
Acquiring Minimalist Grammars via Constraint Satisfaction

by

Sagar Indurkhya

S.B., C.S. M.I.T. 2012

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

July 2015

Copyright 2015 Sagar Indurkhya. All rights reserved.

The author hereby grants M.I.T. permission to reproduce and to distribute publicly paper and electronic
copies of this thesis document in whole and in part in any medium now known or hereafter created.

Author:

Certified by:

Accepted by:

--rSignature redacted____
Sagar rd6hya, Department of Elelfical Engineering and Computer Science

July 23, 2015

Signature redacted
Rober{ C. Berwick, Prof. of Computational Linguistics, Thesis Supervisor

July 23, 2015

Signature redacted
Prof. Christopher Jerman, Master of Engineering Thesis Committee

Acquiring Minimalist Grammars via Constraint Satisfaction
By Sagar Indurkhya

Submitted to the Department of Electrical Engineering and Computer Science

July 27, 2015

In Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering and

Computer Science

ABSTRACT
This thesis shows how to algorithmically construct a Minimalist Grammar lexicon that produces a specified set of

MG derivations. This thesis introduces a mathematical structure, a Collection of Constraints, that captures the

logical constraints, including those that arise as a consequence of the shortest move constraint, imposed upon the
syntactic features of lexical items as they are merged together in a derivation produced by a given Minimalist
Grammar lexicon. Methods are then developed that (a) map Minimalist Grammar lexicons to be Collections of
Constraints, (b) map Collections of Constraints to Minimalist Grammar lexicons and (c) may combine two or more
Collections of Constraints into a single Collection of Constraints. The thesis then demonstrates via a series of
examples, framed as a simplified acquisition process, how these methods may be used together to iteratively
construct a Minimalist Grammar lexicon starting from an empty Collection of Constraints and a sequence of
Minimalist Grammar derivations, such that the constructed lexicon is able to generate the set of derivations.

3

4

Dedication

This thesis is dedicated to my parents, Gopal and Vandana Indurkhya.

5

6

Acknowledgements

I would like to begin by expressing gratitude to my dear family for their love and support throughout the

completion of this thesis. I would also like to give a special thank you to several friends and colleagues

for their advice, suggestions and encouragement: Apoorva Murarka, Ramita Arora, Dr. Anselm Levskaya,

Austen Heinz, Prof. Gerald J. Sussman, Dr. Thomas F. Knight and Prof. Patrick H. Winston. Finally, I

would like to express my deep gratitude to my advisor, Prof. Robert C. Berwick, both for introducing me to

the subject of Minimalist Grammars and for patiently providing me with guidance, motivation and insight

throughout the completion of this thesis.

7

8

Contents

1 Introduction

1.1 Background

1.2 Minimalist Grammars . . .

1.3 Outline of the Thesis

2 Combining MG Lexicons via Constraint Satisfaction

2.1 Constraints between Syntactic Features .

2.2 Collections of Constraints .

2.3 Constructing a Curated Lexicon from a Collection of Constraints

2.4 Correspondences between Classes of Lexicons and Collections of Constraints

2.5 Combining Collections of Constraints .

3 Acquisition of an MG Lexicon

3.1 The cat will eat a mouse.

3.2 Will a cat eat the mouse?

3.3 Which mouse will the cat eat?

3.4 Which cat will eat the mouse?

3.5 The man will think that the cat will eat a mouse. .

3.6 Will the man think that the cat will eat a mouse?

3.7 Which mouse will the man think that the cat will eat?

9

11

12

14

16

19

20

22

24

29

30

33

. 3 5

. 38

. 4 3

. 4 8

.. 53

.. 59

.. 65

4 Conclusion 71

4.1 Sum m ary . 71

4.2 Future W ork . 72

10

Chapter 1

Introduction

This thesis shows how to algorithmically construct a Minimalist Grammar (MG) lexicon that produces a

specified set of MG derivations.

I begin by establishing a mathematical framework in which two (or more) MG lexicons may be combined
to produce an MG lexicon that generates a superset of the complete derivations generated by each of the

constituent lexicons. I will introduce a mathematical structure, a Collection of Constraints, that captures

the logical constraints imposed upon the syntactic features of lexical items as they are merged together
in a derivation produced by a given lexicon.1 After developing a number of properties that this structure
exhibits, I will provide and analyze both an algorithm, P, for computing the Collection of Constraints from
an MG lexicon as well as an algorithm, Q, for constructing an MG lexicon from a Collection of Constraints.

I will then establish a bijection between the set of classes of curated MG lexicons 2 and the set of Collections

of Constraints that may be computed from a curated MG lexicon.'

I will then establish a procedure J that (a) determines whether it is valid to combine several given
Collections of Constraints into a single Collection of Constraints and (b) if such a combination of constraints

is valid computes the combined structure. Thus, given a set of MG derivations, I will map each derivation to

a Collection of Constraints encoding the constraints imposed by that derivation. If it is possible to combine
these structures 4 (i.e. the specified set of derivations is not inconsistent) then they are combined into a
single Collection of Constraints that encodes the constraints imposed by all of specified derivations. Finally,
from this aggregate structure an MG lexicon may be constructed that is able to generate the entire set of

specified derivations.

'In this thesis I will restrict the MG lexicons under consideration to (a) those that do not have any redundant phonetic forms
and (b) those in which every lexical item participates in at least one complete derivation. See Definition 8,

2I will then establish an equivalence relation between lexicons: a Class of Lexicons. Two lexicons are said to be in the same
class if and only if they produce the same set of complete derivations. See Definition 13.

3
The maps for this bijection are provided by P and Q.4One particularily interesting reason it may not be possible to combine several MG lexicons is if they have conflicting anti-
licensing constraints, which are constraints encoding the restrictions imposed upon the merge operation by the shortest move
constraint. An advantage of the Collection of Constraints representation is the set of anti-licensing constraints are explicitly
enumerated and accessible; hence, validating that licensing and anti-licensing constraints do not conflict is a relatively simple
operation.

11

' "The cat will eat a mouse."

* "Will the cat eat a mouse?"

* "Which mouse will the cat eat?"

* "Which cat will eat the mouse?"

* "The man will think that the cat will eat the mouse."

* "Will the man think that the cat will eat the mouse?"

* "Which mouse will the man think that the cat will eat?"

Figure 1.1: The set of sentences produced by the seven derivations enumerated in Chapter 3. The methods
developed in Chapter 2 will be used in Chapter 3 to construct a lexicon that may generate the derivations
associated with these sentences. The choice of example sentences follows Winston's principle that a learner
may only learn that which he almost already knows; the sentences the learner encounters have been carefully
selected to differ only slightly from one to another in their respective set of syntactic feature constraints.

I will then exhibit an example of how such an MG lexicon may be constructed. I will provide a set of

MG derivations that correspond to the sentences in Figure 1.1 and compute the Collection of Constraints for

each derivation. I will then aggregate the Collections of Constraints into a single Collection of Constraints,

and demonstrate how the MG lexicon in Figure 1.2, which is able to generate all of the derivations in

the specified set, may be constructed from the aggregate Collection of Constraints. This process may be

interpreted as a simplified acquisition process in which the learner begins with an empty Collection of

Constraints, corresponding to no prior knowledge, and is then be sequentially exposed to a series of MG

derivations, acquiring new knowledge in the form of accumulating new constraints. In keeping with this

interpretation, I will carefully point out when new constraints may be deduced only from the combination of

two Collections of Constraints and which new MG derivations may be produced due to the introduction of

additional constraints. I will also use this acquisition framework to investigate whether the (linguistically)
appropriate generalizations may be learned: specifically I will study the phenomenon of successive cyclic

wh-movement.

1.1 Background

The Minimalist Program (MP) [3] puts forward the hypothesis that the human language faculty has the

minimalist properties of perfection (i.e., universal grammar has a computationally optimal design) and

economy (e.g., economy of derivation and representation). Inquiry guided by MP studies what aspects of a

theory of generative grammar may be explained by the minimalist properties of the human language faculty,

a hypothesis in part inspired by arguments from biolinguistics. ' Some aspects of early theories of grammar
5 Prior the Minimalist Program, generative grammar research cumulated in the Principles and Parameters framework, in which
theories of generative linguistics are described by a set of principles (i.e. grammatical rules or laws) that are universal to all
natural languages as well as a finite set of binary parameters that allow for the observed diversity in the syntactic structure
of natural languages. From a philosophical perspective, the development of the Minimalist Program reflects a shift from
addressing Plato's problem, which examines how we may account for our tacit knowledge of language despite a poverty of
relevant primary linguistic data, to Darwin's problem, which addresses the question of how the faculty of language arose within

12

a:: = zl, ~ z2

cat:: ~ z1

eat :: = z2,~ z6

man:: ~ zI

mouse:: ~ Z1
cC:: = Z3,+ that =zAz4

C: = Z3, +z8, +Z9, Cthat2 ::= z3, +z7, - z4

Ec2:: = z3, +z8, C2, z9 the =z1, z2
think:: = z4, z6

which:: = zl, ~ z2, -z9

which2:: = zl, z2, -z7, -z9

will:: ~ z5, -z1O

will2:: ~ z5, -z10, -z8

Figure 1.2: This lexicon is able to generate all of the specified derivations that may be found in Chapter 3.
Note that due to some restrictions on the form of the lexicons I will consider in this thesis, lexical items
with the same phonetic form must have their phonetic forms made distinct in an artificial manner (via
indices/subscripts). (See Definition 8) Note that lexical items with the same syntactic features tend to also
fall into the same part-of-speech classes. For example, the lexical items for "the" and "a" both have the same
syntactic features and thus they are effectively interchangeable within derivations generated by this lexicon,
which is expected as they are both determiners. Similarly, the lexical items for the nouns "man", "cat" and
"mouse" all have the same syntactic features and are interchangeable. Also note that lexical items that are
variations of the same phonetic form (e.g. cc, EC 2 and Ec 3) have syntactic feature sequences that are slight
variations of each other; this demonstrates that they are related but not identical in functionality (and thus
not freely interchangeable). The procedure by which this lexicon is assembled from a set of derivations is
worked out in detail in Chapter 3.

13

developed within the MP have been modeled by Stabler in a formalism known as Minimalist Grammars.

[15]

Minimalist grammars are a class of formal languages that are mildly context-sensitive 6 [14] and have

been shown to be strongly equivalent to multiple context free grammars. [9, 18] The formalism has been

extended to handle linguistic phenomenon such as head movement, affix hopping and adjunction. [5, 7, 16]

Extensive work has been carried out in developing parsing methodologies for both the standard MG formalism

(including top-down, bottom-up and chart parsing) [9] as well as various extensions of the formalism. [19]

Minimalist Grammars have also been assigned probabilistic models, both directly and via translation to

multiple context-free grammars. [8, 10] Kobele has developed a compositional semantics for the standard

MG formalism. [12] It has been shown that constraints upon derivations that fall within the domain of

second order monadic logic may be encoded as extensions of the MG feature system. [6]

1.2 Minimalist Grammars

This section provides a formal definition of Minimalist Grammars following the chain-based model as set out

by Stabler and Keenan in [17] along with an example of both a lexicon and a complete derivation produced

by the said lexicon to illustrate the definitions laid out in this section.

Definition 1 (Syntactic Feature)
A syntactic feature is a symbol (often referred to as the underlying or base symbol) that belongs to one of

the four disjoint subtypes: selectors, selectees, licensors and licensees. A feature that is a selector (written

as = xi) may select a feature that is a selectee (written as - xi). A feature that is a licensor (written as

+x) may license a feature that is a licensee (written as -xi). 7 El

Definition 2 (Chain)

A chain is defined as a a phonetic form paired with a sequence of syntactic features to be consumed (via

feature matching) in order. A chain that has not yet had a syntactic feature consumed is a lexical chain,

which is indicated by a double-colon between the phonetic form and syntactic features. (e.g. [the:: = x, - y])

A chain that has already had one or more of its syntactic features consumed is a derived chain, which is

denoted by a single-colon between the phonetic form and syntactic features. El

Definition 3 (Lexicon)

An MG lexicon is a tuple (E, X, Lex) where E is a non-empty alphabet, X is a finite, non-empty set of

syntactic features and Lex is a non-empty set of chains of type [E* :: X* * X+]. For an example of a lexicon

see Figure 1.3. E

the species.6 It has been proposed that mildly context sensitive grammars as a class of grammars characterize the complexity of natural
languages. See [11]

7 Note that licensees are traditionally written without any prefix symbol (e.g. xi). Here we assign a distinct prefix as it will
frequently be necessary to distinguish between the underlying symbol (xi) and the syntactic feature -xi.

14

Ec:: = x10, +x7, +x6, C eat:: = x2, ~xz4

ET:: = 3, = 4, +x5,= 9, ~ x1O will:: - x3, -x5, -x7

mouse:: ~ A cat:: ~ x8

which:: = xA, x2, -x6 the:: = x8, ~9

Figure 1.3: A lexicon from which the interrogative "which mouse will a cat eat?" may be derived. Every
syntactic feature in this lexicon, with the exception of the special symbol C, may select or license only one
other syntactic feature. Hence, this lexicon can generate at most one derivation; in fact, this lexicon exactly
one complete derivation (see Figure 1.4). Given a set of such lexicons, the methods developed in Chapter 2
may be used to combine these lexicons into a single lexicon (see Figure 1.2).

