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Abstract

Three dimensional Finite Difference Time Domain (3D-FDTD) simulation serves as the
indisputable gold standard for device design and verification in silicon photonics.
However, 3D-FDTD is prohibitively expensive for large devices let alone cascaded
systems, leading to the pursuit of a diversified simulation toolkit to acquire the full
device response or combined device (cascade or parallel) response. A modular approach
is followed subsequently. For analyzing silicon photonics at the systems level, transfer
matrices in the modal/frequency domain are ubiquitously used. These matrices
encapsulate the frequency response as well as the coupling coefficients between the
various optical eigenmodes across all device ports. In this thesis we formulate and
explore the performance of a fast, memory efficient stand-alone FDTD based algorithm
that uses transfer matrices within the simulation window for the optical characterization
of adiabatic mode-evolution devices. This class of adiabatic devices is vital to silicon
photonics systems thanks to their broadband nature and reliable performance under
fabrication induced perturbations and parameter variation.

In our approach, the simulation domain is divided into blocks which can be simulated
independently in the time domain, and then combined using modal transfer matrices.
It is critical that we can match the accuracy of a 3D-FDTD simulation for a base class
of devices and make an argument that time domain and modal techniques can be
perfectly reconciled in a simulation environment where these devices appear and play a
significant role. This environment might be targeting a particular device or even an
entire section of the chip. When compared to pure 3D-FDTD this approach proves
auspicious from a computational standpoint as it yields, in the limit of large devices, an
asymptotic linear speedup when the blocks are simulated sequentially, and can further
yield a quadratic speedup when an extra level of parallelization is employed.

Thesis Supervisor: Luca Daniel

Title: Professor
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Chapter 1

Introduction

1.1 From Fiber Optics to VLSI Silicon Photonics

Very-large-scale integrated (VLSI) silicon photonics is ripe for commercial

development. In particular, CMOS compatible VLSI photonics seems to be the

inevitable solution to the increasing demand for processing record high

bandwidth in both Datacom and Telecom. With Moore's law coming to a halt, we

are no longer able to crank the knob of transistors/area to satisfy this data

processing demand. Silicon photonics innovation is of particular relevance to

large data center farms such as those owned by Google. In Telecomm, silicon

photonics can help realize optical flow switching architectures that directly route

large bandwidth in the optical domain combined with direct optical reception at

the end nodes [1].

Let's consider a sample data flow on a future hybrid computer chip. In our

hypothetical scenario, you tap IR light coming from a port on the wall, and

through some fiber connector, that light couples into a designated optical layer

on a hybrid motherboard and eventually couples onto a packaged chip. That

packaged chip may have the photonics on one side, and the CMOS on the

opposite side and the layers may communicate through 3D vias [2]. They could

also be monolithically integrated in a two dimensional fashion and be located on

the same face of the chip. The coupled light might contain multiple polarizations.
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Perhaps it undergoes polarization splitting sending a TE (transverse electric) or

horizontally polarized component to a TE-designated part of the chip, and a TM

(transverse magnetic) or vertically polarized component to a TM-designated part

of the chip [3]. Or perhaps the TM component gets rotated to TE to be processed

on an exclusively TE processing sector [4]. The light that has coupled onto the

chip may also contain multiple wavelength channels. An on-chip filter bank may

separate those channels into separate waveguides each of which goes through a

separate processing pathway.

Consider one channel. A wavelength insensitive switch matrix could route that

signal to the right processing unit, or CPU core, as commanded by an electrical

address signal. Perhaps the light is later converted to an electrical signal through

a Germanium photo-detector [5], the electrical signal gets transferred over to the

CMOS layer, some processing takes place, and then a laser on the photonics side

sends a beam through an activated modulator. The optical modulation is realized

based on electrical commands from the previous process whether thermo-

optically (voltage -- temperature -+ refractive index shift) or via carrier injection

and depletion. This modulated beam then leaves to go to some other place on

the chip, or maybe gets mixed with other wavelengths and collectively (as part of

a grander WDM transceiver scheme) couples out of the chip into a fiber and goes

back through the wall from which it came from. From there it could travel

outbound through the metropolitan area network (MAN) to service your video

streaming for instance. Alternatively, maybe it (along with other channels) gets

split, weighted and emitted through an optical phased array, and received via an

11



antenna array or broadband vertical coupler on another chip in the same

package after having propagated through a free space gap. From there it can

undergo a similar journey. Prior to leaving the computer/node altogether, this

hypothetical path that we've considered could undergo processing at multiple

chips, coupling in and out and getting transported around via the optical layer

in the motherboard.

Please note that the aforementioned ride is not to be taken literally as performing

a specific function. It might indeed be purposeless to have that many nested

levels of electrical to optical conversion or combination of vertical and side

coupling across multiple chips. It's merely an illustrative example that attempts

to lump as many steps as possible to completely cover and convey the

functionality of the photonics device kit. It is meant to be descriptive of the ways

in which photonics and electronics can be reconciled in future architectures,

illustrating the seamlessness of manufacturing and design, and the crossing of

boundaries from one domain to the other [6]. These innovations are not merely

technological in nature and impact, but could ultimately lead to a new cultural

era, one of streaming Terabytes per second on your home computer and being

able to take that for granted.

Interestingly enough the technology for the development of silicon photonics is

not in essence new to the scene. For decades optical fibers (Charles Kao Nobel

Prize 2009) empowered by erbium doped amplifiers have been responsible for

weaving together the World Wide Web. This is due to a miraculous coincidence
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of the low attenuation (<0.3 dB/km) frequency range in optical fibers overlapping

with the gain region in erbium doped fiber (fiber that has erbium ions implanted

in the core). The combination of these two accidental and empowering factors

allows for long distance information-preserving optical propagation. Absent the

military priorities of the Cold War and the fact that Big Data could have provided

no advantages to solving a pertinent problem of the time such as inertial

navigation, silicon photonics development could have taken off much sooner.

