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Incremental Random Forest Classifiers in Spark
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Submitted to the Department of Electrical Engineering and Computer Science
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Master of Science in Computer Science and Engineering

Abstract

The random forest is a machine learning algorithm that has gained popularity due
to its resistance to noise, good performance, and training efficiency. Random forests
are typically constructed using a static dataset; to accommodate new data, random
forests are usually regrown. This thesis presents two main strategies for updating ran-
dom forests incrementally, rather than entirely rebuilding the forests. I implement
these two strategies-incrementally growing existing trees and replacing old trees-in
Spark Machine Learning(ML), a commonly used library for running ML algorithms
in Spark. My implementation draws from existing methods in online learning liter-
ature, but includes several novel refinements. I evaluate the two implementations,
as well as a variety of hybrid strategies, by recording their error rates and training
times on four different datasets. My benchmarks show that the optimal strategy for
incremental growth depends on the batch size and the presence of concept drift in
a data workload. I find that workloads with large batches should be classified using
a strategy that favors tree regrowth, while workloads with small batches should be
classified using a strategy that favors incremental growth of existing trees. Overall,
the system demonstrates significant efficiency gains when compared to the standard
method of regrowing the random forest.

Thesis Supervisor: Samuel Madden
Title: Professor, EECS
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Chapter 1

Introduction

Random forests are one of the most popular machine learning classifiers due to their

robustness to noisy data, accuracy, and ability to handle "big data" workloads. How-

ever, the downside to using random forests is that, given additional training data, the

random forest must be regrown from scratch. This work proposes several techniques

to update a random forest incrementally without fully rebuilding the classifier, as

well as insight into the performance and robustness of these techniques on different

workloads. Specifically, I explore incremental methods that are responsive to shifts in

overall data distribution. I develop a custom incremental random forest classifier and

provide a Scala API through which users can call incremental random forest methods.

1.1 Batched Workflows

The work in this thesis is designed to handle the use case in which new batches of

training data are constantly being added to a classifier. Such workloads are common

in analytics, where observations are continuously collected in log entries, as well as in

Internet of Things (IoT) networks, where extensive data collection takes place offline

and data is transmitted periodically. Existing machine learning tools retrain a model

on the entire dataset when new data is added. This entails reiterating over every

single data point in the dataset, even when the added batch has a minimal effect

on the resulting classifier. As such, incremental training in random forests should

13



drastically improve the performance of these classifiers on batched workloads. This

research seeks to implement and expose a Spark API that will allow data scientists

to add data to the random forest using one of several incremental strategies.

1.2 Random Forest Classifiers

Before describing the details of my approach, it is important to introduce the me-

chanics of random forest classifiers. At a high level, random forests are collections

of decision trees used for classification. Once grown, each decision tree classifies an

unlabeled point by casting a vote, and the random forest reports the label with the

most votes [11].

For this thesis, I used the Spark Machine Learning (ML) implementation of ran-

dom forest classifiers. Apache Spark is a scalable data processing system that provides

an engine for processing big data workloads. At its core is a structure called the re-

silient distributed dataset (RDD), which can be distributed over a cluster of machines

and is fault-tolerant. A series of libraries run on Spark and take advantage of its

cluster-computing capabilities. One such library is MLlib, which contains a wide ar-

ray of machine learning tools. In this research, I model my incremental random forest

classifier on the Spark random forest classifier, for the purposes of maintaining opti-

mizations within the codebase that take advantage of Spark's strengths. Since each

batch in a batched workload may contain a large dataset, implementing an incremen-

tal classifier in Spark allows us to take advantage of Spark's distributed computing

capabilities for every batch.

The Spark ML random forest classifier favors batched and aggregated computa-

tion over single-datapoint processing. Each dataset is first preprocessed into RDDs

with aggregated information about each point and its features. The Spark random

forest classifier then randomly samples the data (with replacement) according to a

Poisson distribution, and assigns a random sample to each decision tree in the forest.

Each decision tree is grown from the root using its sampled dataset; the splitting

criterion for each node in a decision tree is determined with an element of random-

14



ness. Specifically, at each node, the set of features is subsampled randomly. For each

resulting set of features, the classifier examines all possible values for that feature on

which the data can be split. Among all of these candidate splits, the classifier chooses

the split that maximizes the decrease in Gini impurity, which is the probability that a

point randomly selected from the node would be misclassified. The algorithm termi-

nates when the maximum tree height is reached or no training points are misclassified

within each individual decision tree.

The existing Spark ML random forest classifier performs well given a large dataset.

However, like all implementations of random forests, a change in the training dataset

would mean retraining the random forest from scratch. Retraining from scratch would

lead to a lot of repetitive computation; the aggregate composition of the dataset might

not change significantly with the new batch, especially if each batch has far fewer

data points than the overall dataset. This thesis presents work that allows random

forest classifiers to be updated with each new batch of training data more efficiently,

therefore saving time for data scientists and other users of Spark MLlib.

The rest of this thesis is organized as follows. Chapter two describes the exist-

ing literature in online and incremental random forests. Chapter three describes the

strategies I implemented for incrementally training random forests. Chapter four

contains performance and robustness metrics for each of the random forest imple-

mentations, as well as a discussion of their implications.