Definition 4 (Derivation Term)
A derivation term is a non-empty ordered list of chains. The first chain designated as the head of the term.
A derivation term may be constructed by recursive application of binary composition operation, merge. E

Definition 5 (Merge)

The merge operation is a recursive function that attempts to combine two derivation terms to produce another

derivation term. In the context of derivation terms being recursively constructed from a common collection

of lexical atoms, the merge operation has two disjoint subcases: either both arguments of merge are disjoint

from one another, in which case the operation is denoted external merge, or one of the arguments is a subset
of the other, in which case the operation is denoted internal merge. 8

Let s,t G E*, f,g G X, , E X*, 6 C X+. Furthermore, al,...,ak and t1,...,t, are chains for 0 < k,l.
the separation of the phonetic form and syntactic features by the symbol . designates that the chain may be
lexical or derived). External Merge has three disjoint subcases (EM1 , EM2 and EM3), all of which involve
feature selection:

[s ::O f, 7] [t. - * ~EMI 1,..t

Ist:#, = f * -Y], ti, .. ,ti

s : * f, -y/, a ,,..., a k ft. , * ~ f, , L i, ..., I EMf,],a, --,Ce V)* f 6, 1, EM3
/s:#* f * -y], a,, .. , ak, It:0, ~ f * 6f 1, ... , t

The internal merge operation consists of the following two disjoint cases (IM1 and IM2) involving feature
licensing:

/s: : * +f, se s rrd aM ,reing1, ft: * -f, ai+ , , i mov
Its:0, +f * -Y], a1,,..., ai_1,,ai+1, ...-, ak

8-Internal Merge is sometimes referred to as Move, referring to the role it plays in enabling movement.

15

/s:0 * +f, -Y], al, ... , ai-1, ft:V), *-f, 61, Oi+1, ..., ak M
/s: , +f * -], ai, ... , ai 1, [t: 0, -f * -f, 6], ai+1, ... , ak

Both subcases of internal merge (IM1 and IM2) are assumed to be subject to the shortest move constraint

(SMC): licensing must be deterministic; that is, when a licensor binds to a licensee, it must be the case that

that is the only licensee to which it can bind. F

Definition 6 (Derivation)

A derivation is a logical deduction process in which a finite collection of lexical items (i.e. single chain

derivation term) are recursively combined via the merge operation into a single derivation term. A complete

derivation is a derivation in which the final derivation term has a single syntactic feature left to consume

and that feature is the special symbol C. L

See Figure 1.4 for an example of a derivation generated by the lexicon in Figure 1.3 that engages all three

cases of external merge and both cases of internal merge.

1.3 Outline of the Thesis

In this section I will give a brief outline of the remainder of this thesis.

In Chapter 2, I will first formally define the logical constraints that relate the syntactic features that

belong to the constituent lexical items of a lexicon. I will then define a mathematical structure, a Collection

of Constraints, that will encode these logical constraints. I will also derive a number of properties that hold

for these structures. (See Section 2.1) After that I will provide both a procedure for constructing a lexicon

from a Collection of Constraints as well a procedure for computing the Collection of Constraints for a given

lexicon. (See Section 2.2 and Section 2.3) I will then establish a bijection between classes of curated lexicons

and the set of Collections of Constraints that may be computed from an MG lexicon. (See Section 2.4)

Finally, I will describe conditions under which multiple Collections of Constraints may be combined to

form an aggregate Collection of Constraints and then provide a procedure for constructing such a combined

Collection of Constraints; this procedure will serve as the basis for the acquisition example in Chapter 3.

(See Section 2.5)

Chapter 3 provides an example of how, for a given set of MG derivations, an MG lexicon may be

constructed in an iterative fashion by mapping each derivation to a curated lexicon and then combining these

lexicons via the procedure J into an aggregate MG lexicon. Each section of Chapter 3 will introduce a new

MG derivation, map it to a Collection of Constraints and then combine it with the Collection of Constraints

that was computed in the previous section. In each section I will also map the aggregate Collection of

Constraints to an MG lexicon so that the reader has a clear picture of how the MG lexicon is being built

step by step. In particular, emphasis is given on studying how the learner may capture generalizations.

Finally, Chapter 4 provides a discussion of both the results derived in Chapter 3 as well as relevant topics

of interest for future investigation.

16

[the:: = x8,- 9] [cat :: x8]EM
[the cat: x9]

[which:: = x1,- x2,-x6] [mouse:: ~ x1]
[which mouse: x2,-x6] EMI

[eat:: = x2,~ x4] [which mouse: ~ x2,-x6 EM3

[eat: x4] [which mouse: -6]

[ET:: = x3,= x4,+x5,= x9,~ xlO] [will:: ~ x3,-x5,-x7]

[CT: = x4,+x5,= x9,~ x10] [will: -x5,-x7]

[E : = x4,+x5,= x9,~ x1O] [will: -x5,-x7] [eat : x4] [which mouse: -x6] EM2
[eat ET : +x5,= x9,- xO] [which mouse: -][will: -x5,-x7]

[eat CT : +x5,= x9,- xlO][which mouse: -x6][will: -x5,-x7]

[eat ET : = x9,~ xlO][will: -x7][which mouse: -x6 M

[eat ET : = x9,~ x10] [will: -x7] [which mouse: -x6] [the cat: x9] EM2
[the cat eat ET : ~ xO] [which mouse: -x6] [will: -x7]

[cc :: = xlO,+x7,+x6,C] [the cat eat ET :~ xO] [which mouse: -x6] [will: -x7]
[c the cat eat ET: +x7,+x6,CE [which mouse: -x6] [will: -x7EM

[EC the cat eat ET : +x7,+x6,C] [which mouse: -x6] [will: -x7]

[will cc the cat eat ET : +x6,C] [which mouse: -x6]

[will cC the cat eat ET : +x6,C] [which mouse: -x6]
[which mouse will cc the cat eat E : C]

Figure 1.4: This is the only derivation that may be generated from the lexicon in Figure 1.3. The sequence
of derivation steps is ordered by dependency. The spellout of this derivation is: "which mouse will the cat
eat?"

17

18

Chapter 2

Combining MG Lexicons via

Constraint Satisfaction

In this chapter, I will develop a mathematical framework for representing Minimalist Grammar lexicons in

terms of the constraints between the syntactic features of a lexicon. Section 2.1 establishes formal definitions

for these constraints and how they appear in complete derivations produced by lexicons. In Section 2.2 and

Section 2.3, I will provide procedures for both computing these constraints from lexicons and computing

lexicons from constraints. In Section 2.4, I will establish that these procedures are bijections. Finally, in

Section 2.5 I will develop a procedure that can recursively combine lexicons; this procedure will serve as the

basis for the acquisition example in Chapter 3.

19

2.1 Constraints between Syntactic Features

In this section I will introduce a restriction on the form of an MG lexicon (See Definition 8) and then define

four types of logical relations (constraints) between pairs of syntactic features: selection constraints, licensing

constraints, start constraints and anti-licensing constraints. (See Definitions 9-12) I will then illustrate how

these constraints may be derived from the external and internal merge operations that are part of an MG
derivation. Finally, I will define an equivalence class over the set of curated MG lexicons. (See Definition 13)

Definition 7

Given an MG lexicon L, the function G(L) denotes the set of complete derivations derived from L. 1 E

Definition 8 (Curated Lexicon)

An MG lexicon L of the form L = {pi :: x 1,i, x 2 ,i, x 3 ,i, ... , Xki,iji c [1 ... q]} is a curated lexicon if and only if

the following two conditions are met:

(a) The phonetic forms pi E P form a set.

(b) Every lexical item is a subconstituent of at least one complete derivation generated by L.

Since P is a set, the syntactic feature xj,j may be uniquely referenced by the tuple (pi, j). El

Definition 9 (Selection Constraint)

Let L be a curated lexicon with distinct syntactic features (px, i) and (py, j). Suppose there is a complete

derivation D produced by L such that there is a merge operation in D in which (px, i) selects (py, j). Then

the the tuple of syntactic features ((p_, i), (py, j)) is a selection constraint with respect to L. 0

Definition 10 (Licensing Constraint)

Let L be a curated lexicon with distinct syntactic features (px, i) and (py, j). Suppose there is a complete

derivation D produced by L such that there is a merge operation in D in which (px, i) licenses (py, j). Then

the the tuple of syntactic features ((px, i), (py, j)) is a licensing constraint with respect to L. 0

Definition 11 (Anti-Licensing Constraint)

Given a curated lexicon L with distinct syntactic features (px, i), (py, j) and (pz, k), if there is some complete
derivation D E G(L) in which the shortest move constraint prohibits (px, i) from licensing (py, j) because

(px, i) licenses (pz, k), then the tuple of syntactic features ((px, i), (py, j)) is an anti-licensing constraint with
respect to L. L

Definition 12 (Start Constraint)

Given a curated lexicon L with a syntactic feature (p, i) that corresponds to the special symbol C, if there is

no syntactic feature (p, i + j) for j > 0 in L then (p, i) is a start constraint with respect to L. LI

'Note that G(L) is an enumerable set.

20

Having introduced these four types of logical relations, I will now address how these relations may be
computed given a complete derivation, D, generated from a curated Lexicon L. (i.e. D E G(L)) Then each
derivation step 2 di E D imposes constraints upon the syntactic features involved in that step. In the case of
external merge, the derivation step takes the form:

([pi - i,i, ... , 7mi - X1,i * Xm.,i, ... , X k,i], ...) ([pj - X , , Xm 3 -1,j * Xm ,j, ... ik,j], ...)

[X * Xl,i, ..., mii * Xmi+1,i,..., Xki,i], ...)

where 1 < mi 5 ki and 1 < mj K kj. Since the syntactic feature (pi, mi) selects the syntactic feature

(p3 , m), the tuple ((pi, mi), (pj, m)) is a selection constraint with respect to L. In the case of internal

merge, the derivation step takes the form:

([pi Xii, ..., Xmj-1,i * Xmi, ... , Xki,i], ... , [p -Xi,j, ... , m 1,j * Xmij, , Xk..,])
([- X1,, X. i,i * Xmi+1,i, ... , Xki,i], ...)

where 1 < mi 5 ki and 1 < m K kj. Since the syntactic feature (pi, mi) licenses the syntactic feature

(pj, m), the tuple ((pi, mi), (pj, m)) is a licensing constraint with respect to L. Furthermore, as a result

of the shortest move constraint, we know that for h , j, the syntactic feature (pi, mi) cannot license the

syntactic feature (ph, Mh); hence ((pi, Mi), (ph, Mh)) is an anti-licensing constraint with respect to L.

In the case of both internal and external merge, if mi + 1 = ki and the syntactic feature (pi, mi) is the

special symbol C, then we say that the tuple (pi, mi) is a start constraint with respect to lexicon L.

The next definition is an equivalence class that captures the functional equivalence of two MG lexicons

that may be superficially different. (i.e. two lexicons may have very different symbols assigned to their

syntactic features but generate equivalent sets of complete derivations)

Definition 13 (Class of Lexicons)

Two curated lexicons L1 and L 2 are in the same class of lexicons (denoted L 1 OL2) if and only if they generate

identical sets of complete derivations. i.e. G(L 1) = G(L 2) 0

2
Note that since D is complete, D consists of a sequence of derivation steps, di, that must eventually terminate and thus the

sequence of steps is finite.

21

2.2 Collections of Constraints

In this section I will introduce a new representation: a Collection of Constraints (See Definition 14). Given a

curated lexicon L, the collection of constraints with respect to L captures the constraints between syntactic

features that are satisfied in G(L). I then outline a procedure for computing the collection of constraints

for a given curated lexicon. (See Procedure 1) Finally I prove a number of properties that hold for this new

representation. (See Proposition 1-3)

Definition 14 (Collection of Constraints)

Given a curated lexicon L, the collection of constraints with respect to L is the tuple (Cs, CL, CA, Cstart),

where Cs is the set of all selection constraints with respect to L, CL is the set of all licensing constraints

with respect to L, CA is the set of all anti-licensing constraints with respect to L, and Cstart is the set of

all start constraints with respect to L. Note that these constraints do not in any way involve the particular

linearization scheme introduced in subcasing external merge into the three subcases EM1 , EM2 , EM3 . L

Procedure 1 (Constructing a collection of constraints from a curated lexicon.)

Given a curated lexicon L, we may compute the collection of constraints with respect to L as:

U Xs(d), U XL(d), U XA(d), U XStart(d)
dEG dEG dEG dEG

where for a given complete derivation d E G, Xs(d) is the set of selection constraints with respect to L

observed in d, XL(d) is the set of licensing constraints with respect to L observed in d, XA(d) is the set of

anti-licensing constraints with respect to L observed in d, and Xstart(d) is the set of start constraints with

respect to L observed in d. This procedure is denoted P. 3 0

Next I will prove several properties that a collection of constraints must satisfy. Note that Proposition 2

and Proposition 3 are related to the structure of the lexicon.

Proposition 1

If there exists syntactic features (x, y) G CA with respect to a lexicon L, then the syntactic feature y must be

a licensee.

Proof: First note that in complete derivations, all non-leading4 chains of all derivation terms must even-

tually be resolved; since external merge only relates two different derivation terms, only internal merge can

resolve non-leading chains (via IM1 and IM2). Next, consider that by definition, anti-licensing constraints

arise from the application of the shortest move constraint within a complete derivation. The shortest move

constraint is a relation that holds between the leading chain (corresponding to x) of a derivation term, and a

non-leading chain (corresponding to y) from the same derivation term. Since the non-leading chain may only

be resolved via internal merge and the leading-chain has the licensor feature, hence the non-leading chain

must have a licensee feature (i.e. y must be a licensee). 0
3 Note that since P only depends on G(L) and not L directly, the procedure P may be viewed as mapping classes of lexicons to
collections of constraints.

