
MIT Open Access Articles

An experimental evaluation and analysis of database cracking

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Schuhknecht, Felix Martin, Alekh Jindal, and Jens Dittrich. “An Experimental
Evaluation and Analysis of Database Cracking.” The VLDB Journal 25.1 (2016): 27–52.

As Published: http://dx.doi.org/10.1007/s00778-015-0397-y

Publisher: Springer Berlin Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/106180

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/106180

The VLDB Journal (2016) 25:27–52
DOI 10.1007/s00778-015-0397-y

SPECIAL ISSUE PAPER

An experimental evaluation and analysis of database cracking

Felix Martin Schuhknecht1 · Alekh Jindal2 · Jens Dittrich1

Received: 19 December 2014 / Revised: 18 May 2015 / Accepted: 13 July 2015 / Published online: 22 August 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Database cracking has been an area of active
research in recent years. The core idea of database crack-
ing is to create indexes adaptively and incrementally as a
side product of query processing. Several works have pro-
posed different cracking techniques for different aspects
including updates, tuple reconstruction, convergence, con-
currency control, and robustness. Our 2014 VLDB paper
“The Uncracked Pieces in Database Cracking” (PVLDB
7:97–108, 2013/VLDB 2014) was the first comparative study
of these different methods by an independent group. In this
article, we extend our published experimental study on data-
base cracking and bring it to an up-to-date state. Our goal
is to critically review several aspects, identify the potential,
and propose promising directions in database cracking. With
this study, we hope to expand the scope of database cracking
and possibly leverage cracking in database engines other than
MonetDB. We repeat several prior database cracking works
including the core cracking algorithms as well as three other
works on convergence (hybrid cracking), tuple reconstruc-
tion (sideways cracking), and robustness (stochastic crack-
ing), respectively. Additionally to our conference paper, we
now also look at a recently published study about CPU effi-
ciency (predication cracking). We evaluate these works and
show possible directions to do even better. As a further exten-
sion, we evaluate the whole class of parallel cracking algo-
rithms that were proposed in three recent works. Altogether,
in this work we revisit 8 papers on database cracking and
evaluate in total 18 cracking methods, 6 sorting algorithms,

B Felix Martin Schuhknecht
felix.schuhknecht@infosys.uni-saarland.de

1 Information Systems Group, Saarland University,
Saarbrücken, Germany

2 CSAIL, MIT, Cambridge, MA, USA

and 3 full index structures. Additionally, we test crack-
ing under a variety of experimental settings, including high
selectivity (Low selectivity means that many entries qualify.
Consequently, a high selectivity means, that only few entries
qualify) queries, low selectivity queries, varying selectiv-
ity, and multiple query access patterns. Finally, we compare
cracking against different sorting algorithms as well as
against different main memory optimized indexes, including
the recently proposed adaptive radix tree (ART). Our results
show that: (1) the previously proposed cracking algorithms
are repeatable, (2) there is still enough room to significantly
improve the previously proposed cracking algorithms, (3)
parallelizing cracking algorithms efficiently is a hard task, (4)
cracking depends heavily on query selectivity, (5) cracking
needs to catch up with modern indexing trends, and (6) differ-
ent indexing algorithms have different indexing signatures.

Keywords Adaptive indexing · Database cracking ·
Sorting · Multi-threaded algorithms

1 Introduction

1.1 Background

Traditional database indexing relies on two core assump-
tions: (1) the query workload is available, and (2) there is
sufficient idle time to create the indexes. Unfortunately, these
assumptions are not valid anymore in modern applications,
where the workload is not known or constantly changing
and the data is queried as soon as it arrives. Thus, sev-
eral researchers have proposed adaptive indexing techniques
to cope with these requirements. In particular, Database
Cracking has emerged as an attractive approach for adap-
tive indexing in recent years [8,11,14–18]. Since the release

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-015-0397-y&domain=pdf
http://orcid.org/0000-0002-0165-4116

28 F. M. Schuhknecht et al.

Column A Column A after Q1 Column A after Q2
Q1: select *

from R
 where R.A>10

 and R.A < 14

Q2: select *
from R

 where R.A>7
 and R.A <= 16

in
de

x

A <=10

10 < A <14

A >=14

in
de

x

10 < A <14

7 < A <=10

14 <= A <=16

16 < A

A <= 7

13
16
4
9
2

12
7
1

19
3

14
11
8
6

4
9
2
7
1
3
8
6

13
12
11
16
19
14

4
2
1
3
6
7
9
8

13
12
11
14
16
19

(a) (b) (c)

Fig. 1 Database cracking example

of our conference paper [25] on which this work builds upon,
three more studies have been published [2,9,23]. Database
cracking proposes to create indexes adaptively and as a side
product of query processing. The core idea is to consider
each incoming query as a hint for data reorganization which
eventually, over several queries, leads to a full index. Figure 1
recaps and visualizes the concept.

