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ABSTRACT

In this thesis, we apply tools from algebra and algebraic geometry to prove new results con-
cerning extractors for algebraic sets, AC 0-pseudorandomness, the recursive Fourier sampling
problem, and VC dimension. We present a new construction of an extractor which works for
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Chapter 1

Introduction

1.1 Pseudorandomness

1.1.1 Algebraic Extractors

For a finite domain Q and a collection of distributions C over Q, we say that a function

E : Q -+ {0, 1}' is an extractor (sometimes called a deterministic extractor) for C if, for

every random variable X distributed according to any distribution in C, E(X) is close to the

uniform distribution. We call each distribution C E C a source. Of course, in order to have

any hope of the collection of distributions C to have an extractor, some sort of condition must

be satisfied by the sources. While it is trivial to exhibit simple conditions on C such that a

random function will, with high probability, be an extractor, the problem becomes far more

interesting when one requires an explicit construction of E (that is to say, a construction

realizable by some deterministic polynomial time Turing machine). The natural question is

then: for which C do there exist explicit constructions of extractors?

Numerous versions of this question have been considered. In this thesis, we consider

the case, originally introduced in [Dvil2], where each source is the uniform distribution over

the set of common zeros of a collection of polynomials defined over some field. Such a set is

called an algebraic set and such a source is called an algebraic source. Algebraic sources are a
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natural generalization of affine sources (see, for instance [GR05] and [Bou07]) and bit-fixing

sources (see, for instance, [GRSO4] and [KZO3]) and build naturally on the earlier work of

efficiently samplable sources (see, for instance, [TVOO], [KRVZ06], and [DGW07]).

To be precise, for a finite field F, and a positive integer d, we consider algebraic sets

V C F' where V is the set of common zeros of a collection of polynomials fi,. . . , ft E

F[x1,... , xn] such that deg(fi) < d. We say that V has density p if IVI > pIF"I. We say

that a function f : F" -+ F is an extractor for algebraic sets defined by polynomials of

degree at most d and density p if f is close to uniform on every such algebraic set. A closely

related weaker notion is that of a disperser for algebraic sets, where we say that a function

f : F" -+ F is a disperser for algebraic sets defined by polynomials of degree at most d and

density p if, for every such algebraic set V, the image of f : V -+ F (the restriction of f to

V) is F. Clearly any extractor is also a disperser.

As shown in [Dvil2], there exist explicit extractors for polynomials of degree d defined

over moderately sized fields, where IF = poly(d), and density p = 2-2 as well as over large

fields, where IF1 - dW"2 and very small density. However, very little is known about the

extreme case in which F = F2 , the two element finite field. To the best of our knowledge, the

current state of the art construction for extractors and dispersers is that of [CT13], in which

an explicit construction was exhibited for an extractor for algebraic sets defined by at most

(log log n) - polynomials each of degree at most 2, as well as for a disperser for algebraic sets

defined by at most t polynomials each of degree at most d = (1 - o(1)) .9 (in particular,

when t < n' for some a < 1, then the requirement on degree is d < (1 - a - o(1)) log" n).

In this thesis, we focus on the case in which F = F2 , and exhibit explicit extractors

(and hence explicit dispersers) for algebraic sets defined by polynomials of substantially

higher degree than any previous construction. We now formally state our results. For any

set V C F', we say that a functionf:Fp-+ F2 has FniasconVif

bias(flv) := jEx~v[(-1)f(x)] < E.
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A function f : F2 -+ F 2 is called an extractor for algebraic sets defined by polynomials of

degree at most d of density p with bias E if bias(flV) < e for every such algebraic set V. We

show that any S-versatile function, which is a certain natural generalization of the concept

of a versatile function [Kop11], is an extractor.

Theorem 1. Let f : F' -+ F2 be S-versatile (on Fn), where 6 5 - n" for some 0 < <!.

Then, there is a constant c > 0 such that, for any constants a, 3 such that 0 < a, < < {, and

c (n+dlog( ))
for any d < na and p> 2-' f is an extractor with bias v for algebraic sets of

density at least p that are the common zeros of a collection of polynomials each of degree at

most d.

Much as was the case in [Dvil2] and [CT13], our construction relies on statements

involving the set of zeros of a single low degree polynomial defined over F. The key distinc-

tion between our construction and earlier constructions, which allows our construction to

work even for rather high degree polynomials over F2 , is that our construction exploits the

structure of this set of zeros, rather than simply bounds on the size of the set of zeros that

follow directly from the degree of the polynomial (that is to say, bounds that follow directly

from the fundamental theorem of algebra, or, in other words, Schwartz-Zippel type bounds).

1.1.2 AC-pseudorandomness

Random-like behavior occurs naturally in many places in mathematics. For example, the

binary representations of numbers 7r, e and N look random. Various conjectures about

the distribution of prime numbers and the number of prime factors of an integer say that

these behave randomly. However, very little progress has been made in proving that such

behaviors are indeed pseudorandom in any formal sense. For example, it is not known that

the binary representations of 7r, e or v2, contain all substrings with the expected frequencies

or even that the substring 11 appears infinitely often.

In this thesis, we propose to study the pseudorandom characteristics of naturally

occurring mathematical functions by using the tools of complexity theory. The theory of
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pseudorandom generators provides a good starting point, but there the motivation is some-

what different than ours. Pseudorandom generators are used to good effect in cryptographic

protocols and in derandomizing probabilistic algorithms, and they are designed with those

goals in mind. Our objective is to study the basic operations themselves, such as Boolean

convolution and integer multiplication, for their pseudorandom properties. These functions

occur naturally-they have not been specifically designed to have pseudorandom behaviour-

yet we can show that they do exhibit such behavior.

We use the integer multiplication function as a motivating example. Let X and Y

be n-bit binary strings representing non-negative integers and let Z be the 2n-bit string

representing Z = X x Y. Take X and Y to be selected uniformly at random from 0 to

2n - 1, and consider the characteristics of Z. Does Z look random? The low-order bit

of Z certainly does not; it is 0 with probability 3/4. The other very low order bits look

non-random for a similar reason. The very high order bits of Z likewise appear non-random.

However, if we discard these problematic very low and very high order bits from Z, the result

could conceivably be pseudorandom in some appropriate sense.

We show that, for uniformly randomly selected X, Y, the string consisting of X, Y and

all 2n bits of X x Y, except the lowest and highest n" bits, for any a > 0, is indistinguishable

from truly random strings by AC' circuits. In fact, we show something even stronger: for

almost all Y, the string consisting of X and all 2n bits of X x Y, except the lowest and

highest n' bits, is indistinguishable from random by AC' circuits that have Y built-in (the

circuit is allowed to depend on Y).

AC0 circuits are circuits consisting of AND, OR, and NOT gates of unbounded fan-

in, such that the size of the circuit (the total number of gates) is polynomial in the size of

the input and the depth of the circuit (the number of gates on the longest path from the

input to the output) is a constant. Techniques for proving strong lower bounds on low-depth

circuits [Ajt83],[FSS84],[Yao85],[Has86] enable us to prove the AC0 -pseudorandomness of

explicit functions without using any unproven complexity-theoretic assumptions. Moreover
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AC' is powerful enough to describe basic tests for pseudorandomness.

We now formally define what it means for a function to look random to AC0 circuits.

For ease of exposition, we consider functions that operate on strings of a specific length,

whereas we really have in mind a family of functions and their asymptotic properties. For

a function f : {0, 1}1 x ... x {0, 1}mh -+ {0, 1}k, define the function g : {,7 }MI x ... x

{f,}l -Jh + {0, 1}", where n = M1 + --- + Mh+ k, such that g(X1, ...,7 X) = X, 0 .-- 0

Xh o f(x1, ... , Xp) is the concatenation of X1,... ,x and f(x1,... , Xh). Let P, denote the

distribution of g(x1 , ... , X,), when each xi is drawn uniformly at random from {0, 1}mi. For

any binary predicate P {0, 1}" -+ {0, 1}, let E, [PJ denote the expected value of Pn when

inputs are drawn according to the distribution Pn and E[Pn] denote the expected value of

Pn when inputs are drawn uniformly at random from {0, 1}". We say that the distribution

Y, c-fools the function Pn if IE, [PU} - E[P]j < e and that the original function f is AC0 -

pseudorandom if the corresponding distribution pi E-fools every Pn that is computable in

AC', where E = O( 2 -n"), for constant n > 0. This is, of course, quite similar to the standard

pseudorandom generator model for AC0 circuits (see, for instance, [Nis91], [NW94]), with

the exception of the fact that we impose the stronger requirement that both the input

and output of the function together are indistinguishable from random bits, instead of only

requiring that the output is indistinguishable. Also, while the focus of this thesis is the

pseudorandomness of functions, not the difficulty of actually computing the functions, it

is still worth noting that the functions considered can be computed in a low complexity

class such as AC 0 [2] (AC' circuits that are allowed unbounded fan-in parity gates) or TC0

(constant depth circuits with unbounded fan-in majority gates), but still produce strings

that are indistinguishable from truly random strings by AC0 circuits.

A somewhat similar question was considered in [Gre12], concerning the M6bius func-

tion J: N -+ {-1,0,1}, which is defined such that p(1) = 1, p(x) = 0 when x has a

nontrivial perfect square factor, and kt(x) = (-)k, when x has no nontrivial perfect square

factors, where k is the number of distinct primes in the prime factorization of x. It was shown
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that p is asymptotically orthogonal to any ACO computable function f : N -+ {-1, 1} (that

is to say y = f(x)p(x) = o(1)). Tools from complexity theory were used to show that

a naturally occurring function looks random to AC0 circuits. It is worth noting that the

functions considered in our thesis have much longer output than the M6bius function; we

consider functions which, on an n bit input, produce a Q(n) bit output, while the M6bius

function maps an n bit input to only a constant sized output.

Another example of a natural problem studied for its pseudorandom properties is the

algebraic number problem, which, as noted in [KLL84], was initially proposed by Manuel

Blum. An algebraic number is a root of a polynomial with integer coefficients. For example,

x/2, v/3, and (1 + ')/2 are all algebraic numbers. The algebraic number problem involves

selecting, uniformly at random, an algebraic number ( of bounded degree d and height

H (where the degree of C is the degree of the (unique) primitive irreducible polynomial

that has ( as a root, and the height is the Euclidean length of the coefficient vector of

that polynomial). The string to be considered is a portion of the binary expansion of the

fractional part of ( In [KLL84], it was shown that, given the first O(d2 + d log H) bits of an

algebraic number C, it is possible, in deterministic polynomial time to determine the minimal

polynomial of (. Since the next bit of the binary expansion of C can easily be obtained if

given the minimal polynomial of (, this immediately implied that such strings do not pass all

polynomial time tests. We consider a closely related problem, which is identical to the above

problem, except that we select ( only from the ring of integers of certain algebraic number

fields. By the argument used in [KLL84], this variant also does not pass all polynomial time

tests. However, we show that it does pass all AC0 tests. While this is certainly far away

from showing anything about the pseudorandomness properties of a single value, such as

v1 -, it might be a step in that direction.

This thesis illustrates two techniques for demonstrating that functions are ACO-

pseudorandom. The first technique makes use of the result in [Bra09] that resolved the

long standing Linial-Nisan conjecture [LN90]. We use this technique to show that almost
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all "reasonably sized" homomorphisms are AC0 -pseudorandom, and, moreover, that convo-

lution, integer multiplication and matrix multiplication are AC0-pseudorandom.

Our second technique involves reducing the (provably hard) problem of computing

parity to the problem of distinguishing certain distributions from random. The second tech-

nique is related to the method in [Nis9l], [NW94], in that we show that the structure of certain

multiplication problems is a naturally occuring example of the combinatorial designs they

employ. We use this technique to show that an alternate form of the multiplication problem,

where one multiplicand is substantially longer than the other, is AC0 -pseudorandom. One

consequence of this result will be the existence of a simple, multiplication-based pseudo-

random generator with the same stretch and hardness parameters as the Nisan-Wigderson

generator. An additional consequence is the fact that no AC0 circuit can compute the prod-

uct of an n-bit number and a superpolylog(n)-bit number (that is to say, a sequence of

numbers whose length grows faster than logc n, for all constants c > 0). This shows that the

result from [CSV84], which states that an AC0 circuit can compute the product of an n-bit

and a O(logcn)-bit value, is optimal.

Additionally, we show, via a reduction from the multiplication problem, that a certain

variant of the algebraic integer problem looks random to AC0 . These same techniques can

be used to show that a variety of additional problems, such as finite field multiplication and

division, matrix inversion, computing determinants, and an iterated version of convolution

are also AC0 -pseudorandom.

We prove the following theorems:

Let Hom({0, 1}m, {0, I}k) denote the set of homomorphisms from {0, 1}m to {0, I}k

(or, in other words, the linear maps from the vector space {0, 1}m to the vector space {0, 1}).

Theorem 2. If k = mu, for any fixed constant u > 0, then all but an exponentially small

fraction of all f E Hom({0, 1}", {0, I}k) are ACO -pseudorandom.

Let CONV,,,,k : {0, 1}r x {0, 1} -+ {0, I}k denote the Boolean convolution function,

which takes a X C {0, 1}' and Y E {0, 1}' to the middle k-bits of the r + s - 1 bit long
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convolution of X and Y.

Theorem 3. If s = ru and k = r + s - (MIN(r, s)),, for any fixed constants u > 0 and

o < a < 1, then CONVr,,,, is AC0 -pseudorandom. In particular, if r = s and k = 2r - r',

for any 0 < a < 1, then CONV,,,,k is AC -pseudorandom.

Let MULT,,,k {0, 1}r x {0, 1}, -+ {0, 1}k denote the integer multiplication function,

which takes a X c {0, 1}r and Y E {0, 1}' to the middle k-bits of the r + s bit long product

of X and Y.

Theorem 4. If s = ru and k = r +.s - (MIN(r, s))', for any fixed constants u > 0 and

0 < a < 1, then MULTr,,,k is AC 0 -pseudorandom. In particular, if r = s and k = 2r - r',

for any 0 < a < 1, then MULTr,,,k is AC0 -pseudorandom.

Let MATRIX-MULTr,, {0, i}rs x {0, i}rs -+ {0, 1}'2 denote the matrix multiplica-

tion function, which, on input a s x r matrix A and a r x s matrix B (both of which are

encoded as strings in {0, 1}' in the obvious way), produces the s x s matrix AB.

Theorem 5. If s = ru, for any fixed constant u > 0, then MATRIX-MULT, , is AC0 -

pseudorandom.

1.2 Polynomial Degree

1.2.1 Recursive Fourier Sampling

The recursive Fourier sampling problem is one of the most well studied problems in quantum

complexity theory. This problem was first defined, along with the complexity class BQP

(Bounded-Error Quantum Polynomial Time), in [BV93], the foundational work of quantum

complexity theory. In that thesis, this problem, whose formal definition we delay for now,

was used to exhibit an oracle A relative to which BQP is not contained in NP or even MA,

that is to say an A such that BQPA NPA and BQPA 5 MAA. Such oracle separations are
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interesting both because they are, perhaps, suggestive of a unrelativized separation, as well

as because they concretely exhibit a measure of complexity in which quantum computers

provably outperform classical computers: query complexity, where the resource of interest is

the number of queries to the (very long) input string.

For this reason, it is natural to seek oracle separations between BQP and increasingly

larger classical complexity classes. However, very little progress in this direction has been

made. While some results are known, such as the fact, proven in [Aar10], that there is an

oracle A such that BQPA g BPPAth and BQPA 5 SZKA, even the question of whether

or not there exists an oracle A such that BQPA AMA remains open, as does, of course,

the substantially stronger question of whether or not there exists an oracle A such that

BQPA 9 PHA.

It is this potential oracle separation between BQP and the polynomial hierarchy that

we now focus on. The natural approach to this problem, which has been used successfully

to show many other similar oracle separations between certain complexity classes and the

polynomial hierarchy, is to exploit the connection between relativized separations from the

polynomial hierarchy and lower bounds against constant depth circuits [FSS84],[Yao85].

Here, the key idea is to reinterpret the 3 and V quantifiers of a PH machine as OR and AND

gates, respectively, to convert a PH machine solving some oracle problem on a 2' bit long

oracle string, into a constant depth, 2 PolY(n) sized circuit, consisting of AND, OR, and NOT

gates that solves the same problem. Using this idea, and a 2 '(1'y(n)) lower bound on the size

of a constant depth circuit computing the PARITY function (on an input of size 2n), one

concludes that there is an oracle A relative to which ®pA 0 PHA. The same idea can, and

has, been used to show other such relativized separations.

Therefore, given this connection between relativized separations from the polynomial

hierarchy and lower bounds against constant depth circuits, and the powerful techniques that

exist to show lower bounds against constant depth circuits, [FSS84] , [Ajt83] , [Has86], [Raz87], [Smo87],

one might very naturally ask why the question of whether or not there exists an A such that
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BQPA PH A remains open. Most fundamentally, the problem is that, in order to show

that a particular function f cannot be computed by a small circuit, all of these circuit lower

bound techniques either explicitly (in the case of [Raz87] or [Smo87]) or implicitly (in the

case of [FSS84],[Ajt83],[Has86] as shown by [LMN93]) argue that f cannot be well approxi-

mated by a low-degree polynomial. This is a problem because, as shown in (BBC+98], any

function that can be computed by an efficient quantum algorithm is well approximated by

a low degree polynomial.

More precisely, however, [BBC+98] only guarantees the existence of a low-degree

polynomial over R, whereas the non-existence of a low-degree polynomial over any field F

would suffice (via the Razborov-Smolensky method) to prove a circuit lower bound, and so

this certainly does not completely doom the application of traditional circuit lower bound

techniques. Nevertheless, the result of [BBC+98] does suggest that a deeper understanding

of approximation by low-degree polynohnials may be necessary to resolve the question of

whether or not there exists an oracle A such that BQPA PH^A. It is this issue that we

focus on within this thesis.

As has been observed by many authors (for instance [BV93], [BV97] , [Aar03], [JohO8, [AarlO])

the recursive Fourier sampling problem (or a slight variant) is a prime candidate for exhibit-

ing an oracle A such that BQPA PHA, as this problem seems to perfectly exploit the

advantages of a quantum computer at the expense of a classical one.

We delay the formal definition of the recursive Fourier sampling problem. For the

moment, we will simply state that it is a promise problem (that is to say, a partial Boolean

function whose value is only defined on a portion of the input space, called the promise)

which is known to have an efficient quantum algorithm. By the result of [BBC+98], this

immediately implies that there is a low degree real polynomial that well approximates the

recursive Fourier sampling problem on the promise. In fact, from the standpoint of proving

a circuit lower bound, the situation is even "worse" than this, due to the result of [Joh11],

which shows that there is an even lower degree real polynomial than the one guaranteed by
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[BBC+98] which exactly represents the recursive Fourier sampling problem on its promise.