4 The term leading here is used to indicate the first element of the ordered list of chains that a derivation term is composed of.

22

Proposition 2

Given a collection of constraints (Cs, CL, CA, CStart), the sets CS, CL, CA and Cstart are pairwise disjoint.

Proof: First I prove that the set CStart is disjoint with each of the sets Cs, CL and CA. Consider that

CStart is a set of syntactic features, whereas Cs,CL and CA are sets of pairs of syntactic features (i.e.

(selector, selectee) or (licensor, licensee)). Hence, the elements of Cstart are of a different type than the

elements of the sets Cs, CL and CA. Therefore, the set Cstart is disjoint with each of the sets Cs, CL and

CA.

Next I prove via contradiction that CL n CA = 0. Suppose that CL n CA # 0. Then there exist syntactic

features x and y such that (x, y) E CL n CA. Since (x, y) E CL, x and y must have the same underlying

symbol. (e.g. if (x, y) = (+f, -f) e CL then x and y both have the same underlying symbol f.) However,

(x, y) E CA implies that x and y cannot have the same underlying symbol without violating the shortest move

constraint. 5 This is a condradiction; hence, there is no (x, y) E CL n CA and thus CL n CA = 0.

Next I prove via contradiction that Cs n CL = 0. Suppose that Cs n CL , 0. Then there exists syntactic

features x and y such that (x, y) c Cs n CL. However, (x, y) E Cs implies that x is a selector and y is

a selectee while (x, y) E CL implies that x is a licensor and y is a licensee. Since selectors cannot also be

licensors and vice versa, and similarly selectees cannot also be licensees and vice versa, this is a contradiction;

hence, there is no (x, y) E Cs n CL and thus Cs n CL = 0.

Finally, By Proposition 1, if (x, y) E CA then y is a licensee (it is clear that x is a licensor); hence,

the same reasoning that demonstrated that Cs n CL = 0 also'demonstrates that Cs n CA = 0. Thus, I have

shown that the sets Cs, CL, CA and CStart are pairwise disjoint. l

Proposition 3

Given a collection of constraints Y = (Cs, CL, CA, Cstart), for i > 2, if the syntactic feature (x, i) appears

in some constraint in Y, then (x, i - 1) also appears in some constraint in Y.

Proof: The syntactic features in a chain form a linear sequence such that the syntactic feature (x, i) is

not accessible until after (x, i - 1) is consumed, except in the case of the initial syntactic feature. Hence, if

the syntactic feature (x, i) is observed in Y then (x, i - 1) must have also been observed in Y. 0

5
Note that by Proposition 1, (x, y) E CA implies that y is a licensee, so if x and y had the same underlying symbol then the

shortest move constarint would be violated.

23

2.3 Constructing a Curated Lexicon from a Collection of Con-

straints

This section focuses on developing a procedure, Q, that constructs a curated lexicon from a collection of

constraints. (See Procedure 3) In developing this procedure, I will introduce a new structure: the template

of a curated lexicon. (See Definition 15) I will also provide a procedure for computing the template of a

lexicon from a collection of constraints. (See Procedure 2) I will then prove that for any curated lexicon L,
Q(P(L))0L. (See Proposition 7)

Definition 15 (Template Lexicon)

Given a lexicon L, if the underlying symbols of the syntactic features are erased so that they are not specified,
then what results is the template of L, denoted T(L). Intuitively, the information contained in the template

of L consists of pairings of phonetic forms and sequences of syntactic feature types. D

The following proposition illustrates how the template of a lexicon affects the set of complete derivations

that lexicon may produce.

Proposition 4

Let L1 and L 2 be curated lexicons. If T(L1) | T(L 2) then G(L 1) f G(L 2) and P(L1) 7 P(L2).

Proof: I will first prove that if L1 and L 2 do not have the same set of phonetic forms then G(L 1) # G(L 2).
Let Ph(L1) and Ph(L2) be the sets of phonetic forms in L1 and L 2. If Ph(L1) 5 Ph(L2), then there exists

some p c Ph(L1) such that p Ph(L2) (or vice-versa). Hence, the phonetic form p will not appear in any

derivation generated by L2 . However, since L1 is a curated lexicon, every phonetic form in Ph(L1) has

an associated lexical item in L1 and that lexical item must participate in at least one complete derivation

generated by L1; hence p must appear in at least one complete derivation generated by L1 . Furthermore,

since p will not appear in any derivations generated by L 2 , constraints involving p will not appear in IP(L2).
Thus if Ph(L1) = Ph(L2) then G(L1) 7 G(L 2) and P(L1) $ P(L2).

Next, I will prove that if T(L1) $ T(L 2) and Ph(Li) = Ph(L2) then G(L1) # G(L 2). If T(L1) $ T(L 2)
and Ph(L1) = Ph(L2), then there exists some element t1 E T(L1) such that its corresponding entry t2 G

T(L 2) does not have the same form as a lexical item: either l1 and 12 have a different numbers of syntactic

features or the category of some feature in l1 is not the same as the category of the corresponding feature

in 12. In both cases, l1 will not be able to participate in a derivation in the same manner as 12, either due to

differences in (a) the total number of selection licensing operations that 11 and 12 can participate in or (b)

differences in how corresponding features (that have same index) in 11 and 12 particpate in feature matching

operations. (i.e. the third element of l1 might be a selector feature while the third element of 12 might be a

licensee feature)

Since L 1 is a curated lexicon, 11 must participate in at least one complete derivation generated by L1 (call

this derivation d). Then, although 11 and 12 share the same phonetic form, since 12 cannot be substituted in

place of l1 in constructing d, hence d G(L 2) and thus G(L1) $ G(L 2). Furthermore, both cases (a) and (b)

24

will result in differing sets of constraints in derivations in G(L 1) and G(L 2) involving 11 and 12 respectively.

Hence Y Y2 . E

Procedure 2

This procedure T constructs a template for a curated lexicon from a given collection of constraints (Cs, CL, CA, CStart).

Since the template of a lexicon is void of all underlying symbols, constructing one requires (a) the set of

phonetic forms pi E P, (b) the number of syntactic features each phonetic form is associated with and (c) as-

signing each syntactic feature to one of the following five mutually exclusive categories: selectors, selectees,

licensors, licensees and the special symbol C. The computation of each of these requirements is described

below:

(a) The set of phonetic forms P is:

(U fpir pIU U
(((Pi,X),Yy))ECL

1A,{PjI) U {PI(Ax) E CStartI

(b) For a given phonetic form p', the number of syntactic features p' has is:

maximum (Nselectors U Nselectees U NLicensors U NLicensees U Nstart)

where

Nselectors = {xj((p , x), (pi, y)) E Cs}

Nselectees {yI((p, x), (p' , y)) C CS}

VLicensors = {x I ((P', x), (pi, y)) E CL

VLicensees {y ((pj, x), (p ,y)) E CL

NStart {xI(pi, x) C CStart, Pi =P }

(c) Given a syntactic feature (pi, x), exactly one of the following five conditions will

determines which of the five categories (pi, x) belongs to.

hold, which in turn

If there exists a syntactic feature w such that ((pi, x), w) E

If there exists a syntactic feature w such that (w, (pi, x)) E

If there exists a syntactic feature w such that ((pi, x), w) E

If there exists a syntactic feature w such that (w, (pi, x)) E

If (pi, x) E CStart, then (pi, x) is the special start symbol.

CS

Cs

CL

CL

then

then

then

then

(pi,x) is a selector.

(pi,x) is a selectee.

(pi, x) is a licensor.

(pi, x) is a licensee.

Note that this information can be entirely derived from the sets Cs, CL and CStart; for the purposes of

computing the template of a lexicon from a collection of constraints, there is no need for the anti-licensing

constraints. FI

Proposition 5

Given a curated lexicon L, let Y = P(L) = (Cs, CL, CA, Cstart) be the collection of constraints computed

25

(a)

(b)

(c)

(d)

(e)

from L and let T designate the template computed from Y via Procedure 2. Then T = T(L).

Proof: In order to prove that T = T(L), I will show that they have (a) the same set of phonetic forms,
(b) the same number of syntactic features for corresponding phonetic forms and (c) the same assignment of

syntactic features to feature categories (e.g. selector, selectee, licensor, etc).

(a) I will prove that the set of phonetic forms in T, PT is the same as the set of phonetic forms in T(L),

PL.

Given a phonetic form pi E PL, since L is a curated lexicon, the lexical item li that corresponds to

pi participates in at least one derivation d E G(L). Therefore, li participates in at least one merge

operation involving either selection or licensing; thus, P((L) will capture li (and thus pi) in at least one

constraint in either Cs or CL. By Procedure 2, since pi is involved in either Cs or CL, pi E PT. Next,
consider that if a phonetic form pi is not a member of PL then there is no corresponding lexical item

li that participates in derivations produced by L. Therefore, P(L) will not capture pi in either Cs or

CL. Hence, if pi V PL then pi $ PT. Thus, since pi E PL if and only if pi C PT, therefore PL = PT.

(b) Since PL = PT, both T and T(L) have a unique lexical item for each phonetic form pi E PL. Let

li E T(L) and li E T be the unique lexical items corresponding to pi. I will prove that the number of

syntactic features in li is the same as the number of syntactic features in l1. The number of syntactic

features for li is equal to the maximum index of any syntactic feature belonging to li. Let (pi, x) be

the syntactic feature belonging to li such that its index is maximal (i.e. l has a total of x syntactic

features). Since L is a curated lexicon, li participates in at least one complete derivation produced

by L; furthermore, every syntactic feature of every lexical item in a complete derivation is consumed.

Therefore (pi, x) will be captured by either Cs, CL or CStart. By Procedure 2, the number of syntactic

features belonging to l is:

maximum (Nselectors U Nselectees U NLicensors U NLicensees U Nstart)

and thus li and l1 have the same number of syntactic features.

(c) Thus far, for every syntactic feature (pi, x) that is a member of T(L) is also a member of T. I will

next prove that (pi, x) is the same type of feature (e.g. selector, selectee, licensor, etc) in both T(L)

and T. Without loss of generality, suppose that (pi, x) is a selector with respect to T(L). Then (pi, x)

will appear as a selector in a constraint in Cs; Procedure 2 will therefore determine that (pi, x) is a

selector with respect to T. By a similar argument it can be shown that this also holds for the other

categories of selectee, licensor, licensee and start constraints.

This proves that T = T(L). E

Procedure 3

This procedure, denoted Q, describes how to construct a curated lexicon, L, from a collection of constraints

Y = (Cs, CL, CA, CStart), in two steps. First, the template of L, T(L), is computed using Procedure 2.

Second, since T(L) is void of any assignment of a "symbol" to a syntactic feature, these assignments 6 are
6 Note that only selectors, selectees, licensors and licensees need to have a symbol assigned to them.

26

made as follows: two syntactic features x and y in L have the same underlying symbol if and only if either

(x,y) E Cs or (x, y) e CL. Then L = Q(Y). D

Proposition 6
Given two curated lexicons L 1 and L 2 , let Y = P(L1) and Y2 = P(L2). Then Y = Y2 if and only if L 1 OL2.

Proof: First we prove that if L1 OL 2 then Y = Y2 . Suppose L1 OL2 , then G(L1) = G(L 2). Since Y is

computed from G(L1), this implies that Y may be computed from G(L 2) as well. Thus both Y and Y2 may

be computed from G(L 2). Since the procedure P is deterministic, this means that Y1 =Y2 .

Next we prove that if L1 is not in the same class of lexicons as L 2 , then Y1 $ Y2 . By Proposition 4, if
T(L 1) ,4 T(L2) then P(L1) 4 P(L2) and thus Y1 : Y2 . If T (L1) = T(L 2) then the differences between G(Li)

and G(L 2) must arise from the differences in assignment of underlying symbols to the syntactic features in

L1 and L 2 , and the effect that has on which selection, licensing and anti-licensing operations are observed

in the generation of complete derivations.

Since G(L 1) , G(L 2), there is some derivation d E G(L 1) such that d V G(L 2) (or vice versa; we may

proceed without a loss of generality). Let us designate the selection, licensing and anti-licensing constraints

required for L1 to generate d as Cs, C' and CA respectively. Then d g G(L 2) because the assignment of

underlying symbols to L2 does not permit the constraints in C' , C' or C'. Hence the constraints in C' C
or C will appear in Y but not in Y2 . Therfore, Y1 * Y2 . 0

Proposition 7

Given a curated lexicon L, let L' = P(Q(L)). Then LOL'.

Proof: Let Y = (CS,CL, CA, CStart) = P(L) and let Y' = (CS, CL, C ,C' tart) = P(L'). I will prove

that Y =Y' and thus by Proposition 6, LOL'.

Since T1(L) = T(L') (see Proposition 5), differences between G(L) and G(L') must arise from differences

in the underlying symbols assigned to the syntactic features in L and L'. The scheme for the assignment,

provided in Section ??, has the invariant that the syntactic features x' and y' in L' have the same underlying

symbol if and only if either (x', y') E Cs or (x', y') c CL.

