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Abstract

As hardware systems are becoming bigger and more complex, it is becoming increas-
ingly harder to design and reason about these systems in a monolithic fashion. While
hardware is often designed in a modular manner, its verification is rarely performed
modularly. Moreover, any modular refinement to an existing system requires a full
system verification to guarantee correctness, even if only a few components of the
system have been refined.

In this thesis, we present a new framework for modular verification of hardware
designs written in the Bluespec language. That is, we formalize the idea of com-
ponents in a hardware design, with well-defined input and output channels; and we
show how to specify and verify components individually. For verifying a full system,
we show how the proofs of its components can be composed, treating the components
as black-boxes and not looking beyond their specifications.

As a demonstration of this methodology, we verify a fairly realistic implementa-
tion of a multicore shared-memory system with two types of components: memory
system and processor, with machine-checked proofs in the Coq proof assistant. Both
components include nontrivial optimizations, with the memory system employing an
arbitrary hierarchy of cache nodes that communicate with each other concurrently,
and with the processor doing speculative execution of many concurrent read opera-
tions. Nonetheless, we prove that the combined system implements sequential consis-
tency. To our knowledge, our memory-system proof is the first machine verification
of a cache-coherence protocol parameterized over an arbitrary cache hierarchy, and
our full-system proof is the first machine verification of sequential consistency for a
multicore hardware design that includes caches and speculative processors.

We also embed the Bluespec language in the Coq proof assistant and formalize its
modular semantics, enabling a verification engineer to obtain machine-checked proofs
for Bluespec designs using our framework.

Thesis Supervisor: Arvind
Title: Professor

Thesis Supervisor: Adam Chlipala
Title: Associate Professor

3



4



Acknowledgments

As my long and adventurous journey as a PhD student comes to an end, there are

several people to whom I would like to express my gratitude and appreciation. These

few paragraphs of acknowledgments would not do justice to all the help and support

they have given me over all these years - for that, I apologize in earnest in advance.

First and foremost, I would like to thank Professor Arvind, my advisor and men-

tor, for guiding me throughout grad school. He not only allowed me, but also actively

encouraged me to explore different topics for research. His tutelage was instrumental

in shifting my research interests from building systems to something more theoretical.

He introduced me to the world of functional languages and rigorous semantics which

culminated in my thesis being about formal verification of hardware systems. He

taught me an important lesson about research: communicating the ideas is as impor-

tant as solving the problem. He also showed me that just rigor and completeness are

not sufficient for a good practical theory, but also simplicity.

Second, I want to thank my co-advisor, Associate Professor Adam Chlipala, for

all the technical guidance he has provided to my thesis. I was bumbling around with

a paper-and-pencil proof of correctness of a cache coherence protocol when I first met

him, and he encouraged me to formalize my ideas in Coq. He also convinced and

guided me to develop the cache coherence protocol proof into a full fledged thesis on

formal hardware verification.

I also want to thank Professor Joel Emer, who was my supervisor when I interned

at Intel, Hudson, and Dr. Ekanadham Kattamuri, who supervised me at IBM Re-

search, TJ Watson. Both of them gave me valuable insights that helped me nurture

my ideas. I still remember the post-lunch walks I took with Dr. Ekanadham during

my internship at IBM Research where we debated on the merits of formal verification

using theorem provers for hardware systems.

Staying in grad school for a long time has its advantages: I had the pleasure of

working with several people closely on various projects, even in topics unrelated to

my thesis. I have been collaborating with Joonwon Choi for the last couple of years

5



to develop a hardware verification framework, Kami, based on my thesis. Another

colleague, Ben Sherman has also been involved in this project for a while. The

library we use in Kami borrows heavily from the code written by Dr. Ben Delaware.

Dr. Nirav Dave has been my friend and mentor throughout my stay in grad school;

he helped me with my initial formulation of the cache coherence problem and also

introduced me to various formal verification techniques. Dr. Alfred Man Cheuk Ng

was another friend and mentor during the early part of my grad school; it was due to

his constant skepticism about the correctness of a cache coherence protocol used in

the graduate Computer Architecture class at MIT (6.823) that I became interested

in this problem. When I interned at Intel, I worked closely with Dr. Michael Pellauer

and Nikhil Patil, both of whom had tremendous influence in the way I approach a

problem. The two other colleagues I had the most interactions with are Richard

Euhler and Sizhuo Zhang. Both of them are extremely rigorous and systematic; they

have always been available to discuss my half-baked ideas and point out the issues in

them. I also started working with Andy Wright and Thomas Bourgeat towards the

end of my tenure as a grad student, and they have given me valuable feedback on my

dissertation. I would also like to thank Dr. Thomas Braibant for his advice on using

Coq and for the discussions on embedding a hardware description language in Coq.

Life in grad school would not have been as rewarding for me without all my

friends and social circle in and around MIT. They are now like a family away from

home to me. I would like to thank my office mates Shuotao, Sangwoo, Ming and

Sungjin and my former office mates Myron and Abhinav for the constant bantering

that kept me entertained throughout. Shuotao was also the "man with the car"; he

never once refused to give me a ride or help me move heavy furniture in his SUV.

I am forever grateful to Sungjin for his help during my stay in Korea. I would like

to specially thank my friends outside CSAIL, Nikhil Galagali, Rajan Udwani and

Nishanth Mundru, for all the help they had provided around the time of my thesis

defense. Without their help there is no way I could have completed my move out

of MIT's Ashdown house and caught the flight back home the day after my defense!

Rajan has also accompanied me in numerous ski and snowboarding trips, and has

6



been a regular attendee of one of my favorite pastimes, the board game nights in

our dorms. I would also like to thank Lee Drahushuk for organizing the board game

nights, and Sai Gautam and Siddharth who were also regular attendees. I am also

thankful to Dr. Karthik Venkataraman who was my former roommate, and has been

my friend through thick and thin. Finally, I would like to thank my extended social

circle in the greater Boston area and my undergrad friends for tagging with me in

numerous trips.

Life at MIT would have been a lot harder without all the help I received from

others. Gita, Prof. Arvind's wife, has always been very kind to me and really helped

me to get over difficult times. Nikhil Galagali's mother had come to Cambridge

during the last few months leading up to my thesis defense and had been feeding me

with delicious home-cooked food for all those months! My uncle Naren, who lives in

western Massachusetts, has been treating me as family and my uncle Siva had flown

all the way from California to help me settle down right after I landed in Boston.

I would not have been interested in research if not for my grandpa, Mr. Annamalai,

and my middle school physics teacher Prof. Ananthan. They were the ones who made

me fall in love with math at that age, which influenced me to pursue grad studies

in computer science right after undergrad. I would like to thank my wife, Radhika,

for all the support she has given me from the time we had known each other. And a

big thanks to my parents, Dr. Vijayaraghavan and Dr. Nagalatha, who have always

stood by me all through these years and encouraged me to pursue my dreams. I would

like to specially thank my mom for all the times she visited me in Cambridge, taking

care of daily chores and cooking delicious food for me and my friends whenever she

visited. Finally, I want to thank my grandma, Mrs. Sarada, for everything she has

done for me. I dedicate this thesis to my grandparents.

7



8



Contents

1 Introduction

I Hardware System Implementations and Specifications

2 Background: Hardware Designs using the Bluespec

2.1 Examples of Specifications in the Bluespec Language

2.1.1 Specification of a FIFO buffer . . . . . . . . .

2.1.2 Specification of a Stream Counter . . . . . . .

2.1.3 Instances of Modules . . . . . . . . . . . . . .

2.1.4 Composition of Modules . . . . . . . . . . . .

2.2 Semantics of Bluespec . . . . . . . . . . . . . . . . .

2.3 Synthesizing Bluespec Designs . . . . . . . . . . . . .

2.4 Advantages of Bluespec for Designing Hardware . . .

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . .

Language

3 Multiprocessor System Specification and Implementation

3.1 Sequential Consistency . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1.1 Abstracting the ISA . . . . . . . . . . . . . . . . . . . . . . .

3.1.2 Specifying Sequential Consistency . . . . . . . . . . . . . . . .

3.2 Respecifying Sequential Consistency with Communication . . . . . .

3.2.1 The Decoupled Processor . . . . . . . . . . . . . . . . . . . . .

3.2.2 Buffers between Processors and Memory . . . . . . . . . . . .

3.2.3 Atomic Memory: Instantaneous Memory + Decoupling Buffers

9

15

20

25

25

26

28

30

. . . . . . . . 31

. . . . . . . . 31

. . . . . . . . 33

. . . . . . . . 35

. . . . . . . . 36

37

37

38

39

41

42

42

46



3.2.4 Decoupled Multiprocessor System . . . . . . . . . . . . . .

3.3 Speculative Out-of-Order Processor . . . . . . . . . . . . . . . . .

3.3.1 Components of the Speculative Out-of-Order Processor . .

3.4 Full-system Verification of the Multiprocessor

3.5 C onclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Implementing the Memory Subsystem Using Coherent Caches

4.1 Structure of Hierarchy of Caches . . . . . . . . . . . . . .

4.2 Cache Nodes . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.1 Abstractions Used in the Cache Nodes . . . . . .

4.2.2 Naming Conventions used in the Cache Nodes . .

4.2.3 Li cache . . . . . . . . . . . . . . . . . . . . . . .

4.2.4 M em ory . . . . . . . . . . . . . . . . . . . . . . .

4.2.5 Internal Cache . . . . . . . . . . . . . . . . . . .

4.2.6 Subtle Design Decisions in the Caches . . . . . .

4.3 Network Between the Caches . . . . . . . . . . . . . . . .

4.4 Design for Provability . . . . . . . . . . . . . . . . . . . .

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . .

II Verifying Hardware Systems using Labeled

Systems

57

59

60

. . . . . . . 61

. . . . . . . 62

. . . . . . . 63

. . . . . . . 64

. . . . . . . 70

. . . . . . . 74

. . . . . . . 78

. . . . . . . 80

. . . . . . . 82

. . . . . . . 85

Transition

5 Background: Verification Techniques for Hardware Systems

5.1 Hardware Verification using Model-Checking . . . . . . . . . . . . . .

5.2 Hardware Verification using Theorem Provers . . . . . . . . . . . . .

5.3 C onclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Modular Semantics of Bluespec

6.1 Syntax ... .... . .... ... .... ............ . .. .. . . .

6.2 Meaning of Module Composition . . . . . . . . . . . . . . . . . . . .

6.3 M odular Sem antics . . . . . . . . . . . . . . . . . . . . . . . . . . . .

86

89

89

92

93

95

95

99

102

10

46

47

47

. . . . . . . . . . . . . 56



6.3.1 Semantics for Expressions . .

6.3.2 Semantics for Actions . . . . .

6.3.3 Semantics for Modules . . . .

6.4 Trace-Refines Relation . . . . . . . .

6.5 Properties of Trace-Refines Relation.

6.5.1 Decomposing a Multistep .

6.6 Weak Implements Relation . . . . . .

6.7 Limitations of the Semantics . . . . .

6.8 Conclusion . . . . . . . . . . . . . . .

7 Verifying the Complete Multiprocessor System Implementation

7.1 Removing Speculative Loads in the Labels of Atomic Memory . . . .

7.2 Refinement Relation between Speculative Out-of-Order Processor and

Instantaneous Processor . . . . . . . . . . . . . . . . . . . . . . . . .

7.2.1 Speculative Out-of-Order Processor Implements Decoupled Pro-

cesso r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2.2 Decoupled Processor Implements Instantaneous Processor . . .

7.3 C onclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Verifying the Memory Subsystem

8.1 Soundness of a Hierarchy of Coherent Caches w.r.t. Atomic Memory.

8.1.1 Cache Invariants . . . . . . . . . . . . . . . . . . . . . . . . .

8.1.2 Notation used in the Invariants and the Proofs . . . . . . . . .

8.1.3 Formal Specification of Cache Invariants . . . . . . . . . . . .

8.2 Deadlock-freedom in a Hierarchy of Coherent Caches . . . . . . . . .

8.3 Livelock-freedom in a Hierarchy of Coherent Caches . . . . . . . . . .

8.4 C onclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Conclusions and Future Work

A Functions Used in Defining Semantics

A.1 Extracting Values from Finite Register Maps . . . . . . . . . . . . . .

11

. . . . . . . . . 102

. . . . . . . . . 103

. . . . . . . . . 105

. . . . . . . . . 113

. . . . . . . . . 115

. . . . . . . . . 119

. . . . . . . . . 123

. . . . . . . . . 124

. . . . . . . . . 126

127

130

133

134

135

138

139

139

147

147

149

162

167

181

183

187

187



12



List of Figures

2-1 Module FIFO: A two-element FIFO ..... ................... 26

2-2 Module Stream Counter': Another example of a Bluespec module . . . 29

3-1 Module Pi,,t: An instantaneous processor . . . . . . . . . . . . . . . . 39

3-2 Module Minst: An instantaneous memory . . . . . . . . . . . . . . . . 40

3-3 Components of SCdec, i.e., sequential consistency with communication 41

3-4 Pdec: A decoupled processor serving as specification of P0 . . . . . .  43

3-5 Module Mrap: Rules for processing load and store requests from the

b uffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-6 Module P'O: The speculative out-of-order processor module (the re-

order buffer and the branch predictor are separate modules) . . . . . 51

4-1 Example instantiation of the memory subsystem . . . . . . . . . . . . 60

4-2 Register Arrays in each cache node . . . . ,. . . . . . . . . . . . . . . 62

4-3 Li cache ......... .................................. 66

4-4 Module Li': Module containing the transition rules of the Li cache . 67

4-5 The augmented state changes for request entries in cRqs . . . . . . . 68

4-6 M em ory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4-7 Module M': The module containing the transition rules of the memory 71

4-8 The augmented state changes for request entries in cRqs in the memory 73

4-9 Internal Cache . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . 76

4-10 Module Lint': Module containing the transition rules of the Lint cache 77

6-1 Primitive Module given by [[P1 t + Minstj . . . . . . . . . . . . . . . . 101

13



6-2 Modules m, and m 2 showing the limitations of our modular semantics 125

7-1 Overall structure of the proof of the full system . . . . . . . . . . . . 128

8-1 Stages for a request r from a processor to an Li cache c . . . . . . . . 169

8-2 Stages for a request r from a cache to its parent c (which is not memory) 170

8-3 Partial order for stages representing evicting a cache line . . . . . . . 171

8-4 Partial order for stages representing upgrading the cache state and

downgrading the other children, for a (WaitSt, l)-request r = (c', a, y, M)

in the cRqs buffer of an internal cache . . . . . . . . . . . . . . . . . 172

8-5 Stages for a request r from a cache to memory m . . . . . . . . . . . 173

8-6 Partial order for stages representing upgrading the cache state and

downgrading the other children, for a WaitSt-request r = (c', a, y, M)

in the cRqs buffer of memory . . . . . . . . . . . . . . . . . . . . . . 174

8-7 Stages for a request from a parent to its child c . . . . . . . . . . . . 174

8-8 Partial order for stages representing downgrading a cache line for pro-

cessing request r = (Req, a, I) from the parent. . . . . . . . . . . . . . 175

14



Chapter 1

Introduction

Hardware systems are inherently concurrent and highly non-deterministic. Modern

processors, for example, have several highly concurrent cores communicating with a

cache-coherent, distributed-memory system. The goal of this work is to provide a

framework for full verification of such complex hardware systems.

Modularity has long been understood as a key property for effective design and

verification of such complex systems [72]. For the designer, it allows a separation of

concerns, increasing robustness by allowing the behavior encapsulated by a modular

boundary to be realized by multiple implementations, any of which may be dropped

into the system safely. It also allows a greater parallelization of human design effort,

improving development time. Similarly, verification is simplified, as modular interface

agreements provide a natural lemma structure. They lead us towards a decomposition

of the whole-system verification task into lemmas about subsystems, which can be

composed in a black-box manner to produce full-system theorems.

The traditional notion of modularity in hardware is closely tied to synchronous

Finite-State Machines (FSMs). The word "synchronous" implies the presence of a

notion of clock cycles, and during each clock cycle, a module reads its current state,

reads its inputs, produces its outputs and updates its states. Multiple modules are

composed by connecting inputs of one module to outputs of another module while

ensuring that a causal relation is obeyed for reading the inputs and producing outputs

(i.e., there is no "combinational cycle" or a cycle with inputs and outputs with no
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state elements.)

The biggest problem with using FSM abstraction is that it requires global rea-

soning. For example, if we change the timing of an adder module so that it takes 2

clock cycles instead of 1, the whole system is likely to break. Modular reasoning and

verification is close to impossible unless all the details of the rest of the system are

known. A state transition in a full-system FSM is complex, taking into account the

transitions in every module that comprises the FSM. This significantly restricts the

kinds of refinements that can be performed on a module.

Bluespec [6,121 presents an alternative to using FSM-based modularity for design-

ing hardware systems. In this methodology, a hardware system is described in terms

of modules, each of which contains guarded atomic actions or rules. These rules are

atomic state transitions reading the state of the module and updating it. The behavior

of a module obeys one-rule-at-a-time semantics, where any state reached by the sys-

tem can be explained by a sequence of rule executions, one at a time [5, 44,45]. The

commercial Bluespec compiler synthesizes such descriptions into circuits which are

competitive in performance to those generated from synchronous FSM descriptions

(like Verilog, VHDL, etc.) [4,26,30-33,44,52,67,68,75-771.The compiler automatically

generates a scheduler circuit to schedule several "non-conflicting" rules, i. e., rules with

disjoint read and write sets for registers, to execute concurrently. Such a scheduling

will not violate the one-rule-at-a-time semantics. Thus, reasoning about the system

becomes easier as one has to simply reason about atomic transitions. The burden of

concurrent execution of atomic actions is left to the compiler and the correctness of

the compiler can be proven once for all programs. Because of these advantages, we

chose to use Bluespec-like specifications for the design of our modules.

A system in Bluespec is composed of several modules. These modules communi-

cate with each other via methods that employ asynchronous handshaking protocols.

The direct support for asynchronous handshaking protocols also enables a much wider

variety of modular refinement in Bluespec compared to designing using synchronous

FSMs.

Each rule in Bluespec, by design, is very similar to an inference rule in operational
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semantics. While the semantics of a single-module Bluespec program looks just like

a simple transition system which is well understood, it gets tricky to provide the

semantics of multiple modules. One option is to flatten the module hierarchy, but

this approach is antithetical to modular reasoning. In order to formalize the semantics

of a composition of modules in Bluespec, we provide modular semantics for Bluespec

modules, which are independent of the context in which the module is used. These

semantics are isomorphic to those of Labeled Transition Systems (LTSes) [65J, a well-

studied approach used to express the operational semantics of many process calculi.

LTSes have successfully been used in concurrent software modeling. We use the labels

of an LTS to model the communication in Bluespec between modules via methods

calls, and the state transitions in Bluespec are transitions in LTSes.

As our unified notion of specification and proof, we adopt trace refinement, which

captures when one concurrent system can produce only those observable behaviors

that another system could also produce. Each of our realistic hardware components

is associated with a simpler "reference implementation" that serves as a specification,

and we prove that each realistic component refines its spec. Thereafter, it is sound

to use the simpler spec component in reasoning about the behavior of the system.

As a challenging case study involving realistic hardware designs, we focus on veri-

fying that a particular infinite family of multicore, shared-memory systems implements

sequential consistency. The proof is parametrized over an unknown number of proces-

sors connected to an arbitrary memory hierarchy with an unknown number of caches

in an unknown number of layers (e.g., L1, L2).

Each key component of our case-study system has a simple specification. The

cache hierarchy allows multiple caches to cache a location simultaneously, doing cache

lookups, and communicating with other caches to keep the locations "coherent." The

specification for such a complex system is a monolithic memory that responds in-

stantly and atomically to each load or store request. Similarly, the spec for the

processor executes instructions in order, atomically with no speculation. But the

actual processor speculatively executes all non-store instructions, sending multiple

load requests to the memory concurrently (without waiting for load responses before
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executing other instructions). The meat of the verification is in showing that each

optimized component refines its simpler counterpart. After each such proof, we may

in effect substitute the optimized version for the simple version in a black-box way

within a design, with a full guarantee of soundness. Thus, we are able to verify the

components of a modern processor against general formal interfaces, enabling mixing

and matching of different realizations of each interface, without doing any new proofs

that peek beneath abstraction boundaries.

All our proofs about soundness are mechanized in the Coq proof assistant, and

they are modular in the sense of allowing further optimization to either processor or

memory without needing to touch the proof of the other. We also verify the deadlock-

freedom property mechanically in the Coq proof assistant for the cache hierarchy and

give a paper-and-pencil proof for the livelock-freedom property.

In terms of developing the general verification framework, we embed the Bluespec

language in Coq and formally specify its modular semantics inside Coq using the

PHOAS approach [22]. We also formally show the isomorphism between the modular

semantics of Bluespec and those of LTSes. While ideally this must have preceded our

case study involving verification of the multicore system, we had performed the case

study first as a proof of concept before we embedded the Bluespec language in Coq.

Future Bluespec designs can be formally verified using this framework.

The main contributions of this thesis are:

" A general modular verification methodology applicable to hardware algorithms,

based on labeled transition systems.

* A deep embedding of the Bluespec language in Coq, a formal specification of its

modular semantics and its relation to labeled transition systems.

" A complete detailed design of an invalidation-based cache-coherence protocol

for distributed memories comprised of arbitrary cache hierarchies.

" The first machine-checked proof of soundness of the cache hierarchy design

with respect to an atomic memory specification and a machine-checked proof

of deadlock-freedom.
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* The first machine-checked proof of an implementation of sequential consistency

involving speculative processors and cache-coherent distributed memory.

Thesis Organization: We organize the thesis into two parts. Part I is concerned

with giving a background overview of designing hardware modules using Bluespec.

We then give the Bluespec designs for various multiprocessor systems, starting with

a simple Sequential Consistency specification all the way to a complex system con-

sisting of speculative out-of-order processors connected to a hierarchy of coherent

caches. In Part II, we start with a background overview of various hardware verifi-

cation techniques. We contrast the approach against the more widely used approach

in hardware verification involving model-checking. We then specify the modular se-

mantics of Bluespec and formally verify that the complex multiprocessor system is

actually an implementation of the simpler system. We end this part with a discussion

of the work to be done in terms of improving the verification framework and building

a library of formally verified hardware components using this technique.
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Part I

Hardware System Implementations

and Specifications

20



Organization

How are systems verified? On one hand, one can specify properties that the system

should obey. For example, one can verify whether a program ever executes a divide-by-

zero instruction. However, just verifying a given set of properties does not guarantee

that the system is behaving correctly. One has to specify a complete set of properties

that a system should obey and then verify if the system obeys all these properties

in order to have a guarantee that the system is correct. For example, for a sorting

function, it is not enough to specify that the resulting list/array is sorted; one has to

also specify that the resulting list/array is a permutation of the input list/array.

Another important criterion that is desirable for verifying large systems is that of

composability. Verifying a system composed of several components can scale only if

we can treat the individual components as black boxes and use the properties of the

individual components to get the property for the full system. But ad-hoc listing of

properties of the individual components may not be strong enough to guarantee that

they can be composed into a full-system property.

One way to ascertain that all the properties that a system should obey have been

stated is to specify a simpler system and prove that the "behavior" of the more com-

plex system is contained within the simpler system. If the behavior of the system A

is contained in the behavior of another system B, then the A is said to implement

B, or that A is a refinement of B. Hence, system A can be called as the implemen-

tation for the specification, i.e., system B. This approach naturally lends itself to

composable verification because if the behavior of an implementation is contained

within the behavior of its specification, then the specification can be replaced by its

implementation in any context!
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Intuitively, the behavior of the system is the externally observable interactions

that the system has with its environment. If the behavior of one system is contained

within another, then the external environment cannot tell the former system from

the latter. This thesis is focused on verification of hardware systems. In order to

verify if a complex hardware system is correct, we first specify the desired behavior in

terms of a simpler hardware system and then verify if the complex system implements

the simpler system. We will be formalizing the notion of "containment of behaviors,"

"implements" or "refinement," etc., in the second part of this dissertation.

We will use the concrete problem of multiprocessor verification as our running

example. Multiprocessors are one of the most complex yet common hardware designs,

making them an ideal case study for full-system hardware verification. They can be

broadly divided into two components: the processor subsystem and the memory

subsystem. Each of these subsystems are complex systems in their own right. In

Chapter 3, we will give the specification of a multiprocessor system in terms of the

simple sequential consistency specification as described by Lamport [56]. We will

then refine the processors and the memory subsystems progressively with Chapter 3

dealing exclusively with refinements of the processor subsystem and Chapter 4 dealing

with refinements of the memory subsystem.

As our first refinement of sequential consistency, we will discuss a simple decoupled

multiprocessor system, where unlike Lamport's sequential consistency specification,

the processors and the memory are separated by buffers. We will then refine the

processor further by designing a speculative out-of-order processor which executes

instructions, sends memory requests and receives their responses out of order.

We will refine the memory subsystem by designing a hierarchy of coherent caches

in Chapter 4. These caches employ a directory-based coherence protocol. We will

give the complete detailed specification of the protocol in this chapter.

We will be using a stylized version of the Bluespec SystemVerilog (BSV) Hard-

ware Description Language (HDL) [12j for describing the modules. While Bluespec

provides many syntactic conveniences over more conventional HDLs like Verilog and

VHDL, and has a powerful type system unlike the other HDLs, the primary reason
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why we chose Bluespec is because designs written in Bluespec naturally lend them-

selves to verification, as we shall see in the next chapter (Chapter 2).
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Chapter 2

Background: Hardware Designs using

the Bluespec Language

The goal of this chapter is to give an informal overview of the Bluespec language which

is the language we use for specifying all the hardware designs in this dissertation.

This chapter is organized as follows. In Section 2.1, we give examples of modules

and their compositions in the Bluespec language. In Section 2.2, we discuss their

semantics informally, and in Section 2.3, we describe the synthesis procedure for

generating hardware circuits from the Bluespec programs, again informally. Finally,

in Section 2.4, we will discuss why designing hardware systems using Bluespec makes

the verification of systems inherently easier.

2.1 Examples of Specifications in the Bluespec Lan-

guage

In this section we will give examples of hardware module specifications in the Bluespec

language to give a quick overview of the syntax of programs in Bluespec and an

intuition about their semantics. While we will be omitting the specification of types

throughout the dissertation, *types need to be specified in real Bluespec programs.
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Figure 2-1: Module FIFO: A two-element FIFO

2.1.1 Specification of a FIFO buffer

Figure 2-1 shows the specification of a simple module implementing a two-element

FIFO buffer.

The statement Regs d[2]({_}), v[2]({False}) specifies that the FIFO module has

two register arrays d and v. Both are two-element arrays. In general, an array x

is specified using x[NUM] where NUM is the number of elements in the array. The

values in parentheses specify the initial values of the respective registers. The special

value of _ stands for undefined value, indicating that the corresponding register

is not initialized. Register arrays must be initialized with a list of values. If the

initial value is inside curly braces { ... }, then it indicates that all elements of the

array are initialized with that value. Register arrays can also be initialized with a

constant list of values. For example, Regs x[2](xo) initializes the ith register with

the value given by the ith element of the list x0 . Multi-dimensional arrays are written

as x[NUM1] ... [NUM,]({... {xo}.. .}) which initializes all the elements of array x to

value x 0.

The two register arrays in the FIFO module, viz., d for data and v for valid,

represent the data present in the buffer and the validity of the corresponding data,

respectively. The register v[iI indicates that the corresponding data in register d[i]

has been enqueued earlier and yet to be popped or moved from slot i.

The specification of registers is followed by the specification of methods. Methods
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Module:
Regs d[2]({_}),v[2]({False});

Meth enq(a):
when(-,v[O]) =

d[0] := a;
v[O] := True;

Meth pop:
when(v[O] V v[1]) 4

v[1] := [0];
d[1] := [];
v[O] := False;
return(if (v[1]) then d[1] else d[O]);



are the means by which modules communicate with each other. A module calls meth-

ods defined by another module, and in this call, it can pass zero or more arguments.

Our FIFO module defines two methods, enq and pop, which can be called by other

modules. A called method returns a value to the caller, and in addition, may or

may not change the state of the module defining that method. The return value is

specified using the statement return(x) which returns a value x to the caller. If the

method does not contain any return statement, it does not return any value to the

caller.

The first method enq(a) specifies the action of enqueuing a value a into the buffer

into slot 0. The when keyword specifies a guard over an action. A guarded action

can be performed only when the guard is true. The caller of the method has to ensure

that the guard of the method's action is true before calling the method. In the enq

example, the guard prevents enqueue from taking place if the buffer already has an

element in slot 0. This is ascertained by checking the validity of the data in slot 0 by

reading the register v[0].

Stripping away the guard in the body of enq method leaves us with the actual

action corresponding to the method. An action is composed of multiple sub-actions

separated by semicolons. In our enq example, the first action d[O] := a updates the

data register d[O] with the enqueued value, and the second action v[O] := True sets the

valid register v[O] indicating that the data in slot 0 is valid. In general, a statement

r := e represents an update of register r with expression e. The enqueue method does

not return any value.

The second method pop removes the oldest element from the buffer and returns

it. The action in pop method is guarded by a condition that the buffer has at least

one element. The condition that the buffer is not empty is asserted if and only if

either v[O] or v[1] is not set as is explained below. The pop method does not have any

parameters.

The body of pop method performs four sub-actions, the first three being register

updates and the last sub-action being a return action. It first shifts the data and

valid values from the enqueue-slot (slot 0) to slot 1, so that future pops can simply
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read slot 1. Then, it unsets v[O] indicating that the data in slot 0 is no longer valid,

thereby allowing later enqueues to happen in slot 0. It finally returns either the value

originally present (i.e., before it got updated because of the action in pop method's

body) in slot 1 if it is valid, or the value originally present in slot 0 (which has to be

valid if slot 1 is not valid, since we already checked that one of v[0] or v[1] is valid in

the guard of the pop method).

The methods in the FIFO module have showed the different kinds of expressions

in the Bluespec language. An expression can either be a register read, a method

argument access, a constant, or a complex expression formed by combining one or

more expressions using arithmetic or logical operators (for example (v [0] V v [1]) in the

guard of the pop method or the return value of pop method, if (v[1]) then d[1] else

d[0]).

A general module is a collection of registers with their initial values, rules and

methods. The FIFO buffer module, which was discussed in this section, does not have

any rules, but the next section discusses a stream counter module which has a rule.

2.1.2 Specification of a Stream Counter

We will now design a stream counter module which interacts with two modules fi,
an input buffer; and fout, an output buffer. The stream counter pops a value from

the input buffer and enqueues that value into the output buffer. Simultaneously, the

stream counter also increments one of the two counter registers co or ci present in the

module.

The data being popped from the input buffer is a pair (v, b) where v specifies the

message and b is a boolean value indicating which counter to increment. If the boolean

is True, counter co is incremented; otherwise, counter ci is incremented. Figure 2-2

shows the specification for the stream counter module.

This module introduces the concept of a Rule. A rule comprises of an action that

can execute at any time. If the action is guarded, then the guard must be true for

the rule to execute.

In the stream counter example, the action constituting the Rule(Process) is com-
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Module:
Regs co(0), c (0);

Rule Process:
let (v, b) = fin. pop;
if (b) then co := co + 1 else ci := cl + 1;
fout.enq((v, b));

Meth getCountoo:
return(co);

Meth getCounti(:
return(ci);

Figure 2-2: Module Stream Counter': Another example of a Bluespec module

posed of two sub-actions. The first sub-action is a call to method fin.pop, without

passing any arguments. This call pops the oldest element from the input buffer.

This method is guarded by an assertion that the buffer fin is not empty. If the as-

sertion is false, then the method cannot be called inside Rule(Process), and hence

Rule(Process) cannot fire. The return value of this call is a tuple whose elements are

bound to the variables v and b via the let expression. Any expression can be bound

to temporary variables. In hardware terms, these variables correspond to wires (as

opposed to registers) holding the assigned values.

