSn(f,9) =

*, otherwise

This function can very naturally be interpreted as encoding a promise problem, called
the Fourier sampling problem, in which the promise is that f is a linear function (that is to
say a function of the form f (z) = z - s), and the value of FS,(f,g) (when the promise is
satisfied) is simply g(s). We will frequently refer to the value s as the secret encoded by f.

Next, we define a slight variant of the above problem where the function g is fixed (that
is to say that it is not part of the input to the function). Formally, for any positive integer
n and any function g : {0,1}" — {0,1}, we define the function FSY : {0,1}*" — {0,1} as
follows. We now interpret the input to the function as encoding the truth table of a single

function f : {0,1}" — {0,1}. We then define

FSS(f) = g9(s), if 3s € {0,1}" such that f(z) = - s Vz

X, otherwise
We now define the recursive Fourier sampling function, which is a variant of the
Fourier sampling function in which each bit of f is produced, recursively, by a smaller
instance of the recursive Fourier sampling problem.
Formally, let RFS,; : {0,1}"*?" — {0,1} be the (total) Boolean function where the
input is interpreted as a pair (s, g) for a secret s € {0,1}" and a function g : {0,1}" — {0,1}

given as a 2" bit long truth table, and

RFS,1(s,9) = g(s).

For each h > 1, we define RFS,, recursively in terms of RF'S, - as follows. Let
M, = n2"(h‘1)+zg;11 2" Then RFS,, ), : {0,1}Mnr — {0, 1, ¥} is the partial Boolean func-

tion defined as follows. The input is interpreted as being of the form (Ry, Ry, ..., Ran_1,9),
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all constants ¢ > 0, but have small intersection with any Uj;, |V NU;| < 2, Vj < k, and then
fill the bits of X specified by V; with the bits of an instance of the parity problem. This is
very similar to the notion of a combinatorial design, [Nis91], with the exception of the fact
that here we consider subsets V; of U;.

The circuit D predicts the solution of the parity problem T" by producing a multi-
plication instance to feed to C , that is to say the first ¢ — 1 bits of a string produced by
multiplication. This string consists of a value X and some of the bits of the product XY.
We construct this multiplication instance as follows. Begin by setting the bits of X selected
by Vi to the bits of the parity instance T'. To set the other bits of X, notice that if C can
truly predict the next-bit test with non-negligible advantage, then this means, by definition,
that the advantage of C, averaged over all choices of X, is non-negligible. In particular,
this means that there must exist at least one setting of the other bits of X such that C has
non-negligible advantage as just the bits selected by Vi vary (uniformly). We then set the-
other bits of X to such a fixed value. To be clear, the claim is not that an AC? circuit can
find a proper setting to the other bits of X, but rather that such a value can simply be built
into D (because it is only a single fixed value, which depends only on the input size t of
circuit D). In order to calculate the lowest k£ — 1 bits of XY that must be fed to C, we write
X = Xinput + X fized Where X, consists of the ¢ bits of the input to D, which are assigned
to the positions specified by Vi, as X izeq corresponds to the fixed setting of the other bits
of X. Since both Y and Xji,eq are fixed values, we can also build the value Y X;;.q into D.
Therefore, if it were possible to compute in AC? the low k£ — 1 bits of ¥ Xjpu, then it would
be possible to compute the low k — 1 bits of XY because XY =Y Xnput + Y X fizeqd, and we
can, of course, perform addition ifl ACP. The key observation is that, with high probability
over the choice of Y, it will be easy to compute ¥ Xippys-

To see this, notice that, with high probability over Y, there will be a choice of S; such
that |V, NU;| < 2, for j € {0,...,k — 1}. This is simply the statement that each column

of multiplication problem illustrated in the figure above contains at most two bits of Xiput-
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Therefore, these bits can be packed into two numbers, whose sum (which is calculable in
ACY) will be the low bits of Y X;npu. To see that |Vi N U;| < 2, with high probability, let
Y’ be identical to Y except that all bits outside of Sy are set to 0, and note that |V NUj]| is
simply the number of 1s that line up when Y and Y’ are slid over one another, or, in other
words, the number of h such that Y}: and Y}_(x—j; are both 1. To bound the probability
that Vi N Uj| fails to be at most 2 for every j, we show this failure probability (where,
again, the probability is taken over the choice of Y) is extremely small for a single fixed j
and union bound over the j. Fix j and define @, = Y}:Yh_(k*j); then |Ve NU;| = 3, Qn.
Unfortunately, the @}, are not independent. To deal with this, partition the indices h into
two classes, where the first class contains all h such that A mod 2(k — j7) falls in the range
[0, k—j —1] and the second class contains all other h. Notice that h and h— (k—j) always are
in separate classes, and so the set of all ) such that h is in the first class are independent,
and, similarly, the set of all ), such that A is in the second class are independent. We show
that >, @Qn < 1, where the sum is restricted to a single class. Recall that the bits of Y are
generated (independently) such that each bit is 1 with probability »~¢ and that, if we select
the special bits S, at random (which is allowed because we need only show 3Sk that satisfies
the above) such that each of the bits of Y that line up‘ with a portion of X (When sliding Y
over X, only part of Y lines up with actual indices of X at any given shift) are included in
Sy, with probability 7—(1=¢) then a bit of Y” is 1 with probability r~(2=2¢). The result follows
from a simple application of the Chernoff bound.

Thus far, we have shown that D can produce a multiplication instance to feed to C.
To use the result produced by C (namely, the predicted next bit of the product) to determine
the parity of T, notice that the correct value of the next bit of the product is simply the
exclusive-or of the parity of T', the parity of those bits of Xjizeq that appear in column &
of the multiplication problem, and the carry bit that enters column k& when the low k — 1
bits of Y Xinpuwt and Y Xy;zeq are added to produce the low k& — 1 bits of the product XY.

Since X fizeq is a single fixed value, the parity of those bits that appear in column & can be
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built in to D. As noted earlier, it is possible, in AC?, to compute the sum of the low k£ — 1
bits of ¥ X;,pu and Y X izeq, including the carry into column k. Thus, if the next bit can
be predicted with some advantage, then the parity of T can be predicted with the exact
same advantage. This contradiction completes the proof that the multiplication problem, as
defined above, looks random to ACY.

O

It is worth noting that, while the above proof was only carried out in the case when
r < s* for all constants o > 0, but r > log®s for all constants ¢, the same technique would
also work for other parameters, such as if s = r*, for some constant u (the parameters of
Lemma 12). Moreover, a similar argument would show that, if r = O(log® s), then fy passes

all AC? tests of depth at most d, where d depends on c.

3.2.3 The Algebraic Integer Problem

In this section, it is shown that the algebraic integer problem looks random to AC? circuits.
We begin with a few definitions. An algebraic integer is a root of some monic polynomial
with integer coefficients. An algebraic number ficld is a finite field extension of Q. Given
some algebraic number field K, the ring of integers of K, denoted Og, is the ring that
consists of all algebraic integers in K. For every K, Ok is a free Z-module, and so has
an integral basis (that is to say, 3by,...b, € Ok such that every element of Ok can be
uniquely expressed as ) . a;b;, for a; € Z). For a particular basis B, we define the function
B :{0,1}™ x---x{0,1}™ — {0, 1}* such that fg(a,,...,ay) is the first k bits of the binary
cxpansion of the fractional real part of 3, a;b;, where for i > 1, m; = m{* for some constant
u; > 0, and k = mj, for any constant u. We show, via reduction from the multiplication
problem, that certain fg are AC®-pscudorandom.

As an example, consider the algebraic number field K = Q(\/&), for d a squarefree
positive integer. It can be shown that, when d = 2,3 mod 4, then {1,+/d} is an integral
basis for O and that when d = 1 mod 4, {1, (1 + v/d)/2} is an integral basis for Ok (of
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course, since d is squarefree, we can’t have d = 0 mod 4). Let b; and b, denote the basis
elements, in the order they appear above. Then fg(a1,as) is simply the first k bi.ts of the
fractional part of a;b; + a2bs, which is identical to the first £ bits of the fractional part of
agby (because aq,b; € Z). It is straightforward to show that, for all sufficiently large n, and
all strings Y € {0,1}*/21=1 there is an n bit value d for which the binary expansion of the
fractional part of v/d starts with the string Y. In particular, if we consider a string Y such
that the multiplication function fy is AC%-pseudorandom, then the corresponding f3 is also
AC?-pseudorandom, because it is just the multiplication problem av/d bit-shifted, possibly
with 1/2 added.

