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If a new high-mass resonance is discovered at the Large Hadron Collider, model-independent techniques
to identify the production mechanism will be crucial to understand its nature and effective couplings to
Standard Model particles. We present a powerful and model-independent method to infer the initial state in
the production of any high-mass color-singlet system by using a tight veto on accompanying hadronic jets
to divide the data into two mutually exclusive event samples (jet bins). For a resonance of several hundred
GeV, the jet binning cut needed to discriminate quark and gluon initial states is in the experimentally
accessible range of several tens of GeV. It also yields comparable cross sections for both bins, making this
method viable already with the small event samples available shortly after a discovery. Theoretically, the
method is made feasible by utilizing an effective field theory setup to compute the jet cut dependence
precisely and model independently and to systematically control all sources of theoretical uncertainties in
the jet binning, as well as their correlations. We use a 750 GeV scalar resonance as an example to
demonstrate the viability of our method.

DOI: 10.1103/PhysRevD.94.051901

I. INTRODUCTION

The increased center-of-mass energy of the Large
Hadron Collider (LHC) significantly enhances the sensi-
tivity for the discovery of new heavy particles. Should a
new high-mass state be found, a key goal will be to identify
its production mechanism.
It is well known that the different patterns of initial-state

radiation (ISR) for gluon- and quark-induced processes
provide in principle a way to discriminate between these
initial states. Typically, methods to exploit this fact require
a substantial amount of data for the precise measurement of
shapes of differential distributions. In this paper, we show
that for any high-mass color-singlet system, the measure-
ment of just two cross sections, namely dividing the data
into events with and without additional hadronic jets in the
final state, provides a strong discrimination between
production mechanisms, which is furthermore experimen-
tally accessible with event samples of limited size. The
method is also theoretically clean, as it is both model
independent and has well-controlled theory uncertainties.
As a concrete example, we investigate a color-singlet

resonance with a mass of 750 GeV. The ATLAS and CMS
experiments have recently reported some deviation from
the background expectation in the diphoton invariant mass
spectrum around 750 GeV [1,2]. Assuming the deviation to
be a first sign of a new particle, a large number of proposals
on its interpretation and possible property studies have been
made [3]. Exploratory studies of the initial state have
utilized the luminosity ratio between 8 and 13 TeV (which
is limited by the available 8 TeV data), the transverse

momentum and rapidity distribution of the new state [4],
multiplicity and kinematic distributions of hadronic jets [5],
and b-tagging [4,6]. Different techniques for tagging the
initial state have been studied earlier, see e.g. Refs. [7–12].
Beyond its viability for small data sets, our method offers
several additional advantages. Compared to considering
additional jets at high pjet

T [5,6,13], the low pjet
T -range we

exploit has more discrimination power and is more model
independent. Compared to the diphoton pT spectrum, the
pjet
T of hadronic jets provides a more direct measure of ISR,

making it insensitive to the possibility of more complicated
decays of the resonance, for example, three-body [14,15] or
cascade decays [16–21]. Our method is also unaffected by
limited experimental acceptance for photons, which for
example hinders fully exploiting the diphoton rapidity
distribution to discriminate valence quarks by their differ-
ent parton distribution function (PDF) shapes.
The 0-jet cross section is defined by requiring that

all accompanying jets have pjet
T ≤ pcut

T . The QCD dynamics
of low-pT radiation produced in association with a hard
scattering process into a final state F with total invariant
mass mðFÞ≃mX can be described using the soft collinear
effective theory (SCET) [22–25]. At the scale μ∼pcut

T ≪mX,
the leading effective field theory (EFT) Lagrangian has the
form (see e.g. [26–28])

Leffðpcut
T Þ ¼ LSCET þ cλ1λ2ggFB

λ1
n B

λ2
n̄ F

þ
X
q

cλ1λ2qq̄F χ̄
λ1
qn χ

λ2
qn̄F : ð1Þ
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Here, LSCET is the universal Lagrangian encoding the
interactions of soft and collinear quarks and gluons.
The gauge-invariant operators BnBn̄ and χ̄qnχqn̄ describe
the annihilation of energetic gluons or quarksq ¼ u,d, s, c,b
along the beam directions, n ¼ ð1; ẑÞ and n̄ ¼ ð1;−ẑÞ, with
helicities λ1 and λ2 (implicitly summed over), and F collects
all fields required to produce F. All hard degrees of freedom
are integrated out, including quarks and gluons of virtuality
∼mX as well as any intermediate new heavy degrees of
freedom leading to F.
We stress that Leffðpcut