First, we prove that Cs = Cs. If two syntactic features x and y in L participated in a selection operation

in some derivation d c G(L), then (x, y) E Cs and the corresponding syntactic features x' and y' will have

the same underlying symbols, allowing x' and y' to participate in selection operations that appear in G(L'),
and thus Cs g Cs. Next, suppose there is a selection constraint (x', y') E Cs. Then the syntactic features

x' and y' must have the same underlying symbols in L' and thus (x', y') E Cs. Hence, Cs = Cs

Next, we prove that CL = CL - If two syntactic features x and y in L participated in a licensing operation

in some derivation d C G(L), then (x,y) E CL and the corresponding syntactic features x' and y' will have

the same underlying symbols, allowing x' and y' to participate in licensing operations that appear in G(L'),
and thus CL C CL. Next, suppose there is a licensing constraint (x', y') C CL. Then the syntactic features

x' and y' must have the same underlying symbols in L' and thus (x', y') E CL. Hence, CL = CL.

27

Finally, we prove that CA = CA. If some derivation in G(L) required that a syntactic feature x not

license a syntactic feature y (so that the shortest move constraint is not violated) then (x, y) E CA and thus

(x, y) V CL. Hence, x and y cannot have the same underlying symbols in L'. Thus, any derivations in G(L')

in which the shortest move constraint requires that it not be possible for x to license y will not be obstructed.

Since derivations are constructed by ensuring that the desired set of selection and licensing constraints

are satisfied, and that no anti-licensing constraints obstruct the construction, hence every derivation in

G(L) C G(L') and thus CA C C'.

To show that C C CA (via contradiction), suppose there exists some anti-licensing constraint (x', y') E
C such that (x',y') CA. Then the syntactic features x' and y' in L' cannot have the same underlying

symbol, and thus by Section ??, (x', y') V CL. In order to enforce that x' does not license y' in any derivation

in G(L), we must have (x', y') E CA. This is a contradiction, and thus there does not exist any anti-licensing

constraint (x', y') e C such that (x', y') CA. Hence CC (UA and therefore CA = CA.

Since Cs = CQ, CL = CL and CA = CA, and since Cstart = Cjtart (because TI(L) = T (L')), Y = Y'

and therefore LOL'. El

28

2.4 Correspondences between Classes of Lexicons and Collections

of Constraints

In the previous section, Proposition 6 and Proposition 7 established a correspondence between classes of

curated lexicons and collections of constraints. This section further explores this correspondence and the

relation between the procedures P and Q. (See Proposition 8 and Proposition 9)

Proposition 8

Given two collections of constraints, Y and Y2 , let L = Q(Y) and L' = Q(Y2). Then Y = Y2 if and only

if L' OL.

Proof: For every collection of constraint Y, there exists some curated lexicon L such that Y = P(L).
Suppose that Y = P(L1) and Y2 = P((L2) for curated lexicons L1 and L 2 . By Proposition 7, L 1OL and

L2 0L2. Then, by Proposition 6, L 1OL 2 if and only if Y = Y2 . Therefore, LI L' if and only if Y 1 = Y2 .

Proposition 9

Let L* be the set of all curated lexicons, K be the set of classes of lexicons and Y* be the set of all collections

of constraints. Then both P and Q are both bijections between K and Y*.

Proof: First note that for every Y E Y* there exists an L C L* such that Y = P(L). Thus, Y* is the

range of P; hence, P is surjective.

To prove that P is a bijection between K and Y*, note that by Proposition 6, P provides a one to one

correspondence between K and Y* and thus P is injective. Therefore, P is a bijection between K and Y*.

Next, by Proposition 8, Q provides a one to one correspondence between Y* and K. Hence, Q is an

injective map. To show that Q is surjective, consider that for any class of lexicons k E K and any lexicon

L E k, P(L) E Y* and Q(P(L))OL. Hence the class of lexicons k is in the range of Q. Thus, K is the range

of Q. Therefore, Q is a bijection between K and Y*. 0

29

-1-1-1.1-1 - 1

2.5 Combining Collections of Constraints

This section focuses on developing a procedure l (see Procedure 4) that takes two curated lexicons, L, and

L 2 , and assembles them into a single curated lexicon, J(L1 , L2), such that G(L1) U G(L 2) C G(J(L1 , L2).
(See Proposition 10)

Definition 16

Let L1 and L2 be curated lexicons and let P1 and P2 be their set of phonetic forms. For any phonetic form

pi E P1, let T1 designate the unique entry in T(L 1) whose phonetic form is pi. Likewise, for any phonetic

form pi E P2 , let T2 designate the unique entry in T(L2) whose phonetic form is pi. Then L1 and L2 have

compatible templates if and only if for each phonetic form pi E P1 n P2 , Ti = Ti. D

Procedure 4
Let L1 and L2 be curated lexicons with compatible templates, and let Y

of constraints:

Yi = P(L1) = (CL, C A, CStart)

Y2 = P(L2) = (C, 0L, CA, Ctart)

and let:

ZSelector = {I(x, y) E CS U CS}

ZSelectee = {yI(x, y) E CS U CS}

ZLicensor = {XI(X, y) E C1A U C21

ZLicensee = {yI(X, y) E CL U C2

Next, suppose it is possible to define the following sets:

C {(x, y)Ix EC

9 {(x,y)x E

C {(x,y)x E

ZSelector, Y E ZSelecteel

ZLicensor, y E ZLicensee}

ZLicensor, y E ZLicensee}

such that the following conditions are satisfied:

1. CI U C C D*.

2. CL! U C2 C DL.

3. CA U CA C DA.

4. D* n D* = 0.

5. If (Xi, y 2), (X1, yl), (X 2 , Y1) E D* then (X2, Y2) E D*.

6. If (Xi, y2), (Xi, yl), (X 2 , y1) E D* then (X2, Y2) E D*.

30

and Y2 be their associated collections

Ds

DL

DA

7. If (Xi, yi), (Xi, y 2) E D* and (X2, y1) c D* then (x2,Y 2) E D*

8. If (Xi, yl), (X 2 ,yi) E D* and (xiy 2) E D* then (X 2 ,Y 2) E D*.

9. If (Xi, yi), (X2, Y2) E D* and (X1, y 2) E D* then (X 2 ,y1) E D*.

10. It is not possible to remove any elements from the sets D* , D* and D* without the previous conditions.

If D* and D* cannot be defined so as to fulfill these conditions, then the procedure terminates with a failure

state. Otherwise, proceed to (a) construct a template lexicon T' = T(L 1) U T(L2) and then (b) assign

underlying symbols to T' such that two syntactic features x and y have the same symbol if and only if

(x, y) c D* u D* . The resulting lexicon is the output of the procedure and i designated J(L1 , L 2). 7 E

Proposition 10

Let L 1 and L 2 be curated lexicons with compatible templates and suppose the lexicon L' = J(L1 , L 2) may

be successfully computed. Then G(L1) U G(L 2) C G(L').

Proof: I will prove that G(L 1) C G(L'). First note that T(L) = T (L1) U T (L2) is compatible with L1 .

Hence, any reason that a derivation d E G(L1) might not be generated by L' is due to the differences in

assignment of symbols to the syntactic features in L1 and L'.

Next, consider that the symbol assignment scheme of J preserves the selection and licensing constraints

since CA C D* and CL, C D*. Futhermore, the introduction of other constraints from L 2 will not cause any

interference with the constraints from L1 since D* n D*= 0. Hence, G(L 1) C G(L'). The same reasoning

shows that G(L 2) C G(L'); thus, G(L 1) U G(L 2) C G(L'). E

Proposition ?? constitutes the main result of this chapter: a method for assembling together lexicons

while preserving the derivations they produce. Specifically, given two curated lexicons L, and L2 with

compatible templates, let Y and Y2 be their respective collections of constraints; if we can construct Y*,
the combination of Y and Y2 , then we can construct a curated lexicon L* = Q(Y*) via Procedure 10
such that G(L 1) U G(L 2) C G(Q(Y*). The next chapter of this thesis will focus on examining the set of
complete derivations that may be generated by L* but not by either L1 or L 2 , (i.e. the set of derivations

G(L*) - (G(L1) U G(L 2))) and explore the interpretation of this set of derivations as being "learned" or
"generalized" from L, and L 2.

7 Note that the procedure I is symmetric in its arguments.

31

32

Chapter 3

Acquisition of an MG Lexicon

In this chapter I present a running example that demonstrates how the mathematical framework for com-

bining curated lexicons developed in the previous chapter may be used to simulate the process of a learner

acquiring the lexicon of a language. Specifically, the learner is presented with a sequence of sentences in the

form of MG derivations di,..., d, and has the task of producing (if at all possible) a curated lexicon LD

such that di E G(LD) for 1 < i < n. The learner is then said to have acquired the lexicon LD from the

derivations di, . . . , d,.

The state of the learner (i.e. a representation of his knowledge up to that point) is encoded as a collection

of constraints (from which may be computed a curated lexicon, representing the set of sentences he is able

to produce, via Q). Let Y be the collection of constraints reflecting the learner's knowledge after exposure

to di for 1 < i < n and let Y = (0, 0, 0, 0) (i.e. the learner begins with no knowledge of the language). When

the learner encounters a derivation di, the learner proceeds to:

1. Construct the curated lexicon Li such that di E G(Li).

2. Compute the collection of constraints Y = J(Q(Yi_1), Lj).

If these two steps are successful then the learner is said to have acquired the curated lexicon Q(Y) from the

derivations di, .. ., di. In this manner, the learner may acquire the lexicon LD = Q(Y).

I will present a sequence of derivations that have associated derivation trees that are X-bar phrase markers

for the following sentences:

" "The cat will eat a mouse."

* "Will the cat eat a mouse?"

* "Which mouse will the cat eat?"

* "Which cat will eat the mouse?"

33

* "The man will think that the cat will eat the mouse."

* "Will the man think that the cat will eat the mouse?"

* "Which mouse will the man think that the cat will eat?"

and point out how the acquisition process outlined above allows the learner to capture generalizations from

the examples (i.e. {di, ... , d7 } C G(LD))-

34

3.1 The cat will eat a mouse.

The first derivation, di, that the learner is exposed to (see Page 36) produces a derived tree that corresponds

to the phrase structure shown in Figure 3.1 for the sentence "the cat will eat a mouse". This derivation is

simple in that it does not involve any movement (i.e. internal merge).

CP

C TP

C DP T

D NP T
I I I

the N will
I

cat e

VP

V DP

at D NP

a N

mouse

Figure 3.1: Phrase Structure for the sentence "the cat will eat a mouse."

From d, the learner computes the lexicon L, (See Figure 3.2) such that di E G(L 1) (in fact {d1 } = G(L 1)).

The learner then computes their next state of knowledge: Y = P(J(Q(Y), L 1)). Since Yo = (0, 0, 0, 0), the

learner's next state of knowledge is Y = IP(L1). The selection constraints in Yi are presented in Table 3.1

and the (anti)-licensing constraints are presented in Table 3.2.

a:: = x1, x2

cat :: ~ A6

cc:: =x8, C eat:: = 2, ~ x4

ET:: =x3, = 4, +x5, = x7, x8 mouse:: x1
the :: = A6, ~I_ x7

will:: - x3, -x5

Figure 3.2: The curated lexicon L1 from which the derivation d, (which produces the sentence "the cat will
eat a mouse.") may be derived. Note that {d1 } = G(L 1).

35

[the:: = x6,~ x7] [cat:: x6]
[the cat: ~ x7]

[a :: = x1,~ x2] [mouse :: ~ x1] M
[a mouse: ~ x2

[eat :: = x2,- x4] [a mouse: x2] EMI

[eat a mouse: ~ x4

[E :: = x3,= x4,+x5,= x7,~ x8) [will:: ~ x3,-x5]

[ET: = x4,+x5,= x7,~ x8] [will: -x5]

[ET : = x4,+x5,= x7,- x8] [will: -x5 [eat a mouse: x4] EM2
[eat a mouse CT: +x5,= x7,- x8[[will: -x5E

[eat a mouse CT : +x5,= x7,- x8][will: -x5] IMi

[will eat a mouse ET : = x7,- x8]

[will eat a mouse CT : = x7,- x8] [the cat : ~ x7]
[the cat will eat a mouse CT : ~ x8]

[EC :: = x8,C] [the cat will eat a mouse ET : ~ x8]
[Ec the cat will eat a mouse E : C]

36

Selectees

C.)

S 4-D

/
/ -
- /

/ -
- - / - -

- - - -

Table 3.1: The Selection Constraints of Y1 . Notice that since no two selection constraints (indicated by
a check mark) are in the same row (thus sharing a common selector) or the same column (thus sharing a
common selectee) no further constraints may be derived from those immediately produced by the derivation
sequence.

Licensees

S(ET, 2) /

Table 3.2: The (Anti-)Licensing Constraints of Yi: Since ET merges with "will" before "eat a mouse", "will"
must then be moved in order to place it to the left of "eat a mouse." The reader should note that since
the first and second external merge operations have fixed linearization schemes, at times internal merge is
necessary to correct for this.

37

(a, 0)
(eat, 0)
(the, 0)
(EC, 0)
OET (c 0)

(CT, 1)

(CT, 3)

3.2 Will a cat eat the mouse?

The next derivation encountered by the learner, d 2 (see Page 39), produces a derived tree that corresponds

to the phrase structure shown in Figure 3.3 for the interrogative sentence "will a cat eat the mouse?" This

sentence is a variation on the first sentence: the order of the subject and auxiliary verb are inverted via head

raising in order to form a simple question. Note that the determiners have been switched in d2 ("a cat" and

"the mouse") in comparison to di ("the cat" and "a mouse").

CP

C TP

will DP T'

D NP T VP

a N will V DP
I I

cat eat D NP
I I

the N

mouse

Figure 3.3: Phrase Structure for the sentence "will a cat eat the mouse?"

