On Compression of Encrypted Data
by
Mo Deng

B.S. in Electrical Engineering (with the highest honor), University of
Illinois Urbana Champaign(2013)
B.S. in Mathematics (with the highest honor), University of Illinois
Urbana Champaign(2013)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering 'MAssggﬁgg%Lg\gyTUTE
at the JUL 12 2016
MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIBRARIES
June 2016 ARCHIVZS

(© Massachusetts Institute of Technology 2016. All rights reserved.

" Signature redacted

Author . O DO R e LR R R TR LTI ET CERPREEARERES
Deﬁartment of El%rical Engineering and CorAputer Science

Signature redacted =~ M 202010

Certified by
Gregory W. Wornell
Y, Sumitomo Professor of Engineering

S |g N atu re red aCted Thesis Supervisor

Accepted by..
) U Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

On Compression of Encrypted Data
by
Mo Deng

Submitted to the Department of Electrical Engineering and Computer Science
on May 5, 2016, in partial fulfillment of the
requirements for the degree of
Master of Science in Electrical Engineering

Abstract

In this thesis, I took advantage of a model-free compression architecture, where the
encoder only makes decision about coding and leaves to the decoder to apply the
knowledge of the source for decoding, to attack the problem of compressing encrypted
data. Results for compressing different sources encrypted by different class of ci-
phers are shown and analyzed. Moreover, we generalize the problem from encryption
schemes to operations, or data-processing techniques. We try to discover key prop-
erties an operation should have, in order to enable good post-operation compression
performances.

Thesis Supervisor: Gregory W. Wornell
Title: Sumitomo Professor of Engineering

Acknowledgments

First, I would like to express my sincere gratefulness to my research supervisor, Prof.
Gregory Wornell, for his guidance and insights. Moreover, for most of the past two
years and unfortunately even until today, I couldn’t find much passion in doing re-
search. At some point, I started to doubt the choices of going to graduate school that
I made for myself a couple years ago. My life hasn’t been ignited for long and it was
hard to for me to be "mentally engaged" (as Greg once pointed out to me) in my work,
though I believed I tried my best. Often times, I feel guilty of not able to live up to
the expectations of Greg, and many others. Therefore, I am truly grateful that Greg
keeps patient and still offers me a position in the group. I would also like to thank
Tricia for her efforts to put the group together and all STA students and visitors that
I have met since my arrival, for their insightful discussions, constant encouragements

as well as sharp but constructive criticisms.

Moreover, I would like to thank my family, and a long list of friends, for their uncondi-
tional supports, especially when I went through some of the unprecedented difficulties

in my personal life. With all of you, Boston has always been a warm place.

Contents

1 Introduction

1.1 Motivation s

2 Probabilistic Graphical Models and Model-Free Compressions
2.1 Markov Random Fields
2.1.1 Conditional Dependencies from UGMs
2.1.2 Factor Graphs, Parametrization of MRFs
2.1.3 Examplesof MRFs
2.2 LDPC-based Model-free Compression
221 LDPCcodes.o
2.2.2 A (Binary) Model-Free Compression Architecture

2.3 Generalization of the Architecture: P

3 Useful Cryptosystems
3.1 One-Time-Pad(OTP)
3.2 RSA Cryptosystem

3.3 McEliece Cryptosystem
4 Proposed Architecture and Simulation Results
4.2 Compression of Encrypted Data:

4.2.1 An algorithm of compressing encrypted data and its perfor-

mance in theory: 0oL

10
11
14
14
15
20

23
23
25
27

4.2.2 Simulation Results on Synthetic Data 37

4.2.3 Compressing Encrypted text files 48
Discussions L e 52
4.3.1 Discussions on theresults 52
4.3.2 On finding the (sub-)optimal encoding matrix H 60
4.3.3 On optimal choice of doping 64
4.3.4 On Compression based on non-binary LDPC codes 65

List of Figures

1-1 Conventional system(Figure from [1]) 2
1-2 Compressing Encrypted Data(Figure from [1]) 2
2-1 Undirected Graphical Model(Figure from [10]) 10
2-2 Factor Graph. (Figure from [39]) 11
2-3 Markov Chain of Order 1(Figure from [37]) 12
2-4 2D Ising Model with Periodic Boundary Conditions(Figure from [37]) 13
4-1 Entropy of Ising models of different sizes 35
4-2 Compression of OTP-Encrypted Binary Bernoulli Sources 39
4-3 Compression of OTP encrypted Binary Markov source, doping rate=0 40
4-4 Compression of OTP encrypted Binary Markov source, doping rate=0.1 41
4-5 Compressing OTP-Encrypted 10 x 10 Ising Model 42
4-6 Compressing OTP-Encrypted 100 x 100 Ising Model 43
4-7 Compressing encrypted 4-bit Markov sources,doping=0.05 46
4-8 Compressing encrypted 4-bit Markov sources,doping=0.10 47
4-9 Compressing encrypted 8-bit Markov sources,doping=0.05 48
4-10 Compressing encrypted 8-bit Markov sources,doping=0.10 49
4-11 Girth of PEG Tanner Graph 63

10

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6

Large Alphabet One Time Pad Encryption 24
Compression of Classical File 1 51
Compression of Classical File 2 51
Compression of Encrypted Economist files 52
Compression of Encrypted Synthetic Markov Data for English 52
(4,7) McEliece Encryption 55
(4,7) RSA Encryption 57

11

12

Chapter 1

Introduction

Traditionally in communication systems, data from a source are first compressed and
then encrypted before being transmitted over a channel to the receiver(Figure 1-1).
However, there exist some scenarios where there is a need to reverse the order of the
two, i.e. the data should first be encrypted and then compressed[1][2], before being
transmitted to the channel. For example, the owner of the data may not trust the
party which conducts the compression, so that he wishes the data to be encrypted
before it is compressed, without having to compromise the compressibility of the data.
However, since the encrypted data seems random and thus any conventional compres-
sion techniques, which in general relies on taking advantage of the knowledge of some
underlying statistical structures of the source when designing the encoder, did not
yield desirable results in practice. This thesis is aimed at attacking this problem. To
be more precise, we investigate the possibility of achieving as good compressibility of
the data when it has been encrypted by some practical schemes as when no encryption
is performed at all. Besides, since any encryption scheme can be seen as a kind of data
processing technique, we also aim at discovering the key properties of data processing

techniques that could enable good post-processing compression performances.

The thesis is organized as follows: Chapter 2 will introduce the necessary backgrounds
for understanding various probablistic source models and the model-free compression

that will be used later. Chapter 3 reviews different encryption schemes involved. In

13

Eavesdropper

Message

Comprassion

Encryption

Source

- Deacryption = Decompresson —

Message

Public channed

—

Key

I———'- Secure channel

Figure 1-1: Conventional system(Figure from [1])

e

Encryption

1

Compression

1

!
Key

Public channel

= Secure channel

Joint decomprRssion
and decrypton

Figure 1-2: Compressing Encrypted Data(Figure from [1])

14

Source

Reconatructed

Chapter 4, the architecture of compressing encrypted data will be proposed. We will
also argue the legitimacy of such architecture in theory and show simulation results
of compression performances of some classical sources encrypted by various encryp-
tion schemes and discuss the reasons why performances are significantly different for
different sources and encryption schemes. Moreover, we will extend the discussion in
Chapter 5 and try to characterize the general properties that data-processing tech-
niques should have to achieve desirable compression performance. Finally, Chapter 6

points out some open problems and concludes the thesis.

1.1 Motivation

Data compression, also referred to as coding, is used everywhere[3]. Most images
available on the web are compressed, typically into JPEG or GIF formats; many file
systems automatically compress files when stored and so on. It is useful because it

helps reduce resource usage, such as data storage space or transmission capacity.

In the context of compression, the generic term message are often used for the objects
to be compressed. The compression system consists of two components, an encoder
that takes a message and generates a "compressed" representation, which is usually
shorter than the original message, and a decoder that reconstructs the original mes-
sage or some approximation of it from the compressed representation. The former is
called lossless compression and the latter is called lossy compression. The encoder
and the decoder are typically intricately tied together since often times, they both

have to understand the shared compressed representation.

Lossless compressions and lossy compressions are of interest for different applications.
Typically, lossless compression schemes are used for texts and lossy ones for images
and videos, where a little bit loss in resolution is often undetectable and thus accept-

able. In this thesis, unless otherwise specified, the word compression refers to lossless

15

compression.

Typically, lossless compression, which essentially tries to encode information using
fewer bits than the original representation, without any loss of information so that
a well-designed decoder may successfully reconstruct the original representation, is
not achievable unless some redundancy underlying the probabilistic structure of the
source can be well exploited by the compression architecture. Such probabilistic
structure is often referred to as the data model or source model, which we will use
interchangeably throughout the thesis. Such source model determines some "bias" in
the input messages, i.e., some inputs are more likely than others, which can be taken

advantage of to enable more efficient representation of the source.

Claude Shannon borrowed the definition of entropy [4][5]from statistical physics,
where entropy represents the randomness of a system, to the context of informa-
tion theory, where (Shannon) entropy is used to measure the uncertainty of the
source. Shannon also introduced two source coding theories for data compression,
one for lossless compression and the other for lossy compression(a.k.a. rate distortion
theory[33]). Specifically for loseless compression, the source coding theory states that
it is impossible to compress the data such that the code rate, defined as the average
number of bits per symbol, is less than the Shannon entropy of the source, without it
being virtually certain that some information in the source will be lost. However, it is
possible to get the code rate arbitrarily close to the Shannon entropy, with negligible
probability of loss of information. The source coding theory, however, does not indi-

cate what such an entropy-approaching compression architecture is, for a given source.

When redundant data are transmitted over a communication channel, which is of-
ten deemed bandwidth-constrained and insecure, needs for both compression and
encryption arise. Since any good encryption scheme tends to make the ciphertexts
look completely random so as to increase the security, the compressibility seems to

have been compromised. Thus, it has long been natural to first compress the data

16

according to the source model and encrypt the compressed stream and at the receiver,

decryption is conducted, followed by the decompression process.

However, in some applications, reversing the order of the two may be necessary: for
example, the owner of the data may not trust the party who does the compression.
Thus, it is desirable if data is encrypted before it is sent to the compressor. It moti-
vates us to reflect on the possibility of compressing the encrypted data. This research
is initially motivated by the goal of compressing a classified English file, which has
been encrypted.

We note that with a key of encryption given, the mapping between plaintexts and
ciphertexts must be one-to-one to make the encryption scheme valid. Therefore, the
encryption process does not change the conditional entropy(on the key used) of the
source, therefore, according to the source coding theory, the compressibility of the
data should remain the same, although it is likely hard to explicitly express the model
underlying the encrypted data, even if the key is known, which makes it hard to come

up with good compression schemes to compress those encrypted data.

Recently, a model-free coding system was established[6] [7], where the encoder only
makes choices about coding and produces a compressed bit-stream agnostic to the
source model. It instead leaves to the decoder to apply the relevant knowledge about
the source. Under this structure, no information about the source needs to be released
to the éncoder, which can help the data owner retain total secrecy. We note that our

problem of interest, compressing of encrypted data, may be enabled by this structure.

The aforementioned compression architecture was based on graphical models and it-
erative decoding. At the encoder, the source symbols(in the form of their binary
representations) are compressed by a parity check matrix of a LDPC(Low Density
Parity-Check) code. The decoder, composed of a source subgraph as well as a code

subgraph, runs (loopy) belief propagation on the combined source-code graph, where

17

source nodes are shared between the source and code subgraphs. Messages are passed
along all edges in the graph, according to the standard sum-product algorithm.The
algorithm runs until (hopefully) convergence or declaration of failure. Final decoding
is done based on standard belief equation, where the belief of each source symbol is
the combination of partial beliefs from the two subgraphs. More details about the

model-free compression architecture will be covered in Chapter 2.

Note thaf, belief propagation(or sum-product) algorithms, which become popular
means of solving inference problems, are exact only for tree-structured graphical mod-
els. In cases where there are short cycles in the graphical models, it may not converge
but if it does, it usually provides good approximate solutions to the problem. More-
over, if the approximation is indeed good, the approximation nature is often a more
than acceptable price for performing efficient inference. In [8][9], sufficient conditions
are given for a loopy BP to converge to good approximate solutions, however, these
conditions are not readlily applicable. Therefore, we will run simuation results in

Chapters 4 and 5 to understand the empirical performances.

18

Chapter 2

Probabilistic Graphical Models and

Model-Free Compressions

As mentioned before, some probabilistic structure in the data source needs to be well
exploited by the compressor to achieve good compression performances. Intuitively,
to understand the inherent structures of the source, it is worth seeing how the joint
distribution, or more generally, a global function, can be factored into a product of
several local functions, with each of which having a subset of the variables as its

arguments.

If we constrain the global function to be the joint probability density function of
the information source, then this factorization essentially encodes the conditional de-
pendent structure among the source variables and can be conveniently expressed via
a graph, called the probabilistic graphical model(PGM)[34]. Later in the thesis, the
source is compactly described via such a graph, called the source subgraph. In section
2.1, we will give a more detailed description on PGM, with the emphasis on a branch
of PGM, Markov Random Fields, which all sources of interest in the thesis can be

categorized into.

A useful class of variations, factor graphs, is a class of undirected bipartite graphs

connecting variables and factors, where each factor represents a function over the vari-

19

ables it is connected to. If the global function is again the probability density function
of the source, then the factor graph describing the source is essentially equivalent to
the PGM description of the same source in the sense that each factor node in the fac-
tor graph corresponds to a maximal clique in the PGM, with the variables connected
to each factor node being the ones that consists the maximal clique. In this thesis, we
use the PGM to describe the source subgraph but nevertheless introduce the factor
graph as a seperate topic since the LDPC code(low denstiy parity-check code), on
which model-free compression structure is based, is defined based upon factor graphs.
More descriptions on factor graphs, LDPC codes and LDPC code-based, model-free

compression architecture are given in sections 2.2 ad 2.3, respectively.