15
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Chapter 2

Previous Work

Since Leo Breiman introduced random forests to the data science community in 2001

[11], researchers have tested various refinements of the algorithm. One area of focus

has been augmenting the algorithm for online learning. This chapter describes the

existing literature on incremental and online random forests.

2.1 Ensemble models

A random forest is a type of ensemble model, which averages the predictions of many

different "reasonably good" models to produce a prediction that better estimates the

true hypothesis. Ensemble models are highly successful as machine learning tools,

because they avoid the chance-dependent pitfalls of many singular models. For ex-

ample, gradient descent methods can get stuck in local minima, but combining many

models increases the chance that one will find the global minimum. Alternatively,

even if none of the models in the ensemble produce the true hypothesis, averaging

every prediction can lead to a a prediction that more closely matches the underlying

truth [3].

There are several established methods for aggregating model predictions in en-

sembles. The Bayesian voting algorithm iterates through all hypotheses produced

by models in the ensemble, and then combines the results based on how likely the

hypothesis is given the sample. Another method is to manipulate the training data

17



via bagging, known as bootstrap aggregation, and boosting, known as weighted train-

ing. Bagging involves randomly sampling points with replacement from a common

dataset; the default Spark implementation of random forests uses bagging over boost-

ing. Other ensemble methods exist but are not utilized in Spark ML.

2.2 Online random forests

Standard random forests are offline classifiers; trees are built on static datasets. Of-

fine classifiers are poorly suited for datasets for which additional data points become

available incrementally. A prevalent example is logging; logs are published as actions

take place within a system, and a classifier for these logs must take into account the

new information to avoid becoming inaccurate. Similar problems requiring an online

classifier are found throughout industry. For example, Yahoo! uses an online classi-

fier to characterize relevant articles to show each user on its homepage. In many of

these use cases, retraining the classifier from scratch would take an excessive amount

of time, given the enormous amount of existing training data. Since new batches of

data are often far smaller than the size of the aggregate training data, the new data

only shifts a classifier's behavior slightly. Retraining an entire classifier from scratch

to capture slight shifts seems wasteful; online classifiers provide a far more efficient

approach.

In this thesis, I study incremental random forest classifiers-forests that update

themselves with new batches of data. Incremental forests are a subset online random

forests; they are updated with new batches of data, rather than with one new point at

a time. Batched updates can take advantage of Spark's strength, which is distributed,

batched computation. Simply implementing an online random forest classifier in

Spark would be computationally wasteful, as it would require a new Spark job for

every additional point. Focusing on batched updates plays to Spark's strengths and

addresses a sparser area of the machine learning literature. Existing online methods

are easily extended into batched methods, and batched computation provides an

opportunity for optimizations.

18



2.2.1 Saffari online random forests

The most well-known implementation of an online random forest is the Saffari imple-

mentation. [10] In offline mode, a Saffari random forest behaves like a typical random

forest: each tree is created by sampling the original training set, the split at each node

is chosen as the best among a random set of feature candidates, and predictions are

made by summing conditional probabilities among all of the trees.

In online mode, trees receive a serial string of points and are grown in an extremely

randomized fashion; at every node, tests and thresholds are chosen randomly. Specif-

ically, when a node is created, it establishes a set of N random tests and maintains

statistics on the left and right partitions created by each test. When a new point is

added to the tree, the point's features place it in a leaf node. The algorithm then

recalculates the gain Gn with respect to each test in that node n according to the

following equation:

S f samples Isamplesr|
1 samplesn| |samples ,(

where e indicates loss, 1 represents the left partition of a split, and r represents the

right partition of a split. The Saffari algorithm splits a leaf based on two hyperpa-

rameters: a, the minimum number of samples a node must see, and /, the minimum

gain a split must achieve. When both conditions are satisfied, the node splits.

The Saffari algorithm also specifies that trees can be discarded randomly, where

the probability that a tree is discarded increases with its out-of-bag error. This trait

allows the random forest to adapt to changes in the data distribution.

Saffari claims this algorithm is better than alternatives such as the Hoeffding tree

algorithm (addressed later in this chapter), because it fits better to the inherent na-

ture of decision trees. Empirically, Saffari random forests perform better than boosted

forests. In my research, I test the efficacy of using the extremely randomized trees of

the Saffari algorithm. I also experiment with the aforementioned split hyperparame-

ters, tweaking my algorithm to select more optimal gain and points thresholds. Since

the Spark random forest implementation closely matches the Saffari offline random
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forest implementation, many of my initial modifications to the Spark code to provide

online learning capability are in line with the Saffari online-mode algorithm.

2.2.2 Denil online random forests

In "Consistency of Online Random Forests," Misha Denil et al. proposes and evalu-

ates improvements to the Saffari online random forest algorithm. Denil online forests

partition the sequence of data points into "structure" points and "estimation" points

[2]. Structure points influence the structure of the tree but do not affect the predic-

tions made in tree leaves. Estimation points do not influence the structure of the tree,

but are used to re-estimate probabilities. The Denil algorithm uses the same split

selection procedure as the Saffari algorithm. The paper shows that this refined imple-

mentation achieves a higher accuracy on complex datasets compared to a comparable

implementation of the Saffari algorithm.

Much of the existing literature around online random forests acknowledges one

primary setback: due to decision trees recursive structure, lower data cannot be used

to correct earlier decisions. Both the Saffari and the Denil implementations have this

flaw. The next few subsections address algorithms that involve regrowing part or all

of select decision trees within a random forest. My research draws on both classes of

techniques-incremental growth and regeneration.