But today it's a different game altogether.

Admittedly the first decade of the 21st century has left its mark both in terms of

the ubiquitous appearance and importance of Big Data (demand) but also in

terms of significant milestones for the direct on-chip processing of light

(supply/ solution) that gets transported through optical fibers [7], [8], [9], [101.

This has led to financial incentives and initiatives in favor of silicon photonics

development. Optical fibers that make up the long haul backbone of the internet

will increasingly perforate networking at all levels. With the diminishing

necessity for optical to electrical conversion, and thanks to the compact footprint

of integrated devices (~ pm 2 for photonics) and (- nm 2 for CMOS) it will be

possible to create complex hybrid electronic optical systems that process

Terabytes of data every second on the same silicon chips that have allowed the

exponential scaling of traditional transistors with high density integration [111.

Most importantly, this can be accomplished using similar (or at least compatible)

fabrication processes. The latter is key to the commercial promise and feasibility
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of silicon photonics as many decades of development and investment in

microelectronics have set inertial standards in a nearly 400 billion dollar

industry and an even greater valued technology enabler. CMOS compatibility not

only dictates the design and development pathway but is also of high relevance

for the proper placement of the work presented in this thesis.

A large-scale hybrid electronic-photonic system requires a massive and complex

design effort [12] and it would be great if existing practices applicable to this

design process could seamlessly be bridged from CMOS, and directly

implemented on the photonics side. In CMOS, software such as LT-spice and

Cadence along with backend coding in an abstraction/modeling oriented

language such as Verilog are widely used to model complex systems using

transfer matrices. Commercial packages are already attempting to establish the

same culture in photonics for designing reliable large-scale systems. So long as

silicon photonics and CMOS are married, this amplifies the high relevance and

popularity of transfer matrices.

But this statement requires another level of context to be fully justified, the

reality that photonics and CMOS will never get a divorce. Something that gets

underappreciated or all out underestimated in dinosaur industries is the level of

disruption that can take place when a new technology simply outperforms the

status quo in every possible way including performance, power consumption

(which directly translates to usage cost), and production cost. The dinosaur
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industry tends to cling to inertial hope such as the tear down cost of changing

the infrastructure or the industry's established popularity and legacy.

But eventually supply and demand will lead to an extinction level event for any

outdated technology no matter how ubiquitously well-established it might be.

The tear down cost does not factor into this because that is only temporary and

cannot compare to the long-term economic advantages which set the gradient

direction. If we could dispense with electronics all together then protocols,

development processes, and expensive multi-billion dollar foundries would

collectively be annihilated by a tsunami of optical innovation. The Internet

Protocol is a great example of a seemingly deified immobile boulder that in the

future might very well give way to new protocols to best handle Optical Flow

Switching and other disruptive optical network architectures [1]. But this is not

at all the case with CMOS. Silicon photonics is not the tsunami that all-optical

computing failed to be, and CMOS microelectronics is most likely here to stay

for good [13].

First off, silicon photonics is not optical computing, in the sense that all control

signals are and need to be realized electronically. The energy required to activate

an optical transistor by a photon exceeds that of electron activation making

all-optical computing an unrealistic scheme. Another major obstacle that has led

to the decline of the excitement yielded by all-optical computing in the 80s is

that virtually no significant progress has been made in using the output of an

optical transistor to drive another transistor prohibiting cascaded system design.
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Lastly, there is no optical equivalent to electronic random access memory that

can be realized with storage longevity and a compact footprint. For these reasons,

silicon photonics requires and will always require a co-existence with established

CMOS. Although recent advances [14], [15] continue to expand the boundaries

of physical insights in all-optical computing the practicality of such scheme is

not widely accepted and remains a serious question.

The real advantage of silicon photonics is the ease of processing large bandwidth.

For example, in multi-core processing systems data could be routed in the optical

domain from core to core bypassing the memory bottleneck. Another dominating

strength of these hybrid electronic-photonic systems is record low power

consumption. The magical combination of ultra-high bandwidth and ultra-low

power consumption (mainly in athermal design) make silicon photonics a very

seductive business prospect for manufacturing giants (such as Intel or IBM) and

startups alike.

1.2 A Diversified Simulation Toolkit for Systems-Level Photonics

The interaction of light with dielectric matter is modeled of course via Maxwell's

equations. For the design of an arbitrary single micro-photonic element a 3D

Finite Difference Time Domain simulation serves by default as the most rigorous

and valid numerical simulation approach. This is because FDTD directly

simulates Maxwell's equations in the time domain, and can therefore handle all

electromagnetic phenomena naturally, limited only by the computational grid

discretization level [16]. But the simulation of a computational volume on the
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order of mm3 is possible only with supercomputing capabilities, and even then

not practical or worthwhile. For many devices in the silicon photonics toolkit

modal sparseness might be a distinct feature that can be exploited.

In particular adiabatic mode-evolution devices by design contain a limited

number of bound eigenmodes at every cross-section, with this fundamental

mode number being preserved from beginning to end since the device is slowly

varying [17]. Eigenmode expansion is especially favored in the community for

this class of devices. Eigenmode expansion has stability issues however [18], and

furthermore requires a relatively loose longitudinal discretization to be

considerably faster than a carefully constructed FDTD simulation. But most

importantly, the modal sparseness is assumed in advance by the designer to

justify the use of this simulation technique. This creates an inescapable level of

uncertainty. How can the designer be sure, especially for devices that exhibit a

higher level of complexity such as a polarizing beam splitter [4], [19], that all the

possible modes are taken into account or that the device remains adiabatic as

he/she varies the longitudinal and transverse profile? It is therefore standard

practice for an optimization sweep to be run using a fast modal technique like

eigenmode expansion, and at the very least a full 3D-FDTD simulation is run at

the end to confirm the final device [20].