T Þ provides a completely model-
independent description of the small-pcut

T region, up to
power corrections suppressed by ðpcut

T =mXÞ2. It is valid
for any produced color-singlet system X leading to F,
for example the decay of a finite-width resonance, the
Standard Model background pp → F, and even the signal-
background interference [29], as all of the dynamics of the
production and decay of X are contained in the hard Wilson
coefficients cλ1λ2ggF and cλ1λ2qq̄F and because the leading pertur-
bative SCET dynamics are insensitive to the helicity
structure of the operators and the details of F . The 0-jet
cross section thus only depends on the hard coefficients

jcijFj2 ¼
Z

dΦF

X
λ1λ2

jcλ1λ2ijF ðΦFÞj2; ð2Þ

where the integral is over the final-state phase space for F
including any kinematic selection cuts. As a result, the pcut

T
dependence is independent of any details of F and in
particular also the spin of X. (See Ref. [30] for a detailed
analysis in a specific new-physics context.)
To predict the inclusive cross section pp → X → F we

need to know the Lagrangian at the scale μ ∼mX, which
contains the full QCD Lagrangian plus the (effective)
interactions of X with quarks and gluons. This becomes
somewhat more model dependent, and requires, for exam-
ple, specifying the spin of X. For our concrete study we
take X to be a scalar, coupling to gluons and quarks via the
effective Wilson coefficients Cg and Cq as

LeffðmXÞ ⊃ −
Cg

1 TeV
αsGμνGμνX −

X
q

Cqq̄qX; ð3Þ

where Gμν is the gluon field strength and αs is the strong
coupling. (We assume that X does not couple directly to top
quarks, as this would have shown up in tt̄ production.)
Comparing quark and gluon luminosities as is often done is
equivalent to using Eq. (3) at leading order (LO). With
Eq. (3) specified, we can now match it onto Eq. (1) and
compute jcqq̄Fj2 and jcggFj2.
For our purposes, any model can be represented by

Eq. (3) at leading order in αsðmXÞ. Treated as an EFT,
Eq. (3) is a priori only correct to OðmX=ΛÞ, where Λ is the
mass scale of additional heavy degrees of freedom that

induce the effective interactions of X. For example, the
possibility of real QCD radiation from internal heavy states
is not captured by Eq. (3). However, even for Λ ∼mX hard
emissions only affect the inclusive cross section by
OðαsðmXÞÞ, while emissions below the scale pcut

T are power
suppressed. Similarly, a different choice of LeffðmXÞ in
Eq. (3) (e.g. for a spin-2 resonance) changes the inclusive
cross section and the matching in Eq. (4) only by terms of
OðαsðmXÞÞ, i.e., at the 10%–20% level. The crucial point is
that the pcut

T dependence for pcut
T ≪ mX is described by

Eq. (1). Hence, for more complicated scenarios than the one
considered here, our main conclusions regarding the initial-
state discrimination are unaffected as they rest on the
dynamics at the scale μ ∼ pcut

T , which is described model
independently.

II. CALCULATIONAL SETUP

Considering for simplicity the narrow-width approxima-
tion, we have

jcqq̄FðμHÞj2 ¼ BðX → FÞjCqðμHÞð1þ � � �Þj2;
jcggFðμHÞj2 ¼ BðX → FÞjαsðμHÞCgðμHÞð1þ � � �Þj2; ð4Þ

where μH ∼mX is the hard matching scale, and the ellipses
indicate the αsðμHÞ corrections from hard virtual QCD
emissions. The branching ratio B≡ BðX → FÞ also
depends on all Wilson coefficients Ci, but will drop out
in our final analysis.
The jet cross sections we consider are given by

σ≥0¼jCgj2σg≥0þ
X
q

jCqj2σq≥0;