2.2.3 Mondrian forests

Another type of online random forest is Mondrian forests [7], which are comprised

of augmented extremely randomized decision trees. The algorithm for building each

Mondrian decision tree is as follows. We start at the root and allocate a budget,

A, for this node. Then, we recursively process each node by randomly choosing

split locations on the ranges of feature values. For each point j, dimension d, and

dimension-wise maximum and minimum Ujd and lid, let E = Ed(ujd - lid). Then,

these cuts each cost A' = A - E. If we can "afford" the cut, we split the node and

assign budget A' to each subinterval. The tree stops growing when no more cuts can

20



be afforded at any leaf node. Throughout the growing process, we denote a split

hierarchy using a time variable. A node's time variable r is set when a split is made

within that node; the value of this variable is equivalent to E + Tparent.

To adapt Mondrian trees for online learning, we use the time parameter to deter-

mine where a new cut should be inserted. Starting at the root, we recurse down the

tree until the cost coefficient E.,, for this new node is less.than the cost coefficient

EId for some node. We then insert the new node as the parent of this old node and

adjust all children nodes accordingly.

Mondrian forests achieve an accuracy very close to offline random forests and

extremely randomized forests trained on the same fraction of the data. The Mondrian

algorithm significantly outperforms the Saffari algorithm when trained in online mode

on the same fraction of data. Furthermore, Mondrian forests were shown to adapt to

new data an order of magnitude faster than simply regrowing a forest from scratch.

The drawbacks of Mondrian forests include its relative intolerance of irrelevant

data. Because splits are random, irrelevant and relevant features are equally likely to

be chosen; noisy features can then harm the overall accuracy of each tree. Addition-

ally, a Mondrian forest in online mode might choose to insert a node close to a root,

thus initiating recalculation of a large section of the tree.

While Mondrian forests outperform Saffari online random forests, regrowing a tree

section requires passing through all of the data points seen so far. As datasets grow

larger, the overhead incurred by additional passes through the data will outweigh the

efficiency gains of the algorithm. Mondrian forests have only been shown as more

efficient than Saffari online random forests on datasets of a few thousand data points.

As such, the optimal strategy should regrow parts of a random forest but should not

require multiple passes over the data.

2.3 Concept drift

Concept drift describes changes in data distribution in an online learning setting

that cause the mathematical relationships between the input variables and output
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predictions to change. These shifts cause ML classifiers trained on earlier data points

to become inaccurate. The online random forest algorithms discussed earlier in this

chapter adapt poorly to concept drift, as they accommodate new data by splitting

leaves or regrowing small sections of trees in the forest. Concept drift can cause

splits in nodes higher in the trees to become inaccurate, and a poor decision higher in

the tree more significantly impacts performance than a mistake closer to the bottom.

Online random forests adapt more poorly than other online classifiers to concept drift,

as splits made in nodes are essentially permanent. In contrast, classifiers that use,

for example, linear or logistic regression could just shift internal weights until the

concept drift is accounted for.

Therefore, accounting for concept drift in online random forests requires regrowing

trees-the decisions from these trees must counteract bad decisions from other trees

resulting from wrong splits. Purely incremental strategies, or those that just split

leaves, should not be the only methods by which online random forests adapt to

change.

2.4 Combined strategies

Several papers in the literature use Hoeffding trees to grow online random forests.

Hoeffding trees for online learning were first proposed in a paper by Domingos and

Hulten; when growing, these trees maintain several candidate splits in each leaf,

with the quality of each split estimated in an online manner [4]. In contrast with

the minimum gain parameter controlling splits in Denil and Saffari random forests,

Hoeffding trees use a measure of the Hoeffding bound to ensure that a split is optimal.

Hoeffding trees split leaves when the Hoeffding bound indicates that the current best

split is the optimal split, within reasonable certainty.

A paper by Bifet et al. describes an implementation of the Hoeffding tree al-

gorithm that adapts to concept drift [1]. The algorithm grows Hoeffding trees of

different sizes; the authors reason that smaller trees can adapt more quickly to con-

cept drift, whereas larger trees are less sensitive to noisy deviations. The trees are

22



occasionally either partly or fully regrown, depending on a metric called ADWIN that

estimates drift. The Bifet paper's results show that the method is effective on small

generated datasets with concept drift.

Abdusalam et al. developed an algorithm that grows random forests incrementally

by using Hoeffding trees and selecting entire trees for replacement. Unlike the algo-

rithm from the paper by Bifet et al., the system chunks a data stream, then processes

data chunks serially. The algorithm detects concept drift using a two-window tech-

nique; if a tree's classification error between the two windows differs by an amount

less than a threshold, it is not grown further. Otherwise, grow the tree incrementally.

With every given batch, 25% of the trees are automatically regrown, with additional

trees regrown if the system detects concept drift.

I draw from these algorithms when developing my system in Spark. Namely, my

implementation involves a balance between incremental growth and tree replacement,

much like the algorithms in the Bifet and Abdusalam papers. I refer back to these

previously-developed algorithms in my discussion of the Spark incremental random

forests system developed in this thesis.
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Chapter 3

Methods

This chapter describes the two main strategies I implemented for incrementally train-

ing random forests. I go into depth about the details of each implementation, hybrid

strategies, and the API I exposed for use in Spark ML pipelines. My experiments

seek to shed insight into which algorithms work best on different workloads.