The learner computes the curated lexicon L2 (see Figure 3.4) which uniquely generates d2 . The learner

then comptutes his next state of knowledge: Y2 = P(J(Q(Y), L2)). The selection constraints and (anti-

)licensing constraints for P(L2) are presented in Tables 3.3 and 3.4 respectively. The selection constraints

and (anti-)licensing constraints for Y2 are presented in Tables 3.5 and 3.6 respectively. Finally, the lexicon

representation of the learner's new state of knowledge (i.e. Q(Y 2)) is presented in Figure 3.5.

Note that the learner may be said to have captured the following generalizations: first, that the nouns

"mouse" and "cat" are the same part of speech and second that the determiners "the" and "a" are also the

the same part of speech. Furthermore, the overlap in usage between the two variants of "will" (e.g. [will,

and will2) is captured by their first and second syntactic features each sharing the same symbols (z4 and z6

respectively).

Furthermore, note that each constraint in Tables 3.5 and 3.6 may be found in either Y (see Tables 3.1 and

3.2) or P(L2) (see Tables 3.3 and 3.4). Thus the learner has not learned any new constraints in combining

L 1 and L2 . The next section will provide an example in which a new constraint is acquired.

38

a::=x7 A

cat:: ~ x7

CC2 =X9, +X10, C eat:: = 2, ~-x5

ET:: =3, = x5, +x6, = 8, 9 mouse:: ~ x1

the:: = x, x2

will2:: - 3, -x6, -xlO

Figure 3.4: The curated lexicon L 2 from which the derivation d 2 (which produces the interrogative sentence
"will a cat eat the mouse?") may be derived. Note that {d 2} = G(L 2).

[a[:: = x7, x8]
[a cat : ~ x

[cat :: x7]EM
8]

[mouse:: ~ x1]
[the mouse : x2]

EMI

[the mouse : ~ x2]
-EMi

[eat the mouse : ~ x5]

[CT :: = x3,= x5,+x6,= x8,- x9] [will2:: ~ x3,-x6,-x10]

[ET : = x5,+x6,= x8,- x9] [will2: -x6,-xlO]
EM3

[ET : = x5,+x6,= x8,~ x9J[will2 : -x6,-xlO] [eat the mouse: ~ x5]
EM2t'

[eat the mouse CT : +x6,= x8,- x9] [will2: -x6,-x10]

[eat the mouse CT : +x6,= x8,~ x9][will2: -x6,-xlO 1IM2

[eat the mouse e : = x8, x9] [will2: -x1O]

[eat the mouse ET : = x8,~ x9] [will2: -x1O] [a cat : ~ x8]

[a cat eat the mouse ET : x9] [will2: -xlO]

[CC 2 :: = x9,+xlO,C [a cat eat the mouse CT : x9] [will2: -x1O]
E1?T%4

[EC 2 a cat eat the mouse ET: +xlO,C][will2: -xO]

[CC 2 a cat eat the mouse eT: +x1O,C][will2: -xO]
[will2 EC 2 a cat eat the mouse ET C]

39

[eat :: = x2,~ x5]

[the :: = x1,~ x2]

Selectees

0

Q

0q

1-1
0
S

(a,O) - - - - - -

(eat,O) - - - - - -

(the,O) - - - - - -

(Ec 2 , 0) - - - - - -

(6T,O) - - - - - / -

(ET, 1) - - / - - - -

(ET, 3) / - - - - - -

Table 3.3: The Selection Constraints of P(L2): As in
immediately produced by the derivation sequence.

Table 3.1, no further constraints are derived from those

Licensees

~J2

0
CI)
C.)
Q

C4 C4

(ET, 2) V

Table 3.4: The (Anti-)Licensing Constraints of lP(L2): The licensing constraint between the third syntactic
feature of ET and the second syntactic feature of will reflects an internal merge operation that is responsible
for the head-raising process underlying subject-auxiliary verb inversion.

40

rj)
0
Q
C.)
C.)

Selectees

Q

(a,O) -

(eat, 0) / -
(the, 0) - V
(C, 0) - -

S(EC2, 0) - -

(6r, 0) - -
(er, 1) - -
(ET, 3) / -

- / -
- - /
- / -

/

/

-

$
-

Table 3.5: The Selection Constraints of Y2 : Although there are no logical inconsistencies that arise in
combining the selection constraints from Tables 3.1 and 3.3, no new constraints may be derived from the
unified constraints. Nevertheless the learner is able to make certain generalizations that become clear in the
lexicon derived from the unified selection and licensing constraints.

Licensees

2)

(T,2) / / -

Table 3.6: The (Anti-)Licensing Constraints of Y2 : Notice that since the third syntactic feature of CT may
select the second syntactic feature of both will, and will 2 , this means that the second syntactic features of
both will, and will2 must share the same symbol. This is verified in the lexicon in Figure 3.5.

41

a:: = zl,~ z2

cat :: ~ zl

Ec:: = z3, C eat:: = z2, - z5

Ec2 :: = z3, +z8, C mouse:: ~ z1

ET :: = z4, = z5, +z6, = z2,~ -A the :: = z1, ~l A2

will:: ~ z4, -z6

will2:: ~ z4, -A6, -z8

Figure 3.5: The curated lexicon that the learner has acquired from derivations d, and d 2. Note that through
the acquisition process, the learner may conclude thus far that the nouns "mouse" and "cat" are the same
part of speech (since their lexical chains are different only in phonetic forms). Similarly the learner may
conclude that the determiners "the" and "a" are also the the same part of speech. Finally, we note that the
first and second syntactic features of will and will2 are both the same symbols (z 4 and zs) respectively.

42

3.3 Which mouse will the cat eat?

The learner is next exposed to derivation d3 (see Page 44), which is a modification of d2 that invokes wh-
fronting (see Figure 3.6) to produce the sentence: "which mouse will the cat eat?" This derivation will invoke
the shortest move constraint, a consequence of which will be the appearance of anti-licensing constraints.

CP

DP C'

NP C TP
I I

whic will DP T'

use D NP T VP

the N will V DP
I I

cat eat D NP
I I

whi N

mouse

Figure 3.6: Phrase Structure for the sentence "which mouse will the cat eat?"

As before, the learner computes a curated lexicon L3 such that d3 E G(L 3). (see Figure 3.7) The learner

then computes their next state of knowledge: Y3 = P(JI(Q(Y2), L 3)). The selection constraints and (anti-

)licensing constraints for P(L3) are presented in Tables 3.7 and 3.8 respectively. The selection constraints

and (anti-)licensing constraints for Y3 , the learner's new state of knowledge, are presented in Tables 3.9 and

3.10 respectively. Finally, the lexicon representation of the learner's new state of knowledge (i.e. Q(Y 3)) is

presented in Figure 3.8.

cat:: - x8
eat :: = x2, ~ x4

c 3 :: =x1O, +x7, +x6, C mouse:: ~-X1

ET:: =x3, = x4, +x5,= x9,~ x10 the :: = x8, ~ x9

which:: = x1, ~ x2, -x6

will2:: ~ x3, -x5, -x7

Figure 3.7: The curated lexicon L3 from which the derivation d3 (which produces the interrogative sentence
"which mouse will the cat eat?") may be derived. Note that {d 3 } = G(L 3).

43

[the:: = x8,- x9] [cat:: ~ x8] EMI

[the cat : ~ x9]

[which:: = xl,~ x2,-x6] [mouse:: xl] EMI
[which mouse: x2,-x6]

[eat :: = x2,- x4] [which mouse: ~ x2,-x6]
EM3

[eat: ~ x4][which mouse: -x6]

[ET :: = x3,= x4,+x5,= x9,- xO1[[will2:: ~ x3,-x5,-x7] EM3

[ET : = x4,+x5,= x9,- xO1][will2: -x5,-x7]

[CT : = x4,+x5,= x9,- xlO][will2: -x5,-x7] [eat: x4] [which mouse: -x6]
[eat ET : +x5,= x9,- xl[which mouse: -x6][wi2: -x5,-x7]EM2

[eat ET : +x5,= x9,- xlO][which mouse: -x6][will2: -x5,-x7] IM2

[eat T : = x9,~ xlO][will2: -x7] [which mouse: -x6

[eat ET : = x9,- xlO][will2 : -x7] [which mouse: -x6] [the cat: ~ x9] EM2
[the cat eat ET : ~ xlO][which mouse: -x6][will2: -x7]

[EC 3 :: xlO,+x7,+x6,C] [the cat eat ET: ~ xl0][which mouse: -x6[will2: -x7
EMi

[Cc3 the cat eat ET: +x7,+x6,C] [which mouse: -x6][will2: -x7]

[Ec 3 the cat eat E : +x7,+x6,C] [which mouse: -x6][will2: -x7] IMi
[wil2 EC3 the cat eat CT I+x6,C] [which mouse: -x6]

[will2 CC 3 the cat eat ET : +x6,C] [which mouse: -x6]

[which mouse will2 EC3 the cat eat CT : C]

44

Selectees

0
S

(eat,O) - - - - / - -

(the,O) / - - - - - -

(which,O) - - - - - -

4(CCO) - - - - - - /

(6T,O) - - - - - / -
(ET, 1) - / - - - - -

(ET, 3) - - - / - - -

Table 3.7: The Selection Constraints of P(L3).

Licensees

1-

.C

Cl

Cl'

(EC31, 1) X - /
(Ec 3 , 2) / X X

(ET, 2) X / -

Table 3.8: (Anti-)Licensing Constraints of P(L3): The learner must now process not only licensing con-
straints, denoted by a /, but also anti-licensing constraints, denoted by an X. The anti-licensing constraints
explicitly indicate that certain syntactic features cannot be licensed together; intuitively, a combination of
licensing and anti-licensing constraints will ensure that during a derivation, internal-merge operations are
deterministic in the choice of licensee.

45

Unlike in the previous acquisition step, the learner now acquires new knowledge (constraints) in the

process of combining the constraints in Y2 and P(L3) that could not acquire from Y2 or P(L3) alone. (See

the designated constraints in Tables 3.9 and 3.10) A specific example of a sentence the learner may now

produce from the lexicon Q(Y3) (see Figure 3.8) that the learner could not produce from the lexicon Q(Y2)

(see Figure 3.5) is the sentence "which cat will eat the mouse?" The next section will expose the learner

to a derivation that produces this sentence and demonstrate that the learner does not acquire any new

constraints; hence Q(Y4) = Q(Y 3).

Selectees

22

C

22

C
C.)
C.)

C)
Cf2

1-1

C 1

(a, 0) - - - - - - -

(eat, 0) / - - - - - -

(the, 0) - - - - - - -

(which, 0) - - - - - - -

(EC,O) - - - - - - - - /

(Ec2, 0) - - - - - - - - /

(EC., 0) - - - - - - - - /
(6T, 0) - - - - - - / / -
(fT, 1) - - / - - - - - -

(ET, 3) / - - - / / - - -

Table 3.9: The Selection Constraints of Y3 : This table displays the selection constraints that arise in com-
bining Q(Y 2) and L3 (see Tables 3.5 and 3.7), thus representing the selection constraints accumulated from
di, d2 and d3 . New constraints that may be derived only from the combination of the two sets of selection
constraints are underlined. If two syntactic features share either the same row or column then they share
the same base symbol (and vice-versa).

46

'Tt

Licensees

C-I

. (ecs,2) X X X
S (ET, 2) X / / -

Table 3.10: The (Anti-) Licensing Constraints Y3: This table displays the (anti-) licensing constraints that
arise in combining Q(Y2) and L3 (see Tables 3.6 and 3.8), thus representing the (anti-) licensing constraints ac-
cumulated from d, d2 and d. Licensing ons traints are designated by an /whereas anti-licensing constraints
are designated by an X. New constraints that may be derived only from the combination of the two sets of
selection constraints are underlined. If two syntactic features share either the same row or column then they
share the same base symbol (and vice-versa). Note the substantial number of anti-licensing constraints that
will prohibit the learner from acquiring derivations that involve certain licensing operations. (e.g. the anti-
licensing constraints ((which, 2), (EC2, ')),'((which, 2), (Eca, 1)), ((which, 2), (IET, 2)) and ((will2, 2), (EC3, 2))
ensure that any lexical item that licenses "which" may never license "will2" and vice-versa).

a:: = zI, ~z2

cat :: ~ z1

Ec:: = z3, C eat:: = z2, ~'z5

C02:: =z3, +z6, C mouse:: ~ z1

EC3:: z3, +z6, +z7, C the :: = zl, ~ z2

ET:: z4, = z5, +z8, = z2, - z3 which:: = zl, ~ z2, -z7

will:: ~ z4, -z8
will2:: ~ z4, -z8, -z6

Figure 3.8: The lexicon acquired by the learner from derivations di, - -- , d3 . Notice that "which", "the" and
"a" share the same syntactic features in the first and second position, which alludes to a generalization that
these words all belong to the same category (determiners). Similarly note how common indices of Ec share
the same symbol, which suggests the generalization that EC, EC2 and EC3 all belong to -the same category
(CP).

47

3.4 Which cat will eat the mouse?

Whereas the previous derivation that the learner encountered involved wh-fronting from the object position,
the learner will now encounters a sentence that involves wh-fronting from the subject position, as shown by
the phrase structure in Figure 3.9. The derivation d4 , which produces the sentence "which cat will eat the

mouse?" (see Figure 49) is produced by the lexicon L4 in 3.10.

CP

DP C'

D NP C TP
I I I

w ich will DP T'

mo se D NP T VP

whic N will V DP

mouse eat D NP
I I

the N

mouse

Figure 3.9: Phrase Structure for the sentence "which cat will eat the mouse?"