Moreover, [Johil] proves exactly matching upper and lower bounds on any real polynomial

that represents the recursive Fourier sampling problem on its promise, thereby completely

resolving the question of the polynomial degree of the recursive Fourier sampling problem,

with respect to polynomials over R.

In this thesis, we consider the question of the polynomial degree of the recursive

Fourier sampling problem for polynomials defined over F2 . That is to say, we consider the

question of what is the lowest degree polynomial defined over F2 that represents the recursive

Fourier sampling problem on its promise. Before proceeding further, we briefly note that

this question is only non-trivial because the recursive Fourier sampling problem is a promise

problem. For any total function g : F2 -+ F2 , there is a unique multilinear polynomial

f E F2 [xi, - - - , x.] that agrees everywhere with g; the degree of f is, of course, the minimal

degree of any polynomial in F[x1,... , x,] that agrees everywhere with g. For a promise

problem, however, there can be many multilinear polynomials, of varying degrees, that all

agree on the promise.

Over F2 , there is a simple, though relatively high degree, polynomial that exactly

computes the recursive Fourier sampling problem. Our key result, stated in the following

theorems, is that, for a certain appropriate settings of the parameters, this simple polyno-

mial is, in fact, the lowest degree polynomial that agrees with recursive Fourier sampling

everywhere on its promise. In fact, we show something even stronger: no polynomial of lower

degree can even non-trivially one-sided agree with the recursive Fourier sampling problem

(that is to say, if a polynomial is zero everywhere (on the promise) that the recursive Fourier

sampling problem is zero, then that polynomial must be zero on the entire promise). We

then use these results to prove new statements about the ability of constant depth circuits

to compute the recursive Fourier sampling problem.

Theorem 7. For any positive integers k, h, Let n = 2 k - 1 and let RFS,"A denote the

recursive Fourier sampling function with majority. Then /3g C F2 [X1, -. Xm] such that
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deg(g) < (2-) and g(x) = RFS^"j(x) Vx E UhAJ. Moreover, if any g E F2 [xI,..., Xm]

such that deg(g) < (2!) vanishes everywhere on UJAJ, it vanishes everywhere onUl^h

Theorem 8. For any positive integers d, n, h such that din, and n > d(2d2 + d - 1), Let

RFSGIPn,d denote the recursive Fourier sampling function with generalized inner product.

Then /Bg E F2 [x1 ,... ,x] such that deg(g) < d and g(x) = RFS 'd (x) Vx E UGP'n

Moreover, if any g E 1F2 [x1,... , x,,] such that deg(g) < d h vanishes everywhere on UGIP,

it vanishes everywhere on UGIP

1.2.2 VC Dimension

We say that a subset J C [n] is shattered by a family of vectors C C {0, 1}" if, Vs J -+

{0, 1}, Ic E C such that cj = s(j) Vj E J (in other words, if one considers the set of

all substrings of elements of C comprised of the positions indexed by J, this collection of

substrings is precisely {0, 1}IJI). We then write

str(C) ={J C [n] : J is shattered byC}

to denote the sets that are shattered with respect to C. We then define the VC dimension

of C as

VC(C) = max{IJI : J E str(C)}.

For a field F and a set C C {O, 1}, the interpolation degree of C, denoted by reg(C) is the

minimum d such that every function f : C -+ F can be expressed as a multilinear polynomial

in F[xi, ... , x,j of degree at most d.

Recently, in [MR15], a very interesting connection between VC dimension and in-

terpolation degree was demonstrated. A simple characterization of sets with interpolation

degree 1 was provided. This naturally raised the question of whether a similar characteri-

zation exists for sets with interpolation degree r, for arbitrary r. In this thesis, we provide

such a characterization, in terms of the rank of a certain inclusion matrix, which will be
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defined precisely in 2.

Theorem 9. A set C C {0, 1} has reg(C) = r if and only if r is the smallest positive

integer such that rankF'M(C, ( l)) = ICI.
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Chapter 2

Algebraic Geometry Tools

2.1 Preliminaries

We begin by recalling several standard definitions from algebraic geometry. Let F denote a

(not necessarily algebraically closed) field and F[x 1,..., x,] denote the ring of polynomials

in n indeterminates. An algebraic set in F" is the set of common zeros of a collection

of polynomials in F[x,... , x,,]. More precisely, given a set of polynomials fi,..., fi E

F[x 1 ,... , x,], we denote their set of common zeros by V(fi,..., fk) where

f, ) = (x1, ... , X) E Fi: fi(xi, .. . , X,) = 0 Vi}.

Rather than working with an arbitrary set of polynomials, it will often be convenient

to consider an algebraically nicer object: an ideal. For I an ideal in F[x 1, ... xn], let V(I)

denote the common zero set of all polynomials in I, that is to say

V(I) = {(x1,..., ) E Fn : f (X) = 0 Vf E I}.

Given a set of polynomials fi,... , fk E F[x1,..., xn], let (fi, ... , fA) denote the ideal which

they generate in F[x1 , ... , xn]. Clearly, V((fi,... , A)) = V(f 1 ,... , fk). For an algebraic
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set V, let its vanishing ideal I(V) be the ideal of F[xl,,.. , X,] consisting of all polynomials

which vanish on V and let R(V) = F[xi, ... , Xn]/I(V) denote its coordinate ring.

For a polynomial f E F[xi, ... , xn], let deg(f) denote its total degree. Let F[xi, ... , Xn] d

denote the vector space of polynomials over F with degree at most d. For an ideal I, let

Id = I n F[xi,. Xl]d denote the subspace consisting of all polynomials in I of degree at

most d. For an algebraic set V, with vanishing ideal I = I(V) and coordinate ring R = R(V),

let R<d = F[iXi, ... , XnId/Id. The affine Hilbert function ha(R, d) of R is then given by

ha(R, d) = dimF(R<d).

By slight abuse of notation, we will use the term affine Hilbert function of an algebraic set

V, which we will denote ha(V, d), to simply be the affine Hilbert function of the coordinate

ring R(V).

Throughout this thesis, we consider only zero-dimensional algebraic sets V (that is

to say, V is finite). For such a V, we define its regularity reg(V) to be the minimal value

of d such that ha(V, d) = IVI. Equivalently, reg(V) is the minimal value of d such that

every function V -+ F can be realized as a polynomial of degree at most d. This quantity is

frequently referred to as interpolation degree. In the case of zero-dimensional algebraic sets,

this quantity is equivalent to the Castelnuovo-Mumford regularity of R(V) (see, for instance

[Eis02] Thm.4.1).

Force = (a1,.. ., an) E N", we define x' to be the monomial x" -x-- E F[x1 ,. .. ,xz].

For any J C [n] we define the (multilinear) monomial xj by xj = J~J[ xj. A degree

compatible term order < is a total order on the monomials x" which respects multipli-

cation (Xa < X,3 => XaX' < X)3x7 Vxa AO, x7 E F[X, ... , x,]) and is degree compatible

(deg(xa) < deg(xA) => x" < xA Vxc, xA E F[xi,... , xn]). For a degree compatible term order

<, and polynomial f E F[xi, ... , X,, we define its leading monomial lm(f) to be the largest

monomial in f with respect to <. Similarly, for an ideal I in F[xi,... , x,,], we define its
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leading monomials to be

LM(I) = {lm(f): f E I}

and its standard monomials to be

SM(I) = {x" : a E N>} \ LM(I).

For an algebraic set V, we define LM(V) = LM(I(V)) and SM(V) = SM(I(V)). We

also define

SM(V, d) = {xa E SM(V) deg(xc) = d}

and

LM(V, d) = {xt E LM(V) deg(x') = d}.

Standard monomials provide an extremely convenient tool for computing both the

Hilbert function of an algebraic set and its regularity, as illustracted in the following lemma

(these are well known facts in algebraic geometry; see, for instance [Fe107]).

Lemma 1. (a) ha(V, d) = Ed ISM(V, i)I

(b) reg(V) = maX--ESm(V) deg(xc)

(C) |SMMV} =|V|

(d) V1 9 V2 = SM(V) C SM(V2 )

(e) V1 C V2 => LM(V) D LM(V2)

Let Mn denote the semigroup of all monomials in n indeterminates. That is to say, as

a set Mn = {X, : a E N"} with multiplication between monomials defined in the usual way.

An ideal U of Mn is simply an upwardly closed subset of Mn (xa E U + xcx8 E U Va, f).

For an algebraic set V C Fn, LM(V) is an ideal of Mn. Similarly, SM(V) is a dual ideal. In
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other words, if x" E LM(V), then x"x6 E LM(V) and if x' E SM(V) then xO E SM(V) for

any divisor x3 of x'.

For I an ideal of Fxi..., x.], let a(I) denote the minimal degree of any g E I

such that g consists of only monomials from SM(F'). For an algebraic set V = V(I), let

a(V) = a(I). The following lemma, proven independently in [Fe107] and [PR081, provides an

extremely useful relationship between reg(V) and a(V), where V denotes the complement

of V.

Lemma 2. [Fe07], [PR08]

If V C F' is a nonempty zero-dimensional algebraic set, then a(V) + reg(V) = n.

Lastly, we consider another useful tool for computing the Hilbert function: inclusion

matrices. Let F2 denote the finite field of two elements. Let 21n] denote the collection of all

subsets of [n] = {1, . . . , n}, and let F, g C 21' denote two families of subsets. The inclusion

matrix M(F, g) is a IF1 x 191 matrix, with entries in F2 , where for any F E F and G E g

the (F, G) entry is 1 precisely when G C F. Let (l) denote the family of all subsets of [n]

of size at most k.

Given an algebraic set V C F, we associate it with a family of subsets in the natural

way: for each x = (x 1 , ... , X,) E V the subset {i : xi = 1} is included in the set family.

By a slight abuse of notation, we will also denote this set family by V. The following is

immediate from definitions (as a nontrivial linear combination of the columns corresponds

to a polynomial in I(V) and hence a leading monomial).

Lemma 3. For any algebraic set V C F", we have

ha(V, d) = rank 2 M (V, (,1)

Throughout this thesis, our key object of interest will be the affine Hilbert function of

an algebraic set. We briefly note that this is a slight departure from the typical situation in

algebraic geometry in which one considers the "ordinary" Hilbert function (which is defined
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similarly to the affine Hilbert function, but in which one considers the space of homogeneous

polynomials of a particular degree, rather than arbitrary polynomials of a particular degree)

of a variety (which is an algebraic set in which the ground field F is algebraically closed).

Much as was the case in [Smo93], this is done in order to allow a better intuitive connection

between the Hilbert function and the questions from complexity theory that we consider.

However, it should be noted that it is very straightforward to convert between statements

involving the affine Hilbert function of an algebraic set and the Hilbert function of a variety

as, firstly, one can harmlessly extend the ground field (and, in particular, extend it to its

algebraic closure), and, secondly, one can straightforwardly express the value of the affine

Hilbert function at degree d as the sum of values of the Hilbert function of degree at most

d. While it is true that certain basic statements that would hold over an algebraically closed

ground field do not necessarily hold over arbitrary fields, these statements are either facts

that we explicitly exploit in the proof (such as the number of roots a particular degree d

polynomial has in a particular algebraic set) or are statements that can easily be modified to

analagous statements when the ground field is a finite field (for example, Hilbert's Nullstel-

lensatz, which establishes a bijection between varieties and radical ideals can be modified to

a bijection between algebraic sets and radical ideals that contain the field polynomials).

2.2 Generalization of Versatile Functions

In this section, we consider a certain natural generalization of the concept of versatile func-

tions (as defined in [Kopi1], see also [Smo87] for the concept of U; - complete elements) to

promise problems. We begin with a definition.

Definition 1. A function f :IF -+ F2 is Versatile if, Vg : F -+ F2 , 3u, v E F2 [x1, n]

where deg(u), deg(v) < i and g(x) = u(x)f(x) + v(x) Vx E F2.

Versatile functions admit a particularly simple characterization in terms of regularity

(this is essentially the same notion as "degree-m independent sets" as considered in [Smo93]),
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as shown in the following lemma.

Lemma 4. For a function f : F -+ F2 , let UO = f- 1 (0) and U1 = f-1(1). Then f is

versatile if and only if reg(Uo), reg(U1) n.

Proof. If f is versatile, then, by definition, Vg ; Fn -+ F2, ]u, v E F2[x1, ... , Xn where

deg(u), deg(v) < n and g(x) = u(x)f(x) + v(x) Vx E Fy, and so g(x) = v(x) Vx E Uo and

g(x) = u(x) +v(x) Vx E U1. Since deg(u + v) max(deg(u), deg(v)), it immediately follows

that reg(Uo), reg(U1) K n.

If reg(Uo),reg(U1) n, then, by definition, Vg :F -+ F2 , ]u',v' E F2 [xi,... ,xn]

where deg(u'), deg(v') < ! such that g(x) = u'(x) Vx E Uo and g(x) = v'(x) Vx E U1. There-

fore, g(x) = u(x)f(x)+v(x) Vx E F', where u = u'+v' and v = v'. Since deg(u), deg(v) n g,

f is versatile.

As shown in [Kopl], the Majority function (the function MAJ : Fn -+ F2 where

MAJ(x) = 1 when wt(x) i and MAJ(x) = 0 when wt(x) < 2, where wt(x) denotes the

number of is in x) is versatile. As a first illustration of the utility of standard monomials,

we present a new short proof of this fact.

Lemma 5. The function MAJ: Fn -+ F2 is versatile.

Proof. Let UO {x E Fg : MAJ(x) = 0}. Let S = {xO : a E {0, 1}", wt(a) < }}. We will

show that SM(Uo) = S. Since ISI = IUol = ISM(Uo)I, it suffices to show S C LM(Uo). To

see this, note that for any J C [n], where IJI 2, , we clearly have xj E I(Uo) (because,2'

for any x E UO, a strict majority of the xj are 0 and so any sufficiently large product

XJ = ][ must vanish on Uo) and so xj E LM(UO). Trivially, xj E LM(Uo) Vj, as, of

course, xj + xj E I(Uo) Vj. Due to the fact that LM(Uo) is upwardly closed, the previous

two facts immediately imply S C LM(UO), as desired.

Similarly, if U1 = {x G F' : MAJ(x) = 1}, then, by the same logic as above,

SM(U 1) = {x" : a E {0, 1}n", wt(a) -}. Therefore, by definition, reg(Uo), reg(U1) .
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We now generalize the notion of versatility to functions of the form f : U -+ F2 ,

for some U C Fn. As shown above, a versatile function partitions the set Fn, which has

regularity n, into two pieces, the preimage of 0 and the preimage of 1, which each have

regularity at most n. We will call a function f 3-versatile on U if the function f induces

a partitioning of U with a regularity gap of at least 6. This notion is formalized in the

following definition.

Definition 2. For a function f: U -+ F2 , let UO = {x e U : f(x) = 0} and U1 = {x E U:

f(x) = 1}. We say that f is 6-versatile on U if J < reg(U) - reg(Uo), reg(U) - reg(U1 ).

Clearly, this notion generalizes the concept of versatility as a versatile function is

n-versatile on Fn. We now prove several useful properties of 3-versatile functions which will

be used throughout the thesis.

Lemma 6. If f : U -+ F2 is 3-versatile on U then, /,g E F2 [xI,...1,xn where deg(g) < J

and g(x) = f(x) Vx E U.

Proof. Assume, for contradiction, that such a g exists. By the definition of regularity, there

exists at least one function h : U -+ F2 such that, Vq E F 2 [x1, - , xn] with deg(q) < reg(U),

3x E U such that h(x) # q(x).

Let Uo = {x E U : f(x) = 0} and U1 = {x E U : f(x) = 1}. Due to the fact

that f is 6-versatile on U we have, by definition, reg(Uo), reg(U1 ) < reg(U) - 3. Therefore,

Eu, v E F 2 [xi, ... , xn] where deg(u), deg(v) reg(U) - 3 and h(x) = u(x) Vx E Uo, h(x) =

v(x) Vx E U1. If we then define q E F2 [x1,.. ., x,] by q = u(g + 1) + vg, we clearly have

deg(q) max(deg(u) + deg(g), deg(v) + deg(g)) < (reg(U) -6) + deg(g) < (reg(U) -3) +3 =

reg(U) and h(x) = u(x)(g(x) + 1) + v(x)g(x) = q(x) Vx E U, which is a contradiction.

Next, we consider the behavior of 3-versatile functions f: U -+ F2 where the set U

has a certain special property. Given any U C F', there is, of course, a unique multilinear
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polynomial (recall that a polynomial is multilinear if every monomial has degree at most

1 in each variable) ru E F2 [x1 ,... , x,] such that ru(x) = 1 if and only if x E U. Clearly,

ru E I(V). Moreover, each monomial of ru is in SM(Fn) (due to the fact that the standard

monomials of Fn are precisely the multilinear monomials), and so we immediately conclude

that a(V) deg(ru). We call an algebraic set U critical if a(V) = deg(ru).

Lemma 7. Let U C Fn be a critical algebraic set, let f : U -+ F 2 be 6-versatile on U, and

let Uo = {x E U: f(x) =0} and U1 = {xE U: f(x) = 1}. Then, VqEIF 2[x1 ,.-.-,x] such

that deg(q) < 6, q E I(Uo) if and only if q E I(U1 ).

Proof. We show that,Vq E F2 [x1 ,... ,x ], where deg(q) < 6, q E I(UO) => q E I(U1 ); the

reverse implication follows by symmetry. Assume, for contradiction that q E I(Uo) but

q I(U1 ). Let Y = {x E U : q(x) = 1}. Clearly Y C U1 and Y is nonempty. Let t E

F2 [x1 ,. .. , ,n] denote the unique multilinear polynomial such that t(x) = ru(x)q(x) Vx E F',

then t E I(F) and deg(t) deg(ru) + deg(q). Using Lemma 2, we have

reg(Y) = n - a(Y)

> n - deg(t)

> n - deg(ru) - deg(q)

= reg(U) - deg(q)

> reg(U) - 6

reg(U1 ).

However, we cannot possibly have reg(Y) > reg(U1 ) because, as noted above, U1  U,

and so, by Lemma 1(b,d) we must have reg(Y) < reg(U1 ).

The following lemma provides an extremely useful characterization of the behavior of
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a 6-versatile f on the intersection of a critical U with a certain simple algebraic set, namely

the union of the vanishing sets of a collection of low degree polynomials.

Lemma 8. Let U C F2 be a critical algebraic set, let f U -+ F2 be 6-versatile on U, and

let Uo = {x E U: f(x) = 0} and U1 = {x E U : f(x) = 1}. For any d < S and for any

1, , A E F2 x1 , .--, xn] where deg(g) < d Vi, let G = UiV(gi). Then,

SM(U n G,j) = SM(Uo n G,j) = SM(U n G,j) Vj < 6 - d

Proof. Clearly, UOn G C U nG, U, nG C UnG and so by Lemma 1(d), SM(UOn G), SM(Un

G) g SM(U n G), from which it immediately follows that SM(UO n G, j), SM(U n G, j) C

SM(U n G, j).