3.1 Incremental growth strategy

The first implemented strategy involves incrementally growing existing trees in the

forest, and is based off of the Saffari and Denil algorithms. A user can update an ex-

isting incremental random forest classification model with a new batch of data via the

exposed Spark API. To adapt the existing Spark implementation of a random forest

into an implementation with incremental growth capabilities, I augment the existing

tree node and random forest classification model classes to hold additional metadata.

Specifically, the new incremental tree node class holds aggregate statistics on every

point it has seen thus far. When a node receives a new point, it calculates, for every

feature, the value "bin" (i.e. subset) into which that feature falls. The boundaries

between bins, called splits, are chosen by the Spark MLlib library to capture all pos-

sible differences between data points. For example, an numerical variable would have

possible splits between all values that the variable assumes within the dataset, and

a categorical variable would have possible splits between all groupings of categories.

25



The existing bin-finding algorithm caps the maximum number of bins at around 1000,

merging bins if the number of splits calculated by the algorithm exceed the ceiling.

The aggregate statistics data structure for each node takes the form of an array that,

for every feature bin, stores a count of the number of points with a feature that fell

within the bounds of that bin. Similarly, the incremental random forest classification

model is augmented with metadata containing the candidate splits for each feature

from the first training run. These same splits are used to sort new batches of points

into feature bins. As a result, the tree does not have to store and re-iterate through

previous batches of points to search for new optimal splits.

The specific algorithm used to incrementally grow the random forests is as follows.

Upon receiving a new batch, the random forest bins each point based on its feature

values, with each point falling into one bin per feature. The random forest determines

the boundaries of these bins using the stored splits metadata in the random forest

classification model, as described previously in this section. For example, if a feature

ranges in integer values from 1 to 10, then the splits metadata could contain a split

value of 5.5, which would divide that feature distribution into two ranges: 1-5 and

6-10. The system constructs a data structure holding the feature bins for each point.

A random sample of points is selected for consideration in each tree. Then, the system

finds all of the leaf nodes in the random forest and loads these nodes onto a queue.

For every node in the queue, the system determines the subset of new points that,

when traversing the node's tree from the root, fall in that node. As described earlier

in this section, each leaf node is augmented with metadata about the previous points

captured by that node. A similar metadata structure storing aggregate feature bin

counts is calculated for the new batch and then merged into the existing metadata

stored within the node. Then, the system runs through all potential splits within the

leaf and determines whether a split that decreases Gini impurity exists. If so, that

split is made and the two new leaf nodes are loaded back onto the queue.
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3.2 Tree regeneration strategy

The second implemented strategy involves regrowing trees within the random forest.

Upon update, a set proportion of trees are randomly selected for replacement. The

system then grows a random forest with the number of trees selected, creating a new

hybrid model with the maintained trees from the old model and the newly grown

trees from the new model.

3.3 Hybrid strategies

The metadata required for incremental growth is still maintained with the tree re-

generation strategy. As a result, my implementation can intermix tree regeneration

with incremental growth, meaning that a tree that is regrown after one batch can be

incrementally grown after the next, since regrowing the tree still maintains the neces-

sary leaf metadata do detect future node splits. To create hybrid strategies, I select

a proportion of trees without replacement to be regrown, and then select another

proportion of trees to be grown incrementally. So, after the random forest receives a

new batch, each tree can either be regrown or incrementally grown by the algorithm.

To create many different hybrid approaches, I vary the proportion of trees that

are grown with each strategy. Those not selected for regeneration or incremental

growth are left unchanged. I hypothesize that the inherent characteristics of each

data workload will affect the optimal hybrid strategy for an incremental random

forest classifier on my test datasets. This thesis will test this hypothesis by exploring

the performance of these various hybrid strategies in chapter 4.

3.4 Optimizations

In this section, I detail the optimizations I made to my implementation of the in-

cremental growth and tree replacement strategies. These optimizations are additions

to the memory and speed optimizations already existing in ordinary Spark random

forest classifiers. An initial comparison of the classification performance increase due
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to these optimizations revealed a 0-2% increase in accuracy, depending on the tested

dataset.

3.4.1 Bounding incremental growth

Since datasets can have many features, unbounded tree growth can result in extremely

deep trees after just a few batches. The largest tree height supported by Spark ML

is 30, after which trees can no longer be grown incrementally. Additionally, splitting

leaves in tall trees imposes a large performance overhead, as the algorithm must

examine a large number of candidate leaves. As a result, the system restricts the

maximum initial tree height to a set value h, relaxing this restriction by one for each

incrementally grown tree that receives a new batch of data. In all hybrid strategies,

a tree is replaced when it reaches a certain threshold depth. When a tree is regrown,

its maximum height is reset to the original value h. This technique prevents the

incremental random forest from overfitting to earlier batches and allows the forest to

better adapt to concept drift, as it ensures that later batches can significantly impact

tree predictions.

3.4.2 Batched processing

The incremental random forest implementations in the Saffari and Denil papers de-

scribe accumulating points in leaves until the leaf is split. In the purely online setting,

accumulating points one at a time is the only option. Since batched workloads allow

for many points to be processed at one time, we can preprocess the batch into meta-

data structures that are passed to the relevant leaves and merged with the existing

leaf metadata. This optimization prevents the system from having to run back over

all previous batches to decide on a split.