In an SOI process all the device geometries need to be rectilinear due to

constraints on fabrication capabilities. Unlike CMOS, rectilinear constraints on

design are fundamentally limiting in photonics where engineering the shape of
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the transverse profile can allow the design of arbitrarily sophisticated mode

confinement and open up an entire region of design in "device space". However,

it is currently the only reliable, affordable and scalable way to fabricate silicon

waveguides, especially in CMOS compatible foundries. Therefore the width of the

waveguides is set by the mask layer and the fabrication process, and is fixed.

This makes it easy for photonics designers to frequently approximate 3D

geometries with 2D geometries and run FDTD simulations in a 2D domain which

is massively more efficient.

Other times an effective index approximation is used and a 2.5 dimensional

FDTD simulation is conducted [21]. All of these approaches however that aim to

reduce the dimensionality of FDTD are fundamentally inaccurate because they

make simplifying approximations that deviate from reality. They create a

fictitious device that resembles the actual one, so the simulation results will at

best resemble or be in the right ballpark of the actual device response. It is worth

clarifying that all lower dimensional versions of FDTD do not constitute

"compressed algorithms", but rather simulate a physical reality that is different

from the one that is actually desired. At the end it is again necessary to run a

full 3D-FDTD simulation to confirm the device.

Other popular approaches especially suited to adiabatic devices are the time

domain beam propagation method (BPM) which also has stability issues [22],

[23], [24], [25], [26], and analytical techniques such as coupled mode theory

(CMT) which can provide limited insights for simple devices [27].
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1.3 Problem Statement

The trend in the community is to use scattering matrices for systems level

characterization whose parameters may have been acquired via FDTD or other

techniques. The take-away from this section of the thesis is that for the

simulation of silicon photonics there is no single right answer. This is the current

conclusion from the simulation state of the art [28], [29], [30]. Hybrid approaches

and device specific speedups are constantly being sought for particular device

classes that exhibit some exploitable characteristic such as periodicity. As a

matter of fact, this is an excellent point to place the pursuit of FDTD algorithm

design into an interesting scope summarized in Figure 1.

E promising
00-00 develop ment

Application specifiCity

Figure 1: Value map for classifying current
available solutions in FDTD, as well as the total
open research space. Ideally we would like to push
at the boundary of low specificity.
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The novel insights behind the Yee grid have enabled an accurate discretization

of Maxwell's curl equations and enabled the solution to a virtually unlimited

spectrum of electromagnetic problems. The range of problems that can be

decisively analyzed with FDTD is beyond impressive. These can range from

electromagnetic pulse radiation propagation by a nuclear detonation in the

ionosphere [31], to nanophotonic or even quantum optical simulation [32]. FDTD

can handle scattering by dielectric spheres, nonlinear gain materials [33] and

adiabatic mode evolution. It is immensely powerful and impactful precisely

because it has such low application specificity. The tradeoff is that it's a rigorous,

but an inherently resource heavy algorithm for an arbitrary problem of a certain

computational size.

Extensive research has shown that this need not always be the case [20]. More

often than not, a particular problem of interest exhibits several characteristics

that can be leveraged to speed up accurate FDTD simulation for that particular

problem, or better yet, a particular device class. The hybrid method developed in

this thesis is attacking in the upper right corner of Figure 1 for the unique

category of adiabatic mode-evolution devices, similar to a plethora of other

propositions for different categories. It is interesting to note the lack of research

and even the absence of a remote outline of a solution that attacks in the upper

left quadrant of Figure 1. A new algorithm here, one that would potentially

change the actual complexity class that FDTD falls under (instead of merely

offering a speedup) would have seminal impact analogous to that of the Fast

Fourier Transform (FFT) [34] which made all problems it was meant to tackle
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able to be computed in 0(n log n) cputime from the previous 0(n2). This

quadrant is currently dark, but by referring to it we can complete our topological

value-map for FDTD which remains the most reliable of all simulation techniques

in the photonics toolkit [35], [36].

1.4 Original Contribution and Thesis Objectives

The original contribution of this thesis is placed in the right scope taking into

account the considerations of the previous section. In this thesis we specifically

consider the class of adiabatic devices that are characterized by slow longitudinal

dielectric variation as a case study and proof of concept for an efficient FDTD

technique that uses transfer matrices within the simulation window. Transfer

matrices are a vital ingredient to the recipe for the complete characterization of

complex photonic systems aimed at VLSI.

These cascaded systems communicate with each other through single

waveguides. On an SOI platform, patterned silicon waveguides serve as buses

transporting many data channels under tight light confinement due to the high

index contrast. However, the devices can still exhibit undesired optical crosstalk

when combined together. This can undermine the overuse of scattering matrices

especially if they have been acquired through diverse techniques (some modal,

others time domain) and inclines one to simulate the entire chip in a consistent

fashion. We will not go so far as to call this accumulation a numerically nonlinear

process, but we do claim that there is greater confidence when as much real
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estate of the chip as possible can be simulated in a pseudo-monolithic fashion.

By a pseudo-monolithic fashion we refer to a consistent approach that makes it

clear what accuracy tradeoffs there are (if any) at the unification joints. Of

course, running an FDTD simulation for the entire chip is computationally

beyond impractical if not all out impossible. Yet at the same time the desire is to

run as much FDTD as possible. This is what needs to be reconciled and this is

the culture that we need to bear in mind and is summarized in Figure 2.

Demand Problem

Z VLSI photonics -) Need for J 3D FDTD simulations
systems level simulation are resource expensive
capability/able to handle and slow.
large volume

TA( KI I 1 1

Solution Problem

Z Diversify simulation C Error analysis.
toolkit/modular When is patching
approach.Transfer accurate?
matrices u)iqitously
used for 1ACKLE A(( URACY

patching/Optical SPICE.

Figure 2: Summary of simulation landscape for silicon photonics systems.
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The proposition of this thesis is a hybrid FDTD-Transfer Matrix method

applicable to adiabatic photonic simulation. We propose a simulation technique

that already employs multi-threaded FDTD with all the previously proposed

levels of spatial parallelization, given the resources available. Under the

assumption that the full transfer matrix is desired, an extra level of

parallelization can be utilized in our technique (temporal parallelization) that is

of a different nature than spatial parallelization, can be interleaved with it and

further accelerate the simulation if more computational resources are available.