We will now show SM(Uo n G, j), SM(Ui n G, j) ; SM(U n G, j)Vj < 6 - d, which will

complete the proof. Consider any j 6- d. Due to the fact that, for any particular algebraic

set, every monomial is either a leading monomial or a standard monomial, if suffices to show

LM(UO n G,.j), LM(U1 n G,j) C LM(U n G, j).

To see that LM(Uo n G, j) 9 LM(U n G, j), assume, for contradiction, that this is

not the case. Then 3X' E LM(Uo n G, j) n SM(U n G, j). Due to the fact that x" E

LM(UO n G, j) we have, by definition, that 3q E F2 [x1, .. ,Xn] such that q E I(Uo n G)

and lm(q) = xa. Clearly, deg(q) = J < 6 - d. Due to the fact that x' E SM(U n G, j),

we have, by definition q I(U n G). This immediately implies q I(U1 n G) because

U n G = (UO u U1 ) n G = (Uo n G) U (U1 n G), and so if q did vanish on U1 n G, then it

would vanish on U n G (because, by construction, it vanishes on UO n G). Moreover, since

U n G = U n (UjV(g,)) = Ui(U1 n V(gi) we conclude ]i such that q V I(U1 n V(gi)). Fix

such an i and consider the set Y = {x E U : q(x) = 1 and gi(x) = 0}. Notice that due

to the requirements that x E U and gi(x) = 0, we immediately have Y C U n V(gi), and

since q vanishes on UO n V(gi), we then have Y C U1 n V(gi). Let t E F2 [x1 , - - -, Xn] be the

(unique) multilinear polynomial equal to (ru)(q)(gi + 1). By construction, t(x) = 1 if and
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only if x E Y, and so t E I(Y). We then have

a(Y) deg(t)

< deg(ru) + deg(q) + deg(gi + 1)

< a(U) + (6 - d) + d

=a(il) + 6.

Applying Lemma 2, we then have

reg(Y) = n - a(Y)

> n - (a(U) + 6)

- reg(U) - 6

> reg(U1),

where the last inequality holds due to the fact that f is 6-versatile. However, we cannot

possibly have reg(Y) > reg(U1) because, as noted above, U1 C U, and so, by Lemma 1(b,d)

we must have reg(Y) 5 reg(U1 ). This contradiction allows us to conclude LM(Uo n G, j) g

LM(U n G, j). By a precisely symmetric argument, LM(U1 n G, j) 9 LM(U n G, j), which

completes the proof.
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Chapter 3

Pseudorandomness

3.1 Algebraic Extractors

In this section, we exhibit a new construction for an extractor for algebraic sets with ex-

tremely strong parameters. We begin with the following lemma, which provides a useful

bound on the Hilbert function.

Lemma 9. Let V C F' satisfy reg(V) > n - Vn-. Then, there is a constant c > 0 such that,

for any 3 > 0 and any k < n2-6, we have

ck
ha(V, reg(V)) - ha(V, reg(V) - k) < -lVI.

Proof. Let r = reg(V) and set t to be the unique value r - k + 1 < t < n such that

t, 1 I SM(V, r - k + 1)1 < (r').

First, notice that ISM(V, i) I > (t), Vi < r - k + 1. This follows by a straightforward

induction on j = r - k +1 - i. The case in which j = 0 follows from the above definition of t.

If ISM(V, r- k+1 -j) > (+ then we immediately have a set S C SM(V, r - k+ 1-j)

such that ISI = (,_tj1_j). Define the set AS to consist of all monomials that lie immediately

below some monomial in S in the monomial order (this is frequently called the shadow of
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A(S) = {x : deg(x") = r - k + 1 - (j + 1) and ]xE E S such that x" < x$}.

Due to the fact that SM(V) is a dual ideal, we note that S C SM(V) => A(S) 9 SM(V),

from which we immediately conclude A(S) C SM(V, r - k + 1 - (j + 1)). We then have

ISM(V, r - k + 1 - (j + 1))| > |A(S)| >(rk+1tj+1) .

where the last inequality follows immediately from Lov6sz's version [Lov79] of the Kruskal-

Katona theorem.

By a precisely analogous argument, we also have ISM(V i) (t) Vi > r - k + 1.

By Lemma 1(a) and the above,

r-k r-k

ha(Vr) > ha(Vr- k) = EISM(Vi)I > > c12',
i=O i=O

for some constant c1 > 0 (where the last inequality follows from the fact that r - k >

2 - 29/i > - 2\t combined with elementary bounds on the sum of binomial coefficients).

Similarly, Vi > r - k + 1, we have, for some constant c2 > 0,

lSM(V,i)I h )( ) c2

We then have, for some constant c > 0,

ha(Vr) - ha(V, r - k) ha(V, r) ha(V,r -k)

lVi ha(V, r)

i=r-k ISM(V, i)I
ha(V, r)

(k + 1)(c2)2
<

c12
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(k + 1)c

ck

Remark 1. The above bound can be seen to be essentially optimal, as shown by considering

the standard monomials of the function MAJORITY computed in the previous section.

We now show that any 6-versatile function, for appropriately chosen 6 is an extractor.

Theorem 1. Let f : F' -+ F2 be 6-versatile (on Fn), where > 2 - n7 for some 0 K < < .

Then, there is a constant c > 0 such that, for any constants a, 3 such that 0 < a, /3< {, and

-no c(n+d1og(f))
for any d < n' and p 2- f is an extractor with bias P for algebraic sets of

density at least p that are the common zeros of a collection of polynomials each of degree at

most d.

Proof. Let U0 = f-1(0) and U1 = f-1(1). Due to the fact that f is (n - n?)-versatile, we

immediately have reg(Uo), reg(U1 ) E ny. We also have reg(Uo), reg(U) > a - nf because

2 = |Uol + U11 = ISM(Uo) + ISM(U1)I, and the regularity of an algebraic set is the size of

its largest standard monomial(Lemma 1(b)).

Consider any algebraic set V = V(gi, .. , gk) where gi E F 2 [x1,... , Xn] and deg(gi)

d Vi. Using the Razborov-Smolensky method [Raz87],[Smo87], we have a collection of poly-

nomials yl,... yj E F2 [x1,..., Xnj such that deg(y) d, V(gi,..., g) 9 V(yi,... ,yj) and

IV(yi, ... ,yI) \V(g 1 , ... , gk)I 2n-1. Setting y = 1 + 1 (1 +yi), we then have deg(y) dl

and V(y) = V(yi,... , yj).

Consider U0 n V(y) and U1 n V(y). By Lemma 8, we have

SM(U n V(y), i) = SM(U1 n V(y), i) = SM(V(y)) Vi < - n7 - dl.

From this, and Lemma 1(a), we immediately conclude ha(U n V(y), n - W - dl) = ha(U n
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V(y), n-ny-dl). Clearly, UofnV(y) C UO and UifnV(y) C U1, and so, by Lemma 1(d,b), we

have reg(Uo n V(y)) reg(Uo) < 1 + WO, and reg(U1 n V(y)) reg(U) ! n +n. Moreover,

reg(Uo f V(y)), reg(U1 n y)) n - nrt - dl. To see this, first notice that Lemma 2 allows

us to conclude reg(V(y)) > n - dl (because y + 1 vanishes on the complement of V(y)),

which immediately implies that SM(V(y)) consists of an element xN of degree at least n - dl.

As SM(V(y)) is a dual ideal, we then also conclude that it consists of an element of degree

precisely n - n7 - dl (simply take any divisor of x' of the appropriate degree). By the above

relationship between SM(V(y)), SM(Uo n V(y)) and SM(U1 f V(y)), we then conclude that

both SM(Uo n V(y)) and SM(U1 n V(y)) contain an element of degree a - n! - dl, and so,

by Lemma 1(b), the claimed lower bound on regularity follows. In the following, for brevity,

we write Hi(j) = ha(Ui n V(y), j), di = 2 + n-,d2 = n - n' - dl.2 2

We then have

bias(flyv(,,...,,,)) = EX~V(91,.,gk)( -1 I

S nUo n V(gl,..., g)I- Uo n V(g,..., g)0

|V(91,..., gk)I

<jUO nV(y) I -JU1 n V(y)l|I+ V(y) \ V(gi, ... , gka
JV i9, - - - , 9k)

< Ho(di) - H1(di)I + 2n-1

V(91, - - -,k

__ Ho(d2) - H1(d 2) + (Ho(di) - Ho(d2)) - (H(di) - H(d2)) + 2n-

JV(g1, . .. , gk)I

_ (Ho(di) - Ho(d2) - (H(di) - H(d2)) + 2-

|V(gl, ..., gk)

c'1 (20nY:dl)IV g7..n-

< <922 
-790,..,1a + 2

- IV(gi,... ,gk)I

c'(2n-/ + dl) + 2n-1

Vn |V(g1,...,gk)I
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c' (2n-f + dl) 2-1

- /n p2n

'(2n + dl) 1

X/n- p2'

Setting 1 = log(f) yields the claimed bound.

Next, as in [CT13], we consider a variant of the extractor model in which, rather

than explicitly considering algebraic sets which satisfy a certain density bound, we consider

algebraic sets defined by a limited number of polynomials. The following is immediate.

Corollary 1. Let f : F -+ F2 be 5-versatile (on Fy), where > - n^ for some 0 < y <
2 2 2 _

Then, there is a constant c > 0 such that, for any constants a, / such that 0 < a < < ,

and for any d < n' and k < na , f is an extractor with bias c(n-fd(n log(n)) for algebraic

sets that are the common zeros of a collection of at most k polynomials each of degree at

most d.

Proof. Consider any algebraic set V = V(gi,.. . , gk) where gi E F2 [X 1 , ... , xn] and deg(gi) <

d Vi. Let g = 1 + RT=1gi. Then deg(g) K kd K na and V = V(g). From Lemma

2 it immediately follows that reg(V(g)) > n - deg(g) > n - no, and so, by definition

-xc' E SM(V(g)) such that deg(xr) - n - no. Due to the fact that SM(V(g)) is a dual ideal,

every divisor of x' is also a member of SM(V(g)). As there are precisely 2 "-0 such divisors

we have

IVi = IV(g)I = ISM(V(g))I 2 -

and so V has density p > 2 The result then follows immediately from Theorem 1.
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3.2 ACO-pseudorandomness

3.2.1 The Linial-Nisan-Braverman Technique

Braverman's Theorem

Braverman [Bra09] resolved the long standing Linial-Nisan conjecture [LN90]. We now

state this theorem, which provides a simple sufficient condition for a distribution to appear

random to AC' circuits. For a distribution pn with support {o, 1}", we say that [pn is a

(1, r)-approximation if every restriction of pn to r coordinates is 1-close to the uniform

distribution on {0, 1}' (two distributions are #-close if the statistical distance between them

is at most /). The theorem states that if a distribution A, is a (1, r(s, d, c))-approximation,

for sufficiently large r and sufficiently small 3, then it e-fools all depth d AC' circuits of size

s.

Theorem. [Bra09J Every (13, r(s, d, e))-approximation E-fools all depth d AC0 circuits of size

s, where

r(s,d,c) = log 0(d 2 )

and

In particular, every (2 -n, n3)-approximation, for constants r, < 6 < y < 1, will 2 -

fool polynomial sized circuits of any constant depth, for sufficiently small constant a. In this

thesis, any function f for which the corresponding distribution pa, as defined above, meets

this condition, will be said to have the Linial-Nisan-Braverman property, or LNB property

for short. In fact, many of the functions considered will have an even stronger property:

their corresponding distributions will be (0, n6)-approximations (or, in other words, every

restriction of p,, to n6 coordinates will simply be the uniform distribution, rather than being

only close to the uniform distribution).
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Application to Homomorphisms

Let us now restrict our attention to homomorphisms from {0, 1}m to {0, I}k, the set of

which we denote by Hom({0, 1}rm, {0, I}k) (or, in other words, viewing {0, 1I}m and {0, I}k

as vector spaces, we consider the set of linear maps). It will be shown that it is particularly

simple to determine if a given homomorphism has the Linial-Nisan-Braverman property, and,

moreover, that many homomorphisms have this property, and hence appear random to AC0

circuits.

Every f E Hom({ 0,}'m, {0, I}k) corresponds to a k x m matrix F, with entries in

{0, 1}, such that f(X) = FX, for X E {0, 1}m. For any R {1,... , k} and C C {1, ... , m},

let FR,C be the submatrix of F consisting of rows R and columns C. The following lemma

shows that having the Linial-Nisan-Braverman property is equivalent to certain submatrices

of F being full rank. As before, n = m + k.

Lemma 10. f E Hom({0, 1}m, {, I}k) has the Linial-Nisan-Braverman property if and only

if 36 > 0 such that VR C {1,..., k},C C {1,...,m} with IRI +ICI n, the submatrix FRo

is full rank, where C ={1,... , M}\ C.

Proof. First, consider a function f: {O, 1}' -+ {0, I}k whose corresponding matrix F meets

the above condition. We show that f has the Linial-Nisan-Braverman property. To do this,

let X E {0, 1} m be an arbitrary element, Y E {0, 1}' be the concatenation of X and f(X),

and p, be the distribution of Y given a uniformly randomly selected X. By definition, f has

the Linial-Nisan-Braverman property ifti, is n6-independent. To see that f has this property,

imagine that an adversary selects some n sized subset of coordinates of Y. We must show

that the distribution A, when restricted to these coordinates is the uniform distribution.

Each coordinate is either a coordinate of the input X or a coordinate of the output f(X).

Of course, since X is selected uniformly at random, any such restriction on just the bits

of X yields the uniform distribution. All that needs to be shown is that the conditional

distribution of selected output coordinates is uniform, given any value of the selected input
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coordinates, or, in other words, that if the adversary is allowed to look at only a small number

of input bits (fewer than n) than the distribution of any small number of output bits due to

the remaining inputs bits is still uniform. To see this, let R C {1, ... , k} and C C {1, ... , m}

denote the selected coordinates of f(X) and X, respectively, where |R + C = n. Letting

f(X)R denote the bits of the output corresponding to R (that is to say, the selected bits of the

output), and defining Xc and XZ analogously (which are then the selected and unselected

bits of the input, respectively), then we can write f(X)R = FR,CXc + FRZ7XZ. Since F

meets the above condition, we know that FR,- is full rank, and so, as all of the (unseen) bits

of XZ vary uniformly, FR,ZX varies uniformly. One way to see this is to note that, since

FR,? is full rank, it contains a IR x JRI invertible submatrix. Therefore, as the bits of X

that correspond to this invertible submatrix vary over all possible values (with the other bits

of X fixed), FRZXZJ indeed varies uniformly. Therefore, for any fixed Xc, f(X)R varies

uniformly, and so f has the Linial-Nisan-Braverman property.

To prove the other direction, assume that F doesn't meet the above condition. This

means that, VJ > 0, 3R C {1,... ,k}, C {1,... )m} with R + Cl = n the submatrix

FR,Z is not full rank. Again, we write f(X)R = FR,cXc + FRZX. Since FR,? is not full

rank, we have, by definition, that as X varies FRUXy doesn't even hit all possible values.

In fact, it must miss at least half of all values, and so f(X)R is far from uniformly randomly

distributed for any fixed Xc.

Using the above result, we are now able to prove Theorem 2, which states that

for any "reasonable" choice of m and k, almost every f E Hom({0, }rn, {0, 1}k) is AC0 -

pseudorandom. For convenience, we restate the theorem here.

Theorem 2. If k = m', for any fixed constant u > 0, then all but an exponentially small

fraction of all f E Hom({0, 1}', {0, 1}k) are AC0 -pseudorandom.

Proof. Let Ph,, denote the probability that an h x w matrix, where w > h, with entries
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drawn uniformly at random from {0, 1}, is full rank (that is to say, has rank h). We have

the following useful bound, which follows from the fact that, in order for the matrix not to

be full rank, either the first row must be identically zero, or the second row is a multiple of

the first, or, in general, the ith row lies in the span of the first i - 1 rows; combining these

probabilities with a union bound gives:

h

Ph,w > 1 - 2-" 2w.
i=1

For any particular m, k, the probability that a randomly selected f G Hom({0, 1}"1, {0, 1}k)

is AC-pseudorandom is, by the above theorem, given by the probability that all appropri-

ately sized submatrices of a randomly selected k x m matrix are full rank. To be precise,

we are interested in the probability that all submatrices FRT, where IRI + ICI = n are full

rank, when m, k >> Wi. For any h K k and w K m, the number of h x k submatrices of a

k x m matrix is given by (k) ("), and so, by a simple union bound, we have the following:

Pr(f doesn't have the LNB property) E .( m - -6 (1 Pjm-(n6-j))

i=1
n6 6

< no P.2~("n6) (2no+1 _ 1)
- (n6)! (n6 )!

<(km)"1

2"M

(mu+1 )n

2rn
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Convolution

In the previous section, it was shown that many functions in Hom({0, 1}m, {0, 1}k) appear

random to AC0 circuits, but no explicit example of such a function was given. This section

shows that a particular function, namely the convolution function, satisfies this property. We

begin by recalling the definition of convolution. Given some X E {0, 1} and Y E {0, 1I,

the convolution of X and Y, which will be denoted X * Y, is the Z E {0, 1}r+-1 where if

X , Y, and Zi refer to the ith bit (zero indexed, counting from the least significant bit up)

of X, Y, Z, respectively, then

Zi = XjYi_,
j=0

where XjYg denotes the AND of X and Yi-j, any Xj or Y outside of the defined range is

understood to be zero, and the sum is, of course, computed modulo 2.

The goal is to show that convolution is AC0 -pseudorandom. There are several rea-

sonable ways to define this. Perhaps the most natural, immediate thought is to consider the

function f : {0, if x {O, } {O, 1}r+4, which takes the pair (X, Y) to X *Y. Unpacking

definitions, this means we consider the distribution (when X and Y are selected uniformly at

random) of the string in {0, 1}2r+2.-1 where the first r bits are X, the next s bits are Y, and

the final r +s -1 bits are X * Y. Observe that this distribution clearly does not look random

to AC0 circuits because some of the bits of X * Y can be determined exactly by an AC0

circuit. To be precise, letting n denote, as usual, the total size of the string (n = 2r + 2s -1),

we see that any of the first (or last) O(log rn) bits of X * Y is simply the parity of O(log n)

bits, each of which is the AND of some bit of X with some bit of Y. Since a parity of

O(logcn) bits can (for any constant c) be computed easily in AC', we immediately conclude

that including any of these bits will cause the resulting distribution to not appear random to

AC' circuits. However, if we exclude these bits, we can show that the remainder does appear

random to AC0 circuits. We consider the function CONV,,, : {0,1}' x {, 1} -+ {, 1}k

where now k = k(r, s) < r + s - 1, and only the k "middle bits" of X * Y are included (the
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k centermost bits). Such a function is not a homomorphism and so the technique of the

previous section does not directly apply. Instead, we will consider a variant of this problem,

to which that technique does apply. Doing so yields a stronger result that also immediately

implies that CONV,,,,k function does, in fact, appear random to AC0 circuits.