3.4.3 Tree reweighting

In the batched incremental learning setting, the classifier receives an unlabeled batch

of points, predicts the label for each point, and then views the labels to assess its

28



accuracy. Each tree in the random forest has a different accuracy on a particular new

batch of data; if there is concept drift, newer trees likely have better classification

performance than older trees. To account for this concept drift, I weight trees by age.

With every new batch, trees that are not regrown are weighted to have less voting

power. As a result, the classifier captures information from previous batches, but

uses information from the most recent batch more heavily in the classification of the

next batch.

3.5 API

My custom incremental random forest classifier class, IncrementalRandomForestClas-

sifier, exposes a Scala API for data scientists to use. I introduce a new model class,

the IncrementalRandomForestClassificationModel class, which is an augmented adap-

tation of the Spark ML RandomForestClassificationModel class that allows for incre-

mental optimizations. Table 3.1 details the methods available for use in Spark ML

pipelines. The code for my implementation of incremental random forest classifiers

has been open-sourced on Github.
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3.1: Spark API for the incremental random forest (RF) classifier developed in this

30

Method Description
def train(df: DataFrame): Trains a model for future

IncrementalRFClassificationModel online learning by maintaining

tree and leaf metadata.
def update( Updates an existing model

old: IncrementalRFClassificationModel, with a new batch of data
df: DataFrame): by regrowing some trees and

IncrementaIRFClassificationModel incrementally growing others.
def addTrees( Trains a model using a warm

oldModel: IncrementaIRFClassificationModel, start by adding more
df: DataFrame, addedTrees: Int): trees to the existing forest.
IncrementalRFClassificationModel

def setRegrowProportion(prop: Int) Set the proportion of trees

in the forest that should be
regrown with every new batch.

def setIncrementalProportion(prop: Int) Set the proportion of trees

in the forest that should be

regrown with every new batch.
def setInitialMaxDepth(depth: Int) Set the initial depth of

newly-grown trees.

Table
thesis.



Chapter 4

Results

In this chapter, I analyze the benchmark results and discuss their implications for data

scientists using incremental random forest classifiers. In each trial, each incremental

random forest classifier received batches sequentially, retraining itself after every new

batch. For each tested workload, I first contrast sample training times of several

incremental growth and tree replacement strategies. Then, I analyze a range of hybrid

strategies and explore the ideal hybrid strategy for each workload based on concept

drift and batch size.

4.1 Experimental setup

The tree regeneration and incremental growth strategies are compatible; both can be

used simultaneously within an incremental random forest. This thesis explores various

hybrid approaches and provides insight into which approaches work best on datasets

with and without concept drift. For each hybrid approach, I vary the proportion of

trees that are grown with each strategy. The system selects trees without replacement

to be replaced or grown incrementally; the remaining trees are unchanged.

In my research, I experiment with several different parameters that affect the error

rate of my incremental random forest classifier. I hypothesize that certain parameters

used to build each incremental random forest will affect the optimal incremental

strategy for that forest on my test datasets. I vary the following parameters in my
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experiments and report the effect on the optimal hybrid incremental algorithm.

1. Tree depth. I vary the initial maximum height of each tree in the random

forest. In my experiments, I use two initial heights: shallow and deep, which

represent heights of 5 and 10, respectively. I chose 10 to be the sample height

for deep trees, as it is the most commonly used height in the literature to obtain

a high accuracy without overfitting. A shallow tree height of 5 still provides

some accuracy, but allows the tree to adapt more significantly to concept drift

in incremental batches.

2. Concept drift. I test the performance of the incremental random forest clas-

sifier on four datasets: two with concept drift and two without concept drift.

The datasets with concept drift show seasonal changes over the course of many

months, whereas the datasets without concept drift are randomized as to ensure

that there is no significant shift in data distribution.

3. Batch size. I vary the batch size of the data workloads to test the impact of

batch size on classifier performance and optimal strategy. Specifically, I select

100 as the "small" batch size and 2,000 as the "large" batch size.

4. Hybrid strategy. I vary the proportion of trees grown incrementally between

0.0 and 1.0, using intermediate steps of 0.1. I also vary the proportion of trees

regrown after each batch from 0.0 to 1.0 with step size 0.1. Trees are selected

to be regrown, grown incrementally, or unchanged, depending on the hybrid

strategy. One tree cannot be selected to be grown by more than one strategy

after any particular batch. Consider, for example, a hybrid strategy with a 0.1

proportion of trees regenerated, a 0.2 proportion of trees grown incrementally,

and 100 trees in the forest. After receiving a batch, 10 trees are first selected

without replacement to be regrown. Then, another 20 trees are selected among

the remaining trees to be incrementally grown. Since trees are selected without

replacement, the sum of the two proportions cannot exceed 1.0.

Through my experiments, I seek to diagnose the optimal hybrid approach for each
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Workload Batch size Concept Drift
Homesite Quote Conversion large no

Otto Group Product Classification small no
Airline Delay Causes large yes

Bike Sharing small yes

Table 4.1: I run experiments on the four example workloads listed in this table.
These workloads span the combinations of small and large batch size with existent or
nonexistent concept drift.

of four data workloads, shown in Table 4.1. To evaluate the efficiency and accuracy

of a classifier, I measure the training time and predictive error rate on the next

batch. I compare the metrics taken on random forest classifiers running a variety

of incremental strategies to the control setting, which involves regrowing the entire

random forest from scratch on all batches previously seen. The results chapter of

this thesis discusses the results for each workload separately, and then explains an

overarching method for selecting a general hybrid strategy for a new workload.