1.2 Our focus

Database Cracking has been an area of active research in
recent years, led by researchers from CWI Amsterdam. This
research group has proposed several different indexing tech-
niques to address different dimensions of database cracking,
including updates [14], tuple reconstruction [15], conver-
gence [16], concurrency control [8,9], and robustness [11]. In
this paper, we critically review database cracking in several
aspects. We repeat the core cracking algorithms, i.e. crack-
in-two and crack-in-three [17], as well as three advanced
cracking algorithms [11,15,16]. We identify the weak spots
in these algorithms and discuss extensions to fix them. Addi-
tionally, we inspect a recently published work [23], which
identifies CPU efficiency problems in the standard crack-
ing algorithm and proposes alternatives. Furthermore, we
investigate the current state-of-the-art in parallel cracking
algorithms [2,8,9,23] and compare them against each other.
Finally, we also extend the experimental parameters previ-
ously used in database cracking, e.g. by varying the query
selectivities and by comparing against more recent, main
memory optimized indexing techniques, including ART [20].

Our goal is to put database cracking in perspective by
repeating several prior cracking works, giving new insights
into cracking, and offering promising directions for future
work. We believe that this will help the database community
to understand database cracking better and to possibly lever-
age cracking for database systems other than MonetDB as
well. Our core contributions in this paper are as follows:

1. Revisiting cracking We revisit the core cracking algo-
rithms, i.e. crack-in-two and crack-in-three [17], and
compare them for different positions of the pivot ele-
ments. We do a cost breakdown analysis of the cracking
algorithm into index lookup, data shuffle, index update,
and data access costs. Further, we identify four major
concerns, namely CPU efficiency, convergence, tuple
reconstruction, and robustness. In addition, we evalu-
ate advanced cracking algorithms, namely predication
cracking [23], hybrid cracking [16], sideways crack-
ing [15], and stochastic cracking [11], respectively, which
were proposed to address these concerns. Additionally,
in order to put together the differences and similarities
between different cracking algorithms, we classify the
cracking algorithms based on the strategy to pick the
pivot, the creation time, and the number of partitions
(Sect. 2).

2. Extending cracking algorithms In order to better under-
stand the cracking behaviour, we modify three advanced
cracking algorithms, namely hybrid cracking [16], side-
ways cracking [15], and stochastic cracking [11]. We
show that buffering the swap elements in a heap before
actually swapping them (buffered swapping) can lead to
better convergence than hybrid cracking. Next, we show
that covering the projection attributes with the cracker
column (covered cracking) scales better than sideways
cracking in the number of projected attributes. Finally,
we show that creating more balanced partitions upfront
(coarse-granular indexing) achieves better robustness in
query performance than stochastic cracking. We also map
these extensions to our cracking classification (Sect. 3).

3. Extending cracking experimentsAs a next step, we extend
the cracking experiments in order to test cracking under
different settings. First, we compare database cracking
against full indexing using different sorting algorithms
and index structures. In previous works on database
cracking, quick sort is used to order the data indexed
by the traditional methods that are used for comparison.
Further, the cracker index is realized by an AVL-tree [1]
to store the index keys. In this paper, we do a reality
check with recent developments in sorting and indexing
for main memory systems. We show that full index cre-
ation with radix sort is twice as fast as with quick sort.
We also show that ART [20] is up to 3.6 times faster than
the AVL-tree in terms of lookup time. We also vary the
query selectivity from very high selectivity to medium
selectivity and compare the effects. We conclude two key
observations: (1) the choice of the index structure has an
impact only for very high selectivities, i.e. higher than
10−6 (one in a million); otherwise, the data access costs
dominate the index lookup costs; and (2) cracking cre-
ates more balanced partitions and hence converges faster
for medium selectivities, i.e. around 10 %. We also look

123

An experimental evaluation and analysis of database cracking 29

at the effect of stopping the cracking process at a cer-
tain partition size. Furthermore, we apply a sequential
and a skewed query access pattern and analyse how the
different adaptive indexing methods cope with them. Our
results show that sequential workloads are the weak spots
of query-driven methods while skewed patterns increase
the overall variance (Sect. 4).