We make extensive use of pattern matching in let expressions. In particular, if

we are binding expressions which are tuples to a matching tuple of variables on the

left, then each element of the tuple expression is bound to a variable that is present

in the same position in the left pattern as the element of the tuple expression. We

can also bind nested tuples. For example, let(x, (y, z)) = (2, (3, 4)) will bind x to 2,

y to 3 and z to 4.

When a constant is present in the left pattern of a let expression, the overall action

of which the let expression is a part is guarded with a constraint that the expression

returns the specified constant. For example, the statement let(v, True) = fin.pop; ...

is equivalent to let(v, b) = fin.pop; when(b) .. ..

The second action in Rule(Process) is a conditional action. If the value of the

variable

mented.

b is True, then counter c0 is incremented. Otherwise, counter ci is incre-

We may omit the else clause in the (if ( ... ) then ... else .. .) action if
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there is no action corresponding to the else clause.

The last action in the rule is a call to method fo0 t.enq with the argument (v, b),

which enqueues the data into the output buffer. This method is guarded by the

condition that fout buffer is not full, and Rule(Process) will not fire unless that is

true.

2.1.3 Instances of Modules

The FIFO module defined in Figure 2.1.1 is a reusable library component, in the

sense that this module can be used in any design which requires a two-element FIFO

buffer. In fact, the fin and fout modules connected to the stream counter module

can themselves be "instances" of this FIFO module. Technically, there is a difference

between a module (like FIFO) and an instance of the module (like fin or fout). But,

the same effect can be achieved by creating a renamed copy of the module, i.e., a

copy of the module where the registers and methods are renamed. For example, for

instance fin, we can prepend "fin." to all register and method names, resulting in

fin.enq and fin.pop methods, and fi1 .d and fin.v register arrays. For the purposes

of this dissertation, all modules are unique, i.e., there is no separate concept of

instantiations of modules; each module is an instance of itself. Moreover, the names

used in the modules' registers and the methods are all globally distinct. Prepending

the "instance" names to the registers, rules and methods of each module will create

globally distinct names as long as the instance names are globally unique, which will

be assumed throughout. For the sake of convenience, we omit the prefix for registers,

rules and methods whenever the module being discussed is clear from the context.

Since this dissertation uses the example of a multiprocessor system, it is useful to

instantiate several "copies" of the same module, such as the processor. We usually

use M' to denote the ith copy of module M. The registers, rules and methods defined

inside M will also get the superscript ' in that case.
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2.1.4 Composition of Modules

Modules are composed using the + operator. For instance, we can create a new

module which is a composition of the stream buffer module with the input and output

buffers as shown below:

StreamCounter A StreamCounter' + fin + fout

The meaning of the + operator applied on two modules is straightforward - it

effectively creates a new module which has all the registers, rules and methods of the

two individual modules. But the bodies of all methods which are called as well as

defined in the newly created module are inlined at their call sites, and are removed

or hidden in the new module. For instance, in the above composition, fin and fout
both have methods enq and pop. However, module StreamCounter' calls fin.pop and

fout.enq. Thus, module StreamCounter, formed by composing StreamCounter' with

fin and fout, effectively exposes only methods fi,.enq and fout.pop.

While the meaning of the + operator can be understood in terms of merging

two modules, we do not actually create a new module whenever the + operator is

encountered. In other words, the + operator is not a syntactic sugar, but rather

a fundamental operator in our syntax. In Chapter 6, we will be giving modular

semantics for individual modules and semantics for composing two modules using the

+ operator. We will also be showing that the semantics for composing two modules

matches the semantics of the merged module described above.

2.2 Semantics of Bluespec

We will now informally describe the behavior of modules specified in Bluespec.

Let us start with a simpler system consisting of just one module, and no methods

defined by this module. Informally, the behavior of such a module is the set of all

possible sequences of state transitions that the module undergoes, starting from the

initial state. Each state transition is caused by the execution of a single rule in the

module, which reads the module's registers and updates them. It appears as if exactly
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one rule fires in each transition step, and this behavior is aptly named one-rule-at-a-

time semantics. Rules in Bluespec are called atomic actions for the same reason. In

a given state, if there are multiple rules that can fire, then any one rule can be chosen

to fire non-deterministically. This gives rise to multiple transition sequences defining

the behavior of a module.

All the register reads in the action corresponding to a rule happen before any

register update happens, even if a register read appears syntactically after a write

to the same register. It will appear as if all the sub-actions within a rule's action

happen concurrently during a transition, with all the register reads happening at

the beginning of the transition and all the register updates happening at the end.

Updating the same register multiple times in an action makes that action illegal.

An important concept related to Bluespec actions is that of a guard. Any action

(or sub-action) can be guarded. If an action consists of several guarded sub-actions,

then the guards of all these sub-actions must is true for the rule to be able to fire.

This creates a complication in the presence of conditional actions. Only those guards

of conditional actions which are in the "taken-branch" of the conditional need to be

true.

Notice that the only way a module can communicate with the external environ-

ment is via methods that are called by the methods or rules of the module or via the

methods defined by the module. We have restricted the module to not have any de-

fined methods, so the only externally observable behavior of a module is via the called

methods. In fact, the behavior of a module is not defined by the transition sequence

(as the module's state is not visible externally) but by the sequence of methods called

by the module along with their arguments and return values.

If the module defines methods, then its behavior must include the calling of these

methods by the external environment. Thus, the behavior includes the sequence of

methods called by the module as well as the sequence of methods that can be called

by the external environment (with arguments and return values for both called and

defined methods). We will define this notion formally in Chapter 6 in Part II.

The easiest way to understand the semantics of a composition of modules is con-
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sidering a module formed by flattening the module definitions. This global module

contains all the registers present in the individual modules, and the definitions of all

the called methods are inlined at the places of their calls, binding the return values

of the methods to the variables that binds the method calls.

While it is easy to understand semantics by flattening the module definitions,

it is important to give semantics of a module independent of the context in which

the module resides. This enables us to develop reusable modular proofs for various

components. This is the main topic of Chapter 6 in Part II.

Once the methods are inlined, the composition of modules contains a set of rules,

each rule specifying an action (which comprises of several sub-actions). An action

is illegal if there are two sub-actions within that action, both of which write to the

same register or call the same method.

2.3 Synthesizing Bluespec Designs

Synthesizing Bluespec programs into hardware circuits is a fundamental requirement

for using the Bluespec language to describe hardware. While we will informally

describe how Bluespec programs are synthesized into hardware circuits in this section,

the synthesis problem is orthogonal to the verification problem which is the focus of

this dissertation.

Each rule in the system generates a combinational circuit producing values cor-

responding to the register updates. The let-bindings create circuits for the bound

expressions, which can be reused within the rule. Whenever a rule fires, then the

corresponding registers are updated using this combinational circuit.

While the semantics of Bluespec dictates that each rule in the overall system fires

one-at-a-time, actually synthesizing a hardware circuit where only the circuit corre-

sponding to one rule is active during any clock-cycle is very inefficient, performance-

wise. If there are two "independent" or non-conflicting rules, i.e., rules that do not

access the same set of registers, then these two rules can fire concurrently without

breaking the one-rule-at-a-time semantics. The resulting state transition will be as if
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the two individual transitions happened one after the other. The actual commercial

Bluespec compiler takes advantage of this observation to fire multiple rules, almost

always more than just two rules, concurrently in the same hardware clock cycle.

In order to fire multiple rules concurrently in one clock cycle, the concept of

conflict must be well defined. One simple definition of conflict is as follows: two rules

are conflicting only if they both access, i.e., read or write, the same register, and at

least one of the accesses is a write access. If two rules do not access any common

register, or only read a common register, then these rules are non-conflicting. If two

non-conflicting rules fire concurrently in one clock-cycle, then their state updates will

be as if the rules fired one after the other. In this definition of conflict, either order

of firing the rules will lead to the same state updates. This definition of conflict is

similar to that in database transactions and transactional memory [9,42,871.

Instead of defining conflict between a pair of rules, one can have a more so-

phisticated criterion for deciding if a set of two or more rules can all fire together

concurrently in one clock cycle. A set of rules can fire concurrently if there exists a

permutation of this set such that for any pair of rules r1 and r2 in the set, whenever r1

occurs before r2 in the permutation, the registers that r, writes are disjoint from the

registers that r2 reads. If all the rules in such a set fire concurrently in one clock cycle,

with all the register reads happening at the beginning of the clock cycle, and all the

register updates happening at the end of the clock cycle, then the final state updates

will be as if the rules happened one after the other according to the permutation.

This notion of conflict has been studied in great detail by Hoe et al. [3, 44, 451.

The commercial Bluespec compiler creates a scheduler to schedule the firing of

each rule based on the more sophisticated notion of conflict described above. In terms

of the synthesized hardware, every clock cycle, the scheduler decides which rules can

fire during that cycle. Conceptually, the scheduler behaves as follows: Each rule

in the overall system is statically given a (unique) priority which can be assigned

either automatically or supplied by the designer. During each cycle, the scheduler

enables those rules whose guards are true to fire, starting with the highest priority

rule. A rule whose guard is true is enabled to fire if and only if it has no conflict with
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another higher priority rule that has also been enabled to fire. If the designer does not

supply any priority, the Bluespec compiler tries to assign priorities automatically to

maximize the number of rules being fired every clock cycle. Since these priorities are

assigned statically, the scheduler converts a nondeterministic Bluespec specification

into a deterministic hardware circuit.

Another important question regarding synthesis is the treatment of methods. In

the discussion of semantics of Bluespec programs in Section 2.2, we inlined the meth-

ods at the points of their calls. But synthesis has to be modular for various reasons.

One reason is to reduce the complexity of the scheduler circuit. Another, more fun-

damental reason is that methods are the only mechanism by which a program written

in Bluespec (either a single module or a composition of several modules) communi-

cates with an external environment, and these external interactions cannot be inlined.

Thus, one has to specify how methods are synthesized into hardware circuits.

Each method gets synthesized into several input and output wires for the hardware

circuit synthesized for a Bluespec module. Each method has an input enable signal

which is a boolean signal indicating whether the method is called during the current

clock cycle. A method also has input argument wires that carry the values being

passed to the method in the current clock cycle. It has an output guard signal which

is also a boolean signal returning the value of the guard of the action that constitutes

the body of the method. Finally, a method has output return wires that carry the

value returned by the method in the current clock cycle.

Another complication for modular synthesis in the presence of methods is that two

modules can call each other's methods. A comprehensive discussion of the issues and

the solution for modular synthesis in the presence of such "mutual" calls is presented

by Vijayaraghavan et al. [86].

2.4 Advantages of Bluespec for Designing Hardware

We chose to use Bluespec specifications for designing hardware as opposed to tra-

ditional netlist-based specifications (like Verilog or VHDL). The main advantage of
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Bluespec programs is that they lend themselves to verification. As we will be seeing in

Part II, transition systems are usually verified using simulation techniques which re-

late a single transition in one system to a sequence of transitions in another system. In

Bluespec programs, state transitions are not tied to hardware clock cycles. Instead,

state transitions are expressed as rules, and multiple rules are scheduled together

concurrently to constitute one hardware clock cycle as discussed in Section 2.3. So,

instead of using simulation-based verification techniques on a complex rule composed

of several rules firing concurrently, one only has to analyze a single rule, significantly

simplifying the verification problem.

2.5 Conclusion

In this chapter we gave an introduction to designing hardware using Bluespec. We

specified the semantics of Bluespec programs and discussed how Bluespec programs

can be synthesized into hardware circuits, informally. In the next chapter, we will

design a complex multiprocessor system in several stages, starting with a simple

system implementing sequential consistency as defined by Lamport [56].
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Chapter 3

Multiprocessor System Specification

and Implementation

Modern multiprocessor systems are extremely complex. They are made up of sev-

eral major components each employing optimizations like caching, speculation, etc.

Though the actual system's implementation is very complex, its behavior can usually

be understood in terms of a simpler specification.

In this chapter we will start with a simple specification of multiprocessor systems,

viz., the sequential consistency specification. Over the course of this chapter, we will

design increasingly complex implementations of this specification.

3.1 Sequential Consistency

We will now specify the simplest notion of correctness of a multiprocessor system, viz.,

the sequential consistency specification. Before we embark on that task, we will first

abstract the instruction set architecture (ISA) of the processors. Parameterizing the

processor over the ISA enables design of the "core logic" of the processor independent

of the ISA. Further, it enables instantiation of complex and realistic ISAs which have

long-latency operations that showcase performance gains of the out-of-order processor.
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3.1.1 Abstracting the ISA

Each instruction executed by a processor performs a combination of the following

operations: (a) update the program counter, (b) update architectural registers, (c)

perform memory operations, and/or (d) halt execution. Thus, the ISA can be ab-

stracted by using two functions: dec(s, pc, i), which returns the "decoded" form of an

instruction i, specifying the combination of the above operations that the instruction

performs, and a function exec(s, pc, d) which returns the updated state and the next

program counter. We specify both these functions without giving their implementa-

tions below.

dec(s, pc, i) : The legal decoded instruction forms, i.e., the outputs of dec, are (a)

(Nm, x), for an operation not accessing memory, x specifying the actual operation

being performed, along with the registers being read and written, constants, etc.; (b)

(Ld, va, x), for a memory load from word address va, and x specifying the register

being updated; (St, va, v), for a memory store of value v to word address va; and

(Halt), for a "halt" instruction.

exec(s, pc, d) : The legal arguments to exec are the current registers and the program

counter, and an encoding of both a decoded instruction and any relevant responses

from the memory system. The third argument of exec is (Nm, x), (St) or (Ld, x, v).

The tuples (Nm, x) and (St) are obtained from the decoded instruction, and the value

x in (Ld, x, v) is obtained from the decoded instruction while the value v is the data

present in the requested memory location.

The advantage of abstracting the ISA using functions is that the same functions

can be used in the specification as well as in all its refinements. Therefore, we are not

verifying if a particular operation (like add or subtract) is implemented correctly; in-

stead we are instantiating the same operations in the specification and its refinements

thus ensuring that each implementation has the same behavior as the specification

with respect to these operations.
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Figure 3-1: Module Pnst: An instantaneous processor

3.1.2 Specifying Sequential Consistency

We are now in a position to specify sequential consistency using the abstract ISA.

The sequential consistency specification that we give in this section is exactly as

is described by Lamport [56]. According to Lamport, a multiprocessor system is

sequentially consistent if the behavior it exhibits while running a multi-threaded

program can be reasoned about by performing the following operation repeatedly:

Pick any one processor and atomically execute the next instruction in the thread

residing in that processor, including performing load and store operations, while all

other processors remain idle.

In order to define the sequential consistency specification, we first need to specify

an instantaneous processor Pist, which executes all instructions, including memory

loads and stores, instantaneously. Figure 3-1 shows the design of such a processor

module.
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Module:
Regs pc(pco), s(so);

Rule NonMemory:
let i = getInst(pc);
let (N m, x) = dec(s, pc, i);
let (s', pc') = exec(s, pc, (Nm, x));
s:= S';
PC := pc';

Rule Halt:
let i = getInst (pc);
let (Halt) = dec(s, pc, i);
halt;

Rule Load:
let i = getInst(pc);
let (Ld, va, rv) = dec(s, pc, i);
let v = Minst.ldRq(va);
let (s', pc') = exec(s, pc, (Ld, rv, v));
s := S';
pc := pc';

Rule Store:
let i = getlnst(pc);
let (St, va, v) = dec(s, pc, i);
Minst .stfqtva, v);
let (s', pc') = exec(s, pc, (St));
s := S';
pc := pc';



Figure 3-2: Module Min5t: An instantaneous memory

The state of the instantaneous processor consists of the program counter pc ini-

tialized to pco, and the architectural registers s, initialized to so. In every rule of the

instantaneous processor, an instruction is fetched using getInst based on the current

program counter, decoded and executed using dec and exec functions, respectively,

and finally the program counter is updated to point to the next instruction, and one

or more architectural registers are updated.

In case of a halt instruction, an external method halt is called and the architec-

tural registers and the program counter remain the same. In the case of memory

instructions (loads or stores), the processor calls external methods. The instanta-

neous processor is connected to an instantaneous memory Minst which looks up data

for load requests or updates the data for store requests instantaneously. The return

value of the load is used to update the architectural registers and the program counter.

Figure 3-2 shows the design of the instantaneous memory module containing a

register array mem[NUM] and having two kinds of methods: ldRq for reading a mem-

ory value and stRq for storing into the memory. There are several copies of the same

pair of methods (each copy of the pair is known as a port in describing a memory),

each connected to a different processor.

Using the specifications of the instantaneous processor and the instantaneous

memory, we can define the specification of sequential consistency as a composition of

several atomic processors and an instantaneous memory as shown below. Note that

Pist represents the ith instantaneous processor, which calls ldRq' or stRq' rather than
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Module:
Regs mem[NUM](memo);

Meth ldRql(va):
return(mem[va]);

Meth ldRq"(va):
return(mem[va);

Meth stRql(va, v):
mem[va] := v;

Meth stRq"(va, v):
mem[va := v;



PDecI

Matomic

Figure 3-3: Components of SCdec, i.e., sequential consistency with communication

just IdRq or stRq.

Definition 1. SC Pilst + ... + Pinnst + Minst

3.2 Respecifying Sequential Consistency with Com-

munication

The first refinement that we introduce over the sequential consistency specification

in Definition 1 is introducing buffers between the processors and the memory. Here

the responses from the memory to the processor are decoupled from the requests

from the processor to the memory. We first show the specification of this decoupled

processor, followed by the specification of the buffers separating the memory and the

processor, and its composition with the instantaneous memory. Figure 3-3 shows the

components of a specification of sequential consistency with communication, using

the decoupled processors Pdec, the buffers separating the memory and the processor

(cRqs and toC), and the instantaneous memory mt. Each of the components will

be described next.
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3.2.1 The Decoupled Processor

Figure 3-4 shows such a decoupled processor. A state of Pdec is given by three registers:

(a) s which gives the state of the architectural registers, (b) pc which gives the program

counter, and (c) w which is a Boolean flag indicating whether the processor is blocked

waiting for a response from the memory system. The registers are initialized to so, pco

and False, respectively.

On a non-memory or halt instruction, the processor behaves exactly as in the

instantaneous processor. These two instructions can be executed only when the pro-

cessor is not in wait state (i.e., the w register is False).

On a load instruction, the processor executes Rule(LoadRq) followed by Rule(LoadRs).

In Rule(LoadRq), the processor sends a load request to the memory. The processor

then goes into a wait state waiting for a load response back from the memory. As

discussed before, no rule other than Rule(LoadRs) (or Rule(StoreRs)) can execute

when the processor is waiting. Moreover Rule(StoreRs) can execute only when a

store response is obtained from the memory, which will not be the case if a load

request has been sent to the memory. Once it receives the load response from the

memory, it executes Rule(LoadRs), which dequeues the load response and updates

the appropriate architectural register with the value obtained from the load response.

On a store instruction, the processor executes Rule(StoreRq) followed by Rule(StoreRs).

Rule(StoreRq) and Rule(StoreRs) behave similarly to Rule(LoadRq) and Rule(LoadRs),

respectively, in sending an appropriate memory request and waiting for the appropri-

ate response before changing the program counter.

3.2.2 Buffers between Processors and Memory

We will now describe the module Mwrap that separates the decoupled processors from

the instantaneous memory. As discussed earlier, this module contains the buffers used

in such a separation. There are two buffers cRqs, which allows reading any element

from the buffer; and toC, which is a FIFO buffer.

The cRqs buffer is similar to the FIFO module in Figure 2-1, except that it allows
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Module:
Regs pc(pco), s(so), w(False);

Rule NonMemory:
let i = getInst(pc);
let (N m, x) = dec (s, pc, i);
when(w = False)

let (s', cpc) = exec(s, pc, (Nm, x));
s := s';
pc := cpc;

Rule LoadRq:
let = getlnst(pc);
let (Ld, va, rv ) = dec (s, PC, i);
when(w = False) =:

cRqs.enq((Ld, va, e));
w = True;

Rule LoadRs:
let i = getInst(pc);
let (Ld, va, rv) = dec(s, pc, i);
let (Ld, v) = toC.pop;
when(w True) =*

let (s', cpc) = exec(s, pc, (Ld, r, v));
s := S';
pc := cpc;
w := False;

Rule StoreRq:
let i = getInst(pc);
let (St, va, v) = dec(s, pc, i);
when(w = False) =*

cRqs. enq((St, va, v));
w = True;

Rule StoreRs:
let i = getInst(pc);
let (St, va, v) = dec(s, pc, i);
when(w = True) =:

let (s', cpc) = exec(s, pc, (St));
toC.pop;
s := S';
pc := cpc;
w := False;

Rule Halt:
let i = getInst(pc);
let (HaIt) = dec(s, pc, i);
when(w = False) =

halt;

Figure 3-4: Pdec: A decoupled processor serving as specification of Ps0
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any element in it to be read and removed. Therefore, it has the following methods:

* enq(op, va, vt) : It inserts a request message (op, va, vt) into the buffer and is

guarded by the condition that the buffer cannot be full when it is called.

" extract(n) : It removes the entry in position n in the buffer and returns the

value of that entry, in other words, extracting the element from the buffer. The

returned value is a tuple (op, va, vt).

The FIFO buffer toC has an interface similar to that shown in Figure 2-1. It has

only the following two methods:

* enq(x) : It inserts a response message x into the buffer where x can either be

(Ld, v) or (St). This method is guarded by the condition that the buffer cannot

be full when it is called.

" pop : It returns the first element of the buffer which can either be (Ld, v) or

(St). This method is guarded by the condition that the buffer cannot be empty

when it is called.

In addition to the two buffers, the Mwrap module also has rules for processing

load requests and store requests, respectively. These are contained inside another

module M' rap as shown in Figure 3-5. Note that the entries in the cRqs buffer can

be accessed non-deterministically. Hence there is a rule for accessing each entry in

the cRqs buffer.

Finally, the Mwrap module composed of the M'rap module and the cRqs and toC

buffers is shown below.

Definition 2. Mwrap ap + cRqs + to

The combination of the Mwrap module together with the Pdec processor behaves

exactly similar to the instantaneous processor Pinst. We will formally prove this in

Theorem 11, after formally defining what is meant to behave in the same manner

in Chapter 6. The intuition behind this is as follows. Whenever the Pdec processor
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Figure 3-5: Module M' p: Rules for processing load and store requests from the
buffers

executes a non-load or a non-store instruction, then the state changes that it un-

dergoes mimics exactly what happens in the Pinst processor for executing the same

instruction. When Pdec executes a memory instruction, it first sends a request to the

memory system and goes into a wait state which stalls any execution till a response

from the memory is available. Once the response is available, then it undergoes the

same state changes as Pinst would have underwent for executing the same memory in-

struction. So, in effect, Pdec follows the same state transitions as Pinst, thus behaving

in the same manner.

One thing to note in the above discussion is that the combination of Pdec and Mwrap

behaves like Pint independent of the memory that the processors are connected to,

as long as the memory behaves in an identical manner in both the systems. This is

the key property that enables us to do modular reasoning in the presence of modular

refinement. Given a system containing two modules A and B, when we replace A

with another module A' and prove that A' behaves just like A, this gives us a strong

compositional reasoning property enabling us to conclude that A' + B behaves just

like A + B. In fact, most hardware designs are done using modular refinement, where

the designer informally adheres to compositional reasoning.
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Module:

Rule LdMemi:
let (Ld, a, t) = cRqs.extract(1);
to C. enq ((Ld, t, Mi,,,t. 1dRq (a)));

Rule LdMemm:
let (Ld, a, t) = cRqs.extract (m);
toC.enq((Ld, t, Mi,,,t.1dRq(a)));

Rule StMem1:
let (St, a, v) = cRqs.extract(1);
Mint .stqta,-v );
toC.enq((St));

Rule StMemm:
let (St, a, v) = cRqs.extract (m);
Minst.stq(ta, v);
to C. enq((St));

.-- 1 -, 11 -- , -



3.2.3 Atomic Memory: Instantaneous Memory + Decoupling

Buffers

We now describe the atomic memory Matomic which is formed by composing the

instantaneous memory Minst with several Mwrap modules. The Mwrap modules provide

the interface to communicate with the processor and thus should be replicated as

many times as the number of processors in the system.

Definition 3. Matomic A Mrap + Mrap + ... + Mwrap + Minst

3.2.4 Decoupled Multiprocessor System

We are now in a position to give the design of a decoupled multiprocessor system

composed of the decoupled processors connected to an atomic memory. This is shown

below. We will call this composition SCdec.

Definition 4. SCdec Pc+ Pa2e + +Pec + Matomic

As discussed briefly earlier, the combination of Pdec and Mwrap behaves just like the

Pist processor. And compositional reasoning allows us to conclude that when several

of the combination of Pdec and Mwrap modules are connected to the instantaneous

memory Minst, it will behave exactly like the composition of several of Pint modules

with Minst. This compositional reasoning property will be formalized for the general

case in Part II of the thesis.

The Matomic module constitutes the specification what is called the memory sub-

system in modern multiprocessors, while the Pdec module constitutes the specification

of the processor or core subsystem. Any realistic multiprocessor system employs sev-

eral optimizations in the design of both the processor and the memory subsystem.

We will discuss an optimized implementation of the processor subsystem in the form

of a speculative out-of-order processor in the next section and an optimized imple-

mentation of the memory subsystem in the form of a hierarchy of coherent caches in

the next chapter.
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3.3 Speculative Out-of-Order Processor

We will now show the design of a speculative out-of-order processor module Ps0,

which (a) speculatively fetches instructions without having resolved the branches (and

hence without knowing the next program counter), (b) executes instructions out of

order, and (c) creates many simultaneous outstanding (speculative) load requests to

the memory. These features increase the performance by doing potentially useful

work whenever the processor would have previously been idle. Instructions may have

long execution latencies, which are potentially hidden by speculatively doing future

work. Moreover, this processor, in a real system, would be connected to a memory

subsystem, where memory operations can potentially have long latencies, which are

again hidden by speculative and out-of-order execution.

3.3.1 Components of the Speculative Out-of-Order Processor

The speculative processor consists of three component modules: (1) Ps, which consists

of the "architectural state" of the processor and rules that operate on this architec-

tural state, (2) a branch predictor bp, which makes guesses about the program counter

to fetch the next instruction from (in advance of executing the previous instruction

to resolve branches;) and (3) a reorder buffer rob, which decides what (speculative)

instructions are issued at which moments, enabling out-of-order execution of instruc-

tions. The speculative out-of-order processor is abstracted over the implementations

of the branch predictor (bp) and reorder buffer (rob) modules.

Branch Predictor

The branch predictor module bp has the following methods:

* currPc returns pc where pc is the current program counter prediction.

* nextPc advances the branch predictor to predicting the next instruction's pro-

gram counter.
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" setCurrPc(pc) resets the branch predictor's prediction to begin at position pc.

This method is called in the case of a misprediction.

* trainBp(ppc, pc) is used to train the branch predictor, by associating pc to be

the next instruction to execute after ppc. This is called whenever an instruction

finishes or aborts and thus has the next instruction's program counter resolved.

We need to impose no explicit conditions for correctness of the branch predictor;

the processor uses predictions only as hints, and it always resets the predictor using

setCurrPc after detecting a misprediction.

Reorder Buffer

The reorder buffer module rob has the following methods. As can be seen, the interface

of the reorder buffer is more complicated than the branch predictor's.

" add(pc, i, ppc), which appends the program instruction i at location pc to the

list of instructions that are available for execution in the reorder buffer. The

argument ppc is the previous instruction's program counter, to be supplied to

the branch predictor.

" getLd, which returns either a load address to be speculatively issued to the

memory, along with the reorder buffer's tag for the corresponding load instruc-

tion or c if the reorder buffer does not wish to issue a load. (The reorder buffer's

tag is used to identify a particular instruction in the reorder buffer.)

" sentLd(t), which informs the reorder buffer that the load corresponding to the

instruction associated with tag t has been speculatively issued.

" ldRs (t, v), which informs the reorder buffer that the memory has returned result

value v for the speculative load with tag t f E.

* oldest, which returns the resulting state of executing the next instruction in

serial program order, if the reorder buffer has performed enough computation
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steps and gathered the required speculative load responses to execute it accu-

rately; otherwise it returns E. When oldest returns a non-E value, it returns

a tuple (s, pc, cpc, ppc, x), where s is the updated state on executing the next

instruction, pc is the program counter of that instruction, cpc is the next pro-

gram counter we would advance to afterward and ppc is the program counter for

the previous instruction. x is c for non-load instructions; (Ld, va, rv, v) for load

instructions, where va denotes the load address, v denotes the speculative load

response obtained from the memory, and rv denotes the register that the load

value is written into; (St, va, v) for store instructions where va and v denote the

word address and value of the store, respectively; or (Halt) for halt instruction.

We will see why we need this information for loads shortly.

0 commit, which informs the buffer that its oldest instruction was executed suc-

cessfully, i. e., committed, so it is time to move on to the next instruction.

The reorder buffer has internal rules to execute each instruction. It breaks down

an instruction into smaller micro-ops and executes them one-by-one. Executing these

micro-ops is effectively equivalent to invoking the dec and exec functions to obtain

the next program counter, register values, etc. It keeps track of the data dependency

between the instructions and tries to execute instructions out of order as long as the

data dependencies are met.

We do not give the details of the reorder buffer module (like the internal state

or the rules of the reorder buffer). Instead, we specify an invariant that the reorder

buffer should obey.

The invariant establishes a relationship between the updates to the architectural

registers and program counter returned by method oldest of the reorder buffer, and

the instruction corresponding to the current program counter. This relationship is

given precisely by the getInst, dec and exec functions as shown in Invariant 1. The

architectural state and program counter updates that the reorder buffer returns on

calling its method oldest should match the values obtained applying the getInst, dec

and exec functions on the current architectural state and program counter (and the
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response from memory in case of a load).

Invariant 1. If s and

program counter, respe

X = (Ld, va,

x = (St,

pc are

ctively,

the current values of the architectural registers and

and if (s', -, cpc, -, X) = rob.oldest, then

x = E 3 By. dec(s, pc, getInst(pc)) = (Nm, y)A

exec(s, pc, (Nm, y)) = (s', cpc)

rv, v) = dec(s, pc, getInst(pc)) = (Ld, va, rv) A

exec(s, pc, (Ld, rv, v)) = (s', cpc)

va, v) = dec(s, pc, getInst(pc)) = (St, va, v)A

exec(s, pc, (St)) = (s', cpc)

(Halt) = dec(s, pc, getInst(pc)) = (Halt)

In this sense we are not going to give a complete description of the speculative

out-of-order processor; we are abstracting the reorder buffer component while giving

its specification in terms of an invariant.

The P,' module

The Ps' component of the processor has the following registers: (a) pc, which gives

the program counter of the next instruction that the reorder buffer has to commit,

(b) s, which is the register array, storing the value of each architectural register, and

(c) w, which denotes whether the processor is waiting for a memory response. The

registers pc, s and w are initialized to pco, so and False respectively. Note that the

internal rules of the reorder buffer cannot update any of these registers.

The processor makes calls cRqs.enq to send requests to the memory and receives

memory responses via calls to toC.pop. It also makes calls to halt on executing a halt

instruction.