2.1 Markov Random Fields

There are two most common branches of PGMs, Bayesian networks and Markov
Networks, also known as Markov random fields(MRFs)[10][11]. The underlying se-
mantics of Bayesian networks are based on directed graphs so that Bayesian networks
are also called directed graphical models; on the other hand, the underlying seman-
tics of MRFs are based on undirected graphs and thus MRF are also called undirected
graphical models(UGMs). In this thesis, all source models of interest are MRFs so
that we will only introduce MRFs hereafter.

The graphical structure of an undirected graph represents some of the qualitative
properties of the joint distribution of the source variables — the nodes in the graph
of an MRF represent the variables and the edges correspond to some notion of direct
probabilistic interactions between neighbouring variables. In next subsection, we will

introduce the conditional dependence properties encoded in the PGMs.

20

2.1.1 Conditional Dependencies from UGMs

Typically, we use a graph G = (V| E), with a set of random variables S = (S,)yev
indexed by elements in V, to describe an MRF with respect to G. The construction
of edges must obey the statistical structure of the source and the following properties

can be read from the UGM:

Pairwise Markov Property — an edge between two variable nodes S; and S; is
absent in the graph if and only if S; and S; are conditionally independent, given
all the other variables in the graph. Note that, it is only the absence of edges that
makes a graphical representation useful for describing the distribution. In Figure 2-1,
for example, 1 and 5 are conditionally independent, given all other variables. We

denote this relation as 1 1 5| {2,3,4,6,7}.

Local Markov Property — any arbitrary source node s;, i € V, given its neigh-
bourhood on G , N (i), is independent of all other variables.

Namely, p(s; | sv~i) = p(si | sy)) for all ¢ € V. For example, in Figure 2-1,
11 {4,5,6,7} | {2,3}.

Global Markov Property — for any disjoint subsets of nodes A, B and C in the
UGM graph G such that C separates A and B (i.e. every path between a node in A
and a node in B passes through a node in C), the random variables S4 and Sp are

conditionally independent, given Sc. For example, in Figure 2-1, we can see that,

{1,2} L {6,7} | {3,4,5}.

Note that in general, the Local Markov Property is weaker than the Global Markov
Property, while stronger than the Pairwise Markov Property. However, for any strictly

positive distributions, those three properties are equivalent.

We have mentioned that a given source can also be described via a factor graph.

21

Figure 2-1: Undirected Graphical Model(Figure from [10])

Although we will not use the factor graph to explicitly describe the source subgraph,
for the purposes of introducing the LDPC codes later, we will briefly introduce factor

graphs in the next subsection.

2.1.2 Factor Graphs, Parametrization of MRFs

Suppose that a global function g(z1,...z,) factors into a product of several local

functions f;’s, each having its argument as some subset of {z1,...z,} , i.e.

g(z1,...x) = [] £i(X;) (2.1)

JeT
where J is a discrete index set, X is a subset of {z1,...z,} and f;(X}) is a function
having the elements of X, as arguments. With that, we can define the corresponding

factor graph as follows:

Definition. A factor graph is a bipartite graph that expresses the structure of the
factorization in (2.1). A factor graph has a variable node for each variable z;, a factor
node for each local function f;. An edge connects variable node z; and factor node f;
if and only if z; is an argument of f;. Figure 2-2 gives an example of a simple factor

graph, where

9(z1, 2, T3, T4, T5) = fa(21) fB(22) fo (21, X2, 23) fD (23, T4) fE(T3, T5), (2.2)

22

fa fs fe fo fs

Figure 2-2: Factor Graph. (Figure from [39])

As mentioned before, though in different forms, there are close connections between
factor graphs and graphical models for MRFs — the joint probability mass function of
an MRF with graphical model G = (S = {si1,...,s,}, E), p(s), can be factored over
maximal cliques of G:

p(s) = — [dc(se), (2.3)

1
4 CceC

where Z is a normalizing factor to make sure that p(s) is a valid p.m.f.
Apparently, each maximal clique C' in the UGM of an MRF corresponds to a factor
in the factor graph. Moreover, the weight associated with the maximal clique C,

¢c(8c), can be seen as the local function corresponding to the maximal clique C, with

its arguments as the variables in the maximal clique C'.

2.1.3 Examples of MRFs

Now we give several examples of MRFs, all of which are used later in the thesis.

(a) Markov Chains:

23

Figure 2-3: Markov Chain of Order 1(Figure from [37])

Markov Chain is the simplest example of MRF. A sequence of random variables

X = (x1,...,2,) is an k*" order Markov chain if for Vi > k,
P(’ﬂ | Ljsily vimse ,.T]) = P(T, | Ti—1,-- --Ti—k)a (24)

We will later see English texts can be modeled as the first and second order Markov
chains, in Chapter 4. Figure 2-3 shows the schematic(graphical model) of a first order

Markov chain.

Moreover, for a Markov chain of order 1, the joint pmf of the source can be factored

p(x) = pl@r,. . 20) = p(n | T0ot)p(@amt | $02) .- pl@z |)p(ar), (2.5)

which clearly has the of the form of MRF. Each pair of two neighbouring nodes forms

a maximal clique of the graph.

(b) 2D Ising Model:

Ising Model|12] was originally a mathematical model of ferromagnetism in statistical
mechanics, named after the physicist Ernst Ising. It consists of discrete variables
that represent magnetic dipole moments of atomic spins that can be in one of the
two states.(1, -1). Spins are arranged in a lattice-like graph, allowing each spin to
interact with its neighbours. The two-dimensional Ising model is the simplest one

to show a phase transition. Later, it is used widely as an image model in computer

24

Figure 2-4: 2D Ising Model with Periodic Boundary Conditions(Figure from [37])

vision research, where each source node represents a pixel and takes the value of 0 or

1, as will be in our case.

Definition: The homogeneous Ising source s"** is defined over the {0, 1}"** lattice

graph G = (8,5), by

xwy _ L TT
p(s"") = 'Z"H¢i(3i) I ©isirs9), (2.6)
€S (i,5)€€
where for each i € §,¢;(1) = 1 — $;(0) = pPrias, as the node potentials. And for each
(i,5) € €,
Dstay if 8; = 8
pij (i, 85) = (2.7)
1- DPstay if S5 7é Sj

Figure 2-4[37|shows the schematic of the 2D Ising Model.

A few remarks:

(a) 2D Ising model can be seen as the 2D extension of a binary Markov chain.

(b) In this thesis, we will only consider Ising models that are homogeneous and sym-
metric about 0 and 1. Homogeneous here means the node and edge potentials are
defined hemogeneously over the whole grid and symmetric about 0 and 1 are guar-
anteed by both ppies = 0.5 as well as ;;(0,1) = ¢;;(1,0) = 1 — pgay = 1 — ¢;;(0,0) =
1 —;;(1,1), for V(i,j) € £.

25

(c) 2D Ising model is assumed to have periodic boundary conditions, which is
self-evident, with the help of Figure 2-4.

(d) 2D Ising sources cannot be sampled exactly. For simulation purposes, in this
thesis, we will use the Gibbs sampled Ising sources of burn-in period 1000, which is a
widely used approximate. More detailed descriptions of Gibbs sampling can be found

in [20].

2.2 LDPC-based Model-free Compression

2.2.1 LDPC codes

This section introduces LDPC codes and some related definitions to prepare for the

LDPC-based model-free compressions, which will come up afterwards.

LDPC codes[13][14]|25], or low-density parity-check codes, are a class of linear block
codes which provide near-capacity performance on a large set of data-transmission
and data-storage channels. Here, we will only consider binary LDPC codes, though
brief discussions on non-binary LDPC based compression schemes will be given in
'Chapter 4. For binary LDPC codes, the codebook C is a subset of {0,1}", with n
being the block length of the code, that can be written compactly as

C={ye{0,1}": Hy =0 (mod 2)}, | (2.8)

where H is a binary k x n parity-check matrix describing this code. To qualify as a
low-density parity-check matrix, H is sparse, namely, the number of 0’s in H is much
larger than that of 1’s. Number of 1’s is allowed to grow at most linearly with the

block length n.

Each low-density parity-check matrix is also uniquely associated with a factor graph

with each column corresponding to a variable node while each row corresponding to a

26

factor node(a parity-check node, or check node). We will be using terms factor nodes
and check nodes interchangebly in the thesis. In the factor graph, variable node i is
connected to check node a if and only if H,; = 1. For a particular check node a, the
number of 1’s in the corresponding row of H represents the number of variables nodes
connected with a in the associated factor graph. Similarly, for each source node 4,
the number of 1’s in the corresponding column of H represents the number of check

nodes connected with 7 in the associated factor graph.

If each row has same number of 1's ,w,, and each columns has the same number of
1’s, w,, then the LDPC code is called a regular LDPC code, satisfying kw, = nw,.
Otherwise, it is called an irreqular LDPC code.

The rate of the code is defined as:

Teode = ranl;(H) _ number of independent rows of H "0 ()
n

where we have defined, k/n, as the nominal compression rate, or r,,, of the code.

2.2.2 A (Binary) Model-Free Compression Architecture

Later in the thesis, we will investigate the possibility of achieving good compression
rate after the source data has been encrypted by practical encryption schemes. As will
become clear later, the theoretical legitimacy of the proposed algorithm partly comes
from the recent development of the model-free architecture for compression[6][7], in
which the compressor can only make choices about coding and produce a compressed
bit-stream regardless of the source model- in fact, the compressor does not need to
have the knowledge of the source model. It leaves to the decoder to apply the knowl-
edge about the source to conduct the decompression. Therefore, this compression
architecture may help resolve the difficulty of not knowing any information about the

encrypted stream at the compressor and the decoder, with the knowledge of the source

27

model and the key used, may conduct the decryption and decompression jointly.

Now, we give a in-depth description of the model-free compression architecture. Many
of the following descriptions are from[6][7]. Interested readers are referred to those

articles for further information:

Basic Notations: Let s be an binary vector of length n, drawn from a Markov
random field(MRF) p(s). This is the source to be compressed. H is an k x n (binary)
LDPC parity check matrix.

Encoding: Regardless of what p(s) is, H is used as the encoding matrix and the
compression is done by:

x = Hs, (2.10)

where again, the multiplication is in the sense of modulo 2 sum.

Decoding:

(i) The code subgraph: Let S = {s1,...,sn} denote the set of source nodes and
X = {zi1,...,zx} denote the set of compressed bits, or in the context of factor
graphs, the set of all factor(check) nodes. Furthermore, let F denote the set of all
edges in the factor graph. There is an edge between factor node x, and source node
s; if and only if H,; = 1. Then, the code subgraph can be compactly represented by
the factor graph C = (S U X, F). H enforces k hard constraints, each of the form
Ta = Y ies Hayisi, for Va € {1,2,... ,k}.

It is worth pointing out, since the complexity of inference(or decoding) on C scales
with the number of edges between source and factor nodes, and in LDPC, where the
number of 1’s in the parity check matrix H grows at most linearly with n. Therefore,
the inference complexity grows linearly with the source length, which is more than

acceptable. Low complexity in decoding is one of the most important advantage for

28

LDPC based compression.

(ii) The source subgraph: Recall that, the MRF can be factored with respect to the
maximal cliques in the source subgraph. However, the complexity of inference on
G depends on the number of cliques and their sizes[36]. Thus, it is desirable if the
maximal cliques have smaller cardinality. For now, we will only consider a subset of

MRF that assumes a pairwise factorization, such that:

)= 2 [Tos) TT eutsesy), (2.11)

€S (i,7)€€

where there is a node potential ¢;(s;) associated with each source node and there is
an edge potential ¢;;(s;, s;) associated with each neighbouring nodes pair (i,7) € £
in source subgraph G. Note that, both Markov Chain of order 1 and Ising model

assume this factorization.

(iii) Decoding algorithm:
)

Notation: Let m,’,;

si; m\).(s;) be the message from a source node s to its source subgraph neighbour

Si; mfza(sl) be the message from source node s; to factor node z,, all at time t.

.(s;) be the message from the factor node z, to the source node

Also, let Mg be the set of neighbouring source nodes of source node s;. Similarly, let
NE be the set of factor node neighbours of source node s; and let N be the set of
source node neighbours of factor node z,. By the standard sum-product algorithms,
we have:

(1) Source Subgraph Message Update:

t+1
mf—;) Z [H ma—n Si]¢z $i)ij (8, ;) H mgl»i(si)a (2.12)

Si zaEN SkGMg\sJ
where the term in the bracket is the code subgraph belief at s;, which works as an

external message inserted into the source subgraph via s;.

(2)Code Subgraph Message Update:

29

- Source to Factor Message Updates:

m8 D) = [T m&usetsd] TI midu(s) (2.13)

s; E/\flg T,ENE\Za
where the term in the bracket is the source subgraph belief at s;, which works as an
external message inserted into the code subgraph via s;.

Factor to Source Message Updates:

mP(s) =Y LW JI mPa(s)), (2.14)

NE\s; s;€ENE\s;

where f,(NY) is the indicator for the hard constraint imposed by z,, and is defined as:

1 if constraint z, =), ¢ H,;s; is satisfied
faNE) = < (2.15)
0 if otherwise
(3)Belief Update: in each iteration, we can update the belief equation of each source

node, according to:

$® = arg max [H mffln (si)] [H mgt_)n (s; qﬁl(sz)] (2.16)

za€NE s;ENE
where the belief of a source node should be ‘interpreted as the combination of partial
beliefs from the code subgraph and source subgraph, respectively.
Remarks on Doping:
Generally, the decoding process will need to rely on a fraction(hopefully small) of
source nodes being directly described to the decoder to converge to the correct solu-
tion or a good approximate. This process is called doping. In practical, the doping
process is realized by augmenting H with additional unit weight rows so that those
corresponding source symbols are directly known to the decoder.
Remarks about the implementation of the algorithm:
Several remarks about the simulations to make:

1. The initialization of the messages: messages should be initialized as follows:

30

at t = 1, if z, is a degree-one factor node(corresponding to a doping source symbol

s;), then source to factor message:

) 1 ifa=s;
miﬁa(a) = (217)
0 otherwise
and the factor to source message:
) 1 Ha=s;
my(e) = (2.18)
0 otherwise

if x, is not a degree-one factor node, then source to factor, factor to source messages
are updated as uniform messages over the source alphabet, for example, if source
is binary, Va € {0,1}, mz(-i)m(a) = O.5,m((zl))i(a) = 0.5. For source to source mes-
sages, since no source nodes could have any unbiased initial beliefs about other source
nodes, source to source messages are initialized as : mgﬂj(a) = 0.5, V(4,7) € £ and
Vo € {0,1}. F;om the message updating rules and the message initializations, it is

clear that the doping symbols(and the messages involving the doping symbols) can

help create dynamics for the convergence of the decoding algorithm.