As before, the learner computes a curated lexicon L 4 such that d4 E G(L4). (see Figure 3.10) The learner

then computes their next state of knowledge: Y4 = P(J(Q(Y 3), L4)). The selection constraints and (anti-

)licensing constraints for P(L4) are presented in Tables 3.11 and 3.12 respectively. The selection constraints

and (anti-)licensing constraints for Y4 are presented in Tables 3.13 and 3.14 respectively. Finally, the lexicon

representation of the learner's new state of knowledge (i.e. Q(Y4)) is presented in Figure 3.11.

cat:: ~ x8

eat:: = x2, x4

Ec:: = x10, +x7, +x6, C mouse:: ~ xl

CT:: =x3,= x4, +x5, = x9, - x1O the:: = x1, x2

which:: = x8, x9, -x6

will2:: ~ x3, -x5, -x7

Figure 3.10: The curated lexicon L4 from which the derivation d4 (which produces the interrogative sentence
"which cat will eat the mouse?") may be derived. Note that {d4} = G(L4).

48

[which:: = x8,~ x9,-x6] [cat:: ~ x8]
[which cat: ~ x9,-x6]

[the :: = xl,~ x2] [mouse :: ~ x1] M
[the mouse: ~ x2]

[eat :: = x2,~ x4] [the mouse: ~ x2]

[eat the mouse: x4] EMI

[ET:: x3,= x4,+x5,= x 9 ,- xlO] [will2:: ~ x3,-x5,-x7]

[ET : = x4,+x5,= x9,- xlO][will2: -x5,-x7]

[ET : = x4,+x5,= x9,~ xl0][will2: -x5,-x7] [eat the mouse: x4] EM2
[eat the mouse ET :+x5,= x9,- xlO][wil2: -x5, -x7M

[eat the mouse ET :+x5,= x9,~ xlOJ[will2: -x5,-x7] 1M2

[eat the mouse T : = x9,- x10][will2: -x7]

[eat the mouse T : : X9,9, X]O] [wi[2: -x7] [which cat: x9,-x6] EM3
[eat the mouse ET xilO] [which cat: -x6][will2: -x7]

CC3 :xlO,+x7,+x6,C] [eat the mouse T : ~ x]] [which cat : -x6][wi2: -x7] EMI

: 1C3 eat the mouse tT msex7,+x6,C] [which cat : -x6][wil2: -x7]l

[Cc 3 eat the mouse ET :+x7,+x6,C] [which cat: -x6][will2: -x7]

[will2 EC3 eat the mouse ET : +x6,C] [which cat: -x6]

[will2 CC3 eat the mouse ET : +x6,C] [which cat: -x6]
[which cat will2 Ec 3 eat the mouse EC : C]

49

Selectees

0
Q

(eatO) - - - / - - -

(the,O) - - - - - -

(which, 0) / - - - - - -

('cE ,) - - - - - -

(IET,) - - - - - / -
(ET, 1) - / - - - - -

(FT, 3) - - - - - -

Table 3.11: The Selection Constraints of P(L4).

Licensees

Qc

.0
cj

(ECa, 2) / -

(ET, 2) - / -

Table 3.12: The (Anti-)Licensing Constraints of P(L4).

Note that neither Table 3.13 nor Table 3.14 have any new constraints that cannot be found in either Y3

or P(L4). This indicates that the learner has not learned any new information from this derivation. The

reader can verify by this noting that the lexicon in Figure 3.11 is the same as the lexicon in Figure 3.8.

Hence the learner was able to generalize wh-movement to apply to determiners moving from both object and

subject position from the first three derivations alone.

50

0
4-

Cq

C4,

Selectees

Q

CI)

0
S

4-D

(a, 0) - - - - - - -

(eat, 0) / - - - / / - - -

(the, 0) - - - - - - -

(which,O) - - - - - - -

(C, 0) - - - - - - - - /

(Ec2, 0) - - - - - - - - /
(EC3, 0) - - - - - - - - /

(6T,O) - - - - - - / / -

(eT, 1) - - / - - - - - -

(ET, 3) / - - - / / - - -

Table 3.13: The Selection Constraints of Y4 : this table displays the selection constraints that arise in
combining Q(Y3) and L 4 . Note that there are no newly derived (underlined) constraints; this is because
the learner has thus far acquired the generalization that determiners involved in wh-fronting are subject to
movement regardless of whether they are located in the specifier or complement position. Note that there is
no difference between this table and Table 3.9.

Licensees

C.) .

.)

(Ec2, 1) X -

(CC31 1) XK V

(EC3,2) / 4K X X
(ET, 2) X / -

Table 3.14: The (Anti-)Licensing Constraints of Y4 : this table displays the selection constraints that arise
in combining Q(Y3) and L 4 . Note that there are no newly derived (underlined) constraints; this is because
the learner has thus far acquired the generalization that determiners involved in wh-fronting are subject to
movement regardless of whether they are located in the specifier or complement position. Note that there is
no difference between this table and Table 3.10.

51

a :: = zI, ~z2

cat :: ~ z1

Ec:: =z3, C eat:: = z2, ~ z5

Cc2 :: =z3, +z6, C mouse:: z1

c 3 :: = z3, +z6, +z7, C the:: = zl, z2

ET:: = z4, = z5, +z8, = z2, z3 which:: = zl, z2, -z7

will:: - z4, -z8

will2:: - z4, -z8, -z6

Figure 3.11: The lexicon acquired by the learner from derivations di, . -- , d4 . Notice that this lexicon is
exactly the same as the lexicon acquired from sentences 1-3 (Figure 3.8), indicating that the learner has
already learned that wh-movement (via internal merge) may originate from either the subject or object
position.

52

3.5 The man will think that the cat will eat a mouse.

The learner next encounters a sentence that has an embedded sentence within it (see Figure 3.12). Specifi-
cally, the learner is presented with derivation d5 (see Figure 55), which produces the sentence "the man will
think that the cat will eat a mouse." and is produced in turn by the lexicon L5 in 3.13.

As before, the learner computes a lexicon L5 such that d5 c G(L 5). (see Figure 3.13) The learner

then computes their next state of knowledge: Y5 = P(J(Q(Y4), L 5)). The selection constraints and (anti-

)licensing constraints for P(L5) are presented in Tables 3.15 and 3.16 respectively. The selection constraints

and (anti-)licensing constraints for Y5 are presented in Tables 3.17 and 3.18 respectively. Finally, the lexicon

representation of the learner's new state of knowledge (i.e. Q(Y)) is presented in Figure 3.14.

CP

C TP

e DP T

D NP T
I I I

the N will V
I I

man thi

VP

nk

CP

C TP

that DP T'

D NP T VP

the N will V DP

cat eat D NP

a N

mouse

Figure 3.12: Phrase Structure for the sentence "the man will think that the cat will eat a mouse."

53

I - - 1. - .. 1,-UIA

cc:: = x14, C

ET:: = X10, = X11, +x12, = 13, , x14

CT:: = x3, = 4, +x5,= x7, ~ x8

a:: = x1, -x2

cat :: x6
eat:: = x2, -x4

man:: ~ x15
mouse:: ~ x1

that:: = A, ' '9

the:: = x15, ~ x13

the:: = x6, x7

think:: = x9, 1l

will:: ~xl10, -x12

will:: ~3, -x5

Figure 3.13: The lexicon L5 from which the derivation d5 (which produces the sentence "the man will think
that the cat will eat a mouse.") may be derived. Note that {d5 } = G(L 5). Furthermore, note that this
lexicon is not curated; nevertheless, because the constraints between syntactic features are a function of the
phonetic form and the index of the feature, the two copies of the "will" lexical item will be unified into a
single copy by the procedure J.

[the:: = x15,- x13]

[the man : ~ x13]

[the:: = x6,~ x7] [cat:: x6] EM
[the cat : ~ x7]

[a :: = x,~ x2[[mouse:: ~x1
[a mouse : ~ x2]

[eat :: = x2,- x4] [a mouse: ~ x2]
EMi

[eat a mouse: x4]

[ET :: = x3,= x4,+x5,= x7,~ x8] [will:: ~ x3,-x5]

[ET : = x4,+x5,= x7,- x8] [will: -x5]
EM3

[ET : = x4,+x5,= x7,~ x8] [will: -x5] [eat a mouse: x4]
[eat a mouse ET : +x5,= x7,~ x8][will: -x5]

[eat a mouse ET : +x5,= x7,~ x8] [will: -x5] IMi
[will eat a mouse ET := x7,- x8]

[will eat a mouse EC : = x7,~ x8] [the cat: x7]
[the cat will eat a mouse ET : ~ x8]

54

EM2

[man :: ~ x15] M

[that :: = x8,- x9] [the cat will eat a mouse CT : x8]
[that the cat will eat a mouse CT : ~ X9]

[think:: = x9,~ x1l] [that the cat will eat a mouse ET : x9]
[think that the cat will eat a mouse CT : ~XI] EMI

[CT :: = xlO,= xll,+x12,= xl3,- x14] [will:: ~ xlO,-x12]
[ET : = xll,+xl2,= x13,- x14] [will: -x12]

[ET : = xll,+x12,= x13,- x14] [will: -x12] [think that the cat will eat a mouse CT: x11] EM2
[think that the cat will eat a mouse CTCT :+x12,= x13- x14] [will: -x12]

[think that the cat will eat a mouse ETET +x12,= x13,- x14] [will: -x12] IMi

[will think that the cat will eat a mouse CTCT :+ = x13,- x14]

[will think that the cat will eat a mouse CT:T = xl31-3, x14] [the man: x13]

[the man will think that the cat will eat a mouse ETET : x14]

[Ec ::= x14,C [the man will think that the cat will eat a mouse ETCT :~ x14] EMi
[Ec the man will think that the cat will eat a mouse ETE : C]

55

Selectees

-4-D -4- 4:-D

(a,O) - - - - - - - - -
(eat,O) / - - - - - - - - -

(that, 0) - - - - - - - - - /
(the, 0) - / - / - - - - - -

(think, 0) - - - - - V - - - -

(EC- - - - - - - - -

(qE,O) - - - - - - - - -

(ET, 1) - - - - - - / - -

(ET, 3) - - - - - - / - - -

Table 3.15: The Selection Constraints of P(L5).

Licensees

c1-1

S (ET, 2) /

Table 3.16: The (Anti-)Licensing Constraints of P(L5).

56

Selectees

4-D ZS_ Cd 0

/ - /

/

W/

- / - / /

- / - / /

- - / -

/ - - -

- - -- - /

/ - - - - - -

- - - - - - -

- - - - - - /I

- - - / / -
-- - / -

-- / - /

Table 3.17: The Selection Constraints of Y5 . The newly derived constraints (underlined) indicate that "man",
"mouse" and "cat" all belong to the same category (NP) and may all merge with the determiners ("which",
"the" and "a").

Licensees

Qcl'1 CN'

(EC0,1) X - -
S('031) . - -

(Ec3,2) / X X X
(eT,2) X / -

Table 3.18: The (Anti-)Licensing Constraints of Y5 .

Note that the learner acquires new selection constraints which allow him to determine that the words
"'man" , "mouse" and "cat" all belong to the same category (NP) and may all merge with the determiners

("which", "the" and "a"). However the learner does not acquire any new (anti-)licensing constraints.

57

(a, 0)
(eat, 0)
(that, 0)
(the, 0)
(think, 0)
(which, 0)
(cC, 0)
(6C2, 0)

(ec3, 0)
(CT, 0)

(ET, 1)
(ET, 3)

-

EC:: =z, C

Ec:: = z3, +z7, C

Ec3 :: = z3, +z7, +z8, C

CT:: =z5,= z6, +z9, = z2, - z3

a::

cat::

eat::

man::

mouse::

that::

the ::

think::

which::

will::

will2::

z1, - z2

z1

z2, z6

zl

z1

z3, z4

zl, - z2

z4, ~'-d z6

z1, ~%. z2, --z8

z5, -z9

z5, -z9, -z7

Figure 3.14: The lexicon acquired by the learner from derivations di,. -, d5 .

58

3.6 Will the man think that the cat will eat a mouse?

The learner next encounters a derivation that is the interrogative variant of d5 that results from subject
auxiliary-verb inversion (see Figure 3.15). The learner is presented with derivation d6 (see Figure 61), which

produces the sentence "will the man think that the cat will eat a mouse?" and is produced in turn by the

lexicon L6 in 3.16.

As before, the learner computes a lexicon L6 such that d6 E G(L 6). (see Figure 3.16) The learner

then computes their next state of knowledge: Y6 = P(J(Q(Y5), L6)). The selection constraints and (anti-

)licensing constraints for P(L6) are presented in Tables 3.19 and 3.20 respectively. The selection constraints

and (anti-)licensing constraints for Y6 are presented in Tables 3.21 and 3.22 respectively. Finally, the lexicon

representation of the learner's new state of knowledge (i.e. Q(Y)) is presented in Figure 3.17.

CP

C

will DP

D NP
I I

the N

man

TP

T
I

will N

I thi

VP

nk

CP

C TP

that DP T

D NP T VP

the N will V DP

cat eat D NP

a N

mouse

Figure 3.15: Phrase Structure for the sentence "will the man think that the cat will eat a mouse?"

