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Abstract

As people become more comfortable with speaking to machines, the applications of speech interfaces will
diversify and include a wider range of devices, such as wearables, appliances, and robots. Automatic speech
recognition (ASR) is a key component of these interfaces that is computationally intensive. This thesis
shows how we designed special-purpose integrated circuits to bring local ASR capabilities to electronic
devices with a small size and power footprint.

This thesis adopts a holistic, system-driven approach to ASR hardware design. We identify external
memory bandwidth as the main driver in system power consumption and select algorithms and architec-
tures to minimize it. We evaluate three acoustic modeling approaches-Gaussian mixture models (GMMs),
subspace GMMs (SGMMs), and deep neural networks (DNNs)-and identify tradeoffs between memory
bandwidth and recognition accuracy. DNNs offer the best tradeoffs for our application; we describe a SIMD
DNN architecture using parameter quantization and sparse weight matrices to save bandwidth. We also
present a hidden Markov model (HMM) search architecture using a weighted finite-state transducer (WFST)
representation. Enhancements to the search architecture, including WFST compression and caching, predic-
tive beam width control, and a word lattice, reduce memory bandwidth to 10 MB/s or less, despite having
just 414 kB of on-chip SRAM. The resulting system runs in real-time with accuracy comparable to a soft-
ware recognizer using the same models. We provide infrastructure for deploying recognizers trained with
open-source tools (Kaldi) on the hardware platform.

We investigate voice activity detection (VAD) as a wake-up mechanism and conclude that an accurate
and robust algorithm is necessary to minimize system power, even if it results in larger area and power
for the VAD itself. We design fixed-point digital implementations of three VAD algorithms and explore
their performance on two synthetic tasks with SNRs from -5 to 30 dB. The best algorithm uses modulation
frequency features with an NN classifier, requiring just 8.9 kB of parameters.

Throughout this work we emphasize energy scalability, or the ability to save energy when high accuracy
or complex models are not required. Our architecture exploits scalability from many sources: model hyper-
parameters, runtime parameters such as beam width, and voltage/frequency scaling. We demonstrate these
concepts with results from five ASR tasks, with vocabularies ranging from 11 words to 145,000 words.

Thesis Supervisor: Anantha Chandrakasan
Title: Vannevar Bush Professor of Electrical Engineering and Computer Science

Thesis Supervisor: James Glass
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Motivation

As of this writing, speech interfaces are commonly used for search and personal assistants on smartphones

and PCs. As these interfaces evolve to offer a more natural user experience, people will become more

comfortable interacting with machines by talking with them. The applications of speech interfaces will

diversify and include a wider range of devices, such as wearables, appliances, and robots.

A hands-free speech interface consists of a wake-up mechanism, speech-to-text (recognizer), text-based

dialogue processor, and text-to-speech (synthesizer). Dialogue processing could include natural language

understanding and generation, or translation from a source language to a target language. The components

examined by this thesis will frequently be referred to by their acronyms: voice activity detector (VAD) and

automatic speech recognizer (ASR).

A VAD classifies an audio stream as speech or non-speech, labeling the start and end time of each

speech segment. This is harder than it sounds: in real-world scenarios there can be loud or non-stationary

background noise that is difficult to discriminate from speech with any simple algorithm. Some VAD algo-

rithms use expertly tailored criteria based on the energy or spectral content of the signal, and others rely on

supervised machine learning to classify feature vectors derived from the signal. It is especially important to

optimize the power consumption of the VAD since it must be running at all times.

An ASR transcribes an audio stream into a sequence of words. ASR is usually expressed as a hidden

Markov model (HMM) inference problem, where the hidden variables are states within a Markov process

modeling speech production, and the observed variables are acoustic features. Transcribing (decoding) an

utterance is equivalent to maximum a posteriori (MAP) inference over the HMM, for which we use the

Viterbi algorithm. Statistical models are used to evaluate the transition probabilities between (discrete)
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states and the observation likelihoods over (continuous) features. Over the years, people have developed

and refined the ability to train the necessary models from large corpora of transcribed audio files. This

training task can be performed offline using a compute cluster. The decoding task is run in real-time for

each client device.

Real-time ASR decoding is computationally demanding. The exact workload depends on the task, but

most devices supporting speech recognition either have high compute power (like a multicore x86 processor)

or an Internet connection linking them to cloud servers. The computational requirements often increase as

researchers identify improved modeling techniques. In order to bring speech interfaces to devices that are

smaller and cheaper than PCs, or those that lack Internet connections, we need specialized hardware.

As others have shown [47], circuit designs tailored to specific tasks eliminate the overhead of general-

purpose architectures such as x86 or ARM, reducing the energy cost of those tasks by 100x or more. There

are also opportunities to modify algorithms and runtime parameters for favorable power/performance trade-

offs. However, there is a big difference in convenience and energy cost between on-chip (small) and off-chip

(large) memory that must be taken into account. Software designers typically work with a single flat ad-

dress space and multi-GB/s bandwidth, relying on caching mechanisms provided by the processor. Porting

algorithms to hardware without changing these assumptions does result in some efficiency gains, but shifts

the bottleneck from processor to memory. Accommodating memory limitations is a recurring theme in

low-power digital design, and ASR is no exception.

Another benefit of adding ASR capabilities to client devices is reduced latency. In dialogue systems, the

application needs to react quickly to what the user is saying (as well as emotional or visual cues). Eliminating

the roundtrip network latency from the device to a cloud-based recognizer can provide an improvement to

the user experience, regardless of power consumption.1

1.2 Scope

We are developing a local speech recognition capability for embedded systems, as shown in Figure 1-

1. A system designer needs to prioritize and optimize the power consumption of all components jointly.

The scope of this thesis is the signal processing IC, designed with awareness of the external memory, and

the infrastructure needed to port existing software recognizers to this platform. This memory and its 1/0

signaling can easily consume more power than the speech recognizer itself. Since speech interfaces are used

infrequently (low duty cycle), the memory must be non-volatile. Flash and other non-volatile memories

'Ramon Prieto (Jibo), personal communication, Jan. 17, 2016.
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have a higher energy-per-bit than DRAM, so there is a strong incentive to minimize memory bandwidth.

The most affordable and widely used non-volatile memory is NAND flash. According to [27], normalized

read energy is typically in the range of 50 pJ/bit for the single-level cell (SLC) variant of NAND flash and

100 pJ/bit (or 8 mW at 10 MB/s) for the more common multilevel cell (MLC) variant. It is worth improving

the energy efficiency of the ASR processor until it reaches parity with the memory.

Training Data

------------- ---------- 7-------- --------------------- --------
Applyi-I

Acoustic Lexical Language
Models Models Models

Software Compression
(Kaldi extensions)

Memory

Mic Sn Representation Ver Search dre Host
AF eq r A DC Front-end fite earc processor

Voice activity detection 1 = speech
Always on o = non-speech

Speech Recognition ASIC-

Figure s-1: Power gated speech recognizer concept. The scope of the or in-unye software and circuit
components within the dashed boxes.

This thesis explores the idea of using the VAD decision output to power gate the ASR. Otherwise,

the ASR would require an explicit wake-up command from the user (i.e., a "push to talk" button), or it

would operate continuously and waste power during non-speech input. We will show that using a more

sophisticated VAD algorithm (and hence a larger, higher-power VAD circuit) results in the lowest time-

averaged system power by reducing false alarms that wake up the more power-hungry ASR and memory.

The rest of this thesis demonstrates digital IC implementations of a VAD and an ASR, and explains the

design decisions that make the implementation feasible and minimize system power consumption. Many

degrees of freedom and their impacts are considered in pursuit of more accurate, programmable, and scalable

ASR capabilities:

9 Accuracy is measured as the word error rate (WER) of the transcription result for a particular speech

recognition task. This depends on both training and decoding techniques. We demonstrate a controlled

loss of accuracy relative to state-of-the-art software speech recognizers across a variety of tasks.

25



Energy-scalable Speech Recognition Circuits

* Programmability is the ability to execute different speech recognition tasks (e.g., different vocabu-

laries, topics, speakers, and languages) by using different models and front-end representations. We

allow a variety of models trained using the open-source Kaldi tools [64] to be converted into formats

supported by the chip.

" Scalability is the ability to adjust the chip's speed and power consumption according to the needs

of the speech recognition task (or a power budget). We demonstrate scalability at several levels:

selecting models of appropriate complexity, adjusting runtime decoding parameters, and adjusting

circuit voltages and clock frequencies.

This research resulted in the fabrication of three IC chips, summarized in Figure 1-2. The process has

been cumulative, with the third chip integrating and refining (or replacing) structures developed in the other

two:

* The first chip provides a proof of concept for low-power ASR and serves as a baseline for the remain-

der of our work. The chip was fabricated using a 65 nm process; it measures 2.5 x 2.5 mm, and is

programmable with industry-standard WFST and GMM speech models. This chip performs a 5,000

word recognition task in real-time with 13.0% word error rate, 6.0 mW core power consumption, and

a search efficiency of approximately 16 nJ per hypothesis. This work is described in [66] and [67].

" The second chip was used to evaluate VAD algorithms within our system power model, considering

both the power and accuracy of the VAD. This chip is operational, but we are withholding further

measurement results due to a functional bug in one of the three algorithms.

" The third chip implements many enhancements to the baseline ASR design and allows the ASR to be

power gated by decisions from an onboard VAD.

To simplify the discussion, we describe only the third chip in this thesis.

1.3 ASR formulation

A short summary of the ASR problem will help you understand the acoustic modeling and search techniques

described in later chapters.

The ASR system has a front-end which transforms audio (e.g., 16-bit samples at 8 kHz or 16 kHz) into

a lower-rate, higher-dimensional feature representation. We typically use 13-dimensional mel-frequency

cepstral coefficient (MFCC) features [20] based on 25 ms frames of audio, with a 10 ms interval between

frames. The MFCC features can be augmented with log-energy, time derivatives (e.g., deltas or double-

deltas), and/or temporal context (features from previous frames) to improve performance. A typical utter-
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Dimensions

Logic (kgates)

Memory (kb)

Clock freq.

Description

ASR v1 VAD ASR v2+ VAD

2.5 x 2.5 mm 1.84 x 1.84 mm 3.63 x 3.63 mm

340 472 2088

2400 660 5840
20-110 MHz 0.6-2.0 MHz 1.5-85 MHz

* WFST/GMM models * Choice of 3 algorithms for * WFST/DNN models
* No training infrastructure; power/accuracy tradeoff * Models can be generated

downloaded HTK models * SPI and 12 S interfaces from Kaldi recognizer
" Tested on WSJ eval92-5k: * 3-18 uW at supply volt- * Multiple power domains,

13.0% WER, 6.0 mW ages down to 0.49 V off-chip power gating

Figure 1-2: Progression of research program through three IC tapeouts.

ance (e.g., sentence) lasts 1-10 seconds, or 100-1,000 frames. These feature vectors are handed off to the

HMM.

The HMM is a graphical model expressing a relationship between hidden variables xt and observed

variables yt. The regular structure of connections in this graph (Markov property) is exploited to allow

approximate inference in linear time (Viterbi algorithm), making statistical speech recognition tractable.

Figure 1-3 is a high-level illustration of a speech HMM. The HMM uses knowledge of the underlying

speech production process to model hidden state sequences xt. To perform ASR we supply MFCC feature

vectors for yt and use the HMM to estimate the most likely values of xt.

Using the HMM framework requires modeling the dependencies between variables, specifically the

transition model p(xt+1 xt) and the emission model p(yt xt). The transition model incorporates information

about the language, including its vocabulary and grammatical constraints; the hidden states xt are discrete

variables. The emission model describes how observations yt vary depending on the unobserved state xt; in

speech recognition, this is called the acoustic model. These observations reflect the speech signal generated

by the speaker's vocal tract, and the influence of the channel (the microphone and the acoustic environment).

Properly accounting for multiple levels of knowledge (e.g., context, pronunciation, and grammar) in the

transition model compounded the complexity of early HMM decoders. The weighted finite-state transducer

(WFST) is a state machine representation that allows each component to be described separately [54, 55] and
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Hidden Markov Model Acoustis model
GMM DNN etc

Hidden states X1  X2  X3  X 4

Observed features y1  Y4 Ys -

Transition model: WFST

Figure 1-3: HMM formulation of ASR. Separate frameworks are used to evaluate the transition probabilities
p(xt+i xt) (bottom) and observation probabilities p(yt xt) (right).

then composed into a single WFST encompassing the entire search space [1]. (Section 3.2.3 specifies these

components more precisely.) The WFST can be viewed as a graph that is easily queried for the (sparse)

transition probabilities p(xt+ilxt), which convey the constraints of the language model and lexicon. All

possible transitions between states are expressed as weighted, labeled arcs. A WFST-based decoder can

complete tasks of varying complexity in different domains and languages by substituting the appropriate

model parameters.

The HMM factorizes the joint probability of all observed and hidden variables as:

T-1

p(x, y) = p(xo) 17 p(xt+i xt)p(yt Xt)
t=0

In this formulation, xt is a discrete variable referring to a state in a weighted finite-state transducer (WFST)

[55]; yt is a real-valued vector. The hidden state sequence X = {Xo, X1,. XT-} specifies a word

sequence W via the output labels of WFST arcs traversed by X. Finding the most likely word sequence

given a set of observations Y is MAP inference: W* = arg maxw p(W Y). We perform MAP inference

over states and then convert the result to words.

To estimate the state sequence from features, we use the Viterbi search algorithm. The algorithm main-

tains a list of hypotheses, or active states, at each time step. This search procedure is described in [39] and

many other sources. An important step in Viterbi search is the forward update, which approximates the
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likelihood of all reachable states at the next time step:

p(xt+1) = p(xt) p(xt+i Ixt) P(yt+i Xt+i)
Xt

max p(xt) P(xt+1 xt) P(yt+i xt+1)
Xt

In our implementations, the existing state likelihood P(xt) is retrieved from an "active state list" in local

memory. The transition probability p(xt+1 Ixt) is the weight of the WFST arc[s] leading from state xt to

state xt+1. The emission probability p(yt+i xt+1) is an acoustic likelihood specified by the acoustic model.

There are many possible values for Xt because WFSTs for ASR typically have millions of states. To

speed up decoding, ASR systems use a "beam search" variant of the Viterbi algorithm that discards unlikely

hypotheses. 2 There are several possible criteria for saving hypotheses; for example, you could discard every

hypothesis whose log-likelihood falls below a certain cutoff. In this scheme, the difference between the

cutoff and the maximum log-likelihood is called the beam width. Decreasing (narrowing) the beam width

saves computation time and introduces search errors.

The acoustic model describes the expected probability distribution of feature vectors, given a particular

state xt. Rather than using a separate distribution for each state in the WFST, the states are grouped into

clusters (typically 1,000 to 10,000) called "tied states" or "senones." This clustering is usually performed

in a top-down fashion [92]. All states in each cluster share one probability density. Evaluating transition

probabilities (from the WFST) and acoustic model likelihoods requires fetching model parameters from a

large external memory.

Rather than designing one universal ASR model, we follow the standard practice of training different

recognizers for different tasks. Some of the tasks we studied are listed in Table 1.1.

Name Size (hr) Vocabulary (approx.) Channel Speech type LM Perplexity
TIDIGITS [45] 4.1 11 Telephone Read 10.8
Jupiter [96] 73 2k Telephone Spontaneous 8.58
Nutrition [43] 2.7 7k Wideband Read 23.7
WSJ [60] (eval92-5k) 81 5k Wideband Read 65.6
WSJ [60] (dev93) 81 20k+ Wideband Read 166

Table 1.1: Datasets used for ASR experiments.

Each task is based on a corpus of training and test data, and has its own (possibly domain-specific)

vocabulary and acoustic properties. All tasks rely on N-gram language models, or LMs [26], ranging from

2There are usually diminishing returns to tracking more than a few thousand hypotheses, but this depends on the task.
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unigram (TIDIGITS) to 4-gram (Jupiter). To convey the search complexity of each task, we specify the

LM perplexity [37]; this can be interpreted as a branching factor, with higher perplexity indicating fewer

constraints for search. (The perplexity of the TIDIGITS model is close to 11, since at any point in the search

there are 11 possible words which are almost equally likely.3) Having a range of tasks lets us evaluate the

scalability of the ASR implementation.

1.4 Prior art

Since the late 1980s, there have been sporadic efforts to exploit special-purpose hardware for speech appli-

cations. Application-specific integrated circuits (ASICs) for HMM-based speech recognition were reported

as early as 1991 [80], followed by power-conscious implementations intended for portable devices [12]. The

"In Silico Vox" project [48] created sophisticated hardware ports of Sphinx-3, a well-established software

framework for ASR. Between 2006 and 2010 this project developed several hardware decoders on both

single-FPGA and multi-FPGA platforms [49, 46, 11], achieving lOx faster than real-time performance on a

Wall Street Journal (WSJ) task. These researchers had a broad focus on making hardware ASR work and

scaling to larger tasks and lower power.

More specialized research efforts have examined changes in ASR algorithms and their applicability to

hardware. One area of evolution has been in the use of WFSTs, which are a key component of the modern

ASR framework. WFSTs are now commonplace in software speech recognizers, including commercial

systems [72]. Perhaps due to long development cycles, most of the hardware implementations realized so

far are based on non-WFST software decoders. Digital circuits using WFSTs were presented in 2008 [16],

contributing an important observation that pre-processing the WFST could eliminate the need to consider

unlabeled arcs recursively during each frame. Taking advantage of external DRAM memory with 3.2 GB/s

bandwidth, [90] illustrated how to split the decoder's active state list between internal and external memory

to achieve better accuracy with limited internal SRAM.

Another focus area in ASR research has been acoustic modeling. All hardware ASR implementations

we know of have used Gaussian mixture models (GMMs) with varying levels of complexity (number of tied

states and number of Gaussian components per distribution). To speed up computation, designers have per-

formed frame skipping and Gaussian selection [61] and used fixed-point parameters [9]. Meanwhile, deep

neural networks (DNNs) and other neural network architectures have become popular for ASR due to their

improved accuracy [34]. The circuits community has studied DNNs and developed efficient implementa-

3TIDIGITS uses the ten digits (zero through nine), but zero can be spoken as "oh;" this is treated as an 11th word.
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tions, primarily for computer vision [15, 59].

Other recent work performed architectural exploration: choosing how to divide hardware resources be-

tween acoustic modeling and search, and two-pass decoding with the first pass performed by hardware

[7]. Code generation tools can help rapidly evaluate different accelerator kernels specified in a high-level

language [78]. Acoustic models generally see large efficiency gains from acceleration, and front-ends gen-

erally do not, but there is no consensus on the proper hardware/software partitioning for search-this seems

to depend on the application.

The wide range of algorithms available for VAD also provides opportunities to apply special-purpose

architectures. Power can be minimized through a variety of techniques, whether minimum-energy operation

in deeply scaled CMOS [71], or mixed-signal design with adaptive feature granularity [5]. These efforts

have brought VAD power consumption down to a few pW.

Contemporary efforts in ASR have continued expanding decoder capabilities for general-purpose tran-

scription applications with a 60,000 word (or larger) vocabulary. For example, [41] proposed an architecture

for achieving much higher throughput (127x faster than real-time) using an ASIC. Another effort [31, 30, 29]

bridged the gap between high-performance and low-power applications, applying a series of optimizations

to a Japanese-language system called Julius in order to obtain just 54 mW of power consumption and 82

MB/s of memory bandwidth during real-time decoding. Also, indepdendently of this work, [3] discussed

techniques of WFST pruning and search that are relevant to low-power ASR applications.

Throughout this thesis we will cite additional prior work relating to each aspect of ASR/VAD design.

1.5 Contributions

This thesis builds on previous efforts in two major areas: (1) circuit implementations supporting modem

algorithms and frameworks; and (2) pushing down power consumption from a system-level perspective.

Adopting modern algorithms: While DNNs have been used in ASR for several years, this work may be

the first realization of a hardware speech recognizer using DNNs. This revision is justified by our compari-

son of DNNs with two other types of acoustic models: GMMs and subspace GMMs.

Our work in [67] was to our knowledge the first ASIC speech decoder to support WFSTs, and the first

to handle the entire speech recognition chain from audio to text. In this thesis, continued studies of HMM

search and its demands on the WFST data structure lead to a revised architecture with WFST compression

and a new caching strategy.
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While WFSTs and DNNs are fairly generic, there are many variants to how they are constructed and

used. We made our decoder compatible with Kaldi [64], a popular open-source library for speech recogni-

tion. This simplifies the process of deploying a recognizer on our hardware platform. We designed auxiliary

hardware and software components to make this possible.

Algorithms used in IC implementations of VAD have also lagged behind software implementations. We

demonstrate hardware implementations of three VAD algorithms adapted from recent literature.

System-level power reductions: We want to minimize the size and power of a speech-enabled system, as

opposed to a single component (such as the core logic of an ASR chip). Modeling the power consumption

of all relevant components led us to realize that external (off-chip) memory is a major bottleneck. Reducing

the bandwidth expected of this memory is our top priority, dictating many of the design choices we made.

The end result is that many ASR tasks can be run with less than 10 MB/s of bandwidth, comfortably within

the limits of a single NAND flash die. This is significantly lower than the bandwidth targets of previous

work. For comparison, [17] (which describes in-depth techniques for optimizing memory access) reports

bandwidth of 219 MB/s. Our bandwidth reductions come from several sources that will be discussed in

more detail below. We believe that the core area and power tradeoffs made to achieve these reductions are

acceptable, especially since they are mitigated by CMOS scaling.

VAD is an important part of our system power reduction strategy. We provide a simple model for power

consumption when VAD is used to power gate an ASR, and show how this guides the selection of VAD

algorithms. Our VAD is designed to operate without any external memory, which is necessary to achieve

[tW power levels in the inactive state.

Wherever possible, we use low-power IC design techniques including clock gating, variation-aware

timing constraints, and multiple power domains.