σ0ðpcut
T Þ¼ jCgj2σg0ðpcut

T Þþ
X
q

jCqj2σq0ðpcut
T Þ;

σ≥1ðpcut
T Þ¼ jCgj2σg≥1ðpcut

T Þþ
X
q

jCqj2σq≥1ðpcut
T Þ; ð5Þ

where σ≥0 ¼ σ0ðpcut
T Þ þ σ≥1ðpcut

T Þ. We take Ci ≡ CiðmXÞ
as the unknown parameters to be determined from the
data. Their evolution from the fixed input scale mX to the
hard matching scale μH is included in the σim in Eq. (5), so
they are defined to be scale independent to all orders.
The σg≥0 and σ

q
≥0 are the inclusive cross sections that follow

from the ggX and qq̄X operators in LeffðmXÞ in Eq. (3).
The inclusive 1-jet cross sections are computed as
σi≥1ðpcut

T Þ ¼ σi≥0 − σi0ðpcut
T Þ. The 0-jet cross sections con-

tain large Sudakov logarithms of pcut
T =mX, which are

resummed utilizing the pjet
T resummation framework of

Refs. [31,32] based on SCET (see also Refs. [33–36]).
They are given by
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jCgj2σg0ðpcut
T Þ ¼ π

4E2
cm

m2
X

TeV2
jcggXðμÞj2

Z
dYBgðpcut

T ; μÞ

× Bgðpcut
T ; μÞSggðpcut

T ; μÞ þ σg nons0 ðpcut
T Þ;

jCqj2σq0ðpcut
T Þ ¼ π

6E2
cm

jcqq̄XðμÞj2
Z

dYBqðpcut
T ; μÞ

× Bq̄ðpcut
T ; μÞSqq̄ðpcut

T ; μÞ þ σq nons0 ðpcut
T Þ:

ð6Þ
The Bi are quark and gluon beam functions, which describe
the dynamics of collinear radiation along the beam direc-
tions. In general, the type of the incoming parton is changed
by both collinear PDF evolution and fixed-order corrections,
so beyond LO an operator in the Lagrangian receives
contributions from all PDFs. However, in the 0-jet cross
section, both of these effects only occur up to the scale pcut

T
and are contained in the beam functions. Above the scale
pcut
T , the parton type of the initial state is uniquely defined

and matches between the beam function and the operator in
the Lagrangian [26]. Similarly, the dynamics of wide-angle
soft radiation, described by the soft functions Sgg=qq̄, is
unique to the parton type and does not change it. The fact that
the jet veto freezes the initial-state parton type at the scale
pcut
T is what lends our method its strong discrimination

power, as it provides a large energy range between pcut
T and

mX where the initial state evolves without changing its type.
We calculate σq≥0 to next-to-leading order (NLO) in αs,

and σq0ðpcut
T Þ is resummed to NLL0 þ NLO order. Due to the

substantially larger uncertainties for gluons, we include the
full next-to-next-to-leading order (NNLO) corrections for
σg≥0, and σg0ðpcut

T Þ is resummed to NNLL0 þ NNLO [32].
The inclusive cross sections are obtained with SUSHI 1.6.0
[37–41].
The nonsingular corrections σi nons0 ðpcut

T Þ in Eq. (6) con-
tain the power corrections starting at ðpcut

T =mXÞ2. They
ensure that σi0ðpcut

T Þ smoothly matches onto σi≥0 for large
pcut
T , and are correspondingly included to NLO for quarks

and NNLO for gluons. They are extracted from the fixed-
order pcut

T spectra predicted by Eq. (3), obtained from SUSHI

for qq̄X and MCFM [42,43] for ggX.
We perform a careful analysis of the different sources of

theoretical uncertainties and their correlations for σ≥0, σ0,
and σ≥1. The total theory covariance matrix for all parton
types and bins under consideration is then obtained by
adding the covariance matrices of all sources discussed
below,