In general, consider any basis B of some Ok such that there is some basis element b;
in B such that the binary expansion of the fractional real part of b; starts with a value Y for
which fy is AC%-pseudorandom. Rather than consider fg directly, it will again be convenient
to consider a variant of the function in which some of the inputs are held fixed. In particular,
we wish to fix a; for each ¢ # j. Define the function fp jq, . .a;_1a+j+1,an : {0, 1}™ = {0, 1}
such that it maps the value a; to the first k bits of ). a;b;. By a straightforward reduction
from the multiplication problem, it follows that fpja,,..a;_1+j+1,0s 1S AC"-pseudorandom,

which then immediately implies that fp is AC°-pseudorandom.
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Chapter 4

Polynomial Degree

4.1 Recursive Fourier Sampling

In this section, we consider the recursive Fourier sampling problem. Numerous variants
of this problem have been considered by many authors (see, for instance, [BV93], [BV97],
[Aar03], [Aarl0], [Joh08]). The version considered in this thesis, and the notation used,
follows most closely [Joh08], but essentially the same claims hold for all other standard

variants. We begin by precisely defining the problem.

4.1.1 Definition of the Problem

First, we define the Fourier sampling function. For every positive integer n, we define the
partial Boolean function FS, : {0,1}*""" — {0,1, *} as follows. We interpret the 2"+! bit
long input to F'S,, as a pair of truth tables defining the functions f, ¢ : {0,1}" — {0,1}. For
z,s € {0,1}", let x; and s; denote the i bit of z and s, respectively. Let z-s = Y, z;s;
denote the usual Boolean inner product (where of course the sum is evaluated modulo 2).

Then
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where for each o € {0,1}", R, is an instance of RF'S,, -1 and g is a funciton g : {0,1}" —

{0,1} given as a 2" bit long truth table. We then define

g(s), if 3s € {0,1}" such that Vo € {0,1}* RF'S, 1-1(R;) =0"-s
RFS,h(Ro,...,Ron_1,9) =

*, otherwise

In a precisely analogous fashion, we define RFSg,h where now there is a single fixed
g used throughout the problem, rather than a collection of functions provided as part of the
input.

We very naturally interpret RFS,; and RFS}, as encoding a particular promise
problem, where the promise is that, at every node in the tree, there exists some s € {0,1}"
such that the function f : {0,1}" — {0,1} defined at this node is of the form f(z) =xz-s. -

-Fix the entire input to the recursive Fourier sampling function in any way such that
every promise is satisfied. For any node t in the tree, we define the value of the node, which
we denote by b(t) to be the output of the instance of recursive Fourier sampling corresponding
to the subtree rooted at t.

Notice that, due to the structure of the promise, in order to determine the value
of node t, it is only necessary to know the values of n linearly independent children of t.
That is to say, if the children of ¢ are given by C(t) = {t, : ¢ € {0,1}"}, then b(t) is
completely determined by the value of a subset of children C” for any C’ C C such that
C' = {toy,-..,ts,} Wwhere {01,...,0,} are linearly independent (as vectors in {0,1}", in
other words the o; form a basis of {0,1}").

For i € [n], let x; € {0,1}" denote the i*" elementary basis element. That is to say
x; has value 1 in position ¢ an(i 0 elsewhere. Clearly, the set of x; fofm a basis of {0,1}",

and so, for any node t, the value of node ¢ is completely determined by the values of these
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children. We call this set of children the elementary children of t, which we denote by
Ce(t) = {ty, : i € [n]}.

Therefore, given an instance (a particular single setting of the input) of RF'S, ) or
RFS; ,, that is guaranteed to satisfy the promise, the answer (the value of the root of the
tree) can be determined by first determining the value of the n elementary children of ¢. The
value of each of these children can be determined from their n elementary children. This
process can be repeated until the leaves of the tree are reached, at which point the value of
each node is simply the output of an instance of RF'S, ;. We refer to this collection of leaves
obtained by repeatedly finding elementary children as the elementary leaves. For a tree of

height h, there are clearly n*~! elementary leaves.

4.1.2 Recursive Fourier Sampling is J-versatile

In this section, we show that for certain natural choices of the function g, such as the majority
function or the generalized inner product function, RFS,’;’h is 6-versatile, for suitably chosen
J. |

Fix n, and let m denote the total length of the input to RFS . Clearly m = n2h-r",
Let UJ, C F3' denote the set of all points at which all promises are satisfied (that is to
say, the set of all values of inputs to the recursive Fourier sampling function such that, at
every node of the tree, every linearity constraint is satisfied). We frequent;ly refer to U;i h
as the “promise”. On the promise, the recursive Fourier sampling problem is, of course, a
total function. By slight abuse of notation, we also denote this induced total function as
RFS} , : U3, — Fy. Similarly, we define Uj, = (RFS3,)71(0) and U}, = (RFS},)7(1) as
the points at which the recursive Fourier sampling problem evaluates to 0 and 1, respectively.
The superscript g will often be omitted when the function is clear from context.

The first key result of this section, which holds for any g, is the following lower bound
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on regularity of U, U7, and U7 ,.

Lemma 16. For any positive integers n,h and for any g € Fa[z1,...,z,], let d = deg(g)

and let RFSfL,h : F* — Fo denote the recursive Fourier sampling function. Then

h-1
'f‘eg(U]ih) Z ndh—l + (TL _ d) Z andh—j—l
j=1

h—1
reg(Ug 1), reg(Uf},) = (n — d) Z oin gh—j—1
§=0
Proof. Letry,, € Fy[ry, ..., 2y] denote the unique squarefree polynomial such that ry, , (z) =

1 if and only if z € U, ;. By a straightforward counting of the number of promises of each
degree, we have deg(ry,,) < (2" —n) Zg:ll 20-Ungh=i_ By construction ry,, vanishes on
Up,r and so

a(Up,p) < deg(ru,,)

h—1
< (2" —n)) 20 ngh~i
7=1

—1 h-1
— 9n ( QU—l)ndh-—j) —n (Z 2(j‘1)ndh—j)
j=1 j=1
h—1 h-1
— (E 2jﬂdh—j) —-n (Z 2(j—1)ndh~j)

J=1 j=1

h h—1
=d (Z 2(j—1)ndh—j) —n (Z Q(j—l)ndh—j)

j=2 j=1
h—1
= @2t —pdh =t — (n — d) D 207t
j=2

Applying Lemma 2, we then have

reg(Up) = n2=D" — o(T,, 1)
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h—1
> (n— d)2* " 4+ nd* "+ (n—d) Y 207D
Jj=2

h
=nd"! + (n—d) Y _ 207Ingh~I

=2
h—1
=nd"' +(n—d) ) 2md"I
=1
Similarly, define ry;, ,, Ty, , € Fo [Z1,...,Zm] as the unique squarefree polynomials such

that 7y, ,(z) = 1 if and only if x € Uy and ry, ,(x) = 1 if and only if x € Uy . We then
immediately have deg(ry,,),deg(ry,,) < deg(ry,,) + d*, and so, by a precisely analogous
argument as above

h—1

reg(Us,u), reg(Unp) > (n — d)d"™* + (n —d) »_ 2ngh—~~

i=1
h-1
=(n—d)) 2"
=0
O

We now exhibit certain functions for which the above lower bounds on regularity
are cxact. The first such example is the majority function, for certain appropriately chosen
input sizes. For a z € {0,1}", let z = (z1,...,z,) and let wt(z) = |{¢ : z; = 1}| denote
the number of 1s in z. Let MAJ : F? — F5 be defined such that MAJ(z) = 1 if and only
if wt(z) > . We begin by determining the unique squarefree polynomial in Fa[zs,. .., zy]
that represents MAJ. Let €;(%) = 3  jc(y)71=i 2ojes T5 denote the it? elementary symmetric
polynomial. For y, z € {0, 1}!, write y >, z if and only if y; > 2; Vi.

Lemma 17. For any positive integer n, the unique squarefree polynomial in Fa[zy,. .., zy)

that is identically equal to MAJ F5 — Fy on Fy is given by

DD eila)

125 2l
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Proof. Begin by noticing that

ei(z) = (wt@) mod 2.