Essentially, the idea is to consider a "fixed" Y (here we mean that there is a single fixed

Y of each length; as mentioned earlier, the discussion involves the asymptotic properties of f,

defined by a sequence of Y values, one for each length), and define the function fy : {O, 1}' -+

{0, 1}, (where again, as above, k = k(r) < r + s - 1) such that fy takes the r-bit value X

to the middle k bits of X * Y. The difference between these two variants can be understood

as follows. In the first variant, described in the previous paragraph, the distinguisher would

be an AC' circuit family where the circuit whose input size is r + s + k would be able to

distinguish the string consisting of a uniformly randomly selected X C {o, 1 }r, a uniformly

randomly selected Y E {0, 1}' and the middle k(r, s) bits of X*Y from a truly random string..

In the second variant, the distinguisher can have Y built-in, and only needs to distinguish

the string consisting of a uniformly randomly selected X E {0, 1 }T and the middle k(r) bits

of X * Y from a truly random string.

Since each fy is clearly a homomorphism, Lemma 10 applies. Moreover, if it can be

shown that, for all sufficiently large r, all but an exponentially small fraction of choices for Y

produce an fy that is AC0 -pseudorandom, then it immediately follows that the variant of the

problem described in the previous paragraph, in which both X and Y are selected uniformly

at random, also is AC0 -pseudorandom. Loosely speaking, claiming that this second variant

is AC0 -pseudorandom is a stronger claim because being able to have a separate circuit for

each Y could conceivably give a distinguisher more power.

We now prove Theorem 3, which is restated below.

Theorem 3. If s = r' and k = r + s - (MIN(r, s))Q, for any fixed constants u > 0 and

0 < a < 1, then CONV,,,,k is AC0 -pseudorandom. In particular, if r = s and k = 2r - ra,

for any 0 < a < 1, then CONV,, , ,k is AC0 -pseudorandom.

37



By the above logic, it suffices to show the following lemma.

Lemma 11. For all but an exponentially small fraction of Y, the function fy : {0,1} -+

{o, 1}, where k = 2(r-ra+1) for any small constant a > 0, has the Linial-Nisan-Braverman

property.

Proof. Let f denote an arbitrary element of the set {fy lY E {0, 1}S}. Since f is a homomor-

phism, there is a corresponding k x r matrix F such that f(X) = FX, for any X E {o, 1}r.

To show that, for almost all choices of Y, the corresponding function f has the Linial-Nisan-

Braverman property, it suffices, by Lemma 10, to show that the appropriate submatrices of

F are full rank.

The matrix F has a particularly simple structure, namely it has constant skew-

diagonals. That is to say, if Fj denotes the element of F in row i and column j then

F,3 = F_1,, 1 . The first row of F consists of, from left to right, r - r' zeros followed by

the lowest r' bits of Y, starting with the least significant bit of Y. Each subsequent row of

F is obtained by shifting Y one index further to the left, filling empty entries with zeros.

Consider an arbitrary submatrix FRU where R C {1,... ,k} and C C {1,..., r} such that

IRI + |Cl = n for 6 < a, where C = {1,... , r} \ C and n = r + k. For randomly selected

Y, this submatrix is full rank with overwhelming probability. To see this, note that if FRU

is not full rank, then there is some non-trivial linear combination of its rows that adds to 0.

Let h and w be the height and width, respectively, of FRjZy. Then there are 2 - 1 potential

non-trivial linear combinations of the rows, because a linear combination is, by definition,

a sum of the rows of FR,U where each row has coefficient 0 or 1 (having all coefficients be

0 is the trivial linear combination). In other words, it is a sum of some subset of the rows

of FR,Z. Consider any fixed non-trivial linear combination. Let i denote the lowest row of

FR,- that has coefficient 1. Note that the probability (over Y) that this particular linear

combination of the rows of FR,o is zero is very small. While this fact would be immediate

if FR,Z were simply a random unstructured matrix, some care must be given due to the

structure of F (constant skew-diagonals) which forces all elements of F in the same skew-
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diagonal to be identical. To deal with this, consider the rows of FR,T one at a time, from

left to right. In order for the linear combination of the rows to be the zero vector, it must

be the case, by definition, that the sum in each column is zero (where of course this sum is

only over the subset of elements selected by the linear combination). Consider the element

in position (i, j). This element is either some element of Y, if some part of Y was shifted

over position (i, j), or is simply 0, if no part of Y was shifted to that position. In the first

case, this value is completely independent of any previously considered entries that influence

the linear combination. This is because, even though the value of the entry in position (i, i)

forces the values of all other entries in the same skew-diagonal (in F), all other such entries

are either to the right of this entry, and so haven't been considered yet, or to the left and

below this entry, in which case they have coefficient 0 in the linear combination (because

row i is the lowest row with coefficient 1). Since row i has coefficient 1, flipping the value of

the element in position (i, j) flips the value of the sum in column j, and so the sum in this

column is 0 with probability 1. From this, we immediately conclude that the probability

that the sum in all columns is 0 is 2-', where z is the number of entries in row i that come

from Y (as opposed to being fixed Os). Since each row of F has at least r' such elements

(because the output of f does not include the first or last r' bits of X *Y), we conclude that

this particular linear combination is 0 with probability at most 2- . Applying a union

bound over all 2h - 1 non-trivial linear combinations, where h < nr < ro, and then another

union bound over all choices of R and C (as in the calculation in the previous section), we

conclude that, for all but an exponentially small fraction of Y, F has the desired property,

which completes the proof that convolution appears random to AC' circuits.

Integer Multiplication

Let MULT,,,, : {0, 1}r x {O, 1}. -+ {0, 1}k denote the integer multiplication function, which

takes a X E {0, 1}r and Y E {0, 1} to the middle k-bits of the r + s bit long product of X
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and Y. In this section, we will prove the following theorem.

Theorem 4. If s = r" and k = r + s - (MIN(r, s))O, for any fixed constants u > 0 and

0 < a < 1, then MULT,,,k is AC0-pseudorandom. In particular, if r = s and k = 2r - ra,

for any 0 < a < 1, then MULT,,,,k is AC0 -pseudorandom.

As was the case for convolution, there are two natural variants of the multiplication

problem to consider. In the first variant, we select X E {0, 1}r and Y E {0, 1} uniformly at

random, then produce the product P = X x Y, and finally we produce the string consisting of

X, Y, and part of P. The hope is that the distribution of that string appears random to AC'

circuits. It is necessary to include only part of P because, as was the case in convolution,

the lowest and highest bits of P do not look random to AC0 circuits. For example, the

low O(logc r) bits of the product can be calculated exactly, using the technique in [CSV84].

In the second variant, we consider "fixed" Y, in the sense that we have a single Y of each

length, and the multiplication problem is defined such that a uniformly randomly selected

X E {0, 1}' is multiplied by the fixed Y to produce the product P = X x Y; the string of

interest then consists of X and the middle part of P. Again, loosely speaking, the second

variant is stronger in the sense that a potential distinguisher is allowed to have Y built-in.

In this section, we focus on the second variant and show that, for sufficiently large r,

all but an exponentially small fraction of Y (of length s) lead to a multiplication problem that

looks random to AC' circuits. Therefore, by the same logic as in the convolution problem,

it immediately follows that the first variant is also AC0-pseudorandom. We consider the

function fy : {0, 1}, - {0, 1 }k, which takes the r-bit value X to the middle k bits of

the product X x Y. We will prove the following lemma, from which the above theorem

immediately follows.

Lemma 12. For all but an exponentially small fraction of Y E {0, 1}, where s = r', the

function fy : {0, 1 }r {_ 1 }, where k = r + s - 2r' for any small constant a > 0, has the

Linial-Nisan-Braverman property.
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Proof. It suffices to establish the claim for almost all odd Y (because adding w trailing zeros

to Y simply shifts the product X x Y by w bits to the left; all but an exponentially small

fraction of Y have fewer than r' trailing zeros), and so we restrict our attention to the case in

which Y is odd. We begin by establishing some notation. Let n = r + k. Let Z = Z, - - - Z"

be the distribution of the set of all strings of the form X o fy(X) (strings that are the

concatenation of X with fy(X)), where X is an r-bit string. Then, by definition, fy has the

Linial-Nisan-Braverman property if Z is a (2 -n", n6)-approximation for appropriate small

constants 0 < 6 < 7 < 1, which is to say that, for every set of n6 coordinates the restriction

of p, to those coordinates is 2-"-close to the uniform distribution over {O, 1}" . To show

this, we begin by recalling that the bias of a distribution Z on some set I C {1,...,n} is

defined to be

biasi(Z) = E[(-1)EiEIZi.

We make use of the following lemma, variants of which appeared in, for example [Vaz86 and

[AGM02].

Lemma 13. [Vaz86], [AGM02] Every distribution Z that has bias as most e on every non-

empty subset I of size at most h is a (2112f, h)-approximation.

We will then show that Z has bias at most 2~"n, for some constant v > 0, on

all non-empty sets of size at most n. The above lemma implies that Z is a (2 -- , n3 )-

approximation, as desired (for any 6 < y < v). To see why, let Xj denote the ith bit of X

and let fyj {0, 1} -+ {--1, 1} be defined such that fy(X) = 1 when the jth bit of X x Y

is 0 and fy(X) = -1 when the jth bit of X x Y is 1 (note that fyj corresponds to the jth

bit of X x Y not the Jth bit of fy(X), where fy(X) consists of all bits of X x Y except the

lowest and highest r&; this is done because it will be much cleaner to refer to bits by their

position in the entire product). Clearly,

XY
fyJ (X) = (- 1) 1 2-T.
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For any S { ... , r}, let fyj (S) denote the Fourier-Walsh coefficients of fy,, which

are given by

fy,j(S) = E[fyj(X)(-1)EiEsXi].

These are the Fourier coefficients of a function on F' (we use the term Fourier-Walsh to

avoid confusion with the "ordinary" Fourier coefficients of a function defined on R, which

will be used shortly). We partition the set I as I = S U J, where S C {1, ... , r} are the

indices of Z that correspond to bits of X and J C .{r + 1, ... ,n} are the indices of Z that

correspond to bits of fy(X).

There are two cases. First, if J is empty, then the set I consists only of bits of

X, and so, trivially, Z has bias exactly 0 on this set, because X is uniformly random.

The interesting case is when J is non-empty. For notational convenience, define the set

J' C {ra + 1,..., r + s - ra} such that J' = {j'lj'+ r - r' E J} (simply the set J shifted

appropriately to index bits of X x Y). Let fy,j(X) = HjE, fyj(X). Then the bias of Z on

I is simply fyj(S). This follows from the fact that

biasi(Z) = E[(-1)ZieIzi]

= Pr[(ej 1 Zj = 0] - Pr[®isGZi = 1]

Pr[®SesZS = (Dj Zj - Pr[(DSesZS # e jZj]

= Pr[(-1)Zses~ = fyj,(X)] - Pr[(-1)sEsX8 = fy,y(X)]

= Pr[(-1)E-EsXs-fy,J,(X) = 1] - Pr[(-1)ZsEs'sfyj,(X) = -1]

= E[fy,y(X)(-1)EsEs X8 ]

= fyj(S).

Rather than compute fyj' (S) directly, we instead compute the Fourier coefficients of

fyy when viewed as a function on {0,.. , 2' - 1} (instead of on F'), and exploit a connection
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between these two types of Fourier coefficients. For a function f :{,... , 2' - 1} - {-1, 1},

define

2irikt
f(k) = E[f(t)e -,

where k E Z. We have the following lemma, from [Gre12] (see also [Kat86]), which has been

modified to fit our notation. We say that an integer k is a (b, m)-sparse number if it can be

written in the form k = k12h1 + - - + kb2hb where each k E Z, Iki I < m, hi E N.

Lemma 14. Let f : {o,.. ., 2r - 1} -+ {-1, 1} be a function such that ]S C {1, ... , r} with

Fourier- Walsh coefficient f(S) of magnitude at least e, where 0 < e < .. Then there is a

(|s4, -s -sparse number k such that the Fourier coefficient f(k) has magnitude at least

Applying this lemma to the function fyjy, with sets S of size at most nb, we im-

mediately conclude that, in order to establish the necessary bounds on the Fourier-Walsh

coefficients (which then implies that multiplication has the Linial-Nisan-Braverman prop-

erty), it suffices to show that, for all (n , 10n62"')-sparse numbers k, jfyj,(k)l < 2- for

a fixed constant p such that p > J + v. We say that a particular Fourier component is

negligible if its magnitude has such a bound.

We now show that, for almost all Y, the required bound on fyy(k) holds. The main

idea is that, for each j, fyj is simply a downsampled version of a square wave. This fact

allows us to express the Fourier coefficients of fyj in terms of the Fourier coefficients of a

square wave. This is useful because the Fourier coefficients of a square wave are particularly

simple. In the following, we make use of several standard facts about the Discrete Fourier

Transform, which can be found in essentially any text that deal with Fourier Analysis, for

example [OSB99]. We begin with a few definitions. Let Dy = {0,... , Y2r+ - 1}. Let

s : Dy -1, 1} be the perfect square wave of period 2 j,

s (t) = (-) L-rJ
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Let py : Dy -+ {0, 1} be a pulse train with interval Y,

1, t
py(t) =

0, t

Let hy(t) : Dy -+ {,1} be the step function

1,)
hy (t) =-

=0 mod Y

S0 mod Y

t < Y2r

t >Y2r

Finally, let gyjy(t) = Y2shy(t)py(t) Hj, sj(t).

We then have

fyj(k) =
t=o

2-tkt

2rt==o

2r

(-t

Y2r-j

t=o 3jEJ

1 Y2r-1

pyMt)t=0

1Y2r+s -1

Y2r+sZt=O

Y 1
=Y 2r+s

Y28 hy(t)py(t)

S gy We- f2 r+o
t=O

= y,(28 k).

Therefore, it suffices to show that y,j(2"k) is sufficiently small for the k values of
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interest. The convolution theorem implies that

by,ji(k) =Y 2hy(k) 0 Py(k) 0 0 s9(k),
jEJ'

where 0 denotes cyclic convolution.

Notice that, for each j, .j(k) has a particularly simply structure.

1
22 e_1 ,2 k = (2v + 1)Y 2r+s-j

9j (k) = 23 -(1-e 23

0, otherwise

Notice that .g (k) is only nonzero at few locations; specifically, the odd multiples of Y2r+,-j.

Moreover, notice that the magnitude of the nonzero values falls off quickly. To be precise,

Y2V 1isnr IA((2v + )Y2r+S) = (2-)

12v+11>2-'

for constants rj and r such that 6 < r < T < 1. In other words, the only non-negligible part

of .j(k) is at values k given by small odd multiples of a shift of Y (Y shifted to the left by

r + s - j bits).

We then consider j (k). We split s (k) into a large low frequency component

and a small high frequency component. That is to say, we write sj(k) = f2j(k) + ij(k), where

27ri(2v+l) , k = (2v + 1)Y2 12v + 11 < 2
{tj (k) =hri l 1-e +3

0, otherwise
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and

2i(2v+l) , k = (2v + 1)Y2r+s-, j2v + 1 >2

f (k) = 2-2 1-e 23

0, otherwise

Therefore,

0 s(k)= ( + (k)+0(k))
jEJ' jEJ'

= aj (k)) ((Dbj (k)-
J1,J2 jEJ1 / jEJ2 /

J1UJ2=J'

Notice that there are at most 2n terms in the above expansion (because IJ' < n). The

term OjEJ, fi(k) is only nonzero at k values of the form (2vi + 1)Y2r+-i + - + (2vijii +

1)Y2r+s--iJ', where each vi satisfies 12vi + 11 2" . All other terms are extremely small

everywhere. To be precise, when J1 $ J', every such term involves at least one bj(k)

factor and so we can write (®j 1 kij(k)) 0 (®jEJ2 i3 (k)) = bj (k) 0 4(k) for some function

q : Dy -÷ {-1, 0, 1}. By combining the bound Zk lIb(k)I= O(2-") with the trivial bound

I4(k)i < 1, we obtain I (®jEI1 &(k)) (®.jEJ2 (k)) I = Q(2~"'). Therefore, the total

contribution of all terms except ®jEJ, fi(k) is negligible (0(2-(n-n"))). From the above,

it is immediate that the only non-negligible Fourier components are values k of the form

(2v1 + 1)Y2r+s--i + + (2vijji + 1)Y2r+s-J1', where each vi satisfies I2v + 11 2". Recall

that each j satisfies r' < j < r + s - ro. Therefore, these values k are of the form Yk',

where k' is a (I J', 2"' )-sparse number with at least r' trailing zeros and at most r + s - r'

trailing zeros.

Next, we consider yy(k). We have

y,j,(k) =Y 2shy(k) 1 Py(k) &0 sj(k)
jE J'

Y 25hy(k) 9 Py(k) 0 ((i(k) + ij (k))
jEJ'
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=Y2*hy(k)0Py(k)0 E ( (k)O (k))
Ji,J 2  \jEJi

JiUJ2=J'

= JY28hy(k)Dfy(k) 0 0(k) 9 & (k).

J1,J2 (jEJ1 jEJ2 /
JlUJ2=J

By the same logic as above, the total contribution of every term in the sum except the

= J' term is negligible everywhere (has total magnitude O(2-(n"'6)) at all k) and so if

we define the function g'yj,(k) = Y29hy(k) 0 Py(k) 0 @c, f ?(k), it suffices to show that

g'yj, is small at the k values of interest.

We have

1, k = u2'+s
Py(k) =

0, otherwise

and
27rik

1 1-e2s
Y2Shy(k) = - 2,rik

Therefore, the only non-negligible values of g'yj' (k) are those that are "close" to values of

the form Yk' mod 2r+,. More precisely, the only non-negligible values of g'yj, are of the

form k Yk' + u mod 2r+s, where Jul 2S+"", and so the only non-negligible values of

fy,J (k) = yj (2Sk) are at values k such that 2k = Yk' + u mod 2r+S. Or equivalently,

values k where 3k', u' where k' is (as above) a (I J, 2 ')-spare number with at least r" trailing

zeros and at most r + s - r" trailing zeros, lu'I 2n" such that k + u' is equal to the high

2T bits of Yk' mod 2r+s.

Therefore, for a particular value Y, the required bound on Ify',(k) holds if, for

every (n, 10n 62n")-sparse number k, we do not have k + u' equal to the high 2' bits of Yk'

mod 2T+', for any (I J', 2 ')-sparse number k' with at least r' trailing zeros and at most

r + s - r' trailing zeros. To see that this holds for all but an exponentially small fraction of

Y, first notice that if k is a (n&, 10nW2nv)-sparse number, then k + u' is a (Wi + 1, 10n2nv)-

sparse number. Set the constants T and v small enough such that n'+T < ra (this can be
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done because n = 2r + s - 2r' = 2r + r" - 2r' and so n is polynomial in r). Therefore,

it suffices to show that, for almost all Y, if k' is a (IJ'I, 2"')-sparse number with at least r'

trailing zeros and at most r + s - ra trailing zeros then the high 2' bits of Yk' mod 2r+,

is not a (n + 1, 1On52")-sparse number. To see this, notice that, for each pair of sparse

numbers k, k", there is at most a fraction ' of all Y such that the high 2r bits of Yk'

mod 2r+' are equal to k" and so a simple union bound completes the proof.