The simulation domain is divided into longitudinal blocks of equal dimensions

each of which can be simulated separately in the time domain. Since the

transverse plane remains fixed, this results in a linear speedup in the temporally

sequential case (quadratic for the temporally parallelized) in the limit of large

devices where computational overhead due to the calculation of eigenmodes and

coupling coefficients can be neglected. This is perfectly adequate since the power

of the technique lies in being able to simulate prohibitively large devices. For

shorter devices, the method still yields a significant speedup but the variation

might not vary linearly with the number of blocks. Similarly if the number of

blocks is made exceedingly large relative to the computational domain size,

overhead needs to be taken into account but this is more often than not a

pathogenic parameter area.

Importantly, we show that the accuracy matches that of FDTD to two significant

for a very short (-17 um) device, where the adiabatic limit is more likely to break
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down. Thus, the accuracy will match 3D-FDTD for all identical devices of greater

length. Due to limited computational resources exceedingly large devices were

not simulated.

Chapter 1 of this thesis serves to introduce the field of silicon photonics and

walk the reader through a minimally brief history from its inception to its

upcoming relevance. It further aims to foster an appreciation of the difficulty in

simulating large-scale photonic systems and how it behooves one to pursue a

scalable and consistent technique that can bring together large sections of the

chip at carefully chosen adiabatic junctions. Lastly, it hopes to leave the reader

with the understanding that FDTD is the almighty king of any optical simulation

and thus for any photonic simulation.

Chapter 2 of this thesis aims to introduce the basic algorithm behind FDTD that

has made the technique applicable to discretizing Maxwell's equations. It does

not cover every noteworthy aspect of FDTD, nor is it a mini-course on the subject

but rather sets up the basic equations on the grid so that they can later be

reconciled with the mode solver. It lastly mentions some of the advanced

computing solutions that can be used for large scale problems that mainly

involve maximizing the level of spatial parallelization.

Chapter 3 of this thesis begins by developing a brief theory of modal solutions to

dielectric waveguide problems, and explains that the electric and magnetic field

distributions in the transverse plane such as those recorded by the DFT monitors

in a FDTD simulation lie in a vector space that can be resolved by the optical
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eigenmodes. It thoroughly discusses the geometrical features that necessitate

numerical solutions, and then discretizes the curl equations and Gauss's law to

obtain those solutions via an eigenvalue problem. It introduces general transfer

matrices and reconciles them with scattering matrices and eigenmodes. It also

discusses some of the subtleties involved in calculating the coupling coefficients

between eigenmodes, and the dot product relation in the aforementioned vector

space.

Chapter 4 of this thesis performs a thorough comparison to the most distinct

and noteworthy previous work that has attempted to speed up FDTD in ways

similar and highly relevant to the techniques that this thesis builds on. It focuses

on the segmented FDTD method and pulse tracking, both of which have lower

application specificity and wider applicability than other more selective device

specific speedups.

Chapter 5 proceeds to mathematically formalize the specific details of the hybrid

FDTD-Transfer Matrix Method (TM-FDTD) using the foundations from chapters

2, 3 and 4. It discusses theoretical estimates on the computational performance

and confirms the curves in simulation. Lastly, it presents complete results for

the polarization rotator and demonstrates the equivalence to pure FDTD.

Chapter 6 summarizes the results and re-emphasizes the context of the thesis,

but most importantly lays out significant directions for future work.
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Chapter 2

Background on the Finite Difference Time Domain Technique

2.1 The Yee Lattice

Finite difference time domain simulation is tasked specifically with simulating

Maxwell's curl equations. In order to accomplish this it must discretize on a grid

that will yield an accurate result. The Yee grid shown in Figure 3 is the magic

Hv

Ez

v ~Hx z

Hv 1 Hz

~Ex~

!H iEy

A
'1

EzT H H

~~LrH Hx

Hy

Figure 3: A depiction of the Yee Lattice used to accurately
model Maxwell's equations in FDTD simulation whose
significance will be discussed in this section. E denotes the
electric field and H the magnetic field.

recipe. Later, we will see that finite-difference mode solvers are tasked with

discretizing Gauss' law and the wave equation. In the latter case no time
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component is required, but in the former time evolution is the crux. Maxwell's

six curl equations are given below:
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E denotes the electric field and H the magnetic field, a the electric conductivity

and * the equivalent magnetic loss, Jsource represents an independent current

source and Msource an independent magnetic source. When examining these

equations a couple of things become readily apparent. Consider for example the

triplet of field components (Ez, Hy, Hx). In a finite difference scheme with regards

to space, if the last curl equation is to be evaluated at a particular spatial point,

then both Hy and Hx ought to be located at Ax/2 or Ay/2 in order to have

consistency. The Yee grid [31], [371 is effectively the invention that takes this into

account, allowing an explicit numerical solution to Maxwell's equations that is

extremely robust as it can solve for both E and H simultaneously, versus the

alternative option of going through the second order wave equation for one

component (likely the electric field) and then solving for the other (magnetic field)

using the curl equations.

At first the FDTD Yee grid can seem more sophisticated than it actually is. The

purpose it tries to accomplish can be overestimated, the impact of that purpose

cannot. A simultaneous solution of E and H in a direct way and that does not

involve any implicit linear algebra is what has enabled the natural handling of

all categories of electromagnetics problems and made FDTD the king of all optical

simulation. The next couple of pages are dedicated to displaying the curl

equations once they have been discretized on the Yee grid.

