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Abstract

This paper presents a methodology for creating streaming, distributed inference al-
gorithms for Bayesian nonparametric (BNP) models. In the proposed framework,
processing nodes receive a sequence of data minibatches, compute a variational
posterior for each, and make asynchronous streaming updates to a central model.
In contrast to previous algorithms, the proposed framework is truly streaming, dis-
tributed, asynchronous, learning-rate-free, and truncation-free. The key challenge
in developing the framework, arising from the fact that BNP models do not impose
an inherent ordering on their components, is finding the correspondence between
minibatch and central BNP posterior components before performing each update.
To address this, the paper develops a combinatorial optimization problem over
component correspondences, and provides an efficient solution technique. The
paper concludes with an application of the methodology to the DP mixture model,
with experimental results demonstrating its practical scalability and performance.

1 Introduction

Bayesian nonparametric (BNP) stochastic processes are streaming priors – their unique feature is
that they specify, in a probabilistic sense, that the complexity of a latent model should grow as the
amount of observed data increases. This property captures common sense in many data analysis
problems – for example, one would expect to encounter far more topics in a document corpus after
reading 106 documents than after reading 10 – and becomes crucial in settings with unbounded, per-
sistent streams of data. While their fixed, parametric cousins can be used to infer model complexity
for datasets with known magnitude a priori [1, 2], such priors are silent with respect to notions of
model complexity growth in streaming data settings.

Bayesian nonparametrics are also naturally suited to parallelization of data processing, due to the
exchangeability, and thus conditional independence, they often exhibit via de Finetti’s theorem. For
example, labels from the Chinese Restaurant process [3] are rendered i.i.d. by conditioning on the
underlying Dirichlet process (DP) random measure, and feature assignments from the Indian Buffet
process [4] are rendered i.i.d. by conditioning on the underlying beta process (BP) random measure.

Given these properties, one might expect there to be a wealth of inference algorithms for BNPs that
address the challenges associated with parallelization and streaming. However, previous work has
only addressed these two settings in concert for parametric models [5, 6], and only recently has each
been addressed individually for BNPs. In the streaming setting, [7] and [8] developed streaming
inference for DP mixture models using sequential variational approximation. Stochastic variational
inference [9] and related methods [10–13] are often considered streaming algorithms, but their per-
formance depends on the choice of a learning rate and on the dataset having known, fixed size a
priori [5]. Outside of variational approaches, which are the focus of the present paper, there exist
exact parallelized MCMC methods for BNPs [14, 15]; the tradeoff in using such methods is that they
provide samples from the posterior rather than the distribution itself, and results regarding assessing
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Figure 1: The four main steps of the algorithm that is run asynchronously on each processing node.

convergence remain limited. Sequential particle filters for inference have also been developed [16],
but these suffer issues with particle degeneracy and exponential forgetting.

The main challenge posed by the streaming, distributed setting for BNPs is the combinatorial prob-
lem of component identification. Most BNP models contain some notion of a countably infinite set
of latent “components” (e.g. clusters in a DP mixture model), and do not impose an inherent order-
ing on the components. Thus, in order to combine information about the components from multiple
processors, the correspondence between components must first be found. Brute force search is in-
tractable even for moderately sized models – there are

(
K1+K2

K1

)
possible correspondences for two

sets of components of sizes K1 and K2. Furthermore, there does not yet exist a method to evaluate
the quality of a component correspondence for BNP models. This issue has been studied before in
the MCMC literature, where it is known as the “label switching problem”, but past solution tech-
niques are generally model-specific and restricted to use on very simple mixture models [17, 18].