4. Parallelizing cracking algorithms As exploiting modern
hardware implies using the multi-threading capabilities
of the system, we investigate in this section how the
cracking algorithms can be parallelized. To do so, we
first re-evaluate a lock-based parallel standard cracking
algorithm [8,9] that serializes the crack-in-two opera-
tion at the granularity of partitions of data for inter-query
parallelism. Additionally, we add the algorithms we
proposed in our study on parallel adaptive indexing algo-
rithms [2] and put the methods under a new set-up to
the test. We include our parallel coarse-granular index
that builds upon parallel standard cracking. We com-
pare these methods to our intra-query parallel versions
of standard cracking and coarse-granular index [2] that
realize concurrency by dividing the column into chunks.
We compare the parallel cracking algorithms with our
two competitive parallel radix sort implementations [2]
to evaluate the relation between cracking and sorting in
a multi-threaded environment. Furthermore, we propose
two realizations of parallel sideways cracking to put them
to the test. Last but not least, we evaluate all parallel algo-
rithms under skewed queries, skewed input, and clustered
input (Sect. 5).

5. Conclusion Finally, we conclude by putting together
the key lessons learned. Additionally, we also introduce
signatures to characterize the indexing behaviour of dif-
ferent indexing methods and to understand as well as
differentiate them visually (Sect. 6).

Experimental set-up We use a common experimental set-up
throughout the paper. We try to keep our set-up as close as
possible to the earlier cracking works. Similar to previous
cracking works, we use an integer array with 108 uni-
formly distributed values with a key range of [0; 100, 000].
Unless mentioned otherwise, we run 1000 random queries,
each with selectivity 1 %. The queries are of the form:
SELECT A FROM R WHERE A>=low AND A<high. We rep-
eat the entire query sequence three times and take the average
runtime of each query in the sequence. We consider two base-
lines: (1) scan which reads the entire column and post-filters
the qualifying tuples, and (2) full index which fully sorts the
data using quick sort and performs binary search for query
processing. If not stated otherwise, all indexes are unclus-
tered and uncovered. We implemented all algorithms in a
stand-alone program written in C/C++ and compile with G++
version 4.7 using optimization level 3. Our test bed consists

of a single machine with two Intel Xeon X5690 processors
running at a clock speed of 3.47 GHz and supports Intel
Turbo Mode. Each CPU has 6 cores and supports 12 threads
via Intel Hyper Threading. The L1 and L2 cache sizes are 64
KB and 256 KB, respectively, for each core. The shared L3
cache has a size of 12 MB. Our machine has 200 GB of main
memory and runs a 64-bit linux with kernel 3.1.

2 Revisiting cracking

Let us start by revisiting the original cracking algorithm [17].
Our goal in this section is to first compare crack-in-two with
crack-in-three, then to repeat the standard cracking algorithm
under similar settings as in previous works, then to break
down the costs of cracking into individual components, and
finally to identify the major concerns in the original cracking
algorithm.

2.1 Crack-in-two versus crack-in-three

Crack-in-two Partition the index column into two pieces
using one end of a range query as the boundary.

Crack-in-three Partition the index column into three pieces
using the two ends of a range query as the two boundaries.

The original cracking paper [17] introduces two algorithms:
crack-in-two and crack-in-three to partition (or split) a col-
umn into two and three partitions, respectively. Conceptually,
crack-in-two is suitable for one-sided range queries, e.g. A <

10, whereas crack-in-three for two-sided range queries, e.g.
7 < A < 10. However, we could also apply two crack-
in-twos for a two-sided range query. Let us now compare
the performance of crack-in-two and crack-in-three on two-
sided range queries. We consider the cracking operations
from a single query and vary the position of the split line
in the cracker column from bottom (low relative position)
to top (high relative position). A relative position of the low
key split line of p% denotes that the data is partitioned into
two parts with size p% and (100 − p) %. We expect the
cracking costs to be the maximum around the centre of the
column (since maximum swapping will occur) and symmet-
rical on either ends of the column. Figure 2a shows the results.
Though both 2× crack-in-two and crack-in-three have max-
imum costs around the centre, surprisingly crack-in-three is
not symmetrical on either ends. Crack-in-three is much more
expensive in the lower part of the column than in the upper
part. This is because crack-in-three always starts considering
elements from the top. Another interesting observation from
Fig. 2a is that even though 2× crack-in-two performs two
cracking operations, it is cheaper than crack-in-three when
the split position is in the lower 70 % of the column. Thus,
we see that crack-in-two and crack-in-three are very different

123

30 F. M. Schuhknecht et al.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

In
de

xi
ng

 T
im

e
[m

s]

Relative Position of the Low Key Split Line [%]

2 x CrackInTwo
CrackInThree

(a)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Scan

Full Index

(b)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

T
im

e
[m

s]

Query Sequence

Index Lookup
Data Shuffle

Index Update
Data Access

(c)

Fig. 2 Revisiting standard cracking. a Comparing single query indexing time. b Reproducing cracking behaviour. c Cost breakdown

algorithms in terms of performance and future works should
consider this when designing newer algorithms.

2.2 Standard cracking algorithm

Standard cracking Incrementally and adaptively sort the
index column using crack-in-three when both ends of a range
query fall in the same partition and crack-in-two otherwise.