4.2 Workload A: Large batches, no concept drift

The Homesite Quote Conversion dataset is a Kaggle dataset that provides over fifty

numerical and categorical metrics on each of 200,000 customers. The classification

goal is to determine whether a potential customer will purchase home insurance given

the provided metrics about their quoted price, previous activity, coverage information,

and more [5]. To study how incremental random forests would perform on workloads

with large batch sizes and no concept drift, I randomly divided the Homesite dataset

into fifteen batches of 2,000 data points each. Then, I ran tests using both deep and

shallow random forests, measuring the training time required by each sample strategy

to accommodate each new batch of data.

As seen in Figure 4-1, retraining the entire tree from scratch on all data caused

the training time for the control setting to be much higher on later batches than the

training time for the experimental settings, with one notable exception. When all

trees are grown incrementally after each batch, the training time is higher than the
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Training times for incremental RFs with shallow trees
on Horesite dataset
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Figure 4-1: These graphs show the training times for the incremental growth strategy,
the tree replacement strategy, and the control setting on the batched Homesite Quote

Conversion dcataset.
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control. This occurs because every full added level of nodes doubles the number of

leaves in the tree. As a result, the next incremental training step must examine twice

as many leaves for potential new splits. While Spark random forests mitigate this

exponential growth by batch processing leaves, the results still reveal the significant

overhead. As a result, my findings indicate that no more than around 50% of trees

should be incrementally grown after every batch if training time is a primary concern.

These findings are consistent in both random forests with deep trees and those with

shallow trees.

In contrast to the incremental growth strategy and the control, the tree replace-

ment strategy shows similar training times across all batches. This occurs because

the system grows the same number of trees on the same quantity of data after each

timestep. While a data scientist would likely not wish to regrow 100% of trees, I

consider the training times for a 100% tree replacement strategy to demonstrate the

worst-case training time for a random forest classifier using this strategy. Even when

the forest is entirely regrown on each new batch, the training time eventually drops

below the monotonically increasing control training times. As seen, the random re-

placement strategy will always be more efficient than the control after a certain batch

number on workloads such as the batched Homesite Quote Conversion dataset.

Figure 4-2 shows the results of measuring the average predictive error rates of 50

different hybrid incremental random forests. In random forests with shallow trees,

hybrid strategies with a high proportion of trees incrementally grown performed bet-

ter than other strategies. In general, using shallow trees should favor incremental

strategies, as shallow trees are better able adapt to new information in batches than

deep trees. Since forests with deep trees are generally more accurate than those with

shallow trees, a data scientist would likely use shallow trees if training time was a

primary concern. Considering the training time data shown in Figure 4-1, the opti-

mal strategy for this setting seems to be regrowing approximately 40% of trees and

incrementally growing another 40%.

In random forests with deep trees, hybrid strategies with a nonzero proportion of

trees regrown after every new batch show the lowest error rate. This trend reveals that
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Average error rate of incremental RF classifier
with 100 shallow trees on Homesite dataset

0.2 0.4 0.6 0.8
Proportions of trees grown incrementally

after each new batch
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Average error rate of incremental RF classifier
with 100 deep trees on Homesite dataset
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Figure 4-2: These two plots show the average error rates of various hybrid tree re-
placement and incremental growth strategies on the Homesite batched dataset. The
axes indicate the percentage of trees that are modified according to each strategy.
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Comparison of optimal hybrid strategies to control setting
on Homesite dataset
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Figure 14-3: This graph com1ares1 the error rates of the control setting to the error
rates of the optimal hybrid strategy for the Homesite dataset.

deep decision trees poorly accommodate additional information from later batches.

While these deep forests with l)lurely incremental strategies have lower error rates

than shallow forests, they perform significantly worse than all other hybrid strategies.

Therefore, the optinial strategy for this setting seems to be to regrow around 30% of

trees with each new batch. This strategy ninimzes both training time and predictive

error rate.

Figure 4-3 colnpares each optinial hybrid strategy to the control across all batches

of the workload. Comparing these optimal strategies to the control implementation,

which regrows the entire forest on the cumulative dataset, I find that the experimental

settings obtain error rates roughly equivalent to the control's.

4.3 Workload B: Small batches, no concept drift

The Otto Group Product Classification dataset contains 200,000 data points repre-

senting products sold by the Otto Group. Each (ata point is characterized by nearly

100 numerical features representing qualities of each product: the classification task

is to distinguish one particular product category, "Class 2," from the others. By
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randomly downsampling the dataset, I segmented the data into batched workloads

of approximately 100 points per batch, much smaller than the 2,000-point batches of

the Homesite dataset [6]. My initial analysis, as with the Homesite dataset, involved

contrasting the training times of the two incremental random forest strategies on the

data. I trained random forest classifiers using each of two strategies on fifty 100-point

batches of the Otto dataset to demonstrate any trends over time.