This paper presents a methodology for creating streaming, distributed inference algorithms for
Bayesian nonparametric models. In the proposed framework (shown for a single node A in Fig-
ure 1), processing nodes receive a sequence of data minibatches, compute a variational posterior
for each, and make asynchronous streaming updates to a central model using a mapping obtained
from a component identification optimization. The key contributions of this work are as follows.
First, we develop a minibatch posterior decomposition that motivates a learning-rate-free streaming,
distributed framework suitable for Bayesian nonparametrics. Then, we derive the component iden-
tification optimization problem by maximizing the probability of a component matching. We show
that the BNP prior regularizes model complexity in the optimization; an interesting side effect of this
is that regardless of whether the minibatch variational inference scheme is truncated, the proposed
algorithm is truncation-free. Finally, we provide an efficiently computable regularization bound for
the Dirichlet process prior based on Jensen’s inequality1. The paper concludes with applications of
the methodology to the DP mixture model, with experimental results demonstrating the scalability
and performance of the method in practice.

2 Streaming, distributed Bayesian nonparametric inference

The proposed framework, motivated by a posterior decomposition that will be discussed in Section
2.1, involves a collection of processing nodes with asynchronous access to a central variational pos-
terior approximation (shown for a single node in Figure 1). Data is provided to each processing
node as a sequence of minibatches. When a processing node receives a minibatch of data, it obtains
the central posterior (Figure 1a), and using it as a prior, computes a minibatch variational posterior
approximation (Figure 1b). When minibatch inference is complete, the node then performs compo-
nent identification between the minibatch posterior and the current central posterior, accounting for
possible modifications made by other processing nodes (Figure 1c). Finally, it merges the minibatch
posterior into the central variational posterior (Figure 1d).

In the following sections, we use the DP mixture [3] as a guiding example for the technical de-
velopment of the inference framework. However, it is emphasized that the material in this paper
generalizes to many other BNP models, such as the hierarchical DP (HDP) topic model [19], BP la-
tent feature model [20], and Pitman-Yor (PY) mixture [21] (see the supplement for further details).

1Regularization bounds for other popular BNP priors may be found in the supplement.

2



2.1 Posterior decomposition

Consider a DP mixture model [3], with cluster parameters θ, assignments z, and observed data y.
For each asynchronous update made by each processing node, the dataset is split into three subsets
y = yo ∪ yi ∪ ym for analysis. When the processing node receives a minibatch of data ym, it
queries the central processing node for the original posterior p(θ, zo|yo), which will be used as the
prior for minibatch inference. Once inference is complete, it again queries the central processing
node for the intermediate posterior p(θ, zo, zi|yo, yi) which accounts for asynchronous updates from
other processing nodes since minibatch inference began. Each subset yr, r ∈ {o, i,m}, has Nr
observations {yrj}Nrj=1, and each variable zrj ∈ N assigns yrj to cluster parameter θzrj . Given the
independence of θ and z in the prior, and the conditional independence of the data given the latent
parameters, Bayes’ rule yields the following decomposition of the posterior of θ and z given y,

Updated Central Posterior︷ ︸︸ ︷
p(θ, z|y)∝ p(zi, zm|zo)

p(zi|zo)p(zm|zo)
·

Original Posterior︷ ︸︸ ︷
p(θ, zo|yo)−1 ·

Minibatch Posterior︷ ︸︸ ︷
p(θ, zm, zo|ym, yo) ·

Intermediate Posterior︷ ︸︸ ︷
p(θ, zi, zo|yi, yo). (1)

This decomposition suggests a simple streaming, distributed, asynchronous update rule for a pro-
cessing node: first, obtain the current central posterior density p(θ, zo|yo), and using it as a prior,
compute the minibatch posterior p(θ, zm, zo|yo, ym); and then update the central posterior density
by using (1) with the current central posterior density p(θ, zi, zo|yi, yo). However, there are two
issues preventing the direct application of the decomposition rule (1):

Unknown component correspondence: Since it is generally intractable to find the minibatch pos-
teriors p(θ, zm, zo|yo, ym) exactly, approximate methods are required. Further, as (1) requires the
multiplication of densities, sampling-based methods are difficult to use, suggesting a variational ap-
proach. Typical mean-field variational techniques introduce an artificial ordering of the parameters
in the posterior, thereby breaking symmetry that is crucial to combining posteriors correctly using
density multiplication [6]. The use of (1) with mean-field variational approximations thus requires
first solving a component identification problem.