1.6 Guide to chapters

The remaining chapters describe the design of our ASR/VAD system in a holistic fashion, integrating the

discussion of algorithms and architectures and quantifying the impact of each contribution on our goals

of accuracy, programmability, and scalability. Chapters 2 and 3 focus on the largest components of the

ASR: acoustic modeling and search. Chapter 4 considers VAD. Chapter 5 discusses software and hardware

components that support these components and enable a system demonstration. Chapter 6 discusses the IC

implementation process and testing results; Chapter 7 concludes.
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Acoustic modeling

The acoustic model has to evaluate the likelihood of input features yt with respect to a set of distributions

p(y Ii), where i is the index of a tied state. Many ASR systems use MFCC features [20], which are computed

using the signal processing pipeline shown in Figure 2-1. The MFCC representation captures short-term

spectral information with relatively few dimensions.

Compute
energy per bin

Waveform ms

Short DCT
Mterm MFCC features

Overlapping frames FFT Bandpass og(x) (dimen nality (typ. 13 dimensions)

Ifiltering

(mel frequency scale)

Figure 2-1: Signal processing steps used to extract mel-frequency cepstral coefficients (MFCCs).

Some examples of feature distributions (with the features reduced to 2-D for visualization) appear in

Figure 2-2. The features are typically 10-40 dimensions, though they are often augmented with time deriva-

tives, or with features from previous frames.

The accuracy of likelihoods computed by the acoustic model directly impacts the search workload and

word accuracy of a recognizer. The general trend in ASR research has been to leverage growing compute

resources and datasets to train increasingly elaborate models with more parameters. Implementers of low-

power ASR systems cannot blindly follow this trend. Instead of searching for the most accurate acoustic

model, we ask a slightly different question.
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Figure 2-2: Heat map of MFCCs within two tied states, taken from 894 WSJ utterances and projected to 2
dimensions using principal components analysis (PCA).

2.1 What is the most accurate acoustic model with 1 MB of parameters?

We begin this discussion with a back-of-the-envelope calculation. Our hardware ASR architecture is opti-

mized to reduce memory bandwidth, with a target of 10 MB/s. The frame rate is 100 fps, and with some

degree of parallelism it should be possible to evaluate likelihoods for 10 frames concurrently; this means

that the entire acoustic model is fetched about 10 times per second. To hit the 10 MB/s target, the model

would have to fit within 1 MB or less.

This calculation shows that acoustic models for low-power ASR should be designed with the quan-

tity and precision of parameters in mind. Our implementation does not have a hard limit for the acoustic

model size, but memory bandwidth (and hence a large part of system power) is proportional to model size.

Compressing models down to around 1 MB is a general guideline for keeping bandwidth in check.

There is a nontrivial choice of what modeling framework to use. Until around 2010, most ASR sys-

tems used Gaussian mixture models (GMMs) to specify each senone distribution. Most recent advances in

acoustic models have relied on neural networks, whether feed-forward deep networks (DNN), recurrent net-

works (RNN), convolutional networks (CNN), long short-term memory cells (LSTM), or some combination

of those [74]. Povey et al. also developed a subspace GMM (SGMM) framework that achieves improved

accuracy over GMMs [63]. We characterized the tradeoff between word accuracy and memory bandwidth

for GMM, SGMM, and DNN models in order to select a good framework for low-power, memory-limited
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implementations.

Kaldi [64] is an open-source ASR framework that has been a godsend to ASR researchers and allows

quick evaluations of different modeling techniques, once you have obtained the appropriate speech corpora.

Kaldi provides C++ binaries and Bash scripts for feature extraction, acoustic modeling, decoding, and many

other purposes.' We used Kaldi to train recognizers for several ASR tasks, summarized in Table 1.1. In order

to model the accuracy degradation and bandwidth reduction of our hardware-oriented algorithm changes,

we constructed a separate ASR decoder in C++ that could read and translate models created by Kaldi. The

results reported in this section were generated by this custom decoder.

2.1.1 Gaussian mixture model (GMM)

The GMM models each distribution as follows:

Ci-1

P(yt 10)= 1: wcijN(y; Ad, Ecd)
c=O

where K(y; p, E) is the multivariate normal distribution over y with mean )u and variance E.

GMMs for ASR decoding typically use diagonal covariance matrices, compensating for the loss of

modeling power by using more mixture components. If we have I distributions, an average of C mixture

components per distribution, and feature vectors with dimension D, the total number of parameters will be

CI(1 + 2D). Typical dimensions for a state-of-the-art GMM acoustic model might be I = 8000, C = 20,

and D = 40. With single-precision floating point values, the model would be 51 MB. Naive evaluation at

100 fps would require 5.1 GB/s of memory bandwidth.

One way to shrink a GMM is to use fixed-point mean and variance coefficients with reduced precision.

With a nonlinear quantizer (e.g., Lloyd-Max minimum distortion quantizer [52]), acceptable accuracy can

be obtained with as few as 5 bits for the mean and 3 bits for the variance [33]. The quantizer is computed

from the empirical distribution of parameters, with quantization levels being packed more closely around

common values as shown in Figure 2-3. Unless the feature space has been whitened, separate quantizers

must be estimated for each feature dimension, but these are relatively small. This technique led to a 7.2x

reduction in model size in [67]. Figure 2-4 shows the performance effect of different mean and variance

quantization depths on a small GMM. More accurate quantizers decrease the word error rate (vertical axis),

but in exchange, they increase the model size and hence the memory bandwidth (horizontal axis). In this

case, there is no benefit to using more than 12 bits total for each mean/variance pair; those bits should be

'The documentation and source code for Kaldi are available at http: //www. kaldi- as r. org.
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Figure 2-3: Minimum distortion quantizer bins (black vertical lines) follow the empirical distribution of the
parameters the quantizer is used to compress (in this example, GMM means for the first dimension of the
feature space).

evenly split (approximately) between the mean and vaniance.

Beam search considers a limited number of hypotheses (typically 1k to 10k) during each frame. Each

hypothesis incorporates the likelihood from one senone distribution, and each group of hypotheses uses a

subset of the distributions. Because the GMM doesn't share parameters between distributions, you can save

memory bandwidth by evaluating each distribution on demand and saving (memoizing) the result for the

remainder of the frame. This was the approach we used in [67], resulting in an additional 7.6x reduction in

memory bandwidth (to 54.1 MB/s). This bandwidth reduction is mildly task-dependent: a more thorough

search (e.g., wider beam) will require more likelihood calculations.

If you are willing to use more on-chip memory (and logic), you can evaluate the distributions for multiple

frames in parallel [31]. It is complicated to predict which subset of distributions will be requested by the

search, so it's easiest to simply evaluate the entire model. With enough parallel evaluations (i.e., more

than 10), the bandwidth savings exceeds what you would get from on-demand evaluation within each frame

sequentially.

With parallel evaluation, the on-chip memory required by a GMM is dominated by the storage of like-

lihood results. For the purpose of model comparisons, we assume all models are limited to 1 Mb of local

storage. With a fixed memory size and numerical precision (32 bits), there is an inverse relationship between

I (the number of distributions) and the number of frames that can be evaluated in parallel. Taking this into
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Quantized GMM performance: 1061 senones, 20k total Gaussians
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Figure 2-4: GMM bandwidth and accuracy with independently varied quantization bit
variances). Nominal ASR accuracy can be achieved with 5-7 bits.

depths for (means,

account, the performance of several hyperparameter combinations is shown in Figure 2-5. In each case,

discriminative training with a maximum mutual information (MMI) criterion [88] has been used used to im-

prove accuracy; solid lines have been drawn through the points offering the best combinations of bandwidth

and accuracy. Note that the bandwidth requirement of the smallest models (536 tied states) approaches 1

MB/s.

There is a steep tradeoff between memory bandwidth and recognition accuracy. This is generally true

for all three modeling frameworks, although the details vary.

2.1.2 Subspace Gaussian mixture model (SGMM)

The SGMM is a collection of GMMs whose parameters vary in a low-rank vector space relative to a single

GMM called the universal background model, or UBM [63]. Each distribution is modeled as follows:

Mi-1 C-1

P(yt li) = kim E wcimf(y; I-tcim, Ec)
m=O c=O

Acim = lcVim

exp wCVim
Wcim C-1

C/=O exp w vim
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14.0 Comparison of quantized GMMs

* * 1061/20k
* 1061/40k

13.5 * * ** * 1647/20k -
* * 1647/40k

.* : * 536/20k
*.-* 802/20k

* ~ * -Best

12.5 - - -- ---- -

1 2 .0 - - .. .. ... . ..---.. .. .-.--..--.-.-- * *

11.5

100 10
Memory bandwidth (MB/s)

Figure 2-5: Bandwidth/accuracy tradeoff for GMM acoustic model. Each color represents a model size
(number of tied states and total number of Gaussian components), as shown in the legend. The stars plotted
in each color represent different combinations of mean and variance quantization depth.

where the vectors vim describe the location of parameters for distribution i in a low-rank subspace, and M,

and w, define the subspace for UBM component c. This allows the use of full covariance matrices without

data sparsity problems. There are two levels of mixing in this formulation. The first level, performed by the

weights wcim, creates unique mixtures for each (i, m) pair (which is called a substate). The second level of

mixing, performed by the weights kim, blends the substate mixtures to fit the training data in each tied state;

this helps account for different ways that a single phonetic unit can be realized (i.e., depending on context).

Two aspects of the SGMM provide opportunities for bandwidth reduction:

" The parameters can be split into two groups: global parameters and state-specific parameters. It is

possible to store the global parameters on-chip and fetch a subset of the state-specific parameters for

each evaluation.

" "Gaussian selection" [42] can be performed to prune the set of mixture components for each frame,

or for each parallel group of frames. Parameters relating to the pruned components, which would

not contribute significantly to likelihoods, do not need to be fetched from memory. Posteriors for

each component can first be evaluated against a smaller, diagonal covariance UBM to save time and

bandwidth.

The quantization and parallelization techniques that we used for GMMs also apply to SGMMs. For a
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fair comparison, the 1 Mb on-chip memory (which in the GMM case was used to store likelihoods only) is

split between likelihoods and intermediate results, reducing the number of frames that can be evaluated in

parallel. We obtain the bandwidth/accuracy tradeoff in Figure 2-6 for models with 1.2k or 2k tied states and

2k, 4k, or 8k total substates. All models used a 400-component UBM and selected the top 3 components for

each frame. The SGMM is capable of better accuracy than the GMM (e.g., 9.4% vs. 11.3% WER) except

at the lowest levels of memory bandwidth.

q.
cc
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Comparison of quantized SGMMs
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Figure 2-6: Bandwidth/accuracy tradeoff for SGMM acoustic model. Each color represents a model size
(number of tied states and total number of substates), as shown in the legend. The stars plotted in each color
represent different quantization depths applied to all parameters.

2.1.3 Deep neural network (DNN)

A neural network is a sequence of layers that operate on real-valued vectors, as shown in Figure 2-7. Each

layer 1 performs an affine transformation of its input followed by an element-wise nonlinearity:

XI+1 = g(Wix + bl)

Neural networks with more than 2 layers are often called deep neural networks, or DNNs.

This is a "feed-forward" network topology that considers one feature vector at a time. Recent ASR

research has demonstrated the usefulness of other layer types-recurrent and convolutional layers-in neural
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Figure 2-7: Schematic of NN evaluation.

networks. Recurrent layers (e.g., RNNs) accept input from the outputs of the previous layer at time t as

well as the same layer at time t - 1. Convolutional layers (e.g., CNNs) apply a set of convolutions instead

of a general affine transformation to the input vector. Supporting these layer types complicates the design

process. With CNNs, the reuse of parameters necessitates more flexible architectures and mechanisms

that limit on-chip and off-chip data movement. With RNNs, the dependency between frames precludes

straightforward parallel evaluation. At the time of this work, only feed-forward networks were supported

by Kaldi; support for convolutional and recurrent layers was added in 2015. We defer these modeling

techniques to future work; see Section 7.2.2

Feed-forward networks usually perform better when the input features include temporal context. In our

experiments, a 13-dimensional MFCC feature is concatenated with features from the previous 5 frames and

the next 5 frames, so the NN's input dimension is 143. The NN's output dimension is the number of tied

states; one forward pass through all layers jointly evaluates all of the modeled likelihoods.

Training is performed using stochastic gradient descent, using backpropagation to evaluate the gradients

of the parameters with respect to an objective function. This is time-consuming, even with GPU acceleration.

With feed-forward DNNs, training is typically run to convergence with a cross-entropy (frame accuracy)

objective and then again with a minimum Bayes risk (phone accuracy) objective to further improve WER

[86].

In decoding, most of the time is spent multiplying the layers' weight matrices by their input vectors.

These weights also account for the majority of memory bandwidth. To save bandwidth, the weights can

be quantized and multiple frames can be evaluated in parallel. Another trick reported in [93] is to create

sparse matrices and store only the nonzero weights; that study found that 81-88% of the coefficients could

be eliminated with no accuracy penalty, depending on the task (some additional space is needed to store the

2This is an interesting research area, but the author declined to invest time in experiments and design changes in pursuit of
uncertain performance benefits. He needs to graduate eventually.
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sparsity pattern). It helps to re-train the network with a fixed sparsity pattern. It is also possible to store a

low-rank approximation of weight matrices computed via SVD [56]. We support this approach, but there is

a risk of increased numerical error after two quantized matrix/vector multiplications (without a nonlinearity

in between).

NN evaluation requires working memory proportional to the width of the largest layer. This memory is

used most efficiently if all of the layers, including the output layer, have approximately the same number of

outputs. This is in contrast to most software implementations where the output layer is large (2k-1 6k nodes)

relative to the hidden layers (512-2k nodes).

Figure 2-8 illustrates the impact of weight quantization, using the same scalar quantization scheme as

our GMM experiments. The different traces in these plots represent different levels of weight sparsity; all

networks are the same size (512 nodes per layer; 6 hidden layers). Memory bandwidth is almost exactly

linear in the quantization depth because most of the parameters are weights stored in bit-packed arrays.

There is some variance in word error rates, but in general there is no gain from using more than 8 bits

for weights. Subjectively acceptable accuracy is achieved with 5 bits per weight. (These experiments

isolate the effect of the weights: biases are stored at 32-bit precision, and feature transforms are performed

in floating point.) As stated by [85], the activation function (e.g., sigmoid) tends to compress numerical

errors introduced in the affine transformation. Furthermore, numerical errorts in the acoustic likelihoods do

not impact system accuracy if they are sufficiently small. There is room to explore even more aggressive

quantization and model compression with NNs (e.g., 3-level weights [81]).

Accuracy and bandwidth results for a variety of NNs, with varying dimensions and sparse weight ma-

trices, are shown in Figure 2-9. For this task, small NNs perform almost as well as large NNs, echoing

the results of [44]. A quantized sparse NN with 512 nodes per layer requires about 4 MB/s of memory

bandwidth to evaluate, with 10% relative WER degradation compared to the best model tested.

2.1.4 Model comparison and discussion

In order to compare GMMs, SGMMs and DNNs, we select the Pareto optimal subset of results from each

model framework. This allows us to see the tradeoff between WER and memory bandwidth, assuming

that the hyperparameters such as quantizer depth and model dimensions have been selected correctly. The

results are shown in Figure 2-10 for the Wall Street Journal (WSJ) dev93 task [60]. Only the acoustic

model's contribution to memory bandwidth is included.

This comparison shows that the DNN and SGMM both offer competitive performance, even when band-

width (and hence model size) are restricted. We selected the DNN framework for our implementation be-

41



Energy-scalable Speech Recognition Circuits

Bandwidth vs. quantization depth 1 -

12.5

12.0

4 11.5

0

11.0

10.5

10.0

Accuracy vs. quantization depth

54% NZ
- 39% NZ
- 29% NZ

-...............----

-. .... . . . .. ....

2 1 1 1 9.5 1 ' ' ''
4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12

Quantization depth (bits) Quantization depth (bits)

Figure 2-8: Bandwidth (left) and accuracy (right) of 512-node, 6-layer NN acoustic models trained with
different fractions of nonzero (NZ) weights.
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Figure 2-9: Bandwidth/accuracy tradeoffs across many NN acoustic models. The dimensions and weight
matrix sparsity of each model are shown in the legend.
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Best results from each acoustic model type

101
Memory bandwidth (MB/s)

Figure 2-10: Bandwidth/accuracy comparison of acoustic model frameworks, using the
each framework.

best results from

cause:

* NN evaluation has a more repetitive structure than SGMM evaluation, leading us to expect smaller

circuit area and design effort.

e The bulk of acoustic modeling research is based on NNs; future improvements developed by the ASR

research community could be ported to hardware with incremental changes in architecture.

2.2 Neural network implementation

2.2.1 Architecture and general tradeoffs

We use a fixed-function SIMD architecture shown in Figure 2-11 to evaluate neural networks. The sequencer

decodes a compressed parameter stream arriving from off-chip memory, and sends weight and bias coeffi-

cients to the execution units (EUs). Each EU has local memory for storing the feature vector, intermediate

results, and log-likelihood outputs for one frame. This means the network parameters are the only data

fetched from off-chip memory, and that memory access is read-only.

This architecture presents a challenge for scalability. Increasing the size of local memories would allow

the use of wider networks (or more output targets). But it would also take up area that could otherwise be
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EUs partitioned into chunks of 4

Figure 2-11: Block diagram of SIMD NN evaluator, relying on a shared sequencer and 32 execution units.

used for more execution units. Furthermore, SRAMs have some area overhead from sense amplifiers and

1/0 logic, meaning that area is not linearly proportional to depth (although it is proportional to width).

As a compromise, we group EUs into chunks which each arbitrate access to a group of SRAMs (Figure

2-12). For small networks, all EUs are active and each EU talks directly to one SRAM. For networks that are

large enough to overflow one SRAM, every other EU is disabled, but the active EUs address two adjacent

SRAMs. For a network that would overflow two SRAMs, three out of every four EUs are disabled, and the

active EUs use four adjacent SRAMs. This scheme could be extended to handle a wider range of network

sizes if required by the application.

We opted to provide 32 EUs (eight chunks of four EUs each), and support up to 1024 nodes per layer

without penalty (4096 nodes maximum). Numerical precision was set conservatively, and could be further

optimized; all real values are stored at 24-bit precision, so this arrangement requires 1.5 Mb of SRAM. To re-

duce area overhead, each EU has one single-port SRAM that stores both the input and output vectors for the

current layer (rather than separate SRAMs for input and output). Having 32 EUs means that small networks

only need to be evaluated 3} times per second, reducing both memory bandwidth and clock frequency.

The model data structures are designed so that the entire model is accessed through a single sequential

read, avoiding page access penalties. During model preparation, each layer is analyzed to select either a

44

parameter bus

In Out IParamns In out IParamns in IOut IParamns in out IParamns_

Execution Units

0 1 2 3

Arbitration

Shared Memory

SRAM SRAM | SRAM | SRAM

To From From
search feature buffer memory

Read likelihoods Write input features Retrieve parameters

Sequencer Decoder
(includes

quantiatin table)
.1 Shared



Chapter 2. Acoustic modeling
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Figure 2-12: Execution units and local memory are grouped into chunks that can be reconfigured for differ-
ent network sizes.

sparse or dense weight matrix format (whichever uses less space). In addition to affine layers, we support

element-wise addition and multiplication operations which can be used for feature transforms.

2.2.2 Scalability

This architecture works in concert with model design to provide about two orders of magnitude in energy

scalability across different ASR tasks. The time required to evaluate a NN model is dominated by the

matrix/vector multiplications in affine layers, which grows with the square of the layer width (number of

nodes). Furthermore, the maximum layer width dictates the amount of parallelism that is possible. This

means that the overall computation time (and, to a first approximation, energy) grows with the cube of the

network width. 3 Table 2.1 shows the model dimensions, bandwidth, and computation time for the NNs used

in our ASR tasks.

Circuit area scales linearly with the number of EUs. This creates an area/power tradeoff: having more

EUs allows lower memory bandwidth, and slightly lower core power due to reduced clock frequencies and

voltages. The number of EUs in our implementation was limited by concerns about latency and area. Worst-

case latency is proportional to the number of EUs, since search cannot proceed until the acoustic model is

evaluated. With 32 EUs, the acoustic model occupies 44% of total ASR area.

Circuit area also scales linearly with the amount of memory provided to each EU. The memory area

depends on width (i.e., numerical precision, which has not been explored in detail by this work), and depth

3The same is true of memory bandwidth, since the computation proceeds as quickly as parameters can be provided by the
external memory over an 8-bit interface. However, there is some overhead due to internal stalls; this is generally negligible for
dense networks but was measured at 14% for the sparse network on WSJ-dev93.
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Nodes per layer Num. layers Sparsity Model size Runtime
Task (% nonzero) (cycles)
TIDIGITS 64 4 100 32 kB 1 l2k
WSJ (eval92-5k) 256 6 100 577 kB 1.84M
Nutrition 256 6 100 771 kB 2.45M
Jupiter 512 6 100 2.62 MB 8.28M
WSJ (dev93) 1024 6 31 3.71 MB 13.2M

Table 2.1: Scalability owing to design of different NN acoustic models. Runtimes are quoted in clock cycles
per second of utterance time.

(i.e., maximum NN layer width). It would make sense to shrink these memories in order to retarget the

design to easier ASR tasks. For example, cutting this depth in half would not affect throughput or off-chip

bandwidth for NNs with up to 512 nodes per layer, but would reduce memory area by 750 kb.

Unused EUs are clock gated. When evaluating wide networks, 1 or 1 of EUs are unused, as described2 4

above. Some EUs are also unused when performing the final acoustic model evaluation, unless the utterance

length is a multiple of 32 frames. Finally, the user can limit the number of frames evaluated in parallel; this

will increase amortized memory bandwidth and runtime, but decrease latency.

2.2.3 Sequencer and EU design

The interface between the sequencer and EU includes a command FIFO and a data FIFO that supplies

uncompressed parameters as (index, value) pairs. The EU has little control logic of its own; it simply

applies the commanded arithmetic operation and first argument (value) to a second argument from the

proper memory location (index). These interfaces are broadcasted to all active EUs. Each active EU

manipulates a vector pertaining to one frame, storing this vector in its local memory.