Figure 3-6 gives the rules in the processor P,'. While the processor fetches arbi-

trary instructions speculatively in Rule(Fetch), the rest of the rules ensure that the

processor only commits, i.e., makes changes to the architectural registers, in serial

program order. The function getlnst(pc) returns the instruction present in the lo-
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Module:
Regs pc(pco), s(so), w(False);

Rule LoadRq:

Rule Fetch:
let (predPc, ppc) = bp. currPc;
rob.add(predPc, getInst(predPc), ppc);
bp. nextPc;

Rule SpecLoadRq:
let x = rob.getLd;
when(x 5 e) =:,

let (va, t) = x;
rob.s entLd(t);
cRqs.enq((Ld, va, t));

Rule SpecLoadRs:
let (Ld, t, v) = toC.pop;
when(t $ c) =

rob.ldRs (t, v);

Rule Abort:
let (s', cpc, npc, ppc, ) rob.oldest;
when(w = False A cpc # pc) =

bp.trainBp(ppc, pc);
rob.setEmpty;
bp.setCurrPc(pc);

Rule NonMemory:
let(s', cpc, npc, ppc, e) = rob. oldest;
when(w = False A cpc = pc) =>

bp.trainBp(ppc, pc);
rob. commit;
s := S';
PC := npc;

Rule Halt:
let(s', cpc, npc, ppc, (Halt)) = rob. oldest;
when(w = False A cpc = pc) =>

bp.trainBp(ppc, pc);
rob. commit;
halt;

let (s', cpc, npc, ppc, (Ld, va, r v)) = rob. oldest;
when(w = False A cpc = pc) =

cRqs.enq((Ld, va, E));
w = True;

Rule LoadRs:
let (Ld, t,v') = toC.pop;
let (s', cpc, npc, ppc, (Ld, va, rv, v)) = rob. oldest;
when(w = True A cpc = pc A t = e A v v') =

bp.trainBp(ppc, pc);
rob. commit;
s := St
pc := npc;
w := False;

Rule LoadRsBad:
let (Ld, t, v') = toC.pop;
let (s', cpc, npc, ppc, (Ld, va, r , v)) = rob. oldest;
when(w = True A cpc = pc A t = e A v : v') =

bp.trainBp(ppc, pc);
let (s", npc') = exec(s, pc, (Ld, rv, v));
s := s";
pc := npc';
rob.setEmpty;
w := False;

Rule StoreRq:
let(s', cpc, npc, ppc, (St, va, v)) = rob. oldest;
when(w = False A cpc = pc) =

cRqs.enq((St, va, v));
w = True;

Rule StoreRs:
let (s', cpc, npc, ppc, (St, va, v)) = rob. oldest;
when(w = True A cpc = pc) =:

bp.trainBp(ppc, pc);
toC.pop;
rob. commit;
s := s/ ;
pc := npc;
w := False;

Figure 3-6: Module P' : The speculative out-of-order processor module (the reorder
buffer and the branch predictor are separate modules)
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cation pointed to by the program counter pc. While in a typical processor this will

involve an access to the memory, we will assume that the instructions are directly

accessible from within the processor via the function getInst. The fetched instructions

are inserted into the reorder buffer.

If the reorder buffer has to execute a load instruction, after computing its address,

it speculatively issues the load request to memory in Rule(SpecLoadRq). It gets a

response for such a speculatively issued load in Rule(SpecLoadRs). A speculatively

issued load request has a tag t # c identifying the instruction corresponding to the

request, and this tag is returned in the response from the memory.

In case the instruction to be committed next has been fetched because of a mis-

prediction, the processor discards this instruction and every instruction fetched after

that from the reorder buffer in Rule(Abort). The processor figures out if a mispre-

diction has occurred by comparing the program counter of the next instruction to

commit with that of the actual program counter (which was set by the previously

committed instruction); they do not match in case of a misprediction. The branch

predictor is reset to start fetching instructions from the correct program counter, and

the correction for the prediction is supplied for the branch predictor.

If the instruction to be committed has not been mispredicted, then the processor

commits that instruction. The processor updates the architectural registers and the

next program counter as directed by the rest of the information that the reorder

buffer supplies for committing an instruction. This finishes executing a non-memory

instruction as seen in Rule(NonMemory). For a halt instruction, it calls the halt

method in addition, as seen in Rule(Halt).

For committing a store instruction, the processor issues a store request and waits

for a response. The reorder buffer gives the store address and value for the next

instruction to commit, and the processor issues a store request using this information

in Rule(StoreRq). Finally the store response is obtained in Rule(StoreRs).

Need for Verification Loads: Committing a load instruction is more complicated.

Since a load for that instruction has already been performed speculatively, one maybe
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tempted to simply commit the instruction and change the state of the architectural

registers appropriately. This is in line with how non-load and non-store instructions

are treated: at the time of commit, they just change the state of the architectural

registers. However, this is incorrect even in the case of single processors. Consider

the case when the processor has to execute the following program (we are showing

the decoded instructions for readability):

P

St va v

Ld va rv

In the above example, there is a store instruction followed by a load instruction

to the same address. If the load was speculatively executed before the store, then it

would have received the old value of address va from the memory. Then the store

instruction would have stored the value v into address va when it is committed.

When the load is committing, it will update register r, with the old value of address

va (since it does not read the latest value v from the memory at the time of commit),

violating sequential consistency even in the presence of a single processor.

One can come up with clever schemes to prevent speculative execution of load

instructions whenever there is an earlier store instruction that has not been commit-

ted. This would certainly avoid the above problem in single processor systems. But

in the presence of multiple processors, this solution is not sufficient. Consider a two

processor system executing the following multithreaded program in processors P1 and

P2.

The first processor executes two store instructions, both storing the value 1 into

addresses va1 and va2, in order. The second processor executes two load instructions,
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P1  P2

St va1 1 Ld va2 r2

St va2 1 Ld va1 r,



reading addresses va2 and vai, in order. Let us say the initial values in the memory

for addresses vai and va2 are both 0. If the sequence of rule execution is as follows:

1. P1 fetches (St va1 1).

2. P fetches (St va2 1).

3. P2 fetches (Ld va2 r 2 ).

4. P2 fetches (Ld va1 ri).

5. P2 speculatively sends load request for (Ld va1 ri).

6. Memory returns value 0 for address val.

7. P2 receives load response for (Ld va1 ri), which must return value 0.

8. P1 sends store commit request for (St va1 1).

9. Memory updates the value for address va1 to 1.

10. P receives store commit response for (St va1 1).

11. P1 sends store commit request for (St va2 1).

12. Memory updates the value for address va 2 to 1.

13. P1 receives store commit response for (St va2 1).

14. P2 speculatively sends load request for (Ld va2 r2).

15. Memory returns value 1 for address va2 .

16. P2 receives load response for (Ld va2 r2 ), which must return value 1.

17. P2 commits (Ld va2 r 2), updating register r2 with value 1.

18. P2 commits (Ld va1 ri), updating register r1 with value 0.
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At the end of the above execution sequence, r1 and r2 have the values 0 and 1,

respectively. However, in any sequentially consistent two processor system, this state

can never be reached at the end of executing the above program. This is because,

whenever (Ld va2 r2) loads a value 1 both the stores in P must have completed,

thereby forcing (Ld va1 ri) to also read the value 1.

In order to prevent such an incorrect behavior in a multiprocessor setting, at the

time of committing a load instruction, a processor issues another load request, called

the verification load in Rule(LoadRq), and waits for a response. Notice that this

is a second load request issued for every load instruction; the previous request was

issued speculatively. The tag sent for the verification load is E as there is only one

outstanding verification load and the processor waits for its response before proceeding

further. On receiving the response for the verification load, if the load value matches

the value obtained as a response to a previously issued speculative load for the same

instruction, then the processor commits that instruction, switching out of the wait

state, as seen in Rule(LoadRs). On the other hand, if the verification load's response

does not match what was previously obtained, then the new value is used to re-

execute the load instruction, committing the result of the re-execution. A mismatch

between the verification load response and the speculative load response for a load

instruction is treated like a branch misprediction; the rest of the instructions in the

reorder buffer are discarded and the branch predictor is reset to start fetching from

the next instruction's program counter obtained from the re-execution of the load

instruction. This is seen in Rule(LoadRsBad).

In common cases, there is no loss in performance because of executing loads twice,

as it is likely that the verification load finds the address already in a local cache, thanks

to the recent processing of the speculative load. Moreover, 60% to 90% of verification

loads can be avoided by invalidating speculative loads [161 earlier.

The full processor Ps. is composed of P,, the reorder buffer and the branch pre-

dictor:

Definition 5. Ps0 Ps' + bp + rob
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3.4 Full-system Verification of the Multiprocessor

As discussed earlier, the implementations of the memory subsystem and the proces-

sor subsystem are very different and complex compared to their specifications. But,

in spite of their complexities, these optimized out-of-order cores and cache hierarchy

should fundamentally just implement their specifications. Moreover, the decoupled

system specification consisting of several decoupled processors composed with the

atomic memory specification should itself implement the sequential consistency spec-

ification of Section 3.1.

In order to prove that a system A implements a specification S, we need to first

formalize the notion of "implements". Formalizing this notion and proving that an

implementation meets the specification is the subject of the second part of this disser-

tation. In this section we will briefly describe some of the difficulties in formalizing the

notion of implements for the processor example, i.e., for proving that Ps0 implements

Pdec-

An intuitive way of formalizing the notion of "implements" is to ensure that the

interaction which an implementation has with any external environment is the same

as what the specification has. In other words, in any context, the implementation is

indistinguishable from the specification.

Unfortunately, this simple a notion of "implements" does not work very well for

our processor example. Notice that the Pso processor issues two kinds of loads to the

memory subsystem - the speculative load and the "real" load at the time of commit,

while the Pdec processor issues only one kind of load to the memory, viz., the real

load. Clearly, the interactions with the external environment are different.

However, if the notion of implements is relaxed enough to not require the interac-

tions to exactly match, and in particular, if we are allowed to "omit" the speculative

load interactions (both requests and responses), then Ps. can be verified to be indis-

tinguishable from Pdec with respect to the rest of the interactions. Chapter 6 shows

exactly how to define such an implements relation, and Chapter 7 shows how to verify

the P,0 processor using this relaxed definition.
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It is worth noting that if we stretch this argument, we can omit all interactions

and prove that any system implements any other system. Fortunately, such absurd

results can be ruled out by noting that we are interested in proving that a composition

of several modules implements another system, perhaps a composition of another set

of modules. The interactions between the modules in this composition do not go

away, even if we relax our definition of implements. So, unless the relaxed definition

is useful to allow interesting compositions while still being able to prove full-system

properties, using a relaxed definition does not work.

3.5 Conclusion

In this chapter we first gave the sequential consistency specification module. We

then presented a simple decoupled system consisting of decoupled processors con-

nected to an atomic memory, where the processors and memory communicate only

via buffers. We then presented the speculative out-of-order processor, which is an op-

timized implementation of a decoupled processor. In the next chapter, we will discuss

the design of a hierarchy of caches implementing a directory-based cache coherence

protocol, which is an optimized implementation of the atomic memory specification.

In Part II, we will prove that each of these complex designs actually implements their

respective specifications, and the overall system composed of these complex compo-

nents implements sequential consistency.
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Chapter 4

Implementing the Memory

Subsystem Using Coherent Caches

In this chapter we will design a hierarchy of coherent caches which implements the

atomic memory specification defined in Section 3.2.3. This forms the memory subsys-

tem of any modern processor. The cache-coherence protocol used is a directory-based

invalidation protocol.

We will first describe the high-level structure of the hierarchy of caches in Sec-

tion 4.1. We will then give detailed designs of the cache nodes in Bluespec in Sec-

tion 4.2. The specification of each cache node specifies the cache-coherence protocol

completely, which is essentially a distributed algorithm where caches send messages

to each other to keep each of them "coherent". The caches send various kinds of

messages, all of which will be specified in detail in Section 4.2. There are certain

constraints on the interaction between various kinds of messages - constraints of the

form "a response from a child to its parent should never be blocked by a request

from that child to the parent in order to satisfy the protocol". We will give all such

constraints in Section 4.3.
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L11 L12 L13 L14
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(Lint) (Lint)

M

Mcacheeg. L L + Li 2 + L21 + Li 3 + Li 4 + L2 2 + M + ICN

Figure 4-1: Example instantiation of the memory subsystem

4.1 Structure of Hierarchy of Caches

The memory subsystem Mcache consists of a hierarchy of coherent caches organized

as a logical tree, connected by an interconnect network ICN. Figure 4-1 shows an

instance of such a system.

While the cache nodes are organized logically as a tree, the physical topology in

which they are organized can be very different. As shown in Figure 4-1, all these

caches communicate with each other through a single physical interconnect network.

There are various topologies that are widely used for implementing this network, for

instance ring [20,40, 70, 79,851, torus 12, 281, mesh [46, 73, 84, 881, hypercube [29, 391

etc.. (Appendix F: Interconnection Networks in Hennessy et al. [41 gives an overview

of various network topologies, and Dally et al. [27j gives a comprehensive overview of

the same.) In fact, in a real implementation, usually even a single cache node that we

describe in Section 4.2 is physically distributed - a cache node is partitioned based on

address, and the different partitions corresponding to different address spaces usually

resides in different locations in a physical chip [8].

Throughout this chapter, we will abstract the actual topology of the physical

network. We will also abstract the partitioning of a cache node based on address space

and distributing them physically - our specification of the cache nodes is agnostic to
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address space partitioning. The only requirement for the physical network is that

they satisfy all the constraints on message interactions that we specify in Section 4.3

- these constraints can be implemented using a single physical network via multiple

virtual channels or virtual networks [811.

4.2 Cache Nodes

There are three kinds of cache nodes in this system:

1. the leaf nodes, also called the Li caches (module Li), which are the ones con-

nected to the processors;

2. the internal caches (module Lit); and

3. the root node, also called the memory (module M).

While the LI and internal caches are truly caches, in the sense that they cache

only the values of a (proper) subset of addresses in them, the memory has enough

storage to keep the values of every address in it. (But as can be seen in Section 4.2.4,

even though the memory has space to keep the values for every address, the values it

keeps may not be valid or up-to-date.)

The behavior of the three kinds of caches are very similar. The internal cache

can be considered as the canonical cache and the other caches are minor variants

of this. The memory M is just an internal cache without any parent, and hence it

does not contain the structures and behaviors which are involved with interacting

with the parent. The Li caches is just an internal caches except that they interact

with processors instead of with children, and change their structures and behaviors

appropriately. We will see all of these caches in greater detail below.

The register arrays inside a cache node is shown in Figure 4-2. The LI caches have

cs, w, tags and data register arrays, for storing the MSI cache state 141], the boolean

wait state, the address tags and the data, respectively and the memory has dir, dirw

and data arrays, for storing the directory state, the boolean directory-wait state and
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Figure 4-2: Register Arrays in each cache node

the data, respectively. The internal caches have the union of these two sets of register

arrays.

For precision, we will describe each of these nodes in great detail by giving their

transition rules in the sections below.

The cache coherence protocol that we are designing is an invalidation protocol

based on MSI [411 which ensures that whenever an Li cache has an address in M

state (i.e., the corresponding line is writable by the processor attached to the Li

cache), no other Li cache has the same address in S state, where the corresponding

line is readable by the attached processor, or in M state. If an Li cache has an

address in M or S state when a processor attached to another Li cache wants to

write to that address, then the former cache invalidates the cache line corresponding

to the address, changing the cache state of the line to I. This is in contrast to the

update protocol [38] which allows other processors to read the address, but ensures

that the readers are updated with the latest written value. We use x > y to denote

that cache state x has more permissions than cache state y. Thus, M > S > I.

4.2.1 Abstractions Used in the Cache Nodes

While the specification of the cache node that we specify below are complete to

implement a real cache, we do abstract some of the details. In particular, we abstract

the associativity and the replacement policies associated with a cache node [41].

A cache only stores the lines corresponding to, a subset of the complete set of

addresses. Throughout this dissertation, we call the locations which store the data
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and other information for a line as a cache slot. The associativity of a cache determines

which addresses can be stored in different cache slots - a fully associative cache can

store any address in any slot; a direct mapped cache has only one slot for every

address; and an n-way set associative cache has n slots for every address and can

therefore store an address in any one of the n slots associated with the address. All

our specification is based on slots and therefore becomes independent of the actual

organization of the cache.

Whenever a cache runs out of slots to store the line corresponding to a new

address, it chooses one slot into which that address can be mapped as the victim

slot, and evicts the original address present in that slot (if necessary). The algorithm

or the policy to choose the victim among the set of potential victims is known as

the replacement policy, and we abstract this algorithm using a function get Victim

which will be discussed below. Usually, we need to keep track of more information

in order to implement a good replacement policy. For instance, to implement a least

recently used replacement policy, which evicts the slot which was least recently used,

one needs to keep track of the timestamps when the slots were accessed. While we

do not explicitly have any such state in our specifications, this state is orthogonal to

the cache specification and is used only by getVictim function.

4.2.2 Naming Conventions used in the Cache Nodes

Before we delve into the design of the cache nodes, we will give an overview of the

naming conventions that we use. We name the cache-id for a particular module under

discussion as cid, and the parent of cid as pid.

Each cache has several buffers associated with it. We name them using a combina-

tion of the source or destination of the messages that the buffer carries and the type

of messages that the buffer carries. We use From to denote buffers carrying messages

"from" a source and To to denote buffers carrying messages "to" a destination. We

use C to denote "child" and P to denote "parent". Finally, we use rq or Rq to denote

"requests" and rs or Rs to denote "responses". Thus, rqFromC denotes a buffer which

carries requests from the children of the cache under discussion while rsToP denotes
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a buffer which carries responses to the parent of the cache under discussion. If rq

or rs is omitted, it means that the buffer carries both requests and responses. For

instance, toC buffer carries both requests and responses to the children of the cache

under consideration. Finally, for Li caches, we overload the character C to denote

"core" instead of child. So rqFromC in an Li cache would mean a buffer carrying

requests from a core/processor. Similarly toC in an Li cache would mean a buffer

carrying messages from an Li cache to a processor (the message happens to be only

response messages, but we use the same name for uniformity among all cache types).

Another point to note about naming is the use of primed and unprimed modules

in this chapter. A primed module A' denotes a primitive cache module (as opposed

to a module formed by composing other modules) without any buffers associated

with it, while the unprimed version of the module A denotes the same cache module

composed with all the surrounding buffer modules.

Finally, while there are only three kinds of caches, each type of cache is "instan-

tiated" multiple times. As discussed in Section 2.1.3, we treat each of the instances

of the module by renaming all the register, method and rule names in the modules,

giving them unique names. Our convention is to use superscripts for various instances

of modules. Thus, we formally define the Mcache module as follows:

Definition 6. Mcache L11 + Li 2 + ... + L21 + L2 2 + ... + M

We will now give the detailed design of each kind of cache.

4.2.3 L1 cache

Figure 4-3a shows the components of an Li cache, and its module specification is

given in Figure 4-4.

The complete Li cache module consisting of all the buffers is given below.

Definition 7. L1 -6 cRqs + toC + Li' + rqToP + rsToP + fromP + pRqs
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Li Cache state

The Li cache has cache state cs[l] that contains the MSI state for the address in each

slot 1. Initially, all cache state values are I.

The Li cache also contains information about whether a line is being upgraded,

for a particular slot 1, in the array w[l]. Initially, all w values are False.

Finally, the cache contains a data array for storing the cache-line data, and a tags

array to keep the line addresses associated with the cache line. All the data and tags

are uninitialized.

Buffers in the Li Cache

The Li cache has the buffers described in Figure 4-3b, which also gives the format of

the message entries stored in the buffers. Note that the destination IDs are stripped

off the incoming messages.

The FIFO buffers in Figure 4-3b are similar to the FIFO module in Figure 2-1.

They can have any capacity as opposed to a capacity of two in Figure 2-1. The

toC, rqToP, rs ToP and fromP FIFO buffers have the following methods:

" enq(x): Enqueues message x into the buffer and is guarded by the buffer not

being full.

" pop: Dequeues oldest enqueued message from the buffer and returns that mes-

sage. It is guarded by the buffer not being empty.

In addition, the Li cache also has two buffers cRqs and pRqs. These buffers can

also be implemented similarly to the FIFO module in Figure 2-1, and these modules

also will not have any rules.

The cRqs buffer is what is traditionally called the Miss-Status Holding Registers

(MSHRs) [53,54,78,82]. We use cRqs to denote an unordered set of requests from the

core. Similarly, we use pRqs to denote an unordered set of requests from the parent.

The name cRqs is chosen to keep it consistent with the rest of the types of caches (in

which cRqs stands for unordered set of requests from the children).
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Processors

cRqs toC

L1' pRqs

rqToP rsToP fromP

Higher-level caches

(a) Modules in an Li cache

Buffer FIFO Description Format
toC Yes Responses to processor (Ld, load-tag, value) I (St, value)

rqToP Yes Requests to parent (parent-cache-id, current-cache-id,
address, old-state, upgrade-state)

rs ToP Yes Responses to parent (parent-cache-id, current-cache-id,
address, downgrade-state, data)

(Req, address, downgrade-state)
fromP Yes Messages from parent I (Rs, address, upgrade-state, data)

(request-state, (Ld, address, load-tag))
cRqs No Requests from processor I (request-state, (St, address,

(value, store-tag)))

pRqs No Requests from parent (address, downgrade-state)

(b) Buffers in Li cache, and its message formats
search Tags(cs, tags, a) Returns a cache slot containing address a in the M or S state,

or e if no such slot is found.
searchA ddr(cRqs.all, a) Returns a cache slot 1 associated with a request (op, va, vt)

where get Tag(va) = a in the (WaitSt, 1) or (WaitV, 1) aug-
mented state in the cRqs buffer, or E if no such request is found.

searchSlot(cRqs.all, 1) Returns an address a associated with a request (op, va, Vt)

where getTag(va) = a in the (WaitSt, 1) or (WaitV, 1) aug-
mented state in the cRqs buffer, or c if no such request is found.

get Victim Returns a victim cache slot for eviction to replace with address
(cRqs.all, pRqs.all, a) a while ensuring that the victim's slot is not in use for any other

request in cRqs buffer, and the victim's address is not present
in cRqs and pRqs buffers. If no such slot is found, it returns e.

completed(cRqs.all, x, a) Returns if there any "completed" requests in cRqs buffer, i.e.,
a request (op, va, Vt) where get Tag(va) = a in augmented state
(WaitSt, _) and either op = Ld and x > S or op = St and
x = M.

(c) Helper functions in Li cache transitions

Figure 4-3: Li cache
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Module:
Regs cs[NUM]({I}), w[NUM]({False}), data[NUM]({_}), tags[NUM]({_});

Rule LdHit:
let n = cRqs.get(cs, tags, w, pRqs.all);
let(Init, (Ld, va, t)) = cRqs.extract(n);
let a = get Tag(va);
let l search Tags(cs, tags, a);
when((l : E) A (searchSlot(cRqs.all,1) E)

A (searchAddr(cRqs.all, a) = c)
A (searchAddr(pRqs.all,a) = E)) *

toC. enq( (Ld, t, data[l] [get Offset(va)]));

Rule StHit:
let n = cRqs.get(cs, tags, w, pRqs.all);
let (Init, (St, va, v)) = cRqs.extract (n);
let a = get Tag(va);
let 1 = search Tags(cs, tags, a);
when((l - e) A (cs[l] = M)

A (searchSlot(cRqs.all, 1) = e)
A (searchAddr(cRqs.all, a) = c)
A (searchAddr (pRqs. all, a) = e)) =

toC.enq((St));
data[l][getOffset (va)] := v;

Rule MissByState:
let n = cRqs.get(cs, tags, w, pRqs.all);
let(I n it, (r, vavt)) = cRqs.read(n);
let a get Tag (va);
let = search Tags (cs, tags, a);
when((l $ c) A (r = St) A (cs[l] < M)

A (searchSlot(cRqs.all, 1) = c)
A (searchAddr(cRqs.all, a) = E)
A (searchAddr(pRqs.all,a) = E)) =:

cRqs.upd(n, (WaitSt, 1));

Rule MissByLine:
let n = cRqs.get(cs, tags, w, pRqs.all);
let (Init, (r, va, vt)) = cRqs.read(n);
let a get Tag(va);
let I = get Victim(cRqs.all, pRqs.all, a);
when((I : e) A (searchTags(cs, tags, a) = e)

A (searchAddr(cRqs.all, a) = E)
A (searchA ddr (pRqs. all, a) = E)) =>

cRqs.upd(n, (WaitV, 1));

Rule Writeback:
let n = cRqs.get(cs, tags, w, pRqs.all);
let ((WaitV, 1), (r, va, Vt)) = cRqs.read(n);
let a' = tags [']
if(cs[l] # I) rs ToP.enq((pid, cid, a', I,

(if (cs[l] = M) then data[l] else )));
cs[l] := I;
cRqs.upd(n, (WaitSt, 1));

Rule UpgRq:
let n = cRqs.get(cs, tags,w, pRqs.all);
let ((WaitSt, 1), (op, va, t)) = cRqs.read(n);
let a = get Tag(va);
let x = if (op = Ld) then S else M;
when(,w[l] A (cs[l] < x)) =

rqToP.enq((pid, (cid, a, cs[1], x)));
w[l] := True;

Rule UpgRs:
let(Rs, Va g x, v) fromP.pop;
let a =get Tag(va);
letI = searchAddr(cRqs.all, a);
when(searchAddr(pRqs.all, a) = E) =:>

if(cs[l] = I) then{data[l] := v; tags[l] := a; }
cs[l] :=X;
w[l] := False;

Rule LdDeferred:
let n = cRqs.get(cs, tags, w, pRqs.all);
let ((WaitSt, 1), (Ld, va, t)) = cRqs. extract (n);
let a = get Tag(va);
when(cs[l] > S) e);

cRqs.upd(n, Free);
toC. enq((Ld, t, data[l] [getOffset(a)]));

Rule StDeferred:
let n = cRqs.get(cs, tags, w, pRqs.all);
let ((WaitSt, 1), (St, va, v)) = cRqs.extract(n);
let a = getTag(va);
when(cs[l] = M) =>

cRqs.upd(n, Free);
toO. enq((St))
data [I [getOffset(a)] :=v-

Rule PTransfer:
let (Req, a, x) = fromP. pop;
pRqs.ins((a, x));

Rule Drop:
let n = pRqs.get(cs, tags, w, cRqs.all);
let (a, x) = pRqs.read(n);
let I = searchTags(cs, tags, a);
when((l = e) V (cs[l] <; x)) o

pRqs.remove(n);

Rule PProcess:
let n = pRqs.get(cs, tags, w, cRqs.all);
let (a, x) = pRqs.read(n);
let 1 = search Tags (cs, tags, a);
when((cs[l] > x)

A -completed (cRqs.all, cs [1], a)) =:
pRqs.remove(n);
rs ToP.enq ((pid, (cid, a, x,

if (cs[l] = M) then data[l] else _)));

cs[lj := X;

Figure 4-4: Module Li': Module containing the transition rules of the Li cache
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Figure 4-5: The augmented state changes for request entries in cRqs

The requests in a cRqs buffer go through several stages during the course of its

processing. Every entry is augmented with information about these stages. Each

entry starts in its Free augmented state (when no request is present). The entry

goes into Init augmented state when it is assigned a new request. It can potentially

go into waiting augmented state (WaitV, slot), waiting for assigning a cache line to

the requesting address; or (WaitSt, slot), waiting for getting a response from the

parent. It finally goes back to Free augmented state when the request is removed.

The augmented state changes that each request entry in cRqs buffer undergoes are

shown in Figure 4-5.

The cRqs buffer has the following methods:

" ins(x): Inserts the request x into an Free entry in the buffer, setting the aug-

mented state of the entry to Init. It is guarded by the buffer not being full (the

buffer is full if all entries are in non-Free augmented state).

" get(cs, tags, w, pRqs.all): Returns a position n which contains a valid (non-Free)

request. It is guarded by the buffer not being empty (the buffer is empty if all

entries are in Free augmented state).

" upd(n, s): Updates the entry at position n with augmented state s.

" read(n): Returns a tuple (s, x) where the request x is present in position n in

augmented state s.

" extract(n): Returns a tuple (s, x) where the request x is present in position n in

augmented state s, and sets the augmented state of position n to Free thereby
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removing the request in position n.

The requests from a fromP FIFO buffer enter the pRqs buffer, but the responses

from a fromP FIFO buffer do not enter the pRqs buffer. The pRqs buffer has the

following methods:

* ins(x): Inserts request x into the buffer. It is guarded by the buffer not being

full.

" get(cs, tags, w, cRqs.all): Returns a position n which contains a valid request.

It is guarded by the buffer not being empty.

" read(n): Returns a tuple x where the request x is present in position n.

" remove(n): Removes the request in position n.

Transition Rules for Li Cache

Figure 4-4 shows the transition rules of an Li Cache (i.e., the rules of the Li' module)

for handling requests from the processor and from the parent. These rules can only

directly access the local state inside the Li' module; it calls the appropriate methods

in the buffers to access them.

The first point to note that there is a distinction between a word address va in the

rules and the line address a. The processor sends requests for word addresses, from

which the line address is extracted by removing the offset. Function getOffset(va)

returns the offset from a word address va, and function getTag(va) returns the line

address from a word address va. Function a ++ o gives the word address from a line

address a and an offset o, In the rest of the dissertation, an address mentioned in

the context of caches is always a line address, unless explicitly stated to be a word

address.

Here is an outline on how the transitions work. When an Li cache gets a request

from its processor, it checks to see if the cache state is high enough to process the

request (i.e., it is at least in the S state for a Ld request and M state for a St request).

If so, it sends back a response and dequeues the request.
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On receiving a request which is a miss and hence cannot be processed immediately,

the Li cache first obtains a slot to keep the address (if the address is not already in the

cache). This may involve evicting another address from the cache. After obtaining a

slot for the request, an upgrade request is sent to the parent. Once the response from

the parent is received for the upgrade request, then the original request is dequeued

and a response is sent back to the processor.

When the Li cache receives a downgrade request from the parent it dequeues the

request and sends back a response to the parent.

The transition rules use the helper functions shown in Figure 4-3c.

For notational convenience, throughout the dissertation we say that a slot 1 con-

tains an address a if tags[l] = a, and a slot is in x state if cs[l] = x.

When get Victim(cRqs.all, pRqs.all) returns a non-c slot, then that slot can be

victimized. Address a is passed as an argument because not all slots can be allotted

to every address (for example, consider a directed-mapped cache).

Note that we do not have dirty bits (or, as it is called in the MESI protocol [691,
the E-state), which would have avoided sending back data in some cases when down-

grading from M, if no stores have actually been performed after the cache obtained

M permissions. It is straightforward to add such an extension to this protocol.

Another point to note is that when an upgrade request is made, an association

between the line address and the cache slot where the line will reside has to be

maintained. This can be done either by sending the slot number with the upgrade

requests, or searching the requests from the processor which are waiting to be served

(as done by the searchAddr function). The number of additional bits needed for

sending the slot number is only log 2(cache-associativity).

4.2.4 Memory

Figure 4-6a shows the components of memory, and its module specification is given

in Figure 4-7.

The complete memory module consisting of all the buffers is given below.

70



Lower-level caches

rqFromC rsFromC toC

cq s M'

(a) Modules in Memory
Buffer FIFO Description Format

rqFromC Yes Requests from children (src-cache, address, old-state, upgrade-state)
rsFromC Yes Responses from children (src-cache, address, downgrade-state, data)

(dest-cache, (Req, address, downgrade-state))
I (dest-cache, (Rs, address, upgrade-state, data))

cRqs No Requests from children (src-cache, address, old-state, upgrade-state)

(b) Buffers in memory, and its message formats

searchAddr(cRqs.all, a) Similar to the searchAddr function for Li caches.
isCompatible(x, y) Checks whether MSI states x and y are compatible. This is

a commutative function. M is compatible only with I, S is
compatible with both S and I while I is compatible with any
MSI state.

findIncompatible Returns a child cache which is not c, whose directory state

(c, dirList, dirwList, x) (dirList[c]) is not compatible with x state, and where there is
I no pending response from that child (i.e., -,dirwList[c]).