Unknown model size: While previous posterior merging procedures required a 1-to-1 matching
between the components of the minibatch posterior and central posterior [5, 6], Bayesian nonpara-
metric posteriors break this assumption. Indeed, the datasets yo, yi, and ym from the same non-
parametric mixture model can be generated by the same, disjoint, or an overlapping set of cluster
parameters. In other words, the global number of unique posterior components cannot be determined
until the component identification problem is solved and the minibatch posterior is merged.

2.2 Variational component identification

Suppose we have the following mean-field exponential family prior and approximate variational
posterior densities in the minibatch decomposition (1),

p(θk) = h(θk)eη
T
0 T (θk)−A(η0) ∀k ∈ N

p(θ, zo|yo) ' qo(θ, zo) = ζo(zo)

Ko∏
k=1

h(θk)eη
T
okT (θk)−A(ηok)

p(θ, zm, zo|ym, yo) ' qm(θ, zm, zo) = ζm(zm)ζo(zo)

Km∏
k=1

h(θk)eη
T
mkT (θk)−A(ηmk) (2)

p(θ, zi, zo|yi, yo) ' qi(θ, zi, zo) = ζi(zi)ζo(zo)

Ki∏
k=1

h(θk)eη
T
ikT (θk)−A(ηik),

where ζr(·), r ∈ {o, i,m} are products of categorical distributions for the cluster labels zr, and the
goal is to use the posterior decomposition (1) to find the updated posterior approximation

p(θ, z|y) ' q(θ, z) = ζ(z)

K∏
k=1

h(θk)eη
T
k T (θk)−A(ηk). (3)
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As mentioned in the previous section, the artificial ordering of components causes the naı̈ve appli-
cation of (1) with variational approximations to fail, as disparate components from the approximate
posteriors may be merged erroneously. This is demonstrated in Figure 3a, which shows results from
a synthetic experiment (described in Section 4) ignoring component identification. As the number of
parallel threads increases, more matching mistakes are made, leading to decreasing model quality.

To address this, first note that there is no issue with the first Ko components of qm and qi; these can
be merged directly since they each correspond to the Ko components of qo. Thus, the component
identification problem reduces to finding the correspondence between the last K ′m = Km − Ko

components of the minibatch posterior and the last K ′i = Ki −Ko components of the intermediate
posterior. For notational simplicity (and without loss of generality), fix the component ordering
of the intermediate posterior qi, and define σ : [Km] → [Ki +K ′m] to be the 1-to-1 mapping
from minibatch posterior component k to updated central posterior component σ(k), where [K] :=
{1, . . . ,K}. The fact that the first Ko components have no ordering ambiguity can be expressed as
σ(k) = k ∀k ∈ [Ko]. Note that the maximum number of components after merging is Ki + K ′m,
since each of the lastK ′m components in the minibatch posterior may correspond to new components
in the intermediate posterior. After substituting the three variational approximations (2) into (1), the
goal of the component identification optimization is to find the 1-to-1 mapping σ? that yields the
largest updated posterior normalizing constant, i.e. matches components with similar densities,

σ? ← argmax
σ

∑
z

∫
θ

p(zi, zm|zo)
p(zi|zo)p(zm|zo)

qo(θ, zo)
−1qσm(θ, zm, zo)qi(θ, zi, zo)

s.t. qσm(θ, zm) = ζσm(zm)

Km∏
k=1

h(θσ(k))e
ηTmkT (θσ(k))−A(ηmk)

σ(k) = k, ∀k ∈ [Ko] , σ 1-to-1

(4)

where ζσm(zm) is the distribution such that Pζσm(zmj = σ(k)) = Pζm(zmj = k). Taking the
logarithm of the objective and exploiting the mean-field decoupling allows the separation of the
objective into a sum of two terms: one expressing the quality of the matching between components
(the integral over θ), and one that regularizes the final model size (the sum over z). While the first
term is available in closed form, the second is in general not. Therefore, using the concavity of
the logarithm function, Jensen’s inequality yields a lower bound that can be used in place of the
intractable original objective, resulting in the final component identification optimization:

σ? ← argmax
σ

Ki+K
′
m∑

k=1

A (η̃σk ) + Eσζ [log p(zi, zm, zo)]

s.t. η̃σk = η̃ik + η̃σmk − η̃ok
σ(k) = k ∀k ∈ [Ko] , σ 1-to-1.