Cth ¼ CFO þ Cresum þ Cφ þ CPDF: ð7Þ

For the perturbative uncertainties we follow the treatment
developed in Refs. [27,32,44] and distinguish various
independent sources. The first is an overall fixed-order
yield uncertainty, CFO, which is fully correlated between all
bins, and reproduces the usual fixed-order uncertainty for

the inclusive cross section. The resummation uncertainty,
Cresum, is induced by the binning cut and is correspondingly
treated as a migration uncertainty that is fully anticorrelated
between σ0 and σ≥1 and drops out of σ≥0. The individual
uncertainty contributions are estimated using profile scale
variations [45,46] for the relevant resummation scales, as
discussed in detail in Ref. [32]. Finally, we use a complex
hard scale μH ¼ −imX to resum large virtual QCD correc-
tions. The corresponding resummation uncertainty, Cφ, is
estimated by varying the phase of μH and corresponds
to a yield uncertainty. The perturbative uncertainties are
treated as fully correlated among all quark flavors and
uncorrelated between quarks and gluons. We use the
MMHT2014nnlo68cl [47] PDFs with the corresponding
αsðmZÞ ¼ 0.118 and 3-loop running. The parametric PDF
uncertainties, CPDF, are constructed from the 25 independent
eigenvectors of MMHT2014nnlo68cl. They are subdominant
compared to the perturbative uncertainties.

III. INITIAL-STATE DISCRIMINATION

As a demonstration of the technique, we consider a
hypothetical scalar resonance of mass mX ¼ 750 GeV
produced in 13 TeV pp collisions. In Fig. 1 we show
the ratio σi0ðpcut

T Þ=σi≥1ðpcut
T Þ as a function of pcut

T for
different initial states i ¼ u, c, b, g including all theoretical
uncertainties, see Eq. (7). For all our results we use a jet
radius of 0.4. The analogous results for d and s quarks are
mostly indistinguishable from u quarks and are not shown.
The split of the cross section into the 0-jet and ≥1-jet bins is
clearly different for the different initial states, allowing one
to distinguish light quarks (u,d,s), c quarks, b quarks, and
gluons. The discrimination between b quarks and gluons is
less good, in part due to the sizeable uncertainty in the
gluon cross sections.
The optimal pcut

T value for discriminating between
different possible initial states depends on the true initial

FIG. 1. The ratio σ0ðpcut
T Þ=σ≥1ðpcut

T Þ for u (red), c (yellow), b
quarks (blue) and gluons (green). The lines show the central
values and the bands the theoretical uncertainties.
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state. Numerically, we observe only a mild sensitivity of the
discrimination between initial states on the pcut

T value
within the range pcut

T ∈ ½25; 65� GeV. The pcut
T value can

thus be chosen to optimize the experimental sensitivity
with limited statistics. A roughly equal split of the cross
section is achieved at pcut

T ≃ 25 GeV (65 GeV) for a light-
quark (gluon) induced signal. In our subsequent analysis
we use pcut

T ¼ 40 GeV, for which the cross section ratio is
between 0.5 and 2 for any initial state.
Note that effects from hadronization and multiparton

interactions, which are not included in our calculations, can
affect the leading jet pT spectrum at small pT . However
their effects partially compensate each other. We checked
that the net effect in the cross section ratios we consider
becomes negligible above pcut

T ≳ 20 GeV.
To study the constraints on the Wilson coefficients Ci

from measuring σ0 and σ≥1, we minimize the χ2 function

χ2ðCiÞ ¼
X

m;n∈f0;≥1g
ðσmeas

m − σmÞðC−1Þmnðσmeas
n − σnÞ; ð8Þ

where σmeas
m is the measured pp → X → F cross section in

bin m, C is the sum of the experimental and theory
covariance matrices, and σm is the predicted cross section
in bin m in Eq. (5). In the narrow-width approximation and
considering a single decay channel (e.g. F ¼ γγ), we only
constrain Ci

ffiffiffiffi
B

p
[see Eq. (4)]. To render our results

independent of the details of F, we define

Cincl
i

ffiffiffiffi
B

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σmeas
≥0 =σi≥0

q
; ð9Þ

which is the value of Ci

ffiffiffiffi
B

p
for which the measured

inclusive cross section is completely attributed to initial
state i. By considering the ratios jCi=Cincl

i j, our analysis
only depends on the ratio σ0=σ≥1 but not the absolute cross
sections or B. With more than one final state, the sum in
Eq. (8) runs over the respective bins for all final states, and
the dependence of the different branching ratios on the
Wilson coefficients Ci and the associated uncertainties
need to be taken into account.