(c) Helper functions in memory transitions

Figure 4-6: Memory

Module:
Regs dir[NUM]({{I}}), dirw[NUMJ({{False}}), data[NUMI(do);

Rule CTransfer: Rule DwnRq:

let (c, a, y, x) = rqFromC.pop; let n = cRqs.get(dir, dirw);
let (WaitSt, (c, a, y, x)) = cRqs.read(n);

cRqs.ins((c, a, y, x)); let i = findIncompatible(c, dir[a], dirw[a], x);
Rule Hit: when(i : e) a
letn = cRqs.get(dir, dirw); toC.enq((i,(Reqa, if (x = M) then I else S)));

let (Init, (c, a, y, x)) = cRqs.extract (n); dirw[a][i] := True;
when((dir[a][c] < y) A (-,dirw[a][c]) Rule DwnRs:

A (Vi $ c. compat (dir[a][i], x)) let(c,a,x,v) rsromC pop-
A (searchAddr(cRqs.all,a) = E)) if (dir[a][c] = M) data[a] :=v;dir [a] [c] := x i a c =x

to C. enq((c, (Rs, a, x, dir[a][c] := F;
if (dir[a][c] = I) then data[a] else _ ) dirw[a][c] := False;

Rule MissByState: Rule Deferred:

let-n = cRqs.get(dir, dirw); let n = cRqs.get (dir, dirw);
let (Init, (c, a, y, x)) = cRqs.read(n); let (WaitSt, (c, a, y, x)) = cRqs.extract (n);

when((dir[a][c] y) when((Vi 5 c. compat(dir[a][i], x)) A (-dirw[a][c])) =>
A -(Vi 5 c. compat(dir[a][i], x)) dir [a][c] := x;
* (searchAddr(cRqs.all, a) = E)) cRqs.upd(n, Free);

cRqs.upda(n, Wa)itSt); toC.enq((c, (Rs, a, x,
if (dir[a][c] = I) then data[a] else )));

Figure 4-7: Module M': The module containing the transition rules of the memory
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Definition 8. M - rqFromC + cRqs + toC + M'

Memory state

The memory contains a directory which contains the MSI state for each line address

for each child. dir[a][c] gives the directory state for line address a and child c. dir[a]

gives the vector of MSI states for line address a for every child. Initially, all directory

values are I.

The directory also contains information about which child i is being downgraded,

for a particular address a, in the array dirw[a][i]. Initially, all dirw values are False.

Finally, the memory contains a data array for storing the cache-line data, which

initially contains the initial value of the memory do. This is the same as memo in

Figure 3-2 except that mo is stored in word granularity while do is stored in line

granularity. The memory does not have any tags array, since it stores the data for

every line address and hence can be indexed directly with a line address.

Buffers in the Memory

Figure 4-6a shows the components inside the memory. It has the buffers described in

Figure 4-6b which also gives the format of the message entries stored in the buffers.

The buffers in the memory are similar to the processor-side buffers in the Li cache,

and the parent-side buffers are absent since the memory has no parent. Note that

the destination IDs are stripped off the incoming messages as in Li caches.

The memory has one extra FIFO buffer rsFromC which carries response messages

from its children. Buffers toC, rqFromC and rsFromC also have methods enq and

pop.

The memory has a buffer cRqs which is similar to the buffer cRqs of the Li cache.

Instead of a request going through 4 stages as in the Li cache, there are only 3 stages

that a request goes through in the memory, as shown in Figure 4-8.

There are no buffers carrying messages from the parent because the memory is at

the root of the memory hierarchy tree and thus has no parent.
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Invalid

Init

WaitSt

Figure 4-8: The augmented state changes for request entries in cRqs in the memory

Transition Rules for Memory

Figure 4-7 shows the transition rules of memory (i.e., the rules of the M' module)

for handling requests from the children. These rules can only directly access the local

state inside the M' module; it calls the appropriate methods in the buffers to access

them.

Here is an outline on how the transitions work. When the memory gets an up-

grade request from one of its children, it checks to see if the other children's cache

states are compatible with the requesting child's upgrade. It does so by consulting

its directory. The invariant that we maintain in this protocol is that the directory

contains a conservative estimate of the children's cache states. If the other children's

cache states are compatible, it dequeues the request, upgrades the requesting child's

directory information and sends back the response.

On receiving a request which cannot be processed immediately because the other

children's cache states are not compatible (as indicated by the directory), it sends

downgrade requests to the non-compatible children. As and when the corresponding

responses are obtained, the directory is updated to reflect the downgrades. Finally,

when all the other children's cache states have become compatible, the original child's

request is dequeued and responded to.

The transition rules use the helper functions shown in Figure 4-6c. They use some

functions similar to the ones in Li caches and a few others.

Requests and responses from the cache to its parent have to maintain some order,

which is, a request for an address cannot overtake a response for the same address.

Moreover, a request message is not allowed to block a response message. One way to

solve this problem is to use the same queue for requests and responses, but prevent
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request messages from blocking response messages by assigning them lower priority.

We have chosen an alternative solution in which requests and responses go in separate

FIFO queues, but we send some extra information (namely old cache state) and do

an extra check at the parent to ensure that a future request does not overtake an

earlier response. We will discuss more about this in Section 4.3.

4.2.5 Internal Cache

Figure 4-9a shows the components of the internal cache, and its module specification

is given in Figure 4-10.

The complete internal cache module consisting of all the buffers is given below.

Definition 9. Lint A rqFromC + rsFromC + cRqs + toC + i + rqToP + rsToP +

pRqs + fromP

Internal Cache state

The internal cache consists of a combination of the directory and the cache states.

Thus, it contains cache state cs[l] for each line 1 and directory dir[l][c] for each line 1

and child c. Initially the values of all these register arrays are set to I.

It also contains the wait-for-response array w [1] and dirw [1] [c] to wait for responses

from its parent and from child c for line 1, respectively. Initially all these register arrays

are set to False.

It also contains the data and tags array, both of which are uninitialized.

Buffers in the Internal Cache

Figure 4-9a shows the components inside an internal cache. It has the buffers de-

scribed in Figure 4-9b, which also gives the format of the message entries stored

in the buffers. The FIFO buffers rqFromC, rsFromC, toC, rqToP, rsToP and fromP

have methods enq and pop similar to their counterparts in the memory or the Li

cache. Note that the destination IDs are stripped off the incoming messages here

also.
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Transition Rules of Internal Cache

Figure 4-10 shows the transition rules of an internal cache (i.e., the rules of the L'

module) for handling requests from the children and from the parent, respectively.

These rules can only directly access the local state inside the L' module; it calls the

appropriate methods in the buffers to access them.

The internal cache combines the transitions rules of the Li cache and the memory.

When it gets an upgrade request from one of its children, it first checks to see if that

line is present. If not, it evicts an address from another slot, similar to how the Li

cache evicts a line. However, in order to evict another address, the cache state of

that address in all its children must be I. It consults the directory to check if this is

true, otherwise it sends downgrade requests to the children to invalidate the evicted

address. Once all the children have the evicted address in I state, then that address

can be evicted, and the slot can be alloted for the new request.

In order to service the request once a slot has been allocated, the cache has to take

care of both its own cache state for the address and the cache states of its children. Its

own cache state must be at least as high as the requesting upgrade, otherwise it has

to send an upgrade request to its parent to upgrade its own cache state. Similarly, the

cache states of the other children must be compatible, otherwise the other children

have to be requested to downgrade.

Once all the responses are obtained, and hence all the children have become com-

patible and its own cache state is high enough, then the original request can be

responded to.

The transition rules use the helper functions shown in Figure 4-9c. These are

mostly similar to the functions defined for Li caches and memory.

As in the case of Li caches, when an upgrade request is made, an association

between the line address and the cache slot where the line will reside has to be

maintained. Again, this can be done either by sending the slot number with the

upgrade requests, or searching the requests from the lower levels which are waiting to

be served (as done by searchAddr function). The number of additional bits needed is
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Lower-level caches

rqFromC rsFromC toC

c s L'I pRqs

rqToP rsToP fromP

Higher-level caches

(a) Modules in an Internal cache

Buffer FIFO Description Format
rqFromC Yes Requests from children (src-cache, address, old-state, upgrade-state)
rsFromC Yes Responses from children (src-cache, address, downgrade-state, data)

(dest-cache, (Req, address, downgrade-state))
I (dest-cache, (Rs, address, upgrade-state, data))

rq ToP Yes Requests to parent (parent-cache-id, current-cache-id,
address, old-state, upgrade-state)

rs ToP Yes Responses to parent (parent-cache-id, current-cache-id,
address, downgrade-state, data)

(Req, address, downgrade-state)
I (Rs, address, upgrade-state, data)

cRqs No Requests from children (src-cache, address, old-state, upgrade-state)
pRqs No Requests from parent (address, downgrade-state)

(b) Buffers in internal cache, and its message formats

search Tags(cs, tags, a) Similar to search Tags function for Li caches.
searchAddr(cRqs. all, a) Similar to searchAddr function for Li caches.
searchSlot(cRqs. all, 1) Similar to searchSlot function for Li caches.
get Victim Similar to the get Victim function of LI caches. In addition
(cRqs.all, pRqs.all, to the conditions in Li caches, the directory states of all

dirList, a) the children for the victim, if any, must be I.
completed Returns if there any "completed" requests in cRqs buffer,
(cRqs.all, x, a) i.e., a request (c, a, y, ') in augmented state (WaitSt, )

for which x > x'.
findHigher Returns a child cache c whose directory state (dirList[c])
(dirList, dirwList, x) is higher than x state, and where there is no pending re-

sponse from that child (i.e.,-idirwList[c]).
isCompatible(x, y) Similar to the function isCompatible for memory.
findIncompatible Similar to the function findIncompatible for memory.
(c, dirList, dirwList)

(c) Helper functions in internal cache transitions

Figure 4-9: Internal Cache
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Module:
Regs cs[NUlM]({I}), w[NUM]({False}), tags[NUM]({ _}), data[NUM]({ _}), dir[NUM]({{I}}), dirw[NUM]({{False}});

Rule CTransfer:
let (c, a, y, x) = rqFromC.pop;
cRqs.ins ((c, a, y, x));

Rule Hit:
let n = cRqs.get(cs, tags, w, dir, dirw, pRqs.all);
let (Init, (c, a, y, x)) = cRqs.extract (n);
let 1 = search Tags(cs, tags, a);
when((l $ e) A (dir[1][c] < y) A (cs[1] > x)

A (Vi j c. compat(dir[1][i],x)) A , dirw[l] [c]
A (searchSlot(cRqs.all, 1) = e)
A (searchAddr(cRqs.all, a) = E)
A (searchAddr(pRqs.all, a) = e)) *

dir[1][c] := x;
cRqs.upd(n, Free);
to C. enq((c, (Rs, a, x,

if (dir[l][c] = I) then data[l] else )));

Rule MissByState:
let n = cRqs.get(cs, tags, w, dir, dirw, pRqs.all);
let (Init, (c, a, y, x)) = cRqs.read(n);
let l = search Tags (cs, tags, a);
when((l $ e) A (dir[l][c] < y) A -((cs[l] > x)

A (Vi $ c. compat(dir[l][i], x)))
A (searchSlot(cRqs.all, 1) = c)
A (searchAddr(cRqs. all, a) = e)
A (searchAddr(pRqs.all,a) = e)) =>

cRqs.upd(n, (WaitSt, 1));

Rule MissByLine:
let n = cRqs.get(cs, tags, w, dir, dirw, pRqs.all);
let (Init, (c, a, y, x)) = cRqs.read(n);
let 1 = getVictim(cRqs.all, pRqs.all, [], a);
when((l $ e) A (searchTags(cs, tags, a) = E)

A (searchAddr(cRqs.all, a) = e)
A (searchAddr(pRqs.all, a) = e)) =

cRqs.upd(n, (Wa itV, 1));

Rule DwnRqEvict:
let n = cRqs.get(cs, tags, w, dir, dirw, pRqs.all);
let ((WaitV, 1), (c, a, y, x)) = cRqs.read(n);
let i = findHigher(dir[l], dirw[l], I);
when((i $ e) A (dir[1][i] > I)) =

to C.enq((c, (Req, a, I)));
dirw[1][i] := True;

Rule DwnRs:
let (c, a, x, v) = rsFromC.pop;
let l = searchTags(cs, tags, a);
if (dir[1][c] = M)then data[a] :=v;
dir[l][c] := x;
dirw[l][c] := False;

Rule Writeback:
let n = cRqs.get (cs, tags, w, dir, dirw, pRqs.all);
let ((WaitV, 1), (c, a, y, x)) = cRqs.read(n);
let a' = tags[f];
when(Vi. dir[l] [i] = I) =o

if (cs[l] $ I) rs ToP.enq((pid, (cid, a', I,
if (cs[l] = M) then data[l] else )));

cs[l] := I;
cRqs.upd(n, (WaitSt, 1));

Rule UpgRq:
let n = cRqs.get(cs, tags, w, dir, dirw, pRqs.all);
let ((WaitSt, 1), (c, a, y, x)) = cRqs.read(n);
when(-,w[l] A (cs[l] < x)) =>

rqToP.enq((pid, (cid, a, cs[l], x)));
w[l] := True;

Rule UpgRs:
let(Rs, a, x, v) = fromP. pop;
let 1 = searchAddr(cRqs.all,a);
when(searchAddr(pRqs.all, a) =) 

if (cs[l] = I) {data[l] := v; tags[1] := a; }
cs[l] :=X;
w[l] := False;

Rule DwnRq:
let n = cRqs.get(cs, tags, w, dir, dirw, pRqs.all);
let ((WaitSt, 1), (c, a, y, x)) = cRqs.read(n);
let i = findIncompatible(c, dir[1], dirw [1], x);
when(i $ e) =>

toC.enq((i, (Req, a, if (x = M) then I else S)));
dirw[l][i] := True;

Rule Deferred:
let n = cRqs.get(cs, tags, w, dir, dirw, pRqs.all);
let ((WaitSt, 1), (c, a, y, x)) = cRqs.extract (n);
when((cs[1] x) A -,dirw[] [c]

A (Vi # c. compat (dir[l][i], x))) e
dir[1] [c] := x;
cRqs.upd(n, Free);
toC.enq((c, (Rs, a, x,

if (dir[l][c] = I) then data[l] else )));

Rule PTransfer:
let (Req, a, x) = fromP. pop;
pRqs.ins((a, x));

Rule Drop:
let n = pRqs.get(cs, tags, w, dir, dirw, cRqs.all);
let (a, x) = pRqs.read (n);
let I = search Tags (cs, tags, a);
when((l = c) V (cs[l] < x)) =>

pRqs.remove(n);

Rule PProcess:
let n = pRqs.get(cs, tags, w, dir, dirw, cRqs.all);
let (a, x) = pRqs.read(n);
let 1 = searchTags(cs, tags, a);
when((cs[1] > x) A (Vi. dir[l][i] x)

A -,completed(cRqs. all, cs[1], a)) =>
pRqs.remove(n);
rs ToP. enq((pid, (cid, a, x,

if (cs[l] = M) then data[l] else )));
cs[l] := X;

Rule DwnRqP:
let n = pRqs.get(cs, tags, w, dir, dirw, cRqs.all);
let (a, x) = pRqs.read(n);
let 1 = search Tags(cs, tags, a);
let i = findHigher(dir[1], dirw [1], x);
when((i $ c) A -completed(cRqs.all, cs[l], a)) =

toC.enq((i, (Req, a, x)));
dirw[l][i] := True;

Figure 4-10: Module Lint': Module containing the transition rules of the Lint cache
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again Ig(cache-associativity).

The FIFO buffers in Figure 4-9b are similar to the FIFO module in Figure 2-1.

The non-FIFO buffer cRqs is similar to the cRqs buffer of the Li cache, and each

entry goes through the same set of stages as shown in Figure 4-5. The non-FIFO

buffer pRqs is also similar to its namesake in the Li caches.

4.2.6 Subtle Design Decisions in the Caches

In this section, we will highlight some of the subtleties in the design of the caches.

In the verification of the cache-coherence protocol (which we discuss in Chapter 8),

these subtleties lead to invariants that are proven.

The first thing to note is that the cache state changes only on sending responses

to the parent or receiving responses from the parent. Similarly, the directory state

changes only on sending responses to the corresponding child or receiving responses

from the corresponding child.

For a given address, there can be only one request from a child (or processor) in the

cRqs buffer whose entry is in a waiting augmented state of (WaitSt, _) or (WaitV, _).

This is guaranteed by the guards of the rules that change the augmented state of a

request entry to (WaitSt, _) or (WaitV, _) (using function searchAddr(cRqs.all, ... )).

In case the cache has to evict a slot to accommodate a new address, the address of

the slot it evicts is also not going to be present in the cRqs buffer in a request whose

entry is in a waiting augmented state of (WaitSt, _) or (WaitV, ).

A request entry in the cRqs buffer can go into a waiting augmented state of

(WaitSt, _) or (WaitV, _) from Init or Free only when there are no requests for the

same address in the pRqs buffer. This is again guaranteed by the guards of the

respective rules (using function searchAddr(pRqs.all, ... ))

Since the cache can evict an address (using Rule( Writeback)) without its parent

actually asking the cache to downgrade, the parent will not be informed of the down-

grade till it receives this unsolicited response sent by the cache. So, the parent could

have sent a downgrade request in the interim, which must be discarded. Rule(Drop)
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does just that.

Whenever a cache sends a request to its parent, it sets its wait state. Similarly,

whenever it sends a request to its child, it sets the corresponding child's directory-wait

state. When a cache is in wait-state, handling a downgrade request from its parent is

not straightforward. We have to decide whether to handle the request or ignore it for

the time being. Similarly, on the parent's side, we need to decide whether to handle

or ignore an upgrade request from a child, when the corresponding directory-wait

state is set.

Let's say we decide to handle neither. This will clearly create a deadlock. Let's

say we decide to handle both. This can lead to a livelock as follows: The parent

sends an upgrade response, and the child sends a downgrade response. But, the

parent immediately sends a downgrade request again (it must have sent a downgrade

request earlier for a reason, which still remains true), and the child immediately

sends an upgrade request again. Once again, the respective requests can be processed

without handling the cause that made the two entities send the respective requests,

leading to a livelock.

To avoid the problems of livelock and deadlock, we have to allow only one of

them to handle the request while the other should ignore the request. The downgrade

request from a parent is always handled except when there is a pending request in the

cRqs buffer that can be "completed" (as given by function completed(cRqs.all,...)).

In case of the latter, the request from the parent is ignored. This is acceptable because

the cache can make forward progress by servicing the pending request in the cRqs

buffer that can be completed. We will prove in Chapter 8 that this avoids livelocks.

In fact, it is easy to see that handling the parent's request when a pending request in

the cRqs buffer can be completed can lead to a livelock.

Let's say two caches have pending requests to upgrade to M in the cRqs buffer

for the same address, and let's say the cache state of the first is M and the second

is I. So the second cache sends an upgrade-to-M request, which is received by the

parent. The parent then sends a downgrade-to-I request to the first cache. The first

cache downgrades its cache state to I, sending a downgrade response to the parent.
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The parent, on receiving the response, sends an upgrade-to-M response to the second

cache. The second cache upgrades its cache state to M on receiving the response.

This scenario is symmetric to the one we started out with. Doing the symmetric set

of actions will lead to the exact scenario we started out with, creating a livelock.

We will be showing all the invariants that are held by the caches formally in Chap-

ter 8, and show how they help in verifying that the hierarchy of caches implements

the atomic memory.

4.3 Network Between the Caches

In this section we will give the constraints on the implementation of the network

connecting the cache nodes.

For messages from parent to children, each cache's toC buffer is logically connected

to each of its children's fromP FIFO buffer. Similarly, for requests from children to

their parents, each child's rqToP buffer is logically connected to the corresponding

parent's rqFromC buffer, and for responses from children to their parents, each child's

rsToP buffer is logically connected to the corresponding parent's rsFromC buffer.

The network can be implemented using any physical topology as long as the

following three different types of messages, viz., (a) messages from parent to children,

(b) requests from children to parent and (c) responses from children to parent do

not interfere with each other. Moreover, even within the same type of messages,

the messages transmitted between a pair of levels of the cache hierarchy should not

interfere with the messages transmitted between a different pair of levels, except for

the responses from children to parent, which can interfere across hierarchies. By not

interfering, we mean that, if one of these messages is blocked from sending because

the buffers carrying those types of messages is full, it shouldn't affect the ability to

send other kinds of messages.

Another requirement that the network carrying these different types of message

should obey is that there is point-to-point ordering for messages sent between the

same source-destination pair of buffers (even though messages having different source-
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destination pair of buffers even among the same pair of caches have no ordering

requirement between them.)

A simple implementation of the network to satisfy the above requirements is to

connect each of the buffers directly to the appropriate buffers in the parent or the

children. Such a connection would involve a transition rule for each pair of connected

buffers, as shown below.

Rule Connecti:
a = x.pop;
y. enq(a);

However, as the number of cores increase, having such a dedicated point to point

network between all the communicating buffers in the caches is prohibitively expen-

sive. Most modern processors implement a separate physical interconnect network,

organized as a ring, mesh, etc., which connects every cache and every processor. The

logical tree topology can be implemented on top of this physical network. In in order

to implement the constraints on the interference of messages on a single physical net-

work, one has to use the concept of virtual channels or virtual networks [81]. Each

virtual channel is implemented using buffers that store only messages flowing in that

channel, and is therefore logically independent of other virtual channels.

Section 4.2.4 mentions two alternative implementations for requests and responses

going from children to parents: (a) using two separate buffers, one for requests and

the other for responses; and (b) using the same buffer with high priority for responses

and low priority for requests. While we have implemented the protocol assuming

the former, if one chooses to use the latter, then it is the duty of the network to

guarantee that high priority messages are never blocked by low priority messages.

This can also be implemented using virtual channels, but every buffer (including

those in the switches, etc.) in the virtual channel must obey this priority.
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4.4 Design for Provability

The designs of the speculative out-of-order processor and the cache hierarchy involve

several abstractions. For instance, in the case of the processor, the reorder buffer

and branch predictor units were abstracted as modules with constraints on their

behavior (in the case of the branch predictor module, there were no constraints on its

behavior). Similarly, in the case of the cache hierarchy, we specified functions such

as get Victim, search Tags, etc. by giving a specification of the values returned by the

function instead of actually defining the function itself.

Let us delve into the reorder buffer module of the processor. This module defines

several methods (as shown in Section 3.3.1). While we do not give the definitions of

any of these methods, we do constrain the behavior of the oldest method alone using

Invariant 1. The rest of the methods are allowed to be implemented in any manner,

and it does not affect the correctness of the reorder buffer module. Moreover, the

reorder buffer module can have any number of internal rules, as long as Invariant 1

is obeyed.

Let us now look into Invariant 1. It constrains the values returned by the oldest

method of the reorder buffer. In order to specify the constraint, we have used the

same dec and exec functions which we had used in the specification of the decoupled

processor, Pdec. This brings up another point of abstraction that we employed in

this processor design: reuse of the function both in the implementation module and

the specification module. In fact, Rule(LoadRsBad) of the speculative out-of-order

processor, P.., also uses the same exec function. Use of the same function in both

the implementation and the specification avoids the need to verify the details of the

decode and execution units. For instance, we need not verify that a "plus" operation

is implemented correctly in the out-of-order processor but we can directly conclude

that P,0 behaves exactly like Pdec for any instantiation of the dec and exec functions,

irrespective of whether the "plus" operation has been actually implemented correctly.
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Thus, if one wants to verify that a particular ISA has been implemented correctly,

then one has to make sure that the dec and exec functions are consistent with the

instructions of the ISA like "plus".

Compared to the reorder buffer module, the branch predictor module does not

have to obey any specification - it can return any value as the next predicted pc.

This is acceptable since the reorder buffer processor has a mechanism to correct itself

in case of a bad prediction.

In summary, in our design of the speculative out-of-order processor, we employed

two kinds of abstractions:

1. Abstracting using a logical specification: A concrete function or module is re-

placed with a logical specification of its behavior.

2. Using identical functions in implementation and specification.

As mentioned earlier, the cache hierarchy also employs several abstractions, which

manifest themselves in the form of functions defined in Figure 4-3c, Figure 4-6c and

Figure 4-9c. All these functions were specified in terms of the constraints on the

values returned by these functions instead of giving an actual definition. This allows

us to change several implementation parameters (like cache associativity, replacement

policy, etc.) without having to change any of the proofs - the proofs are all orthogonal

to such implementation parameters.

In addition to keeping the proofs more general than restricting them to specific

instantiations of the implementations, the use of abstractions has another important

consequence. The use of abstractions is akin to specifying a general mechanism that

supports any specific policy, and the policies are left unspecified. This reduces the

proof burden considerably, as the design is not cluttered with unnecessary details

orthogonal to the proof. One can imagine the cluttering in the code corresponding

to a cache design which has a hard-coded replacement policy for a specific cache-
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organization. The definitions of functions such as get Victim and search Tags will be

inlined at their call sites, and if the functions get complicated (for instance, get Victim

can get very complicated depending on the sophistication of the replacement policy),

then the main gist of the transitions that happen in the rules (which were not more

than 10 lines in each of Figures 4-4, 4-7 and 4-10) will be lost in the details of the

functions' implementations.

In summary, the use of abstractions has two purposes when it comes to verification:

" to parameterize the proofs over several concrete instantiations of the implemen-

tations, and

* to reduce the verification burden by leaving the policies unspecified and instead

verifying the design for any policies.

The second point is very important especially for verification flows involving the-

orem proving, such as ours. This is because one needs to manually supply the proofs

for the designs, which is easier when unnecessary details are absent from the design.

While good software engineering discipline dictates that such abstractions in de-

signs are useful, it is uncommon to find them in practice, for hardware designs. For

instance, the function getVictim is typically inlined in actual hardware design. In

fact, coming up with the right abstractions during the design phase can be hard.

But, as we argue in this section, spending effort to employ right abstractions in the

design pays off during its verification. Otherwise, during the verification phase, one

has to first extract out the policies that are irrelevant from a correctness perspective

before attempting to verify the system.

This notion of "design for provability" or "design for verifiability" is not new.

While some work on the methodology of design for verifiability 118,191 restricts the

designs to use only a subset of the system description language like VOVHDL [17j, our

methodology is more informal and along the lines of Curzon et al. [25] and Milne et
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al. 1641.

4.5 Conclusion

In this chapter we presented a specification of a cache coherence protocol in terms

of transition rules of cache nodes. This hierarchy of caches executing this protocol

along with the interconnect network forms the memory subsystem of any modern

processor. It remains to be shown that this system indeed implements the atomic

memory specification Matomic. We will embark on this task in the next part of the

dissertation, starting with the formalization of the semantics of Bluespec modules.
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Part II

Verifying Hardware Systems using

Labeled Transition Systems
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Organization

In this part of the dissertation we will formalize the notion of refinement and state

several properties of the refinement relation. We will later use these properties to

prove that the multiprocessor system consisting of speculative out-of-order cores con-

nected to a coherent cache hierarchy implements sequential consistency.

We will start by giving an overview of the formal verification techniques in the

hardware domain in Chapter 5. We will also compare and contrast verification using

model-checking with that using proof assistants or theorem provers. Most of the

formal proofs in this thesis were mechanically verified using the Coq proof assistant.

We will discuss the advantages of using theorem provers for hardware verification.

. We will start by giving the modular semantics of hardware modules written in

Bluespec using Labeled Transition Systems (LTS) [651. While the concept of LTSes

is widely known, we show how a module in Bluespec can be interpreted as an LTS.

The label in an LTS transition is used to represent communication that happens in

Bluespec modules via methods. In Chapter 6, we specify the formal syntax for writing

and composing hardware modules in Bluespec which we have been using informally

in Part I. We will then specify its semantics in terms of LTSes. We will then specify

the semantics of composition of Bluespec modules. We will also formally define the

notion of refinement or implementation. We will state useful properties of refinements

including composition properties and prove them.

The refinement methodology used in this thesis also bears similarity to those em-
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ployed by earlier classical works [1,43,58]. These works were the first to introduce the

notion of refinement relation between an implementation and its specification based

on abstraction functions. They build the theory about refinements using forward

simulation and backward simulation relations. This thesis uses the same notion of

forward simulation. In addition, this thesis also formalizes a type of compositional

reasoning and proofs using LTSes.

Next, we will give the formal proofs for the multiprocessor system implementing

sequential consistency. In Chapter 7, we will give an overview of the overall proof. We

will state and prove the relationships between the speculative out-of-order processor

PSO, the decoupled processor Pdec and the instantaneous processor Pinst.

In Chapter 8, we will give the formal proof that the hierarchy of caches Mcahe

implements atomic memory Matomic. We will also prove that the cache coherence

protocol ensures that the cache hierarchy is free of deadlocks and livelocks.

Finally, in Chapter 9 we will present the work to be done in terms of improv-

ing the verification framework and building a library of formally verified hardware

components using this technique.
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Chapter 5

Background: Verification Techniques

for Hardware Systems

We will begin this chapter with an overview of the model-checking based hardware

verification techniques which are widely in use, along with some of their limitations, in

Section 5.1. In Section 5.2, we will give some of the instances of hardware verification

carried out using theorem provers or proof assistants and discuss their trade-offs

compared to model-checking.

5.1 Hardware Verification using Model-Checking

Designers recognize the challenge of implementing hardware systems, to such an ex-

tent that they have already become some of the most serious real-world adopters of

formal methods. Hardware verification is dominated by model checking; for instance,

processor verification [15, 61] and more recently, Intel's execution cluster verifica-

tion [51].

Typical hardware systems are parameterized over numerous design parameters.

In our multiprocessor system, the cache hierarchy is parameterized over the number

of levels in the tree, number of children in each node, etc. In fact, it is parameterized
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completely over the shape of the tree itself. More low-level components, like buffers,

can also be parameterized over their sizes.

While many abstraction techniques are used to reduce parameterized designs to

finite state spaces, which can be explored exhaustively, there are limits to the con-

struction of sound abstractions. So verifications of, e.g.,, cache-coherence protocols

have mostly treated systems with concrete topologies, involving particular finite num-

bers of caches and processors. For instance, explicit-state model checking tools like

Murphi [36] or TLC [50,57] are only able to handle single-level cache hierarchies with

fewer than ten addresses and ten CPUs, as opposed to the billions of addresses in

a real system, or the ever-growing number of CPUs. Symbolic model checking by

itself does not do any better: McMillan et al. have verified a 2-level MSI protocol in

the Gigamax distributed multiprocessor having two clusters with six processors each

using SMV [63].

Optimizations on symbolic model checking (e.g., partial order reduction [10], sym-

metry reduction [11, 21, 24,37,47, 901, compositional reasoning [48, 60, 62], extended-

FSM [35], etc.) scale the approach, supporting some form of structural parameter-

ization. For example, some of these techniques can verify up to two levels of cache

hierarchy (i.e., a memory at the root, and a set of Li caches) with arbitrary num-

ber of processors, but they are still unable to handle realistic multi-level hierarchical

protocols. An exception to this is work by Zhang et al. to verify hierarchical cache-

coherence protocols [91]. This work, however, has two huge restrictions: (a) the

cache hierarchy should exhibit a fractal-like behavior, i.e., the composition of several

caches should also behave like a single cache, and (b) the cache hierarchy can only be

a binary tree. Even with these restrictions, they rely on paper-and-pencil proofs for

theorems about compositions. The authors agree in a later work [90] that, as a result

of the binary restriction, the protocol suffers from a serious performance handicap.

It is imperative that no changes are made to the design to make it more amenable to
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verification, let alone those that in fact reduce the performance! They also advocate

that parameterization should be restricted to single dimensions (e.g.,, only the num-

ber of children of each cache can be parameterized, not the number of levels) for the

state-of-the-art tools based on model checking to scale.

Even if the above mentioned optimization techniques are used in model-checking-

based approaches, verification of realistic complex systems is still not a push of a

button. Finding state invariants automatically is really hard for complex systems,

and more often than not, these have to be supplied manually as part of the specifi-

cation to verify against. For instance, Chou et al. [24] propose a counter-example

guided abstraction refinement technique, where extra relaxed invariants, called "non-

interference lemmas" are added manually, and whenever a model-checker returns a

counter example for the manually supplied invariant, it is manually strengthened.

In this way, all the invariants of the system are discovered, eventually verifying the

system. Flow-based methodology [83] gives yet another way of manually specifying

invariants for verifying cache-coherence protocols. It is based on supplying a single

"flow" of messages that has to take place to complete a complex transaction.