We implemented the standard cracking algorithm which
uses crack-in-three wherever two split lines lie in the same
partition, and tested it under the same settings as in previ-
ous works. As in the original papers, we use an AVL-tree
as cracker index to be able to compare the results. Fig-
ure 2b shows the results. We can see that standard cracking
starts with similar performance as full scan and gradually
approaches the performance of full index. Moreover, the first
query takes just 0.3 s compared to 0.24 s of full scan,1 even
though standard cracking invests some indexing effort. In
contrast, full index takes 10.2 s to fully sort the data before it
can process the first query. This shows that standard crack-
ing is lightweight and it puts little penalty on the first query.
Overall, we are able to reproduce the cracking behaviour of
previous works.

2.3 Cost breakdown

Next let us see the cost breakdown of the original crack-
ing algorithm. The goal here is to see where the cracking
query engine spends most of the time and how that changes
over time. Figure 2c shows the cost breakdown of the query
response time into four components: (1) index lookup costs
to identify the partitions for cracking, (2) data shuffle costs of
swapping the data items in the column, (3) index update costs
for updating the index structure with the new partitions, and
(4) data access costs to actually access the qualifying tuples.
We can see that the data shuffle costs dominate the total costs

1 Note that the query time of full scan varies by as much as 4 times. This
is because of lazy evaluation in the filtering depending on the position
of low key and high key in the value domain.

initially. However, the data shuffle costs decrease gradually
over time and match the data access costs after 1000 queries.
This shows that standard cracking does well to distribute the
indexing effort over several queries. We can also see that
index lookup and update costs are orders of magnitude less
than the data shuffle costs. For instance, after 10 queries, the
index lookup and update costs are about 1μs, whereas the
shuffle costs are more than 100 ms. This shows that stan-
dard cracking is indeed lightweight and has very little index
maintenance overheads. However, as the number of queries
increases, the data shuffle costs decrease, while the index
maintenance costs increase.

2.4 Key concerns in standard cracking

Let us now take a closer look at the standard cracking
algorithm from four different perspectives, namely (1) CPU
efficiency on modern hardware, (2) convergence to a full
index, (3) scaling the number of projected attributes, (4) vari-
ance in query performance. Additionally, mapping cracking
algorithms to parallel hardware is a challenging task. There-
fore, we will spend an entire chapter on this.

1. CPU efficiency How an algorithm is mapped to the
underlying hardware is crucial in memory resident data
processing. Figure 3a shows the branch misprediction2

as the weak spot of the crack-in-two algorithm with
respect to the relative position of the split line, making
this method clearly CPU bound. At a worst-case position
of the split line dividing the partition in the middle, more
than 50 % of the branches are predicted incorrectly.

2. Cracking convergence Convergence is a key concern and
major criticism for database cracking. Figure 3b shows
the number of queries after which the query response
time of standard cracking is within a given percentage
of full index. The figure also shows a bezier smoothened
curve of the data points. From the figure, we can see that
after 1000 queries, on average, the query response time

2 Measured with Intel VTune Amplifier 2015.

123

An experimental evaluation and analysis of database cracking 31

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

(A
ll

C
yc

le
s)

/(
W

as
te

d
C

yc
le

s
du

e
to

 B
ra

nc
h

M
is

s)

In
st

ru
ct

io
ns

 R
et

ire
d

[m
io

]

Relative Position of the Low Key Split Line [%]

1 x CrackInTwo (Branch Misprediction)
1 x CrackInTwo (Instructions Retired)

(a)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

R
es

po
ns

e
T

im
e

H
ig

he
r

th
an

 F
ul

l I
nd

ex
 [%

]

Query Sequence

Individual Points
Bezier Smoothed

(b)

 1

 10

 100

 1000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Proj. Attributes: 2
Proj. Attributes: 3
Proj. Attributes: 4
Proj. Attributes: 5
Proj. Attributes: 6
Proj. Attributes: 7
Proj. Attributes: 8
Proj. Attributes: 9

Proj. Attributes: 10

(c)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

V
ar

ia
nc

e

Query Sequence

Individual Points (EWMA alpha = 0.1)

(d)

Fig. 3 Key concerns in standard cracking. a CPU efficiency, b cracking convergence, c scaling projected attributes, d cracking variance

of standard cracking is still 40 % higher than that of full
index.

3. Scaling projected attributes By default, database crack-
ing leads to an unclustered index, i.e. extra lookups are
needed to fetch the projected attributes. Figure 3c shows
the query response time with tuple reconstruction, when
varying the number of projected attributes from 1 to 10.
For the ease of presentation, we show only the bezier
smoothened curves. We can see that standard cracking
does not scale well with the number of attributes. In fact,
after 1000 queries, querying 10 attribute tuples is almost
2 orders of magnitude slower than querying 1 attribute
tuples.