(5)

A more detailed derivation of the optimization may be found in the supplement. Eσζ denotes expec-
tation under the distribution ζo(zo)ζi(zi)ζσm(zm), and

η̃rk =

{
ηrk k ≤ Kr

η0 k > Kr
∀r ∈ {o, i,m}, η̃σmk =

{
ηmσ−1(k) k ∈ σ ([Km])
η0 k /∈ σ ([Km])

, (6)

where σ ([Km]) denotes the range of the mapping σ. The definitions in (6) ensure that the prior η0
is used whenever a posterior r ∈ {i,m, o} does not contain a particular component k. The intuition
for the optimization (5) is that it combines finding component correspondences with high similarity
(via the log-partition function) with a regularization term2 on the final updated posterior model size.

Despite its motivation from the Dirichlet process mixture, the component identification optimization
(5) is not specific to this model. Indeed, the derivation did not rely on any properties specific to the
Dirichlet process mixture; the optimization applies to any Bayesian nonparametric model with a set
of “components” θ, and a set of combinatorial “indicators” z. For example, the optimization applies
to the hierarchical Dirichlet process topic model [10] with topic word distributions θ and local-to-
global topic correspondences z, and to the beta process latent feature model [4] with features θ and

2This is equivalent to the KL-divergence regularization −KL
[
ζo(zo)ζi(zi)ζ

σ
m(zm)

∣∣∣∣∣∣ p(zi, zm, zo)].
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binary assignment vectors z. The form of the objective in the component identification optimization
(5) reflects this generality. In order to apply the proposed streaming, distributed method to a partic-
ular model, one simply needs a black-box variational inference algorithm that computes posteriors
of the form (2), and a way to compute or bound the expectation in the objective of (5).

2.3 Updating the central posterior

To update the central posterior, the node first locks it and solves for σ? via (5). Locking prevents
other nodes from solving (5) or modifying the central posterior, but does not prevent other nodes
from reading the central posterior, obtaining minibatches, or performing inference; the synthetic
experiment in Section 4 shows that this does not incur a significant time penalty in practice. Then
the processing node transmits σ? and its minibatch variational posterior to the central processing
node where the product decomposition (1) is used to find the updated central variational posterior q
in (3), with parameters

K = max

{
Ki, max

k∈[Km]
σ?(k)

}
, ζ(z) = ζi(zi)ζo(zo)ζ

σ?

m (zm), ηk = η̃ik + η̃σ
?

mk − η̃ok. (7)

Finally, the node unlocks the central posterior, and the next processing node to receive a new mini-
batch will use the above K, ζ(z), and ηk from the central node as their Ko, ζo(zo), and ηok.

3 Application to the Dirichlet process mixture model

The expectation in the objective of (5) is typically intractable to compute in closed-form; therefore,
a suitable lower bound may be used in its place. This section presents such a bound for the Dirichlet
process, and discusses the application of the proposed inference framework to the Dirichlet process
mixture model using the developed bound. Crucially, the lower bound decomposes such that the op-
timization (5) becomes a maximum-weight bipartite matching problem. Such problems are solvable
in polynomial time [22] by the Hungarian algorithm, leading to a tractable component identification
step in the proposed streaming, distributed framework.