Finally, model-checking provides no intuition as to why a protocol is correct, if the

model checker successfully proves a protocol. Developing a new protocol, therefore,

cannot use any intuition that could have been gained from the first protocol, requiring

the verification to be carried out from scratch. However, this issue is somewhat

mitigated using interactive model-checking based techniques, which, while not push-

button, enable verification of more complex systems and help gather intuition about

the design.
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5.2 Hardware Verification using Theorem Provers

We propose a mechanized theorem-prover based approach to verifying systems. This

solves the scalability problems faced by model checkers, and readily support arbitrary

parameterization. People have used theorem provers to verify microprocessors before,

e.g., HOL to verify an academic microprocessor AVI-1 [891. Cache-coherence proofs

have also used mechanized theorem provers, though all previous work has verified

only single-level hierarchies. Examples include using ACL2 for verifying a bus-based

snoop protocol [66], using a combination of model-checking and PVS [711 to verify

the FLASH protocol [55], and using PVS to mechanize some portions of a paper-and-

pencil proof verifying that the Cachet cache-coherence protocol [80] does not violate

the CRF memory model.

The main advantage of using theorem provers is that it enables us to verify a

system even in the presence of parameters, instead of verifying just concrete instances.

For example, in this thesis, we proved that the cache coherence protocol is correct

over any arbitrary tree hierarchy.

But the downside of using theorem provers is that considerable effort is needed

by verification experts to provide a proof for the system. The human verification

effort increases with the complexity of the protocol - the verification engineer has to

codify something akin to the paper-and-pencil proof inside the theorem prover, which

the theorem prover will check and "certify". This human effort is comparable to that

needed to supply manual invariants in the case of model-checking based techniques

(like that of Chou et al. [24 and the flow-based methodology [83]). In this thesis, we

try to mitigate some of these issues using two approaches:

1. By developing a systematic methodology for designing and verifying hardware

systems using Bluespec specifications and the theory of Labeled Transition Sys-

tems.
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2. By using the Coq proof assistant which has several features that make formal

verification of hardware systems using theorem provers more practical.

The Coq proof assistant has intrinsic support for higher-order logic, which enables

us to state and prove complex properties about systems as opposed to being restricted

to Linear Temporal Logic (LTL), Computation Tree Logic (CTL) or CTL*. Such a

logic system allows us to structure the proof in the same way as would be written

by hand. In addition to the structural modularization of proofs, Coq also permits

"programming the proof procedure" via what is known as tactics using the LTac

language [341, and a vast library of tactics which ease the proofs. For instance, if two

completely unrelated theorems are both proven using induction and the assumptions

about induction hypotheses, a tactic induction; simpl; assumption would prove both

of these unrelated theorems. Finally, the LTac language also permits "proof searches

by pattern recognition" and supplying tactics for the matched patterns. This enables

us to search for a particular pattern and discharge the proof obligations for such

patterns using the tactics supplied for that pattern. This is especially useful for

discharging trivial proof obligations and concentrating on the meat of the proof.

While this thesis exclusively uses the Coq proof assistant for mechanized verifi-

cation, it is conceivable that other theorem provers also offer the same advantage as

Coq or perhaps are even more suitable for hardware verification. Adam Chlipala [23]

compares Coq (favorably) against other theorem provers that are currently in use.

5.3 Conclusion

In this chapter we gave an overview of the hardware verification landscape, where

most formal verification is dominated by model-checking. We also argued why we

chose to use theorem prover based approach for hardware verification and listed some

of the reasons for using the Coq proof assistant. In the next chapter we will give the
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formal modular semantics of Bluespec using Labeled Transition Systems and in the

later chapters, verify our multiprocessor system example.
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Chapter 6

Modular Semantics of Bluespec

In this chapter we will formalize the syntax and semantics of Bluespec. First, we

will specify the syntax for Bluespec modules in Section 6.1. In Section 6.2, we will

discuss the behavior of a composition of modules by constructing a single primitive

module from the composition. This will serve as the guideline to define the semantics

of modules. In Section 6.3, we discuss the modular semantics of modules. We start

by giving semantics for actions, which are the building blocks for rules and methods

of a module. We then present the semantics of a primitive module, followed by the

semantics for a composition of modules. The semantics for a composition of modules

are similar to those of Labeled Transition Systems (LTSes) 1651. We will then give the

formal definition of the "implements" or "refines" relation in 6.4. Finally, in Section

6.5, we will state some of the properties of the semantics and the implements relation.

6.1 Syntax

We will start with expressions in this language which correspond to register reads,

constant reads or operations on other expressions. For notational convenience, we

use the symbol X to represent a list of elements x. Henceforth we will use r and c as

representative symbols for register names and constants, respectively, and R and C

95



to represent the set of register names and set of constants, respectively. We will use

f, g or h to represent method names and F to represent the set of method names.

We use k for rule names and IC to represent the set of rule names. We use 6, A and

M to represent the sets of expressions, actions and modules, respectively.

Expression E r

C

I ope

An action is formally defined below using the Continuation Passing Style (CPS)

syntax [74]. An action can be a call of a method of a different module passing an

expression as an argument, a variable-to-expression binding, a register update, a

conditional action, an assertion or a guarded action, or a return expression. Each

action except the return action contains a continuation action. Note that a method

call is an action returning a value (called an action value in Bluespec) and its effect,

informally, is to update some state in another module in addition to returning a value.

There is an explicit check to ensure that each method is called only and each register

is written only once within an action.

Action A r := e; a

let x = f(e); a

let x = e; a

I if (e) then a else a; a

I when(e) =- a

return(e)

A module is either a primitive module comprising of registers along with their initial

values, rules and methods; or it is a composition of several primitive modules. Rules
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are named actions, and methods are named function abstractions for actions.

Module M ((r, c), (k, a), (f, Ax.a))

m+m

We ensure that no two registers, two rules or two methods defined in a module have

the same name. This means that every register, rule and method name in every

primitive module present in a composition is globally unique. We also ensure that

registers being accessed in a rule of a primitive module are defined in that module

and the methods being accessed in any action of a primitive module are not defined

in that module. We ensure that there is no cycle in the call graph of a module (i.e., a

graph in which the vertices are the set of methods defined by a module and each edge

between two methods represents the call of one method inside another). Finally, we

ensure that only one primitive module can call a method defined in another primitive

module. It is easy to check for these conditions syntactically, and we will assume that

this check has been done for the rest of this dissertation. As mentioned early on in

this dissertation (in Section 2.1), we omit specification of types; though in the real

implementation in Coq, appropriate type checking is done.

The return values of the actions corresponding to rules and corresponding to

methods which do not return any values are ignored. For syntactic convenience, we

do not write the return statements for rules or such methods.

We can define several functions that obtain various components from the definition

of a module. These will be used later in this chapter.

Function getRegs gets the set of registers along with their initial values from a

composition of modules.
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getRegs m
regs : m = (regs, rules, meths)

(regs mi) U (regs m2) : m = m + m 2

Function getRules gets the set of rules in a composition of modules.

Definition 11.

rules : m = (regs, rules, meths)
getRules m

(getRules mi) U (getRules M 2 ) M = Mi + m 2

Function getMethods gets the set of methods along with their bodies from a com-

position of modules.

Definition 12.

meths : m = (regs, rules, meths)
getMethods m

(getMethods mi) U (getMethods M2 ) : m = mi + m 2

Function domain gets the domain of values in a finite map (represented as a key-

value pair).

Definition 13.

domain xs A {k (k,v) E xs}

Function getDefs gets the set of method names defined in a composition of modules

using the domain function.

Definition 14.

getDefs m A domain (getMethods m)

For obtaining the called methods in a module, we need to get a list of all the

methods called by every rule or method in a module. Function getCalls, obtains the
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list of methods called in an action, from which we can obtain getCalls, the list of

methods called in a module.

Definition 15.

getCalsa a,

getCalsa a1

' {}
getCallsa a1

getCallsa a, U getCallsa a 2 U getCaIsa a'

{f} U getCals a1

a

a

a

a

a

a

r := e; a,

when(e) = a,

return(e)

let x = e; a,

let x = if (e) then a, else a 2; a'

let x = f (e); ai

Definition 16.

getCalls n - {{gj (R, a) E rules, g E getCalsa a} U {gj (f, Ax.a) E meths, g E getCalsa a}

: m = (regs, rules, meths)

(getCalls mi) U (getCalls M 2 ) : n = mi + in 2

6.2 Meaning of Module Composition

We will now describe the behavior of a composition of modules using the concept of

inlining. It can essentially be viewed as a syntactic operation which inlines definitions

of the called methods at the places of call. Once a method has been called by some

module in the composition of modules, it can no longer be called by any other module;

the method is effectively hidden.

We will now give the general procedure for inlining modules. We use [m] to denote
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the inlining function applied on a module. We read [m] as the inlined version of m.

m A (regs, rules[meths], meths[meths]/(getCalls m))

where regs = getRegs m

rules = getRules m

meths = getMethods m

The operator actions[imeths] inlines the body of any method f called in actions

which is present in meths. We overload the inlining operator to work on both rules

and method bodies. The meaning of the / operator is defined below, where iri refers

to the ith element in a tuple.

xs/ys A {xlx E xs,7r, x V ys}

Using the / operator, we are effectively hiding all the methods which are both defined

and called within the same module m.

We will now show an example of this inlining procedure by composing two prim-

itive modules. The first module is the instantaneous processor module, Pirt.

We will connect this processor to the first port of a 2-ported version of memory

Minst (defined in Figure 3-2). Looking at the definition of Minst in Figure 3-2, one

can see that the 2-ported version of the memory has four methods: ldRq1 and stRql

corresponding to port-1, and ldRq2 and stRq2 corresponding to port-2.

We will now show the primitive module [iPlst + Mist] in Figure 6-1.

As can be seen in Figure 6-1, the resulting primitive module has the method

definitions (of Minst) inlined in the places where they are called (in the rules of PilSt).

The methods of Minst that are not called anywhere (ldRq 2 and stRq2) are exposed as

methods of the resulting primitive module.
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Module:
Regs pc(pco), s(so), mem[NUM](memo);

Rule NonMemory1 :
let i = getInst(pc);
let (N m, x) = dec(s, pc, i);
let (s', pc') = exec(s, pc, (Nm, x));
S := S' ;
PC := pc'

Rule Halt':
let i = getInst(pc);
let(Halt) = dec(s, pc, i);
halt';

Rule Load1 :
let i = getInst(pc);
let (Ld, va, r,) = dec(s, pc, i);
let v = mem[va];
let (s', pc') = exec(s, pc, (Ld, rv, v));
s := s';
pc := pc';

Rule Storel:
let i = getInst(pc);
let (St, va, v) = dec(s, pc, i);
mem[va] := v;
let (s', pc') = exec(s, pc, (St));
s := s';

PC := pc';

Meth ldRq2 (va):
return(mem[va]);

Meth stRq 2 (va, v):
mem[va] := v;

Figure 6-1: Primitive Module given by [Pist + Minst
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6.3 Modular Semantics

In this section, we will give the modular semantics of expressions, actions and modules.

We start with the semantics for expressions and actions.

The goal of giving formal semantics for Bluespec programs is to understand the

behavior of Bluespec programs and to give a procedure to compare two programs; in

particular to check if one program refines another. The semantics should be such that

it should capture the intuitive notion of refinement between two programs. Modular

semantics helps take the notion of refinement one step further: whenever one module

refines another module, then the latter can replace the former in any context. This

allows us to break the proofs about the refinement of a big system into its component

modules, just the way a designer would build the big system in the first place.

6.3.1 Semantics for Expressions

We first give the deterministic, denotational semantics of evaluating an expression

when given a map of register values. The notation [op] refers to a function which is

semantically equivalent to the operation performed by op on the list of expressions,

taking the current finite register mapping o as an argument. The operation o(r)

returns the value of register r from the mapping o and is defined in Section A.1.

Definition 17.

r o = o(r)

[x] o _ (this cannot occur)

[co = c

[op(es)] o = [op] (map (Ae.([e] o)) es)

We will never access a register which is not present in the finite map o since every

expression and action inside a primitive module only accesses the registers defined

within the primitive module. We will also never encounter a variable when we are
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evaluating an expression; whenever.the semantics of an action is derived, it substitutes

the values for every variable in the expressions present in the action before evaluating

the expression.

6.3.2 Semantics for Actions

Next we give the semantics of an action a. The judgment for an action collects

the state updates performed by the action, the methods called by the action along

with their arguments and return values and computes the value returned by the

action. Unlike the semantics of expressions, which computes the value of an expression

once the register map is supplied, actions cannot compute any value with just a

register map. This is because the return values associated with the called methods

cannot be computed from the action itself; they will be supplied externally by a

module which defines the corresponding method. Thus we present the semantics of

an action in the form of a relation; the return values of a method call are unconstrained

free variables in the relation. The judgments are of the form (o k (a) 4 (u, cs, v))

where o is a finite map of register names to values giving the values of the registers

before the action has performed any updates, u is the set of updates that the action

performs on the registers, cs is the set of methods called by the action (along with

their arguments and return values) and v is the value computed by the action. We

read (o -- (a) 4 (u, cs, v)) as an action a executing on state o, performing updates u,

calling methods cs and returning value v.

We use a # b to denote that the two sets a and b are disjoint. The sets can also

be made of tuples whose first elements are keys, in which case a # b denotes that the

keys are disjoint. Formally, a # b = (map w1 a n map 1ri b) = {}. We need to check

disjointness conditions to avoid calling the same method twice, or updating the same

register twice, as can been seen in the following judgments.
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Definition 18 (Action).

ActionWriteReg (oI- (a) 4 (u, cs, v)) (r, -) U

(o- (r := e; a) 4 ((r, H o) :: u, cs, v))

ActionCall (o - (a[v'/x]) 4 (U, cs,v)) (f, -, _) V cs

(o [- (let x = f(e); a) 4 (u, {(f, [e] o, v')} U cs, v))

ActionBind
(o [- (a[([e] o)/x]) 4 (U, CS, v))

(o- (let x = e; a) 4 (u, cs, v))

(o [- (aT) 4 (UT, CST, VT)) (o - (a[vT/x]) 4 (u, cs, v))

ActionTrue0 UT # U CT # CS

Aou - (let x = if (e) then aT else aF; a) 4 (UT U U, CST U cs, v)

(o (aF) 4 (UF, CSF,VF)) (o- (a[vF/x]) 4 (u, Cs,v))

ActionFalse (e o) UF # u CsF # CS

(o [- (let x = if (e) then aT else aF; a) 4 (UF U U, CSF U Cs, V)

ActionAssert j 0 a) 4 (u Cs V))
(o - (when(e) =*- a) 4 (u, cs, v))

ActionReturn o - (return(e)) } }e o))

In the ActionCall inference rule, the value v' is returned by the method f on

supplying the parameter ([e] o). As discussed above, it is an unconstrained free

variable in this inference rule. The ActionTrue and ActionFalse inference rules only

execute the appropriate action on the if-side or the else-side, respectively, depending

on the evaluation of the conditional predicate e. Similarly, the ActionAssert inference

rule executes the action only when the guard e is evaluated to True.

We are now in a position to formally give the modular semantics of a module.
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6.3.3 Semantics for Modules

In this section and the next, we will give modular semantics for modules. The first

question that comes to mind is why we need to offer semantics different from the

inlining semantics described in the previous section. To answer this question, consider

a hardware design specification consisting of two modules A and B. Let module A+B

represent the overall specification of the full system. Let us say, we refine module A

to obtain module A'. If we prove that A' actually refines A, we want to be able to

conclude that A'+ B refines A + B without having to prove this ab initio. Hence the

need for modular semantics to define the behavior of A and A' independently of the

module they are connected to.

Of course, the semantics of a composition of modules should match the semantics

of the inlined version of the composition in order for it to be acceptable; the inlined

version of a module is essentially the intuitive meaning of the module, and therefore

any modular semantics should produce the same behavior as an inlined version of the

module. We will later show that this is indeed the case (Lemma 2).

The semantics of a module is defined in the following:

1. Step representing the action performed by a collection of methods and at most

one rule in a module. This step represents either a set of methods that can

be called from another module, or a rule executed by the current module. To

illustrate the meaning of this combination step, consider a rule in one primitive

module calling some methods of another primitive module. Then the steps

representing the rule of the first is combined with the steps representing the

set of methods of the second module (and the called methods are hidden from

further calls).

2. Multistep representing a sequence of module steps.
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Step Semantics of a Module

Each judgment for the step of a module m is of the form (m, o) 4 (u, (a, ds, cs))

which we read as a step of a module m from state o to state o[u], executed by Rule(k)

(if a = Rule(k)), and by methods ds (if ds h {}), calling methods cs; o[u] represents

the state obtained by applying the updates u on state o. We call o the starting state,

u the updates, ds the defined-methods set of the step, cs the called-methods set, o[u]

the final state or the ending state, and a the annotation of the step. We call a step

executed by a rule a rule step and one executed by a method a method step.

We call (a, ds, cs) the label generated by the step. If f = (a, ds, cs), then the

functions (annotate f), (defs f) and (calls f) returns a, ds and cs, respectively.

We combine two steps of primitive modules as long as they have the same start-

ing states, and have disjoint updates, called-methods sets and defined-methods sets.

Moreover, both of the steps cannot be annotated as a rule. This is given by the predi-

cate canCombine (oi,uif,1 ) (o2 ,U 2,J 2 ), where (oi, ui, fi) and (o2 , u2 , e 2 ) represent two

primitive steps (*, 01) 4 (ui, i) and (n, 02) 4 (U 2 , f2), respectively. For convenience,

we first define another predicate notBothRule which ensures that two labels are not

both annotated as rules; we overload it to work on annotations instead of labels.

Definition 19.

notBothRule a, a2 A a, = Meth V a2 = Meth

notBothRule i1 f2 A notBothRule (annotate f1) (annotate 2)

Definition 20. We say that two steps of a module, one starting with state o, produc-

ing updates u1 and label fI and the other, starting with state 02, producing updates
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U2 and label 2 can be combined iff

canCombine (oi, ui, f1) (o 2, U2, f2) 01 = 02

A u1 # U

A ds1 # ds 2

A csI # cs 2

A (notBothRule fi 2)

For convenience, we define an operation f1 e 2 to combine two labels as follows.

We call this operation combining labels f1 and 2. We overload the e operator to

work on annotations in addition to full labels.

Definition 21.

a 1 G a2  if (ai = Meth) then a2 else a1

fl e 2 A (annotate fi I annotate 2, defs f1 U defs 2, calls f1 U calls 2)

When we are composing two modules, we need to take care of one more issue. We

have to ensure that whenever a method is present in both the defined-methods set

and the called-methods set in the label of a step, then the values of the arguments

and return values must match, respectively, for the elements in the defined-methods

set and the called-methods set. We implicitly ensure this as follows.

First, we hide the methods in the defined-methods set of the label which are also

in the called-methods set of the label, and hiding the methods in the called-methods

set of the label which are also in the defined-methods set. Function hide performs

this operation. We call the operation of applying hide on a label as hiding a label,

and the resulting label as a hidden label.

Definition 22. hide (a, ds, cs) A (a, ds \ cs, cs \ ds)

Next, we ensure that the methods in the called-methods set in the final label are
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not also in the static set of defined methods of the module (i.e., the set returned

by applying function getDefs defined in Section 6.1) and the methods in the defined-

methods set in the final label are not in the static set of called-methods (i. e., the set

returned by applying function getCalls defined in Section 6.1) . Predicate wellHidden

checks for this condition. Whenever (wellHidden f m), we say that f is wellHidden

w.r.t. module m.

Definition 23. wellHidden (a, ds, cs) m A (ds # calls m) A (cs # defs m)

Hiding a label obtained from a judgment for step and then checking the wellHidden

condition on the final label ensures that the methods common to both the defined-

methods set and the called-methods set in the labels have the same arguments and

return values. This is given by the following theorem.

Lemma 1. Whenever the result of hiding a label produced by a step of a module

is wellHidden with respect to the module, if a method is present in both the defined-

methods set and called-methods set of the label, then it has the same argument and

same return value in both these sets.

Vm o utfa va'v'. (m, o) 4(u,)

A wellHidden (hide f) m

A ((f,a, v) E defs e)

A ((f, a',v') E calls e)

= (a, v) = (a', v')

Proof. This follows because the methods in the defined-methods set of a label are

distinct. Since hide removes the matching defined methods, if there are any defined

methods left after applying hide because the argument or return values did not match,

then they will be part of the static set of called methods of the module, which cannot

be the case because of the assumption. A similar argument holds for the methods in

the called-methods set of the label. M
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It is useful to define another predicate combining the actions of combining two

labels, hiding the resulting label and checking if the resulting label is well hidden

w.r.t. a module as follows:

Definition 24. We say that labels f1 and 2 can be well composed with respect to

module m if the following holds.

wellComposed fi 2 m A notBothRule f, f2

A wellHidden (hide (fl e 2)) m

A step is given by the following inference rules.

Definition 25 (Step).

o E domain regs (o - (a) 4 (u, cs, v)) (k, a) E rules

((regs, rules, meths), o) 4 (u, (Rule(k), {}, cs))

o E domain regs (o[- (a[y/x]) 4 (u, cs, v)) (f,Ax.a) E meths
StepMethod

((regs, rules, meths), o) 4 (u, (Meth, {(f, y, v)}, cs))

StepEmptyRule o C domain regs
((regs, rules, meths), o) 4 ({}, (Rule(e), {}, {}))

StepEmptyMethod o E domain regs

((regs, rules, meths), o) 4 ({}, (Meth, {}, {}))

m = (regs, rules, meths) (m, o) 4 (u, f) (n, o) 4 (u', ')
can Combine (o, u, f) (o, u', ')

(n, o) 4 (a U U', f q '

(Mi, 01) 4 (u1 , 1) (M 2 , 02) 4 (U2, 2)

StepComposition welIComposed f1 2 (mi + in 2 )

(Mi + m 2 , o 1 U 02) 4 (Ui U U 2 , hide (61 E f2))

Each rule and method of a primitive module leads to a step of the primitive mod-

ule. We also have empty-rule step and an empty-method step for primitive modules.

Both the empty-rule and empty-method steps do not perform any state updates nor
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call any methods. The empty-rule step is annotated with Rule(E) and the empty-

method step is annotated with Meth.

The empty-method step is just like a "nil" constructor for a list. The need for

the empty-rule step is subtle and will become clear once we define the notion of

refinement formally. Informally the reason is as follows: in order to claim that a

module A implements another module B, any step sequence in A should have the

same external behavior as some step sequence in B. But if A's step sequence involves

an execution of a rule which does not call any external methods and does not produce

any state changes, this particular step can effectively be "simulated" by not doing any

steps in B. However, A does not permit the execution of any other rule anywhere

else in the modules connected to A since A has executed a rule. In order to have a

similar constraint on the modules connected to B, B must also be a step executed by

a rule, which will be modeled by the empty-rule step.

The reason for creating a step combining several methods in a primitive module

is straightforward: we want this step to be combinable with another step of another

module. Say the other module's step is executed by a rule and that rule calls several

methods of the first module. Then, the first module has to expose a step containing

several methods for it to be combinable with the second module's step executed by

the rule.

The reason for allowing a rule to be combined with several methods in a step is

more complicated. Consider a scenario where a rule of one module calls a method

defined in another module which in turns calls a method in the first module. This is

a perfectly legal composition of modules as there are no cycles in the call graph. In

general, an external method call can transitively call a method defined by a module

as long as there are no cycles in the call graph. In such cases, we need to have

a judgment in the first module which performs the actions of the rule as well as

the method that external modules call. In general, since we do not know which
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combinations of methods of a module will be called simultaneously externally, we

need to create judgments containing every possible combination of methods with a

rule.

In all the steps of primitive modules, we have to ensure that the domain of registers

in the starting state is the same of the registers defined in the primitive module.

Finally, the step representing the composition of two modules ensures the follow-

ing:

1. The label of at least one of the modules is annotated as a method.

2. The final label contains the union of the defined-methods sets of the two modules

and the union of their called-methods sets, except that the final defined-methods

set does not contain the static set of called methods of the composed module and

the final called-methods set does not contain the static set of defined methods

of the composed module (checked using weliHidden predicate).

3. Whenever a method is called by one module and defined in the other,

(a) the values of the arguments and return values match, respectively; and

(b) the element corresponding to that method is removed from the defined-

methods set of the first module and called-methods set of the other (using

the hide function).

It is straightforward to see that the step semantics of any module are consistent

with the step semantics of the inlined version of the module (Section 6.2), as stated

by the following theorem:

Lemma 2. A step of a module from state o can produce updates u and label t iff

there is a step of the inlined version of the module from state o that can produce the
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same updates u and the same label f.

Vm o u f. (m, o) 4 (u, e) ' z (Jm], o) 4 (u, e)

Multistep Semantics for Modules

Each judgment for the multistep semantics of a module m is of the form (o 0'*

which we read as a multistep of module m starting from state o reaching state o',

producing a label sequence a. We call o the starting state, o' the ending state or final

state and a the label sequence for the multistep.

Definition 26 (Multistep).

Nil

(o wo)

Multi o o (mo')4(uC)

(0 o'[u])

We define the behavior of a module as a multistep starting from the initial state

of the module (given by the getRegs function defined in Section 6.1). We read

(m 4 (o, o-)), as module m reaching a state o and producing a label sequence o-.

Definition 27.

Behavior (getRegs m) 1* o)

(m 4 (o, a))

We present a theorem to split a behavior in a composition of two modules into

two behaviors, one for each module. We use (o-!i) to denote the ith element in the list

a and Io-I to denote the length of the list.

Theorem 1. A behavior of a module composed of two modules can be split into

individual behaviors of the two modules such that

1. the sizes of the label sequences produced by the three modules are the same;
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and

2. the ith labels in the sequences of the two modules can be well composed to form

the ith label of the sequence of the composed module.

That is,

Vmi m 2 o Or. (mi + n 2 4 (o, u))

3 oi 02 Ui -2. (Mi 4 (01, O-1))

A (m2 4 (02 , o-2 ))

A IoI- = o-I = IO-2l

A Vi < ul-. wellComposed (o-1!z) (C- 2!i) (o-!z)

Proof. This follows straightaway by induction on a behavior, and by applying the

inference rule Step Composition on each step.

6.4 Trace-Refines Relation

We need a notion of when one module implements another. Informally, a module

that has the same interactions with the environment as another module can be con-

sidered as a safe substitute for the latter. We will define an asymmetrical notion of

compatibility.

We relax the notion of refinement such that the interactions of an implementation

with the external environment need not exactly match that of the specification. We

need to allow such a relaxed definition in order to enable modular proofs. In fact, in

Section 6.5, we will give a theorem which shows that when a pair of modules refine

another pair of modules using our relaxed notion of refinement, then the composition

of the former pair exactly refines the composition of the latter pair (Theorem 7). Such

a notion is necessary in our proof for the complex multiprocessor system implementing
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sequential consistency. The speculative processor Pso sends speculative load requests

to the memory and receives speculative load responses from the memory, while there

is no equivalent for these requests and responses in the decoupled processor Pdec.

Ignoring these speculative load requests and responses, the speculative processor does

indeed behave similarly to the decoupled processor.

In order to account for the relaxed notion of the implements relation between two

modules we use a function p : (F x C x C) -+ (C x C)'. Function p converts a tuple

(f, a, r) into another tuple (f, a', r') or removes it (i.e., maps it to e) and hence is

called a label map. Label map p is used to alter the methods in the defined-methods

set and the called-methods set of the labels produced by the implementation. We

transform the function p which operates on F x C x C into one that operates on a

label as shown below. Function P applies function p on every defined-methods set

and called-methods set of the label, and keeps only those values that are not e in the

respective sets. It also removes the name of the rule in a rule-annotated label.

Definition 28.

p (x, ds, cs) A (if (x = Meth) then Meth else Rule,

{ (f, a', r')I(f, a,r) E ds, p (f, a, r) = (a', r')

{(f, a', r')I(f, a, r) E cs, p (f, a, r) = (a', r')})

We use p-transformation to denote the label transformed by applying the label

map p on all the called and defined methods along with their arguments and return

values, i.e., p-transformation of a label f = P f. We say f, is indistinguishable from f 2

w.r.t. label map p iff the id-transformation of f 1 matches the p-transformation of L2 ,

where id represents an identity label map. We overload the term to denote two label

sequences to be indistinguishable as follows:
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Definition 29.

indistinguishable il 2 p A id f, = P f2

indistinguishable a, C2 p A (map id a) = (map PU 2 )

We are now in a position to define the implements or the trace-refines relation.

Definition 30. Let p : L -+ L be a label map which is able to replace called or

defined method names with arguments and return values with alternative names or

values, or erase them altogether. Let m, and m 2 be two modules. We say that mi

trace-refines m 2 w.r.t. p or m, p-implements M 2 , denoted as Mi 1 z i 2 , iff

for every label sequence a produced by module min, module in2 reaches a state S2

producing a label sequence c-2 which is indistinguishable from o-1 w.r.t. label map p.

That is,

mi Z, M2 A Vs1 o'l. (mi 4 (si, oi))

3 8s2 C2. (M 2 4 (S 2 , a 2 ))

A (map P o-1) = (map id a 2 )

As a shorthand, we write min II m2 for mi Lid m 2 , for id an identity label map

and in that case, we say min implements in 2 .

We can also define a notion of equivalence between two modules, denoted as

ni = M 2 as follows, which means that the two modules implement each other. Under

this notion, we say that mi is equivalent to mn 2 .

Definition 31. min1  2 A m 1 [ m 2 A m 2 [I Mi1

6.5 Properties of Trace-Refines Relation

It is easy to see that the following properties hold for the trace-refines relation:

Theorem 2 (Reflexivity). Vm. m n M
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Theorem 3 (Transitivity).

VmI m 2 m 3 p q. m LEP m 2

A m 2 Eq m 3

= m1 Eqop m 3

Proofs of Theorem 2 and Theorem 3. The above two theorems can easily be proved

using just the definition of trace refinement. l

Next, we show the refinement relationship between a module and its inlined coun-

terpart.

Theorem 4. A module is equivalent to the inlined version of itself.

Vm. m - [mI

Proof. This follows using induction on a behavior, since for every step of m, there

is a corresponding step in the inlined version of m (and vice versa) according to

Theorem 2. 0

Theorem 5 (Commutativity and Associativity).

1. VmI in 2. m 1 + M 2 = m 2 + mI

2. VmI M 2 M 3. (Mi + M 2 ) + M 3 = m1 + (M 2 + M 3 )

Proof. Both these properties can be proved directly using Theorem 1 since the E

operator is both commutative and associative. El
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It is useful to talk about individual refinements of two non-interacting modules.

When no method that is defined by one module is called by the other, we say that

the two methods are non-interacting. This notion can be formally defined using the

noninteracting predicate.

Definition 32.

nonInteracting mi m2 A getDefs m, # getCalls m 2

A getDefs m 2 # getCalls m,

We also need to ensure that the label map p does not map two different methods

to the same method. This is given precisely by the uniqMap predicate. We say that

the label map p performs a unique mapping if the following holds.

Definition 33.

uniqMapp Vfi a, r1 f 2 a2 r2 f a' r' a' r&. p (fi, ai, rj) = (f, a', r)

A p (f 2, a2 , r 2 ) = (f, a', r)

-- fi = f2

This gives us the theorem about refinement of composition of non-interacting

modules.