4. Cracking variance Standard cracking partitions the index
column based on the query ranges of the selection predi-
cate. As a result, skewed query range predicates can lead
to skewed partitions and thus unpredictable query perfor-
mance. Figure 3d shows the variance of standard cracking
query response times using the exponentially weighted
moving average (EWMA). The variance is calculated as
described in [6]. The degree of weighting decrease is
α = 0.1. We can see that unlike full index (see Fig. 2b),
cracking does not exhibit stable query performance. Fur-
thermore, we also see that the amount of variance for
standard cracking decreases by five orders of magnitude.

5. Cracking parallelization The support of concurrency is
crucial for performance on modern multi-core hardware.
Therefore, the cracking algorithms must be extended to
scale well with the available computing cores. As this is
a challenging task, we will investigate this separately in
Sect. 5.

2.5 Advanced cracking algorithms

Several follow-up works on cracking focussed on the key
concerns in standard cracking. In this section, we revisit these
advanced cracking techniques.

Predication and vectorized cracking Decouple pivot com-
parison and physical reorganization by moving elements
speculatively and correcting wrong decisions afterwards.

The technique of predication cracking [23] directly attacks
a major problem in standard cracking—excessive branch
misprediction leading to large amounts of unnecessarily exe-
cuted code. In contrast to standard cracking, where based
on the outcome of the comparison of the element with the
pivot, pointers are moved and elements are swapped, and
predication cracking speculatively performs these reorgani-
zations and interleaves them with the comparison evaluations
of pivot and elements. When the result of the comparison
is available, the incorrectly applied reorganizations are cor-
rected. To ensure that the speculative writing does not cause
data loss, the overwritten elements are backed up separately.
This concept makes the algorithm completely branch free,
and thus, the misprediction penalties do not longer exist. On
the downside, the speculative writing adds an overhead com-
pared to standard cracking. The question is now whether this
trade-off can improve the runtime.

In predication cracking, the granularity at which data is
backed up is fixed to a single element. Thus, the authors
propose a generalization of the concept in form of vectorized
cracking, where data is backed up and partitioned in larger
blocks of adjustable size. This further decouples the costly
backing up of data from the actual partitioning.

In Fig. 5, we add both predication cracking as well as vec-
torized cracking with a vector size of 128 B, which showed
the best results in our evaluation, to the plot of Fig. 3a.
Compared to standard cracking, the problem of branch mis-
prediction vanishes almost entirely. However, we can also
observe that the number of retired instructions drastically
increases over the standard version. Thus, the concept of
predication basically trades in a higher reorganization effort
for less branching penalties. Vectorized cracking reduces
this overhead by using larger blocks, resulting in a lower
number of retired instructions while maintaining a negligi-
ble branch misprediction. This observed trade-off already
indicates that the actual runtimes between standard and pred-
ication/vectorized cracking might be close to each other.
Figure 4a shows the result when extending the study of
Fig. 2a with predication and vectorized cracking. Unfortu-
nately, although vectorized cracking performs slightly better
than predication cracking in all cases, both methods do not

123

32 F. M. Schuhknecht et al.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

In
de

xi
ng

 T
im

e
[m

s]

Relative Position of the Low Key Split Line [%]

2 x CrackInTwo
CrackInThree

2 x Predication Cracking
2 x Vectorized Cracking (128B)

(a)

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100

In
de

xi
ng

 T
im

e
[m

s]

Relative Position of the Low Key Split Line [%]

1 x CrackInTwo
1 x Predication Cracking

1 x Vectorized Cracking (128B)

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

In
de

xi
ng

 T
im

e
[m

s]

Relative Position of the Low Key Split Line [%]

1 x CrackInTwo (4B Key only)
1 x Predication Cracking (4B Key only)

1 x Vectorized Cracking (128B) (4B Key only)

(c)

Fig. 4 Standard cracking in comparison with predication cracking and vectorized cracking. a Single query indexing time, b single crack indexing
time on 16 B elements, c single crack indexing time on 4 B elements

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

(A
ll

C
yc

le
s)

/(
W

as
te

d
C

yc
le

s
du

e
to

 B
ra

nc
h

M
is

s)

In
st

ru
ct

io
ns

 R
et

ire
d

[m
io

]

Relative Position of the Low Key Split Line [%]

1 x CrackInTwo (Branch Misprediction)
1 x Predication Cracking (Branch Misprediction)

1 x Vectorized Cracking (128B) (Branch Misprediction)
1 x CrackInTwo (Instructions Retired)

1 x Predication Cracking (Instructions Retired)
1 x Vectorized Cracking (128B) (Instructions Retired)