29



The updating field coefficients at the E-field component located at (i, j, k) are

given by (using Taflove's & Hagness' notation):

Cali,j,k -- I -
Ji jkAt)

2cj~j
/ 1

ijkA

F~ -i ik At)

Ui,j,kAt

2cjjj

The updating field coefficients at the H-field component located at (i, j, k) are

given by:

Da i,j,k - (I -
-* .At)

2pijik

At
Dbli,j,k =t

Pi~j,k A )
/ (1 +

C*. At

2 Uikj,k

where A is the uniform spatial discretization and At is the temporal discretization,

E is the permittivity matrix and /I is the permeability matrix, 0T is the electric

conductivity matrix and U* is the equivalent magnetic loss matrix. The

discretized curl equations are displayed in the following pages.
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It is clear from the discretized equations that FDTD is a direct technique. The

solutions are always based on field values at previous time steps for all six field

components. Because there is no recursion the technique does not involve any

linear algebra. This direct nature is brought upon the problem thanks to the Yee

grid.

2.2 Computational Complexity of 3D-FDTD

Looking at the Yee grid and the discretized equations in the computational

domain provides an interesting segue to analyzing the computational complexity.

For one thing, updating the fields at every time step is somewhat local. Since the

stencil size is constant we can assume this takes constant time per pixel at every

time step. We also see that at every spatial point, the fields need to be updated

based on previous field values. This means that we need to store in memory a

finite number of values at each point of the computational domain.

Another thing immediately apparent is that FDTD is spatially parallelizable.

Once we have the values from all the necessary previous time steps in memory,

the new values at each spatial point can be updated in parallel. Again this is

because of, and thanks to, the direct nature of the system of equations, and the

fact that all field values depend exclusively on stencils from previous values of

time.

So far we have seen that the memory required to run FDTD grows with the

computational domain, and that FDTD is spatially parallelizable. Note how clear

33



it is to make these observations just by looking at the discretized curl equations.

Understanding the basics of FDTD is really that straightforward, although

getting into the details (stability, numerical dispersion, perfectly matched layers

and absorbing boundary conditions) can get considerably more complex and is

frequently doctoral dissertation material. For the scope of this thesis and in order

to understand the value of the hybrid technique this level of indulging in FDTD

suffices. The last thing we need to look at is the CPU time and we will be equipped

with all the necessary tools.

The number of time steps the algorithm has to run is some fractional power of

the volumetric grid cells (N). In our photonic devices as we will later see, there is

a forward propagating pulse from the input to the output of the device so that

the number of iterations would be -N1/ 3 for a cubic simulation domain. At each

time step we have to update -N components. Assuming no spatial parallelization,

the total computational burden for large problems is -N 4/ 3 and decreases as we

introduce the level of spatial parallelization to a minimum of -N 1 /3 . Our TM-

FDTD method will push this boundary lower, for a particular device class

(assuming any available level of spatial parallelizability) and that analysis will be

carried out in chapter 5.

We have already discussed that the computational burden of FDTD scales

adversely with the number of volumetric grid cells (computational domain size)

but that it is spatially parallelizable. This makes the technique highly suited to
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advanced computing solutions that employ extreme resources, memory and

parallelization such as supercomputers and GPU clusters [38].

35



t -, C-, -> (-4~-vi 7v'><~ I (ThT

36



-~ ------ ~-. -

Chapter 3

Background on Eigenmode Expansion and Transfer Matrices

3.1 Modal Solutions to Dielectric Waveguide Problems

In the previous section we saw that Maxwell's curl equations can be discretized

in time and space to yield a numerical setup for solving electromagnetic

propagation directly, taking into account E and H. Recall that the wave equation

(i.e. (V2 + k 2 )E = 0 for an isotropic plane wave) for a particular field (E or H) can

be obtained by embedding Gauss' law into the curl equations [39], [40]. For an

arbitrary dielectric profile, the wave equation might not have analytical solutions

as is elaborated on in Figure 4. In the previous section we bypassed the wave

equation and focused exclusively on the dynamics of the curl equations which

are responsible for propagation. In this section the spotlight is given to Gauss'

"effective
boundary"

nhigh. 
7h igh

fl/oww

Figure 4: a circular waveguide of high refractive index (left) and a
rectangular waveguide (right). The left waveguide adheres to
analytical solutions (Bessel functions) but the right does not.
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law and the wave equation. In this problem, the temporal and spatial domains

are separable, and we care about the latter.

For certain transverse profile dielectric geometries analytical solutions to this

wave equation can be obtained. But for silicon on insulator SOI waveguides on

a silicon wafer that adhere to rectilinear geometries, a numerical discretization

is required. Because the acquisition of modal solutions is vital to Eigenmode

Expansion we will cover the math extensively in this section, provide the right

intuition and also define the word "modal" as the solution to an eigenvalue

problem.

For the problem that will be of interest to us we make the following assumptions.

The permittivity is spatially dependent, but isotropic. The permeability is not

spatially dependent, but constant isotropic. We assume linear constitutive

relationships for the electric displacement and the magnetic flux. The waveguide

exhibits no longitudinal variation. This is summed up in the equations below:

* Ax = Y x = z = P z # P(XYZ)

* Ex = -y Cz = E(, Y, Z)

* D =

*Bzft
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We are interested in obtaining the solution to a dielectric waveguide that exhibits

no longitudinal variations, hence the consideration of only the transverse profile.

The boundary conditions allow for two kinds of modes, bound and radiation.

Bound modes are guided by the core, whereas radiation modes are strictly

speaking guided by the boundary of the simulation window. It will be important

to keep this distinction in mind. Once the final solution is obtained, only modes

whose effective index (Ao/27r) is greater than the background cladding index

will be accepted.

If we denote by VT the transverse component of the Del operator then it can be

shown that the transverse and longitudinal wave equations are given by:

VT VT6 4

jc

Depending on the coordinate system that we are in (Cartesian in our case) these

equations can be expanded in different discretizations. This expansion will

always reduce to an eigenvalue problem such as the one below:
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P: Propagation
Propagation Constant

Although this is not as critical for Eigenmode Expansion per se, since in our

hybrid scheme we will be launching these eigenmodes as sources into FDTD, we

desire to discretize on the Yee grid, as is shown in Figure 5 for a small domain.