The sequencer is shown in Figure 2-13. It interprets the NN data structure as it is streamed in from ex-

ternal memory, one byte per clock cycle. This structure has a hierarchical form specified using our "binary-

backed" methodology (see Section 5.2.1) and illustrated in Figure 2-14. A stack is used to keep track of the

current location within this hierarchy. A NN is a list of layers; each layer can be specified in either sparse

or dense form. Both forms store a bias vector in 24-bit Q8.16 format4 and a quantized weight matrix (the

matrix is excluded for layers that only perform element-wise multiplication or addition). Each weight matrix

has its own quantizer, to account for different distributions of weights without loss of accuracy. As the first

part of the structure is streamed in, Q8.16 quantizer levels are written to a LUT (up to 4096 levels, if 12-bit

4To clarify, this means that a 24-bit two's-complement value is interpreted as a real number from -128 to 128. 1.0 is represented
by OxO10000 and -- by OxFFFO00.
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Figure 2-13: NN sequencer architecture supporting sparse and quantized weight matrices.

indices are used). In a dense layer, the next part of the stream is a bit-packed blob of quantizer indices.

The sequencer reads each quantizer level from the LUT and pairs them with serially incremented indices (0,

1, 2, ... ). Hence the sequencer is instructing the EUs to perform sequential matrix/vector multiplication in

row-major order.

Sparse layers contain additional structures to improve compression of the weight matrix.5 We suggest

training NN weight matrices that are 10-50% nonzero; these matrices have a relatively uniform (random)

sparsity pattern, which would be well-suited to compressed sparse row (CSR) format. However, the CSR

format explicitly stores the column index of each nonzero value, which can more than double the storage

size of the matrix. This is because column indices require 12 bits each (to accommodate our maximum layer

size of 4096 nodes), but the nonzero values are represented by quantizer indices of 4-12 bits. To improve

compression, we store the column indices of nonzero values as a run length encoding (RLE). An RLE for

the sparsity pattern of the entire matrix would be quite large; to reduce the local memory required by the

sequencer, we split the matrix into a list of sparse vectors (one per row). In the parameter stream, nonzero

weights for each row are preceded by a local RLE of the zeros in that row. The output index counter is

incremented by the run length (rather than 1, as in the dense mode) to obtain the correct column indices.

Figure 2-15 illustrates the RLE, which is parameterized by the bit width of each run length. In k-bit

format, runs of at least 2 k - 1 zeros are handled by chaining. For example, to represent a run of 10 zeros

5The goal of this is to reduce memory bandwidth, although there are residual benefits in core power consumption due to reduced
clock frequency and switching activity.
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Neural network structure

Parameters
Number of layers

Layer (dense) L.ayer (sparse)

Parameters Parameters
Num. rows (outputs) Num. rows (outputs)
Num. c o(nutps Numn. cols (inputs)

Noine rity type Num. nonzero weights

Weight matriX Nonlinearity type
- Quangtiationtal Weight matrix- Quantization table

I ParametersParametersI i dt -ep t L - -
Fixed-point quantizer levels L Bit depth

- Bit-packedqnFixed-point quantizer levels
-Bias vector Sas o

L Fixedpointvalues -Run-length encoding
S Parameters

Bit idth
Layer (sparse) N m etries
Layer (dense) - Bit-packed run lengths

Bit-packed quantized weights (nonzero only)
Sparse row

Sparse row

Bias vector
L Fixed-point values

Figure 2-14: Compressed neural network data structure. Each layer is stored in either sparse or dense format
(whichever uses fewer bytes).

in 3-bit form, we would use two entries: 111 and 011. The first entry tells the sequencer to increment the

column index by 7 (without reading a nonzero value), and the second entry tells it to increment the column

index by 3. A single entry can specify a run up to length 2 k - 2 (e.g., 6, when k = 3). Regardless of the

selection of k, the sequencer streams the RLE into an 8-bit wide memory and unpacks values as needed.

The unique sparsity patterns of each row are described by the RLE representation that requires the minimum

number of bits. Overall, the organization of the NN data structure optimizes model size and data locality

within the parameter stream.

Bit-packed RLE storage Sparsity pattern

0 3 4 3 ...

4 0 0 12 1

111111010110110101011 ** 1 ..

3 bit RLE

4 bit RLE
1 bit RLE

Figure 2-15: Variable-width run length encoding is used to represent the column indices of nonzeros within
each row of a sparse weight matrix.
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The EU performs arithmetic operations on a vector stored in its local memory; it is shown in Figure

2-16. Arithmetic units are fed by FIFOs from the sequencer and the local memory; control logic determines

which arithmetic unit output to write back, depending on the command from the sequencer. Matrix/vector

multiplication is performed with the aid of a 24-bit MAC, permitting a single-port SRAM to be used for local

memory. (There is a brief stall to write the result at the end of each row.) The vector can be fed through

an element-wise sigmoid or rectified linear (ReL) nonlinearity. The ReL nonlinearity should be used with

caution because it does not suppress errors caused by quantized matrix coefficients. While ReL NNs deliver

similar accuracy to sigmoid in floating-point software experiments, they require finer weight quantization

(and thus more memory bandwidth) in the context of this architecture.

Arbitrator (Local SRAM)

Write Read

Sequencer

In Out Param Index Gmd

I T I I I

Figure 2-16: Execution unit block diagram (pipelining, addresses, and control signals not shown).

2.2.4 Sigmoid

The sigmoid operation o(x) = 1 could be implemented exactly in logic. However, given that there

are 32 EUs, it's worth trying an approximation to save area. The WER impact of weight quantization and

fixed-point arithmetic is tolerable; so is the impact of numerical errors in sigmoid outputs. We detected no

difference in WER between sigmoid implementations with error bounds of 10-4 and 10-6.

The accuracy of a transcendental function approximation depends on the order and granularity of the fit.

At one extreme, a LUT is very granular (specifying the function value at hundreds or thousands of locations)
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but low-order (since the estimate is a constant close to each location). At the other extreme, a convergent

series would approximate the function over the entire domain, using many terms to minimize errors. Neither

of these is well-suited to our application: a sufficiently accurate LUT would be too large, and a sufficiently

high-order series expansion would be too complex to evaluate.

To compromise, we perform a piecewise low-order polynomial fit. Figure 2-17 plots the sigmoid func-

tion along with linear and cubic fits to illustrate the concept. o-(x) is odd,6 so the fit needs be performed only

for positive x. We partition the positive real axis into 6 regions between 0 < x < 12; for x > 12 we simply

return the asymptotic value o(x) = 1 (the error is small: o(12) = 1 - 6.1 x 10-6). Within each region, we

specify a 5th order polynomial to track or(x). As shown in Figure 2-18, a Chebyshev polynomial provides

better accuracy than the Taylor series by balancing errors throughout the region, instead of minimizing error

near the center of the region. When the Chebyshev fit is implemented in fixed-point arithmetic, the error is

below 10-4 over the entire domain.

Piecewise sigmoid approximations

1.0- -. L.ne

064 .~......

0.2 - ...... ..-................. R e f

/ -- Linear
0.0 Cubic

-4 -2 0 2 4
x

Figure 2-17: The sigmoid function and simple piecewise polynomial fits.

Figure 2-19 shows an unpipelined version of the sigmoid approximation circuit. A set of coefficients

totaling 720 bits are stored in a register file. Comparators are used to select the appropriate set of coefficients

based on the magnitude of x. The sign of x is removed and the polynomial is evaluated iteratively using

Homer's method (e.g., y = co + x(ci + - - - + x(cm- + cmx))) at 24-bit precision. Results for negative

x are complemented to account for the odd behavior of the sigmoid function: u(-x) = 1 - u(x). For a

polynomial of order m, the latency of this operation is m+2 cycles. We compared pipelined and unpipelined

versions of the sigmoid operator; we selected the unpipelined version since the performance penalty of its 7-

cycle latency was small (relative to the overall time needed to multiply weight matrices) and easily justified
6 At least within a constant.
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Error of segmented sigmoid approximations

-- - - -

- 0 - - -+ - -+-

- - ... ..... ... .....---.......-. .-- ------ --- -7

- Taylor
- Chebyshev

+ + Chebyshev (FP)-

D 2 4 6 8 10
Input magnitude

Figure 2-18: Approximation error of piecewise polynomial fits to sigmoid function, comparing Taylor and
Chebyshev series.

0 > Sign reg.

2.5 >

4.5 > Segment X
selector

8

12

0
+

r Scale/flip --

Sigmoid evaluator

Figure 2-19: Block diagram of piecewise polynomial sigmoid evaluator.

i
by the area savings. Each instance of the sigmoid approximator has an area of 5.7k gates, including one

multiplier.
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2.3 Summary

This chapter discussed acoustic modeling in the context of a low-power hardware speech recognizer. The

main departure from previous research has been to consider the memory bandwidth required to fetch model

parameters, since this has a large impact on system power consumption. The accuracy advantage of DNNs

over GMMs was maintained when the number of parameters was constrained. Fortunately, DNNs admit a

straightforward circuit implementation and are tolerant of numerical errors caused by parameter quantization

and approximations to the sigmoid function. The DNN architecture we presented uses 32 parallel execution

units, and has a total area of 884k gates plus 1.72 Mb of SRAM. It evaluates a 1024 node, 6 layer sparse

network in real-time at 13.2 MHz with 11.6 MB/s of external memory bandwidth.
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Search

Our hardware implementation of Viterbi beam search is designed to approach Kaldi decoding accuracy

(within reasonable area limits) and minimize memory bandwidth. Scalability can be achieved via model

design (vocabulary and language model pruning), and at runtime by changing the beam pruning parameters.

Off-chip memory writes are reduced or eliminated by converting the state lattice to a word lattice.

The search sub-system interprets a weighted finite-state transducer (WFST), stored off-chip, that has

been constructed for each recognizer. The WFST is a generic data structure that can model the speech

production process at different levels of abstraction [55]. We use Kaldi's HCLG WFST construction with

modifications described in Section 5.3.2. WFSTs built for large vocabulary recognizers typically have 1-

100M states and 2-4 arcs per state.

The search sub-system works with the acoustic model to find a word sequence for each utterance:

* At the beginning of the utterance, it creates a set of hypotheses based on the initial states of the WFST.

* With each new acoustic observation (feature vector), it propagates active hypotheses forward in time.

This uses the Viterbi approximation: p(xt+1) ~ maxxt p(xt) p(xt+l Ixt) p(Yt+I xt+1).

" At the end of the utterance, it applies final weights and reconstructs the most likely trajectory through

the WFST. The sequence of output labels on these arcs is the word transcription.

A hypothesis links a particular state index X in the WFST with the likelihood of being in that state at

a particular time, i.e., p(xt = X), as well as any metadata that is necessary to reconstruct word sequences

passing through that state. We often refer to the log-likelihood as a "score" which shows how attractive the

hypothesis is. We also use the name "active state" for a hypothesis being considered at the current time.
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3.1 Architecture

This section describes how to perform Viterbi search with limited local memory, establishing a baseline

architecture and then explaining our refinements. The module has two state lists with a pipeline of processing

stages in between, as shown in Figure 3-1. One list contains the state hypotheses for frame t and the other

contains the state hypotheses for frame t + 1. Pipeline stages can be separated by FIFOs (not shown) to keep

each stage operating at high utilization despite variable latency.

External Memory

WFST Snapshots

Read model
parameters

Save raw data
for backtrace

Arcs with input labels
(PDF indices)

Acoustic
model Arcs annotated

with likelihoods

Arc fetch SRAM 1

Cache SRAM Key Value

fnon-E eSwap SRAMs Active state lists
each frame

Key Value
Pruning s -

Discard

Search

Figure 3-1: Baseline search architecture with two-frame state list memory.

At the beginning of the utterance, we insert a configurable starting state (i.e., state 0) with a likelihood

of 1, and then expand E arcs to all of the other initial states of the WFST.

We perform a forward pass of Viterbi search at each time step (frame). At the beginning of the forward

pass, the state list for frame t + 1 is empty. Each state from frame t is read and the WFST is queried for arcs

leaving that state. The destination of each arc is another state which becomes a hypothesis for frame t + 1.

The likelihood of these new hypotheses includes the likelihood of being in the source state, the transition

probability (arc weight) from the WFST, and the acoustic likelihood for the appropriate tied state distribution

(arc input label). Following the Viterbi approximation, only the most likely arc into each state is considered

for selecting and scoring hypotheses: p(xt+1) maxx p(xt) p(xt+1 xt) p(yt+ Iixt+1).
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The forward pass is divided into two phases: the "non-" phase and the "c" phase. 1 In the non-c phase,

all of the source states from frame t are expanded. However, only the arcs with non-E (nonzero) input

labels are considered; the E-input arcs are discarded, because they do not advance the hypothesis forward

in time. Each non-E arc is scored with a likelihood from the acoustic model, and the destination states with

sufficiently high scores (more on this later) are saved as hypotheses for frame t + 1. Then, in the E phase,

all of the source states from frame t + 1 are expanded. Only the c-input arcs are considered, so the acoustic

model is not needed. High-scoring arcs are saved as hypotheses for frame t +1 (they do not advance forward

in time). In order to eventually recover the word sequence, the list of active states is saved after each forward

pass (as a "snapshot" to external memory).

The c phase has a few quirks. Because we are reading and writing the same set of states (frame t + 1),

we need a way to avoid potentially infinite recursion. We preprocess the WFST so that all paths of only c

arcs are bypassed by a single c arc having the same total weight [16]. Some paths may traverse multiple arcs

with non-E output labels, so we create multi-word output symbols (typically a small number) as necessary to

bypass these paths; see Figure 3-2. We keep track of whether each state in frame t + 1 was originally added

in the non-E phase or the E phase. If it was added in the c phase, we do not expand it; this is still correct

because (thanks to WFST preprocessing) all states that are reachable at frame t + 1 were reachable via a

single c arc from a state that was added in the non-c phase.

o:EE:the de

e:some
ESUm 2:E E:(the design)

E:sum

E:SUm

Figure 3-2: WFST preprocessing with multi-word output symbols. Left: Adding E arcs to bypass arbitrary
length chains of only E arcs [16]. Right: Compound word labels are created for arcs that bypass multiple
non-E output labels.

After all of the audio has been consumed to create feature vectors, and all of the feature vectors have

been consumed by forward search, it's time for a final weight update. This involves reading all stored states

and adding final weights from the WFST to their likelihood scores. Not all states have a final weight (or,

1In Kaldi's decoders the non-c phase is performed by the ProcessEmitting () method and the E phase is handled by
ProcessNonemitting (.
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equivalently, their final weight is infinite). If any of the states have a final weight, then only those are

considered as valid endpoints of the search. If none of the states have a final weight, then all are considered

valid. The most likely valid state is used as the endpoint for a backtrace which produces a sequence of word

labels. This backtrace could be constructed by reading all of the state snapshots (stored in external memory)

in reverse order.

Our first ASR chip in [67] implemented the search architecture shown in Figure 3-1. In experiments

with a 5,000 word vocabulary, the memory bandwidth requirements of search were 6.02 MB/s (read) and

1.50 MB/s (write), and the overall energy efficiency was 16 nJ per hypothesis.

Several changes can be made to this baseline architecture without changing the behavior of the search

algorithm. For a small memory area savings, we can consolidate the two state lists into a single one with

separate fields for the "source" (t) and "destination" (t + 1) frames; this is beneficial because most states

remain active for several frames at a time. More significant optimizations have been made to reduce off-chip

memory bandwidth. WFST compression and caching techniques are used to reduce read bandwidth, and

a word lattice is used to reduce write bandwidth. The resulting architecture is shown in Figure 3-3 and

explained in the following sections.

External Memory

WFST Snapshots
(ormpressed)

Read model Save word arcs only
parameters for backtrace

Arc fetch
-------------- Word lattice
Cache SRAM

Decompress States Arcs
Arcs with input labels L - - -
(PDF indices)

Acoustic
model Arcs annotated lattice

with likelihoods non-E E
Phase State list

Key Value Value
Red (src) (dest)

Pruning
Save

Beam width control

Discard

Search

Figure 3-3: Improved search architecture including word lattice and merged state lists.
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3.2 Building blocks

This section describes how we implemented the state list, WFST fetch, pruning, and word lattice functions

required by our revised search architecture.

3.2.1 Hash table

In ASIC design it is helpful to keep data structures simple, so we transformed all of the algorithms on our

chip to manipulate flat and associative arrays of packed structures. (There are no linked lists or trees, for

example.) The state list, word lattice, and WFST cache described below rely on a hash table structure that we

have implemented using SRAM. Content-addressable memory would be faster but require custom memory

design and result in lower density [57]. Our hash table is an associative array (key/value store) supporting

key-based and address-based read, write, and delete operations.

Each location in SRAM stores a (key, value) pair and occupancy flag as shown in Figure 3-4. Each key

is translated to an address using the hash function-in our case, simply the lower m bits of the key (where

the array size is 2 '). Because there are more possible keys than memory addresses, two different keys

will sometimes hash to the same value (a collision). When we encounter a collision, we scan subsequent

addresses until we find a slot that is empty (for inserting a new key) or matches our key (for reading, or

writing an existing key). This is called linear probing [58]. This naive hash table algorithm is relatively

simple to implement in hardware and provides sufficient performance for our purposes. 2

1 bit Nk bits N, bits

Address Occupied? Key Value

0 0
1 0
2 0

00101001 Key hashed to
compute base address

4 0
5 1 5D5 10110000 Address incremented

6 1 105 01110111 linearly on hash collision

7 0

Figure 3-4: Data storage format for SRAM-based hash table with open addressing. Linear probing is used
to resolve collisions.

Figure 3-5 enumerates the operations supported by the hash table and shows the state sequence used

to execute each operation. To keep the keys in a consistent ordering, some keys need to be moved "up" in
2Despite the apparent simplicity of these algorithms, the hardware implementation is a cautionary tale about the need for

thorough testing. See Section 5.2.2.
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memory after deletion. The performance of key-based operations degrades as the load factor of the table

increases; the table should never be completely filled (reasonable limits are 75-90% of capacity).

Command:
HTCLEAR

Idle Clearing
Zero out SRAM

Command:
HT READ ADDR(addr)

Idle Direct read

Command:
HTWRITEADDR(addr, key, value)

Idle Direct write

Figure 3-5: State transition diagrams for SRAM-based hash table. (Resizing is performed as needed in
between commands, using the same basic operations.)

Address-based operations facilitate shortcuts: writing or deleting an entry immediately after reading

it, and scanning the table for all stored keys. 3 The state list and word lattice do this regularly. However,

iterating over all keys is wasteful if the hash table is nearly empty. To improve scalability, the hash table is

dynamically resized. In our design, the initial table size is 32 entries. Up to the limit of the SRAM depth,

the table will double in size when load factor exceeds 1. It will halve in size when load factor diminishes

below - (this threshold was chosen to reduce thrashing compared to other thresholds such as 1). Shrinking

of the array can be temporarily disabled to ensure that all keys are found by a sequential scan.

In [67], dual-ported SRAMs were used so the hash table could read and write concurrently. We improved

area efficiency by using single-port SRAMs, though this does add latency to delete operations (leading to a

small increase in clock frequency for a given task).
3The hash table also has a "clear" operation that zeros out all memory locations, which is faster than explicitly reading and

deleting all keys.
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3.2.2 State list

The state list is the central data structure of our search architecture. The architecture has been designed

to preserve memory locality. This is not only a benefit to energy efficiency, but a major convenience in

a special-purpose digital design. It allows us to avoid having a shared memory hierarchy that connects to

every module. Instead, each module has local memory for just the information it needs. There are only two

external memory dependencies in the search sub-system: the WFST fetch and the word lattice.

Figure 3-6 shows the data structures stored in the state list and passed through each stage of the search

pipeline:

" State list: This is a hash table storing active states (hypotheses). Every hypothesis is indexed by a

particular WFST state, and linked with a (state, time) pair that we call a word lattice state (WL state);

this will be explained in Section 3.2.5.

" WFST request: To expand a state in the WFST, we need to know its address and length (in bytes). In

response, we recevive a sequence of arcs. Each arc that we expand has a destination state, input and

output labels, and weight. We no longer need to know the source state.

" Scoring: Before search is run, the acoustic model has computed a likelihood for each tied state (input

label). For each unscored arc, we retrieve the appropriate likelihood and combine it with the source

state score and arc weight to get the overall likelihood of the destination state. We no longer need the

input label. (In the e phase, there is no acoustic likelihood.)

" Pruning: The scored arc has all the information necessary to save a new hypothesis in the state list,

provided that its score exceeds the pruning cutoff (and that of any existing hypothesis at the same

state). If the scored arc has a word label (i.e., non-E output label), it will also be sent to the word

lattice.

Bit fields have been sized conservatively to allow WFST sizes up to 4 GB, vocabularies up to 16M words,

and acoustic models with up to 64k tied states. These fields could be reduced to save area in a more restrictive

implementation.

A state diagram of the state list logic is shown in Figure 3-7. The state list is designed to perform a

sequential scan (reading frame t states) while also performing reads, inserts, and updates of frame t + 1

states. If it detects that the hash table has expanded, the scan must be restarted in order to ensure that all

frame t states are read. It also provides a "prune in place" operation that deletes all states from frame t + 1

whose likelihoods fall below the specified cutoff.

After each forward pass is completed, it performs an "advance" operation that moves information from
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32b
48b
32b
32b WFST fetch
24b
16b
24b Find arcs leaving
32b source state

WFS

state-
stateI
best-s

Look up acoustic likelihood Acoustic model
using input label (results lookup)

Save hypothesis
for destination state

Scored arc

src wl state 48b
dest state addr 32b
dest statejlength 24b
is-eps lb
output-label 24b
score 32b

wl[sta

State list /
(Key) state addr 32b

state-ength 24b
added in eps-phase lb
advance-flag lb

src 82b
occupied 1 b|
hasjfinal-weight 1b|
best-score 32b|
wl_state 48b:

dest 82b

Unscored arc

src state addr
src-wl state
src best score
dest-state-addr
dest-state-length
input-label
outputjlabel
weight

Word lattice

If outputlabel != 0, -
add arc to word lattice

Figure 3-6: Data fields for state list entries and in-flight hypotheses. The architecture is designed to preserve
memory locality.

frame t + 1 fields to frame t fields, because t is being incremented. States that were present in frame t but

not frame t + 1 (i.e., those that are no longer active in the search) are deleted.

The state list is sized to trade between area and accuracy (high capacity is needed for larger recognition

tasks). Our implementation has a capacity of 8192 states (223 bits per entry, or 1.8 Mb total). Merging the

two frames and using single-ported hash tables allowed us to double capacity relative to [67] while using

11% less area.