Fig. 5 CPU efficiency

significantly pay off over applying crack-in-two twice. On
first sight, these results look contrary to the ones presented
in [23]. However, comparing the experimental set-ups, two
differences become clear. Firstly, in [23], the authors work on
pure 4 B keys in contrast to our 16 B (key, rowID) pairs that
are in our opinion more realistic to represent an index col-
umn. As predication/vectorized cracking is write intensive,
a larger element size puts more pressure on these methods
than on the standard ones. Secondly, we perform one query
consisting of two cracks here, instead of only a single crack
in [23]. As our second crack is 1 % of the data size to the right
of the first one, only few swaps must be performed and the
branch prediction for standard cracking works already very
well. To confirm the original results of [23], we rerun the
experiment with 4 B keys and only a single crack in Fig. 4c.
Now, we see a clear benefit of both predication and vector-
ized cracking over standard crack-in-two, if the split line falls
between 20 and 80 % of the key range. However, when using
our standard 16 B pairs (Fig. 4b), the single crack runtime
increases heavily for predication and vectorized cracking, but
only slightly for standard crack-in-two.

Let us finally look at how the predicated methods perform
under a sequence of 1000 queries. Figure 6 shows the results.
In accordance with the results of Fig. 4a, neither predica-
tion nor vectorized cracking can beat standard cracking with

 2

 4

 6

 8

 10

 12

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Standard Cracking
Predication Cracking

Vectorized Cracking (32B)
Vectorized Cracking (64B)

Vectorized Cracking (128B)

Vectorized Cracking (256B)
Vectorized Cracking (512B)

Vectorized Cracking (1024B)
Vectorized Cracking (2048B)
Vectorized+Standard (128B)

Fig. 6 Predication and vectorized cracking over query sequence

respect to accumulated query response time. The best vec-
tor size is clearly 128 B on our machine, where other sizes
perform significantly worse. However, our previous insights
enable us to use the best of two worlds. By using vector-
ized cracking for the first crack and standard cracking for
the nearby second crack of a query, we are able to improve
slightly over the standard version. Overall, whether predi-
cation and vectorized cracking pay off highly depends on
element size, split line position, and machine properties.

Hybrid cracking Create unsorted initial runs which are
physically reorganized and then adaptively merged for faster
convergence.

Hybrid cracking [16] aims at improving the poor convergence
of standard cracking to a full index, as shown in Fig. 3b.
Hybrid cracking combines ideas from adaptive merging [10]
with database cracking in order to achieve fast convergence
to a full index, while still keeping low initialization costs.
The key problem in standard cracking is that it creates at most
two new partition boundaries per query and thus requires sev-
eral queries to converge to a full index. On the other hand,
adaptive merging creates initial sorted runs and thus pays
a high cost for the first query. Hybrid cracking overcomes
these problems by creating initial unsorted partitions and later
adaptively refining them with lightweight reorganization. In

123

An experimental evaluation and analysis of database cracking 33

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Scan

Full Index
Hybrid Crack Sort

Standard Cracking (bezier smoothed)
Hybrid Crack Sort (bezier smoothed)

(a)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking (# Proj. Attributes: 2)
Scan (# Proj. Attributes: 2)

Full Index (# Proj. Attributes: 2)
Clustered Full Index (# Proj. Attributes: 2)
Sideways Cracking (# Proj. Attributes: 2)

(b)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Scan

Full Index
Stochastic Cracking (MDD1R)

(c)

Fig. 7 Revisiting three advanced cracking algorithms. a Hybrid cracking, b sideways cracking, c stochastic cracking

addition to reorganizing the initial partitions, hybrid cracking
also moves the qualifying tuples from each initial partition
into a final partition. The authors explore different strategies
for reorganizing the initial and final partitions, including sort-
ing, standard cracking, and radix clustering, and conclude
standard cracking to be the best for initial partitions and
sorting to be the best for final partition. By creating initial
partitions in a lightweight manner and introducing several
partition boundaries, hybrid cracking converges better. We
implemented hybrid crack sort, which showed the best per-
formance in [16], as close to the original description as pos-
sible. Figure 7a shows hybrid crack sort in comparison with
standard cracking, full index, and scan. We can see that hybrid
crack sort converges faster as compared to standard cracking.

Sideways crackingAdaptively create, align, and crack every
accessed selection-projection attribute pair for efficient tuple
reconstruction.