3.1 Regularization lower bound

For the Dirichlet process with concentration parameter α > 0, p(zi, zm, zo) is the Exchangeable
Partition Probability Function (EPPF) [23]

p(zi, zm, zo) ∝ α|K|−1
∏
k∈K

(nk − 1)!, (8)

where nk is the amount of data assigned to cluster k, and K is the set of labels of nonempty clusters.
Given that the variational distribution ζr(zr), r ∈ {i,m, o} is a product of independent categor-
ical distributions ζr(zr) =

∏Nr
j=1

∏Kr
k=1 π

1[zrj=k]
rjk , Jensen’s inequality may be used to bound the

regularization in (5) below (see the supplement for further details) by

Eσζ [log p(zi, zm, zo)] ≥
Ki+K

′
m∑

k=1

(
1− es̃

σ
k

)
logα+ log Γ

(
max

{
2, t̃σk

})
+ C

s̃σk = s̃ik + s̃σmk + s̃ok, t̃σk = t̃ik + t̃σmk + t̃ok,

(9)

where C is a constant with respect to the component mapping σ, and

s̃rk =

{ ∑Nr
j=1 log(1−πrjk) k≤Kr

0 k>Kr
∀r∈{o,i,m} t̃rk =

{ ∑Nr
j=1 πrjk k≤Kr

0 k>Kr
∀r∈{o,i,m}

s̃σmk =

{ ∑Nm
j=1 log(1−πmjσ−1(k)) k∈σ([Km])

0 k/∈σ([Km])
t̃σmk =

{ ∑Nm
j=1 πmjσ−1(k) k∈σ([Km])

0 k/∈σ([Km])
.

(10)

Note that the bound (9) allows incremental updates: after finding the optimal mapping σ?, the central
update (7) can be augmented by updating the values of sk and tk on the central node to

sk ← s̃ik + s̃σ
?

mk + s̃ok, tk ← t̃ik + t̃σ
?

mk + t̃ok. (11)
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Figure 2: The Dirichlet process regularization and lower bound, with (2a) fully uncertain labelling and varying
number of clusters, and (2b) the number of clusters fixed with varying labelling uncertainty.

As withK, ηk, and ζ from (7), after performing the regularization statistics update (11), a processing
node that receives a new minibatch will use the above sk and tk as their sok and tok, respectively.

Figure 2 demonstrates the behavior of the lower bound in a synthetic experiment with N = 100
datapoints for various DP concentration parameter values α ∈

[
10−3, 103

]
. The true regularization

logEζ [p(z)] was computed by sample approximation with 104 samples. In Figure 2a, the number of
clusters K was varied, with symmetric categorical label weights set to 1

K . This figure demonstrates
two important phenomena. First, the bound increases as K → 0; in other words, it gives preference
to fewer, larger clusters, which is the typical BNP “rich get richer” property. Second, the behavior of
the bound as K → N depends on the concentration parameter α – as α increases, more clusters are
preferred. In Figure 2b, the number of clusters K was fixed to 10, and the categorical label weights
were sampled from a symmetric Dirichlet distribution with parameter γ ∈

[
10−3, 103

]
. This figure

demonstrates that the bound does not degrade significantly with high labelling uncertainty, and is
nearly exact for low labelling uncertainty. Overall, Figure 2a demonstrates that the proposed lower
bound exhibits similar behaviors to the true regularization, supporting its use in the optimization (5).

3.2 Solving the component identification optimization

Given that both the regularization (9) and component matching score in the objective (5) decompose
as a sum of terms for each k ∈ [Ki +K ′m], the objective can be rewritten using a matrix of matching
scores R ∈ R(Ki+K′m)×(Ki+K′m) and selector variables X ∈ {0, 1}(Ki+K

′
m)×(Ki+K′m). Setting

Xkj = 1 indicates that component k in the minibatch posterior is matched to component j in the
intermediate posterior (i.e. σ(k) = j), providing a score Rkj defined using (6) and (10) as

Rkj = A (η̃ij+ η̃mk − η̃oj)+
(
1− es̃ij+s̃mk+s̃oj

)
logα+log Γ

(
max

{
2, t̃ij + t̃mk + t̃oj

})
. (12)

The optimization (5) can be rewritten in terms of X and R as

X? ← argmax
X

tr
[
XTR

]
s.t. X1 = 1, XT1 = 1, Xkk = 1,∀k ∈ [Ko]

X ∈ {0, 1}(Ki+K
′
m)×(Ki+K′m), 1 = [1, . . . , 1]

T
.