2. Since the decoder runs the loopy belief propagation, it is essential that short loops
are avoided in the combined graph, which includes the code subgraph. Therefore,
the encoding matrix H should be constructed so that short-loops(loops of length 4)
is avoided. Generally, there are two most common ways to construct H, namely Gal-
lager construction and Progressive Edge Growth(PEG) construction|27].
Generally, Gallager construction provides no guarantee of avoiding short loops, while
PEG was developed in order to avoid short loops, or, increase the girth in the under-
lyinggraph. Therefore, in this thesis we will use PEG construction. Details of PEG

will be included in Chapter 4. Some large PEG constructed matrix are available[28].

31

2.3 Generalization of the Architecture:

If the source data s™ is over a larger alphabet GF(q) for some g > 2, we could adapt
H into GF(q) and conduct message passing on integers or translate the source into
a binary stream and use the binary LDPC based compression. The former approach
will be discussed later in the thesis, and we will consider the latter for now. In the
latter approach, since there is a symbol translation layer in the source subgraph, in-
tuitively, messages should also be translated between layers. Most of the following

descriptions in this section can be found in [6] and [7].

Suppose s” = {s1, ... , S, } is an n-symbol data sequence over GF(q) that is serialized
by symbol-level representation maps. Without loss of generality, assume all s; belong
to the same alphabet S of cardinality M. The representation map is a bijection
tyoo : S — GF(2)2 where B = [log, M, representing the length of the translation
of each character in the alphabet.
When messages are passed to or from source nodes, there are related messages on their
serialized (binary) representations. Define a pair of message translation functions,
Trvoz : (S = RY) = (GF(2) —» RY)? and T,y : (GF(2) - RT)Z —» (S - RY)
that converts between a message m(*) over S and a B-tuple of messages m(? =
m§2),... ,mg) over GF(2), such that for w € {1,...,B} and 8 € {0,1}, and for
a € S:

Tl (8) = 3 m™(@)T{tarsa(0) = 6}, (219)

aES
where Z{tp—2(a), = B} is the indicator on whether the w!® bit (from the left) of the

binary representation of « is equal to 8, and

B
T2—+M(m(2))(a) = H mff)(tM_)Q(a)w), (2.20)

w=1

If we see each of the B bits of a symbol’s binary representation as a random vari-
able, we can see that the message translations are lossless, or equivalently (2.19) and

(2.20) are true, if and only if those B bits are independent. Thus, the proposed

32

algorithm does not incur any architectural loss if and only if the B bits in
a symbol’s binary representation are independent. As can be seen later in the
thesis, this independence condition does not always hold and therefore the algorithm
may incur some architectural loss, but these conversions can greatly reduce the com-

plexity of the algorithm.

Encoding:

Similar to the binary case, the large alphabet source data is first serialized by z"Z =
trm—2(s™), then the model-free encoding takes place in the represented alphabet of
GF(2). Choose k to target 7eqe = k/nB. Choose a random H of size k x nB that
has k independent rows. and produce the compressed result, z¥ = Hz"5.
Decoding:

Let & = {s1,...,8a}, the code subgraph is now C = (Z, X, F), where Z = tp;2(S).
Denote ./\ffw as the factor node neighbours of z;,, = tar-2(si)w. Noting that we always
use the messages at iteration ¢ to update messages at iteration (¢t + 1) and we will
omit the iteration indices of the messages in the expressions below for simplicity.

Source Message Update:

M M
m§_>])-(sj) = Z [m(c_jz(s,)] Gi(si)pij(si, S5) H mk_n Si), (2.21)
Si SkE.N; \s;
where,
M
me(s:) T2—>M(IT m2Gi) T mPis z,B))(i) (2.22)
fae/\fz,l faEM!B

Code Message Update:

source to factor message update:

2 2 2
mz(',aZ—m(Zi,w) = [m(g—)ﬂ w (Ziaw)] H ml()—)m w(zl w) (223)
fbe-/v;'(fw\fa

33

where,

m@iu(10) = Tora (T mi(s061(s0)) (210)

Sj GMg

and factor to source message update:

mPuziw) = . LN [mPalziw)

N \z’l' w 2w ENa.c\ziyw

and the belief of each source node is updated(in each iteration) by,

_argmax [mg\i)z H H mﬁj‘ﬁi)¢z(81)]

s]EM

Remarks:

(2.24)

(2.25)

(2.26)

As in the binary case, the doping process is done by augmenting H with some addi-

tional unit weight rows to form the actual encoding matrix and the true compression

rate iS Teom = Teode + Tdope- HOWever, depending on the specific configuration of the

doping, for a given number of bits to dope, we may choose to dope all bits of a subset

of symbols or just randomly dope the same number of bits. Discussions on the choices

of doping will be provided in Chapter 4.

34

Chapter 3

Useful Cryptosystems

In this chapter, functionalities as well as other useful properties of the encryption

schemes relevant to the thesis will be introduced.

3.1 One-Time-Pad(OTP)

In cryptography, the one-time pad, or OTP, is an encryption technique that is per-
fectly secure, as long as used appropriately. In this technique, a plaintext is paired
with a random secret key. Each character in the plaintext is encrypted by combining
it with the corresponding character from the key using modular addition (of their
ASCII codes). It has been shown that if the key is: (i) completely‘ randomly gen-
erated; (ii) at least as long as the plaintext; (iii) never fully or partly reused; (iv)
kept completely secret, then the resulting ciphertext will be impossible to break, even
if the opponent has infinite computational power. In fact, we say OTP has perfect
secrecy property. The term perfect essentially means that after an opponent receives
the ciphertext C, he has no more information about the plaintext P, than before re-
ceiving the ciphertext. Therefore, OTPs are also said to be information-theoretically
secure, 1.e.

H(P) = H(P | C), (3.1)

35

Case 1 Case 2

Plaintext ATTACK GIVEUP
Key RQBOPS LBYKXN
Ciphertext RJUORC RJUORC

Table 3.1: Large Alphabet One Time Pad Encryption

where H(P) represents the entropy of the plaintext source, and H(P | C) represents

the conditional entropy of the plaintext source, given the ciphertext.

The perfect secrecy of one-time pad can be clearly illustrated by the example in
Table 3.1, from which we can see, having the access to the ciphertext, RIUORC, the
opponent has absolutely no clues whether the plaintext was ATTACK, GIVEUP or
anything else. Moreover, it is proven in [38] that any cipher with perfect secrecy

property must use keys with effectively the same requirements as OTP keys.

However, the above stated non-trivial requirements on one-time pad for it to be
perfectly secure result in many practical issues that prevent one-time pads from be-
ing widely used. For example, we have stated that the keys must be at least as
long as the plaintext, and the parties conducting encryption and decryption must
be able to exchange the (extremely) long key absolutely securely, which is often not
practical. On the other hand, some high quality ciphers that are much easier to im-
plement than OTPs are available and their levels of security, though not perfect, are
presently deemed acceptable. Thus, these ciphers are widely used in practice. RSA
and McEliece cryptosystems are some of those most frequently used schemes and we

will introduce them in more depth in the following two sections.

36

3.2 RSA Cryptosystem

RSA[15] [35]is one of the most well known public key cryptosystems|[16], where the
sender of the message, say Bob, securely send messages to the receiver of the message,
say Alice, in the following steps:

1. Alice generates a pair of mathematical linked key, called public key and private
key, such that, the public key can be readily generated by the private key, but only
with the public key, it is hard to get the private key. Public key and private key will
be denoted as pbk and prk, respectively.

2. Alice transmits her public key to Bob via any (insecure) channel and keeps her
private key secret.

3. Bob uses Alice’s public key to encrypt the plaintext to be sent according to the
agreed encryption algorithm and create a ciphertext.

4. Bob transmits the ciphertext to Alice.

5. Alice, decrypts the ciphertext using the private key that only she has access to

and get the message from Bob.

Apparently, an important property of any public key crytosystem is that without the
private key, the message is not decryptable. Not decryptable usually means it is com-
putationally hard to do so. Public key cryptosystems desirably avoid the necessity of
securely exchanging the same (long) key between sender and receiver, as in the case

of one-time pad.

Specifically, RSA is named after Ron Rivest, Adi Shamir, Leonard Adleman. The
algorithm consists of 4 major steps: key generation, key distribution, encryption, de-

cryption. A brief introduction of each step is provided:

Key generation:
1. Select two distinct primes p and q. Empirically, to make the breaking of the cipher
hard, p and ¢ should be relatively similar in magnitude but differ in length by a few

37

digits.

2. Compute the modulus of both public and private keys, n = pq.

3. Compute ¢(n) = ¢(p)p(q) = (p—1)(¢—1) =n—(p+q—1), where ¢ is the Euler’s
totient function. ¢(n) is kept private as part of the private key.

4. Select an integer e such that 1 < e < ¢(n) and gcd(¢(n), e) = 1. Empirically, it is
found that e should be selected such that it has short bit-length and small Hamming
weight(number of 1’s in its binary representation). However, it is also known that
choosing an e that is too small, can be insecure in some cases. The selection of
e is sometimes an art and the impact of different e’s on the security can only be
determined empirically. The selected e is a part of the public key.

5. Determine d, as the multiplicative inverse of e, i.e. de = 1(mod(¢(n))) and d is
a part of the private key. Namely, pbk = (n,e),prk = (¢(n),d). fImplicitly, p and
g must also be kept secret, since they can be used to calculate qb(n),ywhich must be
kept secret.

Key distribution:

(n,e) is sent to the the receiver via a reliable but not necessarily secure channel. The
public keys can be reused, which is more than desirable.

Encryption:

Let M be the any arbitrary character of the message that sender wants to send to
the receiver. We first need to convert M to an integer m , s.t. 0 < m < n and
ged(m,n) = 1. Find such m that is co-prime with n can be done efficiently with an
algorithm called padding scheme [38]. After m is obtained, we compute the ciphertext
as

¢ = m® (mod n), (3.2)

utilizing only the public key.
Decryption:

The receiver, who has the private key, can decrypt the message by

m = ¢* (mod n), (3.3)

38

3.3 McEliece Cryptosystem

The McEliece cryptosystem|[17] is a public key cryptosystem whose security rests on
the difficult problem of decoding an unknown error-correcting code, which is NP-hard.

Such cryptosystems are called code-based cryptosystems.

Again, suppose Bob wants to send his message to Alice.

Key Generation:

1. Alice selects a binary (n, k)-linear error correcting code C that can correct up to
t errors. Originally, binary Goppa codes are used for its easiness of decoding and it
has resisted cryptoanalysis so far. Parameters n, k, ¢t are agreed by the Bob and Alice
beforehand. The algorithm requires the error correcting code selected must have an
efficient decoding algorithm. Denote the code generating matrix, of size k x n as G.
2. Alice selects a random k X k binary non-singular matrix S.

3. Alice selects a random n X n permutation matrix P. Permutation matrix P is a
square matrix that contains exactly one 1 in each row and each column. It should
be seen as a linear mapping that permutes the order of the original vector, in the
manner determined by the configuration of P.

4. Alice then computes the k x n matrix G such that G = SGP.

Key Distribution:

Alice will send her public key (G,t) via a reliable(not necessarily secure)channel and
keep her private key (5, G, P) secret.

Encryption:

1. Suppose the message that Bob wants to send Alice is m € Z. Then m will first be
translated into a binary sequence of length k.

2. Bob computes the vector ¢ = mG. Note that mG in computed in the sense of
modulo 2 sum.

3. Bob generates a random n-bit vector z of weight exactly t.

4. Bob computes the ciphertext as ¢ = ¢/ + z, in the sense of modulo 2 sum, and send

it to Alice.

39

Decryption: Upon receiving ¢, Alice will conduct the following steps, using her pri-
vate key only, to decrypt the message.

1. Computes é = cP~ .

2. Uses the decoding algorithm for code C to decode ¢ to m.

3. Finally, computes m = mS~!.

Proof of Correctness:

Since & = cP~! = (¢ + 2)P~! = (mG + 2)P~! = mSG + zP~, since z is chosen to
have weight t and P is a permutation matrix(thus so is P~!), zP~! has weight at
most t.

Thus the decoding algorithm, which can correct up to t errors, is able to get rid of
2zP~! and find the corresponding m = mS. Thus, original message m is thus de-

crypted as m = mS~L.

Remarks:

Though McEliece cryptosystem is computationally secure, neither it nor any code-
based cryptosystem has received much acceptance in the cryptogfaphy community,
partly due to the large size of public keys[18][21]. As an example, when Goppa code
is used with the parameters suggested by McEliece, i.e. k = 524,n = 1024,¢ = 50,
the public key G will contain k(n — k) = 524(1024 — 524) = 262000 bits, at the order
of 2'8 which would likely cause implementation issues. The other major drawback
is that the ciphertext usually has to be made much longer than the plaintext. To
resolve these issues, in all simulations in the thesis, we break down the serialized
binary representations of the source into shorter blocks and have encryptions done

blockwisely, for better feasibility of the implementation.

In general, code-based cryptosystems are believed to be more promising in the fu-
ture as storage and transmission costs go down and computation powers in machines
improve. Moreover, code-based cryptosystems do have some advantages over many
current practical ciphers, like RSA. The most important advantage is their (much)

faster encryptions and decryptions. Take the example of McEliece cryptosystem,

40

encryption and decryption require (only) matrix multiplications while schemes like
RSA, typically require raising a number to a (large) power. Simulation results on
post-encryption compression performances in Chapter 4 should give some hints on

other advantages of McEliece cryptosystem in specific, over RSA.