Matrix Multiplication

We now show that matrix multiplication is AC0 -pseudorandom. Let MATRIX-MULT,,:

{0, 1}rs x {0, 1}rs -+ {0, 1}2 denote the matrix multiplication function, which, on input a

s x r matrix A and a r x s matrix B (both of which are encoded as strings in {0, 1}' in the

obvious way), produces the s x s matrix AB.

Theorem 5. If s = ru, for any fixed constant u > 0, then MATRIX-MULT,, is AC0 -

pseudorandom.

As was the case for the convolution and multiplication problems, we consider a

stronger variant where one of the matrices is held fixed. We then prove the following lemma,

from which the above theorem immediately follows.

Lemma 15. For an s x r matrix A, let fA : {0, l}rs -- {0, 1}82 denote the function that, on

input a r x s matrix B produces the s x s matrix Z = AB. Then all but an exponentially

small fraction of A yield an fA that is AC0 -pseudorandom.

Proof. To see that almost all such fA are AC0 -pseudorandom, let Bi and Zi denote the ith

column of B and Z, respectively. Then, of course, Zi = AB, and so we can interpret this

problem as the concatenation of s independent instances of the homomorphism problem.

That is to say, if we let fA : {0, 1}r -+ {0, 1}" be the homomorphism corresponding to A,

then Zi = f'(Bi). The result then follows from Theorem 2.
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3.2.2 The Reduction Technique

Next-Bit Test and Parity

In this section, another technique for proving that a function appears random to AC' circuits

is presented, specifically, reducing a known hard problem to the next-bit test. The next-bit

test is defined as follows. Given a distribution pn with support {o, 1}n, we say that p, passes

the next-bit test if, given the first i bits of a string selected according to p., no AC' circuit

can predict the (i + 1)th bit with non-negligible advantage, for any i. Formally, for any

Z C {O, 1}n, let Zj denote the jth bit of Z (1 indexed, counting from left to right) and ZUj,k]

denote the substring of Z from positions j to k, inclusive. Then we say that f, passes the

next-bit test if, for all i E 1, . .. , n}, and for all functions Qi {0, 1}" 1 a {0, 1} computable

by AC' circuits, JPr(Qi(Z[,ij]) = xi) - 'I = O(2-n'), for some constant rK > 0, where the

probability is taken over values of Z E {0, 1} drawn according to the distribution . It

is known [Yao85] that a distribution [,I passes the next-bit test if and only if pn O(2-n)-

fools all AC' circuits (strictly speaking, the result in [Yao85] was proven for probabilistic

polynomial time algorithms, but the same technique applies just as well to AC0 circuit

families). Since, as stated in 1, we say that a function f is AC0 -pseudorandom if the

distribution p, corresponding to it O(2 -n)-fools all AC' circuits, showing that p.,, passes

the next-bit test is sufficient to prove the corresponding f is AC0 -pseudorandom.

The natural next question is how to prove that distributions arising from particular

functions pass the next-bit test. One idea is to reduce a problem that is known to be hard

for AC0 , such as the parity problem, to the next-bit test. The parity problem is defined as

follows: given some X E {0, 1}*, compute E> Xi mod 2. In other words, the parity of a

string is 1 if there are an odd number of is in the string and 0 if there are an even number of

is in the string. It is known that no AC0 circuit family can compute parity [FSS84, [Ajt83].

In fact, parity can't even be non-negligibly approximated in AC0 [Has86]. To be precise, if
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we define h(s, d, n) to be the function such that no depth d circuit of size 2' computes parity

correctly for more than a 1 + h(s, d, n) fraction of the inputs, then we have the following

(Theorem 8.1.iii in [Has86])

Theorem. [Has86] h(s, d, n) < 2~ for d > 2 and s < n .

The goal is then to reduce the parity problem to the problem of computing the next

bit of a string drawn according to pu, or, in other words, show that if some AC' circuit

could predict the next bit with non-negligible advantage, then it could be used to produce

another AC' circuit that approximates the parity problem, with non-negligible advantage.

Since the parity problem cannot be approximated by such a circuit, we could then conclude

that the original distribution must pass the next-bit test.

Integer Multiplication

As was already shown in Theorem 4, the function MULT,,,,k is AC0 -pseudorandom when

s = ru and k = r + s - (MIN(r, s))a, for constants u > 0 and 0 < a < 1. This was done

by considering a variant of the multiplication function in which one of the multiplicands

is held fixed. Specifically, for Y E {0, 1}, we defined the function fy : {0, 1}, _ {0, 1}k

which takes a value X E {0, 1}r to the middle k bits of X x Y. As shown in Lemma 12,

fy is AC0-pseudorandom for all but an exponentially small fraction of Y, when s = ru and

k = r + s - (MIN(r, s))a. In this section, we will be interested in results that hold when s is

much greater than r. Specifically, we are interested in the case when s > ru for all constants

u > 0, but r > log' s for all constants c > 0. Recall that we say a given function looks

random to AC' circuits if the distribution corresponding to it can only be distinguished (by

AC0 circuits) from the uniform distribution with advantage O(2-",). In this section we relax

this condition only slightly, and only require a bound on the advantage of the form o(2- log n)

for all constants c > 0 (in other words, we require that no AC 0 circuit can distinguish with

advantage one over any quasipolynomial in n). We show that, for certain Y, fy is AC0

pseudorandom with these parameters. This has several interesting consequences. Firstly,
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this yields a simple, multiplication based pseudorandom generator with the same stretch

and security parameters as the Nisan-Wigderson generator [Nis9l]. Secondly, this shows

that the result in [CSV84], which states that an AC' circuit can multiply an n-bit value Y

by a O(log' n) bit value X is tight,

We restrict our attention to Y E {0, 1}' that are "sparse", in the sense that only a

small number of the bits of Y are 1s. Specifically, we generate Y as follows: each bit is set

to be 1 with probability r-', for a constant 0 < e < 1. As before, let fy : {0, 1}' -+ {0, 1}k

be defined such that fy takes the value X to the middle k bits of the product X x Y, where

here k = r + s - 2r2 e. We prove the following theorem.

Theorem 6. With high probability (where the probability is over the selection of Y according

to the above distribution, and the statement high probability means within an exponentially

small distance from probability 1), fy is AC0 -pseudorandom.

Proof. As usual, we consider strings of the form X o fy (X). For convenience, we assume that

both X and the substring of Z = X x Y produced by fy are written from least significant

bit to most significant bit, when read from left to right. We let n denote the total length of

the string, and so n = 2r+ s - 2r 2E. Consider the next-bit test applied to strings generated in,

this manner. Since the first r bits of the string are bits of the uniformly randomly generated

number X, we conclude, for information theoretic reasons, that there is no hope of any AC'

circuit predicting the ith bit, given the first i - 1 bits, for i E {1, ... , r}. All that remains is

to prove the same claim for i E {r +.... , n}, which will be done by showing that any AC'

circuit that predicts such a bit with non-negligible advantage can be used to approximate the

parity function, with non-negligible advantage, which we know is impossible. We assume,

for contradiction, that we have an AC0 circuit, call it C, that can predict some next-bit of

our pseudorandom string, call it bit i, given the first i - 1 bits. Using the circuit C, we will

produce an AC0 circuit D that predicts (with non-negligible advantage) the solution to a

parity problem T of size r", for some v > 0, which is impossible.

Begin by noting that, if Y denotes the jth bit of Y (0 indexed, counting from least
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significant bit up), then we have X x Y = X -1 Y2j = Z43 XY2). Thus, we can

understand the multiplication of X by Y as the sum of many shifts of X, where the amount

that X is shifted in determined by the locations of the is in Y. To be precise, for each j

such that Y = 1, we include a copy of X shifted left by j indices. To produce the product

X x Y, we then sum all copies of X. This is illustrated in the figure below.

Each column contains certain bits of X. One way to characterize which bits appear

in each particular column is to imagine sliding the strings X and YREV past one another,

where yREV is the string Y flipped left-to-right. To be precise, start by aligning X and

yREV such that the least significant bits of X and Y line up, and no other bits initially line

up. To determine which bits of X lie in column j (where we number the columns from right

to left, starting with 0), slide yREV j bits over; exactly the bits of X that lines up with a 1

in Y appear in column j. This is illustrated in the figure below.

Define sets Uj C {0, ... , r - 1} such that Uj consists of all indices of X that appear

in column j. Let Sj C {0,..., s - 1} be a collection of indices of Y. The exact manner in

which the Sj are selected will be specified shortly. Let V 9 U be indices of X that appear

in column j because they lined up with a 1 in Y at one of the indices Sj. As noted above,

we must have i E {r + 1,...,n} (the portion of the string containing bits of the product

Z = X x Y), and so we are predicting bit i - r + r' - 1 =: k of the product. Notice that,

if it weren't for the fact that there are carries when computing the sum of the various shifts

of X, bit k of the product would simply be the parity of the bits of X selected by Uk. The

key idea will be to construct the sets V so that they are individually large, 'V1l > log' s, for
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FS~n (f, g) = g(s), if s E {0, 1}n such that f(x) = x - s Vx

*, otherwise

This function can very naturally be interpreted as encoding a promise problem, called

the Fourier sampling problem, in which the promise is that f is a linear function (that is to

say a function of the form f(x) = x - s), and the value of FS,(f, g) (when the promise is

satisfied) is simply g(s). We will frequently refer to the value s as the secret encoded by f.

Next, we define a slight variant of the above problem where the function g is fixed (that

is to say that it is not part of the input to the function). Formally, for any positive integer

n and any function g : {0, 1}n -* {0, 1}, we define the function FS9: {0, 1}2' -+ {0, 1} as

follows. We now interpret the input to the function as encoding the truth table of a single

function f : {0, 1}n -+ {0, 1}. We then define

FSg(f) = g(s), if 3s E {0,1} such that f(x) =x - s Vx

1*, otherwise

We now define the recursive Fourier sampling function, which is a variant of the

Fourier sampling function in which each bit of f is produced, recursively, by a smaller

instance of the recursive Fourier sampling problem.

Formally, let RFS, 1 : {0, 1 }n+2n -+ {O, 1} be the (total) Boolean function where the

input is interpreted as a pair (s, g) for a secret s E {0, 1}' and a function 9 {0, 1} -+ {, 1}

given as a 2n bit long truth table, and

RFSn,1 (s, g) = g(s).

For each h > 1, we define RFSn,h recursively in terms of RFSn,h-_ as follows. Let

M,h = -2n(h1)+ -l 2. Then RFS,h {O, l}Afh -+ {0, 1, *} is the partial Boolean func-

tion defined as follows. The input is interpreted as being of the form (RO, R1 ,... , R2 --1 , g),
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all constants c > 0, but have small intersection with any Uj, IVk fl U1 5 2, Vj < k, and then

fill the bits of X specified by Vk with the bits of an instance of the parity problem. This is

very similar to the notion of a combinatorial design, [Nis9l], with the exception of the fact

that here we consider subsets V of Uj.

The circuit D predicts the solution of the parity problem T by producing a multi-

plication instance to feed to C, that is to say the first i - 1 bits of a string produced by

multiplication. This string consists of a value X and some of the bits of the product XY.

We construct this multiplication instance as follows. Begin by setting the bits of X selected

by V to the bits of the parity instance T. To set the other bits of X, notice that if C can

truly predict the next-bit test with non-negligible advantage, then this means, by definition,

that the advantage of C, averaged over all choices of X, is non-negligible. In particular,

this means that there must exist at least one setting of the other bits of X such that C has

non-negligible advantage as just the bits selected by V vary (uniformly). We then set the,

other bits of X to such a fixed value. To be clear, the claim is not that an AC0 circuit can

find a proper setting to the other bits of X, but rather that such a value can simply be built

into D (because it is only a single fixed value, which depends only on the input size t of

circuit D). In order to calculate the lowest k - 1 bits of XY that must be fed to C, we write

X = Xinput + Xfixed where Xi,,t consists of the t bits of the input to D, which are assigned

to the positions specified by V, as Xfixed corresponds to the fixed setting of the other bits

of X. Since both Y and Xfixed are fixed values, we can also build the value YXfied into D.

Therefore, if it were possible to compute in AC' the low k - 1 bits of YXi.pt, then it would

be possible to compute the low k - 1 bits of XY because XY = YXiatt + YXfied, and we

can, of course, perform addition in AC'. The key observation is that, with high probability

over the choice of Y, it will be easy to compute YXint.

To see this, notice that, with high probability over Y, there will be a choice of Sk such

that IVk n UjJ 2, for j E {0, ... , k - 1}. This is simply the statement that each column

of multiplication problem illustrated in the figure above contains at most two bits of Xinpt.
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Therefore, these bits can be packed into two numbers, whose sum (which is calculable in

AC') will be the low bits of YXipt. To see that Vk n Uji 5 2, with high probability, let

Y' be identical to Y except that all bits outside of Sk are set to 0, and note that V fn Ugj is

simply the number of is that line up when Y and Y' are slid over one another, or, in other

words, the number of h such that Y and Yh-(k-j) are both 1. To bound the probability

that 14 n Uj I fails to be at most 2 for every j, we show this failure probability (where,

again, the probability is taken over the choice of Y) is extremely small for a single fixed j

and union bound over the j. Fix j and define Qh = Y Yh-(k-j); then V n Uj = Eh Qh.

Unfortunately, the Qh are not independent. To deal with this, partition the indices h into

two classes, where the first class contains all h such that h mod 2(k - j) falls in the range

[0, k -j -1] and the second class contains all other h. Notice that h and h - (k -j) always are

in separate classes, and so the set of all Qh such that h is in the first class are independent,

and, similarly, the set of all Qh such that h is in the second class are independent. We show

that Eh Qh < 1, where the sum is restricted to a single class. Recall that the bits of Y are

generated (independently) such that each bit is 1 with probability r-E and that, if we select

the special bits Sk at random (which is allowed because we need only show BSK that satisfies

the above) such that each of the bits of Y that line up with a portion of X (when sliding Y

over X, only part of Y lines up with actual indices of X at any given shift) are included in

Sk with probability r-(-') then a bit of Y' is 1 with probability r-(1 -). The result follows

from a simple application of the Chernoff bound.

Thus far, we have shown that D can produce a multiplication instance to feed to C.

To use the result produced by C (namely, the predicted next bit of the product) to determine

the parity of T, notice that the correct value of the next bit of the product is simply the

exclusive-or of the parity of T, the parity of those bits of Xfimed that appear in column k

of the multiplication problem, and the carry bit that enters column k when the low k - 1

bits of YXiss, and YXfixed are added to produce the low k - 1 bits of the product XY.

Since Xfi.ed is a single fixed value, the parity of those bits that appear in column k can be
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built in to D. As noted earlier, it is possible, in AC', to compute the sum of the low k - 1

bits of YXjp, and YXfi.ed, including the carry into column k. Thus, if the next bit can

be predicted with some advantage, then the parity of T can be predicted with the exact

same advantage. This contradiction completes the proof that the multiplication problem, as

defined above, looks random to ACO.

El

It is worth noting that, while the above proof was only carried out in the case when

'r < sO for all constants a > 0, but r > log' s for all constants c, the same technique would

also work for other parameters, such as if s = ?", for some constant u (the parameters of

Lemma 12). Moreover, a similar argument would show that, if r = O(logc s), then fy passes

all AC' tests of depth at most d, where d depends on c.

3.2.3 The Algebraic Integer Problem

In this section, it is shown that the algebraic integer problem looks random to AC0 circuits.

We begin with a few definitions. An algebraic integer is a root of some monic polynomial

with integer coefficients. An algebraic number field is a finite field extension of Q. Given

some algebraic number field K, the ring of integers of K, denoted OK, is the ring that

consists of all algebraic integers in K. For every K, OK is a free s-module, and so has

an integral basis (that is to say, 3bi,.... bh E OK such that every element of OK can be

uniquely expressed as Ej aibi, for ai E Z). For a particular basis B, we define the function

fB {0, 1}"r X .- x {0, 1}flh -+ {0, 1}k such that fB(a,, . . . , a) is the first k bits of the binary

expansion of the fractional real part of Ej aibi, where for i > 1, mi = m" for some constant

ui > 0, and k = mi, for any constant u. We show, via reduction from the multiplication

problem, that certain fB arc ACO-pseudorandom.

As an example, consider the algebraic number field K = Q(v'd), for d a squarefree

positive integer. It can be shown that, when d = 2, 3 mod 4, then {1, v'd} is an integral

basis for OK and that when d -1 mod 4, {1, (1 + v'd)/2} is an integral basis for OK (of
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course, since d is squarefree, we can't have d = 0 mod 4). Let b1 and b 2 denote the basis

elements, in the order they appear above. Then fB(a,, a2 ) is simply the first k bits of the

fractional part of a1 b1 + a2b2 , which is identical to the first k bits of the fractional part of

a2 b2 (because a1 , bi E Z). It is straightforward to show that, for all sufficiently large n, and

all strings Y E {0, 1}Ln/2J-1, there is an n bit value d for which the binary expansion of the

fractional part of v9d_ starts with the string Y. In particular, if we consider a string Y such

that the multiplication function fy is AC0 -pseudorandom, then the corresponding fB is also

AC0 -pseudorandom, because it is just the multiplication problem a2 v2i bit-shifted, possibly

with 1/2 added.

In general, consider any basis B of some OK such that there is some basis element b3

in B such that the binary expansion of the fractional real part of bj starts with a value Y for

which fy is AC-pseudorandom. Rather than consider fB directly, it will again be convenient

to consider a variant of the function in which some of the inputs are held fixed. In particular,

we wish to fix ai for each i # j. Define the function fAJ,ai,...,aj_1,a++1),ah {0, 1 }m _+ {0 I}k

such that it maps the value al to the first k bits of E aibi. By a straightforward reduction

from the multiplication problem, it follows that fBJ,ai,...,a%_1,a+j+1,a is ACO-pseudorandom,

which then immediately implies that fB is A00 -pseudorandom.
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Chapter 4

Polynomial Degree

4.1 Recursive Fourier Sampling

In this section, we consider the recursive Fourier sampling problem. Numerous variants

of this problem have been considered by many authors (see, for instance, [BV93], [BV97],

[Aar03], [AarlO], [JohO8]). The version considered in this thesis, and the notation used,

follows most closely [JohO8], but essentially the same claims hold for all other standard

variants. We begin by precisely defining the problem.