(13)

The first two constraints express the 1-to-1 property of σ(·). The constraint Xkk = 1∀k ∈ [Ko] fixes
the upperKo×Ko block of X to I (due to the fact that the firstKo components are matched directly),
and the off-diagonal blocks to 0. Denoting X′, R′ to be the lower right (K ′i +K ′m)× (K ′i +K ′m)
blocks of X, R, the remaining optimization problem is a linear assignment problem on X′ with
cost matrix −R′, which can be solved using the Hungarian algorithm3. Note that if Km = Ko

or Ki = Ko, this implies that no matching problem needs to be solved – the first Ko components
of the minibatch posterior are matched directly, and the last K ′m are set as new components. In
practical implementation of the framework, new clusters are typically discovered at a diminishing
rate as more data are observed, so the number of matching problems that are solved likewise tapers
off. The final optimal component mapping σ? is found by finding the nonzero elements of X?:

σ?(k)← argmax
j

X?
kj ∀k ∈ [Km] . (14)

3For the experiments in this work, we used the implementation at github.com/hrldcpr/hungarian.
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(a) SDA-DP without component ID
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(b) SDA-DP with component ID
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Figure 3: Synthetic results over 30 trials. (3a-3b) Computation time and test log likelihood for SDA-DP with
varying numbers of parallel threads, with component identification disabled (3a) and enabled (3b). (3c) Test log
likelihood traces for SDA-DP (40 threads) and the comparison algorithms. (3d) Histogram of computation time
(in microseconds) to solve the component identification optimization. (3e) Number of clusters and number of
component identification problems solved as a function of the number of minibatch updates (40 threads). (3f)
Final number of clusters and matchings solved with varying numbers of parallel threads.

4 Experiments

In this section, the proposed inference framework is evaluated on the DP Gaussian mixture with a
normal-inverse-Wishart (NIW) prior. We compare the streaming, distributed procedure coupled with
standard variational inference [24] (SDA-DP) to five state-of-the-art inference algorithms: memo-
ized online variational inference (moVB) [13], stochastic online variational inference (SVI) [9] with
learning rate (t+10)−

1
2 , sequential variational approximation (SVA) [7] with cluster creation thresh-

old 10−1 and prune/merge threshold 10−3, subcluster splits MCMC (SC) [14], and batch variational
inference (Batch) [24]. Priors were set by hand and all methods were initialized randomly. Meth-
ods that use multiple passes through the data (e.g. moVB, SVI) were allowed to do so. moVB was
allowed to make birth/death moves, while SVI/Batch had fixed truncations. All experiments were
performed on a computer with 24 CPU cores and 12GiB of RAM.

Synthetic: This dataset consisted of 100,000 2-dimensional vectors generated from a Gaussian mix-
ture model with 100 clusters and a NIW(µ0, κ0,Ψ0, ν0) prior with µ0 = 0, κ0 = 10−3, Ψ0 = I ,
and ν0 = 4. The algorithms were given the true NIW prior, DP concentration α = 5, and mini-
batches of size 50. SDA-DP minibatch inference was truncated toK = 50 components, and all other
algorithms were truncated to K = 200 components. Figure 3 shows the results from the experiment
over 30 trials, which illustrate a number of important properties of SDA-DP. First and foremost,
ignoring the component identification problem leads to decreasing model quality with increasing
number of parallel threads, since more matching mistakes are made (Figure 3a). Second, if compo-
nent identification is properly accounted for using the proposed optimization, increasing the number
of parallel threads reduces execution time, but does not affect the final model quality (Figure 3b).
Third, SDA-DP (with 40 threads) converges to the same final test log likelihood as the comparison
algorithms in significantly reduced time (Figure 3c). Fourth, each component identification opti-
mization typically takes ∼ 10−5 seconds, and thus matching accounts for less than a millisecond of
total computation and does not affect the overall computation time significantly (Figure 3d). Fifth,
the majority of the component matching problems are solved within the first 80 minibatch updates
(out of a total of 2,000) – afterwards, the true clusters have all been discovered and the processing
nodes contribute to those clusters rather than creating new ones, as per the discussion at the end of
Section 3.2 (Figure 3e). Finally, increased parallelization can be advantageous in discovering the
correct number of clusters; with only one thread, mistakes made early on are built upon and persist,
whereas with more threads there are more component identification problems solved, and thus more
chances to discover the correct clusters (Figure 3f).
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(d) Numerical results on Airplane, MNIST, and SUN
Airplane MNIST SUN