1

By a straightforward application of Kummer’s lemma, we then conclude

1, wt(z) >pi
ei(x) = :
0, otherwise

Next, define functions E; : F§ — Fs and G; : F§ — F, such that E;(z) = 1 if and

only if wt(x) = ¢ and G;(z) = 1 if and only if wt(z) > i. We then have

Efz) =Y _e;x).
C 2wt
To see this, simply notice that if E;(z) = 1 then wt(z) = ¢ and so e;(z) = 1, but e;j(z) =0
for all other terms in the above sum. If Ej(z) = 0, then wt(z) =t # ¢. There are then two
cases: if ¢ <p t, then the only terms in the above sum that evaluate to one are precisely all
values j such that ¢ <, 7 < t, of which there are an even number; if ¢ £, ¢, then Vj such that
Jj >»i, 7 Lo t, and so every term in the above sum evaluates to zero.

We then have

Gi(z) =) Eyx)

1>

=YY (@),

12 52l

and so

MAJ(X) = G (a)

=)0 e(a).

122 525l
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We now consider RFS)}7. We begin by demonstrating a useful symmetry in UMA.
Define the value 1; € Uph MAJ a5 follows. Consider the recursive Fourier sampling tree. We
define 1, by first defining b(t) for every node ¢ in the tree (that is to say, we define the value
b(t) that node ¢ has with input 15). First, assign the root of the tree the value 1. Then, for
each node that has been assigned a value, assign values to the children of that node as follows.
If node t has value b(t), then set b(t,) = b(t) for each t, € C.(t). Assign all other children
the value forced by the promise: for each t, € C(t) \ Ce(t), set b(ts) = 3 ;ep,0,=1 b(tx;)-
Equivalently, if a node has value 0, all of its children have value 0; if a node has value 1,
then each child ¢, has value given by the parity of the string . Once the entire tree has
been labeled in such a fashion, define 1, by setting the portion of the input corresponding
to each leaf (that is to say, the n places of the input representing the secret at that leaf) to
the value of that leaf.

It is clear that the value 1, € U MAJ as claimed, due to the fact that 1, was constructed
in a way such that the promise is satisfied at every node. Moréover, 1, € Uik MAJ as, by
construction, the value of the root is 1. For any z € U MAJ Jot & =2 @ i, (where @ denotes

bitwise parity). We then have the following.

Lemma 18. For any odd positive integer n and any positive integer h, x € UMAY if and only

if & € U, MAJ.

U(I)\'I,;"‘J , the root of the corresponding recursive Fourier sampling tree

Proof. Given any x €
has value 0. The key observation is that adding 1, flips the value at every elementary leaf
of the tree. That is to say, if on input z, a particular elementary leaf ¢ has value b € {0,1},
then on input 2, that leaf has value b. This occurs because, by construction, 1, is 1 at every
position in the elementary leaves. It is then straightforward to see that value of the root

of the tree flips and that every promise is preserved, which implies & € U{‘ﬁ;“. The reverse

implication follows from the fact that £ = z and symmetry.
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We now show that Up}* and UMA? have identical standard monomials.

Lemma 19. For any odd positive integer n and any positive integer h, SM(U, MANY =

SMULZY).

Proof. For any algebraic set, every monomial is either a leading monomial or a standard
monomial, and so it suffices to show LM(U}) = LM(UMM).

We first show LM(UJIM) € LM(UMAM). Consider any * € LM(U}*). By definition,
g, € Folzy,...,x,] such that ¢, € I(UMAJ) and lm(q,) = z*. Define g, € Fa[z1,...,Zm)

such that §,(z) = g.(%). Notice that

m((ja) = hn(‘]a) =z

Moreover, for any z € Uy}, MAJ Lemma 18 implies that & € Uoih MAJ and so

ﬁa(f) = qa(j) =0,

where the last follows from the fact that ¢ vanishes on Uy}, MAJ This implies that g, € I (U MAJY,
and so 2 € LM(UMM). Therefore, LM(U) € LM(UMAM).

A precisely symmetric argument implies LM(U3}2T) 2 LM(UMAY).

Next, we provide upper bounds for the regularity of U;"IhAJ, Ush MAJ and U} MAJ.

Lemma 20. For any odd positive integer n and any positive integer h, let RFS}MA . Fp' —

Fy denote the recursive Fourier sampling function with majority. Then

h— _ h—j—1
reg(U%A*’) <n (_7%_1_) (n 1) 22171 (_+_1)

J=1
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n—1\ & . [n+1\+7!
reg(U&JhAJ), Teg(UﬁAJ) < (T> Z 2 (—2—-—> .

=0
Proof. We show this by induction on h. First, consider the case in which A = 1. Clearly,
UMAT = F3 and so reg(UMM) = n. Moreover, U} = (MAJ)™'(0) and UM = (MAJ)~1(1),

and so, by Lemma 5, we have reg(Ug,1) = reg(U11) = %5+.

We now consider the case in which h > 1. First, consider Up)}*. By the definition

of regularity, reg(Up,;) is the minimal value of d such that h%*(Up,d) = |Ups|. Therefore, if,

for some d, h®*(Up p,d) = |Upn|, then reg(U, ) < d. In particular, let

n+1\" a1\ i (n+ 1)
o5 ()R (23

Then, in order to show reg(U, ) < d(h), it suffices to show h*(Upp, d(h)) = |Upal-

To show this, as before, let m = n27(1 denote the total size of the input to RFSMAI,

e (i (1)

denote the inclusion matrix in which the rows are indexed by elements of Uy, and the columns

and let

are indexed by all squarefree monomials of degree at most d. By Lemma 3, h*(Upp,d) =
ranky, (M), and so it suffices to show rankg, (Mgr)) = |Upn|- Observe that |Up, | is precisély
the number of rows of My, (and is, of course, substantially smaller than the number of
columns), and so this is equivalent to showing that the matrix My, is full rank.

To see that My is full rank, assume, for contradiction, that it is not. By definition,
this means that there exists some non-empty T' C U, such that the sum of the rows of
My indexed by T is 0 in every column. We now show that, for any T' C Uy, 5, Ja such that
the rows indexed by T have the sum 1 in the column indexed by the monomial z®, which is,
of course, a contradiction. |

Let z; denote the *® input variable. Let E C [m] denote the indices of all variables

that are inputs to the elementary leaves of the recursive Fourier sampling tree. Clearly,

66



|E| = n* as there are n"~! elementary leaves, each of which have n input variables. Define
o : Upp — {0,1}"" such that, for any = € U, ,, o(z) is the portion of z at indices E. We
refer to this value as the signature of z. Consider a partial ordering on the set of signatures
given by the usual bitwise ordering. That is to say, for any y,z € {0, 1}"h, let y; and z;
denote the *® bits of y and z, respectively. Define y < z if y; < 2; Vi. Similarly, define y < 2
ify < zandy # z. Let Sy = {o(z) : ¢ € T} and My denote an (arbitrary) maximal element
of St with respect to the partial order on signatures. That is to say, Mr is any single value
that satisfies M € Sy and Ay € Sr such that My < y.

Recall that each column of My is indexed by a squarefree monomial % = x7* - - - o,
Consider any column of My that is indexed by some z® such that « agrees with My (that
is to say, for each 7 € E, o; is equal to the corresponding value of Mr). The key observation
is that the only rows x € T that could possibly have value 1 in column z® are those such .
that o(z) = Mr. To see this, notice that in order for a particular row z € T to have entry -
1 in column z¢, it must be the case that z; = 1 at every ¢ € F such that a; = 1, and so, by
definition, o(z) > Mr. If o(x) # Mz, then (X ) > My, which contradicts the definition of
My, and so we must have o(X) = My, as claimed. i

Let Z C T be defined such that Z = {x € T : o(xz) = Mz}. Then, for any column
indexed by an z* such that o agrees with My, the sum over all z € T and the sum over only
those z € Z must be equal. Therefore, it suffices to exhibit a column indexed by z* such
that o agrees with M7 and the sum over all rows £ € Z in column z“ is 1.