4.1.1 Definition of the Problem

First, we define the Fourier sampling function. For every positive integer n, we define the

partial Boolean function FS,, {0, 1}27; -+ {0, 1, *} as follows. We interpret the 2n+1 bit

long input to FS,, as a pair of truth tables defining the functions f, g :{0, 1}" -+ {, 1}. For

x, s E {0, 1}fn, let xi and si denote the ith bit of x and s, respectively. Let x - s = K xis

denote the usual Boolean inner product (where of course the sum is evaluated modulo 2).

Then
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where for each a E {0, 1}n, R, is an instance of RFSn,hl, and g is a funciton g : {0,1}" -+

{0, 1} given as a 2n bit long truth table. We then define

RFSnh(RO, .-.. , R2n-1, 9) = g(s), if 3s E {0, 1}1 such that Va E {0, 1} RFSn,h-l(R,) = a s

*, otherwise

In a precisely analogous fashion, we define RFSnh where now there is a single fixed

g used throughout the problem, rather than a collection of functions provided as part of the

input.

We very naturally interpret RFS,,h and RFSnh as encoding a particular promise

problem, where the promise is that, at every node in the tree, there exists some s E {0, 1}

such that the function f : {0, 1}" -+ {0, 1} defined at this node is of the form f(x) = x - s.

Fix the entire input to the recursive Fourier sampling function in any way such that

every promise is satisfied. For any node t in the tree, we define the value of the node, which

we denote by b(t) to be the output of the instance of recursive Fourier sampling corresponding

to the subtree rooted at t.

Notice that, due to the structure of the promise, in order to determine the value

of node t, it is only necessary to know the values of n linearly independent children of t.

That is to say, if the children of t are given by C(t) = {t, : oE {0, 1}'}, then b(t) is

completely determined by the value of a subset of children C' for any C' C C such that

C' = {t,, ... , ta} where {i,..., an} are linearly independent (as vectors in {o, 1}", in

other words the oa form a basis of {0, 1}").

For i E [n], let Xi E {O, 1-}n denote the ith elementary basis element. That is to say

Xi has value 1 in position i and 0 elsewhere. Clearly, the set of Xi form a basis of {0, 1}n,

and so, for any node t, the value of node t is completely determined by the values of these
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children. We call this set of children the elementary children of t, which we denote by

Ce(t) = {tj : i E [n]}.

Therefore, given an instance (a particular single setting of the input) of RFSn,h or

RFS ,h that is guaranteed to satisfy the promise, the answer (the value of the root of the

tree) can be determined by first determining the value of the n elementary children of t. The

value of each of these children can be determined from their n elementary children. This

process can be repeated until the leaves of the tree are reached, at which point the value of

each node is simply the output of an instance of RFSn,1 . We refer to this collection of leaves

obtained by repeatedly finding elementary children as the elementary leaves. For a tree of

height h, there are clearly nh-1 elementary leaves.

4.1.2 Recursive Fourier Sampling is 6-versatile

In this section, we show that for certain natural choices of the function g, such as the majority

function or the generalized inner product function, RFSnh is 6-versatile, for suitably chosen

3.

Fix n, and let m denote the total length of the input to RFSnh. Clearly m = n2

Let U C F2' denote the set of all points at which all promises are satisfied (that is to

say, the set of all values of inputs to the recursive Fourier sampling function such that, at

every node of the tree, every linearity constraint is satisfied). We frequently refer to Ugh,,

as the "promise". On the promise, the recursive Fourier sampling problem is, of course, a

total function. By slight abuse of notation, we also denote this induced total function as

RFSgh : Ugh -+ F2. Similarly, we define U, = (RFS ,)- 1(0) and Ulh, = (RFSn, h 1(1) as

the points at which the recursive Fourier sampling problem evaluates to 0 and 1, respectively.

The superscript g will often be omitted when the function is clear from context.

The first key result of this section, which holds for any g, is the following lower bound
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on regularity of U9, U9,h, and U.

Lemma 16. For any positive integers n, h and for any g E F2 [X1 ,..., Xn], let d = deg(g)

and let RFSnh F" -+ F 2 denote the recursive Fourier sampling function. Then

h-1

reg(U ') nd" (n - d) 2 -
j=1

h-1

reg(Ug ), reg(Uj1,) > (n - d) 23"d-- 1 .
j=0

Proof. Let ru,,h E F2 [X 1,... , xm] denote the unique squarefree polynomial such that ruP ) =

1 if and only if x E Up,h. By a straightforward counting of the number of promises of each

degree, we have deg(ruh) (2" - n) -1 2(j-1)ndh-j. By construction ruh vanishes on

UPh and so

a(Uph) < deg(rU, h)

h-1

< n (-1)n d h-j

j=1

_ n - -1)nd h- n (1)ndh-j)(j=1 j=1

h-1 jh-1 I

j=1 j=1

d h ( - n -(h-1 I n h j= 2 2(-)d- -n E 2(i-)da-
j=2 j=1

h-1
d2(h~l)n - ndh~ - (n - d) E 2(j-I)ndh-j

j=2

Applying Lemma 2, we then have

reg(Up,h) = n2 (h-1)n - a( 7Up)

61



h-1

> (n - d)2(il)n + ndh~-1 + (n - d) Z 2(~)nd-j
j=2

h

= ndhi + (n - d) 2(-1)d -
j2

h-1

= ndh-1 + (n - d) E2d--1.
j=1

Similarly, define rUOh,, rUl,, E F2 [X1 ,.. , xm] as the unique squarefree polynomials such

that ruh(x) = 1 if and only if x E Uo,h and rUl h(x) = 1 if and only if x E UI,h. We then

immediately have deg(ruOh), deg(ru,,h) <; deg(ruyh) + di, and so, by a precisely analogous

argument as above

h-1

reg(U,h), reg(U,h) (n - d)dh- + (n - d) E 2indh-i
j=1

h-1

= (n - d) E2n da-i-1.
j=0

We now exhibit certain functions for which the above lower bounds on regularity

are exact. The first such example is the majority function, for certain appropriately chosen

input sizes. For a x C {0,1}, let x = (x 1 ,... ,xn) and let wt(x) = I{i : xi = 1}I denote

the number of is in x. Let MAJ : Fn - F2 be defined such that MAJ(x) = 1 if and only

if wt(x) n. We begin by determining the unique squarefree polynomial in F2 [x1 ,.. n]

that represents MAJ. Let ei(x) = Ejc1n],IjI= Z xj denote the ith elementary symmetric

polynomial. For y, z E {, 1}, write y b z if and only if yi > zi Vi.

Lemma 17. For any positive integer n, the unique squarefree polynomial in F2[xi,- -,Xn

that is identically equal to MAJ: Fn -+ F 2 on IF is given by

ej(x).
I> n ~bl
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Proof. Begin by noticing that

e(x) = (wtx) mod 2.

By a straightforward application of Kummer's lemma, we then conclude

e j(x) =b i

I0, otherwise

Next, define functions Ej : F' -+ F2 and G : F -+ F2 such that Ei(x) = 1 if and

only if wt(x) = i and Gi(x) = 1 if and only if wt(x) > i. We then have

Ei(x) = Eej(x).

j bi

To see this, simply notice that if Ei(x) = 1 then wt(x) = i and so ei(x) = 1, but ej(x) = 0

for all other terms in the above sum. If Ei(x) = 0, then wt(x) = t 4 i. There are then two

cases: if i b t, then the only terms in the above sum that evaluate to one are precisely all

values j such that i b j t, of which there are an even number; if i :9b t, then Vj such that

j b i, J :G t, and so every term in the above sum evaluates to zero.

We then have

G (x) = E E1(x)
I>i

and so

MAJ(X) = G -(x)

ej(x).
1>' .2 61
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We now consider RFSMAj. We begin by demonstrating a useful symmetry in UMAJ.

Define the value lh E Ug^A as follows. Consider the recursive Fourier sampling tree. We

define 1h by first defining b(t) for every node t in the tree (that is to say, we define the value

b(t) that node t has with input ih). First, assign the root of the tree the value 1. Then, for

each node that has been assigned a value, assign values to the children of that node as follows.

If node t has value b(t), then set b(t,) = b(t) for each t, E Ce(t). Assign all other children

the value forced by the promise: for each t, E C(t) \ Ce(t), set b(t,) = ZjE [,,=l b(tx3 ).

Equivalently, if a node has value 0, all of its children have value 0; if a node has value 1,

then each child t, has value given by the parity of the string o-. Once the entire tree has

been labeled in such a fashion, define ih by setting the portion of the input corresponding

to each leaf (that is to say, the n places of the input representing the secret at that leaf) to

the value of that leaf.

It is clear that the value lh E UA as claimed, due to the fact that l was constructed

in a way such that the promise is satisfied at every node. Moreover, lh E UMAJ as by

construction, the value of the root is 1. For any x E UmAj let = X ED lh (where ED denotes

bitwise parity). We then have the following.

Lemma 18. For any odd positive integer n and any positive integer h, x E U^ if and only

if T E A

Proof. Given any x E UMAJ the root of the corresponding recursive Fourier sampling tree

has value 0. The key observation is that adding 1, flips the value at every elementary leaf

of the tree. That is to say, if on input x, a particular elementary leaf t has value b E {0, 1},

then on input &, that leaf has value b. This occurs because, by construction, lh is 1 at every

position in the elementary leaves. It is then straightforward to see that value of the root

of the tree flips and that every promise is preserved, which implies E UMAJ. The reverse

implication follows from the fact that X^ = x and symmetry.
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We now show that UMAJ and UMAJ have identical standard monomials.

Lemma 19. For any odd positive integer n and any positive integer h, SM(U,)

SM(U^J).

Proof. For any algebraic set, every monomial is either a leading monomial or a standard

monomial, and so it suffices to show LM(UdAJ) = LM(U 3̂ ).

We first show LM(U AJ) C LM(UAJ). Consider any x' E LM(Uo^A). By definition,

]qa E F 2 [x1,... , Tm] such that q, E I(UAJ) and lm(qa) = TO. Define d. E F2 [Xi, ... , Xm]

such that q,(x) = q,(.). Notice that

lm(qa) = lm(qa) = xa.

Moreover, for any x E UTMAJ Lemma 18 implies that i E UsI^A and so

da(x) = 0,

where the last follows from the fact that q vanishes on UTM^A. This implies that a E(UiA J

and so Xa E LM(U1TAJ). Therefore, LM(UAJ) C LM(UAJ).

A precisely symmetric argument implies LM(UAJ) ; LM(U AJ).

Next, we provide upper bounds for the regularity of UAJ, U ,AJ and UAJ

Lemma 20. For any odd positive integer n and any positive integer h, let RFS%^J :F2"+

F2 denote the recursive Fourier sampling function with majority. Then

rg(U ) n + h-1 + n- 1) h-1 n - h-i-1
reg(U,) < n 2 + 2 25 2j=1
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n- h-1 jnn+ h-j-1
reg(UO",h) r2(1"" 2 2

j=0

Proof. We show this by induction on h. First, consider the case in which h = 1. Clearly,

U,"AJ = F and so reg(UAJ) = n. Moreover, Uo AJ = (MAJ)- 1 (0) and UM AJ = (MAJ)-1(1),

and so, by Lemma 5, we have reg(Uo,1 ) = reg(U1,1) = --.

We now consider the case in which h > 1. First, consider UhAJ. By the definition

of regularity, reg(Up,h) is the minimal value of d such that ha(U,h, d) = IUp,h. Therefore, if,

for some d, ha(U,h, d) = IUp,h , then reg(U,,h) d. In particular, let

n + h~i (n- h-1 n+1 h-j-
d(h) =~ n ~~ (n 1) Z2' in ~

d~h=n 2 2 (2i 2
j=1

Then, in order to show reg(Up,h) s d(h), it suffices to show ha(U,h, d(h)) = IUp,.

To show this, as before, let m = n24(h-) denote the total size of the input to RFS 3,h

and let

Md =-M (U,,h,

denote the inclusion matrix in which the rows are indexed by elements of U,,h and the columns

are indexed by all squarefree monomials of degree at most d. By Lemma 3, ha(U,h, d) =

rankF2 (Ald), and so it suffices to show rankF2 (Md(h)) = I U,, . Observe that I U,, j is precisely

the number of rows of MAd(h) (and is, of course, substantially smaller than the number of

columns), and so this is equivalent to showing that the matrix Md(h) is full rank.

To see that MAd(h) is full rank, assume, for contradiction, that it is not. By definition,

this means that there exists some non-empty T C Up,h such that the sum of the rows of

Md(h)) indexed by T is 0 in every column. We now show that, for any T C Up,h, 3a such that

the rows indexed by T have the sum 1 in the column indexed by the monomial x", which is,

of course, a contradiction.

Let xi denote the ith input variable. Let E C [m] denote the indices of all variables

that are inputs to the elementary leaves of the recursive Fourier sampling tree. Clearly,
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SEl = nh as there are nh-1 elementary leaves, each of which have n input variables. Define

U : U,h -+ {0, 1} such that, for any x E Up,h, a(X) is the portion of x at indices E. We

refer to this value as the signature of x. Consider a partial ordering on the set of signatures

given by the usual bitwise ordering. That is to say, for any y, z E {0, 1}*nh, let yj and zi

denote the ith bits of y and z, respectively. Define y z if yj zi Vi. Similarly, define y < z

if y < z and y # z. Let ST = {a(x) : x E T} and MT denote an (arbitrary) maximal element

of ST with respect to the partial order on signatures. That is to say, MT is any single value

that satisfies MT E ST and Ay E ST such that MT < y.

Recall that each column of Md(h) is indexed by a squarefree monomial x' = x" ... x- .

Consider any column of Md(h) that is indexed by some x' such that a agrees with MT (that

is to say, for each i E E, ai is equal to the corresponding value of MT). The key observation

is that the only rows x E T that could possibly have value 1 in column x& are those such,

that o-(x) = MT. To see this, notice that in order for a particular row X E T to have entry

1 in column x", it must be the case that xi = 1 at every i E E such that ai = 1, and so, by

definition, a(x) ;> Mr. If a(x) # MT, then u(X) > Mp, which contradicts the definition of

MT, and so we must have u(X) = MT, as claimed.

Let Z C T be defined such that Z = {x E T: u(x) = MT}. Then, for any column

indexed by an x' such that a agrees with MT, the sum over all x E T and the sum over only

those x E Z must be equal. Therefore, it suffices to exhibit a column indexed by xa such

that a agrees with MT and the sum over all rows x E Z in column x' is 1.

To do this, notice that the set Z is an algebraic set (as it is simply a set of elements

in F") where every X E Z lies within a particular subspace, namely the subspace consisting

of the set of x that satisfy o(x) = MT. We now consider Z, which is the induced algebraic

set living within that subspace. More formally, we partition the collection of variables into

two pieces: E and [m] \ E. For any X E F2, let XE and X[tn]\E denote the portions of

x indexed by E and [m] \ E respectively. We define the algebraic set Z C F2'h where

Z = {X[m]\E : x E Z}.
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We now consider the inclusion matrix

jW=M ~ [ m - n",)
d(h) - nh'

where the rows are indexed by the X[m]\E E Z and the columns are indexed by the monomials

xm]\E. The next key observation is that, in order to prove the existence of a column xa of

the desired form, it suffices to show rankF 2 M = 1Z1, in other words, that the matrix M is

full rank. To see this, notice that if M is full rank then, by definition, for every non-empty

set of rows R C Z, there is some column x\ such that the sum in that column over the

rows R is equal to 1. In particular, there is some column x\ such that the sum of every[ml\E

row in the column x\ is equal to 1. Fix any such 3, and define a such that aE = MT[mI\E

and a[m]\E = #. By construction, the sum of the entries of Md(h) in column x' and rows Z

is equal to the sum of the entries of M in column x\ and rows Z. Therefore, the sum of
[m]\E

the entries of Md(h) in column x' and rows Z is 1, as desired.

All that remains is to show rankF2 M = IZI. By Lemma 3, this is equivalent to

showing reg(Z) d(h) - nh. Before providing the details of this regularity bound, we briefly

state the main idea which is that Z C V x - x V, where each V is (isomorphic to) either

or U1j' where each hi < h. The induction hypothesis bounds the regularity of each

such V, which in turn provides the required bound on the regularity of Z, because, by the

definition of regularity, Z C V x ... x V,, immediately implies

reg(Z) reg(V x x V) = reg(V4).

We now show the required bound on reg(Z). By construction Z is the algebraic set

consisting of the elements of T which reside in the subspace defined by U(x) = MT. We

now consider how the constraint -(x) = MT interacts with the linearity promise of recursive

Fourier sampling. Consider the recursive Fourier sampling tree. The key observation is that

the constraint o-(x) = MT fixes the value of all of the elementary children, which in turn
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fixes the value of every "sibling" of an elementary child. This, essentially, "decouples" the

problem into the cartesian product of several independent, smaller instances of the recursive

Fourier sampling problem.

To be precise, begin by noting that requiring o(x) = MT directly forces the value

(that is to say, the output) of each of the elementary leaves of the recursive Fourier sampling

tree. By simply propagating this constraint upward through the tree, the value of all of the

elementary children is also forced. To see this, simply notice that, by construction, if the

value of all elementary children of a particular node t is forced, then the value of t itself is

forced. Since each elementary child which is not an elementary leaf has its own collection of

elementary children, the result immediately follows..