Modal Field Grids ex, ey

boundary
7/2

3

domain
0 i 0E{ 1. 2}

j 0, 1, 2}

I

I0

1
-1 - - 0

1 3 5
1 - 2 -

2 2 2

7
3 -

2

Figure 5: Sample solution domain that we will use as an
example in this section and develop the complete
eigenvalue matrix for.
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The various operators in the propagation matrix are solved for and illustrated

below:

+1,jexli+1,j - ijeaXi][ Ax2 1
ijexlij - Ei-,je x li-,j][ Ax2

e+ +l - 2exu + exli,j-1 2+ +Ay2

1
P VYC i = i + 1 [

- 1

1
&i 1--2

-ij-leylij-1
AY2

eyli+,j - 2e + eyli-1,j 2+Ax 2  +w ey

Ei Ij+ I ey i ,j+1 - +i-j--Ieylii-
2 2 2A2 2 2y

eyIi . j 1- ey Ii+ i -
2 2 2 +4

eyli-1j+i -eyiI

AxAy

DP~ .
1 + I - Ei- ,j+i Ci-I j+!

1 ,J + 2
1

2 1 2

AyAX

P ex - 1

I

AyAx

AyAx

ex Ii+ ij-i - ex i- -
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Finally, as shown above, the eigenvalue equations need to be evaluated at the

proper grid location. In order to construct a sample matrix for the eigenvalue

problem and show its structure it behooves us to rank the equations based on

the pixel location:

1 (
) -2j

0~3 ( ~-2 j

(i4i 1 J2

C i- -
i 2 i
fij A 1

4 (C'd ;1 -2

5 (A 2

2 2 2 11+1

) +

li +.j 1

6 (1 j x~

7

8 A

S2 xy) CY 1j

fii

9 ( C ;I~ 2 1 1~
- AXAy)

I
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i lj C)I

-1 j

Cj.j+ I A 3I:Sy) CX i-1. -Ii

Ci~71 AXAS 7J AXAYq 2 i+-J+

C
A;.

'C

(2
I

A2 ) ('C~j.

(A2) eC 1i+

+ IAY21- 2.-t 1 2 2
ciJ , Ax 2

+8
+2

) y 'I .. .

A12) Cy-,+3

Hopefully as we are about to conclude this section, this has made the math

substantially more tractable although it does require some time on the part of

the reader. Our end goal is now to provide the example of an eigenvalue matrix

in order to show the unique sparse block diagonal structure of such a matrix.
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The above matrix N shows the structure of the matrix for the eigenvalue problem

using perfect electric conductor boundary conditions. The linear system is

displayed below:

o1

3j~ 2 112

y - 2

YI.

I 0 yI2.
(-Y2 4 lo

Y 1 Uy

Y. I. Y 1.

Y2. Y 12.

L y 2.. ,IJ LY12. J
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The matrix is evidently sparse and can be handled efficiently using sparse linear

solvers. An example for a bound optical eigenmode, the eigenvector of a linear

system such as the one above we provide Figure 6.

It

71hiyga

A

-1 0 00
y(mic rons)

y (n wi r ons

I

' 09

-0 7

0!

A I- CI
1 0

v(nm C rons)

Figure 6: Optical TE eigenmodes of 0.4 x 0.8 um silicon
nitride slab waveguide on glass. We observer that as the
frequency decreases, the mode expands. Careful
considerations must be made for the simulation
window to ensure that it contains the bulk of the mode.

3.2 A Vector Space Picture and Transfer Matrices

Once the optical eigenmodes have been acquired numerically they need to be

understood in the context of a vector space. Optical waveguide theory suggests
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that the electric field distribution at the waveguide cross-section can be

decomposed in terms of the eigenmodes [41], [42]. The optical eigenmodes form

a complete and orthonormal basis for the vector space in which all transverse

field distributions lie:

M

E(x, y, z) k(a ikz + bke ikz) kX, Y)
k=1

A similar relationship holds for the magnetic field. If optical eigenmodes are to

be viewed as a complete and orthonormal basis, we need to define a dot product

relationship:

f e. X h* -dA = 6rk

where 6 mk is the Dirac delta function that equals 1 when m and k are equal and

0 otherwise. Eigenmode expansion uses tangential boundary conditions on the

electric fields at an interface where there is numerically-induced dielectric

discontinuity, in conjunction with the orthogonality condition to compute

scattering matrices for the device relating all the significant fields [43], [44].

Scattering matrices and transfer matrices that will be of particular interest to us

later are equivalent and interchangeable.
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Chapter 4

Background on FDTD Speedup Approaches

4.1 The Segmented Finite Difference Time Domain (FDTD) Method

The Segmented FDTD method perhaps bears the most resemblance to the

technique developed in this thesis [45]. According to the Segmented FDTD

approach, the simulation window is partitioned into linear blocks as shown in

Figure 7.

DFT recording

DFT recording

DFT recording

DFT recording

/

/Ji
K~) TD pulse

reconstruction

TD pulse
reconstruction

TD pulse
reconstruction

Figure 7: Segmented FDTD diagram and simulation domain partitioning. Discrete
Fourier transform (DFT) flux monitors at the end record the information required to
completely reconstruct the optical pulse, to be launched in the next simulation etc.
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Segmented FDTD then records the Discrete Fourier Transform at the output of

each block. By using inverse Fourier techniques it is possible to reconstruct the

time domain pulse and seamlessly launch as the input source to the next block.

This creates the effect of a net seamless propagation.

Segmented FDTD reduces the CPU time by a factor of 1/ K where K is the number

of blocks. However, this technique does not provide temporal parallelization as

the TM-FDTD method does. In order to simulate the k+ 1 block we need to wait

for the k block to finish.