3.2.3 WFST

The WFST encapsulates time-varying aspects of the HMM and is queried for possible transitions from each

of its states. In speech recognizers supported by our architecture, the WFST is a composition of four training

data sources (HCLG):

* H: The subphonetic model (different sounds produced over time within each phoneme).

" C: The context dependency (different ways of realizing each phoneme).
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Command:
SLINSERT(state, value)

Read target state

Idle Read

If target state existsit aette score If target does not exist,
or new hypothesis has

Save improved score
updated state Write

Command:
SLREADNEXT

Read next unread address

Idle Analyze

Return if entire table has been read

If yes, Write back with
return If no, continue read advance-flag = 0

Search - Mark
Check if state exists
in target frame

Command:
SLADDFINALWEIGHT(state, weight)

Request target state

Idle Read

Save
target state Add final weight

Write to best score

Command:
SL ADVANCE

Read address 0

Idle Read

Entire table read

If dest state If dest state
not occupied occupied

Delete Write

Figure 3-7: Guide to common state list operations, building on functionality provided by the hash table.

" L: The lexicon (phoneme sequences that make up each word).

" G: The language model (possible transitions between words).

There are no simple rules for computing the size of the WFST. The number of N-grams in the language

model is a better predictor of the WFST size than the vocabulary. A 1,000-word recognizer with an unpruned

trigram language model could have a larger WFST than a 100,000-word recognizer with a pruned bigram.

Viterbi search initialization, forward pass, final weight update, and backtrace all require access to the

WFST. To simplify interfaces, the WFST is treated as a read-only key/value store as shown in Figure 3-8.

Each request to the WFST fetch unit includes the byte address and length (number of bytes) of the state

to be read. This is treated as a monolithic value, even if not all of the information is needed. Reads executed

during the forward pass include additional metadata:

* Likelihood of the hypothesis corresponding to the state being read

* Word lattice state ID associated with the hypothesis

The WFST fetch unit is shown in Figure 3-9. Compression and caching techniques described in this sec-

tion reduce the memory bandwidth of the millions of read queries generated while decoding each utterance.

The WFST is stored in external memory in compressed form. The WFST fetch circuit attempts to read each

queried state from the cache, which stores individual states in the same format. Cache hits and misses both

rely on the same logic to unpack the data. Each arc is then associated with the request metadata:
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State ID
(memory address)

State data structure
Header and outgoing arcs

State header
Final weight Real

Arc
Input label integer
Output label Integer I
Destination state Integer

IWeight Real
Lr--------
Arc

Arc
L ---------------

Figure 3-8: WFST data structure: a key/value store where keys are state IDs, and values contain all outgoing
arcs from each state.

I
* The arc weight is added to the request likelihood.

* If the arc has an c output label, the request's word lattice state ID is preserved. If the arc has a non-c

output label, the word lattice state ID is set to (destination state, current frame).

Queries are processed in the order they are received. 4

Unpacked arcs

To acoustic model and pruning

External memory

WFST fetch unit

State header decode compressed bytes Cache

Bit unpacin Decodes ar data 7

Quantizato al Looks up weight Request decoe

Request a state
(address, length)

From search control logic

Figure 3-9: WFST fetch architecture with caching and model compression.

4 Memory access patterns could be optimized by reordering requests. However, it is difficult to come up with a reordering
scheme without first selecting a memory technology to optimize for. This design is memory-agnostic.
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WFST caching

While the WFST is a large and sparsely accessed structure, it is now a significant contributor to memory

bandwidth given the acoustic model changes of Chapter 2.5 We demonstrated in [67] that caching could be

used to reduce page access penalties even though the working set (the set of active states that persist over

time) was usually too large to achieve a high hit rate. As we discovered more recently, the working set size

is strongly dependent on the specific models and pruning configuration used. Some ASR tasks simply don't

need a large search space for acceptable WER. Caching improves scalability by offering larger gains on

easier tasks. It's not a bug, it's a feature.

Compression also makes the cache look larger, relative to the information it is storing. To take advantage

of this, we need to acknowledge and embrace the main challenge of WFST caching: we are caching objects

of varying size, because different states have different out-degree. It makes no sense to store one (fixed-size)

arc per cache line, and evict them independently, when we know that expanding a state always requires

reading all of its arcs.6 Hence our cache stores each state as a variable length sequence of bytes. The

architecture is shown in Figure 3-10.

Main hash table

Try to read target state Key Value
from main hash table State address 32b circular buffer location 16b

Hit?
Return data from circular buffer
(length is known from request)

@
Miss?

Dequeue other entries
and evict them from circular buffer

Raw data SRAM Eviction queue SRAM
32 kB (32k x 8)

State address 32b Length

0
Return data from external memory
Store in cache SRAM
Add entry to eviction queue

Figure 3-10: WFST cache architecture, including eviction queue and hash table so that variable-length
objects can be stored in a circular buffer.

This cache implements a "least recently missed" eviction strategy, not because it is an effective eviction

strategy, but because it allows variable-length objects to be stored in a circular buffer. Compressed state data

is stored in a 32k x 8 SRAM. A hash table keeps track of the location of each state: the key is a 32-bit state
5 Performance engineering is like a game of whack-a-mole: once you've done a good job eliminating one bottleneck, another

one pops up.
6 You are welcome to design a system that can request only certain arcs, or only the state header, but your head is likely to

explode. A compromise is suggested in Section 7.2.

63

8b



Energy-scalable Speech Recognition Circuits

ID, and the value is a 15-bit byte address into the circular buffer. After a cache miss, the requested state is

read from external memory and appended to the circular buffer. The ID and length of the state are appended

to an eviction queue (also a circular buffer) so that we know what data should be removed if space needs to

be cleared for a future miss. The maximum cacheable state length is configurable, with a limit of 255 bytes.

There is no minimum length, but the hash table and eviction queue have a capacity of 4096; if the average

length of cached states is less than 8 bytes, the data buffer won't be fully utilized. 7

Hit rates for this cache can significantly exceed those seen in [67]. Figure 3-11 shows the hit rate

and WFST-related memory bandwidth for decoding a typical utterance with different beam widths. The

maximum cacheable state length was 50 bytes. Hit rates are around 80% when decoding with a narrow

beam, and decline gradually as beam width is increased. Figure 3-12 shows the effect of changing the

maximum cacheable state length while holding beam width constant. This runtime parameter can be tuned

to minimize aggregate memory bandwidth or to minimize page access penalties.

WFST read bandwidth and cache hit rate1.0 25

-- Hit rate

0.2 ------ With cache -
-Without cache,

0 .0 ............... .... ......... 20

0.6 7 8 9 10 11 12 13 14 15
Beam width

Figure 3-11: WFST cache performance with varying beam width. A wider beam increases the working set
size.

Despite the use of a circular buffer, the bookkeeping adds significant overhead. In this design, the

raw data buffer makes up 42% of SRAM bits. However, we were unable to devise a strategy with better

performance for the same total area.

WFST compression

A compressed WFST representation requires extra on-chip logic to decode, but directly impacts bandwidth--

a straightforward case given that we are optimizing for system power rather than chip power. The compres-
7 n our nutrition recognizer WFST, the average length across all states is 14.05 bytes and the median is 10 bytes. 3% of states

have a length of less than 8 bytes, so it's unlikely that this limitation will be noticeable.
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WFST read bandwidth and cache hit rate (beam =10.0)

- -Hit rate] -- Bandwidt
- 1 4

0.8 .. ................... --
12

~ 0.61010

4

2

0.00 50 100 150 200 258
Cache cutoff (bytes)

Figure 3-12: WFST cache performance can be optimized by setting a maximum cacheable state length
which depends on the task and beam width.

sion works hand-in-hand with caching to reduce memory bandwidth.

Our WFST encoding is based on [33]. It preserves graph structure but quantizes weights (arc weights and

state final weights) because high precision is unnecessary. Each state is stored as an 8-bit header followed

by a sequence of arcs. The data structure is illustrated in Figures 3-13 and 3-14. Many states in an HCLG

WFST exhibit some of the following properties:

* Self-loops, for which we don't need to store the destination state.

* All outgoing arcs have E output labels, so no output labels need to be stored.

* Outgoing arcs lead to nearby states; the destination state address can be stored in relative form using

fewer bits than the absolute addresses.

* The input labels of outgoing arcs are in a narrow range (e.g., sequential) and can be stored in relative

form with a per-state offset.

The flags in the state header control these selectively stored fields.

States are packed byte-aligned so that the byte address of a state (relative to the start of storage) can be

used as a unique ID. Because the exact address of each state is initially unknown, we perform an iterative

repacking process. State addresses are initialized under the assumption that each state takes up 8 bytes per

outgoing arc. All of the states are then packed into the bit fields of Figure 3-14 and concatenated into a

byte array. This allows us to get a better estimate of the packed address of each state, although it invalidates

existing addresses. The last two steps are repeated until there are no further changes, and the destination

state address of each arc is consistent with the byte offset of that state.

Table 3.1 shows the size reductions achieved for several recognizers, showing that this special-purpose
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180:1444/1.5 81:0/0.4
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State
32b

Final Weight

32b
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4 -* 4.2

Input
Weight Label

32b 32b

Output
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32b

2 0.5 14 3160
3 1.5 180 1444

4 1.5 56 0

4 0.5 80 0

5 0.4 81 0
6 1.1 82 0

Figure 3-13: Example WFST, along with the OpenFST representation (totaling 832 bits) for states 1 and 4.

States
Header Final

8b Quantiz

FW SL OL SLD DS

1---- 0 10 1 1 0 8
FW SL OL SD LD DS

4 - 1 1 0 1 1 8]

Self Loop Weight
Quantizer Index Base Input Label

6b 12b

4 80

Weight
er Index
b

0

8

Arcs

Dest Weight Input Output
State Quantizer Index Label Label

32b 6b 12b 16b

2 4 14 3160
3 11 180 1444

4 11 56 0

4b 6b 4b

1 3 1
2 9 2

Figure 3-14: Compressed format (272 bits) for the states in Figure 3-13. An 8-bit header configures the
storage format for each state.

encoding is about as effective as gz ip on WFSTs. We do not achieve compression ratios as high as [33],

but we think this is simply because the WFSTs in this study are larger. Bit widths scale with the log 2 of the

values being stored, including labels and state addresses.

Num. arcs OpenFST size
228
2.5M
3.lM
15.1M
22.9M

4.9 kB
51.6 MB
66.4 MB
316 MB
482 MB

Compressed size
1.8 kB
14.4 MB
19.3 MB
95 MB
135 MB

Ratio (vs. gzip)
0.366 (0.378)
0.279 (0.316)
0.291 (0.308)
0.302 (0.319)
0.281 (0.349)

Table 3.1: Compression ratios for HCLG WFST models.
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The total area required for WFST fetch (including decompression and caching) is 75k gates and 757 kb

of SRAM.

3.2.4 Beam width control

The purpose of pruning is to decide which hypotheses should be saved for further consideration. If all valid

hypotheses were saved, the search space would grow exponentially over time and eventually include all

of the states in the WFST. ASR systems keep runtime in check by using a "beam search" variant of the

Viterbi algorithm, pruning unlikely hypotheses during each forward pass [39]. More aggressive pruning

reduces runtime but increases WER. The pruning can be relative (based on likelihood) or absolute (based on

a maximum number of hypotheses). The desired number of hypotheses varies naturally over time along with

ambiguity; for example, there is a high branching factor in the search near the beginning of a word. Figure

3-15 shows the number of hypotheses stored per frame when decoding an utterance with relative pruning.

5000 Number of active hypotheses

4000--

3000

i had a glass of white wine
2000

1000 -

1.0 Audio waveform

0.5
0.0WO

-0.5

0.5 1.0 1.5 2.0
Time (s)

Figure 3-15: The changing level of ambiguity in the speech signal causes search workload to vary over time.

Hardware implementations need to use a combination of relative and absolute pruning because:

" There is a hard limit to the number of hypotheses that can be stored on-chip. Using relative pruning

only, it would be difficult to prevent occasional overflows. 8

* Using absolute pruning only would be inefficient because it would force the recognizer to store and

81t is possible to use the off-chip memory to handle such overflows [17], but this adds complexity and increases memory
bandwidth; we decided that the costs of this feature would outweigh the benefits.
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expand irrelevant hypotheses in order to meet its quota. Most of the time, a few hundred hypotheses

are sufficient.

In [67], we regulated the beam width (relative pruning threshold) during each forward pass. Each WFST

arc was annotated with the out-degree of its destination state, so we could predict the number of arcs to be

expanded in the next frame. Beam width was then adjusted to maintain the proportion of arcs that were

accepted. A similar strategy was employed in [31].

This work takes a different approach, adopting some of the ideas from Kaldi [65]. Intuitively, you would

expect to get better performance by holding the beam width constant during each frame. This means that

the likelihoods of all arcs are compared to the same accept/reject threshold. (Consider what would happen

if the beam width fluctuated from arc to arc, and you ended up with the same number of hypotheses at the

end. You would have accepted some lower-scoring hypotheses during positive excursions of beam width,

taking the place of better hypotheses that were rejected during negative excursions.) Kaldi uses a constant

beam width, but also has an absolute cutoff (typically 7k states). When this limit is exceeded, it sorts the

likelihood scores to re-prune so the cutoff is matched exactly. It makes note of the resulting likelihood range

and uses this to reduce the beam width for the next frame.

Our hardware implementation makes minor changes to the Kaldi approach. There is a configurable

absolute cutoff, which must be lower than the maximum storage capacity of the memory (8192 states).

Whenever this cutoff is reached during the forward pass, the beam width is reduced and the state list is

immediately pruned in place using this reduced relative threshold. This means it is a "hard" limit on the

number of states stored. This can result in overzealous pruning, but does not require sorting. In some cases,

the state list can be pruned in place multiple times during a single frame.

Pruning in place is time consuming, so we also preemptively reduce the beam width when we expect

to see many hypotheses. This is done with few hardware resources by storing a histogram of relative log-

likelihoods. The cumulative distribution (CDF) of log-likelihoods is approximated by the cumulative sum

of histogram bins. Linear interpolation of the CDF gives us an estimate of the beam width needed to hit a

target state count, as illustrated in Figure 3-16. When a "soft" cutoff is exceeded, this estimate is used to

initialize the beam width for the next frame. When the soft cutoff is not exceeded, the nominal beam width

is used. This feature will only be engaged if the soft cutoff is lower than the hard cutoff. The soft cutoff

logic has a post-synthesis area of 42k gates.

In short, we have introduced temporary "soft" and "hard" absolute pruning mechanisms to cope with

limited on-chip memory. These complement the relative pruning that is always enabled, introducing occa-

sional word errors when the nominal beam width is large enough to trigger additional pruning.
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Figure 3-16: A histogram of relative log-likelihoods (left) is used to approximate the CDF (right) and predict
an appropriate beam width for the desired state cutoff.

3.2.5 Word lattice

We designed an on-chip word lattice (WL) to mitigate the problem of memory writes caused by state list

snapshots. NAND flash suffers from slow write performance (typically 5-10 MB/s per die) and limited

endurance.

Viterbi search generates the equivalent of a state lattice, identifying possible trajectories through the

states of the WFST (Figure 3-17). Because on-chip memory is only sufficient for two frames (one set of

transitions), the state list must be saved to external memory after each forward pass; we call this a snapshot.

The snapshot varies in size but is typically 10-50 kB, resulting in an average 1-5 MB/s of writes. At the end

of decoding, all of the snapshots can be read in reverse order to perform a 1-best backtrace, resulting in an

additional 1-5 MB/s amortized read bandwidth.

Most of the information in the state snapshots is not necessary for reconstructing word-level hypotheses. 9

A word lattice differs from a state lattice in that every arc has exactly one output (word) label. As implied

by Figure 3-17, not all state transitions encountered by search generate words; 13% of the 3.1M arcs in our

nutrition WFST have non-c output labels. Each arc in the word lattice represents a chain of one or more

arcs in the state lattice, the last of which has an output label. Because the word lattice is smaller than a state

lattice covering the same search space, snapshots to the external memory are needed less frequently. This

concept is illustrated in Figure 3-18.

Data structures used by the word lattice are shown in Figure 3-19. The word lattice consists of a hash

table for storing states, and a flat array for storing arcs. States and arcs are stored separately because

there can be multiple arcs leading into any state, representing alternative word hypotheses. Our hardware

9 Although it is useful for acoustic model rescoring and reweighting.
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Figure 3-17: State lattice generated during decoding (left); state snapshot concept (right).
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Figure 3-18: Word lattice example (left); word lattice snapshot concept (right).

implementation has a memory depth of 2048 for each table, with a limit of 1536 states (to keep hash table

load below 4). If either limit is exceeded at any time, a snapshot is saved to external memory and the

on-chip structures are cleared (except for metadata about the location of snapshots in the external memory).

Correctness is maintained through up to 4096 snapshots per utterance (the capacity of our metadata storage).

The WFST state ID is not sufficient to uniquely identify a WL state because WFST states can be visited

multiple times (for example, when a phrase matching a language model N-gram appears twice in an utter-

ance). Loops can be prevented by using a tuple of (WFST state ID, number of words), but this isn't quite
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enough. Throughout our search implementation, to prevent overflow of fixed-point values, the likelihood

scores are stored relative to an offset (the best score in the current frame) that changes over time. To keep

scores consistent for reverse pruning, we use (WFST state ID, frame index) tuples as WL state IDs. This

results in more states being created, since there can be multiple instances of a (WFST state ID, number

of words) pair across consecutive frames. The most similar structure we are aware of is the word trace

mentioned in [75].

The word lattice must be coordinated with the state list. To insert an arc into the word lattice, we need

to know the source and destination states. The destination state comes from a WFST arc, annotated with

the current frame index. However, the source state is not necessarily the source of the same WFST arc; it

is the destination of the previous WL arc, which may have been inserted many frames in the past. To keep

track, we store a source WL state along with every hypothesis in the state list; this adds a significant area

overhead (96 bits per entry).10 This was yet another judgement call based on our desire to minimize off-chip

bandwidth.

Arcs -- array

srcstate 48b
States -- hash table dest state 48b

(Key) state-addr 32b abne flag 24b
frameie 16b score 32b

prune-flag lb 2048 entries
prune-keptarc-counter 24b
bestscore 32b

0f)AQ n+ i Snapshot metadata -- array

(max. 1536 occupied) address 32b
size 16b

4096 entries

Figure 3-19: Data structures used in word lattice.

Algorithms used by the word lattice are summarized in Table 3.2; the non-trivial ADDWORD and FIN-

ISHPRUNE operations are detailed in Algorithms 1 and 2 respectively. The STARTPRUNE method is invoked

before a forward pass. During the forward pass (both non-E and 6 phases), the ADDWORD method is in-

voked whenever an arc with a word label is accepted. The KEEPSTATE method is invoked whenever any

arc is accepted (whether or not it has a word label), so that the destination WL state and related arcs are

preserved. At the end of the forward pass, the FINISHPRUNE method recovers space in the on-chip struc-

tures. Pruning is performed after every frame in order to minimize the frequency of snapshots. Pruning can

preserve multiple arcs leading to a state, as long as their score is within a "lattice beam;" with a nonzero

'Olt's necessary to store a separate 48-bit WL state for frames t and t + 1 because the best-scoring arc leading to a state can come
from different source states in different frames.
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Method name Description
STARTPRUNE Sets a pruning flag on all states and arcs.

KEEPSTATE Clears the pruning flag on a state.
ADDWORD Inserts or updates a state; inserts an arc if the score falls within

a lattice beam. See Algorithm 1.
FINISHPRUNE Propagate pruning flags to preserve predecessors of active

states. Deletes states and arcs still marked for pruning (i.e.,
no longer active). See Algorithm 2.

SENDSNAPSHOT Serializes states and arcs and saves to external memory. Clears
state and arc arrays; appends snapshot metadata entry.

LOADSNAPSHOT Reads snapshot metadata; deserializes stream from external
memory to populate state and arc arrays.

Table 3.2: Algorithms used in word lattice generation.

lattice beam, this gives us a graph of alternative word hypotheses rather than a chain. Duplicate arcs sharing

the same word label are discarded.

The word lattice improves scalability. With a light workload, it is possible that the lattice will never

exceed the capacity of 1536 states and 2048 arcs, because pruning is performed after each frame. In this

case, no writes to external memory are necessary. Moderate workloads will generate enough word arcs to

fill the on-chip memory and trigger snapshots occasionally. A heavy workload will trigger one or more

snapshots per frame, resulting in bandwidth proportional to directly saving the state list.

Figure 3-20 shows the effect of the word lattice structure on off-chip memory writes. Heavy workloads

force more frequent word lattice snapshots, but there is still an 8x bandwidth savings because not all arcs

have word labels. Snapshots can be written to a circular buffer in the unused portion of the off-chip memory

for wear-leveling.

The word lattice can perform a 1-best backtrace from any state, returning the sequence of word labels.

The host can fetch the entire word lattice structure (either the on-chip portion, or the on-chip portion plus

previous snapshots from external memory) in order to compute an N-best list or display the lattice. This

backtrace can be performed in between frames in order to provide incremental recognition results (before a

final backtrace at the end of the utterance).