41

42

Chapter 4

Proposed Architecture and

Simulation Results

In this chapter, we will formally propose an architecture of compressing encrypted
data and argue that in theory, it should enable the same compression performance as
when no encryption is performed. Simulation results, however, will show this is not

always the case. Some discussions on the simulation results will follow.

4.1 Source Specifics:

In this section, we will list all the sources to be compressed and give the expressions of
their entropy rates. Recall that all those sources are Markov Random Fields (MRFs)

and therefore we will continue using the notations in Chapter 2.

1. i.i.d. Binary Bernoulli sources:
s = {s1,...,8,} is an i.i.d Bernoulli source of bias p, or Bern(p) if si,...,s, are

independent and for Vi,

Pr{s; = 0} =p’(1 - p)'~*, (4.1)
where 6 = {0, 1}.

43

In the context of the pairwise factorization in (2.10), each node weight ¢;(6) = Pr{s; =
6}, for 6 = {0,1} , and each the edge weight should be set to some arbitrary value,
same across all edges, since there is actually no edge between any two source nodes.

Apparently, the entropy, H(s), given by,

H(s) = H(p) = —plog,(p) — (1 — p)logy(1 — p), (4.2)

gives us the average number of bits of information we get based on observing one
symbol. It also characterizes the uncertainty, or unpredictability of the source. The
higher the entropy is, the less predictable the source is. The importance of the entropy
lies in its operational significance concerning coding the source, since H(s) represents
the average number of bits of information per symbol from the source, we should
expect that at least H(s) bits per symbol have to be used in order to represent the
source without any loss of the information. This is called the source coding theo-

rem, which essentially states that for any information source s:

(). The average number of bits per symbol of any uniquely decodable code(or in the
context of the thesis, the best compression rate achievable) of s must be at least H(s),

the entropy of the source.

(ii). If the string of symbols is sufficiently long, there exists a uniquely decodable
code for the source such that the average number of bits per symbol of the code is as

close to H(s) as desired.
2. Markov Source of Order One:

As stated before, the Markov source of order 1 has the pairwise factorization. Equa-
tion(2.4) clearly shows that ¢,(0) = Pr{s; = 6}. Each of all the other node potentials

should be set uniform over the entire source alphabet and the edge potentials are given

44

by the transitional densities p(S;4; | S;). In this thesis, we will only consider the spe-
cial case where p(S;y; | S;) is the same for all i. Such Markov chains are referred to

as stationary or time-homogeneous.

For a stationary Markov chain of order 1, § = 5;,...,S,,... , the entropy rate of
the source S is given by:

H(S) = lim H(S, | Sp_1,...S) = H(S: | S)), (4.3)

n—roo

where them last step takes advantage of the fact that S is a Markov chain of order 1

and is stationary.

The conditional entropy H(S, | S1) can then be calculated using the stationary density

of each element in the alphabet as well as the transitional densities as follows:

without loss of generality, let the alphabet of the source be {1,...m} and let y; de-
note the steady state probability of i, and let p;; denote the conditional probability
Pr{sg+1 = j | sy =i}, for all k, then the source entropy H(s) is given by:

H(s) = - Z i Zpij10g2(pij)v (4.4)

Note that:

(i) The convention 0log,(0) = 0 is used.

(ii) Given the state transition matrix P, with P;; = p;;, Vi,j € {1,... ,m}, the sta-
tionary densities p = ({1, . .. 4m) can be found. More specifically, when the Markov
chain is in its steady state, the stationary density of any arbitrary state j, should
satisfy: p; = >, piPi;, or compactly, u = P, from which we can solve for the sta-

tionary densities pu.

45

3. 2D Binary Ising Model:

Recall equation (2.6), here we only consider the homogeneous and symmetric Ising
model, where ¢;(1) = 1 — ¢;(0) = p = 1/2 for all i and ¢;;(0,0) = @;;(1,1) =
1 —¢i;(0,1) =1—¢;(1,0) = 1—gq, for V(i,j) € £&. We refer to this source as
Ising(0.5, q).

The entropy of 2D Ising(0.5,g) source is much more involved. Onsager gives an exact
expression in [19] of the entropy of Ising source, with the limit of the number of nodes
going to infinity. The results will be given here with the proof omitted. Interested
readers are referred to [37] and [19] for more details. Let ¢ denote the probability of
neighbouring nodes taking different values, and let N be the number of nodes in each

row and each column. Also, assume periodic boundary conditions, then the entropy

of 2D Ising(0.5, q) , H(s) is given by:

H(s) = lim NZ?h(s), (4.5)

N—>oo

where h(s), called the entropy density, is given by(with respect to In, instead of logs):

h(s) = In(2) + 8%/0 7r/0 " In[a® — b(cos(6,) + cos(6z))]d0,db,

127 2ab — a(cosfy + cosby)
do,do 4.
 4n? / / — b(costy + costy) ' (46)

where

_2¢°-29+1

4.7
1-2q
= 4.8
1. 1—¢q
= —In(—— 4.9
1= (=) (4.9)

We see that, once parameters a,b,J are determined for a given g, entropy density

may be calculated numerically. Finally, in order to convert the entropy to be in bits

46

(with respect to log,), we need to divide the entropy with respect to In by the factor
of In2.

In practice, when the size of the grid is relatively small, the gap between the true
entropy of the source and the limiting entropy can be significant. Therefore, Markov
Chain Monte Carlo(MCMC) simulation techniques|[20] are used to give approxima-
tions of the true source entropy. This approximated entropy is used as a more im-
portant benchmark for the compression performances. The following figure gives the
limiting entropy as well as the approximated entropies for Ising(0.5,q) sources of

lengths 100, (approximately) 1000, 10000, respectively:

1.2
1.1}
1
0.9 | e
= 10,8
Zz
E 07
Z 0.6 |
2
4 0.5
=04 |
0.3
—— Limiting Entropy
02] —4— Entropy 10 x 10
0.1 +Ei::;;§y12§ : ?30 ‘*we\
0 : - ‘ ; :
05 055 06 065 0.7 075 0.8 08 09 095 1

q

Figure 4-1: Entropy of Ising models of different sizes

4.2 Compression of Encrypted Data:

In this section, we will first propose the algorithm of compressing the encrypted data

and then argue that the theoretical performance of compressing an encrypted source

47

should be the same as that when no encryption is ever performed(in subsection 4.2.1).
In subsections 4.2.2 and 4.2.3, respectively, simulation results on both synthetic and
real world data will be given, followed by discussions on various aspects of the algo-

rithm.

4.2.1 An algorithm of compressing encrypted data and its per-

formance in theory:

Let s = {s1,...,8,} be the MRF source with joint distribution p(s). Moreover, let
k be the keyword and the source be encrypted to ciphertext k(s). Generally speak-
ing, some number of consecutive source symbols, say [, can form up a block and be
encrypted jointly, as if a larger character were encrypted and a larger alphabet were
used. Here, for demonstrative purposes, we will proceed as the source is encrypted
symbolwisely. In fact, it will become clear later under "on Symbolwise Encryption vs
Blockwise Encryption"(pg. 70-71), an overly large alphabet will significantly increase
the computational complexity of the algorithm. So a small I, for example | = 1,
corresponding to symbolwise encryption, is desirable. With [= 1, we will use k(s); to
denote the ciphertext for source node s;. Recall that, in section 2.3.1, we introduced
the compression architecture in which the source model needs to be made available
only at the decoder. Imagine, we now have both the source model p(s) and the key &
available at the decoder, then a new symbol translation pair, (with liberties taken in
notations), t;\(fiz as well as t;(f,)M, can be defined such that a symbol and the binary
representation of its ciphertext can be converted from one to another. Note that, the
translation pair is a function of the key k&, and thus k is used to parameterize the trans-
lation pairs. Accordingly, we can define the message translation pair: TII\EII?)Z (S —
R*) - (GF(2) » RY)® and T,™,, : (GF(2) = RH)E — (S — R™) that converts
between a message m™) over S and a B’-tuple of messages m® = m{® .. .m{

over GF(2), where B’ is the bit-length of each symbol’s ciphertext. Therefore, in

theory, our model-free compression structure, should see the problem of compressing

48

encrypted source data merely as an ordinary model-free compression problem, but
with a different message translation pair defined, so that the encoding and decoding(
joint decompressing and decryption) algorithms are essentially the same as the ones

described in section 2.3.

Essentially, at the decoder, during each iteration, the message sent to any source

M)

symbol s; from the code subgraph, m(c “-(s:) is obtained by message decryption fol-

lowed by conventional translation T5_,5; . The message sent from the graph subgraph
to each bit of the source nodes’ representational map, mgli,w(zi,w), is obtained by
conventional message translation Th,_,» followed by message encryption. The rest of

the decoding algorithm remains unchanged.

Moreover, since the encryption scheme must be a one to one mapping to qualify as a
valid encryption scheme, we have H(s) = H(k(s)) (for any given key k), from which
we see the limit of the compression performances should not be affected. Therefore,
in theory, the proposed algorithm should be able to compress an encrypted source as

well as it compresses the original, unencrypted source.

4.2.2 Simulation Results on Synthetic Data

In the following subsection, we will show the simulation results of compressing en-
crypted sources. The results will show that, with the only exception of compressing
one-time-pad encrypted data, there is always performance loss in compression when
an encryption is performed prior to the compression, compared to when no encryption
is performed. Note that, the source data in this subsection is synthetic data, which
means it is generated exactly according to the underlying model so there is no model-

data mismatch that would necessarily result in performance loss in compression.

For data sources, we consider binary sources and large-alphabet sources. We will

encrypt binary sources(binary Bernoulli i.i.d. sources, binary Markov chain of order

49

one, binary 2D Ising models, etc.) only with bitwise OTP and encrypt large-alphabet
sources with schemes that are more naturally defined over integers, i.e. large-alphabet
OTP, McEliece cryptosystems, RSA. Note that, when dealing with binary Bernoulli
and Markov sources, we could choose to treat it as large alphabet sources by binding
some number of bits, say b, together as an integer and encrypt each integer with
integer-based encryption schemes(e.g. McEliece, RSA, etc.). However, this is not re-
ally necessary since if a binary source is bitwise Bernoulli i.i.d. (resp. bitwise Markov
source of order 1) then the binded large-alphabet source is also symbol-wise i.i.d(resp.
symbol-wise Markov of order 1). Therefore, the above stated attempts will be incor-
porated later when we encrypt large-alphabet sources with integer-based encryption

schemes.

In each of the following simulations, let B be the bit-length of each source symbol
and n be the number of symbols in the source vector. Then for each given encoding
matrix H of size k x nB, its compression rate r¢,, is defined as 7eom = Tcode + Tdopes
where the coding rate, re4e = rank(H)/nB(which usually can be made to equal
Tnom = k/nB by selecting H such that rows are independent), and the doping rate
Tdope = (number of bits doped)/nB. Furthermore, we define the best achievable com-
pression performance, or the best compression performance as the lowest com-
pression rate re.m,, such that the encrypted source can be recovered losslessly(the
algorithm converges to the correct result in 500 iterations). Given H, the doping rate,
as well as which bits to dope, are tuning parameters that we can work on to optimize
the best compression performance. For each simulation result below, the doping rate
used will be specified. In the plots below, the best compression performances versus
(essentially) different source entropies, are provided. Unless otherwise specified, each

data point is obtained as the average over 20 trials.

(1)Binary Bernoulli i.i.d. Sources, Encrypted by OTP

Figure 4-2 describes the performance of compressing (OTP-encrypted and unen-

50

crypted) binary Bernoulli i.i.d sources of different values of p=Pr{s; = 0}, Vi. The

source length n = 1000 and 74, = 0.

Best Achievable Compression rate

0 2 —8— Source entropy
’ — Compression rate
0_ 1 —&— Compression rate of encrypted data

O .
0.5 055 06 065 0.7 075 08 08 09 09 1
p

Figure 4-2: Compression of OTP-Encrypted Binary Bernoulli Sources

Observations:
(a). The performance of compressing encrypted data is as good as that when no

encryption is performed.

(b). We also tried 74ope = 0.01 as well as 74,p = 0.1 but did not see visible differences
in their best compression performances(and thus those curves are omitted) and the
impact of different doping rates seems to determine only the rates of convergence—

the larger the doping rate is, the faster the algorithm converges.
(c). There is a gap between the best achievable compression rates and the entropy

rates. The gap is much larger in the high entropy(or high rate) regions than in the

low entropy(or low rate) regions.

o1

(2)Binary Markov Source, Encrypted by OTP

In Figure 4-3(doping rate=0) and Figure 4-4(doping rate=0.1), the horizontal axis
denotes psray = ¢:(0,0) = ¢i(1,1) = Pr{s; =0 | 8,1 =0}, 8 = {0,1}, Vi , in a
homogeneous binary Markov chain of order 1. For each doping rate, we tested source

lengths n = 1000 and n = 10000.

tg__\\
<
+—
2
g 1
=}
-—
w2
3
= 0.8t
3
8
S 0.6
—=
=
-
& 041}
:—E —8— source entropy
% —a— compression(n=1000)
0 2 | | —~— compression of encrypted data(n=1000)
’ —e— compression(n=10000)
compression of encrypted data(n=10000)

0 ‘) ‘)) ‘ A
05 055 06 065 07 07 08 08 09 095 1
pstay

Figure 4-3: Compression of OTP encrypted Binary Markov source, doping rate=0

Observations:
(a) For each doping rate and each source length, the performance of compressing
OTP-encrypted sources is the same the as that of compressing the same source with-

out encryption.

(b) For both doping rates, compression performances on the source of length n =
10000 are better than those when n = 1000. However, the differences are not sig-
nificant. We conjecture the performances of n = 10000 slightly outperform those of

n = 1000 since for a given 6, a longer portion of the Markov chain was in its station-

52

[<b)

)

<

-

g 13

Qo

.

w2

B

= 0.8}

=

8

0.6
—_—
=

z 04
:_g 0 —— source entropy \
% —a compression(n=1000)
0 2 —&— compression of encrypted data(n=1000)
' —t— compression(n=10000)
compression of encrypted data(n=10000)

" ‘ ‘
0.5 055 06 065 07 075 08 0.8 09 09 1

pstay

Figure 4-4: Compression of OTP encrypted Binary Markov source, doping rate=0.1

ary distribution when n = 10000. However, for all 8’s, it takes much fewer random
variables than even n = 1000 for two-state Markov chains to reach the stationary
distribution. Therefore, the differences in performances are expected to be small,

which is also found from the simulations.