4.2 Sparse FDTD and Pulse Tracking Approaches

Another popular approach to speed up FDTD with relatively low application

specificity consists of implementing a sparse time domain algorithm [18], [46].

As Figure 8 shows, frequently in propagation problems the intensity of light is

heavily located.

Figure 8: Tracking an optical pulse. Not all
points in the simulation domain need to be
updated at every time step.
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A pulse tracking approach is indeed very insightful and can be automated. But

designing specific algorithms requires some intelligence and fine tuning to the

problem at hand. The basic concept is to not update the fields at all N volumetric

grid cells at every time step, but rather to update only the points that are likely

to matter. This can be determined by looking at the previous field value at that

particular point. If the optical intensity is above a certain threshold, then update

it, if not, then don't bother. As the pulse propagates, the classification of

significant and insignificant points shifts as well. At the forward edge of the

effective sparse simulation domain, some points will barely make the threshold

and get updated. These points now contain a higher field value. It is wise to have

the algorithm update a vicinity around those points as well. At the next time

step, some other, more forward points will barely make the threshold etc. At the

back edge of the effective simulation domain, we have the opposite effect. Some

points that got updated will now have a lower value that might not make the

threshold and these points will thus get cut in the next updating session.

Note that the above illustration of sparse FDTD describes a scenario that has in

mind an optical pulse propagating along a straight waveguide, but it is not

difficult to appreciate that there is ample room to extend it to a variety of

problems and that many levels of sophistication can be employed in effectively

classifying the significant and insignificant points. Interpolation schemes or local

low pass filtering may be considered for greater accuracy.
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Chapter 5

A Hybrid FDTD-Transfer Matrix Method: (TM-FDTD)

5.1 TM-FDTD Technique Formalization

A typical FDTD simulation consists of propagating an optical pulse within the

simulation window as shown in Figure 9. This pulse is typically a spatial

eigenmode with a Gaussian temporal envelope centered at some carrier

frequency e.g. 193.55 THz for Telecomm. The FDTD code propagates this mode

until the light gets absorbed by a perfectly matched layer at the end of the

simulation window. By placing flux monitors at the beginning and at the end of

the simulation window it is possible to determine the amplitude and phase

response of the device over the entire simulation bandwidth through the use of

overlap integrals.

Output Flux Monitor

Transverse Eigennode
Input Pulse

Input Flux Monitor

Figure 9: FDTD setup example. Figure previously
published by author in [47]
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The hybrid TM-FDTD method that we are proposing partitions the simulation

window into K blocks of equal dimensions aligned along the propagation axis as

shown in Figure 10.

L Alg
3 L

.luiidl 1011l

Flux N Dielecl r-ic St'ruct'lire

PaSiiTcs n indow

(El backgroud )

rithim Flow

Owfor k 1:K

for A

colIIte l

Figure 10: Algorithm flow depicting the hybrid TM-FDTD. The structure displayed
here represents some adiabatic photonic structure. The locations where the
simulation window gets cut are indicated by the junction planes. M denotes the

transfer matrix and C1 are the orthonormal eigenmodes.

At every junction using a full vectorial mode solver we obtain the eigenmodes of

that cross-section that are necessary to resolve the field distribution in the

transverse plane. For every block every front eigenmode is launched into a

separate FDTD simulation for that particular block. Under adiabatic

assumptions, the eigenmodes suffice to form a complete and orthonormal basis
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for resolving the fields at the junctions and are used to decompose the flux

monitor content. By obtaining the transfer matrix involving all of the modes for

a particular block, we obtain the complete response of that section of the device.

The transfer matrices can be multiplied together to yield the complete response

for the entire device. Figure 11 shows the most general framework for application

of this method. In determining which modes matter, model order reduction

techniques can be of high relevance [49].

I I

-- b

NIN

E(- E.-f . bY

1 1 1 1 1

M, ---1- M2 MK

Figure 11: N eigenmodes each forward (+) or backward (-) propagating. Decompositions
occur in the [zj-Az, zj+Az] longitudinal vicinity of each junction.

At a particular junction there are N eigenmodes each of which could be either

forward or backward propagating. Referring to the full device the following

equations hold approximately in the longitudinal vicinity of the corresponding

junctions:
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(X. Y~ ) = ~ ..2~5 (X. y)(bW

with am, bm denoting the modal amplitudes. Analogous relations hold for each

block individually and at the junction itself we set:

fmr f~m

with the U's carrying the amplitude and phase that scales the normalized mode.

The eigenmodes e are normalized based on the definition of their inner product

over the transverse plane. In the context of photonic FDTD simulation, the

temporal dependence is given by: X(t) = G(t)e-'wot where G(t) is a pulse

shape and LO is the carrier frequency. For a particular mode being launched and

assuming no reflections for mathematical simplicity (they are very weak in slowly

varying devices) we can express the content of the input and output flux monitors

as follows:
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with H(jO) being the temporal frequency response. The

launched mode into a particular mode of the back plane can be determined by

the ratio of the following overlap integrals:

I bk,(.'I, Y) C (xo i)

(fn.(x

(- dy M (w)

*zdxdy (T
= T (k ) (W)

Under the assumption that the vector space spanned by the two lowest order

forward propagating modes is sufficient, the device is characterized by the

following relation:

(+) -P11)

.(+) T(21)-2

T(12) U(
(2 +fi)

L f2 j

I

Typically a transfer matrix will relate both forward and backward propagating

waves. For a single mode we would have:
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where these elements can also be computed from modified overlap integrals. By

calculating the overlaps with the reflected modes one obtains a reflection

coefficient 1 instead of a transmission coefficient T. The transfer matrix can

then be computed as follows:

A (12)

)f (21)

S(22)

T - FF /T

-F/T

1 /7

It is now simple to obtain a complete relation between forward and backward

propagating waves of multiple modes using a more general transfer matrix. For

two modes the complete transfer matrix is given by:

W'

1,1)
fi

(21)
11 2

Jibi
(22)

Sf1hn

('12)

f fIb2

(11)A12 1 

(21)

f2 b2

Ai'l "
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f2 h2

f 22
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where the superscripts show the analogous element in the single-mode matrix,

while the subscripts show the modes involved in the calculation of that element.