Sideways Cracking [15] uses cracker maps to address the
issue of inefficient tuple reconstruction in standard cracking,
as shown in Fig. 3c. A cracker map consists of two logical
columns, the cracked column and a projected column, and it
is used to keep the projection attributes aligned with the selec-
tion attributes. When a query comes in, sideways cracking
creates and cracks only those crackers maps that contain any
of the accessed attributes. As a result, each accessed column
is always aligned with the cracked column of its cracker map.
If the attribute access pattern changes, then the cracker maps
may reflect different progressions with respect to the applied
cracks. Sideways cracking uses a log to record the state of
each cracker map and to synchronize them when needed.
Thus, sideways cracking works without any workload knowl-
edge and adapts cracker maps to the attribute access patterns.
Further, it improves its adaptivity and reduces the amount of
overhead by only materializing those parts of the projected
columns in the cracker maps which are actually queried (par-
tial sideways cracking).

We reimplemented sideways cracking similar to as des-
cribed above, except that we store cracker maps in row

layout instead of column layout. We do so because the two
columns in a cracker map are always accessed together and
a row layout offers better tuple reconstruction. In addition to
the cracked column and the projected column, each cracker
map contains the rowIDs that map the entries into the base
table as well as a status column denoting which entries of
the projected column are materialized. Figure 7b shows the
performance of sideways cracking in comparison. In this
experiment, the methods have to project one attribute while
selecting on another. In addition to the unclustered version of
full index, we also show the clustered version (clustered full
index). We can see that sideways cracking outperforms all
unclustered methods after about 100 queries and approaches
the query response time of clustered full index. Thus, side-
ways cracking offers efficient tuple reconstruction.

Stochastic cracking Create more balanced partitions using
auxiliary random pivot elements for more robust query per-
formance.

Stochastic cracking [11] addresses the issue of performance
unpredictability in database cracking, as seen in Fig. 3d. A
key problem in standard cracking is that the partition bound-
aries depend heavily on the incoming query ranges. As a
result, skewed query ranges can lead to unbalanced parti-
tion sizes and successive queries may still end up rescanning
large parts of the data. To reduce this problem, stochastic
cracking introduces additional cracks apart from the query-
driven cracks at query time. These additional cracks help
to evolve the cracker index in a more uniform manner. Sto-
chastic cracking proposes several variants to introduce these
additional cracks, including data driven and probabilistic
decisions. By varying the amount of auxiliary work and the
crack positions, stochastic cracking manages to introduce a
trade-off situation between variance on one side and cracking
overhead on the other side. We reimplemented the MDD1R
variant of stochastic cracking, which showed the best overall
performance in [11]. In this variant, the partitions in which
the query boundaries fall are cracked by performing exactly
one random split. Additionally, while performing the random

123

34 F. M. Schuhknecht et al.

split, the result of each partition at the boundary of the queried
range is materialized in a separate view. At query time, the
result is built by reading the data of the boundary partitions
from the views and the data of the inner part from the index.
Figure 7c shows the MDD1R variant of stochastic cracking.
We can see that stochastic cracking (MDD1R) behaves very
similar to standard cracking, although the query response
times are overall slower than those of standard cracking. As
the uniform random access pattern creates balanced parti-
tions by default, the additional random splits introduced by
stochastic cracking (MDD1R) do not have an effect. We will
come back to stochastic cracking (MDD1R) with other access
patterns in Sect. 4.5.

2.6 Cracking classification

Let us now compare and contrast the different cracking
algorithms discussed so far with each other. The goal is
to understand what are the key differences (or similarities)
between these algorithms. This will possibly help us in iden-
tifying the potential for newer cracking algorithms. Note that
all cracking algorithms essentially split the data incremen-
tally. Different algorithms split the data differently. Thus,
we categorize the cracking algorithms along three dimen-
sions: (1) the number of split lines they introduce, (2) the
split strategy, and (3) the timing of the split. Table 1 shows
the classification of different cracking algorithms along these
three dimensions. Let us discuss these below.

Number of split lines The core cracking philosophy man-
dates all cracking algorithms to do some indexing effort, i.e.
introduce at least one split line, when a query arrives. How-
ever, several algorithms introduce other split lines as well.
We classify the cracking algorithms into the following four
categories based on the number of split lines they introduce.

1. Zero: The trivial case is when a method introduces no
split line and each query performs a full scan.

2. Few: Most cracking algorithms introduce a few split lines
at a time. For instance, standard cracking introduces either
one or two splits lines for each incoming query. Similarly,

Table 1 Classification of cracking algorithms
DIMENSIONS CATEGORY NO

INDEX
STANDARD
CRACKING /
PREDICATION
CRACKING

HYBRID
CRACKING
(CRACK SORT)

SIDEWAYS
CRACKING

STOCHASTIC
CRACKING
(MDD1R)

FULL
INDEX

ZERO
NUMBER OF FEW
SPLIT LINES SEVERAL

ALL

NONE
SPLIT QUERY BASED
STRATEGY RANDOM

DATA BASED

NEVER
SPLIT PER QUERY
TIMING UPFRONT

sideways cracking introduces split lines in all accessed
cracker maps.