To do this, notice that the set Z is an algebraic set (as it is simply a set of elements
in FZ*) where every = € Z lies within a particular subspace, namely the subspace consisting
of the set of z that satisfy o(z) = My. We now consider Z, which is the induced algebraic
set living within that subspaée. More formally, we partition the collection of variableé into
two pieces: E and [m|\ E. For any z € F3, let zr and Tim\E dénote the portions of
z indexed by E and [m] \ E respectively. We define the algebraic set Z C FI™™" where

Z = {.’I:[m]\E 1z € Z}.
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We now consider the inclusion matrix

=4 (2 (i)

where the rows are indexed by the zp,)\£ € Z and the columns are indexed by the monomials
wﬁn]\ g The next key observation is that, in order to prove the existence of a column z* of
the desired form, it suffices to show rankg, M = |Z|, in other words, that the matrix M is
full rank. To see this, notice that if M is full rank then, by definition, for every non-empty
set of rows R C Z , there is some column xﬁn]\ g such that the sum in that column over the
rows R is equal to 1. In particular, there is some column xﬁnl\ g such that the sum of every
row in the column x’[?m]\ g is equal to 1. Fix any such 8, and deﬁne a such that ag = My
and ajm)\e = B. By construction, the sum of the entries of My in column z* and rows Z
is equal to the sum of the entries of M in column :vfm]\ g and rows Z. Therefore, the sum of
the entries of My in column z and rows Z is 1, as desired.

All that remains is to show rankg,M = |Z|. By Lemma 3, this is equivalent to
showing reg(Z ) < d(h) —n". Before providing the details of this regularity bound, we briefly
state the main idea which is that Z C Vi X -+ x V,, where each V; is (isomorphic to) either
UMY or UMAY where each h; < h. The induction hypothesis bounds the regularity of each
such V;, which in turn provides the required bound on the regularity of A , because, by the

definition of regularity, Z C Vi x --- x V,, immediately implies
reg(Z) < reg(Vy X -+ X V,,) = Zreg(v;;).
i

We now show the required bound on reg(Z ). By construction Z is the algebraic set
consisting of the elements of 7' which reside in the subspace defined by o(z) = My. We
now consider how the constraint o(z) = M7 interacts with the linearity promise of recursive
Fourier sampling. Consider the recursive Fourier sampling tree. The key observation is that

the constraint o(z) = My fixes the value of all of the elementary children, which in turn
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fixes the value of every “sibling” of an elementary child. This, essentially, “decouples” the
problem into the cartesian product of several independent, smaller instances of the recursive
Fourier sampling problem.

To be precise, begin by noting that requiring o(z) = Mr directly forces the value
“(that is to say, the output) of each of the elementary leaves of the recursive Fourier sampling
tree. By simply propagating this constraint upward through the tree, the value of all of the
elemenfary children is also forced. To see this, simply notice that, by construction, if the
value of all elementary children of a particular node ¢ is forced, then the value of ¢ itself is
forced. Since each elementary child which is not an elementary léaf has its own collection of
elementary children, the result immediately follows. .

We therefore conclude that the constraint o(z) = My forces the value of all n*~!
elementary children. Of course, this is only a tiny portion of the #(n2"") nodes of the recursive
Fourier sampling tree. However, the linearity constraint imposed by the promise within -
recursive Fourier sampling causes the constraint o(x) = Myp to constrain other portions
of the recursive Fourier sampling tree. In particular, begin by considering the root of the
recursive Fourier sampling tree. As noted above, the constraint o(x) = Mr directly forces -
the value of each of the n elementary children of the root. Moreover, due to the linearity
constraint, the value of the other 2* —n children of the root are also forced. In particular, if
we let ¢ denote the root of the tree, t; denote its i** child, b(t;) denote the value of node t;,
i; denote the j** bit of 4, and x; denote the clement of {0,1}" which has value 1 in position

7 and value 0 elsewhere, then

b(t:) = > blty,)-

jiij=1
Therefore, for any z that satisfies o(z) = Mr, if we consider the portion of z that lies under

the subtree rooted at ¢;, for any ¢; which is not an elementary child of the root node ¢, then

UMAJ

this portion of x must lie within an algebraic set isomorphic to b(t:) b1

Precisely the same logic applies if we consider any elementary child that is not an

clementary leaf. At [ levels down from the root of the tree, there are n! elementary children,
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each of which have n elementary children and 2" — n» non-elementary children. For any x
that satisfies o(x) = Mr, the portion of x that lies under the subtree rooted at each of the
non-elementary child ¢ must lie within an algebraic set isomorphic to Ug‘(’lt‘)"’i_l_l.

Next, notice that this process completely partitions the input of the recursive Fourier
sampling tree into a piece that lies beneath the elementary leaves and many other pieces
which each lie beneath the subtree rooted at a non-elementary sibling of some elementary
child. To see this, consider any particular input variable z; and consider its highest ancestor
(other than the root of the tree) which is not an elementary child. If such an ancestor does
not exist, then this variable is an input to an elementary leaf. If such an ancestor does exist,
then it must be a non-elementary child of an elementary child (or of the root of the tree),
and so this ancestor will have elementary children of its parent as siblings. We therefore
conclude that Z C V; x - - - x V,, where each V; is (isomorphic to) either U, AT or UMAY where
each h; < h, as claimed. Counting the number of copies of each U} and UMM, using
Lemma 19 to conclude that reg(Ug'*’) = reg(U};*’), and applying the induction hypothesis

to bound the regularity of U)’AY and UMAY yields the following.

reg(Z) < Zn“ —1r — n)reg(Ué"ﬁf‘_Jz

i=1 j=0
_ (";1) [(;;11 i lhg“; . (E%_—l)h—i—j—l) ~ (:11 y h]:‘;l gin (n_;_l)h—i—j—1>:|
ST () T) B
(n - 1) [(g i hfl o (n; 1)"“""1) _ (H i hfl oo (n_;r_l)""i"j_l)}
=0 j=1 i=1 Jj=0
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This immediately implies

+1 h—1 ~1 h—1 ) +1 h—j—1
reg(Ups) < d(h) =n (n 5 ) + (n 5 ) Z in (nT) .

Jj=1

Essentially the same argument applies to bound reg(Uéf,f‘J ). More precisely, again

consider the case in which h > 1, we will show

)5 ()

_(n=1)(n+1 h_1+ n—1 §2ju n+1\"7!
2 2 2 - 2

Jj=1

reg(U MAJ (
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h~1 h _ h—1 ) h—j—1
—n n+1 _(n+1 4 n—1 ZZJ" n+1
2 2 2 o 2

= d(h) — (";1)h.
MAJ)

We perform precisely the same analysis used to bound reg(U,}

, with the only
changébéing the fact that when Mr € {0, 1}”h is now constructed, we can now conlude that
wt(Mr) < nt — (p—}l)h, where wt(Mz) denotes the number of 1s (the weight) of Mr. This
follows because, for any x € T' C Uy, the value of the root node must be 0,> by definition.
For any node to have value 0, the majority of the elementary children of that node must have
value 0 (because the function being evaluated at each node is MAJ). Due to the fact that
each node has n elementary children, this requires that any node with value 0 has at least
ﬂ;—d (recall that, by assumption, n is odd) elementary children with value 0. In particular,
the majority of the eiementary children of the root node must have value 0. Moreover, for
each elementary child of the root node that has value 0, the majority of its children must
have value 0. Continuing in this fashion until we reach the elementary leaves, we conclude
that at least ("TH)h variables that are inputs to the elementary leaves must have value 0, and
so at most n* — (ﬂg—l—)h have value 1, which shows the claimed bound on wt(M7). Therefore,

when we construct o by ag = Mr and op,pg = B, we now have
reg(Uph ) < wt(a)

= wt(aE) + wt(a[m]\E)

= wt(Mr) + wt(B)
h
< (nh— (";1) ) + (d(h) — n*)
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Finally, to bound 1reg(U1N§f"J ), simply notice that by Lemma 19
SM(USM) = SM(UMM) VR > 1.
Lemma 1(b) then immediately implies

reg(UMAJ) = reg(UM,fJ) VYh > 1.

We now conclude that, for appropriately chosen input size, RFS,I:’,[,‘}J is versatile.

Lemma 21. Let n = 2% — 1 for any positive integer k, then RF St MAJ ] (P—}l)h-versatile on

Upih MAJ - Moreover, Ui MAJ is a critical algebraic set.

Proof. By the assumed form of n, Lemma 17 immediately allows us to conclude

MAJ(z) = expar () Vz € F3.