59

EC2 :: = x14, +x16, C

ET:: = xlO, = x11, +x12, = x13, ~ x14

CT:: = x3, = x4, +x5,= x7,~ x8

a:: = x1, ~x2

cat :: - x6
eat:: = x2, ~x4

man:: - x15

mouse:: - x1

that:: = x8, ~x9

the :: = x15, - x13

the:: = x6, x7

think:: = x9, - x11

will:: - x3, -x5

will2:: ~ xlO, -x12, -x16

Figure 3.16: The lexicon L6 from which the derivation d6 (which produces the sentence "will the man think
that the cat will eat a mouse?") may be derived. Note that {d6 } = G(L 6).

[the:: = x15,~ x13]

[the man: ~ x
[man:: ~ x15 EMI
13]

[the:: = x6,~ x7] [cat:: x6] EM
[the cat: ~ x7]

[a :: = x,~ x2[[mouse:: ~us1]
[a mouse : ~ x2]

[eat :: = x2,- x4] [a mouse: ~ x2]
EMi

[eat a mouse : x4j

[f T:: = x3,= x4,+x5,= x7,~ x8] [will:: ~ x3,-x5]

[6T : = x4,+x5,= x7,- x8] [will: -x5]
EM3

[ET : = x4,+x5,= x7,- x8] [will: -x5] [eat a mouse: ~ x4]

[eat a mouse ET : +x5,= x77,- x8] [will: -x5]

[eat a mouse ET : +x5,= x7,- x8] [will: -x5] IMI
[will eat a mouse Er: = x7,~ x8]

[will eat a mouse ET : = x7,~ x8] [the cat : ~ x7]

[the cat will eat a mouse CT: x8]

[that :: = x8,- x9] [the cat will eat a mouse ET : ~ x8] EMI

[that the cat will eat a mouse CT : ~ x9]

60

EM2

EM2

[think:: = x9,- x1l] [that the cat will eat a mouse CT x9]
[think that the cat will eat a mouse CT: xli] EM

[ET:: xlO,= xll,+x12,= x13,- x14] [will2:: ~ xlO,-x12,-x16] EM3

[ET : = xll,+x12,= x13,~ x14][will2 : -x12,-x16]

[ET: xll,+x12,= x13,- x14][will2: -x12,-x16] [think that the cat will eat a mouse ET : x11] EM2
[think that the cat will eat a mouse CTCT :+x12,= x3,- x14][will2: -x12,-xE6]

[think that the cat will eat a mouse ETET : +x12,= x13,~ x14][will2: -x12,-x16] 1M2

[think that the cat will eat a mouse ETET : = x13,- x14][will2: -x16]

[think that the cat will eat a mouse CTCT : = x13,-' x14][wil2: -x16] [the man: -x13]2

[the man think that the cat will eat a mouse CTCT : = x14][will2: -x16]

[C2 x14,+x16,C] [the man think that the cat will eat a mouse CTCT : = x14][will2: -x[6] m :]

[C 2 the man think that the cat will eat a mouse CTT : +x16,C][will2: -x16]EM

[C 2 the man think that the cat will eat a mouse ETCT : +x16,C][will2: -x16]

[will2 cC 2 the man think that the cat will eat a mouse ETCT : C]

61

Selectees

'-4-- 4-D~ -

(a, 0)
(eat, 0)
(that, 0)
(the, 0)
(think, 0)

(c 2 , 0)
(ET, 0)

(ET, 1)
S(6T, 3)

/ -

- /
- - - - /

- - / v' -

/ - - - - /
-- - / -

Table 3.19: The Selection Constraints of P(L6).

Licensees

-4 '-4 -4~

.~ (cc2, 1) - - /
4 (ET, 2) / / -

Table 3.20: The (Anti-)Licensing Constraints of P(L6).

62

- -
- /

Selectees

cm

0
S

V - V V-/ -
V

-- - - - /

- Vt - /

- / - /

- - / -
/ -

/

/

/ - - - - - - -

- - - -- - /
- - - -- - /
- - - -- - /t

- - - Vt
- - Vt -

- /

/ -

/

Table 3.21: The Selection Constraints of Y6. Note that there are no newly derived constraints (i.e. no
underlined entries). This is a consequence of the fact that d6 E G(Q(Y 5))-

Licensees

I--

.)
C.)

CNI

((02, 1) X - -

(EC3, 1) X -

(Ec3, 2) / X X X
(ET, 2) X V/ -

Table 3.22: The (Anti-)Licensing Constraints of Y6 . Note that there are no newly derived constraints (i.e.
no underlined entries). This is a consequence of the fact that d6 E G(Q(Y5)).

Note that, as in Section 3.4, the learner has not acquired any new knowledge (i.e. constraints) after

exposure to d6 ; this indicates that d6 E G(Q(Y 5)). The reader may confirm this by observing that Figure 3.14

and Figure 3.17 are exactly the same.

63

(a, 0)
(eat, 0)
(that, 0)
(the, 0)
(think, 0)
(which, 0)
(cC, 0)
(Ec2, 0)

(ECa, 0)
(ET, 0)

(ET, 1)

(ET, 3)

cm
C

C.)cr2

1-1

Cq

cli-

a:: = z1, ~ z2

cat:: ~ z1

eat:: = z2, -z6

man:: - z1
cC:: = z3, C

mouse:: ~z
cc3:: = z3, +z7, C that:: =zA,- A

EcT:: = z3, +z7, +z8, C the:: =z1<'.z2

CT :: =z5,= z6, z9, = z2, ~ z3thn:=z4 ' 6
think :: = A4, ~ A6

which:: = zl, z2, -z8

will:: ~ z5, -z9

will2:: ~ z5, -z9, -z7

Figure 3.17: The lexicon acquired from derivations di, .. -, d6 . Note that this lexicon is exactly the same as
the lexicon presented in Figure 3.14. This indicates that the learner already acquired all knowledge necessary
for producing sentence 6 from the acquisition process involving sentences 1-5. (i.e. d6 E G(Q(Y))

64

3.7 Which mouse will the man think that the cat will eat?

The learner next encounters a derivation that is a variant of d6 that results from movement (wh-fronting) from

the object position of the embedded clause subject to the specifier position while respecting the subjacency

principle. (see Figure 3.15) The learner is presented with derivation d7 (see Figure 67), which produces the

sentence "which mouse will the man think that the cat will eat?" and is produced in turn by the lexicon L 7

in 3.19.

As before, the learner computes a lexicon L7 such that d7 E G(L 7). (see Figure 3.19) The learner

then computes their next state of knowledge: Y7 = P(J(Q(Y), L7)). The selection constraints and (anti-

)licensing constraints for P(L 7) are presented in Tables 3.23 and 3.24 respectively. The selection constraints

and (anti-)licensing constraints for Y7 are presented in Tables 3.25 and 3.26 respectively. Finally, the lexicon

representation of the learner's new state of knowledge (i.e. Q(Y)) is presented in Figure 3.20.

CP

DP C'

D NP C TP
I I

whi will DP T'

use D NP T VP
I I I __ _ _ _ _ _

the N will V CP

man think DP C'

D NP C TP

whi N that DP T'

ouse D NP T VP

the N will V DPI

cat eat D NP

whic N

mouse

Figure 3.18: Phrase Structure for the sentence "which mouse will the man think that the cat will eat?"

65

EC 3:: = x14, tx16,+x18,C

ET:: = xlO, = x1l, +x12, = x13, ~ x14

ET:: = 3,= 4, +x5, = x7, - x8

cat :: ~ A6

eat:: = 2, - x4
man:: ~ x15

mouse:: - x1

that2 :: =xA, x17, -xA

the:: = x15, ~ x13

the:: = x6, x7

think:: = 9, X11

which2:: = x1, x2, -x17, -x18

will:: ~ x3, -x5

will2:: - x1O, -x12, -x16

Figure 3.19: The lexicon L7 from which the derivation d7 (which produces the sentence "will the man think
that the cat will eat a mouse?") may be derived. Note that {d7 } = G(L 7). Furthermore, note that this
lexicon is not curated; nevertheless, because the constraints between syntactic features are a function of the
phonetic form and the index of the feature, the two copies of the "the" lexical item will be unified into a
single copy by the procedure J.

[the:: = x15,- x13]

[the man : ~ x

[the:: = x6,~ x7]

[the cat : ~ x

[man :: ~ x151] M
13]

[cat:: ~ x6]
7]

[which2 :: = x1,~ x2,-x17,-x18] [mouse:: ~ x1]
[which2 mouse: ~ x2,-x17,-x18]

[eat:: = x2,~ x4] [which2 mouse: ~ x2,-x17,-x18]

[eat : ~ x4][which2 mouse: -x17,-x18]

[ET:: = x3,= x4,+x5,= x7,- x8] [will:: ~ x3,-x5]

[ET: = x4,+x5,= x7,- x8][will: -x5]

[ET : = x4,+x5,= x7,~ x8] [will: -x5] [eat: ~ x4][which2 mouse: -x17,-x18]
EM2

[eat ET : +x5,= x7,- x8][which2 mouse: -x17,-x18] [will: -x5]

[eat ET : +x5,= x7,- x8][which2 mouse: -x17,-x18] [will: -x5] IMi
[will eat CT : = x7,- x8][which2 mouse: -x17,-x18]

[will eat ET : = x7,~ x8][which2 mouse: -x17,-x18] [the cat : ~ x7]
[the cat will eat CT : - x8][which2 mouse: -x17,-x18]

66

[that2:: = x8,+x17,- x9] [the cat will eat ET: ~ x8[[which2 mouse: -x17,-xl8]
[that2 the cat will eat CT : +x17,- x9][which2 mouse:- -x17,-x8EM

[that2 the cat will eat ET : +x17,~ x9[[which2 mouse: -x17,-x18]

[that2 the cat will eat T: , x9][which2 mouse: -x178 ,- I8

[think:: = x9,- xli [that2 the cat will eat T: x9][which2 mouse: -x 18]

[think that2 the cat will eat CT : xl][which2 mouse: -x18]

[ET :: = xlO,= xll,-txl2,= x13'-~ x14] [will2:: -xlO,-x12,-x6] EM3

[CT : xll,+x2,= x3, x4][wi2: -x12,-x6] [think that2 the cat will eat T: x: ~] [which2 mouse: -xi: -]

[think that2 the cat will eat CTCT: +x:2, ~ x3,- x14][which2 mouse: -x18][will2: -x12,-x16]

[think that2 the cat will eat CTT : +x2,= x13, x14] [which2 mouse: -x18][wi1: -x2,-x6] IM2

[think that2 the cat will eat TT:= xl3, xl4][will2: -x16][which2 mouse: -x1]

[think that2 the cat will eat CTCT : =xl3,'-~ x14] [will2 : -x16] [which2 mouse: -x1] [the man: -x13[M
[the man think that2 the cat will eat CTCT : -x14][which2 mouse: -x18][will2: -x16]EM

[EC : = x14,+x16,+x18,C] [the man think that2 the cat will eat CTCT: -x4][which2 mouse: -x8][wi]2 2: -x16]

[C3 the man think that2 the cat will eat CTCT : +x6,+x18,C[which2 mouse: -x8][wi 2: -x16]

[C 3 the man think that2 the cat will eat CTCT:: +x16,+x18,C][which2 mouse: -x8][will2: -x16]

[will2 CC3 the man think that2 the cat will eat CTT 4[+x18,] [which2 mouse: -x18]

[will2 CC3 the man think that2 the cat will eat TCT +x18,C] [which2 mouse: -x18] 26
[which2 mouse will2 CC3 the man think that2 the cat will eat TC e: -18]

67

Selectees

4c D C9

-4-D -4- 4 C-D ~

(eat, 0) -
(that2, 0) -
(the, 0) /
(think, 0) -
(which2, 0) -
(cc3, 0) -
(ET, 0) -

(Cr, 1) -

(ET,3) -

- - -
v

- /
- /

/ -
- - /
- Vt Vt -

V/
- Vt

- - - - v

Table 3.23: The Selection Constraints of P(L7).

Licensees

C14 CC

(that2, 1) / - X X -

2 (cc.,1) - K -
. (Ec., 2) - / X X X

S (ET, 2) x v v -

Table 3.24: The (Anti-)Licensing Constraints of P(L 7).

68

Selectees

Cq

ce
_)+D 4D 4D 4;

r" - 1-

Q C4 1 C-

-~ -I

(a, 0)
(eat, 0)
(that, 0)
(that2, 0)
(the, 0)
(think, 0)
(which, 0)
(which2, 0)
(cc, 0)
(FC 2 , 0)

- (ecc, 0)
(ET, 0)
(ET, 1)

(6T, 3)

- /
/ -

- v/
/ / /

- - - - - - - - - - - - - v
/

/

- /
- - - - - /
- / / / - - - - - - - - -

/ / - - - - - - - - -

- - - - - --- - /
- - - - - - - - - - /

- / /
- - /

/ - -

- /
- - - - / - / /

Table 3.25: The Selection Constraints of Y7 . Note that the newly acquired constraints (designated by an
underline) have to do with which noun phrases the lexical item which2 may merge with.

Licensees

Cl
-~ Cl Cl

Q Q.~Cl Cl

(that2, 1) - / - X X -
S(ec2,1) X - _ - - /

2 (eca,1) ~X - - - /
.5 (ecc,2) / - / X X X
a (ET,2) X X X / / -

Table 3.26: The (Anti-)Licensing Constraints of Y7 .

69

a:: = z1, ~.z2
cat :: ~ z1

eat :: = z2,~ z6

cc:: = z3, C

c C 2 :: = z3, +z8, C

Ec 3 :: = z3, +z8, +z9, C

ET:: = z5, = z6, +z10, = z2, z3

man::
mouse::

that::

that2::

the::

think::

which::

which2::

will::

will2::

z1

z1

z3, ~ z4

z3, +z7, ~ z4

zl,~ z2

z4, ~ z6
zl,~ z2, -z9

z1, ~ z2, -z7, -z9

z5, -z10

z5, -z1O, -z8

Figure 3.20: The lexicon acquired from derivations di, - - - , d7 .