Hardware implementation of the word lattice was complicated, and its area impact is significant (72k

gates and 727 kb SRAM), but we believe the impact is worthwhile due to the 8x or larger reduction in

off-chip memory writes.
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Algorithm 1 Insert a word arc into the lattice
procedure ADDWORD(states, arcs, w, Ssrc, Sdest, v)

if LEN(arcs) = arc array capacity then SENDSNAPSHOT
end if

if ssrc not in states then > Insert source state if it doesn't exist (i.e., previous snapshot)
SCORE(states[ssrc]) +- 0
PRUNEFLAG(states[ssrc]) +- false

end if

a +- false o a will be set to true if a new word arc has been accepted

if sdest not in states then > Insert destination state if it doesn't exist
if LEN(states) = state table capacity then SENDSNAPSHOT
end if
SCORE(states[sdest]) <- v

PRUNEFLAG(states[sdest]) <- true > Prune flag will later be cleared if sdest persists in state lattice
a <- true

else > If destination state exists, update score and check lattice beam
if v < SCORE(states[sdest]) then

SCORE(states[sdest]) <- V

end if
if v < SCORE(states[sdst]) + lattice beam then

a <- true

end if
end if

if a then > Arc leads to a new state or falls within lattice beam. Insert it.
i +- LEN(arcs)

RESIZE(arcs, i + 1)
SR C(arcs[i]) <-- Ssrc
DEST(arcs[i]) +-- Sdest
LABEL(arcs[i]) +- w
SCORE(arcs[i]) +- v
PRUNEFLAG(arcs[i]) <- true

end if
end procedure
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Algorithm 2 Remove pruned states/arcs from memory
Require: All states with an incoming arc inserted in frame t have PRUNEFLAG = false
Require: All other states have PRUNEFLAG = true

procedure FINISHPRUNE(states, arcs)
for i <- LEN(arcs) -1 down to 0 do > Propagate pruning flags backwards along arcs

s +- DEST(arcs[i])
if PRUNEFLAG(states[s]) and SCORE(arcs[i]) < SCORE(states[s]) + lattice beam then

PRUNEFLAG(arcs[i]) <- false
s +- SRC(arcs[i])
if s $ null then

PRUNEFLAG(states[s]) <- false
end if

end if
end for

for all s in states do
if PRUNEFLAG(states[s]) then

DELETE(states[s])
end if

end for

Initialize s <- -1, n <- 0, i <- 0
while i < LEN(arcs) do

if PRUNEFLAG(arcs[i]) then
n +- n + I
if i < s then s <- i
end if

else
if s < i then

arcs[s] <- arcs[i]
s <- S + 1

end if
end if

end while
N <- LEN(arcs) -n
RESIZE(arcs, N)

end procedure

> Remove any states that are still marked for pruning

> Remove any arcs that are still marked for pruning
> s is the next open slot in the array

> n is the number of arcs that have been removed
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Write bandwidth reduction from word lattice

6 7 8 9 10 11 12 13 14 15
Beam width

Figure 3-20: Write bandwidth comparison of state lattice and word lattice approaches. Time-averaged
bandwidth was measured on one of the harder utterances in the nutrition test set.

3.3 Interactions

The search sub-system has FIFOs between pipeline stages to decouple their latency, but there is still the

possiblility of contention for external resources when the stages are not coordinated.

Sometimes the WFST fetch and word lattice will deadlock. If the word lattice overflows, it will request

a memory write to save a snapshot, and cannot store any more word arcs until this write completes. If this

happens while WFST fetch is streaming data from the external memory, and there is not enough slack in

the pipeline, the WFST fetch memory read will stall. In this situation, we flush the read by ignoring all

remaining WFST arcs, allowing the word lattice snapshot to proceed. We then re-fetch the same state from

the WFST and ignore the arcs that have already been processed.

3.4 Performance and scalability

The search sub-system processes about one hypothesis every 40 cycles. The runtime of search depends

strongly on the pruning parameters, primarily the beam width. Each ASR task comes with its its own

tradeoff between beam width and word error rate, which can be exploited to minimize search runtime. As

with the acoustic model, energy consumption is slightly more than linear with respect to runtime. Memory

bandwidth scales at around 7-8 bytes per hypothesis, or about 6 nJ to read from MLC flash; this is less than

the 16 nJ/hypothesis cost of on-chip computation we attained in [671.11

Figure 3-21 shows the tradeoff between accuracy and beam width for each of our ASR tasks, evaluated

"See section 6.4 for estimates of the search efficiency of this architecture.
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Accuracy vs. beam width in Kaldi
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Figure 3-21: WER vs. beam width for each ASR task, evaluated in Kaldi.

using Kaldi. 12

The scaling of search runtime (and hence energy) against beam width is plotted in Figure 3-22, sampling

four utterances from the nutrition task. There is approximately a 10-fold range (e.g., 5M-50M cycles) across

reasonable values of beam width. Remember that this pertains to the search sub-system, independently of

the acoustic model. To run in real-time, the core clock frequency should exceed the sum of runtimes of

search and acoustic model. (The 256x6 DNN that we used for the nutrition task takes 2.45M cycles per

utterance second to run, so most of the time is spent on search. See Section 2.2.2 for a discussion of acoustic

model scalability.)

Table 3.3 summarizes the search runtime on each task with the beam width set at a point of diminishing

returns (5% relative WER degradation). Runtime includes the time used for word lattice pruning and snap-

shots, final weight updates, and backtraces. Search workload is uncorrelated with WFST size (excluding

TIDIGITS); we suspect that the accuracy of the acoustic model is a confounding variable.13

In Figure 3-23, the decoding accuracy in terms of word error rate (WER) on the WSJ dev93 task is

1
2 Performing this many tests on the hardware platform would be very time consuming, but since Kaldi has similar behavior (and

can be run on a compute cluster) it is useful for evaluating these tradeoffs. Kaldi was run with a fixed acoustic weight of 0.09 to
match the behavior of our hardware platform, which can't rescore lattices with different acoustic weights.

13
1t would be interesting to test on the same task with different language models to isolate the influence of WFST size on search

workload. But even then, the different language models will result in different WER, so it would be difficult to extract broad
conclusions. This is best viewed as an area for task-specific design exploration.
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Search runtime vs. beam width
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Figure 3-22: Runtime scales with beam width and varies between utterances.

Task Vocab. WFST st
TIDIGITS 11 104
Jupiter 2k 1.OM
Nutrition 7k 1.3M
WSJ (eval92-5k) 5k 6.1M
WSJ (dev93) 145k 9.5M

Table 3.3: Search workload for each ASR
cycles, per second of utterance time.

ites Beam WER Workload Bandwidth Runtime
6.0 1.65% 15.5k 0.00 MB/s 0.64M
12.0 4.38% 301k 1.64 MB/s 11.8M
12.0 8.51% 844k 6.54 MB/s 36.1M
12.5 2.91% 399k 3.01 MB/s 16.7M
11.0 9.04% 409k 3.26 MB/s 16.4M

task. Workload is specified in hypotheses, and runtime in clock

plotted along with decoding speed in terms of real-time factor (RTF). This provides a comparison between

our platform (with three different pruning cutoff configurations) and Kaldi.1 4 At large beam widths the

temporary reductions imposed by the cutoff logic occur more frequently, so the cutoff configuration is more

important. Generally, lowering the cutoffs will speed up decoding. A soft cutoff at 2k states (compared

to the default of 5k) decreases runtime by up to 37%, almost as much as a hard cutoff, without degrading

accuracy. Overall, the word error rate on this task (with a recognizer vocabulary of 145k words) is similar

to Kaldi when the same models are used.

The memory bandwidth requirements of this sub-system and its predecessor (under 10 MB/s) are lower

than those reported in other work (100+ MB/s). We attribute much of this discrepancy to our use of WFSTs

(a single, optimized graph structure) rather than separately modeling intra-word and inter-word transitions.

Another reason is our broader use of on-chip memory for search purposes; the active state list is frequently

1
4 Don't scrutinize the Kaldi RTF numbers. They were measured by decoding in batch mode with a single job (multi-process

pipeline) on an Intel Xeon E5-1670v2 (4 cores at 3.7 GHz). The purpose of including these numbers is to show that an un-optimized
research decoder on a modern x86 machine has comparable search throughput to our design (when running at 80 MHz), though it
is much faster at acoustic model evaluation.
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Figure 3-23: WER (left) and RTF (right) for search using varying soft and hard cutoffs, compared to Kaldi.
(Hardware recognizer is run at 80 MHz.)

accessed, but our design limits it to on-chip memory. Finally, we may be performing more aggressive

pruning while still obtaining reasonable accuracy, thanks to the quality of acoustic models derived from

Kaldi. The caching, WFST compression, and word lattice techniques described in this chapter provide

further bandwidth reductions from this baseline.

3.5 Summary

This chapter developed enhancements to the Viterbi search architecture of [67] that allow us to approach the

accuracy of the reference Kaldi recognizer despite limitations on local memory size and external memory

bandwidth. Local memory was used to store only the two most recent frames of the state lattice created

during search. Data from older frames were filtered to generate a word lattice on-chip, reducing the amount

of data that must be written to external memory. WFST compression and caching techniques reduced the

volume of memory reads incurred by WFST queries. The resulting architecture evaluates each hypothe-

sis in about 40 clock cycles, performing real-time search for typical ASR tasks at a frequency of 10-40

MHz (250k-IM hypotheses per second). External memory bandwidth was reduced to about 8 bytes per

hypothesis.
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Chapter 4

Voice activity detection

Most people don't talk constantly. Even an enthusiastic ASR engineer has to cope with the reality that his

product will not be used at all times. Additional engineering is needed to direct the recognizer's attention

to the relevant portions of an audio stream, with a realistic duty cycle of 5% or less. Typical approaches

include voice activity detection (VAD), which detects speech; keyword spotting (KWS), which detects a

specific word or phrase; and speaker ID, which detects the voice of a particular person. We explored the use

of VAD in an embedded speech interface.

4.1 Accuracy influences power consumption

The preceding chapters have, in the interest of system-level simplicity and power consumption, de-emphasized

the internal area and power of ASR circuitry relative to the burdens placed on off-chip memory. A similar

tradeoff (or paradox) occurs with VADs: if what you care about is power consumption, then the power

consumption of the VAD should be the last thing on your mind. Accuracy is far more important.

It's important to put the power consumption of different components in perspective. VAD power draw

varies based on algorithm and circuit implementation details, but is generally low (on the order of 100

[pW or less, for special-purpose hardware). When the VAD detects speech, it will power up a downstream

system that is much more power-hungry (it probably includes ASR, a microcontroller, or other application

processor)-even if carefully optimized, probably several mW. The time-averaged system power is

Pavg = PVAD + [(1 - PM)D + PFA (1 - D)] Pdownstream

where D is the duty cycle of speech. The coefficient (1 - pM)D + PFA(1 - D) reflects how often the
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downstream system is enabled-a duty cycle that will be higher than D, if the false-alarm probability PFA

of the VAD is significant. Differences in the contribution of the downstream system can far exceed the

differences in power consumption between different VAD implementations.

A variety of research groups have presented hardware VADs, some with impressively low power con-

sumption [71, 4], but have not adequately addressed their accuracy in low-SNR and nonstationary noise

conditions. To investigate, we constructed fixed-point models and designed a chip allowing direct compar-

ison of three VAD algorithms. These algorithms cover the spectrum from simple, elegant, and inaccurate

to complex, messy, and accurate. Each of the algorithms and their circuit implementation are discussed

below. We conclude by comparing the receiver operating characteristics (ROCs) and modeled system power

consumption of each algorithm in different noise scenarios.

4.2 Algorithms

Decades of research have produced a large class of algorithms for VAD. Many algorithms are variants of

the likelihood ratio test (LRT) popularized by [79]: different ways of estimating the noise spectra [24, 51],

weighting different frequencies [82], temporal context [70], adaptive thresholds [23], post-filtering deci-

sions, and more. In our experience these techniques can be a bit fragile, especially if they create positive

feedback loops (i.e., updating speech/noise statistics based on decisions), and do not deliver consistently

good performance across tasks. We describe three other VAD algorithms, all variants on previously pub-

lished work, which we used to characterize the tradeoffs in VAD circuit design.

4.2.1 Energy-based (EB)

Thresholding a signal based on its short-term energy is a workable VAD approach in low-noise conditions.

The energy-based algorithm we implemented is a variation on that idea, except it tracks the changes in

energy over time that distinguish speech from many non-speech sounds [83].

These energy differences are weighted by an estimate of SNR, reflecting the decrease in confidence

when SNR is low.' We compute the SNR using a gross simplification of the minimum statistics approach

'Use of the square root to compress energy differences was suggested in an unpublished successor to [83].
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[51]: the noise energy is estimated as the minimum frame energy over the last 100 frames, plus 3 dB.

N-I

Et = 10 log 0  x[n]
n=O

Dt = | Et - Et_f 1 SNRpOSt

T
SNRpost = max(0, Et - (min Ett, + 3))

t'=0

Figure 4-1 shows these parameters and the resulting decision output for an example waveform. The

energy difference timeseries (bottom plot) is itself quite noisy. To obtain clean speech/non-speech decisions,

the threshold (dashed line) is applied to a moving average of the scaled energy differences over the previous

21 frames. Estimating a noise floor and SNR (middle plot) allows the VAD to reject the noise burst at the

beginning of the waveform.

Energy-based VAD timeseries

. I
Waveform
Decisions

20

0

-20

-40

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Energy difference scores

6.0 0.5 1.0 1.5
Time (s)

2.0 2.5 3.0

Figure 4-1: Energy-based VAD operation including waveform (top), estimated frame-level energy and SNR
(middle), and energy difference scores (bottom).
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4.2.2 Harmonicity (HM)

A conceptually simple but relatively robust VAD technique is to threshold audio frames based on their

harmonicity, or the amplitude ratio between periodic and non-periodic components of the signal. Not all

speech is periodic: unvoiced phonemes (some fricatives, africates and stops) consist of turbulence and

silence. However, every utterance (except perhaps whispering) contains a mixture of unvoiced and voiced

sounds.

Boersma [10] provided the mathematical underpinnings for accurate estimates of harmonicity. The peri-

odic nature of a signal is visible in its autocorrelation; however, the exact amplitude and period are obscured

by windowing. Dividing out the autocorrelation of the window gives us a normalized autocorrelation that

allows accurate pitch extraction. Tweaks such as cepstral filtering (as in [19]) can improve performance, but

for simplicity we limit the pitch frequency to the range of 80-400 Hz. The harmonicity is expressed on a

decibel scale, with 0 dB indicating equally strong periodic and non-periodic components:

r ( ) = r (t)

H = 10 log1 o max rXX[t]
T1<t<T2 rk [0] - r, [t]

In our experience a threshold of 6-8 dB detects speech reliably. To account for unvoiced frames at the

beginning and end of speech segments, we extend the regions of high harmonicity forward by 350 ms and

backward by 150 ms. Figure 4-2 illustrates this behavior. The per-frame harmonicity crosses the threshold

several times during the speech segment; applying the "window maximum" gives us a clean segmentation.

4.2.3 Modulation frequencies (MF)

The energy-based and harmonicity techniques are, in a sense, rule-based. We can't design rules that cover

every possible scenario, and the limitations of these simple schemes are obvious. Stuttering sounds such

as railroad noise will fool the energy-based algorithm; beeping sounds and music will fool the harmonicity

algorithm. These challenges motivate a supervised learning approach, which requires choosing a represen-

tation and a classifier.

Representations that work well for ASR are not ideal for VAD. MFCCs capture short-term spectral char-

acteristics of a sound which can guide HMM search and, over time, discriminate between words. But a VAD

doesn't have knowledge of temporal constraints; most people would find it difficult to make speech/non-

speech decisions based on a repeated clip of 25 ms. Hence the features need to contain some temporal
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Harmonicity VAD timeseries

0. 4 1
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-10,
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Figure 4-2: Harmonicity VAD operation including waveform (top) and harmonicity scores (bottom).

context. The brute force solution would be to concatenate several MFCCs, as in [14]. Another representa-

tion that captures temporal patterns is the modulation frequency (MF) [89], illustrated in Figure 4-3. MF

features are calculated in two stages. First, we compute the energy in each frequency band using a short-

term FFT. Second, we compute the power spectrum of the amplitude modulation within each band with a set

of long-term FFTs (one per band). The first stage is run at a typical frame rate of 100 fps, while the second

stage can be run at a reduced rate.

Square root
of energy

2s 11____
Waveform Band 0 FFT

or Band 1 FFT logM(x) F featuretermx matrix

Overlapping frames FFT ..- ----- - I- - E E Dim 0 = STFT Band (8--16)
B d N -FT Dim 1 = Mod. freq. (6--11)

Downmixing Buffers Long term FFT
(last 16--64 frames) (every 2--32 frames)

Figure 4-3: Modulation frequency (MF) feature extraction. The use of both short-term and long-term FFTs

allows MF features to capture temporal patterns that are unique to speech.

MF features are amazing. The difference between speech and non-speech segments in an MF spec-

trogram is visible to the human eye even at 0 dB SNR (Figure 4-4), and more subtle distinctions can be

captured by simple classifiers. In [19] (on which this work is based), MF features were fed into a group

of SVM classifiers whose outputs were fused. We compared GMM, SVM, and NN classifiers on MF fea-

tures and observed that NNs performed nearly as well with many fewer parameters. The NN classifier is
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especially attractive because (like the GMM) the parameters could all be stored in an on-chip memory (e.g.,
32 kB), which was not possible with SVMs because of the large numbers of support vectors. The resulting

networks are much smaller than those used for speech recognition: 2-4 layers of 32-64 nodes are sufficient.
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with speech segments indicated by dashed lines, at 0 dB SNR.

I

We believe the MF algorithm is useful for VAD in computationally constrained scenarios, even in diffi-
cult noise conditions. More robust supervised VADs have been implemented for certain tasks (such as the

DARPA RATS program [76]), but these schemes risk diminishing returns in performance while requiring

much larger computational resources.
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4.3 Architecture

4.3.1 Top level

Our VAD circuit (implemented as a standalone chip, as well as the combined ASR/VAD chip of Chapter 6)

includes the EB, HM and MF algorithms connected to a control module and external interfaces. The control

module interfaces to the host over SPI, performs buffering and downsampling of input audio, and allows

any subset of the three algorithms to be run. It interfaces to each stage through FIFOs for commands, scores

and decisions, as well as an SRAM storing the downsampled audio (which is buffered separately from the

input audio).

Decision indicator
Audio interface

(1 2S)

Configuration
interface

(SPI)

Interfaces to ASR

Voice activity detector

Figure 4-5: Block diagram of VAD module that can selectively enable EB, HM, and MF algorithms.

To save area, the HM and MF algorithms share the use of a single FFT module instantiated at the top

level. This is a basic radix-2 FFT with two dual-port memories and a ROM for complex exponential coeffi-

cients. It supports variable input length and precision since these two algorithms have different requirements.

The VAD can be operated as a standalone device via the SPI interface, but it also has a set of FIFO

interfaces linking it to the ASR (on the same chip, or externally). Updates from the VAD indicate the start

or end of a speech segment, as well as the advancing of time within a speech segment. Other devices can

request blocks of audio samples from a circular buffer on the VAD that holds 12k samples (0.75 sec at 16

kHz). VAD/ASR interactions must be handled carefully; this will be discussed further in Section 5.1.3.

Antialiasing filter

In some scenarios the ASR may use a different sample rate from the VAD algorithms. For example, many

speech recognizers are trained on 16 kHz audio, while our VADs run at 8 kHz (there are limited performance
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benefits at higher sample rates). We support integer downsampling ratios from 1 to 24. While we assume

that the microphone input is anti-aliased, the chip has to perform lowpass filtering before downsampling. A

steep filter is required to maintain signal bandwidth close to the Nyquist frequency.

We provide a 65-tap FIR filter with programmable coefficients. The default coefficients are a windowed

sinc impulse response, which rovide a -3 dB point of 3.5 kHz for downsampling from 16 kHz to 8 kHz. 2

The filter architecture shown in Figure 4-6 is a compromise between area and runtime: it multiplies 8

coefficients per cycle, requiring 9 cycles to obtain the filter output in an accumulator (in addition to the

latency of pipelining, which is not shown).

Input data Sitrgse

---- -- --- --- -Coeff icients
(muxed from register file)

X X X X X X X X 8 Multipliers

+ + Adder tree

Accumulator

Filter output

Figure 4-6: The VAD provides a 65-tap antialiasing filter that evaluates 8 taps per cycle.

We did not study numerical precision issues in detail; bit widths for real numbers were chosen conser-

vatively (either 24- or 32-bit) in order to avoid loss of accuracy.

4.3.2 Energy-based (EB)

The block diagram of the energy-based VAD is shown in Figure 4-7. Our fixed-point implementation of

this VAD operates on Q8.24 data. The logarithm is computed using the shift-and-add algorithm [22] with a

25-element LUT for evaluating ln(1 + 2-k). Square roots are computed via successive approximation. (The
2An IIR filter with the same performance would require nine 2nd-order biquad sections, with a total of 46 multiplications per

sample; it's possible that this would be more efficient than an FIR filter, but the sample rate is so low that efficiency is not very
important.

86



Chapter 4. Voice activity detection

latency of these operations is insignificant because they are performed only once per frame.) The minimum

energy of the last 100 frames is computed by grouping samples into bins of 10 frames and computing the

minimum over the last 10 bins [51].

Audio

Score output

Figure 4-7: Architecture of energy-based VAD module. This module evaluates the difference of energy
between two frames and weights it with an estimate of SNR.

The energy-based VAD circuit occupies 51k gates and has 2 kb of SRAM. It requires a clock frequency

of 660 kHz to run in real-time on 8 kHz audio.

4.3.3 Harmonicity (HM)

The harmonicity VAD shown in Figure 4-8 computes normalized autocorrelation r,, [t], finds a peak within

the expected pitch range, and translates this peak amplitude to a harmonicity value. The module operates

on 512-sample (64 ms) long frames of Q8.16 values with a 10 ms pitch. If the signal level within a frame

is below -30 dBFS, we rescale the FFT inputs to improve accuracy. Autocorrelation is computed as the

IFFT of the power spectral density. At startup, the autocorrelation of the Hanning window w(t) = -(1 -

cos 27t) is computed and stored. We divide the signal and window autocorrelations using a Taylor series

approximation as described by [40]. Recent harmonicity values (up to 64) are stored in order to find the

"window maximum" that is used as a score.

Excluding the FFT, this module requires 154k gates and 26 kb of SRAM. Note that this algorithm

requires running two FFTs per frame in order to compute autocorrelation.
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Figure 4-8: Architecture of harmonicity VAD module. This module computes a normalized autocorrelation
to obtain the amplitude ratio of periodic and non-periodic components, expressed in dB as harmonic-rww (t)

ity.

4.3.4 Modulation frequencies (MF)

A block diagram of our MF VAD implementation is shown in Figure 4-9. MF features are computed in

Q8.24 format. A short-term FFT operates on 512-sample frames with configurable pitch. These FFT outputs

are downmixed to a configurable set of frequency bands (typically 16) by adding the square root of the energy

from each bin. It is important to use a square root here for best accuracy; the square root is performed using

a pipelined 1-select non-restoring algorithm [18]. Then after N frames, we compute a long-term FFT on the

history of energy values from each band. The decibel-scale outputs of the long-term FFT are used as MF

features. Only the DC and low-frequency bins (up to 11 Hz) from the LTFT are saved.