Algorithm Time (s) TestLL Time (s) TestLL Time (s) TestLL
SDA-DP 0.66 -0.55 3.0 -145.3 9.4 -150.3

SVI 1.50 -0.59 117.4 -147.1 568.9 -149.9
SVA 3.00 -4.71 57.0 -145.0 10.4 -152.8

moVB 0.69 -0.72 645.9 -149.2 1258.1 -149.7
SC 393.6 -1.06 1639.1 -146.8 1618.4 -150.6

Batch 1.07 -0.72 829.6 -149.5 1881.5 -149.7

Figure 4: (4a-4b) Highest-probability instances and counts for 10 trajectory clusters generated by SDA-DP.
(4c) Highest-probability instances for 20 clusters discovered by SDA-DP on MNIST. (4d) Numerical results.

Airplane Trajectories: This dataset consisted of ∼3,000,000 automatic dependent surveillance
broadcast (ADS-B) messages collected from planes across the United States during the period 2013-
03-22 01:30:00UTC to 2013-03-28 12:00:00UTC. The messages were connected based on plane call
sign and time stamp, and erroneous trajectories were filtered based on reasonable spatial/temporal
bounds, yielding 15,022 trajectories with 1,000 held out for testing. The latitude/longitude points
in each trajectory were fit via linear regression, and the 3-dimensional parameter vectors were clus-
tered. Data was split into minibatches of size 100, and SDA-DP used 16 parallel threads.

MNIST Digits [25]: This dataset consisted of 70,000 28 × 28 images of hand-written digits, with
10,000 held out for testing. The images were reduced to 20 dimensions with PCA prior to clustering.
Data was split into minibatches of size 500, and SDA-DP used 48 parallel threads.

SUN Images [26]: This dataset consisted of 108,755 images from 397 scene categories, with 8,755
held out for testing. The images were reduced to 20 dimensions with PCA prior to clustering. Data
was split into minibatches of size 500, and SDA-DP used 48 parallel threads.

Figure 4 shows the results from the experiments on the three real datasets. From a qualitative stand-
point, SDA-DP discovers sensible clusters in the data, as demonstrated in Figures 4a–4c. However,
an important quantitative result is highlighted by Table 4d: the larger a dataset is, the more the
benefits of parallelism provided by SDA-DP become apparent. SDA-DP consistently provides a
model quality that is competitive with the other algorithms, but requires orders of magnitude less
computation time, corroborating similar findings on the synthetic dataset.

5 Conclusions

This paper presented a streaming, distributed, asynchronous inference algorithm for Bayesian non-
parametric models, with a focus on the combinatorial problem of matching minibatch posterior com-
ponents to central posterior components during asynchronous updates. The main contributions are
a component identification optimization based on a minibatch posterior decomposition, a tractable
bound on the objective for the Dirichlet process mixture, and experiments demonstrating the per-
formance of the methodology on large-scale datasets. While the present work focused on the DP
mixture as a guiding example, it is not limited to this model – exploring the application of the
proposed methodology to other BNP models is a potential area for future research.
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