Theorem 6 (Trace-Refines Relation for Non-Interacting Composition). Given a label

map p which performs a unique mapping, if mi and m2 p-implement m' and m',

respectively, and m, and m 2 are non-interacting and so are m' and m', then m1+m2
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p-implements m' + m'

Vmi m 2 m' m' p. mi Ep m'

A m 2 Im'

A uniqMap p

A nonInteracting mi m 2

A noninteracting m' m'

= m1 + m 2 E-p m' + m'2

We now state a refinement property when combining interacting modules. Say

there is a label map p which operates only on the methods that are shared be-

tween two modules while leaving the rest of the methods as they are. Predicate

transformationisHidden captures this condition. We say that the transformation of p

is hidden with respect to module m if the following holds.

transformation isHidden p m ' Vf a r. p (f, a, r) # (a, r)

=. f E (getDefs m n getCalls m)

In this case, the composition of the two modules results in an id-based implements

relation, as shown below:

Theorem 7 (Trace-Refines Relation for Interacting Composition). If mi and m2

p-implement m' and m', respectively, and the transformation of p is hidden with

respect to modules m 1 and M2 , then mi + m 2 implements m' + m'

Vm 1 m 2 m' m2 p. m1 EP m1

A m2 Em2

A transformationIsHidden p (in1 + n2 )

= m1 + m 2 E m' + m'
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Proofs of Theorem 6 and Theorem 7. The proofs of both the above theorems rely on

Theorem 1. Proving the non-interacting composition theorem is straightforward. The

interacting composition theorem can be proved as follows. The main insight is that

function hide ensures that all the common methods.between the two modules are

hidden in the combined label. So it does not matter if the common methods are

transformed. To prove the theorem, the combined multistep for module (i 1 + in2 ) is

split into two multisteps for modules min and m 2 respectively. On each of their label

sequences some of the common methods are mapped to other methods (or e). Finally

the transformed label sequences are combined once again. This last combined label

sequence is the same as that produced by the composition (mi + mn 2) because the

transformed labels are hidden.

6.5.1 Decomposing a Multistep

The trace-refines relation in Section 6.4 requires us to reason about multisteps, i.e.,

sequences of steps. Verification becomes much easier if the reasoning is restricted to

steps, and even more so if the reasoning is restricted to steps executed by at most a

single rule or a single method - we call such steps unit steps.

The idea of breaking a refinement relation into a simulation relation for breaking

the proof into manageable units is well known [7, 14, 49]. If there is a simulation

relation between two transition systems, one being an implementation and the other

being the specification, then the refinement relation can be proved between these

systems using induction on the sequence of transitions of the implementation system.

We will now state a similar theorem which allows us to conclude that a module refines

another module based on the properties of the unit steps of the two modules.

The trace-refines relation only relates the label sequence of an implementation to

that of the specification. While it does not require any relation between the state of

119



the implementation and that of the specification, we have to give a refinement map

from a state of the implementation to that of the specification if we use a simulation-

like relation on unit steps to derive a trace-refines relation on multisteps. We call

such a refinement map a state map.

There is one major distinction between a step in our semantics and a transition in

labeled transition systems. In labeled transition systems, any sequence of transitions

is allowed as long as the starting state of one transition is the ending state of the

previous transition. Once a simulation relation is established relating a single transi-

tion in one system to a sequence of zero or more transitions in another system, one

can conclude that the former refines the latter. However, for us, a step in a primitive

module is built using potentially several unit steps. The combination of steps for

the primitive module all start from the same state. Moreover, we need to ensure

that the combining steps write to disjoint sets of registers, and call disjoint sets of

methods. Thus, in order to conclude that one module trace-refines another using the

relation between the unit steps in the two modules, we need a condition which does

not have a counterpart in labeled transition systems. We will formally describe the

extra conditions for establishing the trace-refines relation below.

We formally define a unit step below using the isUnit predicate on the label of a

step.

Definition 34. A step containing label e is said to be a unit step iff the size of the

defined-methods set is not greater than 1.

isUnit f A dsl < 1

Note that in the above definition, even empty-rule steps and empty-method steps

are unit steps. We call a unit step executed by a rule a unit rule step and a unit step

executed by a method a unit method step.
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Let's say we have two modules mimp and mpec. Say we have a state map 0 : S -+ S,

where S represents the set of register maps, i.e., R x C. Function 0 maps every possible

state of mimpi (whether it is reachable or not) to a state in m,pec. Given a label map p

transforming the elements of the defined-methods set and called-methods set, we are

now going to give a strong sufficient condition to check whether mimp p-implements

mspec. We need to define some predicates before giving the main theorem. We also

need a function T : (S x S x C) -+ (S x S x C) which maps a 3-tuple (o, u, f) of a

unit step (mimp, o) 4 (u,) to a 3-tuple (o', u', e') of a unit step (mspec, o') 4 W, ')

This function is used to obtain the exact unit step of the specification from the unit

step of the implementation and hence called a unit step map.

Not all unit step maps T are acceptable. We have to ensure that T is consistent

with state map 0 and label map p for the two modules mimp and mspec. The exact

conditions are shown in the definition of predicate consistentSubstepMap below.

Definition 35. A unit step map T : (S x S x C) -+ (S x S x C) is consistent w.r.t.

a state map 6 : S - S and a label map p : 1 -+ 1 and modules mimp and mspec,

iff for any state o reached by mimpl, if there is another unit step of mimp starting

with state o, producing updates u and label f, there is a step of mspec starting with

state o', producing updates u' and label f' such that T (o, u, f) = (o', u', f') and f' is
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indistinguishable from f w.r.t. p. That is,

consistentSubstepMap T mimpi mspec 9 p 4 Vo f u. (mimpi 4 (0, ))

A (mimpi, o) 4 (u, )

A isUnit f

> o' = 0 o

A o'[u'] = 6 (o[u])

A indistinguishable f' f p

A (mspec, o') 4 (u',

where (o', u',f') = T (o, u, f)

Whenever two unit steps of the implementation starting from some reachable state

in the implementation can be combined, we also want the corresponding steps of the

specification to be combinable. This is the extra condition that we had mentioned

earlier compared to traditional simulation relations for transition systems. This is

given by the predicate specShouldCombine as follows:

Definition 36. We say that the specification mspec is as combinable as the imple-

mentation w.r.t. unit step map T if when two unit steps of an implementation mimpi

starting from a reachable state can be combined, then the corresponding steps of the

specification obtained by applying the unit step map on the two unit steps can also

be combined. That is,

specShouldCombine T mimp Vo f u f' u'. (mimpi 4 (o, ))

A (mimpi, o) 4 (u,C)

A (mimpi, o) 4 (u', ')

A canCombine (o, u, f) (o, u', f')

=> canCombine (T (o, u, f)) (T (o, u', f'))

This gives us the main decomposition theorem as follows:
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Theorem 8 (Decomposition). Given modules mimp and mpec, and a state map 0, a

label map p and a unit step map T from the state, labels and unit steps of mimpi to

those of mpec, respectively, if T is consistent w.r.t. 0, p, mimpi and mspec and mpec is

as combinable as mimpl, then mimpi p-implements mspec. That is,

Vmimpi mspec p 0 T. consistentSubstepMap T mimp mspec 0 p

A specShouldCombine T mimp

::: Timp, Fp Mspec

We say that a state of the specification o' is compatible with that of the imple-

mentation o w.r.t. state map 0 iff o' = 0 o. Similarly, we say that a label f' of the

specification is compatible with label f of the implementation w.r.t. label map p iff

f ' is indistinguishable from f w.r.t. p. We also extend the compatible relation in the

natural way from two labels to two sequences of labels. Finally, we say that a unit

step (mimpi, o) 4 (u, f) of the specification is compatible with a step (mspec, o) 4 (u', 1')

w.r.t unit step map T iff T (o, u, f) = (o', I' ').

6.6 Weak Implements Relation

The definition of implements relation in Section 6.4 requires that the label sequence

produced by the specification module must be indistinguishable from the label sequence

produced by the refined module with respect to an id label map. While for the rest of

the thesis, it is enough to use this notion of the implements relation, there are practical

situations where this definition is too strict. Consider, for example, a scenario where

we have two modules mi and M 2 , and M 2 is similar to m, except that it executes

multiple rules of m 2 simultaneously. This can happen if m2 merges two distinct rules

of m, into a single rule. The only distinction that the external environment can
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observe between the two systems is that instead of observing two consecutive labels

containing the methods called by the rules of m1 , it observes a single label because

of the execution of the merged rule in M 2 , which contains the union of the methods

called by the individual rules of m1 .

With this intuition, we provide the semantics for the weak-implements relation be-

tween two modules as follows. We need to relax the constraint on the label sequences

being indistinguishable w.r.t. id and instead define a congruence relation between two

label sequences 'which permits merging of adjacent labels. We define such a relation

( ) inductively below.

Definition 37.

EqualEquiv
01 = a

calls e # calls e' defs f # defs f'
Merge

o- ++ ( (' ++ a')) ~ a ++ ( ') :: -')

Any two sequences u- and O-2 are said to be congruent iff (map id a) ~ (map id c 2).

Using this definition of congruence of two label sequences, we can define the weak-

implements relation as follows:

Definition 38. We say that m1 weak-implements M 2, denoted as mi C M 2 iff

for every label sequence a produced by module m1 , module M2 reaches a state s2

producing a label sequence C2 such that a, and -2 are congruent. This is shown

below:

Mi 1 C m 2  Vs or,. (Mi 4 (si, o 1))

->3S2 0-2. (M2 4 (S2, Or2))

A (map id or) ~ (map id -2 )

6.7 Limitations of the Semantics

The formal semantics is supposed to capture the intuitive notion of equivalence be-

tween two programs (or refinement, in our case). It is not very satisfactory if it creates
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(a) Module mI (b) Module m2

Figure 6-2: Modules m, and m 2 showing the limitations of our modular semantics

distinctions between two programs, one of which intuitively refines the other.

The modular semantics that we present for Bluespec almost captures every in-

tuitive aspect of refinement except for one detail. Whenever a rule in a module is

"closed", i.e., it does not call any external methods, then a step in the module involv-

ing that unit rule step cannot be combined with any unit method steps. However, in

our semantics we allow this combination. The following example illustrates the point.

Consider two modules m, and m 2 shown in Figure 6-2.

In the above two examples, m, f m 2 according to our semantics. There can be

a step of m1 with a label fi = (Rule(ki), {(f, (), _)}, {}), while there cannot be any

step of m 2 with such a label since rule r 2 and method f2 write to the same register

(x). However, since ki does not call any external methods, method f in module m,

can never be called from any external module. For any module m, m1 +m will behave

exactly in the same manner as a composition m 2 + m. So, intuitively, m, is equivalent

to m 2 while our semantics will show a distinction between the two modules.

In order to prevent such a label from being produced in a step of m1 , we would

have to (a) separate the called-methods set of each unit step in a step; (b) allow a

unit rule step to be combined with a set of unit method steps which contains at least

one method in its defined-methods set only if the called-methods set of the unit rule

step is non-empty.

The reason why we did not follow this procedure in the semantics is to simplify
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Module:
Regs y(False);

Rule ki:
y := True;

Meth f ():
return y;

Module:
Regs x(False), y(False);

Rule k2 :
x:= False;
y := True;

Meth f ():
x := True;
return y;



the semantics. Since we are using these semantics to formally verify hardware designs

in Coq, it is important to keep the semantics as simple as possible. This was a

design decision we took since such arcane examples rarely show up in real hardware

verification.

6.8 Conclusion

In this chapter we gave the semantics of Bluespec programs. We formalized the

notion of implementation or refinement and stated a few useful properties about

refinement. In the next two chapters, we will be using the definitions of refinement

and its properties to prove that a multiprocessor system connected to a hierarchy of

coherent caches implements the sequential consistency specification.
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Chapter 7

Verifying the Complete

Multiprocessor System

Implementation

In this chapter we will prove the correctness of the full system; that is, we will

show that the system consisting of speculative out-of-order processors connected to

a hierarchy of coherent caches implements sequential consistency.

Figure 7-1 gives the overall structure of the proof. Formally, we prove P". +... +

Pso + Mcache E SC shown at the root of the overall proof, colored red. We start

with the trace-refines relations for PsO cores and the cache-coherent memory that

we will prove in Section 7.2 and in Chapter 8, respectively. From Theorem 10, we

get Pso FnoSpec Pdec. Label map noSpec removes the method calls which enqueue

speculative loads i.e.,,

Definition 39.

noSpec(f, a, r) = aE : (f, a, r) = (cRqs.enq, (Ld, a', t), )), c

(a, r) : otherwise
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[Matomic noSpec Alatoimic (Theorem 9)]

AMcache E Matomic (Theorem 12)

Reflexivity,
Non-interacting Compositions
and Interacting Composition

P' + + P" + Mcache E

P0 + + P110 + Aatomic

[Pdec + Awrap _ Pi,,st (Theorem 11)]

Non-interacting Compositions,
Reflexivity (Theorem 2)

and Interacting Composition

[(Pec + M rap) + +

(P('ec + Afwrap) + ilst E:

Pist + + Pi'st + Aist

Expanding the definitions, Commutativity
and Associativity (Theorem 5)

[Pdec + ... + Pdec + Aiatonmic SC

Transitivity (Theorem 3)

so so M s cache SC

Figure 7-1: Overall structure of the proof of the full system
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Interacting Compositions (Theorem 7)
and Non-interacting Composition (Theorem 6)
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From Theorem 11, we get Pdec + Mwrap E Pinst and from Theorem 12 in the

next chapter, we get Mache E Matomic. These theorems are at the leaves of the

overall proof and are colored yellow. In addition, we need to prove another property

Matomic EnoSpec Matomic, i.e., whenever the requests and responses for speculative

loads are dropped, the leftover label sequence can also be generated by Matomic. We

prove this in Section 9.

Using Mcache F Matomic, we can prove that a system composed of speculative out-

of-order cores attached to a cache-coherent memory implements a system composed

of the sames cores attached to a atomic memory. We need to first use reflexivity of

implement relative (Theorem 2), thus giving us P5 0 E P0 . Repeated application of

trace-refines relation for non-interacting compositions gives us PI +. .. + Pso F P +

... + Psn.. Finally, the trace-refines relation for interacting compositions (Theorem 7)

allows us to prove that the system comprised of n out-of-order cores P'0 composed

with a cache-coherent memory Mache implements a system comprised of the same

cores composed with an atomic memory Matomic, i.e., P3 + ... + Psso + Mcache

so+.. Pso + Matomnic.

Using Theorem 10, which states that Ps, FnoSpec Pdec, and repeatedly using the

trace-refines relation for non-interacting compositions, we can prove that P' + ... +

Pso EnoSpec Pdlec +. .. + Pdec (as noSpec performs a unique mapping). Using the trace-

refines relation for interacting compositions, we can prove that the system comprised

of n out-of-order cores P,. composed with the atomic memory Matomic refines a system

comprised of n decoupled cores Pdec composed with the atomic memory Matomic, i.e.,

p + + pso + Matomic E P~ec +. + Pec + Matomic.

Using Theorem 11, which states that Pdec + Mwrap E Pinst, and repeatedly using

the trace-refines relation for non-interacting compositions, we can prove that (Pec +

M1rap)+...+(Pac+M ~rap) E Pilst + + . Using the trace-refines relation

for interacting compositions, we can prove that (Pdec + Mwrap)... + (Pdec + M"rap) +

129



Matomic E Ji7nst + ... + Pinst + Matomic. By rearranging the terms of this composition

using the properties of commutativity and associativity (Theorem 5), we can derive

that Pcec + ... ec + Matomic L SC.

Finally, using the transitivity property of trace-refines relation (Theorem 3), we

can prove the final theorem, namely that a system composed of n out-of-order cores

connected to a cache-coherent memory implements the sequential consistency speci-

fication, viz., Pso + ... + P,"o + Mcache SC-

7.1 Removing Speculative Loads in the Labels of

Atomic Memory

We will first prove that Matomic cnoSpec Matomic in this section. The proof is straight-

forward, but we spell it out in detail here as this serves as a high-level template for

the other proofs.

Theorem 9. Matomic EnoSpec Matomic

Proof. Since the module on both sides of the refinement is Matomic, in order to avoid

ambiguity we will use implementation to denote the module on the left of the refine-

ment and specification to denote the one on the right of the refinement.

In general, we do the following in order to use Theorem 8.

1. Providing the state map and rule map: We provide a state map 9 from an

implementation state to a specification state and a rule map which, given a

state o, maps a unit rule step of the implementation starting from state o to a

unit rule step in the specification. Just defining the state map and the rule map

implicitly defines a step map T since the label map is given in the trace-refines

relation itself.
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2. Performing the compatibility check: Whenever a unit step in the implementa-

tion is compatible with a unit step in the specification w.r.t. T, and the starting

state of the specification is compatible with the starting state of the implemen-

tation w.r.t. 9, then we prove that the ending state of the specification is also

compatible with the ending state of the implementation w.r.t. 9, and the la-

bel produced by the specification is compatible with the label produced by the

implementation w.r.t. noSpec.

3. Proving that the specification is as combinable as the implementation w.r.t. T.

The state map 9 between the implementation and the specification is obtained by

removing all the entries in rqFromC and toC buffers that contain speculative loads,

and rearranging the rest of the entries in the same order. The state in the monolithic

memory is mapped to itself.

The rule map is as follows. There are two rules in Matomic, Rule(LdMem) and

Rule(StMem). We will also prove that the states after the compatible rule steps are

compatible. Since Matomic does not call any external methods, no labels are produced

during the steps. We will also perform the compatibility check when defining the rule

map, for unit rule steps.

* Rule(LdMem): This can fire only when rqFromC has a first entry of the form

(Ld, a, t). If t / c in the implementation, then the corresponding entry does not

exist in the specification and we map it to a empty-rule step in the specification.

The memory is unchanged and only a speculative load entry is removed, keeping

the state obtained by applying 9 on the changed state as before. This satisfies

the compatibility check. If t = E, then the rule is mapped to its counterpart in

the specification. The memory is again unchanged and the same return value

is enqueued into toC, ensuring the compatibility check.

* Rule(StMem): This can fire only when rqFromC has a first entry of the form
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(St, a, v). This rule is mapped to its counterpart in the specification. The

memory is changed identically in both the implementation and the specification,

and the same return value is enqueued into toC, ensuring the compatibility

check.

There are two methods defined in Matomjc, rqFromC.enq and toC.pop. We must

perform the compatibility checks for them. The labels of the unit steps executed by

these methods are as follows:

o (rqFromC.enq, (op, a, vt), ()): If op = Ld and vt # E, i.e., it is an enqueue of a

speculative load, then noSpec removes this method, replacing it with e. So, the

label map of this method in the specification is e, so this unit step is mapped to

an empty-method step. Moreover, since the only state change happening when

op = Ld and vt # c is adding a speculative load request into rqFromC buffer,

0 applied on the changed state remains the same, satisfying the compatibility

check. If vt = E or op # Ld, then the method is not removed by noSpec,

and the same method step takes place in the specification, again satisfying the

compatibility check.

* (toC.pop, (), (op, (v, t))): As in the case of rqFromC.enq, if op = Ld and t ' E,

this step is replaced by an empty-method step; and if t = e or op $ Ld, the

same step takes place in the specification. This satisfies the compatibility check

in the same manner as the unit method step producing rqFromC.enq.

Now we will prove that the specification is as combinable as the implementation

w.r.t. unit step map T.

Whenever Rule(LdMem) is combined with method label (rqFromC.enq, (Ld, a, t), ())

if t # e, then the method step is mapped to an empty-method step with which the rule

mapping of Rule(LdMem) can be combined in the specification. Similarly, if the first

element of rqFromC buffer is (Ld, a, t) where t f e, the rule mapping of Rule(LdMem)
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is an empty-rule step which can be combined with the (rqFromC.enq, (op, a, vt), ())

method step. Finally, if the method is (rqFromC.enq, (op, a, vt), ()) where vt = E or

op # Ld and the first element of rqFromC buffer is (Ld, a', vt') where vt' = E, then

since the two steps do not write to the same register or call the same method (as the

only shared state between the two steps resides inside the rqFromC buffer), the steps

in the specification compatible with the corresponding steps in the implementation

w.r.t. T also do not write to the same register or call the same method and hence

can also be combined.

Similarly, we can prove that when Rule(LdMem) is combined with method toC.pop =

(op, (v, t)), or when Rule(StMem) is combined with either defined method in the im-

plementation, the steps in the specification compatible with the corresponding steps

in the implementation w.r.t. T can also be combined.

Rule(LdMem) and Rule(StMem) cannot be combined in the implementation be-

cause at least one of the combining steps must be a method step.

Finally, method rqFromC.enq(op, a, vt) and toC.pop do not contain any shared

state or shared method calls both in the implementation and in the unit mapped

steps in the specification. Thus they can be combined in the specification. E

7.2 Refinement Relation between Speculative Out-

of-Order Processor and Instantaneous Processor

We will now focus our attention on proving refinement relations for the processor sub-

system. As discussed earlier in the chapter, we will break the refinement relationship

between the speculative out-of-order processor P,0 and the instantaneous processor

Pinst into two relationships, one between out-of-order processor and the decoupled

processor Pdec and the other between the decoupled processor and the instantaneous

processor. We will first prove that the out-of-order processor implements the decou-
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pled processor in Section 7.2.1, and then we will prove that the decoupled processor

implements the instantaneous processor in Section 7.2.2.

7.2.1 Speculative Out-of-Order Processor Implements Decou-

pled Processor

In this section we will prove that a speculative out-of-order core P,0 implements a

decoupled processor core Pdec. We will use the specification of the reorder buffer given

in Invariant 1 in our proof.

Theorem 10. Ps EnoSpec Pdec

Proof. Because of Theorem 8, the proof of this theorem is quite straightforward.

There are no defined methods in PsO. So, we just have to provide a state map from

a P,. state to a Pdec state and a rule map from every unit rule step of Pso to a unit

rule step of Pdec such that they satisfy the compatibility check.

The state map from a state of Pro to a state of Pdec is given by dropping all the

speculative state associated with P,. and mapping the registers associated with the

non-speculative state (pc, s and w) to their counterparts in the decoupled processor.

The only unit rule steps of P,0 that affect the non-speculative state are Rule(NonMemory),

Rule(Halt), Rule(LoadRq), Rule(LoadRs), Rule (LoadRsBad), Rule(StoreRq) and

Rule(StoreRs). All these steps (except Rule(LoadRsBad)) are mapped to their coun-

terparts in Pdec and Rule(LoadRsBad) is also mapped to Rule(LoadRs). These steps

use the value returned by the rob.oldest method of the reorder buffer in order to up-

date the non-speculative state. Because of the constraint on the reorder buffer's

correctness (Invariant 1), the value returned by rob.oldest is exactly what would have

been returned by the dec and exec functions applied on the non-speculative state

of P,0 before the step (and the value returned in the load response in the case of

Rule(LoadRs) or Rule(LoadRsBad)). Therefore, the state changes that these steps
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make on the non-speculative state are the same as that made by their counterpart

steps in Pdec, satisfying the compatibility check. All the other "speculative" unit rule

steps in Pro is mapped to empty-rule steps in Pdec, which also satisfy the compatibil-

ity check, since the speculative unit rule steps do not affect the state obtained after

applying the state map. D

7.2.2 Decoupled Processor Implements Instantaneous Proces-

sor

We are finally left with Pdec + Mwrap [ Pinst which we will prove in this section.

Theorem 11. Pdec + Mwrap [ Pinst

Proof. We will again use Theorem 8 to prove this theorem. The combined system

(Pdec + Mwrap) does not have any defined methods after the composition. So, we just

have to provide a state map from a Pdec + Mwrap state to a Pi1 st state and a rule map

from every unit rule step of Pdec + Mwrap to a unit rule step of Pinst.

The state map from a state of (Pdec + Mwrap) to a state of PiSt is given by the

concept of flushing transitions [59]. We apply the state changes enforced by the

execution of Rule(LoadRs) or Rule(StoreRs) (depending on whether there is a load

response or a store response). Effectively, a response in the toC buffer is drained and

the registers of the processor are updated as if the flushing transition took place. The

state-map function is given by projecting just the values of pc and s registers in the

resulting state.

The mapping for the rules steps of (Pdec + Mwrap) are given as follows:

* Rule(NonMem), Rule(Halt): These are mapped to their counterparts in Pinst.

* Rule(LoadRq), Rule(StoreRq), Rule(LoadRs) and Rule(StoreRs): These are

mapped to empty-rule steps in Pst.
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e Rule(LdMem): This is mapped to Rule(Load) in Pirt.

9 Rule(StMem): This is mapped to Rule(Store) in PiSt.

In order to prove this theorem, we use Invariant 2 which says that the processor's

w state is set if and only if there is either a request from or a response to the processor,

Invariant 3 which says that at most one request or one response can exist in (Pdec +

Mwrap), and Invariant 4, Invariant 5, Invariant 6 and Invariant 7 which say that the

request and response type matches that returned by executing the decode function

dec on the current state. All these invariants are formally defined and proved below.

When Rule(NonMem) or Rule(Halt) execute, the w state is not set, so there are

no responses because of Invariant 2. So, the mapped state in Pi,,t can be given by

just reading the s and pc state in (Pdec + Mwrap) which is changed in the same manner

in both Pdec and Pinst.

When Rule(LoadRq) or Rule(StoreRq) execute, the s and pc registers remain the

same after the step and again there are no responses because w state is not set at the

beginning of the transition. Since these rules are mapped to empty-rule steps, it is

easy to see that the compatibility check holds.

When Rule(LoadRs) or Rule(StoreRs) execute, the s and pc registers are updated

according to the respective steps. However, the state map function dictates that the

update is already performed whenever a response is present to obtain the mapped

state in Pint. Moreover, Invariant 3 ensures that there can be at most one response

(and hence only one flushing transition execution), and Invariant 6 and Invariant 7

ensure that these responses correspond to the current state of s and pc registers. Thus,

the state map applied on the state of Pdec at the beginning of the step is already the

updated value because of a load or store response. Therefore the state map applied

on the state of Pdec does not change when either of these two unit rule steps take

place. Since these unit rule steps are mapped to empty-rule steps, the compatibility

check holds.
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When Rule(LdMem) executes, method ldRq is called. The rule in the specification

given by the rule map for Rule(LdMem) is Rule(Load), which also calls ldRq method.

Because of Invariant 4, the arguments with which these methods are called in the two

modules are the same. At the end of the unit rule step, an appropriate response is

enqueued into the toC buffer in Pdec, while the state is changed in Pj1't. According

to the state map given by the flushing transition, and because there can only be one

response (Invariant 3), the compatibility check holds. A similar argument holds when

Rule(StMem) executes, which is mapped to Rule(Store). El

The decoupled core (Pdec + Mwrap) obeys the following two invariants which are

used in the proof that it implements the instantaneous processor Pinst.

Invariant 2. The wait state w is set iff there is a request in the rqFromC buffer or

a response in the toC buffer.

Invariant 3. The total number of requests in the rqFromC buffer and responses in

the toC buffer cannot exceed 1.

Invariant 4. If the rqFromC buffer has a (Ld, a, t) request, then dec(s, pc, getInst(pc)) =

(Ld, a, _) and t = E.

Invariant 5. If the rqFromC buffer has a (St, a, v) request, then dec(s, pc, getInst(pc)) =

(St, a, v).

Invariant 6. If the toC buffer has a (Ld, v) response, then dec(s, pc, getInst(pc)) =

(Ld, _,

Invariant 7. If the toC buffer has a (St) response, then dec(s, pc, getInst(pc)) =

(St, _-,).

Lemma 3. Invariant 2 to Invariant 7 hold after zero or more steps of Pdec.

137



Proof. When Rule(NonMem) or Rule(Halt) fire, the w state remains not set, so

there are no requests or responses, and the steps do not add any request or responses,

satisfying all the invariants.

When Rule(LoadRq) or Rule(StoreRq) fire, the w state changes from False to

True, which means there are no requests or responses at the beginning of the step.

After the step, an appropriate request is added while there are still no responses.

This satisfies all the invariants.

When Rule(LoadRs) or Rule(StoreRs) fire, the w state changes from True to

False, so there is exactly one appropriate response (and no requests) at the beginning

of the step. After the step, the response is removed and no request is added, thus

satisfying all the invariants.

When Rule(LdMem) or Rule(StMem) fire, since there is a request, the w state

is set at the beginning of the step, and remains unchanged. The request is removed

and an appropriate response is added, thus satisfying all the invariants. E

7.3 Conclusion

In this chapter we decomposed the proof of correctness of the complex multiprocessor

system into multiple sub-proofs using the properties mentioned in Section 6.5. We

prove one of the sub-goals, viz., that the complex processor refines an instantaneous

processor, in this chapter. In the next chapter we will prove that the cache hierarchy

is coherent, i.e., it implements the atomic memory specification. Once we have a

proof for that, we have shown in this chapter that the sub-proofs can be combined to

verify the full system.
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Chapter 8

Verifying the Memory Subsystem

In this chapter we prove that the memory subsystem consisting of the hierarchy

of coherent caches implements the atomic memory specification. This constitutes a

soundness condition, i.e., it shows that the behaviors exhibited by the cache hierarchy

are sound with respect to those exhibited by the atomic memory. In addition to

that, we will prove that the cache hierarchy is deadlock-free, i.e., there is always

at least one (state-changing) step that can take place if there are pending requests

from processors, and is livelock-free, i.e., any pending request from processors will

eventually be serviced.

We will be formalizing these notions of soundness, deadlock-freedom and livelock-

freedom and prove these properties in Sections 8.1, 8.2 and 8.3, respectively.

8.1 Soundness of a Hierarchy of Coherent Caches

w.r.t. Atomic Memory

In this section, we prove that the hierarchy of coherent caches Mcache implements the

atomic memory specification Matomic.

Theorem 12. Mache E Matomic
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Proof. In order to prove this theorem, we will first decompose the Mcache and Matomic

modules. As seen in Definition 6, the Mcache module is made up of Li caches, Lit

caches and the M module. We will strip out the cRqs and toC buffers from ev-

ery Li cache and call the resulting module Mache. Because of commutativity and

associativity of refinements (Theorem 5), we have

Mcache ~1 + (cs + -. + cRqs') + (to Cl + ... +F toCn)

where cRqs1 , ... , cRqsn and to C, ... , toC' denote the buffers in the Li caches which

are accessed by the processors.

Similarly,

get Matomic-

associativity

we can also strip out cRqs and toC buffers from the Matomic module to

Using Definition 2 and Definition 3, and applying commutativity and

of refinements again, we get

Matomic Mwrap + ... Mrap + Minst

Matomic Matomic + (cRqs' + ... + cRqs") +

Since we are using the same names for the cRqs and

Matomic, in order to avoid ambiguity in this proof, we

and atomic to denote the buffers belonging to Meache

(toC1 +... + toCn)

toC buffers in both Mcache and

will use the subscripts cache

and Matomic, respectively.

The to Ccache buffers are exactly the same as the tOCatomic buffer, and thus toCcache LI

to Catomic because of reflexivity (Theorem 2). We will be proving in Theorem 13 below

that cRqscache noUpd cRqsatomic, where noUpd removes the get, upd and all methods

from the labels. Using these properties and applying the non-interacting composition

theorem (Theorem 6) repeatedly, we can prove that ( + ... + cRqs na he

(to Cahe+... + toCcache) FnoUpd (cRqst +c+. . .atomic+ cRqs omic) + (toC.tomic . +

tOCaomic) (as noUpd satisfies uniqMap predicate). We will finally prove in Theorem 14

that Mcache LlnoUpd Matomic. With these results, using the interacting composition the-
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orem (Theorem 7), we can prove that Mache implements Matomic.

Proving that cRqsache EnoUpd cRqsatomic is straightforward as can be seen below.

We first define the mapping function noUpd.

Definition 40.

(X, ()) f = (cRqscache' s, ,0

noUpd f A (n, v) f = (cRqscache.extract,rnv)

e : otherwise

Theorem 13. cRqscache EnoUpd cRqsat0 mjc.

Proof. First note that the only difference between the states in the two modules is

that cRqscache stores an augmented state Init, (WaitSt, _) or (WaitV, _) for each valid

entry in the buffer in addition to the values stored in cRqs atmic. Module cRqscache also

defines some additional methods compared to cRqsatomjc. Of these methods, get, read

and all do not change the state of cRqscache while upd only affects the augmented

state of the module. Thus using Theorem 8 to prove this theorem is straightforward;

the state map is obtained by ignoring the augmented state in each buffer entry and

mapping the rest of the message in each entry to itself; and there are no rules in

cRqscache so there is no need for a rule map.

Proving that Mcache F Matomic is the goal of our next theorem.