Clearly, dcg(en+1) = 2t and so Lemma 16 immediately implies

2

: n+1\"* n—1) =2 infm+1 h=i-1
rcg(Up,h)Zn( 5 ) +( 5 );T 5

reUa)res(tn) = (1) S T ()T

Jj=0

By Lemma 20,

n+1
a0 (252)

h—1 h—j—1
n—1 . n+1
E i
2 * ( 2 ) : ( 2 )

Jj=1
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h—1 hei1
n—1 fn+1 J
U U < —_— ) .
reg( o,h),reg( l,h) > ( 5 ) E 2 ( 5 )

Therefore,
| n+1\"  n-1\Q& , (nt1)"
reg(U,h):n( 2 ) +< 2 )sz T2
j=1
h—j-1
n—1 n [TV +1
reg(Uo,h),reg(Ul,h)=( 5 )Z2J ( )
Finally,

reg(Up) — reg(Unn) = 1eg(Upn) — rog(Uns)
() () B ()T () B ()
() -0
() )
(3"

Therefore, RFSY2 is (ﬁ;’i)h-versatile on UMM. To see that UMM is a critical

algebraic set, simply notice that, as shown in the proof of Lemma 16,

h—1
deg(rygw) < (2" —n) Z 2(J—l)ndh—9’
j=1
where d = "T"‘l
By the above,
h-1
deg(rUMAJ) > (2" —n) Z oU=Dngh=j _ a,(UMAJ ,
j=1
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and so

deg(rymar) = a(Up3),

which, by definition implies that UII,‘:I,;“ is a critical algebraic set.

O

Next, we exhibit another class of functions such that the lower bound on regularity
in Lemma 16 is tight. Consider any g € Fy[zy,...,2,] and let d = deg(g). Vo = ¢7*(0) and
Wi =‘g'1(1) denote the preimages of 0 and 1, respectively. For any k& x n matrix A with
entrics in Fy, let ¢4 : F — F% denote the linear map defined by A. We say a function g is
well-mized if, for every n —d+1 X n matrix A, é’;: 2 F3~4*1 and EE‘FCIE % F3~4+!. We then

have the following.

Lemma 22. For any positive integers n,h, let g € Falxy,...,x,] be well-mized. Let d =
deg(g) and let RF'S}, : F3' — Fy denote the recursive Fourier sampling function with g.
Then
h—1 '
reg(U?,) < nd"™' + (n—d) ) _ 20md"
j=1

h—1
reg(U(ih), reg(Uﬁh) < (n—d) Z oingh—j-1

7=0
Proof. Before proceeding with the proof, we briefly remark that this Lemma could be proven
by use of the inclusion matrix, in a similar manner to the proof of Lemma 20, shown above. -
We provide an different proof to illustrate an alternate method of bounding regularity.

We show this claim by induction on h. First, consider the case in which A = 1.
Clearly, U7, = F3, and so reg(U3,) = n. We now show reg(U3,), reg(Ui;) < n —d. First,
consider reg(U7,). Begin by noticing that, by Lemma 1(b), this is equivalent to showing
that

z* € LM(U7,) Vo such that deg(z*) >n —d.

Due to the fact that, for any algebraic set V, LM(V) is an ideal (of the semigroup of
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monomials) and because, for any V' C Fg, 22 € LM(V) Vj, the above is equivalent to

showing
z® € LM(U{,) Va such that deg(z®) =n —d + 1 and z is multilinear.

To see this, consider any multilinear monomial z* where deg(z®) =n —d+ 1. Let J = {j:
a; = 1}. For any = € Fg, let z; € F3~**! denote the substring at positions indexed by J.
The key observation is that, because g is well-mixed, there is a b € ]F’z‘_‘“rl such that for
every ¢ € U{{ 1, £g # b. To see this, let ¢4 : Fy — F5~%*! denote the unique linear map such

that ¢4(x) = z; Vr € F3. Then, because g is well-mixed, we have, by definition, that

Uiqvl % Frd+1
ker(pa) ~ " ?

and so 3b € F3~**! such that, for every z € U7, ¢a(x) # b, as claimed. Fix any such b.
For k € [n — d + 1], let Ji denote the ™ element of J (in the natural order), and
consider the polynomial f, € Fa[zy, ..., x,], where f, = Z;;H"l (zg, +bi+1). We then have
fo € I(U7;). This holds because, for any = € U, 5 = ¢pa(z) # b, and so Ik € [n — d + 1]
such that z; ## by. For each k, we have z,,,b; € F2 and so if x5, # b, then z;, = by + 1.

Therefore, for any z € UY,, 3k € [n — d + 1] such that z;, = bx + 1, and so f, vanishes on

UY,. Clearly, Im(f,) = =%, and so
z® € LM(UY,) Va such that deg(z®) =n — d + 1 and z® is multilinear,
as desired. Therefore, reg(U{,) < n — d. By a precisely symmetric argument, reg(Ug,) <

n —d.

Next, we consider the case in which A > 1. Consider U7,. Let r(h) = (n —
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d) Yi7g 27mdh=9=1. We wish to show
reg(U7,,) < r(h).
For the same reason as above, it is equivalent to show
x* € LM(U7]),) Ya such that deg(z*) = r(h) + 1 and z* is multilinear.

Consider any multilinear monomial =%, where deg(z*) = r(h) + 1. Let J = {j : a; = 1}.
Consider the recursive Fourier sampling tree. For each child t of the root of the tree, say
that ¢ is heavy if at least r(h — 1) + 1 of the variables in the subtree rooted at ¢ appear in J
(that is to say, there are at least r(h — 1) variables z;, such that j € J and z; is a variable
that appears at one of the leaves of the subtree rooted at t). Moreover, say that ¢ is very
heavy, if at least 7(h — 1) +d" ! + 1 of the variables in the subtree rooted at t appear in >J .
Due to the fact that deg(z®) = r(h)+1, it must be the case that at least one of the following
two statements is true:

(1):At least one of the children of the root is very-heavy.

(2):At least n — d + 1 of the children of the root are heavy.

To see this, assume, for contradiction, that neither of these statements are true. Then
at most n — d of the children of the root are heavy, and none of the children of the root are

very heavy. We then have
deg(a®) < (n —d)(r(h = 1) +d" ) + (2" = (n — d))(r(h — 1))

=(n-d)d" 1+ 2"r(h—-1)

(h~1)—1
=(n-dd"' +2"n—d) Y PrdP VI

=0
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h-2
— (,n _ d) (dh—l + z 2(j+1)ndh—(j+1)—1>

j=0

h-1
=(n—d) (dh-l +>° Zj”d"“j‘1>

J=1

= (n—d) (hi 2i"dh—f-1)

=0

= ()
<r(h)+1
= deg(z®).

This contradiction immediately allows us to conclude that at least one of the above state-
ments are true.

We now conclude that z* € LM(UY,). We first consider the case in which statement
(1) holds. Let t denote an arbitrary very-heavy child of the root of the recursive Fourier
sampling tree. Let z? denote the multilinear monomial consisting of the product of all
variables that are in the subtree rooted at ¢ that appear in z*. Clearly, z?|z%, and so it

suffices to show that 2 € LM(U7,). Due to the fact that ¢ is very-heavy, we have,
deg(z?) > r(h—1) +d"' + 1> reg(Upp_1) + 1,

where the first inequality follows from the definition of a very-heavy child, and the second
inequality follows from the induction hypothesis. Let Z denote the portion of the input z
within the subtree rooted at t. The key observation is that, since the subtree rooted at ¢
corresponds to an instance of the recursive Fourier sampling problem of height A — 1, we
must have T € V = Uph-1 (where V is simply Upn—1 with variables renamed ). Since
deg(z”) > reg(Upp-1) = reg(V), we have, by the definition of regularity, that 2? € LM(V),

and so 3fs (which only contains variables in Z) such that zf = Im(fs) and f3 € I(V).
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Therefore, fz vanishes on every z € \7, and so it must also vanish on every z € Ulg’ 5 because,
by construction, if € Uf, n then T € V and fs only consists of variables in Z. Therefore,
z? € LM(U{,), which implies that z* € LM(UY,,), as desired.

Next, we consider the case in which statement (2) holds. Let o : U7, — F% be defined
such that, for any z € U}, o(z) is defined such that the i*® position of o(z) is equal to the
value of the i*® elementary child of the root when the input to the recursive Fourier sampling
problem is z. Let tq,...,t,—qy1 denote an arbitrary collection of (distinct) heavy children of
the root of the recursive Fourier sampling tree. Let  : U7, — F5~%*! be defined such that,
for any z € U7, 5(x) is defined such that the ¢** position of 5(z) is equal to the value of
t;. In other words, the function ¢ simply encodes the values of all elementary children and
o encodes the values of the heavy children of interest. The key observation is that, because
g is well-mixed, there is a b € F2~%"!| such that, for every z € U}y, (x) # b. To see this,
notice that, by definition, if z € U}, then o(z) € U} ,. Moreover, due to the linear structure

of the promise, there is a linear map ¢ : F§ — F3 %" such that .
¢(o(z)) =7(z) Vr € Uj),.