Finally, the transfer matrix is specific to frequency. The complete transfer matrix

is given by a tensor product over all frequencies.

M = ll.M = ®e (M -M - ... - MIV )

5.2 Computational Analysis and Experimental Verification

Performing the TM-FDTD method proposed in this thesis yields a clear advantage

to regular FDTD. In the 3D-FDTD simulation the CPU runtime scales as

p n - kmin where p is the number of grid cells in the transverse dimension,

kmin is the number of time steps required for the pulse to propagate to the end

of the simulation window and n is the number of grid cells along the longitudinal

dimension. We will assume for our application that the transverse plane is fixed

so that only n - kmin is of concern. By assuming a uniform group velocity for the

pulse we conclude that kmin - n which gives us a net scaling of -' n2 of regular

FDTD as applied to this problem.

When K blocks are simulated sequentially our method has a computational

scaling of K - n 2 /K 2 r,,.. n 2 /K, an improvement that is linear in the number of

blocks, and quadratic if temporally parallelized. Figures 12 and 13 provide a

diagram and results.
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Figure 12: Geometric picture of computational speedup provided by the hybrid TM-
FDTD. Overhead due to the computation of the eigenmodes and the overlap integral can
be neglected for large devices, and reasonable K making this the correct asymptotic
approximation.
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Figure 13: Computational speedup experimental confirmation. The left figure merely
serves to match the curve. A simple straight waveguide was used. The right figure
presents computational results acquired for an actual polarization rotator of length
approximately 17 um.
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5.3 Implementation for a Polarization Rotator

We conclude this section of the thesis by presenting the results for the

polarization rotator [48] displayed in Figure 14. An impressive accuracy to two

significant digits is attained for K=4. A commercial-grade simulator based on the

0.8.8mp{

0.8 p

0.4 p~m

Figure 14: Diagram of device used in simulation.

finite-difference time-domain method [21] was used to verify the results, yielding

high confidence for the validity of the technique across "black-box" simulation

platforms of which Lumerical is the industry leader. Figures 15-18 contain

results that demonstrate the convergence of pure FDTD and TM-FDTD.
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Transfer Coefficients Comparison
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Chapter 6

Conclusions

One can always pursue purely modal techniques, and it is unlikely that a time

domain technique, let alone FDTD, can outperform the fastest modal technique

(where sparseness can be heavily exploited) in terms of CPU runtime. However,

the photonics designer has great confidence in 3D FDTD. A 3D FDTD verification

of a device serves undoubtedly as the gold standard in the community. As far as

eigenmode expansion is concerned there are some even subtler points to be

made.

Variants of Eigenmode Expansion make some implicit assumptions about the

coupling of the modes, and do not directly solve for it. Because the longitudinal

sampling can be relatively large, the boundary conditions the technique applies

at the discontinuous interfaces are somewhat artificial. It assumes that overlap

integrals between modes of different cross sections are an accurate predictor of

the state evolution as the light propagates through that segment. It thus "forces"

the transfer matrices. It projects one orthogonal basis onto another orthogonal

basis ignoring that the latter is meant to resolve a different vector space. The

latter orthogonal basis is actually supposed to be considered in a tensor product

space with the former. Our hybrid TM-FDTD technique does exactly that, it

respects the tensor product. All overlap integrals are carried out at a particular

cross section between the eigenmode expansion monitors and the DFT flux
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monitors of that cross section. Two different cross sections are linked only

through a complex number division, necessary to yield the correct amplitude

(power) and phase for the transfer coefficient, but following a dimensional

reduction to 1D and not before. That is thanks to FDTD which comes to fill in

the step that EME attempts to skip. The designer could be left wondering if the

light would in fact dump some of its power into a component not resolvable by

the chosen set of modes. This hypothetical component could not simply be tossed

away, although it would be treated like that in Eigenmode Expansion. As this

hypothetical component evolves its state, propagating through the device,

coupling could be exhibited back into the chosen set of primary eigenmodes so

that the power is "returned".

FDTD would handle a case like this quite naturally without a problem and it will

always guarantee the correct transfer matrix from the beginning (external input)

to the end (final output) of the device. It is true that a hybrid technique such as

the one we are proposing also risks losing some of this "spurious power" at the

junctions, but handles the remainder of the simulation volume naturally and

rigorously and is faster than performing an FDTD simulation for the entire

device. Again, we can't have our cake and eat it too! Any simulation technique

that attempts to reconcile purely modal and time domain techniques will exhibit

the advantages of one and inherent some of the disadvantages of the other.

Tradeoffs are inescapable but the trick is to get the best out of both possible

worlds and that's what this thesis is all about. This drives the discretization to

be exceedingly small, but if the discretization is made too small then it is not at
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all hard to end up with an EME simulation setup that is slower than a carefully

chosen FDTD setup for the same device.

The segmented FDTD method is similar to our proposition, with the exception

that we extend the formalism to suit situations where it is desired to acquire the

transfer matrix. More importantly though, our technique introduces temporal

parallelizability which is new to an FDTD based technique. But even more

importantly, the segmented FDTD method can be combined with our technique

to yield even greater speed up. The same holds true for the sparse FDTD.

Finally, future work should involve a thorough error analysis on the one hand

as K increase and an exploration of the adiabatic frontier to attempt to extend

the range of devices that this technique is applicable to, or, understand why it

cannot be extended. We have shown already that it works for short device which

are more likely to break the adiabatic limit, but certainly more parameters can

be varied here.

In conclusion we have demonstrated, and laid forth the formalism for a hybrid

Transfer-Matrix FDTD technique that drastically speeds up simulations in

adiabatic photonic devices, is combinable with other techniques, and introduces

the concept of temporal parallelization to FDTD.
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