The MF algorithm relies on the quantized NN implementation we developed for ASR, with a single

execution unit (instead of 32) and sparse matrix support removed to save area. Each MF feature is sent to

the neural network for classification as speech/non-speech; the difference between the two last layer outputs

can be used as a score. The model is trained using Kaldi on disjoint speech and non-speech segments (no

overlap), which improves accuracy even though the audio stream at test time contains overlapped frames.

The model is stored entirely in on-chip SRAM; the VAD does not use external memory. A 24 kB capacity

is sufficient for 3 layers with 60 hidden nodes; in practice, most of our models are smaller.
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Figure 4-9: Architecture of MF VAD module. This module performs modulation frequency feature extrac-
tion and then classification. On-chip memory is used to store a small NN model for classification.

4.4 Performance comparisons

We constructed two sets of performance tests for comparing the VADs' detection performance. In each

case, noise and speech waveforms were blended in software to create test waveforms with a speech duty

cycle of about 20% (lower duty cycles would reflect realistic use, but require increasingly long waveforms).

Additional waveforms for training MF models were prepared with a speech duty cycle of 50%. The ampli-

tudes of speech segments in the test waveforms were scaled so the average speech SNRs were uniformly

distributed across t3 dB relative to nominal SNR. We trained a single MF model across all SNRs, rather

than one model for each nominal SNR. All tests were performed using 8 kHz audio; the antialiasing filter

and downsampling were bypassed.

The first set of tests was performed with read digit sequences from TIDIGITS [45], and short (16 min

total) noise segments in 8 distinct environments from Aurora2 [36]. Figure 4-10 shows the ROC of each

algorithm at 10 dB average SNR. We count frame-level errors by comparing to a reference segmentation

(CTM) from a speech recognizer. This method results in higher error rates than other studies, but is necessary

in order to estimate power consumption. False-alarm and miss rates up to about 5% can be explained by

minor differences in the start and end times of speech segments, even if they are detected correctly.

In Figure 4-11, we use our simple system model to transform the ROC into a plot of power consumption

versus miss rate. Dashed lines show educated guesses for the power consumption of the VAD alone. At low

miss rates (which are desirable for good ASR performance), average power is dominated by the downstream

portion of the system. This is true even with only 1 mW active power.
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Figure 4-10: Frame-level ROC of each VAD on Aurora2 task at 10 dB average SNR.
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Figure 4-11: Estimated system power, derived from ROC of Figure 4-10, with
and 5% speech duty cycle. VAD power figures are educated guesses.

1 mW downstream power

I

The HM algorithm requires running two FFTs per frame in order to compute autocorrelation. While

the MF algorithm is more complex, the long-term FFT and neural network operations are not as energy-

intensive as the more frequent short-term FFT. Thus our imprecise estimates show the HM algorithm having

slightly higher power consumption than the MF algorithm.

Performance in a given noise condition can be summarized by the equal error rate (EER) where pm
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Figure 4-12: EER vs. average SNR on Aurora2 task.
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PFA. Figure 4-12 shows EERs over a range of average SNR from +30 to -5 dB.3 The HM and MF algorithms

offer similar performance, both handling 5-10 dB lower SNR than the EB algorithm. We believe the MF

algorithm is underperforming due to insufficient training data.

A more challenging and realistic scenario was constructed using the 53 min of noise waveforms (also in

8 distinct environments) collected for a robotic forklift project [84], and conversational speech waveforms

from the Switchboard dataset [25]. For both tasks, training and testing of the MF model used disjoint sets

of 4 noise conditions each. 4 This task gives very different results (Figure 4-13). MF performance improves

significantly, with little change in EER down to 5 dB SNR. The EB and HM algorithms are essentially
3 This is not shown, but all three algorithms perform much better when tested on white noise instead of recorded noise.4 For Aurora2, the training conditions were [airport, restaurant, car, subway] and test conditions were [babble, train, exhibition,

street]. For Forklift/Switchboard, the training conditions were [Vassar, ForkliftBeep, MassAve, WindTunnel] and test conditions
were [FortHood, ForbesCafe, ForkliftMotor, LoadingDock]. However, results did not change significantly with different permuta-
tions.
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useless; we believe this resulted from the more dynamic noise environment and array microphone artifacts.

The choice of VAD algorithm should be informed by knowledge of the expected noise conditions and (for

the MF algorithm) available training data.

4.5 Summary

This chapter developed and compared digital circuit implementations of three VAD algorithms. As men-

tioned in Section 4.1, the ROC of a VAD algorithm has a large impact on average system power consumption.

This has implications for the design of portable devices. A few extra microwatts spent on the VAD, or a lit-

tle more effort preparing good models and runtime configurations, can go a long way to reducing unwanted

false alarms and extending battery life. We adopted a compact NN classifier for modulation frequency

features, providing good noise robustness if sufficient training data is available.
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Chapter 5

Infrastructure

The acoustic model, search and VAD modules described in earlier chapters contain the primary innovations

of this thesis, but are not sufficient to build a hardware speech interface. This chapter details the remaining

building blocks that should allow others to reproduce and build on our results, or design other special-

purpose hardware more effectively.

5.1 Circuits

Figure 5-1 shows a more thorough accounting of the chip's organization. Additional interfaces, control,

and signal processing modules are required to tie the major computational modules together. The front-

end is designed to compute and buffer MFCC or filterbank features from audio in a configurable fashion.

An ASR-specific control module mediates between host (i.e., USB) and VAD interfaces and sequences the

operation of all other modules, including startup and shutdown for each utterance. Finally, supervisory logic

is necessary to link the VAD and ASR and ensure that the ASR can be safely power gated.

5.1.1 Front-end

The front-end extracts feature vectors such as MFCCs from audio. This accounts for around 1% of the

computational workload of ASR [46] and a similar portion of power consumption [67], so it would be

reasonable to rely on a software implementation. Nevertheless, we designed a special-purpose front-end

to realize our vision of a chip handling audio-to-text transcription, without the complexity or overhead of

introducing a general-purpose processor. The front-end shares FFT, logarithm, and divider module designs

with the VAD. It is shown in Figure 5-2.

The front-end consists of a series of signal processing stages operating on Q8.24 fixed-point vectors
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Figure 5-1: Block diagram of the complete IC design, including top-level interfaces and internal ASR/VAD
interfaces.

bouncing between two scratch memories. It is meant to be interchangeable with the Kaldi front-end, so

that acoustic models trained in Kaldi can be used with little modification to Kaldi. We remove some of

Kaldi's configuration options in order to simplify the implementation: there is no dither, and only the Han-

ning window is supported. The user retains control of sample rate, number of frequency bands, and whether

to perform a DCT (i.e., selecting MFCC vs. filterbank features). Filter bank frequency responses are pre-

computed by software and stored in the configuration block of the external memory to be loaded at startup.

This simplifies the on-chip logic while adding a small delay to the startup sequence (reading I kB of filter

coefficients).

A 2048 x 32 internal memory is used to buffer features, so the front-end can process audio frames as

soon as they are received; it takes less memory to buffer features than to buffer the original audio samples. 1

Some acoustic models expect spliced features (with "before" and/or "after" temporal context), or fea-

tures with time derivatives (deltas and double-deltas). The front-end supports these transformations, but

performs them on-the-fly when sending features to the acoustic model rather than doing so before writing

features to the buffer memory. This avoids storing redundant data (i.e., 13-dimensional MFCCs, rather than

'Buffering is necessary because the search workload varies, resulting in variable latency for the consumer of the features.
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Figure 5-2: Front-end block diagram. The frontend buffers raw features and applies output transformations
on-the-fly to save memory.

143-dimensional MFCCs including 5 frames context), allowing the buffer to handle up to 150 frames of

search latency.

5.1.2 ASR control

The ASR can accept input data and commands from the host interface (a bidirectional 8-bit FIFO) or the

VAD, or a combination of both. When using the host interface, the host can supply either audio samples

or feature vectors (bypassing the front-end). Statistics and transcriptions are sent through the host interface

regardless of the input mode. The protocol for using the host interface is summarized in Tables 5.1 and

5.2. The range of possible use cases, and the real-time nature of local ASR, lead to complex sequencing

requirements that need to be centrally controlled.

Control responsibilities are broken down across modules as follows:

" The decode controller issues frame-level commands to the front-end, acoustic model, and search

based on utterance-level commands from above.

" The host interface module acts as an endpoint for the host interface, and handles loading/saving of

the primary configuration block from external memory.

" The word table converts word labels from integers to strings (using a WFST symbol table stored in
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Code Command Parameters Payload
OX 10 Read register Address N/A
Ox 11 Write register Address Data (32-bit)
x13 Load all registers from external memory
x14 Save all registers to external memory
x15 Begin command group Length N/A

ox20 Read memory Address, length N/A
0x21 Write memory Address, length Data (variable)
o x30 Write audio data Length Data (variable)
0x3 1 Write feature data Length Data (variable)
0x4 0 Start utterance N/A N/A
0x4 1 Stop utterance N/A N/A
0x4 2 Request backtrace Flags N/A
0x4 3 Request model table N/A N/A
0x4 5 Select modelset Modelset ID N/A
0x4 6 Request speaker table N/A N/A
0x4 8 Select speaker Speaker ID N/A

Table 5.1: Summary of host interface commands.

Code Response Parameters Payload
o x12 Register read data N/A Data (32-bit)
o x22 Memory read data Address, length Data (variable)
0x32 Backtrace text Length Data (variable)
0x33 Word lattice arc N/A Data (19 bytes)
o x3 4 Per-frame statistics Active stats bitmask Data (variable)
0x35 Per-utterance statistics Active stats bitmask Data (variable)
o x4 4 Model table data N/A Data (variable)
o x4 7 Speaker table data N/A Data (variable)
0x50 Error N/A N/A

Table 5.2: Summary of host interface responses.

external memory) at the request of the host interface.

9 The model bookkeeper supplies information about available modelsets and speakers to the host in-

terface, and allows the desired modelset and speaker to be selected. (A default modelset and speaker,

specified in the primary configuration block, are loaded at startup.)

5.1.3 Supervisory logic

Supervisory logic is designed to safely shut down and isolate the ASR when it is not needed, power gating

the logic and memory supplies off-chip. At the beginning of a speech segment from the VAD, or a wake-up

request from the host, the ASR will be powered up and brought out of reset. The sequencing of shutdown

and startup are shown in Figure 5-4. This logic runs off the VAD clock, with appropriate synchronizers for

ASR-related signals; isolation features make it possible to disable the ASR clock off-chip while the ASR
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Figure 5-3: Block diagram of ASR controller. The decode controller module coordinates the operation of
front-end, acoustic model, and search; interface responsibilities such as audio/feature logging are delegated
to other modules.
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Figure 5-4: State transition rules for supervisory logic controlling
ASR.
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The ASR and VAD interact through four asynchronous FIFO interfaces shown in Figure 5-5. The VAD

sends an update message at the beginning and end of speech segments, as well as periodically (every 10 ms

by default). The ASR can request audio samples from a buffer on the VAD side; this enables it to catch up

on samples captured during the VAD's latency, while the ASR was powered down. It is possible to disable
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these interfaces by setting a CONF I G_I GNORE_VAD register in the ASR controller, in which case the host

can be used to mediate between the VAD and ASR.

When the internal interfaces are used, we run into an inherent mismatch between the fixed-rate process-

ing performed by the VAD and variable-rate processing by the ASR. Our ASR is designed to buffer feature

vectors, so that search can run at constant clock frequency while exploring varying numbers of hypotheses

per frame. This creates a latency which depends on the clock frequency and search workload. If latency at

the end of an utterance is high enough, and there is a short gap between two speech segments, the ASR may

be delayed in starting to decode the second segment. If this delay is large enough, the audio buffer in the

VAD will overflow and the ASR will receive corrupted samples. To make the system robust to these sce-

narios, ASR decoding is stopped immediately when the end of a speech segment is detected; this effectively

clips an unknown portion of the end of the utterance. In the future, it may be possible to design rules that

reduce the amount of clipping while preserving robustness (or simply increase the size of the audio buffer).

Performing VAD/ASR mediation on the host (assuming it is always on, and has a relatively large memory)

resolves these issues at the expense of latency.

VAD ASR

Audio segment request
startaddress 16b

32 32 length 16b

Audio-segment response
startaddress 16b 32 32
length 16b

Audio samples 16 16

Decision update
transitionen lb
transition_dir lb 34 34
transition_sample 16b
cursample 16b

Asynchronous FIFOs

Figure 5-5: VAD/ASR interfaces allow the ASR to retrieve earlier audio samples after it is woken up by the
VAD.

98



Chapter 5. Infrastructure

5.2 Design tools

A recurring challenge in digital system design is propagating design and verification ideas back and forth

between the software and hardware domains. This section presents two tools we developed to facilitate

hardware/software co-design: binary-backed data structures and hardware-oriented unit testing techniques.

5.2.1 Binary-backed data structures

In software design, objects can be serialized for storage or network transmission, and deserialized to con-

struct in-memory data structures. In hardware design, data structures are normally designed "ad hoc," appli-

cation specific, and relatively simple.2 Software includes more elaborate components that are often reused

and composed hierarchically. When designing hardware, it's often necessary to write additional software

that converts back and forth between formats.

The middle ground that we established for our off-chip data structures is a "binary-backed" tree that

is always stored in serialized form (i.e., a binary blob), but whose leaves can be accessed easily by either

hardware or software. Figure 5-6 shows this framework, which is used for prototyping and simulation. The

same sequence of bytes is accessible through a C++ API or digital logic.

Abstract base class Specializations

BinaryBacked BitPackedArray QuantizedNNLayer

Metadata Metadata Metadata

num children 8b num-children = 0 num-children = 2
params size 8b params-size = 5 params-size = 9

Parameters Parameters Parameters

(Type-specific data) array-size 32b size-in 16b
Variable length num-bits 8b size-out 16b

num nonzero weights 32b
Children Children (Unused) has-sparse-weights 1b

Each child Child 0 Raw data Children
is of type Child 1 (Bitstream of small integers) Children
BinaryBacked Child 0 (WeightMatrix)

Parameters inherit from |Child 1 (BiasArray )
:Child N - 1 _ na-y ac ked::Pa-ametr- -------------------- -----

Raw data Raw data (Unused)

Variable length

Figure 5-6: Hierarchical binary-backed data structure: base class (left) and example implementations (right).

We wrote classes for building blocks of the models we use, including:

" Arrays of byte/word-aligned and bit-packed values.

* Quantized real-valued arrays (32-bit lookup table followed by bit-packed indices).
2You may have noticed that most information stored on-chip in our ASR and VAD architecture has been boiled down to arrays

and hash tables.
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e Run-length encodings and sparse matrices.

Hierarchical combinations of these building blocks are used to construct the WFST and DNN models

used by our system, as well as incidentals such as configuration and word symbol tables. At the top level, the

ASR's external memory stores a blob of type Mode lSuit e. Each model suite contains arrays of WFSTs

and DNNs, as well as a "modelset table" showing which combinations of those models can be selected to

establish a recognizer. (A WFST and DNN are compatible if the input labels on the WFST correspond

to indices in the output vector of the DNN. It is possible for the same acoustic model to be paired with

different lexicons or language models.) This makes it possible to prepare a single memory image with

multiple recognizers, and switch between those recognizers at runtime (between utterances).

5.2.2 Unit testing with hardware/software equivalence

Not only do our hardware and software implementations rely on the same data format, they also have the

same architecture and interfaces between modules. This adds some overhead and complexity to the software,

and constrains the interfaces that can be used in hardware. In exchange, it allows simulations that mix and

match hardware and software modules. The tools we developed rely on the import and export feature

of SystemVerilog (SV) to construct RTL-level unit tests driven by software. 3 This provides an alternative to

the UVM methodology [38] which is more complex to implement, but may be useful for projects that have

a lot of software infrastructure (such as this one).

The principles of this approach are laid out in Figure 5-7. A high-level description of each module,

including its interfaces and submodules, is specified in Python. Available interface types include clock/reset,

FIFO, request/response, SRAM, and simple wire connections; the data transmitted by each interface is a

packed struct, and all data interfaces are synchronized with one of the clocks. Python scripts generate C++

and SV templates for each module; the designer then adds implementation details. The C++ version uses

a callback function for incoming data on each interface, and API functions to perform transactions on the

other interfaces.

The software/hardware link is established by a SV "placeholder" version of each module that is au-

tomatically generated and instantiated in the RTL simulation. The placeholder does not implement any

functionality, except to monitor the interfaces and call C++ functions that have been imported from the soft-

ware implementation of the same module. Likewise, the software implementation calls SV tasks that have

been exported from the placeholder to actuate the interfaces. Whether a module is simulated in hardware or

3 We use the GoogleTest framework, but other unit testing frameworks in C++ and other languages could be used with the
appropriate plumbing.

100



Chapter 5. Infrastructure

software depends on what is provided in the RTL simulator's compile command: the path to the placeholder

SV file, or the path to the actual SV implementation. All of the C++ modules are compiled into a shared

library so they can be called as needed by the RTL simulator.

System Verilog

Python Testbench
Structures and interfaces

Data structure specifications Module implementation (empty)
Interfaces

SRAM
FIFO Code
Request/response generation
Wire

Module specifications
External interfaces C++
Internal interfaces Module implementation (empty)
___________ Structures and interfaces

Unit tests (empty)

Figure 5-7: Tools for generating simulation models with hardware/software equivalence.

To speed things up, there is a "software only" mode which routes messages directly through the module

tree. This allows simulations to be run on an all-software design without RTL simulation licenses.

We implemented 166 unit tests against 33 modules, as well as other non-unit tests, as part of the veri-

fication process. The software-driven framework made many of our tests easier to construct and maintain.

For example:

" We construct several small WFSTs in OpenFST format, compress them, and run Viterbi search (with a

preordained schedule of acoustic model likelihoods) while verifying the hypotheses after each frame.

This allows us to check proper handling of specific WFST characteristics such as self-loops, final

weights, and high in-degree. It also ensures that our WFST compression and decompression are

consistent.

" With ASR partitioned into front-end, acoustic model, and search, we evaluated the performance of

each by substituting it into a Kaldi decoder pipeline. For example, we would use Kaldi's front-end

and search with our (fixed-point and quantized) acoustic model. This helped isolate bugs that didn't

cause obvious problems in simulation of individual utterances, but degraded accuracy when tested

against many utterances.

" We perform numerical consistency checks between the hardware and software versions of each mod-

ule.

" We compute error statistics of our fixed-point numerical functions (square root, divider, sigmoid, etc.)

against their C++ STL implementations.
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Despite these efforts, verification remained a major challenge for this design. For example, unit tests

for the hash table checked that individual operations such as insertions, reads, and deletes were performed

correctly. However, they did not thoroughly explore sequences of different operations. Bugs in the imple-

mentation of dynamic resizing caused keys to occasionally be stored in an inconsistent order, leading future

operations to produce incorrect output or get stuck in an infinite loop. This led to unexplained lockups and

incorrect recognizer output. Due to the long timescale (sometimes millions of cycles) between the occur-

rence of the bug and its detection, it was difficult to diagnose these problems through simulation or with

the FPGA's internal logic analyzer. After careful analysis it was possible to write tests that triggered these

bugs, leading to fixes. The lesson here is that unit testing never provides complete coverage; it should be

used alongside other tools such as constrained random verification or formal proofs. We briefly discuss the

changing demands of verification in Section 7.2.1.

5.3 Software

We created tools for deploying software recognizers on our hardware platform. These tools should be

accessible to anyone experienced with Kaldi.

5.3.1 Kaldi modifications

Kaldi provides "recipes" (scripts) for training and testing recognizers with several publicly available datasets.

Our recognizers were constructed with these and additional recipes that we created for our datasets (Jupiter

and nutrition). However, some features enabled by default in these recipes don't apply to our use cases. We

modified the scripts to disable these features:

" Cepstral mean and variance normalization (CMVN) cannot be performed on a per-utterance level in

real-time decoding. Global feature whitening is performed before the first layer of the NN acoustic

model.

" All of our models are speaker-independent, resulting in lower accuracy than the speaker-dependent

models trained in Kaldi. (In some recipes Kaldi performs two-pass decoding to estimate an fM-

LLR transform for each utterance, which is far from real-time.) Our architecture supports speaker-

dependent decoding if appropriate models are available. We prepare a "feature transform" NN to be

chained in front of the "acoustic model" NN. Either of these NNs can be changed at runtime; for

example, the feature transform could be an affine layer with no nonlinearity that performs fMLLR for

a specific speaker.
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To evaluate sparse NN acoustic models within Kaldi, we added a program to truncate weights smaller

than a certain threshold, and modified the existing Kaldi binary nnet-train-f rmshuf f to support

retraining with a fixed sparsity pattern (following [93]).

5.3.2 Model suite preparation

Information about the ASR configuration is read from a variety of sources specified in an XML file, as

shown in Figure 5-8. Our prepare.model.suite program transforms the XML specification, and a

disparate collection of model files created by Kaldi, into a single binary blob (the ModelSuite) that can

be loaded into external memory over the host interface.

ModelSuite (extendS BinaryBacked)
Modelset 0 - Jupiter

WFST

Word table

Acoustic model

Speakers

,,Speakero0
----------------------------------------------- 1

Feature transform

1 Frontend contig

Modelset 1 - WSJ

WFST

Word table

Acoustic model

Speakers

SpeakerO
NFeature transform

kFrontend conig -

Speaker ----- --
Feature transform

Frontend contig

Figure 5-8: The ModelSuite data structure allows multiple Kaldi recognizers to be compiled into a single
binary blob. This example shows a configuration supporting weather information (Jupiter) and business
news (WSJ) tasks.

Before converting the models into compressed format and organizing them into modelsets, we apply the

following transformations:

1. Setup front-end and feature transform: In Kaldi, the binaries splice-f eats or add-deltas
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add temporal context or time derivatives to the feature vectors as part of a decoding pipeline; t ran s f orm-f eats

can apply a linear transformation such as LDA. Kaldi NN recipes often add a splice such as 5 frames

as an NN component (layer). Regardless of how it's being performed in Kaldi, feature splicing in our

system is performed by the front-end (rather than the NN). The XML file specifies splice and delta

values which are stored in the model suite's configuration block. Other feature normalization (and

optionally LDA/fMLLR) is pushed into the feature transform NN, to be applied immediately before

the acoustic model.