(¢) rdope = 0.1 enables better performances than ry.,. = 0, although the improvement
is small relative to the gap between the best compression performances and the en-
tropy rates. Also, the proposed architecture again demonstrates its competitiveness

in low entropy regions, i.e. the region with large #’s.
(3)Binary Ising Model, Encrypted by OTP

Figures 4-5 and 4-6 show the best achievable compression rates of OTP-encrypted
Ising(0.5,q) sources of different sizes(10 x 10 and 100 x 100, respectively). The best
compression rates obtained under different doping rates are all compared with the

limiting entropy rates as well as the simulated source entropy of the corresponding

53

size. In all cases, best compression rates are the average of the best compression rates

of 50 trials.

—— entropy-infinity

1 .4 T —F— simulated entropy(10x10)

—a— compression of encrypted data(doping=0.05)
—a&— compression of encrypted data(doping=0.02)

—&— compression of encrypted data(doping=0.1)

1.2

0.8

0.6

achievable compression rate

0.4

0.2

0 | L ft I it o=
05 05 06 065 07 07 08 08 09 095

q

—

Figure 4-5: Compressing OTP-Encrypted 10 x 10 Ising Model

Observations:
(a) For both source sizes and all doping rates, compression performances are not
jeopardized by OTP (thus for simplicity, curves of compression of the original, unen-

crypted sources are omitted in Figure 4-5 and Figure 4-6).

o4

—F— Ising entropy in limit
—f— simulated entropy(100 x 100)
—&— compression of encryption source(doping=0.05)
i —— compression of encrypted source(doping=0.02)
1'2 % o - —¢— compression of encrypted source(doping=0.1)
17
Q
+—
v}
—
=
2
2 0.8
QL
-
=
Q
[
<L
= 06
jas]
>
Q
. —
=
o
<
0.4
0.2
0 . L I ! L
0.5 055 0.6 065 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 4-6: Compressing OTP-Encrypted 100 x 100 Ising Model

(b) For both source sizes, 74 = 0.05 enables better compression performances(of
OTP encrypted data) than rg,,. = 0.02. However, rgop. = 0.1 enables better per-
formances (for most entropy rates) than 74, = 0.05 only for the 100 x 100 Ising
source and the performance gap is more significant at high entropy region. On the
other hand, for the case of the 10 x 10 Ising source, compression performances un-
der r4ope = 0.1 are worse than those under 4. = 0.05, except for in the very high

entropy region, where a higher doping rate is needed intuitively. Based on the above

59

facts, we will refer to r4,,. = 0.02 as an insufficient doping rate for both 10 x 10
and 100 x 100 Ising sources, where an appropriate increase of the doping rate will
help the algorithm converge correctly and such positive effect outweighs the negative
effect that a higher r4,,. is added in when calculating 7com. Similarly, 74 = 0.05 is
insufficient for the 100 x 100 Ising source. However, for the 10 x 10 Ising source, from
the fact that even r40pe = 0.055 results in slightly worse compression performances
than r4op. = 0.05 does(the curve corresponding to r4.pe = 0.055 was not shown in Fig-
ure 4-5 since it is rather close to that of 7,4, = 0.05), we conclude that r..4e = 0.05
is sufficient for the 10 x 10 Ising source — the positive effect that an even higher
doping rate has on the algorithm converging correctly is outweighed by the negative
effect of a higher 74, being added, when computing 7., numerically. Therefore, if
we want to find the optimal doping rate for the 10 x 10 Ising source, we could start
with rgop. = 0.05 and gradually decrease the doping rate until it becomes insufficient
again. Likewise, we may find the optimal doping rate for the 100 x 100 Ising source

by gradually increasing the doping rate from 0.05 until it becomes sufficient.

(c) For a given doping rate, the 100 x 100 source has better compression performances
than the 10 x 10 source. Performance difference is larger in the high rate region than

in the low rate region.

(d) Also, it is worth noticing that there is a phase transition around q = /2/2, such
that long-range correlations are high above this threshold[19][37]. Significant com-
pression gains are achievable above this threshold, in the low rate region. However,
in those cases, the Ising source is in the ferromagnetic phase, and the Gibbs samples
of the source are likely to be trapped in a state with high probability and the Gibbs
sampling can take very long to reach other states. Therefore, the average (best achiev-
able) performance over 50 trials for each of those high q cases, likely represents only
the compression performances with respect to realizations of several highly probable

states.

56

Some General Remarks on OTP:

Before investigating the case of compressing encrypted large-alphabet sburces, we
make some general remarks on the effect of OTP on post-encryption compression
performances. In all cases above, we see that OTP does not jeopardize the com-
pression performances. This is just as expected— given the key, the encrypted source
is just another source of the same statistical structure, same length and same en-
tropy, therefore the algorithm merely sees a compressing encrypted source problem
as a compressing unencrypted source problem and the performance of compressing an
OTP(including generalized OTP) encrypted source is thus the same as compressing
the same source without encryption. Recall the description of Chapter 3, the main
problem with OTP is that it is not practical- the length of the key has to have the
same length as the source and be purely randomly generated, which is not feasible
in most real applications — therefore, in all simulations to follow, we won’t explicitly
show performance curves of OTP, but will instead focus on more practical schemes,

e.g. McEliece Cryptosystem and RSA.

(4). Large-alphabet Markov Source of order 1, Encrypted by RSA and
McEliece Cryptosystem

We now consider homogeneous irreducible aperiodic Markov chain of length n = 1000,
over GF(M), where M>2 is the size of the source alphabet. Namely, source s" =
{s1,..., 8} , with each element taking a value in alphabet A = {0,1,... ,(M — 1)}
and transitional densities, or second order statistics Pr{sx;1 = 0| sy = a} =
Pap, Vb =1,...(n — 1), where o, 8 € A. We here consider cases M = 16(a.k.a 4-bit

sources) and M = 256(a.k.a. 8-bit sources).

The expression of source entropy H(s) was given in section 4.1 and one of its vari-
ants, bitwise entropy, Hy(s) is defined as, Hy(s) = H(s)/[log,M]. Bitwise entropy

is particularly useful in our application since we can hope to compare compression

S7 .

performances over sources with alphabets of different sizes.

In simulations below, 4-bit and 8-bit Markov sources of length n = 1000 with different
bitwise entropies are symbolwisely encrypted by RSA and McEliece cryptosystems,
respectively, and the best compression rates are compared to those without encryp-
tion as well as the bitwise entropy of the source. In the descriptions of observations to
follow, "McEliece(resp. RSA) performance" of a certain source, refers to the compres-
sion performance of the source encrypted by McEliece(resp.RSA) and "no encryption

performances" refers to the performances of compressing the unencrypted sources.

1.4

1.2

0.8

0.6

0.4

Best Achievable compression rate

0.2

Figure 4-7: Compressing encrypted 4-bit Markov sources,doping=0.05

——

—_——
——

Bitwise Entropy

—&— compression(no encryption)

McEliece
RSA

01 02 03 04 05 0.6 0.7
Bitwise Entropy of the source

Observations:

(1). There is a visible gap between the McEliece performances and the no-encryption
performances. The gap is relatively small, compared to the inherent gap between the
no-encrypton performances and the source entropy, in the low rate region and gets

larger as entropy gets large. The gap between RSA performances and no-encryption

o8

0.8 09

1.4
2
g
= L2
=
7
O 1}
—
=
S 08|
o
L
® .
g 0.6
:_E
z 04
- f
e —— Bitwise Entropy
% 0 2 —&— compression(no encryption)
m ’ i McEliece

—— RSA
0 -~

0 0.1 02 03 04 05 06 07 08 09 1
Bitwise Entropy of the source

Figure 4-8: Compressing encrypted 4-bit Markov sources,doping—0.10

performances is larger than that between McEliece performances and no-encryption

performances.

(2). Source entropy and doping rate kept same, the no-encryption, McEliece and
RSA performances are slightly better for 8-bit sources than their counterparts for

4-bit sources.

(3). All other factors kept equal, 74, = 0.1 enables better compression performances
than rgepe = 0.05 for both 8-bit and 4-bit sources. Moreover, further investigations
show that rgep. = 0.1 is close to(all rates above rg.p. = 0.12 have been found empiri-
cally to be sufficient for both 8-bit and 4-bit sources) a sufficient doping rate for both

8-bit and 4-bit sources.

59

A
1.4
L
e
g
o 1.2
=
7
@ 1
=
S 0.8
B,
el
g 06
&
|
< 04
+2 —— Bitwise Entropy
% ——&— compression(no encryption)
jas 0'2 —— McEliece
—o— RSA
0

0 01 02 03 04 05 06 07 08 09 1
Bitwise Entropy of the source

Figure 4-9: Compressing encrypted 8-bit Markov sources,doping=0.05

4.2.3 Compressing Encrypted text files

In all simulations above, we have limited our attentions to synthetic data, where there
is no mismatch between the data and the underlying source model. Strictly speaking,
the Gibbs samples of the Ising model are only (very good) approximates, but they
can be treated as exact in this application. However, data from the real world usu-
ally do not come from such simple source models and therefore it’s usually hard to
implement the above algorithm with the exact model underlying the observed data.
Therefore, when using some simple source models to approximate the exact model,
some performance loss due to the model-data mismatch is expected. However, such
approximation is still desirable since it brings about the feasibility of some funda-
mental operations(compression, inference) that essentially relies on the simpleness of

source models.

One of the initial motivations of this research was to move toward practical compres-
sion of encrypted English text files. We will take in as inputs English files excerpted to

some fixed length that guarantees the computational feasibility. Using the language of

60

1.4
L
>
i
k.
b
7
D 17}
f—
3
S 08}
L
£
= 0.6
>
[«¥]
E
(]
<2 04
42 O Bitwise Entropy
% 0 2 —&— compression(no entropy)
m) —— McEliece

—— RSA
0 —

O 01 02 03 04 05 06 07 08 09 1
Bitwise Entropy of the source

Figure 4-10: Compressing encrypted 8-bit Markov sources,doping=0.10

the previous chapters, the potentials(node potentials, edge potentials, etc.) necessary
for the algorithm are taken from the publicly available zeroth, first and second-order
models for English[22]. Entropies derived from the first and second order models are
3.36 bits/character and 2.77 bits/character, respectively. In limit, Shannon has es-
timated the entropy rate of the 27-letter English text to be 2.3 bits/character|26].
As stated, compression performances are expected to be worse than those of the syn-
thetic data cases, since the Markov models of different orders are all approximations
of the English source. The higher the order of the Markov model is, the better the
approximation is, while at the same time, the higher the algorithm’s complexity is.

There is always a trade-off.

Now we describe the simulations to be conducted:

We categorize files to be encrypted-and-compressed into Group A and Group B.
Group A contains two files [23] [24] that are among the classical literatures based
on which the first and second order Markov models of English are developed. Group

B contains 10 random articles, chosen from the Oct.10th, 2015 Economist magazine.

61

Each file in each group is excerpted to have length(in characters) n=10000 and is
modified so that the cardinality of the alphabet=27(only lowercase letters as well as
the space are considered). Thus, the bit length of the source is 50000. The choice
of bit length aims at guaranteeing reasonable long file length while maintaining algo-

rithm’s computational feasibility.

Each file in each group is encrypted by McEliece and RSA, i.e. each file now has two
encrypted versions. Then, two best compression performances are obtained for each
encrypted version of each file: one assumes, at the decoder, that the source has the
first order Markov model and the other assumes that the source has the second order
Markov model. Note that, slight changes from equations (2.21) to (2.26) are needed
when second order Markov model is assumed. Namely, we need to modify those equa-
tions to incorporate the potentials defined over cliques of length 3. The performances
of each test(no encryption, McEliece, RSA) for the classical files(files 1 and 2)are
reported in Table 4.1 and Table 4.2. For simplicity, for articles in Economist, only

the average of the best compression rates, over the 10 articles, is reported in Table 4.3.

Moreover, we also generated two synthetic files according to the first and second order
Markov models of English, respectively. The same tests are conducted, with correct
source model assumed. Results are reported in Table 4.4. In all simulations men-

tioned above, rgope = 0.1 is used. All numbers in the tables are in the unit of bits.

In each of the four tables, we can see the effects of different encryption schemes on
post-encryption compression performances by comparing post-encryption compres-
sion performances corresponding to a certain encryption scheme with the "No en-
cryption performances". The row led by "1st order" (resp."2nd order") provides in-
formation on the presumed bitwise source entropy rate as well as the best-compression
performances of different tests, when the first order(resp. second order) Markov model

is assumed by the decoder.

Observations on the simulation results:

62

File 1 presumed bitwise entropy rate | No encryption | McEliece | RSA
1st order 0.672 0.922 >1 >1
2nd order 0.554 0.72 0.838 >1

Table 4.1: Compression of Classical File 1

File 2 presumed bitwise entropy rate | No encryption | McEliece | RSA
1st order 0.672 0.918 >1 >1
2nd order 0.554 0.742 0.855 >1

Table 4.2: Compression of Classical File 2

(a) The proposed architecture is not the most competitive on compressing English
files, which can be inferred from previous simulations on synthetic data, where we
found that the proposed architecture works particularly well in the low rate(low en-
tropy) region, but not that well in the high rate(high entropy) region. However,
according to the first (resp. second) order Markov models of English, the bitwise en-
tropy of the source is 0.672(resp. 0.554) bits, both of which are in the (medium-)high

rate region.

(b) From the best no encryption compression performances, there seems to be smaller
data-model mismatch in classical files than in Economist files, which is expected since
the classical files(File 1 and File 2) are among the ones from which the first and second
order Markov models of English are estimated. Moreover, from the fact that in each
table, a smaller gap between the compression performances and the source entropy
is achieved when second order Markov model is assumed at the decoder, than when
first order model is assumed, it is also verified that the second-order model is a better

approximate of the 27-letter English source than the first-order model.