Due to the fact that ¢ is well-mixed,

ker(¢4) z
and so the existence of b follows from an identical argument as in the h = 1 case above. Fix
such a b. |
For i € [n — d + 1], let 2% denote the monomial consisting of all variables in the
subtree rooted at ¢; that appears in z®. Let z# = [], z%. Clearly z#|z* and so it suffices to

show z# € LM(U{,). Notice that, for each 4,

deg(z®) > r(h — 1) + 1 > reg(Uy 1) + 1,reg(Upp-1) + 1,
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where the first inequality follows from the fact that ¢; is heavy, and the second inequality
follows from the induction hypothesis. By the same argument that applied in case (1)
above, we conclude that, for each i, there is a polynomial fs, such that Im(fs,) = =% and
fa. € LU, +1,5-1)- To be clear, the bound on the degree of 7P implies that 2% is a leading
monomial of both the algebraic set isomorphic to Ui n—1 and the algebraic set isomorphic
to U(‘i n_1 (where the isomorphism is simply the trivial renaming of variables), we choose
fs. € I(U} 1) specifically to make the next stage of the construction work.

We now consider the polynomial fs = [], fs,- Clearly, Im(f5) = z°. Moreover, we
have fg € I(U?,). To see this, notice that, for every z € Uy, o(x) # b, and so, for every
x € U7, there must be at least one ¢ such that (z); # b;. Since 5(x);, b; € F2, if 7(z)s # bi,
then G(z); = b; + 1. Therefore, for every z € U{,, there must be at least one 4 such that fg,
vanishes at z (because fg, vanishes whenever the portion of = in the subtree rooted at £; has
value b; + 1 af; node t;). Due to the fact that fz is fhe product of the fg,, if at least one of
the fg, vanish, then fz vanishes. This implies that fz € I(U7,), which in turn implies that
z? € LM(U{,) which in turn implies tha-t z* € LM(U{},).

The above argument shows that reg(U7,) < r(h) for any h > 1, given the induction
hypothesis. It is easy to see that this argument is precisely symmetric with respect to Ui‘”h
and Uj, and so we immediately also conclude reg(Uy,) < r(h). "An essentially identical
argument shows reg(U¥,) < r(h) + d”, with the only changes being the fact that statement
(2) now becomes “At Least n+1 children of the root are heavy”, and the analysis of the case
in which statement (2) holds no longer relies on the fact that g is well-mixed, but instead
the fact that, due to the linearity constraint, given any collection of n + 1 children of the
root, there is at least one tuple of values that violates the promise.

O

This immediately allows us to conclude that, for any well-mixed g, RFSfL, , is versatile,

as shown in the following lemma.

Lemma 23. For any positive integers n,h, let g € Falzy,...,z,] be well-mized. Let d =
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deg(g) and let RFS}, : F* — Ty denote the recursive Fourier sampling function with g.

Then RFS}, ), is d*-versatile on US, and U2, is a critical algebraic set.

Proof. Combining the bounds from Lemma 16 and Lemma 22, we have

reg(Uy,,) = nd" ' + (n — d) Z 2dnqh=i-1

reg(Ug,), reg(Uf,) = (n —d) Y _ 2/nd"=3-1,

Therefore,
h—1 h-1 .
reg(U; ) —reg(U3,,) = reg(U3,)—reg(Uy 1) = nd" +(n— d)ZQ’"dh‘J‘ —(n—d) ZZ""dh”"l'
J=1 j=0

=nd" ' + (n — d)d"*
= d".

To see that Uzi » 18 a critical algebraic set, simply notice that, as shown in the proof

of Lemma 16,

deg(rUg )< (@28 —n) Z 9(—1)n gh—j
j=1
By the above,
h=1 L
deg(rUgh) > (2” — n) Z 2(J~l)ndh—-.7' — a‘(Uzg,h)’
j=1

and so

deg(rys, ) = a(UZ,),

which, by definition implies that U}, is a critical algebraic set.
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We now show that a certain natural function, the generalized inner product func-
tion, is well-mixed, and therefore the corresponding version of recursive Fourier sampling is

versatile. For any positive integer n and any d|n, let GIP,, 4 : F; — IF; be defined such that
GIPn’d =T '"md+wd+1"'m‘2d+-"+z'n—d+1"'$n-

Notice that the ordinary inner product function simply corresponds to the case in which

d=2.

Lemma 24. For any positive integers d, n such that d|n, and n > d(2‘i'2 +d—1), the function

GIP, 4 : Fy — Fy is well-mized. Moreover, the function RFS,,f sz""’ is d"-versatile on Ug ,{P""’

GIPnq . " ,
and U,), ™" is a critical algebraic set.

Proof. We begin by showing that, for any positive integers d,n that satisfy the above re-
quirements, the function GIP,4 : F3 — F, is well-mixed. To do this, it clearly suffices
to show that, for any (n —d + 1) x n matrix A4, 3t°,¢! € Fy~%*! such that, for z € F,
Az =1° = GIP,4(z) = 0 and Az = t' = GIP, 4(z) = 1. We begin by noting that it suffices
to show this claim only for A of a certain very special form. Let ¢4 : F} — ]F'z‘_"lJrl denote
the linear map corresponding td multiplication by the matrix A. Begin by noting that this
claim trivially holds when A is not full rank (simply set t° and ¢! to be any element not in
the image of ¢,4) and so it suffices to consider only the case in which A is full rank. Next,
it suffices to only consider the case in which A is in reduced row echelon form, because, for
any invertible (n —d + 1) x (n —d + 1) matrix L, Az = ¢ if and only if (LA)z = Lt, and
so if the claim holds for every A in reduced row echelon form, then it holds for every A.
Divide the n input variables zy,...,z, into blocks of size d, where each block consists of
the d variables that‘appea,r in a single term of the GIP,, 4 polynomial. Due to the fact that
rank(A) = n —d + 1 and that A is in reduced row echelon form, there are precisely d — 1
columns of A that do not have a leading 1. It suffices to only consider the case in which

each of these d — 1 columns appear as one of the rightmost d(d — 1) columns of A, because,
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due to the symmetry of the generalized inner product function, the variables can be relabled
such that these columns always correspond to variables that appear in the rightmost d — 1
blocks, and hence rightmost d(d — 1) columns.

Therefore, in order to show that GIP,, 4 is well-mixed, it suffices to show that, for any
(n —d + 1) X n matrix A, where rank(A) = n —d+ 1, A is in reduced row echelon form,
and the d — 1 columns of A that do not contain a leading 1 appear within the rightmost
d(d — 1) columns, 3t°,t! € F5~%*! such that, for z € F§, Az = t® = GIP,4(z) = 0 and
Az =t' = GIP, 4(z) = 1. -

Consider such a matrix A. We now construct t° and ¢! with the required properties.
Let y1,...,yq—1 denote the x; that correspond to columns of A that do not have leading 1s,
in the natural order. Let 7 < d denote the value such that y; is in the r*® block from the
right; that is to say, r is the minimal value such that all y,, are in the rightmost r blocks.
Fori € [n—d+1], and j € {0,1}, let t/ denote the value of the i** position of /.

, such that, for any such

Begin by noticing that there is a setting of tfz_dr, e ,tzl_ a+

t/ and any z € F3, Az =t/ = Tp_gr41° " Tn—dr—1) + - - - + Tn—a41 - - Tn = 0. In other words,
there is a way to set the last dr —d+ 1 values of #/ such that, for any x that satisfies Az = #7,
it must be the case that the sum of the rightmost r terms of GIP,, 4 is 0. To show this, we }
will construct the setting of the last dr — d+ 1 values of #/ in a collection of stages, where the
values set in the I** stage will force the I* block (from the right) to evaluate to 0. Begin by
considering the rightmost block of variables. Let k denote the number of y,, such that y,,
correspond to columns in the rightmost block of variables; that is to say, y4—«, ..., Y4s—1 are
the variables that correspond to the columns within the rightmost block that do not have
leading 1s. There is a setting of the last d — k values of #/ such that, for any z that satisfies
Az = t7, we have x,_gqy1 - - - T, = 0. To see this, notice that, due to the form of A, the only
non-zero entries of A in the last d — k rows are in the last d columns, which correspond
precisely to the variables in the rightmost block. Therefore, the last d — k values of Az are

completely determined by the last d values of z. In order to have z,_gy1--- 2, = 1, it must
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be the case that z,_4y1 = ... = 2, = 1, and so thefe is only 1 setting of these rightmost d
variables such that ,_g.1 --- 2, = 1. On the other hand, there are 2¢~% > 2d-(@-1) > 2 ~ 1
distinct choices of the last d — k values of #/, from which it immediately follows that there is
at least some setting of the last d — k values of ¢/ such that, for any z that satisfies Az = #/,
we do not have z,_qy1 - - - T, = 1, which then implies 441 - - - z, = 0. Fix any such setting
of the last d — k values of 7.