2. Replace WFST input labels: Kaldi uses transition-ids as WFST input labels. We replace these

transition-ids with pdf-ids so the index of the NN output vector equals the input label minus 1. We

discard the Kaldi transition model.

3. Add WFST c arcs: As mentioned in Section 3.1 and [16], we add "bypass" arcs to the WFST to

avoid recursion in the c phase of search. This process may add compound labels to the word symbol

table, depending on earlier label pushing of the WFST.

4. Reorder WFST states: As in [67], we perform a breadth-first search to cluster sequentially accessed

states close to each other in memory. The purpose of this is to reduce page access penalties when the

WFST is stored in NAND flash memory. It also improves the effectiveness of our WFST compression

scheme.

5.4 Summary

This chapter explained the software and hardware infrastructure needed to deploy ASR on a chip with

VAD-based power gating. We believe it is important to streamline the deployment process, so we provided

software to compile one or more Kaldi recognizers into a single-file "model suite" configuration for the hard-

ware platform. This procedure leverages a "binary-backed" data structure concept. Design and verification

of the many circuit blocks required for the chip was facilitated by a code generation scheme that produces

hardware and software modules having equivalent interfaces. These two techniques were presented in the

hope that they will be useful for other researchers and engineers.
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IC Implementation

6.1 Overview

This chapter shows how the RTL-level design from preceding chapters were transformed into an ASIC that

could be characterized and demonstrated, and provides early measurement results. This process includes

physical design of the IC layout, and design of the test setup (spanning PCB design, FPGA firmware, and

software). While the same general procedure is used for most digital design projects, we highlight design

patterns that may be helpful for other researchers in this area. This is a multi-voltage design with a large

amount of on-chip memory.

Figure 6-1 shows the logical interfaces of the chip. The VAD relies on industry-standard SPI and I2S

interfaces for control and audio input, respectively. The ASR has generic 8-bit FIFO interfaces for commu-

nicating with the host and with an external memory.

6.2 Synthesis flow information

This chip was designed for the TSMC 65 nm low-power logic process, using third-party IP libraries for

standard cells, I/O, and memory compilers.1 There was no custom circuit design or layout. The low-power

process was helpful to this design because of the large area and generally low activity factors. Much of the

scalability in the design comes from varying the clock frequency; the higher leakage of a high-performance

process would blunt the benefit of a slower clock.

There are 87 memories of 30 distinct types in the design, including single-port SRAM, dual-port SRAM,

'We are grateful to TSMC for fabricating these chips through the University Shuttle Program, and to EDA vendors Synopsys,
Mentor Graphics, and Cadence for supplying tool licenses and documentation.
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Figure 6-1: Top level pinout partitioned into ASR, VAD, and supervisory regions.

and ROM. To speed up library preparation, we automated the following procedures:

" For SRAMs:

1. We start with behavioral Verilog implementations of single-port and dual-port SRAMs. 2 These

use width and depth module parameters to control the dimensions of a register array. (SV

modules throughout the design are parameterized, with the dimensions of RAMs depending on

the values of those parameters.) The internals of the module can be replaced with dummy logic

using a 'ELABORAT IONONLY preprocessor directive.

2. The synthesis tool is used to elaborate the chip design with 'ELABORATIONONLY defined

(in order to avoid instantiating millions of registers). The tool generates a report of all unique

modules after elaboration, which includes the module names and parameters.

3. A Python script parses the elaboration report and generates configuration files for the memory

compiler. It determines the most area-efficient column muxing for each RAM and when RAMs

need to be tiled in width and/or depth.

" For ROMs:

2 These implementations (whether SRAM or ROM) are structured for automatic inference as synchronous block RAM by FPGA
synthesis tools, so that the same source files are used throughout the design process.
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1. A Python script computes the values to be stored. It generates a behavioral Verilog implemen-

tation of each ROM using a case statement; this Verilog is used for RTL development and

simulation. It also generates an equivalent Intel HEX file to be read by the memory compiler.

9 For both SRAMs and ROMs:

1. The appropriate memory compiler is invoked to generate a GDS layout, SPICE netlist, Verilog

model, LEF file, and timing/power library.

2. For each distinct ROM type, we generate a Verilog wrapper that conditionally instantiates the

behavioral or the compiled module, based on a use_compi le dmem module parameter. This

way the same source files can be used for RTL simulation (with either behavioral or compiled

memories), FPGA synthesis, ASIC synthesis, and gate-level simulation.

3. Once for all single-port SRAMs, and once for all dual-port SRAMs, we generate a Verilog

wrapper that conditionally instantiates the behavioral module or one of many compiled modules,

based on the use_compiled-mem, width, and depth module parameters.

4. The timing/power libraries are compiled for selected operating points (best, typical, and worst

case).

5. Blockage, pin, and via (BPV) extraction is run to generate a physical library from the LEF file

and GDS layout.

Figure 6-2 depicts the synthesis and verification flow from RTL sources to the final layout. Memory

library preparation was run as necessary to synchronize with changes in on-chip memory requirements. The

remainder of the process took 36-40 hr with the available compute resources in our lab; the critical path

is through synthesis (2 hr), placement and routing (18-24 hr), and gate-level simulation (8-12 hr). It may

have been possible to speed up placement and routing by using a hierarchical flow; at 736k instances, design

complexity was close to the limit of our tools. A hierarchical flow should be considered for designs with

more than 500k instances.

Digital designs rely on a "chain of equivalence" for verification (Figure 6-3), because the outcome of

the synthesis flow (a GDS layout) is too complex to be simulated directly. The chain ends at a level of

abstraction where complete functional verification is possible. For small designs, it may be possible to

thoroughly verify the gate-level netlist. For this design, it was not possible to simulate complete datasets

with gate-level or RTL designs, so the chain extends to FPGA and software implementations. In theory,

it's possible to establish exact equivalence between different versions of the design; in practice, some of the

links in the chain have uncertain quality. We tried to leave sufficient redundancy between these branches to
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Figure 6-2: Physical design flowchart illustrating the dependencies between different steps of IC implemen-

tation.
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Figure 6-3: Verification chains: ideal (left) and real (right).

account for imperfections. For example, we added gate-level simulation coverage for 32-bit arithmetic in

the front-end and VAD that resulted in hard (inconclusive) formal verification. We exhaustively simulated

the compiled memory wrappers to make sure that tiling and connectivity were correct.
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Figure 6-4: Clock gating hierarchy: VAD clock domain (top), ASR clock domain (bottom).

6.2.1 Clock gating: explicit and implicit

Clock gating is an important power reduction tool, especially for designs like this that have low or highly

variable switching activity. Modem synthesis tools automatically insert clock gates on groups of registers,

and our design implicitly assumes this optimization is being performed. However, at higher levels of the

clock tree the tools cannot infer simple rules for the control signals; this requires knowledge of design intent,

which we supply explicitly.

To save power in higher levels of the clock tree, our explicit clock-gating scheme partitions the design as

in Figure 6-4. Modules that employ clock gating generate a synchronous enable signal for each of their child

clock domains. The clock gating is used both at high levels (enabling the front-end, acoustic model, and

search only when needed) and lower levels (enabling a subset of NN execution units, or arithmetic blocks in

the VAD) of the module hierarchy. This is facilitated by embedding the standard latch-based clock gate in

our SV clock/reset interface. At most connection points the enable signal is always high, and the synthesis

tools optimize away the clock-gating cell.

Because we were unable to evaluate our clock gating scheme on the FPGA, and simulations provide
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insufficient coverage, there was some risk of functional failure. We added a clkgateinhibit input to

the chip which would bypass all of the explicit clock gates. During chip testing, explicit clock gating did

not affect functionality; we analyze its impact on power consumption in Section 6.4.

We opted not to implement on-chip power gating for the ASR logic and memory voltage areas. Instead,

we provide a power control signal asr-pwr to off-chip power gates. To wake up the ASR, supervisory

logic enabled asr-pwr and does not proceed until the "power good" signal asr-pg is high. To disable

power gating, the control signal can be ignored and a s r _pg can be held high.

6.2.2 Floorplan

Our synthesis flow employed the IEEE 1801 UPF standard for low-power design, so that the tools could

automatically insert appropriate level shifters and perform supply-aware simulation and timing analysis.

Floorplanning is the process of determining the size and shape of each hierarchical block, and each

voltage area within each block. We partitioned the design into 5 voltage areas: 2 each for VAD and ASR

(logic and memory), and one "top-level" area for supervisory logic and external interfaces. For purposes of

level shifting and timing analysis, we assume the following voltage relationships:

1. VASRMEM > VASRLOGIC and VVAD-MEM VvADLOGIC

Memory is powered from a higher supply voltage than logic.

2. VTOP > VASRLOGIC and VTOP > VVADLOGIC

Supervisory logic is powered from a higher supply voltage than VAD or ASR logic.

The architecture allows logic/memory connections within the VAD and ASR, but all communication

between the VAD and ASR modules (and to/from the 1/0 pads) goes through the supervisory voltage area

(Figure 6-5). If the above assumptions are met, every connection that crosses a voltage area boundary is

always either low-high or high-low; the direction of voltage change isn't affected by any adjustments to the

supply voltages. One set of level shifters is sufficient for any allowed scenario.

PDASRMEM PDVAD MEM

LH LH
HL HL Level shifters

PDASRLOGIC PD VAD LOGIC LH: low to high

HL HL HL: high to low

LH LH

PDTOP

Figure 6-5: Interaction between voltage areas is designed so that voltage differences are consistent with
level shifter orientation.
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Figure 6-6: The ASR/VAD chip floorplan groups logic into
the placement and routing tool.

The floorplan is shown in Figure 6-6. Memory macros were placed manually; it is technically possible

to place them automatically, but we were not happy with the density and quality of results (especially in the

multi-voltage case). The voltage area shapes must be specified manually within the constraints of the tool

(for example, no closed "ring" shapes). Supervisory logic is placed near the core boundary and interfaces

with the 1/0 cells. Memories are generally grouped together around a contiguous region of logic in the

center. Revisions to the floorplan, such as altered memory placements and dedicated channels for routing,

were needed to address congestion and timing problems arising from paths traversing the memory voltage

area.

Table 6.1 summarizes the post-layout area requirements of each part of the floorplan.

Logic Memory
ASR 1562k gates 5174 kb
VAD 477k gates 625 kb
Supervisory 49k gates None
Total 2088k gates 5840 kb

Table 6.1: Summary of ASR/VAD chip area.

6.2.3 Timing considerations

One of our goals is to explore the limits of scalability and minimize power consumption on simpler ASR

and VAD tasks. This requires scaling to supply voltages significantly below the nominal VDD of the process

technology. However, logic and memory performance strongly depends on supply voltage, with longer and

more uncertain delays at lower voltages [69]. The challenge is to ensure timing closure (no hold violations
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and reasonable clock frequencies) across a range of different supply voltage combinations.

We checked timing using post-layout parasitics in 12 scenarios, as shown in Table 6.2. We performed

library characterization for standard cells and level shifters at all operating points not supplied by the IP

vendor. The inverter gate delay in the slowest scenario (0.6 V, worst-case) is 18 times longer than the fastest

scenario (nominal VDD, best-case). Paths that cross voltage area boundaries must be designed conservatively

to account for highly variable clock tree latencies depending on the source and destination voltages. In the

typical process corner, clock tree latency in the VAD logic voltage area ranges from 1.98-2.30 ns at nominal

VDD; this increases to 8.63-15.34 ns at 0.6 V. This voltage area communicates with the top level voltage

area, which is at nominal VDD in both scenarios and therefore has fixed clock latency (7.05-7.66 ns).

Buffering and routing to satisfy hold time constraints in both scenarios will inevitably lengthen the clock

period; fortunately, we don't need high clock frequencies. 3 In multi-voltage designs with wide operating

ranges, it might make sense to use asynchronous FIFOs even for synchronous voltage area crossings to

remove these challenging constraints.

Voltages Hold margin (ns)
VAD/ASR/Top WC TC BC
0.6/0.8/Nom 2.41 1.25 0.90
0.6/Red/Nom 1.64 0.88 0.49
Red/Red/Nom 1.64 0.88 0.49
Nom/Nom/Nom 0.57 0.47 0.35

Voltages ASR clock frequency (MHz)
VAD/ASR/Top WC TC BC
0.6/0.8/Nom 49.7 62.9 83.4
0.6/Red/Nom 64.9 109.3 164.2
Red/Red/Nom 64.9 109.3 164.2
Nom/Nom/Nom 72.1 112.9 164.2

Table 6.2: Static timing verification scenarios covering the space of expected supply voltage combinations.
"Nom" indicates the nominal VDD of the standard cell library and "Red" indicates a reduced VDD.

We satisfied these constraints by using a multi-scenario optimization in the placement and routing tool,

with two scenarios representing the extreme cases (Table 6.3). In the low-voltage scenario, we modeled

on-chip variation using the global slow/slow corner for all "slow" paths and the fast/fast corner with 1.5x

derate for all "fast" paths. 4 We found this to provide reasonable variation robustness given that statistical
3The VAD can run in real-time with a clock frequency of 4 MHz or lower. The ASR clock is faster, but there is less variation to

deal with since the ASR logic is only operated down to 0.8 V in these scenarios.
4 When evaluating setup constraints, the destination clock is treated as "fast" while the source clock and data chains are treated

as "slow;" these roles switch when evaluating hold constraints.
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models were not available. 0.3 ns clock uncertainty was added as a margin. An additional round of hold

fixing was required for the nominal voltage, worst-case process scenario.

Scenario 1: nominal
Parameter Max Min
VAD operating conditions WC 0.6 BC 0.6
VAD clock frequency 8 MHz
ASR operating conditions WC 0.8 BC 0.8
ASR clock frequency 40 MHz
Top operating conditions WC Nom BC Nom
Timing analysis type On-chip variation
Timing derate factor 1.0 1.5
Clock uncertainty 1.0 ns

Table 6.3: Timing optimization scenarios cover the extremes
"Nom" refers to the nominal VDD of the standard cell library.

Scenario 2: constsupply
Max Min

WC Nom BC Nom
25 MHz

WC Nom BC Nom
66 MHz

WC Nom BC Nom
Best-case/worst-case

1.05 0.95
0.3 ns

of possible multivoltage operating points.

Assuming typical process conditions, this library and constraint configuration allows 62 MHz ASR

operation at 0.8 V; this is faster than real-time with any of the recognizers we tested. The 1.25 ns hold

margin should account for local variation at 0.8 V and possibly lower voltages.

The final layout of the chip is shown in Figure 6-7. Outer dimensions are 3.63 x 3.63 mm, with a core

size of 3.1 x 3.1 mm. There are 132 1/0 and supply pads, intended for wirebonding in an 88-pin QFN

package with 2 pads per supply pin and all grounds downbonded to an exposed pad. Note that 62% of the

active core area is occupied by SRAM.

6.3 Test setup

This section describes PCB, FPGA, and software design considerations for a test setup requiring no special-

ized lab equipment.

A typical test setup is illustrated in Figure 6-8. A pattern generator provides 1/0 data and clock; a logic

analyzer is used to verify that the outputs are consistent with expected behavior. Additional power supplies

and multimeters are used to control and monitor the power supplies. The equipment can be manually

operated or, with additional setup work, sequenced over GPIB.

For improved flexibility and portability, and reduced testing time, we centralize much of this function-

ality in 2 PCBs that connect to a host computer. One is a custom PCB carrying the chip, and one is a

commercial FPGA board.
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Figure 67 ASRIAD chip layout.

6.3.1 PCB

Our custom PCB is illustrated in Figure 6-9. The INMP44 1 MEMS microphone connects to the VAD portion

of the chip directly over the 12S bus.

The ASR/VAD chip has 6 power supplies which are independently controlled and monitored. We im-

plemented onboard power supply regulators using SPI DACs and ADCs. Figure 6-10 shows the schematic

of one power supply channel. To allow accurate current measurements, the current sense resistor is sized to

create about I V of drop at full-scale,5 while remaining inside the feedback loop for good load regulation.

Lead compensation ensures that the loop is stable despite the large capacitive load on the op amp. Output

impedance peaks at about 0.5 Q at 30 kHz. The lowpass filter formed by R1 and C1 prevents overshoot

when responding to steps in target voltage from the DAC. Note that the 10 pF bulk decoupling capacitor has

5The op amp has an output current limit of 50 mA.
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Power supply (Core)

Logic analyzer I

Power supply (1/O)

Power supply (Ex

Level shifters

Test PCB

Figure 6-8: A conventional digital IC test setup requires the coordination of several pieces of lab equipment.

been chosen jointly with the feedback network; larger is not better. The current sense resistor and decou-

pling capacitor can be varied jointly (maintaining the same RC product) without adjusting the rest of the

feedback network.

Linear Technology LTC6903 clock generators supply independent ASR and VAD clocks at frequencies

specified over the SPI bus. A Total Phase Cheetah SPI adapter interfaces all of these peripherals (and the

VAD itself) to the host computer; the number of slave-select lines is expanded by a 74LVC 138 3-to-8 one-

hot decoder. We also successfully used a Silicon Labs CP2130 USB/SPI bridge, so that a single USB port

handled all of the test setup's data and power needs. (The VAD has no external memory, so no FPGA is

necessary to use it.) Test results are reported with the Cheetah, due to its lower and more consistent latency

than the CP2130.6

6.3.2 FPGA

We use a commercial FPGA board to translate from the chip's generic host and memory interfaces to USB

and DDR3, respectively. A block diagram of the FPGA firmware and related board-level components is

shown in Figure 6-11.

DDR3 memory access is provided by a Xilinx memory interface generator (MIG) and an interface

adapter allowing bytewise addressing and arbitrary length read/writes. To create a USB host interface,

we wrap our own bytewise protocol around the 32-bit block pipes provided by the FPGA board vendor.

Wire I/Os allow the host computer to monitor control outputs and actuate control inputs. (Memory access
6 Both SPI adapters have an adjustable SCLK frequency; we had to reduce SCLK to 3 MHz for the lowest supply voltages.

115



Energy-scalable Speech Recognition Circuits

MEMS
mi rophone

Shared SPI bus

Tk a sgneration, I'lkva V

DUT

Power supply VDDVAD__ME M
- control and a

mrontoring IDi

30 20

Test PCB

FPGA PCB FPGA
(3rd party)

oi~yd.

7-1

L

Figure 6-9: Block diagram (top) and photo (bottom) of test PCB stack integrating power supplies and
functional test interfaces.

statistics are collected on-chip.) The FPGA is also optionally used to generate a higher frequency ASR clock

by multiplying the LTC6903 output (which tops out at 68 MHz) by 2x or 3x.

6.3.3 Software

ASR, VAD, and test functionality is exposed through a modular Python API. Programs written to use this

API generated all of the measured performance plots you see in this thesis. The software components and

key subroutines are illustrated in Figure 6-12.
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Figure 6-10: Onboard programmable power supply regulator with current sense resistor inside the feedback
loop.
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Figure 6-11: FPGA-based adapter for generic host, memory, and control interfaces.

6.4 Results

As of this writing, the chip is operational with the same ASR and VAD accuracy as the FPGA prototype that

provided results for earlier chapters. This section provides a baseline characterization of the chip, focusing

on voltage/frequency scaling and the efficiency of different ASR components. Additional measurements

(e.g., more aggressive voltage scaling) will be provided in a future publication.
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ASR v2 API

ASR-Interface

Methods
readreg ()

write reg ()

read_mem
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stop.utterance ()
sendaudio) I
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update receive state ()
getaudio tog I

Abstract base class

InterfaceBackend Host interface driver
send ()
receive ()

Implementers:
FrontPanelBackend

Figure 6-12: Software modules used for ASR/VAD testing

Photos of the bare and packaged silicon die are shown in figure 6-13.

d

and demonstration.

Figure 6-13: ASR/VAD chip photos: bare die (left) and 88-pin QFN package (right).

6.4.1 Voltage/frequency scaling

The chip has 6 power supplies, as summarized in Table 6.4. VIO was fixed at 1.8 V for all tests. The

relationship between the five core supply voltages is constrained by level shifters (Section 6.2.2) and timing

constraints (Section 6.2.3). For testing the ASR module, the VVADLOGIC and VVAD-MEM supplies were fixed

at 0.70 and 0.90 V respectively. We held VASRMEM at 0.15 V above VASRLOGIC, up to a limit of 1.2 V.

Sweeping VASR-LOGIC as an independent variable, we identified the maximum ASR clock frequency in
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Description
1/0 supply

Supervisory logic and top-level interfaces

Core logic for ASR module

Core SRAM/ROM for ASR module
Core logic for VAD module

Core SRAM/ROM for VAD module

Table 6.4: ASR/VAD chip power supplies.

Nominal voltage
2.5 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V

each voltage configuration via binary search. This is shown in Figure 6-14. The primary test (performed at

steps of 10 mV) was to correctly decode one utterance using the TIDIGITS digit recognizer (about 4M cy-

cles). Correct ASR functionality was obtained from 0.60 V (10.2 MHz) to 1.20 V (86.8 MHz). Cross-checks

with a 5,000 word WSJ recognizer (about lOOM cycles) identified very similar maximum frequencies.

ASR voltage/frequency scaling

0'
3.

0

90

80

70

60

50

00. 30 0.85

- TIDIGITS
WSJ eval92-5k

0.90 0.95 1.00 1.05 1.10 1.15 1.20
ASR logic supply (V)

Figure 6-14: Maximum working frequency for ASR as a function of logic supply voltage.

I
6.4.2 ASR power consumption

Individual utterances: Figure 6-15 shows current waveforms measured during decoding of one utterance

from the nutrition task. The figure includes VTOP, VASRLOGIC, and VASRMEM; currents are also measured in

real-time for the other three supplies.