(c) Same as the synthetic data case, McEliece cryptosystem, outperforms RSA in real
world data sources. We will discuss why they result in very different post-encryption

compression performances in section 4.3.1 and further in Chapter 5.

63

Economist | presumed bitwise entropy rate | No encryption | McEliece | RSA
1st order 0.672 0.969 >1 >1
2nd order 0.554 - 0.773 0.892 >1

Table 4.3: Compression of Encrypted Economist files

Synthetic Data | bitwise entropy rate | No encryption | McEliece | RSA
1st order 0.672 0.848 0.962 >1
2nd order 0.554 0.702 0.81 >1

Table 4.4: Compression of Encrypted Synthetic Markov Data for English

4.3 Discussions

4.3.1 Discussions on the results

From simulation results above, we see that the post-encryption compression perfor-
mances of McEliece and RSA were visibly worse than no-encryption compression
performances, with the former to be relatively better. Since McEliece and RSA are
practical encryption schemes, the results indicate that the McEliece cryptosystem
could be promising for our applications, at least in the low rate regions. We will
use this section to discuss why McEliece cryptosystems can outperform RSA in the

aforementioned application.
On Comparing RSA and McEliece Cryptosystems

Recall that we have stated earlier in section 2.3 that when dealing with large-alphabet
sources, the proposed algorithm of compressing encrypted data will incur no archi-
tectural loss at the message translation layer if and only if bits in a symbol’s binary
representation(in this specific application, bits in the binary representation of a sym-
bol’s ciphertext) are independent, if each bit in symbols’ binary representations is
seen as as a random variable, given the key for a certain encryption scheme. However,
the independence condition is often not satisfied. In fact, as long as the encryption

scheme encrypts a symbol to a longer integer(in the sense of bit length), then the

64

resulting binary representation of a symbol’s ciphertext cannot contain completely
independent bits. Therefore, to understand the role of a certain encryption scheme
in the post-encryption compression performances, we should investigate how close
the resulting binary representation of a symbol’s ciphertext is from an independent

binary sequence. We therefore design the following experiment:

Let alphabet A = {0,1,...,15}, with alphabet size M=16 and bit-length of the
source B=4. We assume equal priors among all symbols in the alphabet, i.e. m9 =
M = ...= T5 = %, so that we can see that the four bits in the binary representa-
tions of symbols are independent and each has equal marginals, i.e. p;(0) = p;(1) =
0.5,Vi = {1,2,3,4}, where ¢ refers to the index of the bit counting from the left in
source symbols’ binary representations. Now, we encrypt each character in the al-

phabet by McEliece cryptosystem and RSA, respectively, in the following manner:

McEliece Cryptosystem:
For a simpler demonstration, we will here use the McEliece cryptosystem based on

(7,4) Hamming code. Using notations in previous chapters:

o O O =
O O = O
o = O O
- o o o
e == R N
e =
— = = O

o o O =
o O = O
o = o O
e e =

65

(100000 0)
0010000
0100000
P=lo 000010
0001000
0000001
\0 00010 0

where we can see that S is invertible; G is the code generator matrix with a known,
fast decoding algorithm of a error-correcting code that can correct ¢ = 1 error; P is

a permutation matrix. Therefore (S, G, P) jointly form up a valid private key.

Thus, the public key G=

S O O =
o = O O
o O = O
—_— e = O
= e
[S e S
- o O O

Moreover, we randomly choose a weight 1 noise vector z = (1,0,0,0,0,0,0). There-
fore, each plaintext word m € {0,1}* will be encrypted as ¢ = mG + z, where all
sums involved are in the sense of modulo 2. Table 4.5 lists all words of length 4 and

their ciphertexts.

We can see, given all 16 symbols in the plaintexts having uniform priors, each of the
seven bits in the binary translation for ciphertexts has equal densities for 0 and 1.
Moreover each combination of two, three or four bits are still independent. The proof

is trivial and is omitted here.

We also have done several similar simulations using other valid priviate keys (S, G, P)
and z and find the above property to be true in all cases encountered. Though rigor-
ous proof that generalizes to all valid (S, G, P) and z may not be simple, we conjecture

that the above property can be generalized to general McEliece cryptosystems based

66

character | binary translation | binary translation for ciphertexts
0 0000 1000000
1 0001 1001111
2 0010 1101010
3 0011 1100101
4 0100 1011100
5 0101 1010011
6 0110 1110110
7 0111 1111001
8 1000 0000110
9 1001 0001001
10 1010 0101100
11 1011 0100011
12 1100 0011010
13 1101 0010101
14 1110 0110000
15 1111 0111111

Table 4.5: (4,7) McEliece Encryption

on Hamming codes.

RSA:

Now, let’s see a comparative example of RSA. The choices of parameters in the follow-
ing example are all valid according to Chapter 3, though they may not be practically
desirable for the considerations of security due to their small sizes— they are used
here only for demonstrative purposes. We will use RSA to encrypt four-bit symbols
to seven-bit symbols, same as the case of McEliece cryptosystem, and see how close
to an independent sequence the encrypted binary sequence is. From there, we may
discover why the McEliece cryptosystem may have outperformed the RSA in post-
encrypting compression performances. Specifically, using one set of the parameters

in the simulation as an example:

(i) Take two distinct primes of similar bit lengths, p = 11,¢ = 13. Thus, n = pg = 143
and ¢(n) = ¢(p)d(q) =n — (p+¢— 1) = 120.

67

(ii) Now we choose e, as part of the public key, such that ged(e, ¢(n)) = 1. We here
choose e = 7. Thus, the public key, pbk=(n,e)=(143,7). Note that the choice of e
is not unique and in practice, the smaller e is typically chosen, among all valid ones,

the one in favor of computational simplicity.

(iii) Now we determine d, such that 1 < d < ¢(n), as the multiplicative inverse of
e, with respect to ¢(n), i.e. de = 1(mod ¢(n)). It can be found that d=103. The
private key is thus determined as prk=(¢(n), d)=(120, 103).

Recall in Chapter 3, the encrypting algorithm of RSA first converts each plaintext
symbol M into an integer m, such that 0 < m < n and ged(m,n) = 1. The ne-
cessity of such conversion comes from the fact that it’s very likely that some of the
plaintext symbols(i.e. M’s) are not themselves co-prime with n. For each M, the
choice of m is otherwise random(as long as all M’s are converted to different m’s)
and there was no empirical indication in previous simulations that the choice of m
for each character M matters significantly to the compression performances. Table

4.6 gives the ciphertext(in decimal and binary forms)for each integer M € {0, ... ,15}.

We observe that the second and third bits(from the left), denoted as b and b3, re-
spectively, satisfy:

3
Poo = E,Pm =6 (4.10)
1 1
Py = Z,Pu =7 (4.11)
Pr{b, = 0} = Pr{b, = 1} = % | (4.12)
Pr{bs = 0} = Tgé —1—Pr{bs = 1}, (4.13)

Where P;; denotes Pr{bs =i,b3 = j} , for ¢, 5 € {0, 1}.

68

character M | m | ciphertext=m®(mod n) | binary representation of ciphertext
0 1 1 0000001
1 3 42 0101010
2 4 82 1010010
3 5 47 0101111
4 6 85 1010101
5 7 6 0000110
6 8 57 0111001
7 9 48 0110000
8 10 10 0001010
9 12 12 0001100
10 14 53 0110101
11 15 115 1110011
12 16 3 0000011
13 17 30 0011110
14 19 46 0101110
15 21 109 1101101

Table 4.6: (4,7) RSA Encryption

Thus, Pyy # Pr{bs = 0}Pr{bs = 0} , from which we conclude that b, and b3 are no
longer independent. Similar pairwise dependent relations can be found over many

pairs within the seven bits in the ciphertext.

Moreover, let’s see which encryption scheme results in 7-bit binary representations
of the symbols’ ciphertexts that are closer(in distribution) to independent sequences.
Assuming symbols in the alphabet have uniform priors, i.e. 7(0) = n(1) = ... =
w(15) = 1/16. Let pyg and pg denote the joint distribution of the output 7-bit se-
quences of McEliece and RSA, respectively. Furthermore, use quyg, qgr, respectively
to denote the joint distribution of 7 independent bits, each has marginals accord-
ing to Table 4.5 and 4.6. We compare KL divergences Dk (pye||lame) as well as
Dk r.(prllgr) to measure which encryption scheme will result in an output sequence
whose joint distribution is closer to a 7-bit independent binary sequence. Recall that,
there would be no architectural loss, if the output sequence had joint density gy or

qr, repsectively.

69

There are only 16(out of a total of 2" = 128) codewords z € {0, 1}7 with pye(z) =
1/16 # 0. Moreover, since qyp(z) = 1/27, for all x € {0,1}7, and each bit in the

ciphertext of McEliece cryptosystem has equal marginals over 0 and 1. Thus,

Dica(pusllans) = 16 clogy(1/16)/(1/27) =3

For the case of RSA, for the codewords y’s with nonzero pg(y), we still have pr(y) =
1/16, but for those y’s, qr(y) # 1/27. Instead, from Table 4.6, the marginals of each
bit and ggr(y) for each y can thus be calculated, with the assumption of those 7 bits

are independent. After some tedious calculations, we find,

Dg1(prllgr) = 3.432 > 3 = Dk r(pmellamE)

Moreover, ten different sets of parameters(including the set above) of RSA (all map-
ping 4-bit plaintexts to 7-bit ciphertexts) give an average Dk (pr||gr) = 3.64, which
indicates that the binary representation of the ciphertext of McEliece cryptosystem
is "closer" to an independent sequence than that of RSA. Therefore, the loss-free
assumption is a worse one for RSA than for the McEliece cryptosystem and a larger
performance loss should be expected for RSA. The above arguments offer one ex-
planation on why the post-encryption compression performances are worse for RSA
than McEliece cryptosystem. Later in Chapter 5, we will offer another perspective
on the same issue and will subsequently argue these two perspectives are essentially

consistent with each other.

On Symbolwise Encryption vs Blockwise Encryption

In all simulations of compressing encrypted large-alpahabet sources above, we en-
crypted the source symbolwisely — namely, each symbol in the large alphabet source
is encrypted individually by the same encryption scheme with the same key. This
makes the cipher easy to break. We could instead attempt to bind a number of sym-
bols, say [, together as a block, and treat symbols in each block as a larger integer.

Then, the new source will be the same kind, but with a larger alphabet. For exam-

70

ple, if the source is generated as a 4-bit Markov source of order 1, but we choose to
bind [= 2 symbols together as an 8-bit integer. Then the source becomes an 8-bit
Markov source of order 1, with the transitional densities determined by those of the
4-bit sources. Therefore, the efforts of binding two 4-bit symbols and then encrypt-
ing the 8-bit symbols, have been incorporated in the attempts of compressing 8-bit
Markov sources, where the best compression rates achievable, under different source
entropies, have been provided. As can be seen from the previous simulations, there
is slight performance improvements when compressing encrypted 8-bit sources, over
compressing encrypted 4-bit sources, therefore, binding the symbols could potentially
improve post-encryption compression performances. However, the complexity of the
algorithm when encrypting over a larger alphabet is much higher than that when
encrypting over a smaller alphabet. This can be seen from the fact that to implement
the algorithm, there must be a translation table defined, which maps each symbol in
the alphabet to its ciphertext(in binary form), based upon which message translations
between layers are defined. The size of the translation table, which is bottlenecks the
simplicty of the algorithm, increases geometrically with block length [. Therefore,
if we were to bind a large number of symbols together for encryption, the (slight)
advantage of post-encryption compression performances is significantly outweighed
by the disadvantage of exploding complexity of the algorithm. Therefore, we have

adopted the symbolwise encryption scheme.

Moreover, since the proposed algorithm essentially relies on messages passed itera-
tively between layers. Similar to message passing algorithms, good decoding perfor-
mances will benefit greatly from the absence of short loops in the code subgraph,
which is determined by the encoding matrix H. We will use the next subsection to
describe the general methodology in finding such good encoding matrix H — the Pro-

gressive Edge Growth Algorithms.

71 -

4.3.2 On finding the (sub-)optimal encoding matrix H

Given the nominal compression rate and the (bitwise) length of the source, there are
many possible constructions of parity check matrix H that can be used as encoding
matrices. In general, to achieve the best compression performance, the Progressive
Edge Growth(PEG)-construction [27][28] should be used. In this section, we will
provide a brief introduction of the PEG algorithm.

Progressive Edge Growth Construction

In graph theory, girth refers to the length of the shortest cycle in a graph. For each
symbol node(a.k.a source node) in the graph, a local girth can be defined as the
length of the shortest cycle passing through that symbol node. Apparently, the girth
of the graph is the smallest among all local girths. Since belief propagation algo-
rithms generally work better if short cycles can be avoided, therefore constructing a
Tanner graph with large girth is more than desirable for our application. Though
constructing a Tanner graph of the given size with the largest possible girth is a
rather difficult combinatorial problem, a sub-optimum algorithm to construct a Tan-
ner graph with a relatively large girth is simple and feasible. PEG algorithm, where
edges are constructed one by one such that local girth of each symbol node is maxi-
mized. Moreover, given the degree of each source node and the size of the matrix as
inputs of the algorithm, the placement of each new edge is expected to have as small
impact on the (graph) girth as possible. The fundamental idea is, for each source
node, we attempt to find the most distant check node and then to place a new edge

between the source node and this most distant check node.

Specifically, we construct edges for each source node sequentially. For source node s;,
when searching for the most distant check node to s;, we need to generate the current
subgraph from s;. After we travel the subgraph down for depth [, denote N, ij as the

set of check nodes included. Finally, two situations can occur:

72

(1). N! stops increasing and there are still some check nodes not included.

8

(2). N, ;j includes all check nodes but NV, é;l does not.

Situation (1) usually occurs when the algorithm is in its early phase. The algorithm
will choose one of the check nodes that are not currently reachable from s; and create
an edge between them. Under situation (2), all check nodes are reachable from s;
and the algorithm essentially chobses a check node from those that are not included
in Nslj‘1 but are included in Nij, since these check nodes are the ones at the largest
distance from s;. When there are multiple check nodes in the above-stated set of can-
didates check nodes, we choose among them the one that has the smallest number of
edges in the current graph setting. Furthermore, if there are more than one candidate
check nodes that share the smallest number of edges, we can randomly choose one
of them. The detailed algorithm can be found in [27] [28|and many other textbooks
and is omitted here. In general, PEG algorithm generatés a matrix with check node
degree as regular as possible, which avoids overly large degrees on some of the check
nodes, since strongly uneven degree distributions over check nodes have been shown

empirically to worsen the performance of BP.