In general, in the I*! stage, for each ! such that 1 < I < r, we consider the I*" block of
variables (counting from the right). Within the first [ — 1 stages, we have set every tf such
that row 7 of matrix A has a leading 1 in a column corresponding to a variable in one of the
rightmost { — 1 blocks. This setting forces each of these I — 1 blocks to evaluate to 0. We
now force the I** rightmost block to evaluate to 0 by appropriately setting all tf such that
row ¢ of matrix A has a leading 1 in a column corresponding to a variable in block {. To
be precise, let k denote the number of ¥,, that correspond to variables in block [, and let &’
denote the number of y,, that appear in the rightmost I — 1 blocks. Again, due to the form
of A, the only non-zero entries in the d — k rows in question are in the last d! columns, and
so the corresponding d — k values of Ax are completely determined by the last dl values of .
Again, there is only a single setting of the d values of z in block ! such that block [ evaluates
to 1. Moreover, there are only 2% settings of the d(I — 1) values of z in the rightmost I — 1
blocks which satisfy the constraint imposed by the t{ fixed in earlier stages. This follows
from the fact that the (d(l — 1) — &) x (d(l — 1)) submatrix of A corresponding to these
constraints has rank d(l — 1) — £’ and hence nullity ¥’. Therefore, there are precisely 2K
distinct settings of the last dl values of x that both satisfy all earlier constraints and cause
block ! to evaluate to 1. Moreover, there are 2¢~% choices of the portion of t; currently being
set. Due to the fact that k + k' < d — 1 (as there are only a total of d — 1 variables y,,), we
again conclude that there is a setting of the relevant portion of #/ such that, for any = that
satisfies Az = ¢/, the I*® block evaluates to 0, as required.

The above argument shows that all of the rightmost  blocks can be forced to evaluate
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to 0, by an appropriate setting of a portion of #. Next, we show that, similarly, for any
[ > r, the I'® rightmost block can be forced to evaluate to 0 by an appropriate setting of
another portion of #. To be precise, consider the I*" rightmost block of variables, for any
[ > r. Due to the fact that evefy column of A that does not have a leading 1 appears among
the rightmost r blocks, we conclude that every column corresponding to the I** block has a
leading 1. Consider the submatrix of A consiting of the d for which the leading 1 of that row
appears in one of the columns corresponding to block /. The only non-zero entries in this
submatrix appear in two parts. First, in the columns corresponding to block I, the submatrix
is simply the d x d idéntity matrix. Secondly, there are non-zero entries in certain columns
indexed by the y,,. In other words, this submatrix expresses the constraint that the values of
z in block ! are some affine combination of the y,,. To be precise, let z1, ..., 24 denote the d
values of x that appear in block /, and let v denote the d values of ¢/ that correspond to rows .
in the submatrix in question. Then there is a d x (d — 1) matrix B such that z = By + v.
Let ¢p : ]F‘Z\i'1 — F¢ denote the linear map corresponding to multiplication by B. As before,
the key observation is that there is only a single setting of z such that block [ evaluates to 0;
however, there are 2¢ choices of v, and |Im(¢p)| < 247!, from which it immediately follows '
that there is a choice of v such that, for any z that satisfies z = By + v, it must be the case
that block ! evaluates to 0.

Therefore, to produce t°, we simply use the first construction above to set the last
dr — d + 1 values of t° in such a way as to force the last r blocks to evaluate to 0, and then
use the second construction above to set the remaining values of t° in such a way as to force
all other blocks to evaluate to 0.

To produce t}, slightly more work is needed. We next show that, given a collection
of 2¢° blocks, all of which are not among the rightmost r blocks, it is possible to set the
appropriate values of ¢! is such a way as to assure that exactly one of these blocks evaluates
to 1, and all other blocks evaluate to 0. To see this, simply consider, as above, the constraint

imposed by A on the variables in each block l. To be precise, let 2! = (z4,...,2}) denote
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the d values of = that appear in block d, v* = (v!,...,v}) denote the d values of ¢! that
correspond to the rows of A that have a leading one in a column corresponding to block [
and B’ denote the d x (d — 1) matrix such that 2! = Bly +v'. As there are 2¢° blocks in
question, but only 2% distinct d x (d — 1) matrices (with entries in Fy), there must be
some particular d x (d — 1) matrix B such that at least 2d blocks [ have B' = B. Fix any
such B and let L denote a collection of precisely 2¢ blocks ! such that B' = B. The key
observation is that the portion of ¢! corresponding to the collection of blocks L can be set
in such a way so that exactly one block in L evaluates to 1. This can be accomplished by
setting the collection of v' such that | € L to the 2¢ elements of F4. This works because, for
any setting of y, the collection of 2!, for I € L will all be distinct (as each z! = By + ¢! and
the v! are distinct) and exactly one of the 2! will be all 1s (as there are 2¢ possible setting of
each 2!, so each appears exactly once).

Therefore, to produce ¢!, we then simply use the first construction above to set the
last dr — d + 1 values of t° in such a way as to force the last r blocks to evaluate to 0, then
the second construction above to set the portion of t! that corresponds to every block not in
L to force all such blocks to evaluate to 0, and finally the third construction above to set the
portion of ¢! that corresponds to the blocks in L to force exactly one block in L to evaluate
to 1. Due to the fact that, by assumption, n > d(2d2 + d — 1), there are at least 2 1 d—1
blocks, and so this construction is possible.

We have thus shown that, for any positive integers d, n that satisfy the above require-
ments, the function GIP, 4 : F§ — Fs is well-mixed. By Lemma 23, it immediately follows
that the function RF S,C: IhP"‘d is d"-versatile on Us ;P"’d and US ,ILP""’ is a critical algebraic set.

O

4.1.3 Polynomial Degree

Using the results of the previous section, we now prove very strong statements about the

degree of any polynomial that computes, or even one-sided agrees with, the recursive Fourier
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sampling problem.

Theorem 7. For any positive integers k,h, Let n = 2¥ — 1 and let RF S,Il‘,‘,f" denote the
recursive Fourier sampling function with majority. Then g € Fa[zy,...,ZTm| such that

deg(g) < ("T‘”)h and g(z) = RFSMA(z) Vz € UMAI. Moreover, if any g € Fa[z1, ..., Tm)

n, p,

UMAJ

such that deg(g) < (ﬂ;—l)h vanishes everywhere on UMA, it vanishes everywhere on UMY

. h . . " .
Proof. By Lemma 21, RFS,}L’,I;:‘J is (%—1-) -versatile on U},‘:‘hAJ and UZI,‘,‘}{U is a critical algebraic
set. The first claim of the theorem is an immediate consequence of Lemma 6 and the second
claim is an immediate consequence of Lemma 7.

O

Theorem 8. For any positive integers d,n,h such that d|n, and n > d(2‘Jl2 +d—1), Let

RF Sg LP""’ denote the recursive Fourier sampling function with generalized inner product.

Then Ag € Falzy, ..., T such that deg(g) < d* and g(z) = RFS’,?,{LP”"‘(:I:) VI € Up?}an.d. |
Moreover, if any g € Falzy,...,2m] such that deg(g) < d* vanishes everywhere on U(f }fP"’d,

) ) GIP,
1t vanishes everywhere on U, e

GIP4 . : cIp GIP,, . s .
Proof. By Lemma 24, RF'S,, ™" is d"-versatile on U, ™ and U, ™ is a critical algebraic -

set. The first claim of the theorem is an immediate consequence of Lemma 6 and the second

claim is an immediate consequence of Lemma 7.