We therefore conclude that the constraint o(x) = MT forces the value of all nh-1

elementary children. Of course, this is only a tiny portion of the 0(n2") nodes of the recursive

Fourier sampling tree. However, the linearity constraint imposed by the promise within

recursive Fourier sampling causes the constraint u(x) = MT to constrain other portions

of the recursive Fourier sampling tree. In particular, begin by considering the root of the

recursive Fourier sampling tree. As noted above, the constraint U(x) = MT directly forces

the value of each of the n elementary children of the root. Moreover, due to the linearity

constraint, the value of the other 2" - n children of the root are also forced. In particular, if

we let t denote the root of the tree, tj denote its ith child, b(ti) denote the value of node ti,

ij denote the Jth bit of i, and Xj denote the element of {0, 1}" which has value 1 in position

j and value 0 elsewhere, then

b(ti) = > b(tx3 ).
j:ij=1

Therefore, for any x that satisfies o(x) = MT, if we consider the portion of x that lies under

the subtree rooted at ti, for any tj which is not an elementary child of the root node t, then

this portion of x must lie within an algebraic set isomorphic to UMJ

Precisely the same logic applies if we consider any elementary child that is not an

elementary leaf. At 1 levels down from the root of the tree, there are ni elementary children,
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each of which have n elementary children and 2' - n non-elementary children. For any x

that satisfies cr(x) = MT, the portion of x that lies under the subtree rooted at each of the

non-elementary child t must lie within an algebraic set isomorphic to U _MAJ

Next, notice that this process completely partitions the input of the recursive Fourier

sampling tree into a piece that lies beneath the elementary leaves and many other pieces

which each lie beneath the subtree rooted at a non-elementary sibling of some elementary

child. To see this, consider any particular input variable xi and consider its highest ancestor

(other than the root of the tree) which is not an elementary child. If such an ancestor does

not exist, then this variable is an input to an elementary leaf. If such an ancestor does exist,

then it must be a non-elementary child of an elementary child (or of the root of the tree),

and so this ancestor will have elementary children of its parent as siblings. We therefore

conclude that Z C V x ... x V where each V is (isomorphic to) either UL. or UMAJ where

each hi < h, as claimed. Counting the number of copies of each UAJ and UAJusing

Lemma 19 to conclude that reg(UOAJ) = reg(UMAJ), and applying the induction hypothesis

to bound the regularity of UmAJ and UMAJ yields the following.

h-1

reg(Z) Zn~(2 -- n)reg(U0 M )
i=1

h-1 1 h-i-1 / 1 h-i-j-1

< E -2-n) 2 ) 2jn 2
i=1 j=0

h-1 h-i-1 h-i-j-1 h-1 h-i-1 i

1 n- E 2 (j+1)n n+ 2 1 - 2
i=1 j=0 i=1 j=0

h-2 h-i-2 n (n+ 1)h-i-i-2) h-1 h-i-1

I:n' 2(j+') E +11 2"
i=0 j=0 i=1 j=0

h-2 h-i-1 h-i-j-1 h-1 h-i-1

Eni 2i" 2+ E n' 2j?" n

i=O j=1 (2) ) i=1 j=0

n+ h-i-j-1n +

+1 h-i-j-1

2+1

2 )]
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( + h-j-1)
h-I _(h-2 n n -+(2

n h-j-1 h-i-1

2 1) n 1)

2j?-' (n+ )h- 1) - 1

2 jn(Th+lh-j- 1 -

n2 J

~~%(h- (n~i + (ilhi)

S h-i-1

+ h-1

=d(h) -n

This immediately implies

reg(UMJ) d(h) n
+ h - 1 ( n 1 )

j=1

(n (r h-i)

Essentially the same argument applies to bound reg(UO~hAJ). More precisely, again

consider the case in which h > 1, we will show

reg(UO 3 h)< (2)

h-1

Z 2in

j=0

=n (- 1) (n +1)h-1

S h-j-1

S 
h-j-1

h-
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Eh-1=1

n 2)

n -1
2 ) [

n 2)

n +(2 J

h-1

E
j=1

( 
h-1E
j=1

(n 2)

n 2)

2n 
n+Ih-j-1

_ h

2in + h-j-1

+ (n 2

2j'n n + 1 h-j-1

( 2 )

2j +1 h-- 1 (n -(~ ) h '(h-i-1)



= (n- (n+1)) (n+ -1 + n - -)2i n +ih31
j=1

=nn+ 1h-1 (n+Q 14 (n- h-12j n +1hi

=n 2 2 2 E ( 2 2j=1

=d(h) 2 )'

We perform precisely the same analysis used to bound reg(Upa^ ), with the only

change being the fact that when MT E {o, 1 }h is now constructed, we can now conlude that

wt(MT) nh - (!i)h, where wt(MT) denotes the number of is (the weight) of MT. This

follows because, for any x E T C UOh the value of the root node must be 0, by definition.

For any node to have value 0, the majority of the elementary children of that node must have

value 0 (because the function being evaluated at each node is MAJ). Due to the fact that

each node has n elementary children, this requires that any node with value 0 has at least

n-1 (recall that, by assumption, n is odd) elementary children with value 0. In particular,

the majority of the elementary children of the root node must have value 0. Moreover, for

each elementary child of the root node that has value 0, the majority of its children must

have value 0. Continuing in this fashion until we reach the elementary leaves, we conclude

that at least ("1) h variables that are inputs to the elementary leaves must have value 0, and

so at most nh - (g)h have value 1, which shows the claimed bound on wt(MT). Therefore,

when we construct a by aE = MT and a[m]\E = #, we now have

reg(U %MAJ) < wt(a)

t(ME) + wt(a[mJ\E)

= wt(MIT) + wt(/3)

< n (7n + 1)h) + (d(h) - nh
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n + 1

2
= d(h) - (

Finally, to bound reg(U MAJ), simply notice that by Lemma 19

SM(UoMJ) = SM(UMJ) Vh> 1.

Lemma 1(b) then immediately implies

reg(UMAJ) = reg(UOMAJ) Vh > 1.

We now conclude that, for appropriately chosen input size, RFSMAJ is versatile.

Lemma 21. Let n = 2- 1 for any positive integer k, then RFS,^j is (" -versatile on

.Moreover, UAJAJ is a critical algebraic set." 2 p~h* oreove,

Proof. By the assumed form of n, Lemma 17 immediately allows us to conclude

MAJ(x) = en+1 (x) Vx E F .

Clearly, deg(e, i) =-+', and so Lemma 16 immediately implies
2 2

reg(Up,h) n ( n -1
2)

reg(UO,h), reg(U1 ,h) >
(n

2 j
j=0

h-1

Z 2

j=1
2

n +1 -

2,'

By Lemma 20,

reg(Up,h) < n ( n +1

2
)h1

n -1 2jfln + h31

2 2)j=1
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reg(Uo,h), reg(Ul,h) <
(nih-1n -1 )Y n

2 2=
3=0

n+1 h-j-1

2)

reg(Up,h) = n n 2 h-1
n - 12

reg(UO,h), reg(U,h) =
n-

h-1

S23"
J=1

Z -
E2jn

j=0

n +1 )-1

2

( 2lh-j-i

reg(Up,h) - reg(UO,h) = reg(Up,h) - reg(UO,h)

(+ h-j-1 h-j

j=0

( + 1 h-j-1

( - h+1_-

2 }} 2

- n+1)h

Therefore, RFS4 hAJ is (!~ )h-versatile on UMhA. To see that UMAJ is a critical

algebraic set, simply notice that, as shown in the proof of Lemma 16,

h-i

deg(ruAJ) < (2 n - n) E2(j-1)"h-
j=1

where d = -1.

By the above,

h-1

deg(ruMAj) (2n - Ti) 32(idh-j =

74

Therefore,

Finally,

h-1

Z 2 jn
j=i

n 1 h-1 ( n 1

= (n -

n+1 h-1 (-1) n+l -
2 \ 2 2



and so

deg(ruMAj) = a(UAJ),

which, by definition implies that UhA is a critical algebraic set.

Next, we exhibit another class of functions such that the lower bound on regularity

in Lemma 16 is tight. Consider any g E F2 [x1, - - - , Xn] and let d = deg(g). V = g-'(0) and

V = g- 1 (1) denote the preimages of 0 and 1, respectively. For any k x n matrix A with

entries in F2 , let >A : F2n -+ Fk denote the linear map defined by A. We say a function g is

well-mixed if, for every n - d +1 x n matrix A, -o # Fn-d+1 and ker4 Fn-d+l. We then

have the following.

Lemma 22. For any positive integers n, h, let g G F2 x1,-- ,xn] be well-mixed. Let d

deg(g) and let RFSh : F' --+ F2 denote the recursive Fourier sampling function with g.

Then
h-i

reg(U,'h) nd -1 + (n - d) E 2j"d -j-1

j=1

h-1

reg(U,), reg(Ulgs) < (n - d) 2 ~n .
j=0

Proof. Before proceeding with the proof, we briefly remark that this Lemma could be proven

by use of the inclusion matrix, in a similar manner to the proof of Lemma 20, shown above.

We provide an different proof to illustrate an alternate method of bounding regularity.

We show this claim by induction on h. First, consider the case in which h = 1.

Clearly, U'1 = F2, and so reg(Up 1 ) = n. We now show reg(Us91 ),reg(Ug11) ; n - d. First,

consider reg(U",j). Begin by noticing that, by Lemma 1(b), this is equivalent to showing

that

xa E LM(Ug,1) Va such that deg(x") > n - d.

Due to the fact that, for any algebraic set V, LM(V) is an ideal (of the semigroup of
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monomials) and because, for any V C FnS, x. E LM(V) Vj, the above is equivalent to

showing

x' E LM(Uf 1 ) Va such that deg(x") = n - d + 1 and x' is multilinear.

To see this, consider any multilinear monomial x' where deg(x") = n - d + 1. Let J = {j

aj = 1}. For any x E Fn, let Xj E Fn~d+l denote the substring at positions indexed by J.

The key observation is that, because g is well-mixed, there is a b E F-d+l such that for

every x E U9'1 , xj 4 b. To see this, let OA : F2 -+ F"-d+ denote the unique linear map such

that qA(X) = Xj Vx E F2. Then, because g is well-mixed, we have, by definition, that

U1,1 V Fm-d+l
ker(A) 2

and so ]b E F2"~d+ such that, for every x E U ', qA(x) / b, as claimed. Fix any such b.

For k E [n - d + 1], let Jk denote the kth element of J (in the natural order), and

consider the polynomial f, E F2 [x1, ... , xnj, where f, = Hii-j'(xJ + bk +1). We then have

f' E I(Uf 1 ). This holds because, for any x E Uj 1 , XJ = #A(x) # b, and so ]k E [n - d+ 1]

such that xj, :# bk. For each k, we have xjk, bk E F 2 and so if xj, ,4 bk, then xj" = bk + 1.

Therefore, for any x E U9'1, 3k E [n - d + 1] such that XJk = bk + 1, and so fa vanishes on

U1
9

1. Clearly, lm(fe) = xa, and so

X" E LM(Ulgl) Va such that deg(xa) = n - d + 1 and x' is multilinear,

as desired. Therefore, reg(Ug1 ) < n - d. By a precisely symmetric argument, reg(U 1 ) <

n - d.

Next, we consider the case in which h > 1. Consider Ufs. Let r(h) = (n -

76



d) E- 2ndh-j~1. We wish to show

reg(Ulgh) < r(h).

For the same reason as above, it is equivalent to show

xa E LM(Ulgh) Va such that deg(xa) = r(h) + 1 and x' is multilinear.

Consider any multilinear monomial x', where deg(xa) = r(h) + 1. Let J = {j a3 = 1}.

Consider the recursive Fourier sampling tree. For each child t of the root of the tree, say

that t is heavy if at least r(h - 1) + 1 of the variables in the subtree rooted at t appear in J

(that is to say, there are at least r(h - 1) variables xi, such that j E J and xj is a variable

that appears at one of the leaves of the subtree rooted at t). Moreover, say that t is very

heavy, if at least r(h - 1) + d h- + 1 of the variables in the subtree rooted at t appear in J.

Due to the fact that deg(x') = r(h) +1, it must be the case that at least one of the following

two statements is true:

(1):At least one of the children of the root is very-heavy.

(2):At least n - d + 1 of the children of the root are heavy.

To see this, assume, for contradiction, that neither of these statements are true. Then

at most n - d of the children of the root are heavy, and none of the children of the root are

very heavy. We then have

deg(x') ; (n - d)(r(h - 1) + dh-1) + (2' - (n - d))(r(h - 1))

(n - d)dh-1 + 2"r(h - 1)

(h-1)-1

(n - d)dh-l+ 2n(n - d) S 2id(h-1)-j-1
j=0
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h-2

= (n - d) dh- + E 2(J+1)"dh-(j+1)-1

j=0

h-1

= (n - d) d h~ + 2indh-j-1

h-1

= (n- d) (E2 n dh-j-1

=0

= r(h)

<r(h)+1

= deg(x').

This contradiction immediately allows us to conclude that at least one of the above state-

ments are true.

We now conclude that x' E LM(U'g). We first consider the case in which statement

(1) holds. Let t denote an arbitrary very-heavy child of the root of the recursive Fourier

sampling tree. Let xO denote the multilinear monomial consisting of the product of all

variables that are in the subtree rooted at t that appear in x". Clearly, xaIx', and so it

suffices to show that x, E LM(Ufgh). Due to the fact that t is very-heavy, we have,

deg(x,) > r(h - 1) + dh-1 + 1 > reg(Up,h_1) + 1,

where the first inequality follows from the definition of a very-heavy child, and the second

inequality follows from the induction hypothesis. Let Y denote the portion of the input x

within the subtree rooted at t. The key observation is that, since the subtree rooted at t

corresponds to an instance of the recursive Fourier sampling problem of height h - 1, we

must have Y E V U,h1 (where V is simply Up,h_1 with variables renamed 5). Since

deg(xO) > reg(Up,h1) = reg(V), we have, by the definition of regularity, that 3 E LM(V),

and so ~fo (which only contains variables in Y) such that x = lm(f3) and f3 E I(V).
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Therefore, f9 vanishes on every Y E V, and so it must also vanish on every x E Ufh because,

by construction, if x E Ugh, then Y E V and ff8 only consists of variables in Y. Therefore,

XO E LM(U '), which implies that xa E LM(Ug,), as desired.

Next, we consider the case in which statement (2) holds. Let a : Uf9 -+ F be defined

such that, for any x EE U9 o,(x) is defined such that the ith position of a(x) is equal to the

value of the ith elementary child of the root when the input to the recursive Fourier sampling

problem is x. Let t1 , ... , in-d+1 denote an arbitrary collection of (distinct) heavy children of

the root of the recursive Fourier sampling tree. Let 5: U - IFl1-d+1 be defined such that,

for any x E Ufh, a(x) is defined such that the ith position of a(x) is equal to the value of

ti. In other words, the function a simply encodes the values of all elementary children and

a encodes the values of the heavy children of interest. The key observation is that, because

g is well-mixed, there is a b E F,-d+l, such that, for every x E U a(x) # b. To see this,

notice that, by definition, if x E Ufh, then a(x) E Ug,1 . Moreover, due to the linear structure

of the promise, there is a linear map #: Fn _j F--d+1 such that

0(0-(x)) =5(x) Vx E Ul1,h.

Due to the fact that g is well-mixed,

Uf,
1, 1- nF-d+1

ker(#A) 2

and so the existence of b follows from an identical argument as in the h = 1 case above. Fix

such a b.

For i E [n - d + 1], let x 3i denote the monomial consisting of all variables in the

subtree rooted at tj that appears in x". Let x16 = 1j ixi. Clearly xO xQ and so it suffices to

show xz E LM(U1,h). Notice that, for each i,

deg(x13 ,) r(h - 1) + 1 > reg(U1 ,h_ 1 ) + 1, reg(Uo,h_ 1) + 1,
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where the first inequality follows from the fact that tj is heavy, and the second inequality

follows from the induction hypothesis. By the same argument that applied in case (1)

above, we conclude that, for each i, there is a polynomial f3 such that lm(fp) = x 3 and

fb E I(U1bi+1 ,h-1). To be clear, the bound on the degree of xe implies that xzi is a leading

monomial of both the algebraic set isomorphic to Ufghl and the algebraic set isomorphic

to UhO,_1 (where the isomorphism is simply the trivial renaming of variables), we choose

fa E I(Ug+1i,h- 1 ) specifically to make the next stage of the construction work.

We now consider the polynomial f6 = 17[ fg. Clearly, lm(fp) = xO. Moreover, we

have fp E I(Ufh). To see this, notice that, for every x E Uh, 5(x) = b, and so, for every

x E Ugh, there must be at least one i such that 5(x)i = bi. Since 5(x)i, b; E F2 , if 5(x)i : bi,

then a(x)i = b; + 1. Therefore, for every x E Ulgh, there must be at least one i such that fj6

vanishes at x (because fp, vanishes whenever the portion of x in the subtree rooted at t has

value bi + 1 at node ti). Due to the fact that f3 is the product of the f, if at least one of

the fa vanish, then f1 vanishes. This implies that f1 E I(Ufh), which in turn implies that

# E LM(Uf 1) which in turn implies that xa E LM(Uflh)

The above argument shows that reg(Ulg) r(h) for any h > 1, given the induction

hypothesis. It is easy to see that this argument is precisely symmetric with respect to Ufh

and Uh, and so we immediately also conclude reg(Ulg) < r(h). 'An essentially identical

argument shows reg(Upg) < r(h) + d, with the only changes being the fact that statement

(2) now becomes "At Least n +1 children of the root are heavy", and the analysis of the case

in which statement (2) holds no longer relies on the fact that g is well-mixed, but instead

the fact that, due to the linearity constraint, given any collection of n + 1 children of the

root, there is at least one tuple of values that violates the promise.

This immediately allows us to conclude that, for any well-mixed g, RFSg , is versatile,

as shown in the following lemma.

Lemma 23. For any positive integers n, h, let g E F2 [x 1 ,...], n be well-mixed. Let d =
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deg(g) and let RFSg : F' F F2 denote the recursive Fourier sampling function with g.

Then RFSh. is d4-versatile on U9h and UI is a critical algebraic set.

Proof. Combining the bounds from Lemma 16 and Lemma 22, we have

h-1

reg(Ug) - nd h- + (n - d) 2 "dhi--1
j=1

h-i

reg(U h), reg(lgh,) = (n - d) E 2 dh3 1 .
j=0

Therefore,

reg(U g(Ueg(U) = reg(Uh)-reg(U h) = ndh-+(n-d

h-1 h-1

E2jnd-~-l1(n-d) 2j
j=1 j=0

ndh-1 + (n - d)dh-

- dh

To see that U is a critical algebraic set, simply notice that, as shown in the proof

of Lemma 16,
h-i

deg(ru _) h (2 - n) E2(j-1)d-
j=1

By the above,

deg(rus ) ; (2"
pr h):

h-i

- n) E 2(j- 1)ndh-~ - aph

j=1

and so

deg(rup ) = a(Uj,5),

which, by definition implies that Uph is a critical algebraic set.

El
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We now show that a certain natural function, the generalized inner product func-

tion, is well-mixed, and therefore the corresponding version of recursive Fourier sampling is

versatile. For any positive integer n and any din, let GIP,d : F' -+ F2 be defined such that

GIPn,d = X 1 - - + Xd+1 X2d+ -.. ++ xn-+1 -Xn-

Notice that the ordinary inner product function simply corresponds to the case in which

d = 2.

Lemma 24. For any positive integers d, n such that din, and n > d(2d 2 +d - 1), the function

GlnGIPn~ i d h-estl n GIPn~
GIP,d F -+ F2 is well-mixed. Moreover, the function RFS ',h is dh-versatile on UP"'h

and UP,' is a critical algebraic set.

Proof. We begin by showing that, for any positive integers d, n that satisfy the above re-

quirements, the function GIP,d :F --+ F2 is well-mixed. To do this, it clearly suffices

to show that, for any (n - d + 1) x n matrix A, ]t0 , t' E F -d+1 such that, for x E Fn,

Ax = to => GIPn,d(x) = 0 and Ax = t' = GIP,,d(x) = 1. We begin by noting that it suffices

to show this claim only for A of a certain very special form. Let #A : Fn -+ Fdn-1 denote

the linear map corresponding to multiplication by the matrix A. Begin by noting that this

claim trivially holds when A is not full rank (simply set tO and t' to be any element not in

the image of OA) and so it suffices to consider only the case in which A is full rank. Next,

it suffices to only consider the case in which A is in reduced row echelon form, because, for

any invertible (n - d + 1) x (n - d + 1) matrix L, Ax = t if and only if (LA)x = Lt, and

so if the claim holds for every A in reduced row echelon form, then it holds for every A.