To generate an m x n binary PEG matrix H, in the worst case, the computational
complexity and storage requirements scale as O(mn) and O(n), respectively. It out-
performs Gallager’s explicit construction for parity-check matrices corresponding to
large girth graphs, which both of the computational complexity and the storage re-

quirements, scale, in the best case, with O(n?).

The following theorem provides a lower bound of the girth of the graph corresponds

to the PEG-generated low-density parity-check k& x n matrix H:

Let (V, E) be an (in general) irregular Tanner graph in which d7*** and d™**, respec-
tively, are the largest degrees of the degree sequences D,, and of the sequence of check

node degrees and D, the sequence of source node degrees. Then the girth g of this

73

graph is lower-bounded by
g > 2(l_tlowJ + 2)7 (414)

where t;,,, is given by

log(kdme® — M2 | 41)
fow = Togl(dre —1)(dges — 1))

(4.15)

which can be proved to outperform Gallager’s construction with respect to large girth

in the generated graph.

To give an idea of what the lower bound looks like, assuming we stick to the case of:
n = 2k, with ds; = 3 for all source nodes s;, d., = 6 for all check nodes z,, which
constitutes a regular (ds,d.) = (3,6) PEG matrix. We wish to see how the girth

changes with the number of check nodes k:

since o, = log(6k — 2k —k+1)/log[(3 — 1)(6 — 1)] = log(3k+ 1) /logl0 = log(3k + 1),
where the log is of base 10. Therefore,

9 2 2([tiow] +2) = 2([log(3k + 1)] +2), (4.16)

In our applications of interest, k has the order of 102 or 10, and we find from Figure
4-10 that PEG provides Tanner graphs of girth at least 8, which is in general satis-

factory for our purposes of applications.

With the size of the matrix given, the tuning parameters for the PEG algorithm are
the degree distributions of the source symbols. Given the average degree of the all
source symbols, there are many possibilities of source degree distributions, each of
which corresponds to a different version of PEG matrix and may result in different
girth in the graph and finally different compression performances. There is no good
theoretical results on the properties of the best source degree distributions, though

PEG is known to be able to provide H good enough for our purposes of simulations.

74

10 i T — - 1 T R o o e e
[—*—Iower bound of gitth

95|

lower bound of PEG Tanner Graph girth

65

6 Lo

1 1 1 1 1 1 1 1 1
0 "~ 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
number of check nodes

Figure 4-11: Girth of PEG Tanner Graph

On the gap between compression performances and source entropy rates

We note that, for all sources(see Figures 4-2 to 4-10), even including binary sources,
where there is no architectural loss inherent in the algorithm, there is still a visi-
ble gap between the best compression rates achievable and the source entropy rates.
According to [7],.the gap does not result from any architectural loss but instead pri-
marily from the non-optimal code selection. The loss could be reduced, however,
only empirically. Assuming idealized, perfect code is used, the best compression rate

achievable is referred to as the BP decoding threshold, denoted as eBF

, in the sense
that should the compression rate be below ¢BF, the BP algorithm will be sure to
fail to converge to the correct result. There are literatures [29] that discover results
of some good code selections to enable the best compression rate to approach e®F.

However, since the major objective of this thesis was on the feasibility of compress-

ing the encrypted data and the properties of encryption schemes, or more generally,

75

properties of data-processing techiniques, that could potentially enable such good
post-encryption(post-processing) compression performances, we are generally satis-

fied with any of the suboptimal H’s generated by the PEG algorithms.

4.3.3 On optimal choice of doping

As briefly described before, some bits have to be doped so that the decoder can have
some deterministic beliefs, on which the BP algorithm essentially relies for successful
decoding. Without these deterministic beliefs, BP algorithms will likely lack the dy-
namics to converge to the correct solutions. Since doping will release the information,

we are of course only interested in cases where only a small proportion(say, no more

than 10%) of the bits need to be doped.

Given the number of bits to be doped as well as the encoding matrix H, the choice of
which bits to dope can be optimized empirically in order to achieve the best possible
compression performances. Some level of such efforts has been incorporated in all
simulations in this chapter. In general, a closed-form, generalized optimal strategy
on choosing the doping bits is intractable but there are some general guidelines one

can follow in finding the best choices of doping:

(1) For compressing encrypted large-alphabet sources, it is better to dope all bits of
a subset of symbols(or equivalently, to "dope some symbols") than to randomly dope
the same number of bits. The reason behind it is simple — the fact that a subset of
symbols are doped helps with some reliable symbol-level macro-structures being
repetitively injected into the inference by the iterative nature of the decoding, which
we believe has contributed to reducing the loss incurred at the message-translation

layer.

(2) For compressing encrypted i.i.d. Bernoulli sources as well as Markov sources of

order 1, large number of simulations indicate the manner of doping does not play a

76

visible role in the compression performances, so purely random doping is satisfactory.
For Ising models, we believe it is desirable to avoid any un-doped bit to be adjacent
with two or more doped bits. We are not able to analytically prove this observation

but have firms believe this is true.

4.3.4 On Compression based on non-binary LDPC codes

During the course of this project, we have attempted to adapt the architecture into
one based on non-binary LDPC codes so that no message translation is needed and the
performance loss associated with the translation layer may thus be avoided. However,
[30] states that the classical Belief Propagation algorithm over GF(q) has a compu-
tational complexity of O(q?) and can be transferred into frequency domain, which
scales down the complexity to O(qlog,q). Therefore, in our application, if non-binary
LDPC based compression is used, computational feasibility requires ciphertexts being
kept extremely small, (since q has to be small), which is impossible for most real-life
encryption schemes. Therefore, in this thesis, we have concentrated our attentions

only to the architecture based on binary LDPC codes.

77

78

Chapter 5

Further Discussions

In Chapter 4, we showed simulation results of compressing encrypted data. In this
chapter, we will further our discussion in Chapter 4 by noticing that encryption
schemes can be seen as a special class of data processing techniques, where the plain-
texts are processed by the encryption block in the system. In fact, in some other
applications, source data needs to be processed in some way before it is compressed
and transmitted and given a specific data processing operation, it is important to see
whether a good compression performance is possible after such an operation. In this
Chapter, we will focus on a subset of operations— linear operations and investigate
what properties that a (linear) operation should have in order to enable good post-
processing compression performances and argue that these properties are essentially

in consistent with the analysis in Chapter 4.

5.1 Bit-level Sparsity of Linear Operations

In Chapter 4, an encryption operation can be seen as a block of source symbols,
whose serialized binary representations are concatenated to form up bit sequence b
of length B, are mapped into a bit sequence n, of bit length N, by some operation
T:{0,1}2 — {0,1}". If T is constrained to be seen as a linear mapping, then

depending on the specific functionality of the encryption scheme, this mapping, as

79

will be shown later, may depend on the input, which we will denote as T}, and refer to
as an imhomogeneous linear operation. If T is not a function of input b, then we call
such linear mapping homogeneous. Note that, in this chapter, homogeneousness is
with respect to bit-level operations and should not be confused with that with respect
to integer operations. In fact, all integer-based encrytion schemes must be homoge-
neous with respect to interger operations to be valid, but some of them may not be
homogeneous in terms of bit-level operations. Moreover, for simplicity, in all descrip-
tions to follow, "operations(resp. mappings)" mean "linear operations(resp.

mappings)".

For a general mapping T : {0,1}? — {0, 1}V, with abuse of notation, we borrow the
concepts in encrytion schemes and refer to {0,1}? as the plaintext and {0,1}" as
the ciphertext. In additional, we define A = (A;, ..., AB) as the degree distribution
of each bit in the plaintext. Namely,); is the ﬁumber of bits in the ciphertext that
b; is incident to in the graph associated with mapping T. Finally, define the bit-level
density of operation T, den(T), as den(T):—Z—gﬁ.

Apparently, McEliece cryptostems, defined based on binary linear error-correcting
codes, is homogeneous — given the public key G , all possible plaintexts are mapped
to the ciphertext, in the same way. This is also the case for all code-based cryp-
tosystems. However, given the public keys, pbk=(n,e), RSA is inhomogeneous. We
emphasize that any quantitative analysis of the compression performances of data ei-
ther encrypted by RSA, or processed by any mapping that is not bitwise homogeneous
from the persepective of their bit-wise sparsity, might not be completely scientifically

sound, but some qualitative conclusions can be drawn nonethelessly.

Analysis on effects of Operation Density on Post-Operation Compression

Performances for Homogeneous Operations

First, for data processing operations that are homogeneous, it is worth seeing what

80

role the density of an operation plays in post-processing compression performances,
since intuitively, given the encoding matrix H fixed, the more dense the pre-compression
operation is, the more short loops may be created in the combined graph, which wors-
ens the performances of loopy belief propagations. Ideally, joint optimization could
be done over T and H, such that the number of short loops are minimized. However,
in practice, we usually don’t enjoy such degree of freedom— either T or H is fixed,
or at least confined within a small subset, (for example, H is constructed by some
sub-optimal algorithm, such as Progressive Edge Growth algorithm). Therefore, we
aim at achieving some sub-optimal joint design— given LDPC parity-check matrix H,
which is sub-optimal in its own right, we attempt to understand the role that den(T)
makes in the post-processing compression performances and then identify the prop-

erties that operations should have for good post-processing compression performances.

We design the following simulations:

Simulations:

1. Definitions of Two Groups of Operations.

We define two groups, A and B, both of which include matrices that resemble encryp-
tion blocks. In Group A, we define qum) (3 < m < 6)as the code generating matrix
for (2™ —1,2™ —m — 1) Hamming code, which has the size of (2™ —m —1) x (2™ —1).
Note that, ng) will have 2™ — m — 1 columns of weight 1 and m columns of weight
2m=1 _ 1. We denote G{” = [I P]; where I is the (2™ —m — 1) x (2™ —m — 1)
identity matrix and P is (2™ —m — 1) X m, where each column has weight 2™~ — 1.

Apparently, the mappings defined in Group A are all one-to-one.

With each ng) defined, define its counterpart in Group B, ng) (for 3 < m < 6) as:
ng) = [H,, P*], where H,, is of the size (2™ —m — 1) x (2™ —m — 1), and row i of
ng) is obtained by the modulo 2 sum of row i to row 2™ —m — 1 of qum). Therefore,
we see that H,, is upper diagonal and thus rows of Gggm) remain independent. More-
over, Row(ng)) = Row(qum)), where we use Row(A) to denote the row space of the

operation defined by matrix A, since row space is preserved under elementary row

81

operations. Therefore, the set of ciphertexts remains the same and thus the mapping

defined by ng) is also one-to-one.

To demonstrate, let’s see the toy examples, fo) and Gg’):

1000110 1111111
100101 0111001

GY= ,GY= ,
0010011 0011100
0001111 0001111

To calculate the density of operation den(Gg")), we need to calculate the number of
ones in P*. Since P is fixed for a given m, so is P*. There might not be generic results
on the number of 1’s in P*, as a function of m, but empirical results show that there
is, at the very most, a rather mild decrease on the number of 1’s in P*, compared to
that in P. At the same time, as m gets larger, even just from m = 3 to m = 6, we
can see the proportion of the number of columns in P(and in P*) takes in the total
number of columns, m /(2™ — 1), is rapidly vanishing and the impact of the potential
disparity between the number of 1’s in P* and that in P, has a rather small impact
in the density of the operation. Therefore, we would hereafter make the assumption

that the number of 1’s in P* equals that in P for simplicity.

Therefore, the number of 1’s in ng), equals, (1+2m_m_12)'(2m_m_1) +m-(2m 1 —-1)=

(2m_m)(§m_m_1) +m - (2™ ! — 1). Therefore, By definition,

2" —m—1)-14+m- (2™ -1) m- (2™l —1)
den(G§) = ¢ = 1
en(G47) 2m —m -1 b+ 2m —m—1 "' (5.1)
@r-m)@2m-—m-1) m—1 —1
m +me@mi=1) omo em1 -1
den(GSB) = s m - () _2m-m L m () (5.2)

2m —m —1 2 2m —m—1 "

As m gets large, we plot den(G&m)) and den(Gg")), versus m. Note that in Figure

5-1, only the points at integers m carry physical significance. However, we present

82

continuous plots simply for a better demonstration of increasing rates of the density

of operations with the increase of m.

35
a1 ~o—den(GY) »
~—den(G™) //'
2%
s 21 /
%)
(o /
(@] /‘
S 16 A
>) -
3 e
= A
< 11 e
&
6 3
¥ —é—eﬁ}—x__—%
o
1.
3 4 5 6
m

Figure 5-1: density of Group A and B matrices versus m

We can see the gap between den(ng)) and den(G;m)), den(G%ﬂ')) - den(Gg")) =

2m—m—2
2

, which roughly doubles for each increment of m.

2. Post-operation Compression Performances vs Density of Operations.

In part 1, we showed that for each m, den(qum)) and den(ng)) will genenate the
same set of outputs(or ciphertexts), with den(GE‘lm)) being a more sparse operation
while den(Gg”)) being a more dense operation. We now compare post-operation
compression performances of the two groups of operations to see how post-operation

compression performances may vary with the density of processing operations.

Let the source s = {s1,...,s,} be 4-bit Markov source of order 1 with source length

33

n=1000. Source alphabet is thus A = {0,1,... ,15}. Doping rate, 74ope = 0.1.