4.1.4 Towards a Circuit Lower Bound

In the previous section, an extremely strong lower bdund was given on the lowest degree
polynomial over F, that computes (or even non-trivially one-sided agrees with) the recursive
Fourier sampling function on the promise. In this section, we discuss partial results towards
a lower bound on the size of a constant depth circuit that computes the recursive Fourier
sampling function, as well as what sort of additional results would allow these partial results

to be extended to prove such a lower bound. We begin by defining the circuit class of
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interest. Let n denote, as before, the size of the secret at each node of the recursive Fourier
sampling tree, and h denote the height of the recursive Fourier sampling tree. We consider
circuits that consist of AND, OR, and NOT gates, where the ‘fa,n-in of the AND and OR
gates is unbounded, the size of the circuit (the total number of gates) is at most 20Po¥(n))
and the depth of the circuit (the number of gates on the longest path from the input to
the output) is a constant (independent of n and h). This circuit class is of interest due
to the fact that proving a lower bound against it (that is to say, proving that no circuit
of this form can compute the recursive Fourier sampling function on its promise), would
immediately imply the existence of an oracle A such that BQP# ¢ PH4. This follows due
to the relationship between such circuits and the polynomial hierarchy ([FSS84],[Yao85])
and the fact that there is an efficient quantum algorithm for the recursive Fourier sampling
problem. ([BV93],[Aar03],[Joh08]), when h = O(logn). Such a bound is at least plausable as
the trivial circuit (which simply computes the recursive Fourier sampling in the brute force,
level-by-level way, in which each subproblem is solved by solving n subproblem one level
down) has size 2°*") which, when h = 8(logn) is, of course, not 20(poly(n)) |

One reasonable approach to proving such a lower bound would be to apply a variant -
of the Razborov-Smolensky method [Raz87],[Smo87]. We begin by briefly sketching the main
idea of the Razborov-Smolensky method, specialized to F,. We consider a (total) function
g : F? — Fy, where m = 20®W(™) We wish to show that no circuit C of the above form,
of size at most 20@ow(losm)) — 20(poly(m)) can compute the function g. The key observation
is that there is an f € Fa[z1,...,2m] where deg(f) = O(poly(n)) such that f agrees with
C almost everywhere, and so if it can be shown that g is not well approximated by a low
degree polynomial, it immediately follows that g is not actually computed by C. To show
that a particular g cannot agree almost everywhere with a low degree polynomial, it suffices
to show that g has the property that, on any set R C F%, if g is represented on R by a
polynomial of degree at most d, then every function q : R — F; is represented on R by

a polynomial of degree not much higher than d. This suffices because if g agrees almost
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everywhere with a low degree polynomial f, then there is a very large set R on which every
function ¢ : R — I is represented by a low-degree polynomial; a straightforward counting
of the number of functions‘ of that form and the number of low-degree polynomials shows
that this is impossible.

The main idea behind the lower bound on the polynomial degree of recursive Fourier
sampling, shown in the previous sections, is that there are functions g such that RF'S} , has
the property that there is a large gap between the regularity of the promise, reg(U;’, h), and
the regularities of the preimages of 0 and 1, reg(Ug,,) and reg(U7,). In other words, there are
functions on U; » Which can only be computed by relatively high degree polynomials, whereas
every function on Ué’, , and U{ 5 can be computed by relatively low degrée polynomials. It then
follows that RF Sflyh itself cannot be computed on Ug, » by a low degree polynomial, because
if it were, then every function on Ug’ », would be computable by a low degree polynomial.

While this is very similar to the observation made in the Razborov-Smolensky method,
there is one crucial difference: due to the fact that the promise U; » is extremely small, one
cannot conclude, via a straightforward counting argument, that there is a function on ng, A
that requires a high degree polynomial; instead, this fact was shown via an analysis of the .
structure of this algebraic set. It is the very fact that such an analysis is possible that gives
hope that this technique could be extended to prove the desired circuit lower bound. To be
precise, to prove the desired circuit lower bound, it would suffice to show that, not merely is
it the case that RF'S} , is w(poly(n))-versatile on U7 ,, as already shown, but in fact RF'S; ,,
is w(poly(n))-versatile on R for any sufficiently large R C Uj,. This would suffice because,
if RF'S; ;, had this property, then it could not be the case that RFS] ,, is well approximated

by a low degree polynomial on U?

¥ w» from which it would then follow that RFS} , is not

computed by a small circuit on Ug’ - In fact, something substantially weaker would suffice:
one only needs to consider the case in which R is of the form Ug’ RNV (f1,..., fx) where
each f; € Fqlzy,...,x,,) satisfies deg(f;) = O(poly(n)). In other words, one only needs

to consider the case in which R is a large subset of U7, such that R is the intersection
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of U, with an algebraic set that is the set of common zeros of a collection of low degree
polynomials. This suffices because, much as was done in Braverman’s proof of the Linial-
Nisan conjecture [Bra09], one can consider the structure of the set of points on which a small
circuit agrees with the low degree polynomial produced by the Razborov-Smolensky method.
To be precise, consider applying the Razborov-Smolensky method to a AND of a collection
of polynomials py, ..., px € Fo[zy,. .., 2] where deg(p;) = O(poly(n)) Vi. This AND of low
degree polynomials is well approximated by a single p’ € Fa[z, . .., Zx], given by the product
of a collection of a small number of randomly chosen sums of the p;. Moreover, the output
of the AND of py,...,pi agrees with p’ precisely on V(p'(1+p1),...,0 (1 + pr)). Repeating
this process for every gate in the circuit, from the bottom up, yields an algebraic set of the
form V = V(fi,..., fx) where deg(fi) = O(poly(n)) Vi, where, on V, each gate individually
agrees with its approximating polynomial. To be clear, this algebraic set V is a (possibly
proper) subset of the sét of points on which the circuit agrees with the overall approximating
polynomial, due to the fact that a local mistake (that is to say, a point at which an individual
gate disagreeing with its approximating polynomial) may not propagate through the entire
circuit to yield a global mistake (that is to say, a point at which the circuit disagrees with
the approximating polynomial); however, the extremely simple form of V' makes it a natural
choice for performing the required analysis of regularity.

While the current analysis falls short of being able to prove the type of circuit lower
bound needed for the desired relatived separation result, it does produce some interesting
partial results. For example, consider any circuit C' consisting of an OR of a collection
P1,-- -, Dk € Falz1,...,2,) where deg(p;)) < d = O(poly(n)) Vi. Circuits of this type are
interesting as it can easily be seen that if one can prove that such a circuit cannot be a good
approximator with one-sided error of the recursive Fourier sampling problem on its promise
{(where we say C is a good approximator with one-sided error if C outputs 1 everywhere on
UY), and outputs 0 almost everywhere on U,) this would immediately yield the existance

of an A such that BQP# ¢ AM#. The existing analysis does provide some insight into the
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behavior of any such circuit on the promise, though it, unfortunately, falls short of proving
the required lower bound. To be precise, by noting that the set of points on which C outputs
one is given by V' = U;V(1+p;), and applying Lemma 8, one can immediately conclude that,

for any g such that RF'S} , is d-versatile on U},
SM(UZ, NV, j) = SM(UZ, NV, §) = SM(UZ, NV, ) ¥j < & —d.

This is, by itself, a very strong statement about the structure of the set of points on which
any such circuit C evaluates to 1. Moreover, due to the fact that, by Lemma 1(c), the size of
any algebraic set is equal to the size of the set of standard monomials of that set, the above
claim also yields a (weak) statement about the relationship between the sizes of Ug, NV

and Uy, NV.

4.2 VC Dimension

In this section, we answer an open question posed in [MR15]. We begin with a few definitions.

We begin by recalling several key results from that paper.
Lemma 25. [MR15](Thm.2.2) For any C C {0,1}", reg(C) < VC(C).

It was shown that, if C;; denotes the value of the i*h element of C in the j* position,

then

Lemma 26. [MR15](Prop.6.1) For any C C {0,1}", reg(C) = 1 precisely when the matriz

(1 Cip - Cl,n\

\1 C"m,l Cm,’n)
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has rank m = |C/|.

They then asked if there was a similar simple characterization of when reg(C) = r,
for r > 1, which would be highly desirable as any such characterization would, by the
above lemma, provide a characterization of sets with VC dimension at least . We show the

following.

Theorem 9. A set C C {0,1}" has reg(C) = r if and only if v is the smallest positive
integer such that ranks, M(C, (23)) =|C]|.

Proof. By Lemma 3,

h*(C, d) = ranks, M(C, (L"L) ).

By definition, reg(C) is the minimum r such that h*(C,r) = |C]|.
' m

Remark 2. It is straightforward to see that [MR15](Prop.6.1) is a special case of the above

theorem.
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