Some insight into the chip's operation is apparent from these waveforms:

e The large peaks in logic and memory current come from acoustic model (DNN) evaluation, which is
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ASR current draw - current waveform 2.175 s, decode time 2.176 s

20 - . -- Memory
- 1/o

Logic

1 5 - -- - ---- -

0 -
0.0 0.s 1.0 1.s 2.0

Time (s)

Figure 6-15: Waveforms of selected power supply currents during ASR decoding.

performed on 32 frames in parallel.7

" The relatively long periods between acoustic model evaluations are used for search (Viterbi updates),

which sequentially processes each of the 32 frames. The search workload varies throughout the utter-

ance, as described in Section 3.2.4.

" The acoustic model is more logic-intensive (due to the large number of multiply/accumulate and

sigmoid operations), and search is more memory-intensive (due to the large hash tables used for

storing hypotheses).

* Word lattice snapshots (Section 3.2.5) cause 50-60 kB to be written to the external memory, resulting

in a spike in 1/0 power. At all other times the 11O power is relatively low; most output activity comes

from requests for external memory reads.

Task-averaged power: We evaluated each of our five recognizers on the ASR v2 platform. We have not

exhaustively searched for the optimal operating point for each recognizer. Instead, we ran each recognizer,

with a beam width of 12, at a sufficiently high clock speed to be faster than real-time (on average). Supply

voltages were chosen conservatively. The results are summarized in Table 6.5.

We report the core power consumption (from the VASRLOGIC and VASRMEM supplies) and full-chip

7In some cases, we observe separate spikes for each of the layers in the DNN. This is easier to see at lower clock frequencies,
where we capture more current samples.
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power consumption (from all six supplies, including 1/0 and the unused VAD). 1/0 power is relatively low

(under 1 mW) due to the low clock frequencies, low external memory bandwidth, and read-heavy memory

access pattern. Power consumption was averaged over the time used for decoding; because these results are

(on average) faster than real-time, average power would be lower if normalized to utterance length.

Task Clock freq. VASRiOGIC VASRMEM WER Runtime Core power Chip power
TIDIGITS 1.5 MHz 0.75 V 0.90 V 1.66% 0.92xRT 246 MW 326 pW

Jupiter 22 MHz 0.75 V 0.90 V 4.38% 0.99xRT 5.30 mW 5.75 mW
Nutrition 48 MHz 0.82 V 0.97 V 8.57% 0.92xRT 4.99 mW 5.97 mW
WSJ-5k 18 MHz 0.75 V 0.90 V 3.12% 0.83xRT 2.57 mW 3.13 mW

WSJ-dev93 48 MHz 0.82 V 0.97 V 8.78% 0.81xRT 10.14 mW 11.27 mW

Table 6.5: Power consumption averaged over each ASR task.

6.4.3 ASR subsystem efficiency

The five recognizers we tested represent samples from a large design space. To allow predictions of power

consumption on other recognizers, and comparisons with other work, we break out the contributions of

acoustic modeling and search with a normalized efficiency metric for each.

Acoustic modeling: The chip can evaluate acoustic models (DNNs) with different dimensions and quan-

tization depths. The contribution of the acoustic model to power consumption varies widely, depending on

the size of the model (e.g., 64 to 2048 nodes per hidden layer). Because matrix/vector multiplication is the

most energy-intensive aspect of DNN evaluation, we normalize the power consumption in terms of energy

per neuron weight. (Fully connected DNN models used for ASR typically have between lOOk-25M neuron

weights, and the model is evaluated against 100 frames per second.) This refers to core power only, and

does not include either 1/0 or external memory power incurred by fetching the parameters.

To estimate acoustic model efficiency, we evaluate the same utterance with two different acoustic mod-

els. We choose an utterance from the nutrition test set, and connect the same lexicon and 3-gram language

model to both 256x6 and 512x6 NNs. Both NNs use the dense weight storage format for all layers. A narrow

beam width of 6.0 is used to minimize the contribution of search. The difference in energy consumption is

divided by the difference in the number of neuron weights applied throughout the utterance. An example of

this calculation is shown in Table 6.6.

We estimated acoustic modeling efficiency from energy measurements at different operating points, as

shown in Figure 6-16. (Clock frequency was scaled to 95% of the maximum working frequency for each
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Model size
Num. neuron weights

Energy

256x6
432k

3.00 mJ

512x6
1.66M

10.14 mJ
A Energy 7.14 mJ

A Neuron weights 1.23M
Number of frames 220

Energy per neuron weight 26.5 pJ

Table 6.6: Estimation of acoustic model efficiency over a single utterance.
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Figure 6-16: Acoustic model efficiency varies by a factor of 3 due to voltage/frequency scaling.

supply voltage.) The efficiency varies from 16 to 56 pJ per neuron weight.8

Search: Search performance is also scalable. A larger search workload (in terms of the number of hy-

potheses evaluated) leads to higher power consumption, and usually better ASR accuracy. We define search

efficiency in terms of energy per hypothesis.

Estimating search efficiency is straightforward. We vary the beam width, which is a runtime parameter,

while repeatedly decoding the same utterance using the same models. Each time, we measure the total core

energy consumed, and read the chip's instrumentation registers to see how many hypotheses were evaluated.

Then we construct a linear regression model for energy consumption (Figure 6-17) as a function of the

8The measurements are noisier at higher voltages because runtime was very short (and hence the number of samples in the
current waveform was relatively small); this would probably be addressed by averaging over more frames of test data.
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number of hypotheses. This assumes that the energy is linearly dependent on the number of hypotheses;

fortunately, it is (r2 = 0.99).

12
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8
0U
C

wU

6

4

0

Regression to find search efficiency

-........................................ ...........

...............

500 1000 1500
Num. hypotheses (thousands)

2000 2500

Figure 6-17: Regression to estimate search efficiency from decoding results at different beam widths.

Our estimate for search efficiency is the slope of the regression line (in this example, 3.4 nJ). As with

the acoustic model, we evaluated search efficiency across voltage/frequency operating points (Figure 6-18);

this gives us a range of 2.5-6.3 nJ per hypothesis. 9 The quadratic trend flattens out around 1.05 V because

most of the search-related power is drawn by memory, and the memory supply is 0.15 V higher than logic

(up to a limit of 1.2 V).

6.4.4 Explicit clock gating

The measurements we presented above were performed with both explicit and implicit clock gating enabled.

(Explicit clock gating was added manually in the RTL-level design, and implicit clock gating was added

automatically by the synthesis tool. See Section 6.2.1.) The explicit clock gating can be disabled using

a clk-gate-inhibit control input, allowing us to see its impact on power consumption in different

scenarios.

Explicit clock gating reduces power consumption in both idle and active conditions. It is worth noting

9 While this compares favorably to the 16 nJ/hypothesis measured in [67], it is important to note that [67] included the energy of
on-demand acoustic model evaluation.
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Search efficiency scaling
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Figure 6-18: Search efficiency scales quadratically with the memory supply voltage.

that the ASR module is normally off (when there is no speech input), and when it is off the clock input can

be disabled along with the ASR power supplies. However, during real-time ASR there are idle periods when

we are waiting for more frames in order to perform the next acoustic model evaluation. (This will happen

unless the clock frequency is not fast enough to keep up with real-time input.) To illustrate the effect, Figure

6-19 shows the average core power for one utterance from the WSJ eval92-5k task with the audio supplied in

real-time. Across this range of clock frequencies (20-80 MHz), there is no significant difference in decoding

time; latency at the end of the 5.72-second utterance ranged from 215 ms (80 MHz) to 372 ms (20 MHz).

This data suggests that when explicit clock gating is disabled, the clock tree can be responsible for a

majority of the chip's power consumption.' 0 Even at 20 MHz (where there are few idle cycles), explicit

clock gating reduces core power by up to 40%. In addition, explicit clock gating significantly decreases the

impact of clock frequency on power consumption.

6.4.5 VAD

The VAD's behavior is relatively simple because its runtime does not depend on the input data." Table

6.7 shows initial measurements of the VAD, with the clock frequency set for real-time operation with each

algorithm. "Core power" is the average power drawn from the VVAD-LOGIC and VVADMEM supplies, and

'('This is also visible in the supply current waveforms (not shown).
'It is possible that power consumption will depend on the input data, but we expect this relationship to be weak.
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Impact of explicit clock gating on real-time ASR

+Explicit CG on
Explicit CG off

15

E

10 - -
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0

20 30 40 50 60 70 80
Clock frequency (MHz)

Figure 6-19: Power consumption with and without explicit clock gating.

Algorithm Clock freq. VVADILOGIC VVAD-MEM Core power Chip power
EB: Energy-based 0.8 MHz 0.53 V 0.70 V 21.1 pW 299.0 iW
HM: Harmonicity 2.0 MHz 0.53 V 0.70 V 87.7 pLW 240.7 pW
MF: Modulation frequencies 1.8 MHz 0.53 V 0.70 V 54.5 pW 187.2 pW
All 3 algorithms 3.4 MHz 0.53 V 0.70 V 122.0 pW 268.1 pW

Table 6.7: Initial measurements of VAD power consumption.

"chip power" is the average power drawn from all 6 supplies (including 1/0 and the unused ASR module)

over a 20-second waveform. The ASR module was not power gated for this test; its logic and memory

supplies were set to 0.65 V and 0.80 V respectively.

These early measurements should be interpreted with caution: power supply monitoring was not care-

fully calibrated (except for a straightforward offset subtraction), the 22 Q current sense resistance resulted in

low sensitivity (1.7 piA per LSB), and 1/0 power was influenced by the shared SPI bus. We did not optimize

the power supply voltages used in each configuration. Despite these limitations, the measurements are con-

sistent with our gate-level simulation results: the MF algorithm requires less power than the HM algorithm

because it is only performing one short-term FFT per frame.

Tables 6.5 and 6.7 showed the power consumed by the VAD and ASR individually; we do not report

combined VAD/ASR power because we did not evaluate the VAD and ASR with a single (common) set of

waveforms. The power consumption of an "always-on" system (using VAD to activate ASR) is ultimately
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task-dependent, but it can be predicted using our system power model (Section 4.1) and the ROC of the

selected VAD algorithm on the desired task.

6.5 Summary

This chapter provided an overview of the concepts needed to prepare and evaluate an IC implementation

of the ASR and VAD designs. The physical design and verification flows were extended to handle the

complexity of the design and the difficulty of performing thorough simulations and formal verification.

We described the voltage and timing constraints needed to support multi-voltage operation with a total of

six power supplies and four clock domains. The goal was to minimize power consumption by operating

logic at the lowest possible voltage, separate from the high-density SRAM arrays. We also presented key

elements of board-level, FPGA, and software design to exercise the functionality of the chip for testing and

demonstration purposes. Measurements showed that the chip has similar power consumption to [67] under

heavy workloads, but scales to lower voltages and achieves equivalent ASR performance at lower clock

frequencies.
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Conclusion

The preceding chapters described how and why we designed an accurate, programmable, and scalable

ASR/VAD chip. We conclude with a summary of what we achieved and a discussion of what comes next.

7.1 Summary

Designers of complex systems have many choices for improving energy efficiency. For digital IC designers,

the most accessible levers include voltage/frequency scaling, clock gating, and improved process technology.

These are general techniques that can be applied to any computational problem. But as [73] wisely observed,

the best place to start looking for efficiency improvements is in the algorithms. Algorithm developers don't

always care about efficiency, and may not be aware of the constraints and opportunities of specialized

architectures. There is often a tradeoff between performance and computational complexity that remains

unknown until someone investigates. Power and area savings from simplified or optimized algorithms are

complementary (sometimes multiplicative) with architectural or circuit techniques.

7.1.1 Contributions

We demonstrated that in a portable or embedded system, the entire speech decoding chain from audio to text

can be performed on a single chip without a general-purpose processor. To achieve good energy efficiency

and scalability, our ASR and VAD designs draw techniques from the disciplines of algorithms, architectures,

and circuits.
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Algorithms:

" Acoustic model selection (Section 2.2.2)

The designer can rapidly prototype DNNs in Kaldi and select the smallest model that provides accept-

able accuracy for each task.

* Model compression (Sections 2.1 and 3.2.3)

Reduces memory bandwidth and provides accuracy/bandwidth tradeoffs to the designer.

" Word lattice (Section 3.2.5)

Reduces or eliminates memory writes required by search.

" Predictive beam search (Section 3.2.4)

Improves accuracy over previous hardware-oriented pruning approaches.

" MF/NN VAD (Section 4.2.3)

Achieves good accuracy and noise robustness with a model small enough to be stored on-chip.

Architectures:

" WFST caching (Section 3.2.3)

Reduces memory bandwidth and page access penalties.

" Resizable hash tables (Section 3.2.1)

Improves scalability by requiring fewer clock cycles for light search workloads.

* Parallel NN evaluation (Section 2.2.1)

Reduces memory bandwidth (and to a lesser extent, reduces core power).

" Two-frame state list (Section 3.2.2)

Reduces SRAM area.

" VAD-based power gating (Section 5.1.3)

Reduces time-averaged power consumption; audio buffering by VAD prevents front-end clipping.

Circuits:

" Multi-voltage design (Section 6.2.2)

Allows lower operating voltages for logic, while using high-density SRAM.

" Explicit clock gating (Section 6.2.1)

Reduces power by identifying additional gating opportunities at higher levels of the clock tree.

" Variation-tolerant timing (Section 6.2.3)

Allows lower operating voltages.
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7.1.2 Performance and scalability

The decoding performance of our ASR engine on several tasks is summarized in Table 7.1.1 Comparing

with our previous work [67] on the WSJ eval92-5k task, WER went from 13.0% to 2.91%, a 77% reduction,

while external memory bandwidth went from 61.6 MB/s to 4.84 MB/s, a 92% reduction. From 11 words to

145k words, runtime scales by a factor of 51x and external memory bandwidth scales by 136x. We believe

this scalability is essential to make a single architecture useful in a variety of application scenarios.

Task
TIDIGITS
Jupiter
Nutrition
WSJ (eval92-5k)
WSJ (dev93)

Vocabulary Clock freq (1xRT est.)
11 words 0.76 MHz
2k words 20.3 MHz
7k words 38.6 MHz
5k words 18.6 MHz

145k words 29.8 MHz

Table 7.1: ASR performance summary.

Memory BW
0.11 MB/s
10.1 MB/s
9.02 MB/s
4.84 MB/s
15.0 MB/s

The detection performance of our VAD engine on several tasks is summarized in Table 7.2. The MF

algorithm achieves 10% frame-level EER at SNRs about 10 dB lower than an energy-based algorithm. We

believe this robustness is essential to minimize average power consumption when the draw of the down-

stream system is taken into account.

Algorithm
Energy-based
Harmonicity
Modulation frequencies

Table 7.2:

SNR for 10% frame level EER
White noise Aurora2 Forklift/Switchboard

-1 dB
< -5 dB

-2 dB

18 dB
5 dB
7 dB

Fail
Fail
1 dB

VAD performance summary.

7.2 Future work

To some extent, the ideas developed in this thesis are ready for commercial development. There are probably

some products for which the performance and system requirements (power, area, and external components)

of our WFST/DNN recognizer are manageable and better than existing alternatives. Our prototype was

made with tools and technologies readily available to industry: 65 nm CMOS with off-the-shelf IP.

'The system is in some cases capable of higher accuracy by setting a higher beam width.
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New applications require continued improvements in performance, flexibility, and integration. We envi-

sion a single-chip solution to a variety of speech processing problems (Figure 7-1), with enough scalability

to be reused in applications from wearables to servers. Realizing this vision requires expanding and re-

fining the set of algorithms we implemented, integrating additional components on-chip, and leveraging

technological changes that are affecting the electronics and software industries.

Dilgeapication Peripherals

VAD E KWS E Recognizer I Synthesizer Speaker ID

Power converters IClock synthesizer I AFE JADC

Microphone

Figure 7-1: Vision for single-chip speech processing solution.

7.2.1 Design and application refinement

Within the framework we have established, there are several ways to extend the performance, usability, and

efficiency of hardware speech interfaces. We discuss some of these opportunities briefly:

" Improved acoustic models: Speech recognizers trained with large datasets can benefit from recurrent

NN topologies, including variants of the LSTM cell [77]. It is possible to add hardware support for

these more complex models. This poses a challenge since the time dependence of recurrent layers

prohibits simple parallel evaluation. Time delay neural networks (TDNN [62]) and convolutional

neural networks (CNN) may also be useful.

" Better model compression: Minimizing the size of neural network models is important for many ap-

plications; we should incorporate techniques developed for other disciplines such as computer vision

[28] to further reduce memory bandwidth and power consumption. There are also promising results

from neural networks represented in a logarithmic number system [50], improving compression and

simplifying model evaluation.
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" On-chip model storage: For small tasks (on the order of 100 words), it may be possible to reduce

external bandwidth by providing sufficient DNN and WFST model storage on-chip. This would sim-

plify system design and reduce power consumption. Larger models could be supported if embedded

DRAM is available. The models would still have to be loaded once at the beginning of each utterance,

unless the on-chip memory is non-volatile or not power gated.

" Dynamic WFST composition: Large language models lead to large WFSTs that degrade caching

performance. To reduce memory requirements, some software ASR systems store the language model

G separately from the other portions (HCL) of the WFST, and compose them on-the-fly [2]. This

arrangement could be beneficial to a hardware ASR system, though it would significantly increase

decoder complexity.

" Increased search throughput and efficiency: As mentioned in Section 3.4, the search subsystem

handles about 1 hypothesis every 40 clock cycles. Improving the throughput (say, to 10-20 cycles per

hypothesis) through more aggressive RTL-level design would allow significant reductions in clock

frequency and normalized power consumption. Separate storage for the E-input WFST arcs could

help, as the current system reads all arcs from each active state in both the non-E and E phases of

search. Many states have no outgoing c-input arcs and could be skipped entirely during the c phase.

" Power reduction in state list: Our state list performs an "advance" operation which moves all entries

from the destination frame to the source frame. These transactions could be avoided by allowing the

source and destination fields to be stored in either order, tracking this ordering in a separate array.

This is a minor change that could have a significant power impact, given that the state list occupies

1.82 Mb of SRAM. It would also be possible to use a smaller SRAM or register array as a cache for

the larger state list.

" Alternative wake-up methods: Our VAD and ASR architectures could be repurposed for keyword

spotting (KWS) and speaker ID, but it would make more sense to add circuits dedicated to more

suitable algorithms. For example, speaker ID based on the i-vector approach [21] classifies a single

vector per utterance (rather than every frame). KWS may be possible with the MF VAD, but would

benefit from simple time-dependent modeling (simpler than a full ASR HMM).

" Audio event detection: It may be possible to use our MF feature classification technique to label

audio segments with classes other than speech and non-speech. If the architecture is changed to allow

more than 2 NN outputs, it could detect certain outdoor sounds (vehicles, tools, animals, weather) or
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indoor sounds (toilets, falls, fires, appliances) with the appropriate training data. (We don't know how

effective the MF representation will be for these problems.)

" VAD power reduction: Because our VAD doesn't rely on an external memory, its power consumption

could be reduced via advanced process technology. Furthermore, most of its power consumption

comes from the FFT logic, which we neglected to optimize; techniques such as split-radix FFTs [68]

and data gating [95] could drive down this component. The microphone and its analog front-end

would also have to be carefully optimized to drive system power below 100 pW. More efficient VADs

could also be designed using a hybrid analog/digital approach using analog filters, avoiding the need

for an FFT and reducing ADC sample rates [32, 6].

" Multi-stage VAD: We showed that there was a general tradeoff between complexity (including circuit

power and area) and accuracy among VAD algorithms. It may be possible to combine the outputs of

different algorithms in a way that exceeds the performance of any one algorithm. To reduce power,

such an approach would need to selectively enable algorithms (for example, an MF VAD that is

enabled only when an energy-based VAD detects a signal).

" Joint ASR/VAD evaluation: We evaluated ASR and VAD algorithms on disjoint data sets. Using a

task designed to exercise VAD and ASR jointly would allow the system power model of Section 4.1

to be tested experimentally. This could be done using a dataset designed for noise-robust ASR such

as Aurora4 [35] or one of the CHiME challenges [8].

" Verification improvements: The testing framework of Section 5.2.2 was helpful for verifying the

ASR and VAD, and can be applied to other digital designs. It can be made more effective by improving

its generality, and adding interfaces to other programming languages besides SystemVerilog and C++.

7.2.2 System integration

We chose to focus on signal processing aspects of speech interfaces in a purely digital ASIC environment.

In light of reduced memory burden and increased chip complexity, we could take advantage of area and

efficiency gains from process shrinks (to 28 nm or smaller, if the cost is acceptable). CMOS scaling also

provides the opportunity for non-digital components to go on the same chip: clock generation, microphone

front-end and ADC, power conversion, and wireless interfaces. Demonstrating this level of integration

would require an interdisciplinary mixed-signal design effort, but could lead to products in the form of a
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single-package "smart microphone." This aspect of our vision may be more suited to a commercial devel-

opment effort than academic research.

7.2.3 Leveraging technological change

In both the hardware and software realms, the ground is shifting beneath our feet. Future efforts in hardware-

accelerated speech processing will be more productive if they find a way to leverage developments in mem-

ory technology and ASR algorithms.

On the hardware side, research and development across the industry promises to deliver non-volatile

memories with speed and efficiency approaching DRAM [94, 87]. This would present an even larger op-

portunity than continued CMOS scaling. We have designed our ASR to work with NAND flash memory; 2

a faster and lower-power memory would allow lower clock frequencies, significantly reduce system power,

and allow more complex tasks to be run in real-time. 1/0 signaling power could become a significant issue,

leading to multi-chip packaging and 2.5D or 3D integration.

On the software side, some engineers would like to abandon the HMM framework for ASR and replace it

with a more general sequence-to-sequence translation framework, probably based on neural networks. This

would eliminate much of the manual effort from creating speech recognizers, especially for less commonly

used languages and dialects. It may ultimately result in better accuracy as well. Promising, though not

state-of-the-art, results have been obtained by Listen, Attend, and Spell [13] and Eesen [53].

A hardware-accelerated version of one of these recognizers would not need a front-end, and could

markedly simplify the Viterbi search architecture we have developed. Most resources would be devoted

to NN evaluation, which could present an even larger memory bottleneck than we observed with HMM rec-

ognizers. Overall, it would look very different from the system presented in this thesis. This line of research

should be watched carefully.

2 You design a system with the memory technology you have, not the memory technology you might want or wish to have at a
later time. (With apologies to the former US Secretary of Defense, Donald Rumsfeld.)
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