(a) (b) (c)

(d) (e) (f)

FIG. 2. Δχ2 ¼ 1-contours for various scenarios. (a) gluon signal, (b) mixed gluon/u-quark signal, (c) u-quark signal, (d) b-quark
signal, (e) c-quark signal, (f) gluon signal. The constraints from σ0 and σ≥1 are shown by the blue and green bands, respectively. The
combined constraint from both are shown by the orange/yellow regions. The inner darker regions correspond to theory uncertainties
only, while the full lighter bands include both theory and assumed experimental uncertainties.
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Figure 2 shows the constraints on jCi=Cincl
i j that can be

achieved for various scenarios of the assumed true values of
the Ci. For this purpose, we assume that the inclusive cross
section is measured with a relative uncertainty of 20%,
which can be realistically expected not very long after a
discovery of a new state. We split the cross section into
measured 0-jet and ≥1-jet bins according to the theoretical
predictions for the assumed signal, with the resulting
σmeas
0 =σmeas

≥1 given in each plot. The relative uncertainties,
Δσmeas

m , on the measurements in the two bins are assumed to
be uncorrelated and split according to Δσmeas

0 =Δσmeas
≥1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σmeas
≥1 =σmeas

0

p
.

In Fig. 2, contours of Δχ2 ¼ 1 only including the
theoretical uncertainties are shown by the inner darker
bands and combining theoretical and assumed experimental
uncertainties by the outer lighter bands. The individual
constraints from σ0 and σ≥1 are shown by the blue and
green bands, respectively, while the combined constraint
from both is shown in yellow/orange.
Figures 2(a)–2(c) illustrates the good discrimination

between light quarks, here u, and gluons in the initial state,
for a purely gluon-induced signal in (a), for a mixed signal
with the cross section ratio equal to one in (b), and a purely
u-quark induced signal in (c). Figures 2(d) and 2(e)
demonstrate thegooddiscrimination betweenu andbquarks
for a b-quark signal, and between gluons and c quarks for a
c-quark signal, respectively. Only the discrimination
between b quarks and gluons, shown in Fig. 2(f) for a gluon
signal, remains challenging due to the weaker separation
already seen in Fig. 1.
We conclude that even with fairly large experimental

uncertainties, as expected soon after a potential discovery, a
clear separation between different initial states can be
achieved for most scenarios. A combined fit to all coef-
ficients will of course require more data, and will then also
benefit from using several pcut

T values. We stress that thanks
to the used resummation framework, the theoretical uncer-
tainties and correlations can be robustly estimated and are
not a limiting factor, and if necessary, could also be reduced
further.

IV. CONCLUSIONS

Should the deviation in the diphoton spectrum at
750 GeV manifest into a discovery, the method proposed
here can be readily applied to identify its initial state. It is
then preferable for the measurements to be fiducial in the
kinematics of the X decay products to minimize the model
dependence introduced by acceptance corrections.
We restricted our attention to discriminate quark- and

gluon-initiated production. Using our method, it will also
be possible to identify photoproduction, which has been
considered in several recent studies [48–55]. In this case,
the 0-jet cross section is given in terms of photon beam
functions calculated in terms of photon PDFs at the scale
μ ∼ pcut

T and without QCD evolution above pcut
T . This

implies that the σ0=σ≥1 ratio will be substantially larger
than for light quarks, thus providing a good discrimination
against the production via quarks and gluons. The utility of
a jet-veto to distinguish photon production from vector-
boson fusion or gluon initial states was discussed in [50].
Our method allows for an early, model-independent, and

theoretically clean identification of the production mecha-
nism of any new high-mass color-singlet state. Since the
ratio σi0ðpcut

T Þ=σi≥1ðpcut
T Þ depends to good approximation

only on pcut
T =mX, and pcut

T ≳ 25 GeV is experimentally
feasible at the LHC, we expect it to work well for
masses mX ≳ 300 GeV.
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