This concludes the process by which the learner acquires the lexicon Q(Y) from the derivations di, - - - , d7,

such that di E Q(Y) for 1 < i < 7.

70

Chapter 4

Conclusion

4.1 Summary

This thesis has shown how to construct a curated MG lexicon that produces a desired set of MG derivations.

In order to do this, it has developed a mathematical framework in which two or more curated lexicons

may be (recursively) combined to produce a curated lexicon that generates a superset of the complete

derivations generated by each of the constituent lexicons. In the process, it defined a mathematical structure,

the Collection of Constraints, that captures the logical constraints imposed upon the syntactic features of

lexical items as they are merged together in a derivation produced by a given lexicon. This thesis then

further developed the relation between curated lexicons and Collections of Constraints by establishing two

procedures: the procedure P, which maps a curated lexicon to a collections of constraints and the procedure

Q, which maps a collections of constraints produced by P to a curated lexicon. This thesis then showed that

these two procedures provide a bijective correspondence between the set of classes of curated lexicons and

the set of collections of constraints.

I then observed that combining multiple curated lexicons together requires that no lexicons' anti-licensing

constraints may violate any lexicons' licensing constraints. Since a Collections of Constraints struc-
ture explicitly enumerates both the set of licensing constraints and the set of anti-licensing

constraints that hold in the complete derivations produced by a given lexicon, this mathe-
matical structure is well suited for efficiently detecting violations of licensing constraints by
anti-licensing constraints that could arise when trying to combine several lexicons together.
This thesis capitalized upon this insight by establishing the procedure J, which determines whether it is

valid to combine several specified Collections of Constraints into a single Collection of Constraints and if

it is, proceeds to compute the aggregate Collection of Constraints. Thus, given a set of MG derivations,
each derivation may be mapped via the procedure P to a Collection of Constraints encoding the constraints

imposed by that derivation. The procedures J and Q may then be applied to the resulting Collection of

Constraints to produce a curated lexicon that generates a superset of the original MG derivations it was

constructed from.

This thesis then provided a running example demonstrating how the procedures J, P and Q may be

71

used together to model how a "learner" may acquire a sequence of derivations.1 The "learner" begins with

no prior knowledge, in the form of an empty Collection of Constraints. The "learner" is then sequentially

exposed to a series of MG derivations, acquiring new knowledge in the form of constraints. Each step in

the acquisition process involves enumerating the "learner's" total state of knowledge as well as the new

knowledge that the "learner" acquired in the previous acquisition step. In the process, this thesis was able

to investigate which kinds of generalizations that the "learner" could and could not capture. In particular,
this thesis demonstrated how the "learner" is able to infer wh-movement from the subject position in an

interrogative given previous exposure to wh-movement from the object position in an interrogative.

4.2 Future Work

The ability to algorithmically construct a lexicon that generates a desired set of derivations greatly eases the

process of exploring the space of grammars that covers a given corpora of phrase structures. The methods

developed in Chapter 2 and the exploration presented in Chapter ?? are restricted to curated lexicons. A
consequence of this, each lexical item in a set of related lexical items must be assigned a unique phonetic

component. (e.g. Ec, Ec 2 and EC3). In this section I will motivate an extension of the MG formalism in which

lexical items will structure their syntactic features as non-deterministic finite state automata (NDA), in effect

generalizing the standard linear ordering. Specifically, the states of a lexical item's syntactic feature NDA
represent the currently exposed syntactic feature while the edges of the NDA correspond to the syntactic

feature that will be selected or licensed (See Figures 4.2, 4.3, 4.4 and 4.5 for examples of such NDAs). I

will present three kinds of patterns observed in the lexicon that the learner ends with in Chapter 3 (See

Figure 3.20) that may all be captured under the proposed extension to organize the syntactic features of a

lexical item as a non-deterministic finite state automata.

Figure 4.1 presents the final state of the learner's knowledge in lexicon form; note the following three

lexical items that are variations of cc:

cc:: = z3, C

cC 2 :: = z3,+z8, C

cC 3 :: = z3, +z8, +z9, C

These three lexical items are all capturing aspects of the CP part of speech. They are related by the
syntactic features they share in common; specifically, one can view them as a set of decision sequences

characterizing decision tree. Generalizing the linear sequence of syntactic features of a chain into an NDA
would allow the learner to encode such a decision tree into the structure of the syntatic features of a single

lexical item, 6c (See Figure. 4.2). As a consequence of this, the features (cc,0), (EC2,0) and (6C3,0) (which

1
In this thesis I have taken the liberty of supplying derivations that map to derived trees that have a linguistically plausible
interpretation. In general, it is an open question as to how the "learner" is supplied with derivations. Note that if the
procedures J is implemented efficiently and there is some procedure W provided that enumerates all possible derivations, then
if one of the arguments of J is fixed with the current state of the learner's knowledge, J may effectively be used as a filter to
search for other possible derivations to assign to a newly seen sentence that is consistent with the current state of the learner's
knowledge.

72

Figure 4.1: The lexicon acquired from derivations the seven derivations presented in Chapter 3. Notice the
following groups of lexical items that have related phonetic forms as well as syntactic features: (a) CC, Cc 2

and cc,, (b) "that" and "that2," and (c) "which" and "which2." The proposed extension would allow for
each of the above groups of lexical items to be represented by a single lexical item.

all share the representation = z3) would collapse into a single syntactic feature (eC, 0).2 Similarly, the two

features (cc, 1) and (Cc2, 1), which share the representation = z3 , would collapse into the single syntactic

feature (Cc, 1). 3

+Z9
-z8 -Z9

~z3 +z8 -z8 C

=z3 ~z3

Figure 4.2: A finite state machine encoding the feature system of cc, Cc 2 and Ec3 into a single non-
deterministic finite state automata for the lexical item ec. Each node corresponds to a syntactic feature of
cC and each edge corresponds to a syntactic feature that may check or be checked by e'-

Next, consider the following two related lexical items.

that:: = z3,~ z4

that2:: = z3, +z7, ~ z4

These two lexical items are also capturing aspects of the CP part of speech. The difference between
2A consequence of these features collapsing into a single feature is that if weights were assigned to the features in a lexical item

(i.e. in a probabilistic model), the weights for those three features must have the same value.
3

Note that the indexing system used for syntactic features throughout this thesis (e.g. (Ec, 0)) is intended for linear sequences

of syntactic features; generalizing to the case of a finite state transducer would require that a more elaborate indexing system

be utilized.

73

a:: = z, ~z2

cat:: ~ z

eat:: = z2,~ z6

man:: - z1

mouse :: ~ z1
cc:: =z3,C that:: = ,

EC 2 : A 3, +z8, Cthat2 :: = z3, z7, 4

Ec 3 :: = z3, +z8, Cz9, the:: =z1, z2

CT:: = z5, = z, +z9O, z2- A think:: = , A

which:: = z1, z2, -z9

which2:: = zl, z2, -z7, -z9

will:: ~ z5, -z10

will2:: ~ z5, -zl0, -z8

"that" and "that2" is the licensor +z7 in "that2" to which "which2" may bind. I We would like for

(that, 1) and (that2, 2) to be the same feature since they share the same representation, ~ Z4. One manner

of achieving that is to consider the syntactic feature -z7 = (that2, 1) to be an "optional" feature. Modeling

the syntactic features of a lexical item as an NDA as proposed above would allow for such "optional" features

(See Figure ??).

=Z3 ~z z Z z z4 Finish

+z7

Figure 4.3: A finite state machine encoding the feature system of "that" and "that2" into a single non-
deterministic finite state automata. Note that the syntactic feature -z 7 is optional in this context.

Finally, consider the following two lexical items:

which:: = z1, - z2, -z9

which2:: = zl, ~ z2, -z7, -z9

These two lexical items are capturing aspects of the DP part of speech. The difference between "which"

and "which2" is the licensee -z7 in "which2" that will bind with the feature +z7 in "that2." Once again,
we would like for (that, 1) and (that2, 2) to be the same feature since they share the same representation,

~ z4 (See Figure 4.4).

=zI z ~z2 z2 =2 z7 -Z9 9 Finish

-07

Figure 4.4: A finite state machine encoding the feature system of "which" and "which2" into a single
non-deterministic finite state automata.

Although we could handle this case similar to the case of "that" above, consider what the lexical items

for "which" would look like for further successive cyclic wh-movement:

which3:: = zl, z2, -z7, -z7, -z9

which4:: = z1,~ z2, -z7, -z7, -z7, -z9

which,:: = z1, ~ z2, (-z7)-A1 , -z9

4 The licensor +z7 serves as a landing site for wh-movement so as not to violate the subjacency principle, which is defined in
[2] as: "A cyclic rule cannot move a phrase from position Y to position X (or conversely) in ... X ... [a ... [P ... Y ...] .]
X ..., where a and # are cyclic nodes. Cyclic nodes are S and NP."

74

This suggests that the feature -z7 should be a "cyclic" feature that allows for unlimited licensing. Once

again, modeling the syntactic features of a lexical item as a finite state transducer as proposed above would

allow for such "cyclic" features (See Figure 4.5).

=zl -z z 2 2 Z9 Finish
=z2 +z7 +Z7

-z7

Figure 4.5: A finite state machine extending the wh-movement captured by "which" and "which2" to cycli-
cally successive wh-movement.

Thus far we have seen how NDA's may capture commonalities in the network topology of the syntactic

feature structures of a group of related lexical items. The addition of weights to the edges of the NDA

encoding the syntactic features of a lexical item would allow for the development of probabilistic models

for Minimalist Grammars based upon rational kernels for support vector machines. [4] Furthermore, the

topology of the NDA encoding the syntactic features of a lexical item may be viewed as prior knowledge;

thus, it may be possible to identify a syntactic feature NDA topology for each of the syntactic categories

(i.e. parts of speech). Then each particular instance of a lexical item will have a unique assignment of

weights to it's syntactic feature NDA. In contrast to methods developed in machine learning that propose

to automatically discover key features and properties when no prior knowledge of the acquisition task is at

hand, rational kernels may allow us to explicitly capture our prior knowledge about universal grammar in

the structure of the NDA. [1] The extensions to the MG formalism presented in this section may provide a

path by which the methods developed in this thesis may be adapted to probabilistic models of Minimalist

Grammars.

75

76

Bibliography

[1] Bengio, Y. (2009). Learning deep architectures for Al. Foundations and trends® in Machine Learning,
2(1), 1-127.

[2] Chomsky, N. (1973). "Conditions on Transformations", in Anderson and Kiparsky, A Festschrift for

Morris Halle, New York: Holt, Rinehart & Winston, pp. 232-286.

[3] Chomsky, N. (1995). The minimalist program (Vol. 28). Cambridge, MA: MIT press.

[4] Cortes, C., Haffner, P., & Mohri, M. (2004). Rational kernels: Theory and algorithms. The Journal of

Machine Learning Research, 5, 1035-1062.

[5] Fowlie, M. (2014). Adjuncts and minimalist grammars. In Formal Grammar (pp. 34-51). Springer Berlin

Heidelberg.

[6] Graf, T. (2013). Local and transderivational constraints in syntax and semantics (Doctoral dissertation,
UCLA).

[7] Graf, T. (2014). Models of Adjunction in Minimalist Grammars. In Formal Grammar (pp. 52-68). Springer

Berlin Heidelberg.

[8] John Hale. 2006. Uncertainty about the rest of the sentence. Cognitive Science, 30:643-672.

[9] Harkema, H. (2001). A characterization of minimalist languages. In Logical aspects of computational

linguistics (pp. 193-211). Springer Berlin Heidelberg.

[10] Hunter, T., & Dyer, C. (2013). Distributions on Minimalist Grammar Derivations. In The 13th Meeting

on the Mathematics of Language (p. 1).

[11] Aravind Joshi. (1985). How much context-sensitivity is necessary for characterizing structural descrip-

tions. In D. Dowty, L. Karttunen, and A. Zwicky, ed., Natural Language Processing: Theoretical, Com-

putational and Psychological Perspectives, pgs 206-250. Cambridge University Press, NY.

[12] Kobele, G. (2006). Generating copies (Doctoral dissertation, PhD thesis, UCLA, Los Angeles).

[13] Mainguy, T. (2010). A probabilistic top-down parser for minimalist grammars. arXiv preprint

arXiv:1010.1826.

[14] Michaelis, J. (2001). Derivational minimalism is mildly context-sensitive. In Logical aspects of compu-

tational linguistics (pp. 179-198). Springer Berlin Heidelberg.

77

[15] Stabler, E. P. (1997). Derivational minimalism. In Logical aspects of computational linguistics (pp.

68-95). Springer Berlin Heidelberg.

[16] Stabler, E. P. (2001). Recognizing head movement. In Logical aspects of computational linguistics (pp.

245-260). Springer Berlin Heidelberg.

[17] Stabler, E. P., & Keenan, E. L. (2003). Structural similarity within and among languages. Theoretical

Computer Science 293(2), 345-363.

[18] Stabler, E. P. (2011). Top-down recognizers for MCFGs and MGs. In Proceedings of the 2nd workshop on

cognitive modeling and computational linguistics (pp. 39-48). Association for Computational Linguistics.

[19] Stabler, E. P. (2013). Two models of minimalist, incremental syntactic analysis. Topics in cognitive

science, 5(3), 611-633.

78