As seen in Figures 4-4,the control demonstrates the largest training time after each

batch, as it must be retrained from scratch on the aggregate data. In comparison, the

training times for the experimental strategies are far smaller, even when every tree

in the forest is modified after each batch. This trend is consistent in both random

forests with deep trees and those with shallow trees. With small batches, the number

of leaves that will be incrementally split will also be small, accounting for the low

training time of the incremental strategy. This differs from the results of the Homesite

dataset, where a large batch size caused a larger number of new splits, resulting in a

distinct increase in training time.

Figure 4-5 displays the predictive error rate of various hybrid incremental ran-

dom forest classifiers. As shown, for smaller batch sizes such as 100, strategies that

involve only incremental growth generally perform better than strategies that incor-

porate some proportion of regrown trees. This trend is present in both random forest

classifiers comprised of deep trees and those with shallow trees, though the trend is

stronger among forests with shallow trees.

Trees grown on one batch naturally overfit to that batch. With a small batch size,

there is a higher likelihood that a batch's data distribution differs from the overall

data distribution of the full dataset. As such, tree replacement strategies could grow

trees that fit well to one batch, but that fit poorly to the rest of the data, increasing

the error rate. Incremental growth incorporates the data from multiple batches into

each tree, mitigating the effect of overfitting to the wrong data distribution.

These results demonstrate that data scientists using incremental random forests

on workloads with small data batches should utilize a strategy that only involves

incremental growth. Figure 4-5 indicates that the specific proportion of trees that
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Training times for incremental RFs with deep trees
on Otto Group dataset
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Figure 4-4: These graphs show the training times for the incremental growth strategy,
the tree replacement strategy, and the control setting on the batched Otto Group
Product Classification daOtaset.
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Average error rate of incremental RF classifier
with 100 deep trees on Otto dataset
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Figure 4-5: These two plots show the average error rates of various hybrid tree re-
placement and incremental growth strategies on the Otto Group batched dataset. The
axes indicate the percentage of trees that are modified according to each strategy.
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Comparison of optimal hybrid strategies to control setting
_. __ on Otto )Group dataset
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Figure 4-6: This graph compares the error rates of the control setting to the error
rates of the optimal hybrid strategy for the Otto Group dataset. I show a comparison
of the performance of forests with deep trees; the results for forests with shallow trees
look similar.

are incrementally grown can vary with little impact on accuracy, so data scientists

should choose a smaller ratio to minimize training tuie.

I compare the optimal hybrids to the control in Figure 4-6, finding that the experi-

mental settings obtain error rates indistinguishable to the control's across all batches.

Given the similar error rates, the significantly smaller training times of the hybrid

strategy indicate that incremental classifiers are more optimal than the control for

workloads such as the Otto Group batched dataset.

4.4 Workload C: Large batches, concept drift

The US Department of Transportation Airline On-Time Statistics and Delay Causes

dataset contains information a])o1it every flight that took place in the last decade. I

used 18-months of this dataset, beginning in January 2014, for my analysis. Because

the distribution of airline delay data varies seasonally, this dataset exhibits concept

drift. Each month of data translated to a 10,000-point batch in an 18-batch data

workload [8].
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Figure 4-7: These graphs show the training times for the incremental growth strategy,
the tree replacement strategy, and the control setting on the batched Airline Delay
dataset.
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In Figure 4-7, I contrast the training times of several incremental random forest

classifiers using a variety of pure strategies. In the first graph, I show the training

times for the classifiers incrementally growing 50% and 40% of trees, as all training

time progressions for classifiers incrementally growing a higher percentage rapidly

increase to a time significantly larger than the control. If the percentage of trees

incrementally grown is 40% or lower, the classifier shows a lesser training time than

the control.

The classifier performance results from the Homesite dataset are similar these Air-

line Delay dataset results. In both, incrementally growing every tree in the random

forest quickly becomes inefficient compared to the control. The effect is augmented

when the dataset has concept drift, since more leaves will likely be split to accommo-

date the shifts in data distribution. As such, data scientists using batched incremental

random forests on data workloads with a large batch size should not incrementally

grow a large proportion of trees if efficiency is a major concern.

Figure 4-8 demonstrates a distinct trend-incremental random forest classifiers

applied to workloads with large batch sizes and concept drift perform far more poorly

when using a purely incremental strategy than when using any other strategy. This

trend is more pronounced in forests with deep trees. Again, the results show that

deep trees have a harder time adapting to shifts in data distribution than shallow

trees. In a dataset with concept drift, such as the Airline Delay dataset, this ability

to adapt becomes a larger factor in classification accuracy. The effect is mitigated

in shallow trees when a percentage of trees greater than 20% is grown incrementally

after every batch.

The results in Figure 4-7 and 4-8 indicate that data scientists using incremental

random forest classifiers on workloads with large batches and concept drift should

regrow around 20% of the trees in the forest after each batch. This strategy minimizes

predictive error while also maintaining a low incremental training time.

Figure 4-9 compares these optimal hybrids and the control, showing that the ex-

perimental settings have essentially identical error rates to the controls. Given the

similar error rates, the smaller training times of the optimal hybrid strategies indi-
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Average error rate of incremental RF classifier
with 100 shallow trees on Airline Delay dataset
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Figure 4-8: These two plots show the average error rates of various hybrid tree re-
placement and incremental growth strategies on the Airline Delay batched dataset.
The axes indicate the percentage of trees that are modified according to each strategy.
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Comparison of optimal hybrid strategies to control setting
o40 on Airline Delay dataset
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Figure 4-9: This graph compares the error rates of the control setting to the error
rates of the optimal hybril strategy for the Airline Delay dataset.

cate that incremental classifiers provide a more time-efficient alternative to ordinary

ran(lon forest classifiers on this workload.