Divide the n input variables x 1 , . . . , x,, into blocks of size d, where each block consists of

the d variables that appear in a single term of the GIP,,d polynomial. Due to the fact that

rank(A) = n - d + 1 and that A is in reduced row echelon form, there are precisely d - 1

columns of A that do not have a leading 1. It suffices to only consider the case in which

each of these d - 1 columns appear as one of the rightmost d(d - 1) columns of A, because,
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due to the symmetry of the generalized inner product function, the variables can be relabled

such that these columns always correspond to variables that appear in the rightmost d - 1

blocks, and hence rightmost d(d - 1) columns.

Therefore, in order to show that GIPn,d is well-mixed, it suffices to show that, for any

(n - d + 1) x n matrix A, where rank(A) = n - d + 1, A is in reduced row echelon form,

and the d - 1 columns of A that do not contain a leading 1 appear within the rightmost

d(d - 1) columns, ]t0 , t' E Fn-d+l such that, for x E Fn, Ax = t > GIP,(x) = 0 and

Ax = t' -> GIPfl,d(x) = 1.

Consider such a matrix A. We now construct t0 and t1 with the required properties.

Let Y1, .. . , yd-1 denote the xi that correspond to columns of A that do not have leading 1s,

in the natural order. Let r < d denote the value such that yi is in the rth block from the

right; that is to say, r is the minimal value such that all y,, are in the rightmost r blocks.

For i E In - d + 1], and j E {0, 1}, let ti denote the value of the ith position of t.

Begin by noticing that there is a setting of t-,,..., ti-'+1 such that, for any such

tj and any x E Fn, Ax = t = Xn-dr+1 Xn-d(r-1) +. .. + Xn-+1 ... X. = 0. In other words,

there is a way to set the last dr - d+ 1 values of t such that, for any x that satisfies Ax = 02,

it must be the case that the sum of the rightmost r terms of GIPn,d is 0. To show this, we

will construct the setting of the last dr - d +1 values of tj in a collection of stages, where the

values set in the 1 th stage will force the 1th block (from the right) to evaluate to 0. Begin by

considering the rightmost block of variables. Let k denote the number of y" such that yrn

correspond to columns in the rightmost block of variables; that is to say, Yd-k, ... , Yd-1 are

the variables that correspond to the columns within the rightmost block that do not have

leading 1s. There is a setting of the last d - k values of t1 such that, for any x that satisfies

Ax = V2, we have Xn-d+1 ... X n= 0. To see this, notice that, due to the form of A, the only

non-zero entries of A in the last d - k rows are in the last d columns, which correspond

precisely to the variables in the rightmost block. Therefore, the last d - k values of Ax are

completely determined by the last d values of x. In order to have Xn-d+1 ... xn = 1, it must

83



be the case that Xn-d+1 = ... = x, = 1, and so there is only 1 setting of these rightmost d

variables such that Xn-d+1 - - - x, = 1. On the other hand, there are 2 d-k > 2 d-(d-1) > 2 > 1

distinct choices of the last d - k values of ti, from which it immediately follows that there is

at least some setting of the last d - k values of ti such that, for any x that satisfies Ax = V ,

we do not have Xn-d+1 --- x, = 1, which then implies Xn-d+1 ... X n= 0. Fix any such setting

of the last d - k values of ti.

In general, in the 1 th stage, for each 1 such that 1 < 1 < r, we consider the 1th block of

variables (counting from the right). Within the first 1 - 1 stages, we have set every ti such

that row i of matrix A has a leading 1 in a column corresponding to a variable in one of the

rightmost 1 - 1 blocks. This setting forces each of these 1 - 1 blocks to evaluate to 0. We

now force the 1 th rightmost block to evaluate to 0 by appropriately setting all ti such that

row i of matrix A has a leading 1 in a column corresponding to a variable in block 1. To

be precise, let k denote the number of ym that correspond to variables in block 1, and let k'

denote the number of ym that appear in the rightmost 1 - 1 blocks. Again, due to the form

of A, the only non-zero entries in the d - k rows in question are in the last dl columns, and

so the corresponding d - k values of Ax are completely determined by the last dl values of x.

Again, there is only a single setting of the d values of x in block 1 such that block 1 evaluates

to 1. Moreover, there are only 2k' settings of the d(i - 1) values of x in the rightmost I - 1

blocks which satisfy the constraint imposed by the tP fixed in earlier stages. This follows

from the fact that the (d(l - 1) - k') x (d(l - 1)) submatrix of A corresponding to these

constraints has rank d(l - 1) - k' and hence nullity k'. Therefore, there are precisely 2 k'

distinct settings of the last dl values of x that both satisfy all earlier constraints and cause

block 1 to evaluate to 1. Moreover, there are 2d-k choices of the portion of tj currently being

set. Due to the fact that k + k' < d - 1 (as there are only a total of d - 1 variables ym), we

again conclude that there is a setting of the relevant portion of tP such that, for any x that

satisfies Ax = ti, the 1 th block evaluates to 0, as required.

The above argument shows that all of the rightmost r blocks can be forced to evaluate
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to 0, by an appropriate setting of a portion of V. Next, we show that, similarly, for any

I > r, the 1th rightmost block can be forced to evaluate to 0 by an appropriate setting of

another portion of ti. To be precise, consider the 1th rightmost block of variables, for any

1 > r. Due to the fact that every column of A that does not have a leading 1 appears among

the rightmost r blocks, we conclude that every column corresponding to the 1th block has a

leading 1. Consider the submatrix of A consiting of the d for which the leading 1 of that row

appears in one of the columns corresponding to block 1. The only non-zero entries in this

submatrix appear in two parts. First, in the columns corresponding to block 1, the submatrix

is simply the d x d identity matrix. Secondly, there are non-zero entries in certain columns

indexed by the ym. In other words, this submatrix expresses the constraint that the values of

x in block 1 are some affine combination of the ym. To be precise, let zj, . .. , zd denote the d

values of x that appear in block 1, and let v denote the d values of tP that correspond to rows

in the submatrix in question. Then there is a d x (d - 1) matrix B such that z = By + v.

Let 4B : FI- 1 -+ Fd denote the linear map corresponding to multiplication by B. As before,

the key observation is that there is only a single setting of z such that block 1 evaluates to 0;

however, there are 2 d choices of v, and IIm(#B)I < 2d-l, from which it immediately follows

that there is a choice of v such that, for any z that satisfies z = By + v, it must be the case

that block 1 evaluates to 0.

Therefore, to produce to, we simply use the first construction above to set the last

dr - d + 1 values of t0 in such a way as to force the last r blocks to evaluate to 0, and then

use the second construction above to set the remaining values of to in such a way as to force

all other blocks to evaluate to 0.

To produce t', slightly more work is needed. We next show that, given a collection

of 2 d
2 blocks, all of which are not among the rightmost r blocks, it is possible to set the

appropriate values of t' is such a way as to assure that exactly one of these blocks evaluates

to 1, and all other blocks evaluate to 0. To see this, simply consider, as above, the constraint

imposed by A on the variables in each block 1. To be precise, let z = (zi,..., z) denote
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the d values of x that appear in block d, vi = (vi, ... ,v ) denote the d values of t1 that

correspond to the rows of A that have a leading one in a column corresponding to block 1

and B1 denote the d x (d - 1) matrix such that z' - B'y + v'. As there are 2d
2 blocks in

question, but only 2 d(d-1) distinct d x (d - 1) matrices (with entries in F2 ), there must be

some particular d x (d - 1) matrix B such that at least 2d blocks 1 have B' = B. Fix any

such B and let L denote a collection of precisely 2d blocks I such that B, = B. The key

observation is that the portion of t1 corresponding to the collection of blocks L can be set

in such a way so that exactly one block in L evaluates to 1. This can be accomplished by

setting the collection of v1 such that 1 E L to the 2d elements of F. This works because, for

any setting of y, the collection of z1 , for I E L will all be distinct (as each z = By + vI and

the vi are distinct) and exactly one of the z will be all is (as there are 2d possible setting of

each z1 , so each appears exactly once).

Therefore, to produce t', we then simply use the first construction above to set the

last dr - d + 1 values of t' in such a way as to force the last r blocks to evaluate to 0, then

the second construction above to set the portion of t' that corresponds to every block not in

L to force all such blocks to evaluate to 0, and finally the third construction above to set the

portion of t' that corresponds to the blocks in L to force exactly one block in L to evaluate

to 1. Due to the fact that, by assumption, n > d(2d 2 + d - 1), there are at least 2d2 + d - 1

blocks, and so this construction is possible.

We have thus shown that, for any positive integers d, n that satisfy the above require-

ments, the function GIP, : F' --+ F2 is well-mixed. By Lemma 23, it immediately follows

that the function RFS is dh-versatile on U,,,' and UIf"A is a critical algebraic set.thttefnto Fn, hh Uph aclla

4.1.3 Polynomial Degree

Using the results of the previous section, we now prove very strong statements about the

degree of any polynomial that computes, or even one-sided agrees with, the recursive Fourier
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sampling problem.

Theorem 7. For any positive integers k, h, Let n = 2k - 1 and let RFSM"J denote the

recursive Fourier sampling function with majority. Then /3g G F2 [X,..., Xm] such that

deg(g) < (,-)h and g(x) = RFS'AJ(x) Vx E UMA. Moreover, if any g E F2 [xi,..., Xm]

such that deg(g) < (n- )h vanishes everywhere on Uwi, it vanishes everywhere on Ug.

Proof. By Lemma 21, RFS J (nl h-versatile on UMA and UMA is a critical algebraic

set. The first claim of the theorem is an immediate consequence of Lemma 6 and the second

claim is an immediate consequence of Lemma 7.

Theorem 8. For any positive integers d, n, h such that din, and n > d(2d2 + d - 1), Let

RFS GPnd denote the recursive Fourier sampling function with generalized inner product.

h GI~n~dGIln, dThen ,Ig E F2 [xI,... ,xm] such that deg(g) < d and g(x) = RFS'I.lh (x) Vx E Up"h
h GInnhd

Moreover, if any g E F2 x1, ... ,xm] such that deg(g) < dh vanishes everywhere on UG ,h

it vanishes everywhere on UGP,

Gl~n~d is d hGIPnd GIP,,disactclagercProof. By Lemma 24, RFSG "n is dh-versatile on U and Uh' is a critical algebraicn'1h Up, hUp

set. The first claim of the theorem is an immediate consequence of Lemma 6 and the second

claim is an immediate consequence of Lemma 7.

4.1.4 Towards a Circuit Lower Bound

In the previous section, an extremely strong lower bound was given on the lowest degree

polynomial over F2 that computes (or even non-trivially one-sided agrees with) the recursive

Fourier sampling function on the promise. In this section, we discuss partial results towards

a lower bound on the size of a constant depth circuit that computes the recursive Fourier

sampling function, as well as what sort of additional results would allow these partial results

to be extended to prove such a lower bound. We begin by defining the circuit class of
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interest. Let n denote, as before, the size of the secret at each node of the recursive Fourier

sampling tree, and h denote the height of the recursive Fourier sampling tree. We consider

circuits that consist of AND, OR, and NOT gates, where the fan-in of the AND and OR

gates is unbounded, the size of the circuit (the total number of gates) is at most 2 0(poly(n)),

and the depth of the circuit (the number of gates on the longest path from the input to

the output) is a constant (independent of n and h). This circuit class is of interest due

to the fact that proving a lower bound against it (that is to say, proving that no circuit

of this form can compute the recursive Fourier sampling function on its promise), would

immediately imply the existence of an oracle A such that BQPA 5t PHA. This follows due

to the relationship between such circuits and the polynomial hierarchy ([FSS84],[Yao85])

and the fact that there is an efficient quantum algorithm for the recursive Fourier sampling

problem ([BV93],[Aar03,[Joh081), when h = O(log n). Such a bound is at least plausable as

the trivial circuit (which simply computes the recursive Fourier sampling in the brute force,

level-by-level way, in which each subproblem is solved by solving n subproblem one level

down) has size 2 0(nh), which, when h = 9(log n) is, of course, not 2 0(OIy(n)).

One reasonable approach to proving such a lower bound would be to apply a variant

of the Razborov-Smolensky method [Raz87], [Smo87]. We begin by briefly sketching the main

idea of the Razborov-Smolensky method, specialized to F2. We consider a (total) function

g :2n -4 F 2 , where m = 2 0(poly(n)) We wish to show that no circuit C of the above form,

of size at most 2 0(poiy(logm)) - 2 0(poly(n)), can compute the function g. The key observation

is that there is an f F2 [X1, - - - , Xm] where deg(f) = O(poly(n)) such that f agrees with

C almost everywhere, and so if it can be shown that g is not well approximated by a low

degree polynomial, it immediately follows that g is not actually computed by C. To show

that a particular g cannot agree almost everywhere with a low degree polynomial, it suffices

to show that g has the property that, on any set R C Fn, if g is represented on R by a

polynomial of degree at most d, then every function q : R -+ F2 is represented on R by

a polynomial of degree not much higher than d. This suffices because if g agrees almost
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everywhere with a low degree polynomial f, then there is a very large set R on which every

function q : R -+ F2 is represented by a low-degree polynomial; a straightforward counting

of the number of functions of that form and the number of low-degree polynomials shows

that this is impossible.

The main idea behind the lower bound on the polynomial degree of recursive Fourier

sampling, shown in the previous sections, is that there are functions g such that RFSgh has

the property that there is a large gap between the regularity of the promise, reg(U,'h), and

the regularities of the preimages of 0 and 1, reg(Ugh) and reg(U 9g). In other words, there are

functions on Uh which can only be computed by relatively high degree polynomials, whereas

every function on Ug and Ufh can be computed by relatively low degree polynomials. It then

follows that RFS ,h itself cannot be computed on Ugh by a low degree polynomial, because

if it were, then every function on Ugh would be computable by a low degree polynomial.

While this is very similar to the observation made in the Razborov-Smolensky method,

there is one crucial difference: due to the fact that the promise U,, is extremely small, one

cannot conclude, via a straightforward counting argument, that there is a function on Ugh

that requires a high degree polynomial; instead, this fact was shown via an analysis of the

structure of this algebraic set. It is the very fact that such an analysis is possible that gives

hope that this technique could be extended to prove the desired circuit lower bound. To be

precise, to prove the desired circuit lower bound, it would suffice to show that, not merely is

it the case that RFS ,h is w(poly(n))-versatile on Ugh, as already shown, but in fact RFS ,h

is w(poly(n))-versatile on R for any sufficiently large R C Ugh. This would suffice because,

if RFSgh had this property, then it could not be the case that RFSg is well approximated

by a low degree polynomial on U9, from which it would then follow that RFS,, is not

computed by a small circuit on U,. In fact, something substantially weaker would suffice:

one only needs to consider the case in which R is of the form U, fn V(f,. .. , fk) where

each fi E F2 [Xl, - - -, Xm] satisfies deg(fi) = O(poly(n)). In other words, one only needs

to consider the case in which R is a large subset of U, such that R is the intersection
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of U," with an algebraic set that is the set of common zeros of a collection of low degree

polynomials. This suffices because, much as was done in Braverman's proof of the Linial-

Nisan conjecture [Bra09], one can consider the structure of the set of points on which a small

circuit agrees with the low degree polynomial produced by the Razborov-Smolensky method.

To be precise, consider applying the Razborov-Smolensky method to a AND of a collection

of polynomials pi,... ,Pk E F2[x1 , ... , XmI where deg(pi) = O(poly(n)) Vi. This AND of low

degree polynomials is well approximated by a single p' E F2 [xI,... , rM], given by the product

of a collection of a small number of randomly chosen sums of the pi. Moreover, the output

of the AND of p1,... ,Pk agrees with p' precisely on V(p'(1 +pI),... , p'(+ pk)). Repeating

this process for every gate in the circuit, from the bottom up, yields an algebraic set of the

form V = V(fi,..., fk) where deg(fi) = O(poly(n)) Vi, where, on V, each gate individually

agrees with its approximating polynomial. To be clear, this algebraic set V is a (possibly

proper) subset of the set of points on which the circuit agrees with the overall approximating

polynomial, due to the fact that a local mistake (that is to say, a point at which an individual

gate disagreeing with its approximating polynomial) may not propagate through the entire

circuit to yield a global mistake (that is to say, a point at which the circuit disagrees with

the approximating polynomial); however, the extremely simple form of V makes it a natural

choice for performing the required analysis of regularity.

While the current analysis falls short of being able to prove the type of circuit lower

bound needed for the desired relatived separation result, it does produce some interesting

partial results. For example, consider any circuit C consisting of an OR of a collection

PlP .,k E cF2[Xi,. - . ,Xm] where deg(pi) <_ d = O(poly(n)) Vi. Circuits of this type are

interesting as it can easily be seen that if one can prove that such a circuit cannot be a good

approximator with one-sided error of the recursive Fourier sampling problem on its promise

(where we say C is a good approximator with one-sided error if C outputs 1 everywhere on

U",h and outputs 0 almost everywhere on U"gh) this would immediately yield the existance

of an A such that BQPA ( AMA. The existing analysis does provide some insight into the
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behavior of any such circuit on the promise, though it, unfortunately, falls short of proving

the required lower bound. To be precise, by noting that the set of points on which C outputs

one is given by V = UjV(1 +pi), and applying Lemma 8, one can immediately conclude that,

for any g such that RFS,h is 6-versatile onU

SM(Uh f V, j) = SM(Us n V,j) = SM(Ufh hn Vj) Vj - d.

This is, by itself, a very strong statement about the structure of the set of points on which

any such circuit C evaluates to 1. Moreover, due to the fact that, by Lemma 1(c), the size of

any algebraic set is equal to the size of the set of standard monomials of that set, the above

claim also yields a (weak) statement about the relationship between the sizes of U n V

and Uga n V.

4.2 VC Dimension

In this section, we answer an open question posed in [MR15]. We begin with a few definitions.

We begin by recalling several key results from that paper.

Lemma 25. [MR15](Thm.2.2) For any C C {o, 1}", reg(C) VC(C).

It was shown that, if CQj denotes the value of the ith element of C in the jth position,

then

Lemma 26. [MR15](Prop.6.1) For any C C {0, 1}, reg(C) = 1 precisely when the matrix

1 C 1, 1

1 Cm,1 - Cm,n /
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has rank m = |C.

They then asked if there was a similar simple characterization of when reg(C) = r,

for r > 1, which would be highly desirable as any such characterization would, by the

above lemma, provide a characterization of sets with VC dimension at least r. We show the

following.

Theorem 9. A set C C {0, 1}" has reg(C) = r if and only if r is the smallest positive

integer such that rankF.2M(C, (I])) = C.

Proof. By Lemma 3,

ha(C, d) = rankF2 M(C,

By definition, reg(C) is the minimum r such that ha(C, r) = 1C.

Remark 2. It is straightforward to see that [MR15](Prop.6.1) is a special case of the above

theorem.
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