Theorem 14. Mcache noUpd Matomic-

Proof. We prove this lemma from first principles by induction on a multistep of Mcache

that constitutes its behavior. We show that whenever Mcache produces a sequence of

labels, then Matomic will produce a sequence of labels which is compatible with the

former sequence w.r.t. noUpd.

Initially, no labels are present in both Mcache and Matomic-

141

El



Let us assume that the induction hypothesis holds at the current state. So the

sequence of labels generated by Matomic is compatible with the sequence of labels

generated by Mcachew.r.t. noUpd. We will prove that for any step of Mcache executed

next, there exists a step of Matomic that can produce a label compatible with that

produced by the step of MCache w.r.t. noUpd.

Whenever a step of Mcache is executed by Rule(LdHit) or Rule(LdDeferred) in

the ith Li cache, we will have a step of Mtomic executed by Rule(LdMem,) in where

n is the cRqs entry which is extracted in the step of Mcache. Similarly, whenever a

step of Mcache is executed by Rule(StHit) or Rule(StDeferred) in the ith Li cache of

Mcache, we will have a step of Matomic executed by Rule(StMemi) where n is again

the cRqs entry which is extracted in the step of MCache. We will map every other step

of Mcache to empty-rule steps of Matomic. We now have to prove that whenever a step

of Mcache takes place, when the corresponding step of MatOmic takes place, the label

that the latter step produces is compatible with the label produced by the former step

w.r.t. noUpd. We will call this the label-compatibility check for a step of Mcache in the

rest of this proof.

It is easy to see that for all the steps of MCache which are executed by rules other

than Rule(LdHit) and Rule(LdDeferred), the label-compatibility check holds.

Proving that the label-compatibility check holds for steps executed by Rule(LdHit)

and Rule(LdDeferred) is very difficult. This boils down to proving that whenever a

step of Mcache produces a label, which on application of noUpd produces the called-

methods set {(cRqsz.extract, n, (Ld, va, t), toC2 .enq, (Ld, data[l][getOffset(va)]))} matches

the label produced by the corresponding step of Matomic executed by Rule(LdMemn),

viz., the called-methods set {(cRqs'.extract, n, (Ld, va, t)), (to C'.enq, (Ld, Mi, 1t ldRq(va)))}

Thus, we have to prove that data[l][getOffset(va)] matches Mjst.ldRqi(va).

In order to prove this, we will first prove that the value in data[l] [get Offset(va)]

and that returned by Mi,,t.ldRq (va) are both the latest values for address va. We
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will formally define "latest value" below. Before that, for notational convenience, we

will define what we mean by a store for address va, namely store (va, v).

Definition 41. A step is said to be a store for address va, i.e., store(va, v), iff it pro-

duces labels on which if the noUpd function is applied, it becomes (cRqs.extract, _, (St, va, v))

and (to C.enq, (St), ()).

From this, we can define latest value as below:

Definition 42. latestValue(va) in the current state is either

* mo(va), i.e., the initial value of word address va if store(va, _) has not yet

taken place, or

* v, if store(va, v) has taken place and no store(va, _) has taken place after that.

Proving that Minst.ldRq (va) = latestValue(va) is straightforward. From Invari-

ant 10 below we get that for every word address va, mem[va] in Matomic contains the

latest value. Since Minst.ldRq (va) returns mem[va], it gives the latest value for word

address va.

Proving that data[l][getOffset(va)] = latest Value(va) is more involved. We will be

using Invariant 8 which states that whenever a line address is clean in a cache, then

all the words in the line contain the latest value. For this, we need to define what

"clean" is. In order to define that, we will first overload the names of the register

arrays (like cs, dir, etc.) to denote mappings from line addresses to values. We will

be using the variable a to denote addresses and 1 to denote slots; this will remove any

ambiguity between slot-to-value mapping (i.e., simple register array accesses) and

address-to-value mapping. To define such a mapping, we need to define a function

toSlot(a), which maps a line address a to a slot in the cache or c if that address is

not found in the cache. In case of the memory M', toSlot(a) = a since the memory

contains all the addresses. For all other caches, toSlot is defined as shown below. It
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uses two functions search Tags and searchAddrWaitSt in its definition. The function

search Tags(cs, tags, a), as defined earlier (Definition 4-3c), returns the slot containing

line address a in a non-I state (or e if no such slot is present) in the LI and internal

caches. Function searchAddrWaitSt is defined below.

Definition 43.

searchAddrWaitSt(cRqs.all, a) A

1 : current cache is Li and ((WaitSt, 1), (op, va, vt)) E cRqs. all A get Tag (va) = a

a : current cache is memory and (WaitSt, (c, a, y, x)) E cRqs.all

1 : current cache is an internal cache and ((WaitSt, 1), (c, a, y, x)) E cRqs.all

c : otherwise

Definition 44.

toSlot(a) Isearch Tags(cs, tags, a) search Tags(cs, tags, a) # E

searchAddr(cRqs.all, a) searchAddrWaitSt(cRqs.all, a) / c

c otherwise

Once toSlot is defined, then the value corresponding to address a is given by

the position toSlot(a) in the corresponding register array if toSlot(a) 4 e, or by the

default value if toSlot(a) = c.
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Definition 45.

cs[a] A

w[a] A

dir[a][c] A

dirw[a][c] A

{
{

data[a] A {

cs[tofflotta)] : toSlot(a) c

I : toSlot(a) =

w[toSlot(a)] toSlot(a) # e

False: toSlot(a) e

dir[tofflot(a)][c] :toSlot(a) #, E

I : toSlot(a) = e

dirw[toSlot(a)][c] : toSlot(a) #E

False : toSlot(a) =

data[toSlot(a)] : toSlot(a) $

0: toSlot(a)

C

e

Now we can define whether an address a is clean in a cache as follows:

Definition 46. An address a is said to be clean in a cache iff the cache state for that

address is at least S and the directory states for all its children (if they exist) for that

address are at most S.

clean(a) A cs[a] ;> S A (Vc G children. dir[a][c] < S)

Coming back to our main theorem, if we can prove that clean(a) is true (where

a = get Tag(va)), in the current Li cache performing the step, then data[a] will contain

the latest value by Invariant 8, which we state below; we will prove it later.
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Invariant 8. If an address a in a cache is clean, then the data in that address is the

latest value for that address.

Va. clean (a) => Vo. data [a] [o] = latest Value (a ++ o)

where a ++ o denotes the word address created from the line address a and the offset

0.

In particular, data[a] [get Offset(va)] will also contain the latest value. If we prove

that toSlot(a) = 1, it completes the theorem, since in Rule(LdHit) and Rule(LdDeferred),

cs[l] > S and Li caches have no children thereby making clean(a) true.

To prove that toSlot(a) = 1 in Rule(LdHit) and Rule(LdDeferred), we use Invari-

ant 9 which we state below and prove later.

Invariant 9. Whenever search Tags(cs, tags, a) # e or searchAddrWaitSt(cRqs. all, a) ,

e then toSlot(a) is given by the slot returned by either.

Vl: e. A (searchTags(cs, tags, a) = 1 V searchAddrWaitSt(cRqs.all, a) = 1) ->

toSlot(a) = 1

In Rule(LdHit), search Tags(cs, tags, a) = 1 and in Rule(LdDeferred), cRqs.read(n)

returns ((WaitSt, 1), (Ld, va, t)) where get Tag(va) = a. 0

We now state and prove the latest-value invariant for the instantaneous memory

Minst which is a component of Ma'tomic,

Invariant 10. The memory mem in Minst always contains the latest value for every

address.

Vva. mem[va] = latestValue(va)

Lemma 4. Invariant 10 holds after zero or more steps of M'tomic-
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Proof. Initially, this invariant trivially holds because mem is initialized with the initial

value of memory mo.

Let us assume that this invariant holds in the current state. We have to prove

that any new step will preserve the invariant. There are two steps to consider:

Rule(LdMem) and Rule(StMem).

In Rule(LdMem), the register array mem remains unchanged. So, the invariant

holds.

In Rule(StMem), mem[va] is updated to v, which is supplied through the label

stRq(va, v), again preserving the invariant. El

In order to prove Invariant 9 and Invariant 8, we need to prove several other

invariants. We will stating these invariants and some guidelines on how to prove

them in the next section.

8.1.1 Cache Invariants

Before we begin with the proof, we will be defining the notation that we will be using

throughout this section.

8.1.2 Notation used in the Invariants and the Proofs

We call a request in the cRqs buffer in the (WaitSt, _) or (WaitV, _) augmented state

a waiting request. We also use Init-, (WaitSt, l)- or (WaitV, l)-request for a request

in cRqs buffer in the Init, (WaitSt, 1) or (WaitV, 1) augmented state, respectively. We

say that a slot 1 is in wait state whenever w[l] is set, and address a is in wait state

whenever w[a] is set.

Sometimes it is useful to talk about the "next state" after a step has happened.

We use a function next(e) to denote the value of expression e at the end of a step, as

opposed to just e, which denotes the value of e at the beginning of the step.
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We use cRqsRecv (r) to denote that a request r is extracted from cRqs in a

step. Similarly, rsFromCRecv(r), pRqsRecv(r) and rsFromPRecv(r) denote a response

popped from the rsFromC buffer, a request extracted from the pRqs buffer or a re-

sponse popped from the fromP buffer, respectively, during a step. In the same vein,

we have rqToCSend(r), rsToCSend(r), rqToPSend(r) and rsToPSend(r) to denote a

request enqueued into the toC buffer, a response enqueued into the toC buffer, a re-

quest enqueued into the rqToP buffer or a response enqueued into the rsToP buffer,

respectively, during a step.

A message is said to be sent if it is enqueued into the appropriate buffer at the

source cache, and is said to be received if it is extracted or popped, as the case may

be, from the appropriate buffer at the destination cache.

We use rqsFCTP to denote the set of requests which are currently in-flight from a

child to its parent p. By in-flight requests, we mean all the requests r such that (p, r)

is in the rqToP buffer of the cache or the network buffers, or r is in the rqFromC buffer

of the parent or a (_, r) entry is in cRqs buffer of the parent. Similarly, rssFCTP

denotes the set of responses which are in-flight to parent p of a cache, i.e., responses

r such that (p, r) is in the rsToP buffer of the cache or the network buffers or r is in

the rsFromC buffer of the parent.

In the same manner as before, we use rqsFPTC to denote the set of requests

in-flight from a parent to its children. This includes tuples of the form (c, a, x) such

that (c, (Req, a, x)) is in the toC buffer of the parent, or in the network buffers, or

(Req, a, x) is in the fromP buffer of child c or (a, x) is in the pRqs buffer of child c.

Similarly, rssFPTC denotes the set of responses in-flight from a parent to its children.

This includes responses of the form (c, a, x) such that (c, (Rs, a, x)) is in the to C buffer

of the cache, or in the network buffers, or (Rs, a, x) is in the fromP buffer of child c.

We use rqsNumFCTP(a), rssNumFCTP(a), rqsNumFPTC(a) and rssNumFPTC(a)

to denote, from the perspective of a specific child (which should be obvious from the
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context), the number of requests to the child's parent, responses to its parent, re-

quests from its parent and responses from its parent, respectively, that are currently

in-flight for address a.

We define projection functions to obtain various fields of a message. For a re-

quest message r = (c, a, y, X) from a child cache c to its parent, we have child(r) =

c, addr(r) = a,fromState(r) = y and toState(r) = x. For a response message

r = (c, a, x, d) from a child cache c to its parent, we have child(r) = c, addr(r) =

a, toState(r) = x and lineData(r) = d. For a request message r = (a, x) or r =

(Req, a, x) from a parent to its child c, we have child(r) = c, addr(r) = a and

toState(r) = x. And, for a response message r = (Rs, a, x, d) from a parent to

its child c, we have child(r) = c, addr(r) = a, toState(r) = x and lineData(r) = d. We

essentially overload the names of the projection functions depending on the type of

the message on which each operates.

For requests to Li caches from the processors, we use the prOjection functions

again, but we obtain line address instead of word address from these requests. More

precisely, for a request r = (op, va, Vt), we have addr(r) = getTag(va), toState(r) =

if (op = Ld) then S else M and wordData(r) = vt.

8.1.3 Formal Specification of Cache Invariants

We are now ready to state all the invariants. These invariants hold for all caches

except for invariants involving the directory state dir or the directory-wait state

dirw, which do not apply to Li caches. For the purposes of these invariants, we

will extend the notions of cs, tags, w, toSlot, search Tags and searchSlot for the mem-

ory module M (Definition 8). In the memory, the address is synonymous with

the slot. For any slot 1 in the memory, cs[l] = M, tags[l] = 1, w[l] = False and

searchSlot(cRqs.all, 1) = searchAddr(cRqs.all, 1). For any address a in the memory,

toSlot(a) = a and searchTags( _, _, a) = a.
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Proving Invariant 9

We begin with Invariant 9, which was used in the proof of Theorem 14. In order

to prove this invariant, we need the following invariants. Once these invariants are

proved, it is very easy to prove Invariant 9 and hence we omit its proof.

Invariants Relating Tags of Slots and Requests in the cRqs buffer: The

following list of invariants relate the addresses in the tags of slots and those in the

cRqs buffer.

Invariant 11. The tags in each non-I slot are unique.

Vl 1 12. cs[1i] # I A cs[12] # I A tags[ 1] = tags[l2] => 11 = 12

Invariant

unique.

12. The slots associated with each waiting request in a cRqs buffer are

Vni n2 1. cRqs.read(ni) = ((_, l), _) A cRqs.read(n2) = ((_, 1), _) = ni = n2

Invariant 13. The addresses in each waiting request in a cRqs buffer are unique.

Vni n2 ri r2. cRqs.read(ni) = ((_, _), rj)A

cRqs.read(n2 ) = ((_, _), r2 ) A addr(ri) = addr(r2 ) =* ni = n2

Invariant 14. If there is a (WaitSt, l)-request in the cRqs buffer and if cs[l] # I,

then slot l contains the address associated with the request.

Vn 1. cRqs.read(n) = ((WaitSt, 1), r) A cs[l] # I =- addr(r) = tags[l]

Invariant 15. If some non-I slot l contains the address of some waiting request in
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the cRqs buffer, then it is a (WaitSt, l)-request.

Vn I r. cs[l] -# I A cRqs.read(n) = ((,),r) A tags[l] = addr(r) =>

cRqs.read(n) = ((WaitSt, 1), r)

Invariant 16. Whenever a slot 1 is in wait state, then there is a (WaitSt, 1) request

in the cRqs buffer and the cache state of the slot 1 is less than toState of the request.

Vn 1. w[1] A cRqs.read(n) = ((WaitSt,l),r) => cs[l] < toState(r)

Invariant 17. If a slot l is in wait state and there is a (WaitSt, l)-request associated

with address a, then there is a consistent request for address a to the parent from

that cache, or a consistent response for address a from the parent to that cache.

Vn 1 r. w l] A cRqs.read(n) = ((WaitSt, 1), r) z=

-r'. addr(r') = addr(r) A toState(r) = toState(r')A

((r' C rqsFCTP A cs[l] < fromState(r')) V r' E rssFPTC)

Invariant 18. The sum of the number of requests in-flight to the parent and the

number of responses in-flight from the parent associated with the same address cannot

exceed one.

rqsNumFCTP(a) + rssNumFPTC(a) < 1

Invariant 19. If there is a request from a cache to its parent associated with address

a, then in the cache, there is a consistent (WaitSt, l)-request associated with address
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a in the cRqs buffer, and slot I is in wait state.

Va r. r C rqsFCTP =*

3n l r'. w[l] A cRqs.read(n) = ((WaitSt, l),r') A addr(r') = addr(r)A

toState(r') = toState(r) A cs[l] < fromState(r) < toState(r)

Invariant 20. If there is a response from the parent to the cache associated with

address a, then in the cache, there is a consistent (WaitSt, l)-request associated with

address a in the cRqs buffer, and slot l is in wait state.

Va r. r E rssFPTC = .

3n 1 r'. w[l] A cRqs.read(n) = ((WaitSt, l), r') A addr(r') = addr(r)A

toState(r) = x A cs[l] < toState(r)

All the above invariants (Invariant 11 to Invariant 20) can be proved simultane-

ously by induction on a multistep.

Proving Invariant 8

In order to prove Invariant 8, we need several other invariants which are discussed

below. We will start with invariants about the maintenance of order between messages

sent between caches.

Invariants on Ordering of Messages: We first give several invariants related to

the point-to-point ordering of request and response messages, i.e., invariants putting

constraints on when one message can overtake another sent from the same source to

the same destination.

Invariant 21. Responses from a child to its parent are popped from the rsFromC
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buffer at the parent in the order they were enqueued.

Invariant 22. Responses from a parent to a child are popped from the fromP buffer

at the child in the order they were enqueued for the same address.

Invariant 23. Requests from a child to its parent are received at the parent in the

order they were sent by the child for the same address.

Invariant 24. Any request in the pRqs buffer is enqueued by a child earlier than any

message enqueued by the same child in the fromP buffer.

Invariant 25. A response from the parent cannot be popped by a child from the

fromP buffer before a request enqueued by the parent earlier for the same address

has been extracted from the pRqs buffer by the child.

Invariant 26. A request from the parent cannot be extracted by a child from the

pRqs buffer before a response enqueued by the parent earlier for the same address

has been extracted from rsToP buffer by the child.

All these invariants can be proved easily. Most of them use the ordering constraints

of the network, Some require induction on the multistep; and Invariants 22 and 23

use Invariant 18 in their proofs.

Invariants Using Address-to-Value Mappings: While the invariants until now

are properties about slot-to-value mappings, the rest of the invariants in this section

pertain to address-to-value mappings. For proving those invariants, it is helpful to

use the following invariant, which ensures that an address-to-value mapping for a

particular address changes during a step only if the address is already mapped to a

slot and the slot-to-value mapping for the mapped slot changes during that step. This

is because this invariant says that whenever a new non-E slot mapping is created for

an address, the values corresponding to that slot are all at their defaults (I or False).
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So a step creating such a new slot mapping for an address cannot change some value

mapped to that address from its default. Thus, this theorem prevents analyzing a lot

of unnecessary Bluespec rules when proving the later invariants.

Invariant 27. Whenever toSlot(a) changes from c to 1 # e, then at the end of the

step the registers in slot 1 are at their default values.

Va 1. toSlot(a) = c A next(toSlot(a)) = 1 # e ->

next(cs[l]) = I A next(w[l]) = FalseA

(Vc. next(dir[l][c]) = I A next(dirw[l][c]) = False)

This can be proven using Invariants 16 and 12. We also need to use the fact that

whenever a directory-wait state is set, then the directory state cannot be I, which

can be proved directly using induction on a multistep.

The proofs for the rest of the invariants all use Invariants 27 and 9 in their proofs.

Invariant 28. The cache state of an address in a cache is downgraded iff a response

for that address is enqueued into the rsToP buffer, and it is upgraded iff a response

for that address is popped from the fromP buffer.

Va.

(cs[a] > next(cs[a]) 3 Br. rsToPSend(r) A addr(r) = a A next(cs[a]) = toState(r))A

(cs[a] < next(cs[a]) 3 Br. rsFromPRecv(r)Aaddr(r) = aAnext(cs[a]) = toState(r))

This can be proved using Invariant 20.

Invariants that use Strong Induction in their Proofs: The proofs of the in-

variants till now involves using only weak induction, i.e., we just assume that the

invariants is true only in the current state and prove that any step preserves the in-
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variant. We will now state a few invariants that have to all be proved simultaneously

using strong induction, i.e., we will assume that all the following invariants hold in

all states till now and any step preserves the invariants.

Invariant 29. If there is a (WaitSt, 1)-request (c, a, y, x), then dir [L] [c] < y

Vn c a y x. cRqs.read(n) = ((WaitSt, 1), (c, a, y, x)) =e dir[l][c] y

Invariant 30. Every slot is "self-consistent", i.e., the directory states of that slot are

all compatible and they are all less than or equal to the cache state of that slot.

Vi. (Vi j. i f j ==> compat(dir[l][i], dir[l][j])) A Vi. dir l][i] cs[l]

Invariant 31. If there is a response from a child to its parent, then the toState of

that response will be less than the directory state of the parent for that address and

child.

Vr E rssFCTP. toState(r) < dir[addr(r)][child(r)]

Invariant 32. If there is a response from a child to its parent, then the toState of

that response will be greater than or equal to the cache state of the child for that

address.

Vr E rssFCTP. toState(r) ;> (cs[addr(r)] in cache cache(r))

Invariant 33. If there is a response from a parent to its child, then the toState of

that response will be less than or equal to the directory state of the parent for that

address and child.

Vr E rssFPTC. toState(r) 5 dir[addr(r)][child(r)]
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Invariant 34. The directory state of an address for a child in a cache is upgraded iff

a response for that address is enqueued into the toC buffer and it is downgraded iff

a response for that address is popped from the rsFromC buffer.

Va c. (dir[a][c] < next(dir[a][c]) < 3r. rsToCSend(r)A

addr(r) = a A next(cs[a]) = toState(r) A child(r) = c)A

(dir[a][c] > next(dir[a][c]) <-* 3r. rsFromCRecv(r)A

addr(r) = a A next(cs[a]) = toState(r) A child(r) = c)

Invariant 35. The directory state at a parent for a child is greater than or equal to

the cache state of that child for the same address.

Invariant 36. A request from a child to its parent cannot be extracted by the parent

from the cRqs buffer before a response enqueued earlier for the same address from

that child to the parent has been popped from the rsFromC buffer.

Invariant 37. If there are multiple requests from a parent to a child for the same

address in-flight, then the cache state of the child is I.

rqsNumFPTC(a) > 1 = cs[a] = I

Invariant 38. If there is an in-flight response r from a child to its parent and an-

other in-flight request from the parent to the same child for the same address, then

toState(r) = I.

Invariant 39. If a request r from parent to child and a response r' from the same

child to the parent for the same address are both in-flight simultaneously, then, in all

the states reached after the child sends r', whenever r is in-flight, the cache state at

the child for the address is I.
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Invariant 40. There cannot be an in-flight response from a child to its parent and

another in-flight response from the parent to the child for the same address.

Vc a. rssNumFCTP(a) + rssNumFPTC(a) < 1

We have to prove all these invariants simultaneously by strong induction on a

multistep. While some of the invariants does require us to use the strong induction

hypotheses, most of the invariants can be proven using the hypotheses for just the

current state. The only ones that require the hypotheses for the previous states are

Invariants 36 to 40. We state the proofs for those invariants below. Among them,

Invariant 36 can be proved easily, and Invariants 37 to 39 can be proven together.

Proof of Invariant 40 is complicated and we will give its proof outline next.

This invariant can be violated only if the current step involves a child sending

a response to the parent (executed by Rule(Writeback) or Rule(PPropcess)) when

there is already a response in-flight from the parent to that child for the same address

or involves the parent sending a response to the parent (Rule(Hit) or Rule(Deferred))

when there is already a response in-flight from that child for the same address to the

parent.

In Rule( Writeback), if a response is sent, then there must be a (WaitV, l)-request

in the cRqs buffer where l is the slot being evicted. But because of Invariant 20,

since there is a response for the evicted address from the parent, there must be a

(WaitSt, _)-request associated for the address being evicted. Because of Invariant 15,

it must be a (WaitSt, l)-request. Presence of both (WaitV, 1)- and (WaitSt, l)-request

in cRqs buffer violates Invariant 12.

Let's say the current step is executed by Rule(PProcess). Let r be the re-

sponse from the parent which must be in-flight according to our assumption. To

fire Rule(PProcess), the child must have received a request, say r1 from the parent
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for the same address. Let r, r1 be sent by the parent during steps t and ti. Because

of Invariant 26, t1 must occur before t since r, has been received which r hasn't been

received. The directory-wait state at the parent for the child and address in question

changes from False to True during step t1 which sends request ri. However, at the

beginning of step t, which sends response r, the directory-wait state must be False,

because both the steps that send a response (Rule(Hit) and Rule(Deferred)) require

the directory-wait state to be False at the beginning of the step. Thus, a response,

say r2, for the same address from the same child must be received at the parent

between steps t1 and t. By induction hypothesis of Invariant 39, the cache state at

the child during the current step must be I because of response r2 , in which case

Rule(PProcess) cannot fire, leading to a contradiction.

Let's say the current step is executed by Rule(UpgRs). Let r be the response

from the child which must be in-flight according to our assumption for the same

address that is being processed by the current step. Let r be sent by the child during

step t, which can either be Rule(Hit) or Rule(Deferred). In both the cases, there

must be a request r1 sent to the parent from the child. Moreover, since response r

has not been received by the parent, step t must occur after the step that sent r1

(let's call this ti), which is received by the parent in the current step. Because of

Invariant 19, there must be a (WaitSt, _) request associated with addr(ri) in the cRqs

buffer of child(ri). If step t1 is executed by Rule( Writeback), evicting the address in

question, there must be a (WaitV, _) request in cRqs buffer containing that address.

This leads to a contradiction of Invariant 13 since there is a (WaitV, _) request and

a (WaitSt, _) request associated with the same address in the cRqs buffer. So, step

t1 must be Rule(PProcess). We can now use an argument similar to the one when

the current step is executed by Rule(PProcess) to create a contradiction.
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Other Invariants to Prove Invariant 8: The following invariants can be proved

easily using the invariants in the previous section.

Invariant 41. Every address is "self-consistent", i.e., the directory states of that

address are all compatible and they are all less than or equal to the cache state of

that address.

Va. (Vi j. i # j -> compat(dir[a] [i], dir[a][j])) A Vi. dir[a][i] < cs[a]

Invariant 42. If c' is an ancestor of c, then

Va. cs[a] in c < cs[a] in c'

Invariant 43. If c and c' are such that neither is an ancestor of the other, then

Va. compat(cs[a] in c, cs[a] in c')

Invariant 44. When a parent receives a response sent by one of its children, the

cache state of the child for the address of the response at the beginning of the step

sending the response matches the directory state of the parent for the child cache and

address at the beginning of the step receiving the response.

Invariant 45. When a child receives a response sent by its parent, the cache state

of the child for the address of the response at the beginning of the step receiving the

response matches the directory state of the parent for the child cache and address at

the beginning of the step sending the response.

Invariant 46. No store can take place when any response is in-flight (between any

pair of caches), i.e., no step that emits a label (St) can fire when any response is

in-flight.
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Proving Invariant 8: This finally brings us to the final invariant that we wanted

to prove earlier.

Proof of Invariant 8. We will prove this invariant by strong induction on a multistep.

Initially, all and only the memory entries are clean, and they contain the latest

value for the addresses.

We will assume that in the state reached by a multistep, for some address a in

some cache, if clean(a) is true, then data[a] = latestValue(a). We will prove that any

new step preserves this invariant.

At the beginning of a transaction, if in cache c, clean(a) is true, then it already

has the latest value. Moreover, because of Invariant 42, Invariant 43, Invariant 41

and Invariant 35, no other leaf cache has M permission for that address, and thus

cache c will continue holding the latest value for address a if clean(a) is true at the

end of the multistep.

If clean(a) changes from False to True in cache c during a step, then it must

have either downgraded its directory state or upgraded its cache state. It must have

either received a response from a child or from its parent, respectively, according to

Invariant 28 and Invariant 34.

Consider the case when the parent, for which clean(a) is false, receives a response

from its child c. By Invariant 44, if the directory state for child c at the parent the

changes from x to y when the response is received, then the cache state of the child

c must also transform from x to y when the response was sent. Moreover, x must be

M since in the parent, clean(a) is false at the beginning of the current step, and if its

cache state is I at the beginning of the current step, then the directory-downgrade

cannot happen in the current step, because of Invariant 41. Because clean(a) is false

at the parent at the beginning of the step, and it receives a downgrade response

from the child c, it must have downgraded its directory state for child c and address

a. Thus cs[a] # I and dir[c][a] = x = M at the beginning of the step at the
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parent. The steps that send a response from child c to parent are Rule(PProcess)

and Rule( Writeback). In both Rule(PProcess) and Rule( Writeback), when x is M,

the data is being transferred. Moreover, the child which sends the response satisfies

clean(a) state at the beginning of the step (since the directory state of all its children

must be less than M to downgrade, and its cache state is x = M). So it should

contain the latest value by induction hypothesis. Finally, because of Invariant 46, no

store can take place during the transfer, thus keeping the latest value.

Consider the case when cache c receives a response from its parent. By Theo-

rem 45, if the cache state of the cache c transforms from x to y, then the directory

state of the parent for child c must also transform from x to y when it sent the re-

sponse. Moreover, x must be I since in cache c, clean(a) is false at the beginning

of the current step and if any of its children is in directory state M for address a at

the beginning of the current step, then the cache state cannot upgrade in the current

step because of Invariant 41. The steps that send a response to a child are Rule(Hit)

and Rule(Deferred). In both Rule(Hit) and Rule(Deferred), when x is I, the data

is being transferred. Moreover, the parent which sends the response satisfies clean(a)

at the beginning of the step (since the directory state of all its children must be less

than M as they are all compatible with the requested upgraded by cache c, and its

cache state is greater than I since it can send an upgrade response to the child c).

So it should contain the latest value by induction hypothesis. Finally, because of In-

variant 46, no store can take place during the transfer, thus keeping the latest value,

hence proving the theorem. E
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8.2 Deadlock-freedom in a Hierarchy of Coherent

Caches

In Section 8.1, we focused on the proof of soundness of the cache coherence protocol.

It is essential to prove other properties of this protocol, like deadlock-freedom and

livelock-freedom. Deadlock-freedom is especially important because even a system

which does not have any rules, and hence does not undergo any steps, is sound with

respect to any specification. We want to disallow such spurious systems. We first

prove that the cache-coherence protocol is such that in any state reached from the

initial state by the multistep, at least one Bluespec rule can fire.

Theorem 15. There is always some Bluespec rule that can fire in Mcache as long as

there are requests from the processors in cRqs buffers of the Li caches, and the toC

buffers of Li caches that have non-empty cRqs buffers are not full.

Proof. Consider the case when any response from a child to its parent is present in

the rsFromC buffer of cache c. Then, Rule(DwnRs) for cache c can fire.

Consider the case when no response from any child to its parent is present in

any rsFromC buffer of any cache. If there is a response from child to parent in the

network or in rs ToP buffers, then the step transferring this message into the network

or the destination rsFromC buffer can fire.

Now consider the case when there are no responses in-flight from any child to its

parent.

Consider a cache c such that in all the descendants of this cache (including itself),

there are no messages in-flight from the descendants to any of its children, but cache

c itself has a request from its parent in-flight. If the request in the toC buffer of its

parent, and the network is not full, then the rule that transfers the message from

the toC buffer to the network will fire. Instead, if the request is in the network and

the fromP buffer of c is not full, then the rule that transfers the message from the
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network to the fromP buffer will fire. And instead, if the request is in the fromP

buffer but the pRqs buffer is not full, Rule(PTransfer) will fire. Finally, consider the

case when there are messages in the pRqs buffer.

Consider the sub-case when there is a (WaitSt, _) request r in the cRqs buffer

of cache c such that the function completed returns true because of this request,

i.e., cs[addr(r)] > toState(r). If c is an Li cache, then toC is not full, allowing

Rule(LdDeferred) or Rule(StDeferred) to fire. If c is not an Li cache, then the

toC buffer is empty as there are no messages from cache c to its children. Either

Rule(Deferred) can fire (if the directory states of the rest of the children are compat-

ible) or Rule(DwnRq) will fire, if some other child's directory state is not compatible

with toState(r).

Consider the sub-case when there is no (WaitSt, _) request r in the cRqs buffer

of cache c such that cs[addr(r)] > toState(r), i.e., the function completed returns

false. In this sub-case, since there is a request in the pRqs buffer, one of Rule(Drop),

Rule(PProcess) or Rule(DwnRqP) will fire. If the cache state at the cache is lower

than the toState of the request in the pRqs buffer, then Rule(Drop) will fire. If the

cache state is higher than the toState of the request, but the directory states of all its

children are lower, then Rule(PProcess) can fire. Firing Rule(PProcess) requires that

rsToP is not full, which is guaranteed because rs ToP is empty. It also requires that

any (WaitSt, 1) request r in the cRqs buffer of cache c is such that cs[l] < toState(r),

which is guaranteed in this sub-case. If the cache state is higher than toState of

the request and the directory state of some child is higher, then Rule(DwnRqP) will

fire for that child. Firing Rule(DwnRqP) requires that toC is not full, which is

guaranteed since there are no messages in-flight from c to its children. It also requires

the same condition about (WaitSt, 1) requests as for firing Rule(PProcess), which is

guaranteed in this sub-case.