For a given m, we use I(m) to denote the processing block length, i.e., the maximum
number of source symbols whose concatenated binary reprsentations are jointly pro-
cessed by den(G;m)) (or den(Gme))). Therefore, [(m) = [(2™ — m — 1)/4] and the
remaining (2™ — m — 1) — 4 - [(m) positions in each block are filled up with some
random bits, whose impact, already diminishing with the increase of m, can be com-
pletely eliminated by doping those bits in the compression process. For example, if
m = 4, then each processing block consists of the concatenated binary representa-
tion of I(4) = [(2* — 4 — 1)/4] = 2 symbols, followed by three random bits. Each
block is then processed by den(Gxn)) and den(G%n)), respectively, and the processed
sequences are then compressed by progressive edge growth generated matrix H of the
correct sizes. As usual, the best compression performances achievable, corresponding

to den(Gf;")) and den(Gg")) are provided in Figure 5-2 and Figure 5-3, respectively.

Observations and Comments:
1. All operations have negative effects of different extents on compression perfor-
mances, as can be seen from the comparison between no-processing compression per-

formances and the compression performances after any operations stated above.

2. We see that within each group (Group A or Group B), compression performance
gets worse as m increases. There is only very mild loss in performance within group
Gf‘lm), as m increases. However, there is much more visible compression loss within
group Gg”), as m increases. This is consistent with the fact that den(G&m)) increases

with m mildly while den(ng)) increases with m more drastically.

3. We notice that, the post-operation compression performances satisfy:

per(GY) > per(GY) > per(GY) > per(GY) > per(GY), (5.3)

84

14 |
1.3 ¢
g
1.2 1
I
PR |
-
5 09}
2,
g
= 0.8}
a
7 07
8 06|
=
© 05
. —— Bitwise Source Entropy
—— compression(no processing)
0.4 - ey
A
, 3
0.3 . G%;
4
0.2 | G,
—— G’f)
: S (6)
0. ¢
0 >

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
bitwise entropy of the source

Figure 5-2: Operation Density on Compression Performance— Markov sourceS(G'f:l))

and

per(GP) > per(GY) > per(GY)) > per(G'Y), (5.4)

where per(A;) > per(/A;) refers to the best achievable compression rates of the
source processed by operation /\; are (almost) always smaller(a.k.a. the compression
performances are always better) than those when the same source is processed by
As. Note that, the last inequality in (5.3) is not strict— there are several sample
points(under several source entropies) where per(Gg')) enables better performances

than per(Gf))(see the green curve and the purple curve representing performances

85

1.4
1.3 7
1.2
1.1 1
5 1
=
5 09 ¢
(@
g
5 0.8
=
207 |
2 06
=
© 05| —
. —— Bitwise Source Entropy
4 —— compression(no processing)
0. 4 G(3)
B
0.3 ¢ B Gg)
0.2 e Gy
— GE?)
0.1} Ggs)
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
bitwise entropy of the source

Figure 5-3: Operation Density on Compression Performance- Markov sources(ng))

of G(BS) and G(ﬁ), respectively, in both Figure 5-2 and 5-3), though at more sample
points, per(fo)) enables better compression performances than per(G(Ba)) so that we
still claim the last inequality as in (5.3). Note that, (5.3) is again consistent with
the fact that, den(G¥) < den(G}) < den(GEf)) < den(GY) < den(GY), with the
gap for the last inequality being extremely small. We may conclude that for a ho-
mogeneous operation, its density is the most important factor in the post-operation
compression performances. However, when two operations have densities that are

sufficiently close to each other, other factors, for example, the compatibility of the

86

specific form of an operation with the encoding matrix H, may play the most impor-
tant role determining which operation will enable better post-operation compression

performances.

5.2 Some further discussions on the performance of

RSA

Recall simulation results in Chapter 4, where we see RSA-performances are inferior
to McEliece-performances. However, since the bit-level (linear) operation underlying
RSA is not homogeneous, it may not be scientifically strict to use the analysis in
section 5.1. However, we may informally use the next toy example to demonstrate
that, should we use the similar analysis of section 5.1 for RSA, we would find each
output bit depends on each input bit within an encryption block, which is consistent

with the inferior post-encryption compression performances of RSA.
Simulations:

We continue using the public key that we have used in Chapter 4, pbk=(n,e)=(143,7),
for the RSA encrypting algorithm, and get the following plaintext-ciphertext map-
ping(Table 5-1):

Denote the plaintext as p = [p; p2 p3 p4], and the ciphertext as ¢ = [¢; ¢2 ¢35 ¢4 ¢5 ¢ C7].

Furthermore, use p.; to denote all other bits in p, except for p;.

To determine whether p; is dependent with c;, we can do the following: fix a combi-
nation for p.;, and see whether in any of those combinations, a flip of p; will results
in a flip of ¢;. If for each possible 2° = 8 combinations of p.;, a flip of p; does not

result in a flip of ¢;, then we conclude that p; and c; are independent. Otherwise, we

87

binary representation of character M | ciphertext | binary representation of ciphertext
0000 1 0000001
0001 42 0101010
0010 82 1010010
0011 47 0101111
0100 85 1010101
0101 6 0000110
0110 a7 0111001
0111 48 0110000
1000 10 0001010
1001 , 12 0001100
1010 53 0110101
1011 115 1110011
1100 3 0000011
1101 30 0011110
1110 46 0101110
1111 109 1101101

Table 5.1: (4,7) RSA-Encryption Mappings

conclude they are dependent.

By the above test, we can conclude that (p;, c;) are dependent, for Vi € {1,2,3,4},Vj €
{1,...7}. Similar tests have also been conducted for a larger public key pbk=(n,e),
where n = pqg = 61 x 53 = 3233 and e = 17. This will typically map a plaintext of
length 6 to a ciphertext of length 12 and we can draw from the simulation results the
same conclusion — within each encryption block of RSA, each bit of the ciphertext

depends on each bit of the plaintext.

Brief Justification on the Unification of Arguments from Chapters 4 and

5

Finally, we argue that the argument we just provided is essentially consistent with
the one in Chapter 4. Recall that in Chapter 4, we argued that the algorithm looks
the problem of compressing encrypted data merely as an ordinary compression prob;

lem, with different symbol (and thus message) translations defined, depending on

88

the functionality of the encryption scheme as well as the key used. Inherent in the
algorithm, the independency among the bits in each symbol’s binary representation
is assumed for the algorithm to be completely lossless and we have seen that RSA
typically generates a binary sequence that is far from(in the sense of distance of dis-
tributions) independent and thus more performance loss should be expected for RSA
than for McEliece cryptosystem. This is in fact consistent with the argurhent we just
presented in Chapter 5: if an operation is dense, like in RSA, where each output bit is
dependent of each input bit within an encryption block, then it is readily imaginable
that the output sequence of RSA is far from an independent sequence. Therefore, the
arguments provided in Chapters 4 and 5 are in fact different perspectives of the same

story.

89

90

Chapter 6

Conclusions and Future Work

In this thesis, we took advantage of a model-free compression structure to develop
a practical algorithm to compress encrypted data. We argued that in theory, the
algorithm should work as well as if no encryption is performed. Moreover, simulation
results on encrypted synthetic and real world data were given. We also generalized
encryption schemes to data-processing techniques and presented tests to illustrate
the effects of sparsity of linear operations on the post-operation compression per-
formances. Moreover, two arguments on the reason why compression performances
are visibly different for RSA and McEliece system are provided in Chapters 4 and 5,

respectively. We also argued that these two arguments are consistent with each other.

Note that, the model-free compression architecture, on which our work is based, is
a lot more competitive when the source is in the low entropy regimes, which pre-
vents the performances of compressing practically encrypted English files, which has
medium-high entropy, from being extremely competitive. Moreover, text files need
to be compressed losslessly, which may be overly demanding to the system, given
the inevitable mismatch between real world text files and Markov models of En-
glish. However, many other signals in the real world are sparse in some domain and
can be smartly compressed without degradation can be noticed, or even if the loss
can be noticed, the loss does not outweigh the benefit of the significant reduction

of size of signals. For example, such lossy compressions are more common in com-

91

pressing multimedia signals, which may also need to be encrypted before they are
compressed. Therefore, we will suspect the architecture be more competitive in com-
pressing encrypted multimedia signals. This is one of the promising open problems
to be addressed. Some efforts so far on model-free lossy compression can be found in

[7](32].

Some other open problems of this research include:

1. A deeper understanding of the reason why in all simulations above, the proposed
algorithm is more competitive, i.e. the performance loss is smaller, in the low entropy
region than in the high entropy region.

2. A deeper understanding of the effects of pre-compression operations in the com-
pression performances. Most conclusions so far have been based on simulations results
and are verified by designed tests. More analytical arguments are still needed.

3. Designs of encryption schemes, tailored to lossless and lossy model-free compres-

sion architectures based on LDPC codes are needed.

92

Bibliography

[1] M. Johnson, P. Ishwar, V.Prabhakaran, D. Schonberg, K. Ramchandran, "On
Compressing Encrypted Data" IEEE Transactions on Signal Processing, vol. 52,
No.10, Oct. 2004.

[2] D. Schonberg, S. Draper, K. Ramchandran, "On Blind Compression of Encrypted
Correlated Data Approaching the Source Entropy Rate", Proceedings of Allerton,
2005.

[3] G. Blelloch,"Introduction to Data Compression", Jan 2013.

[4] C. Shannon,"A Mathematical Theory of Communication", Bell System Technical
Journal, vol 27: 379-423, Oct 1948.

[5] T. Cover, J. Thomas, Elements of Information Theory, Wiley, 2nd Edition,
ISBN:978-0-471-24195-9, July 2006.

[6] Y. Huang, G. Wornell, " A Class of Compression Systems with Model-free En-
coding", Information Theory and Applications Workshop, Feb. 2014.

[7] Y. Huang, "Model-Code Seperation Architectures for Compression Based on
Message-Passing", Ph.D. dissertation, Massachusetts Instititute of Technology,
2015.

[8] A. Ihler, J. Fisher, A. Willsky, "Loopy Belief Propagation: Convergence and
Effects of Message Errors", Journal of Machine Learning Research, vol 6, 905-

936, 2005.

93

[9] K. Murphy, Y. Weiss, M.Jordan,"Loopy Belief Propagation for Approximate In-
ference: An Empirical Study" Proceedings of the Fifteenth Conference on Uncer-

tainty in Artificial Intelligence,1999.

[10] K. Murphy, Machine Learning: a Probabilistic Perspective, The MIT Press, Aug.
2012.

[11] M. Wainwright, M. Jordan,"Graphical Models,Exponential Families and Vari-
~ational Inference", Foundations Trends in Machine Learning, vol.1, pp. 1-305,

2008.
[12] B. Cipra,"An Introduction to the Ising Model", Dec.1987.

[13] R. Gallager, "Low-density parity-check codes"IRE Transaction on Information
Theory, vol.8, no.1, pp.21-28,Jan 1962.

[14] W. Ryan, S. Lin, Channel Codes, classical and modern, Cambridge University
Press, Oct. 2009.

[15] R. Rivest, A. Shamir, L. Adleman, "A method for obtaining digital signatures
and public-key cryptosystems", Communications of the ACM, vol.21,no.2, pp.120-
126, 1978.

[16] A.Kak, "Public-Key Cryptography and the RSA Algorithm" , Lecture 12, Com-
puter and Network Security, April 22, 2015.

[17] R. McEliece, "A Public-Key Cryptosystem Based on Algebraic Coding Theory",
1978.

[18] S. Au, C. Eubanks-Turner, J. Everson, " The McEliece Cryptosystem", Sep.
2003.

[19] L. Onsager, "Crystal Statistics, I. A Two-Dimensional Model with An Order-
Disorder Transition" , Physics Review vol. 65, 117149, 1944.

[20] D. Mackay, "Introduction to Monte Carlo Methods", 1996.

94

[21] N. Wagner, The Laws of Cryptography with Java Code, June. 2003.

[22] Theory of Data Compression www.data-compression.com/english.shtml.
[23] C.Darwin, "Origin of Species", Nov. 1859.

[24] C. Bronte, "Jane Eyre", Oct. 1847.

[25] S. Johnson, "Introducing Low-Density Parity-Check Codes", ACoRN Spring
School, 2007.

[26] C. Shannon, " Prediction and Entropy of Printed English", Bell Systems Te-
chinical Journal, vol. 30, pp. 50-64, Jan. 1951.

[27] X.Hu, E. Eleftheriou, D.Arnold, "Regular and Irregular Progressive Edge-
Growth Tanner Graph" IEEE Transactions on Information Theory, VOL. 51,
No.1, Jan. 2005.

[28] D. Mackay, David Mackay’s Gallager Code Resources, Aug. 2008.

[29] T. Richardson, M. Shokrollahi, R. Urbanke, "Design of Capacity-approaching
irregular low-density parity-check codes", IEEE Transaction on Information The-

ory, vol.47, no.2, pp. 619-637,2001.

[30] V. Ganepola, R. Carrasco, I. Wassell, S. Goff, "Performance Study of Non-binary
LDPC Codes over GF(q)", Proceddings of CSNDSP08, pp.585-589, 2008.

[31] J. Martinez-Mateo, D. Elkouss, V. Martin, "Improved Construction of Irregular
Progressive Edge-Growth Tanner Graph", IEEE Communication Letters, Vol.14,
Issue 12, PP. 1155-1157, Oct 2010.

[32] Y.Huang and G.Wornell, "Seperation Architecture for Lossy Compression", Pro-
ceedings of IEEE Information Theory Workshop, April 2015.

[33] T. Berger, Rate Distortion Theory,:Mathematical Basis for Data Compression,
~ Prentice Hall, Oct. 1971.

95

[34] D.Koller, N.Friedman, Probabilistic Graphical Models—Principles and Techniques,
The MIT Press, July, 2009.

[35] B. Kaliski, " The Mathematics of the RSA Public-Key Cryptosystem", 2006.

[36] B.Potetz, T. Lee, "Efficient Belief Propagation for higher order cliques using

linear constraint nodes",Computer Science Department, May 2008.

[37] X. Zhang, "A Sampling Technique Based on LDPC Codes", Master of Science
Thesis, MIT, Feb 2015.

[38] H. Delfs, H. Knebl, Introduction to Cryptography, 2nd Edition, Springer, May
2007.

[39] F. Kschischang, B. Frey, H.Loeliger, "Factor Graphs and the Sum-Product Al-
gorithm", IEEE Transactions on Information Theory,vol.47, no.2., Feb. 2001.

96