4.5 Workload D: Small batches, concept drift

The UCI Bike Sharing Dataset captures the number of rental bikes used hourly in the

Capital bikeshare systei over two years. The dataset provides general information

about the temperature, weather, and other aspects of a particular day; the classifi-

cation task is whether the number of used rental bikes exceeds 120 in a given hour.

Over the course of a year, the data distribution of the Bike Sharing dataset shifts due

to seasonal changes; fewer individuals generally ride bikes in the winter, whereas the

sununer sees a significant spike in rentals [91.
Figure 4-10 shows that the training time for the control increases dramatically

as it accumulates tens of batches. These results are sinilar to the results from the

Otto Group (lataset, showing that when the batch size is small, increnient.al strategies

allow rai(lont forest classifiers to register and adapt to new data far nore quickly than

ordinary randon forests. Th(refore, if time is a primary concern, incremental random
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Training times for incremental RFs with deep trees
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Figure 4-10: These graphs show the training timues for the incremental growth strat-

egy, the tree replacement strategy, and the control setting on the batched Homesite

Quote CIonversion dataset.
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incrementally.
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Comparison of optimal hybrid strategies to control setting
on Bike Sharing dataset
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Figure 4-12: This graph compares the error rates of the control setting to the error

rates of the optimal hybrid strategy for the Airline Delay dataset.

forests become more desirable when the batch size of a workload is small.

Figure 4-11 demonstrates that pure incremental growth strategies are far more

accurate than any other strategy on this workload. The bikeshare dataset exhibits

extreme concept shift; very few individuals rent bikes in the middle of winter, whereas

the nnmber of rentals over the summer nearly always passes the threshold of 120.

However, since the dataset is cyclical, a classifier that shifts too signficantly to fit,

for example, the summer trend will perform very poorly on data batches from the

subsequent winter months. The results reveal this trend is consistent in both incre-

mental random forests with deep trees and those with shallow trees. As a. result,

data scientists should use a pure incremental growth strategy when using incremental

random forests on a data workload with small batches and large concept drift.

Figure 4-12 compares the hybrid strategies with the lowest error rates to the con-

trol. In this case, the control performs exeptionally poorly. The Bike Sharing dataset

is batched by date, so it exhibits dramatic concept drift resulting from seasonal shifts.

The favored incremental strategy consists of incrementally growing a small proportion

of the trees, which both takes into account information from many batches and down-

weights previous batches. In contrast, the control weights all previous data. equally,
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so is less adaptible to rapid and large concept drift. As a result, the incremental

strategy is far preferable to the control for classifying workloads such as the Bike

Sharing batched dataset.
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Chapter 5

Conclusion

In this thesis, I examined four datasets that differ in batch size and presence of concept

drift, and determined the optimal incremental strategy for each dataset. While the

dominant predictor of strategy was batch size, the presence of concept drift also

affected the optimal incremental strategy.

Figure 5-1 captures the observed trends. For most datasets, with both time and

error rate taken into account, a pure incremental growth or pure tree regeneration

strategy seemed optimal. The most significant trend was that incremental strategies

were optimal with small batch sizes, and that tree regrowth strategies were optimal

with large batch sizes. Moreover, my results show that not all trees must be modified

with each batch for the random forest to adapt to new information. In many cases,

incrementally growing or regenerating too many trees led to overfitting on a partic-

ular batch, and consequently led to a high predictive error rate. Since regenerating

or incrementally growing a larger percentage of trees also increases training time,

modifying a smaller percentage of trees-between 20 and 50%-is optimal.

Overall, this thesis presented the two main strategies for growing random forest

classifiers incrementally, and compared them over four differing datasets: the Home-

site, Otto Group, Airline Delay, and Bike Sharing datasets. The purpose of this

analysis was to provide insights into the behavior of incremental random forests that

data scientists can generalize to other datasets. Figure 5-1 can stand as a reference as

to what strategies are likely to be optimal for other workloads, as long as the batch
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Batch size?

Large Small

Prefer tree Prefer incremental
regrowth strategies growth strategies

Concept drift? Incrementally grow 10-50%

Yes N0 (Otto Group dataset and
Bikesharing dataset)

Regrow 20% Regrow 30% and
(Airline Delay dataset) use deep trees

(Homesite dataset)

Figure 5-1: This tree summarizes my results for the four tested datasets, and provides
loose rules on what incremental strategy is likely optimal for other datasets

size and degree of concept drift are known.

Moreover, I provide a novel implementation of these two strategies in Spark Ma-

chine Learning (ML). My implementation is different from existing incremental ran-

dom forest libraries, as it runs within Spark and handles data in batches. Other

implementations, such as those from the Saffari and Denil papers, process each point

individually, which would be inefficient in Spark. As such, my implementation takes

advantage of several optimizations only possible when processing batched workloads.

Overall, my system demonstrates significant efficiency gains when compared to the

standard method of entirely regrowing random forests. I open sourced my implemen-

tation of Spark incremental random forests at

https://github.com/kathrynsiegel/incremental-random-forest

so that others may use it in the future.
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