Now consider the case when there are no messages from any parent to any child
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anywhere in the system. Since there are no requests from parent to children and

no responses from children to parent, the directory-wait states for all caches and all

addresses are unset because of Invariant 47 which we state below.

Invariant 47. If the directory-wait state is set for an address and child, then there

must either be a request from that parent for the same address or a response from

that child for the same address.

Va c. dirw[a][c] '- rqsFPTC(a, c) + rssFCTP(a, c) > 0

Proving this invariant is easy and we omit its proof.

Consider a cache c such there there are no in-flight requests from any of its ances-

tors (including itself) to the ancestor's parent and there is an in-flight request from

a child of c to c. If there is a request in the rqToP buffer of the child of c but the

network is not full, then the rule that transfers the message from the rqToP buffer

to the network will fire. Instead, if a request is in the network and the rqFromC

buffer at c is not full, then the rule that transfers the message from the network to

the rqFromC buffer will fire. And if a request is in therqFromC buffer and the cRqs

buffer is not full, then Rule(CTransfer) will fire. Finally, consider the case when

there are messages in the cRqs buffer.

Consider the case when c is an Li cache. Consider the sub-case when there

are (WaitSt, _)-requests in the cRqs buffer. If the request from the processor re-

quires a cache state upgrade, then Rule(UpgRq) can fire as there are no requests

in-flight from c to its parent and hence the rqToP buffer is empty. Otherwise either

Rule(LdDeferred) or Rule(StDeferred) can fire depending on the request (since the

corresponding toC buffer is not full). Now consider the sub-case when there are only

(WaitV, _)-requests in the cRqs buffer. Then Rule(Writeback) can fire as the rsToP

buffer is empty. Finally, consider the sub-case when there are only Init-requests in the
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cRqs buffer. There are no requests in the pRqs buffer, and no waiting requests in cRqs

buffer. So searchAddr returns c for both cRqs- and pRqs-search. Function searchSlot

also returns c. Moreover, the response buffer toC is empty. Thus, one of Rule(LdHit),

Rule(StHit), Rule(MissByState) or Rule(MissByLine) can fire, depending upon the

request.

Consider the case when c is not an Li cache. Consider the sub-case where there are

(WaitSt, _)-requests in the cRqs buffer. If the request requires a cache state upgrade,

then Rule(UpgRq) can fire as there are no requests in-flight from c to its parent and

hence the rqToP buffer is empty. If the directory states of the other children are not

compatible, then Rule(DwnRq) can fire since the toC buffers are all empty. Finally,

if the cache state is high enough, and the other directory states are compatible, then

Rule(Deferred) can fire since directory-wait state is not set in this case.

Now consider the case when there are only (WaitV, _)-requests in cRqs buffer. If

the directory state of any child is not I, then Rule(DwnRqEvict) can fire since toC

buffer is empty and the directory-wait state is not set. If the directory state of all the

children is I, then Rule(Writeback) can fire since rsToP buffer is empty.

Finally, consider the case when there are only Init-requests in the cRqs buffer. The

directory-wait state is not set, there are no requests in the pRqs buffer, and there are

no waiting requests in the cRqs buffer. So searchAddr returns e for both cRqs- and

pRqs-search. Function searchSlot also returns E. Moreover, the buffer toC is empty.

If the address corresponding to an Init-request is a and if the directory state of a is

greater than the fromState of the Init-request, there there must be a response from

the same child as the Init-request because of the following invariant which we prove

below.

Invariant 48. If a request from a child to its parent is in-flight where the fromState

of the request is less than the current directory state of the parent for that address

and child, then there must be an in-flight response for that address from the child
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with toState equal to the fromState of the request.

Vr E rqsFCTP. dir[child(r)][addr(r)] > fromState(r) =-

]r' E rssFCTP. child(r) = child(r')Aaddr(r') = addr(r)AtoState(r') = fromState(r)

But no responses from children are in-flight in this case. This ensures that the di-

rectory state is less than the fromState of any Init-request for the same address. Thus,

one of Rule(Hit), Rule(MissByState) or Rule(MissByLine) can fire, depending upon

the request. E

We now prove Invariant 48.

Proof of Invariant 48. The directory state cannot be I since it is greater than the

fromState of the request r which is in-flight from the child. So, the directory state

must have undergone some state transition (according to Invariant 28).

Consider the state when the last directory state change for addr(r) and cache(r)

is a downgrade. By Invariant 34, there must a response, say ri, received by the parent

during the downgrade. This has to be sent by the child before sending request r so as

to not violate Invariant 36. If the child has undergone any cache state change after

sending rl, then it must have sent or received a response, according to Invariant 28.

Let it have received a response. This response cannot be sent by the parent before

receiving r1 so as to not violate Invariant 40. It cannot be sent after receiving r1 since

no directory state transition happened after sending ri. So the child must instead

have sent a response. Consider the last response, say r2 , sent by the child. It must be

the case that toState(r2 ) = fromState(r) since r 2 is the last response sent by the child

before sending r. Response r2 cannot have been received by the parent because of

Invariant 34 since the directory state has not changed since sending rl. This satisfies

the invariant.
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A similar analysis can be done for the case when the last directory state change

for addr(r) and cache(r) is an upgrade. By Invariant 34, there must a response, say

ri, sent by the parent to the child during the upgrade. This has to be received by

the child before sending request r so as to not violate Invariant 18. If the child has

undergone any cache state change after receiving rl, then it must have sent or received

a response, according to Invariant 28. Let it have received a response. This response

cannot be sent by the parent before sending r1 so as to not violate Invariant 22.

It cannot be sent after sending r1 since no directory state transition happened after

sending ri. So the child must instead have sent a response. Consider the last response,

say r2, sent by the child. It must be the case that toState(r2 ) = fromState(r) since

r2 is the last response sent by the child before sending r. Response r2 cannot have

been received by the parent since it cannot be received before receiving r1 so as to

not violate Invariant 21 and because of Invariant 34 since the directory state has not

changed since receiving ri. This satisfies the invariant. 0

We can now state and prove the deadlock-freedom property of the cache hierarchy.

8.3 Livelock-freedom in a Hierarchy of Coherent Caches

In Section 8.2, we proved that the cache-coherence protocol is deadlock-free, i.e., if

there is a request and space to send the response, then some rule in the cache hierarchy

will fire. While this is an important property, this alone is not enough to claim that

a cache-coherence protocol is correct. For example, consider a protocol with just one

unguarded rule which just increments a counter. It is easy to see that this protocol

is sound, since it does not call any method, or have any methods defined in it (and

hence does not create any labels). It is also easy to see that this rule can always fire,

thus satisfying our definition of deadlock-freedom.

In order to really prove that a protocol is correct, one has to show that some form
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of "forward progress" is made. That is, when requests from processors are present,

and there is space to send the corresponding responses, then eventually some response

will be sent. This is exactly what we are going to prove in this section.

While the proofs of soundness and deadlock-freedom were mechanically verified in

the Coq proof assistant, the final proof for livelock-freedom has not been mechanically

verified. There is no inherent difficulty in implementing this proof in Coq; one has to

describe a total order for the states reached by the system and prove that any step

increases the state with respect to this order.

We will now state and prove the livelock-freedom property.

Theorem 16. As long as there are requests from the processors in cRqs buffers of

the Li caches, and the toC buffers of Li caches that have non-empty cRqs buffers are

not full, a response for a request will eventually be enqueued into the corresponding

toC buffer.

Proof. As discussed briefly earlier, the basic idea for the livelock-freedom proof is

to define an ordering between states and prove that whenever a step takes place, it

moves the state up the order. Each request from processors goes through several

stages before it is popped and a corresponding response is enqueued. The order for

states is defined in terms of the sequence of stages that each request goes through.

The initial stage of a request is when it is enqueued into a rqFromC buffer of an

Li cache, and the final stage is when it is dequeued from the rqFromC buffer of the

Li cache and enqueued into the corresponding toC buffer. The number of stages

that any request goes through is finite. If we show that each step takes at least one

request forward to its next stage, while keeping the other requests in the same stage,

then since the number of stages that any request goes though is finite, eventually

a response will be enqueued into the corresponding toC buffer since the last stage

corresponds to a response in the toC buffer. We will now describe the stages that

any request goes through.
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We will first define the local stages that any request goes through. These stages

are local because they are based on the local state in the cache where the request is

present.

We will first show the ordering of the various stages that a request r from a

processor to an LI cache c goes through in Figure 8-1, where the topmost is the first

stage and the bottommost is the last stage.

(Init, r) C cRqs

([(WaitVl), r) E cRqs A cs[lj > i

((WaitSt, 1), r) E cRqs A cs[l] < toStatc(r) A ,w[i]

((WaitSt, 1), r) E cRqs A cs[l] < toState(r) A w[l]A
(c, addr(r), cs[I], toState(r)) c rqsFCTP

((WaitSt, 1), r) C cRqs A cs[l] > toState(r) A -,w[l]

I Kr) cRqs A cs[l] > toStatc(r)A
(childr, (addr(r), toState (r), data[/])) E toC

Figure 8-1: Stages for a request r from a processor to an LI cache c

Next we will show the ordering of the various stages that a request r from a cache

to its parent c goes through in Figure 8-2, starting with a request in the rqToP buffer

of the child and ending with a response in the toC buffer of the parent c. Again, the

topmost is the first stage and the bottommost is the last stage.

The two yellow boxes represent several stages that the request r goes through.

The cache state of slot I and the augmented state for the request r remain the same

in all stages in both the boxes while the cross-product of the directory state and

directory-wait state pairs for each cache in slot I changes.

The first yellow box represents the stages that a request goes through for evicting
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(c, r) E rqToP

r E network

(nitEr) E cRqs

((WaitV, 1), r) E cRqs A cs[l] > I A Vi. (dir[l1][i] > I A , dirw[l1][i])

Downgrading the victim slot to I

((WaitSt, 1), r) E cRqs A cs[l] < toState(r) A -,w[l]A
Vi # child (r). (-, compat (dir [1] [i], toState (r)) A ,dirw [1] [1])

Cache-state gets upgraded to toState(r) and
directory state of other caches become compatible with toState(r)

( _r) V cRqs A (childr, (addr(r), toState(r), data[l])) E toCA
cs[l] > toState(r ) A dir[l] [child(r)] = toStatc(r )

Figure 8-2: Stages for a request r from a cache to its parent c (which is not memory)

a cache line when directory states become I. The partial order between stages within

this box is given in Figure 8-3, where c, ... c, are the children of c.

The second yellow box represents upgrading the cache state of c and downgrading

the directory states of all children other than the one which sent request r (so that

their directory states are compatible with the requested upgrade). Its partial order

is given in Figure 8-4, where c, ... c, are the children of c which are not child(r). We

give the partial order for the case when the requested upgrade is M. If the requested

upgrade is S, then the stages where dir[l] [ci] = I are not present in the partial order,

and cs[l] gets upgraded to S instead of M.

Next we will show the ordering of the various stages that a request r from a child

of memory goes through in Figure 8-5, starting with a request in the rqToP buffer of
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dir[l][c1] =Al A -,dirw[i][c1] dir[l][c,,] Al A -,dirw[][c,]

dir[i][c] l= A dirw[1][cj]A ... dir[11[c,,] Al A dirw[l][c,] A
(ci, (Req, tags[l], I)) E toC (cn, (Req, tags[i], I)) C toC

dir [l] [c1] S A -,dirw [c1] dir [l] [c.= S A -dirw[l1] [cn]

dir[l][c1] S A dir[41] [ci] A dir[i][c] S A dirw[i][ca]A
(ci, (Req, tags[l], I)) E toC (Cri, (Req, tags[], I)) C to C

dir [1] [ci] I A --,dirw [ [1] x dir [ [cn] = I A dirw [][ca]

Figure 8-3: Partial order for stages representing evicting a cache line

the child and ending with a response in the toC buffer of the memory. This is very

similar to the ordering for Figure 8-2 except for the absence the parent.

The yellow box represents downgrading the directory states of all children other

than the one which sent request r (so that their directory states are compatible with

the requested upgrade). Its partial order is given in Figure 8-6, where c1 . .. c, are the

children of c which are not child(r). As before, we give the partial order for the case

when the requested upgrade is A. The figure has to be changed appropriately if the

requested upgrade is S.

We will now give the order of stages that a request r from parent to a child goes

through in Figure 8-7.

As earlier, the yellow box represents several stages that the request r goes through.

The partial order between stages within the second yellow box is given in Figure 8-

8. Caches c1 . . . c, are the children of the cache that receives request r. The figure

uses a new predicate waited(a, ci), which denotes if dirw[a][ci] has ever been set after

request r has been received. As long as dirw[a][cr] has not been set earlier, changes in

directory state do not affect the partial order. Similarly to our treatment of directory

state changes for processing a request in the cRqs buffer, we show only the case when
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dir[l][cl] = AlA
,dirw)[1] [c 1]

cs[l] < M A w[l]JA dir[l][c1] = AlA
(c, a, CS[I], X)) E YqToP di1rw[I][c1] A

(C1) (Req, a, z)) E to C.

cs[l = M A -w[l]I
dir[l][ci] = SA

-,dirw[l][c1 ]

Cs [I] = M A dirll][c'] = I

cs[1] = M A dir[l][c'] S

dir[l][c1] = SA
dirw[l] [c1] A

(c 1, (Req, a, z)) C to C

cs[l] < M A -wl11

[cs[l] Al A dir[l][c'] = M dir[l][cil = IA dir[l][cJ] = IA
,dirw~][1] ,-dirw[l] [ca]

Figure 8-4: Partial order for stages representing upgrading the cache state and down-
grading the other children, for a (WaitSt, )-request r = (c', a, y, M) in the cRqs buffer
of an internal cache

the downgrade being requested is to I. The stages containing dir[l][ci] = I will be

absent in case the downgrade being requested is S.

As mentioned before, the partial orders that we have defined in Figures 8-1 to S-8

are local to the cache where the request is present. A request in the cRqs buffer is

created due to some request in the cRqs buffer of the child sending the request, which

recursively leads to a processor request in the Li cache. A request in the pRqs buffer

is created due to some request either in the cRqs buffer of the parent, or in the pRqs

buffer of the parent. At the memory, every request is created due to some request in

the cRqs buffer. So, even requests in the pRqs buffer are eventually created because

of a processor request in the Li cache. We use this property to associate every stage

defined in Figures 8-1 to 8-8 to one or more requests from the processor in the Li

cache, which we call the origin requests. We will prove that any step moves up the

stage of some origin request and does not move down the stage of any other origin
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dir[l][c] = MA
,dirw[1] [ca]

dir[l][cj = MA
dirw [][c,]A

(ca (Req, a, ,)) E to C

dir[l][cn] = SA
,idirw {l][ca]

dir [l] [c,] =S A
dirw [1] [Cn]A

(cl (Req, a, z)) E to C

I
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(m,r) E rqToP

r E network

(nit,r) e cRqs

((WatSt, ,r) E cRqsA
Vi 4 child(r). (--,comrpat(dir [addr(r)] [i], toState(r)) A ,dirw [addr(r)] [i])

Directory states of other caches become compatible with toState(r)

(Lr) cRqs A (childr, (addr(r), toState(r), data l])) c to CA
dir [addr(r)] [child(r)] = toState(r)

Figure 8-5: Stages for a request r from a cache to memory m

request. If this is true, then some origin request makes forward progress in every step

(since the last stage of an origin request sends an appropriate response back to the

appropriate processor). And since there are only a finite number of stages, we will be

able to prove that a response will eventually be sent back to the processor.

We are left with proving that any step moves up the stage of some origin request

and does not move down the stage of any other origin request. It is easy to see that

every step moves up the stage of some origin request. But, because of the conflict

between a request in a cRqs buffer and a request in a pRqs buffer, it is not obvious if

no other origin request moves down the stage because of a step. There are two such

conflicts:

1. The cache state downgrades because of a request in the pRqs buffer, but another

request in the cRqs buffer requires the cache state to be upgraded. So, the origin

request for the latter request can potentially move down the stage. Similarly,

the request in the pRqs buffer can cause a directory state to downgrade when
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dir[11][c'] =I

dir[l] [c'] =S

dir [i1] [c'] =l
I

dir [1][cE] = M A ,di'rwl] [c]

dir[l][c1 ] - ./ A dirw [l] [c1 ]A 
(ci, (Req, a, z)) C toC I

r [1] [c1= S A ,dirwlc1

( 
dir[l][c1] = S A dirw[l][c1]A

(ci, (Req, a, z)) E to C

Idir [l1][c,] = M A dirw[l][cT]A
(ca, (Req, a, z)) E toC

dir [1] [c,,] = S A -, dirmv) []

dir [1][c,,] = S A dirw [1][c,,] A
(C71, (Req, a, z)) E to C

= I A

II
I

Figure 8-6: Partial order for stages representing upgrading the cache state and down-
grading the other children, for a WaitSt-request r = (c' a, y, MA) in the cRqs buffer of
memory

(cr) E toC

r E network

r E fromP

r G pRqs A cs[l] > toState(r) A Vi. dir[l][i] > toState(r) A dirw[l][i] = False

Directory states downgrade to toState(r)

[r $ pRqs A cs[l] < toState(r) A Vi. dir[l][i] < toState(r)

Figure 8-7: Stages for a request from a parent to its child c

I
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,waited (a, c1 ,waited (a, c,)

dir[a][c1] = Al A dirw[a][c1]A . dir[a][c,] = A A dirw[a][c,]A
(ci, (Req, a, I)) e to C (c'n, I(Req, a, 1)) (E to C

dir[a][c1] = S A -,dirw[a] [ci] dir [a] [c,] S A ,dirw [a] [c,,]
Awaitcd(a, c1) Awaitcd(a, c,)

dir[a][c1] = S A dirw[a][ci]A di'r[a][c,] = S A dirw[a][c,]A

(ci, (Req, a, I)) E to C (Cn, (Req, a, 1)) c to C

dir[a][c1 ] = I A -,dirw[a][c1] dir[a][c,= I A -dirw[a] [c,]
Awaitcd(a, c1 ) Awaited(a, c,)

Figure 8-8: Partial order for stages representing downgrading a cache line for pro-
cessing request r = (Req, a, I) from the parent.

there is a request in the cRqs buffer requiring the same directory state to be

upgraded.

2. The cache state upgrades because of a request in the cRqs buffer, but another

request in the pRqs buffer requires the cache state to be downgraded. Again,

the origin request for the latter request can move down the stage. Similarly, the

request in the cRqs buffer can cause a directory state to upgrade when there is a

request in the pRqs buffer requiring the same directory state to be downgraded.

The way the stages are set up is to avoid these conflicts. With respect to the first

conflict, it is acceptable for the cache state and directory state to downgrade even

when a request r is present in the cRqs buffer for the same address, as long as the

cache state for that address has not yet been upgraded to toState(r) (or higher). This

can be seen, for example, in Figure 8-4; moving up the stage requires that once the

cache state has been upgraded to toState(r), neither the cache state nor the directory

state for the child making the request cannot downgrade. We will show that this is

indeed the case using Invariants 49 and 50, which we state below and prove later.
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Invariant 49. Whenever the toState of a (WaitSt, _)-request is less than or equal to

the corresponding cache state, the cache state cannot downgrade.

Vr n. ((WaitSt, ), r) = cRqs.read(n) =>

toState(r) < cs[addr(r)] . next(cs[addr(r)]) > cs[addr(r)]

Invariant 50. Whenever there is a (WaitSt, _)-request such that its toState is less

than or equal to the corresponding cache state, the directory state for the child sending

that request cannot downgrade.

Vr n. ((WaitSt, ), r) = cRqs.read(n) A toState(r) 5 cs[addr(r)] =

next(dir [ addr(r)] [child(r)]) dir[addr(r)][child(r)]

With respect to the second conflict, it is easy to show that that once a request is

present in the pRqs buffer, the corresponding cache state cannot be upgraded. The

only way to upgrade a cache state is by receiving a response from the parent by

Invariant 28. But no response can be received if there is a request in the pRqs buffer

for the same address.

However, the directory state can actually be upgraded even when there is a request

in the pRqs buffer. This is because there caf be a (WaitSt, _)-request r for the same

address such that cs[addr(r)] > toState(r), in which case Rule((Ld/St)Deferred) can

fire, upgrading the directory state. But this is acceptable because of the way the

stages are set up for a request in the pRqs buffer. As can be seen in Figure 8-8, a

directory state can upgrade as long as the directory-wait state has never been set

(-,waited) since a request for the same address was enqueued in the pRqs buffer. But

once the directory-wait state has been set (i.e., waited is true), the directory-wait

state should not upgrade anymore to preserve the forward movement across stages.
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We prove that this is indeed the case in Invariant 51 stated below.

Invariant 51. If a request r is present in the pRqs buffer, and if the directory-wait

state for that address for some child is set, then the directory state for the same

address and child can no longer be upgraded as long as r is present in the pRqs

buffer.

Vc. r E pRqs.all. waited(addr(r), c) =t'- next(dir[addr(r)][c]) < dir[addr(r)][c]

LI

We are thus left with stating and proving Invariants 49 to 51. Invariant 49 is

straightforward to prove.

To prove the above Invariants 50 and 51, we need a few more invariants which are

stated below. Of these, the proof of Invariant 53 is more complicated and we give its

full proof.

Invariant 52. If there is a (WaitV, _)-request for an address a, then no slot contains

address a.

Vr n. cRqs.read(n) = ((WaitV, _), r) =. searchTags(cs, tags, addr(r)) = c

Invariant 53. Whenever an address is present in the pRqs buffer, then no request r

in the cRqs buffer can become a (WaitSt, _)-request with cs[addr(r)] > toState(r).

Vs r n. cRqs.read(n) = (s, r) A s k (WaitSt, )A

searchAddr(pRqs.all, addr(r)) # c =

-,(next(cRqs.read (n)) = ((WaitSt, _), r) A cs[addr(r)] > toState(r))

Proof. The only steps that convert an Init-request r into a waiting request (either
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a (WaitV, _)- or a (WaitSt, _)-request) are executed by Rule(MissByState) and

Rule(MissByLine). Neither can occur when addr(r) is present in the pRqs buffer.

Thus, the only way this theorem can be violated is if

1. r was a (WaitV, _)-request before addr(r) was present in the pRqs buffer and

after a request containing addr(r) was enqueued into the pRqs buffer, it even-

tually changed to a (WaitSt, _)-request with cs[addr(r)] > toState(r) or

2. r was a (WaitSt, _)-request before addr(r) was present in the pRqs buffer and

the cache state got upgraded to a value greater than or equal to toState(r) after

a request containing addr(r) was enqueued into the pRqs buffer.

In the first case, as long as the request r is in (WaitV, _) augmented state, by

Invariant 52, cs[addr(r)] = I since no slot contains addr(r). Thus, the cache state

must have upgraded after r becomes a (WaitSt, _)-request, which must happen only

after addr(r) is present in the pRqs buffer. Therefore, in both the cases, the cache

state must have upgraded after a request, say r' for addr(r) is enqueued into the pRqs

buffer. The upgrade is accompanied by receiving a response, say r" from its parent,

as per Invariant 28.

Since request r' is present in the pRqs buffer before receiving response r", it must

have been sent by the cache's parent before sending r" because of Invariant 25. The

directory-wait state at the parent is set right after sending r' and is false right before

sending r" (because both Rule(Hit) and Rule(Deferred) that send a response from

the parent to the cache require that the directory-wait state is false at the beginning

of the respective Bluespec rules). The parent must have received a response from the

cache between sending r' and sending r". Because of Invariant 39, the cache state

of the cache should be I as long as r' is present in the pRqs buffer, leading to a

contradiction. E

We will now prove Invariants 50 and 51.
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Proof of Invariant 50. We will assume that there is a (WaitSt, _)-request obeying the

requirement but that directory state downgrades during the current step and prove

this invariant by contradiction. The directory state can be downgraded only on receiv-

ing a response, say ri, from the corresponding child according to Invariant 34. This

response must be sent from the child during the steps executed by Rule( Writeback)

or Rule(PProcess). Since there is a (WaitSt, _)-request, r, from the child during the

current step when r1 is received at the child, r must have been sent before r1 was sent

because of Invariant 36. Moreover, the response corresponding to request r cannot

be received between sending r and r1 so as to not violate Invariant 18. Thus, there is

an in-flight request from the child to the parent during the step that sends response

r1 , which means, by Invariant 19, there is a (WaitSt, l)-request for the addr(ri) when

r1 is sent. If the step sending r1 is Rule( Writeback), then there will be a (WaitV, I)-

request containing addr(ri), which contradicts Invariant 12. Thus, the step sending

r1 must be Rule(PProcess). So, the child must have received a downgrade request,

say r2 from the parent during Rule(PProcess).

If the parent received a response from the child between sending request r2 and

receiving response ri, then by Invariant 39, the cache state of the child during step

executed by Rule(PProcess), when response r1 is sent, must be I, leading to a con-

tradiction. Thus, the directory states remain the same between the beginning of the

step sending request r2 and the beginning of the step receiving response r1 because

of Invariant 34.

The only steps that send request r2 to the child are executed by Rule(DwnRqEvict),

Rule(DwnRq) and Rule(DwnRqP).

If Rule(DwnRqEvict) sent request r2 , there is some (WaitV, l)-request r' where

slot 1 contains addr(r2). Request r' remains a (WaitV, l)-request at the beginning of

the step receiving response r1 since changing the augmented state requires firing of

Rule(Writeback) which in turn requires the directory states to have changed to I
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between sending r2 and receiving ri. If there is another (WaitSt, _)-request for the

same address, then by Invariant 15, it must point to the same slot, thus violating

Invariant 12. This leads to a contradiction.

If Rule(DwnRq) sent request r2, there is some (WaitSt, _)-request r' for the same

slot containing addr(r2). Request r' should be from a different child than child(r)

since a downgrade request is not sent to the same child requesting an upgrade in this

rule. Request r' remains a (WaitSt, _)-request at the beginning of the step receiving

response r1 since changing the augmented state requires firing of Rule(Deferred)

which in turn requires the directory state to have downgraded for child(r) between

sending r2 and receiving ri. By Invariant 13, there cannot be another (WaitSt, )-

request r for the same address, leading to a contradiction.

If Rule(DwnRqP) sent request r2, then addr(r) must be present in the pRqs

buffer. By Invariant 53, request r must have become a (WaitSt, _)-request with

cs[addr(r)] > toState(r) before the request containing addr(r) was enqueued into

the pRqs buffer. This prevents firing of Rule(DwnRqP), since the rule explicitly

checks that there are no (WaitSt, _)-requests whose cache states are greater than or

equal to the requests' toState using the completed function. This again leads to a

contradiction, hence proving the invariant.

Proof of Invariant 51. The only steps that upgrade the directory state are executed

by Rule(Hit) and Rule(Deferred) because of Invariant 34. Out of these, if r is present

in the pRqs buffer, then Rule(Hit) cannot fire for a request in cRqs corresponding

to the same address because searchAddr applied on pRqs will return non-E. If we

prove that Rule(Deferred) cannot fire under the appropriate assumptions, then the

invariant holds.

For Rule(Deferred) to fire, there has to be a (WaitSt, _)-request, say r', in the

cRqs buffer for the same address as r, where cs[addr(r')] > toState(r'). By In-

variant 53, request r' must have become a (WaitSt, _)-request with cs[addr(r')] >
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toState(r') before r is enqueued into the pRqs buffer. We will now prove that

dirw[addr(r')][child(r')] cannot be set once r has been enqueued into the pRqs buffer.

The directory-wait state can be set only by Rule(DwnRqEvi ct), Rule(DwnRq) or

Rule(DwnRqP). Rule(DwnRqEvict) cannot fire since it requires the presence of a

(WaitV, l)-request where slot 1 contains addr(r). But there is already a (WaitSt, _)-

request for addr(r) which must point to the same slot because of Invariant 15, thus

violating Invariant 12. Rule(DwnRq) cannot fire since it never sends a downgrade

request to the child which sent the request. Finally, Rule(DwnRqP) cannot fire since

it explicitly checks that there is no (WaitSt, _)-request whose toState is less than or

equal to the corresponding cache state.

8.4 Conclusion

In this chapter we verified the directory-based cache-coherence protocol implemented

over an arbitrary hierarchy of caches. We proved that this complex system refines a

much simpler atomic memory specification. We had to use several properties about

refinements discussed in Section 6.5 in this proof. But the bulk of the proof is in

identifying all the invariants that the complex system obeys. This chapter lists all

these invariants and a proof sketch for these invariants.
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Chapter 9

Conclusions and Future Work

In this thesis we developed a framework for verifying hardware systems expressed in

Bluespec using the theory of labeled transition systems and implemented this frame-

work using the Coq proof assistant. Our formalization of a system implementing

a specification is based on trace refines relation. Our methodology enables modu-

lar verification as we map the semantics of Bluespec programs with interfaces (i.e.,

method calls or definitions) to LTSes with the labels of the transitions representing

the communication that happens in and out of a Bluespec module.

Using this framework we modularly verified that a complex multiprocessor con-

sisting of speculative out-of-order cores connected to a coherent cache hierarchy im-

plements the sequential consistency specification. We first verified that a speculative

out-of-order core implements a simple decoupled processor where the requests to

memory are decoupled from responses to memory. We then verified that the coherent

cache hierarchy implements a simple atomic memory specification which has buffers

around an instantaneous memory into which requests and response from and to the

processors reside. Finally, we proved that the simple decoupled processor implements

an instantaneous processor where the requests and responses are not decoupled. The

system consisting of instantaneous processors and the instantaneous memory is the
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textbook definition of sequential consistency, thus completing the proof.

The cache-coherence protocol that is employed in our multiprodessor system is a

realistic directory-based protocol which supports arbitrary tree hierarchies of caches.

It is fairly complex, and much of the verification effort was in proving that the cache-

coherence protocol implements the atomic memory.

While this thesis has covered the verification aspect of programs written in Blue-

spec thoroughly, this work is orthogonal to the issue of synthesis of Bluespec programs

and generating hardware circuits from it. While there is a commercial compiler avail-

able for the said task, it is not formally verified. Ultimately, we want a completely

verified circuit at least before fabrication. The first step towards this goal is to verify

that the hardware circuits generated post synthesis also match the semantics of the

Bluespec program. Proving that scheduling of multiple rules concurrently is correct

is the first step in any such compilation/synthesis verification. Some initial work in

this area has been done by Braibant et al. 113] for single-module Bluespec programs

without any external method calls. In order to prove properties about scheduling, we

believe that the notion of weak-implements relation discussed in Section 6.6 is impor-

tant, as the label sequence in a scheduled program will have merged labels compared

to the original program.

While the foundations for a hardware verification framework have been designed

and established during the course of this thesis, there is still some work left to en-

able widespread use of our methodology for hardware verification. The main area that

could use further extensions is proof automation. As discussed in Section 5.2, the Coq

proof assistant provides a lot of assistance for proof automation via the Ltac tactic

language. A heavy use of these techniques will nevertheless reduce the human effort

needed to verify complex systems, by discharging a lot of proof obligations automat-

ically. Another important requirement for the widespread use of this methodology is

the creation of an extensive library of commonly used hardware components that are
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already verified. Practically, as can be seen in other software programming languages,

the presence of a good library is one of the main factors for widespread adoption.
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Appendix A

Functions Used in Defining Semantics

A.1 Extracting Values from Finite Register Maps

We now define the operation o(r) which is used to extract the value of register r from

the finite map o.

Definition 47

o(r) A v : (r 4 V) : '

o'(r) o (x 4 v) o'
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