3. Several: Cracking algorithms can also introduce several
split lines at a time. For example, hybrid crack sort may
introduce several thousand initial partitions and introduce
either one or two split lines in each of them. Thus, gener-
ating several split lines in total.

4. All: The extreme case is to introduce all possible split
lines, i.e. fully sort the data. For example, hybrid crack
sort fully sorts the final partition, i.e. introduces all split
lines in the final partition.

Split strategy Standard cracking chooses the split lines based
on the incoming query. However, several advanced cracking
algorithms employ other strategies. Below, we classify the
cracking algorithms along four splitting strategies.

1. Query based: The standard case is to pick the split lines
based on the selection predicates in the query, i.e. the low
and high keys in the query range.

2. Data based: We can also split data without looking at a
query. For example, full sorting creates split lines based
only on the data.

3. Random: Another strategy is to pick the split lines ran-
domly as in stochastic cracking.

4. None: Finally, the trivial case is to not have any split
strategy, i.e. do not split the data at all and perform full
scan for all queries.

Split timing Lastly, we consider the timing of the split to
classify the cracking algorithms. We show three time points
below.

1. Upfront: A cracking algorithm could perform the splits
before answering any queries. Full indexing falls in this
category.

2. Per Query: All cracking algorithms we discussed so far
perform splits when seeing a query.

3. Never: The trivial case is to never perform the splits, i.e.
fully scanning the data for each query.

3 Extending cracking algorithms

In this section, we discuss the weaknesses in the advanced
cracking algorithms and evaluate possible directions on how
to improve them.

3.1 Improving cracking convergence

Let us see how well hybrid cracking [16] addresses the con-
vergence issue and whether we can improve upon it. First, let

123

An experimental evaluation and analysis of database cracking 35

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

R
es

po
ns

e
T

im
e

H
ig

he
r

th
an

 F
ul

l I
nd

ex
 [%

]

Query Sequence

Standard Cracking
Hybrid Crack Sort
Hybrid Radix Sort

Hybrid Sort Sort

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

1|999 10|990 100|900 1000|0

N
um

be
r

of
 S

w
ap

s
[M

ill
io

n]

Number Of Buffered | Unbuffered Queries

Standard Cracking
Hybrid Crack Sort

Buffered Swapping 100K
Buffered Swapping 1M

Buffered Swapping 10M

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Number Of Buffered | Unbuffered Queries

1|999 10|990 100|900 1000|0

(c)

Fig. 8 Comparing convergence of standard cracking, hybrid cracking and buffered swapping. a Convergence speed towards full index, b influence
on swap count, c influence on query response time

us compare hybrid crack sort from Fig. 7a with two other vari-
ants of hybrid cracking: hybrid radix sort and hybrid sort .
Figure 8a shows how quickly the hybrid algorithms approach
to a full index. We can see that hybrid radix sort converges
similar to hybrid crack sort and hybrid sort sort converges
faster than both of them. This suggests that the convergence
property in hybrid algorithms comes from the sort operations.
However, keeping the final partition fully sorted is expen-
sive. Indeed, we can see several spikes in hybrid crack sort
in Fig. 7a. If a query range is not contained in the final parti-
tion, all qualifying entries from all initial partitions must be
merged and sorted into the final partition. Can we do better?
Can we move data elements to their final position (as in full
sorting) in a fewer number of swaps and thus improve the
cracking convergence?

Buffered swapping Instead of swapping elements immedi-
ately after identification by the cracking algorithm, insert
them into heaps and flush them back into the index as sorted
runs.

Let us look at the crack-in-two operation3 in hybrid crack-
ing. Recall that the crack-in-two operation scans the dataset
from both ends until we find a pair of entries which need
to be swapped (i.e. they are in the wrong partitions). This
pair is then swapped, and the algorithm continues its search
until the pointers meet. Note that there is no relative ordering
between the swapped elements and they may end up getting
swapped again in future queries, thus penalizing them over
and over again. We can improve this by extending the crack-
in-two operation to buffer the elements identified as swap
pairs, i.e. buffered crack-in-two. Buffered crack-in-two col-
lects the swap pairs in two heaps: a max-heap for values that
should go to the upper partition and a min-heap for values
that should go to the lower partition. In addition to the heap
structures, we maintain two queues to store the empty posi-

3 After the first few queries, cracking mostly performs a pair of crack-
in-two operations as the likelihood of two splits falling in two different
partitions increases with the number of applied queries.

tions in the two partitions. The two heaps keep the elements
in order and when the heaps are full we swap the top elements
in the two heaps to the next available empty position. This
process is repeated until no more swap pairs can be identi-
fied and the heaps are empty. As a result of heap ordering, the
swapped elements retain a relative ordering in the index after
each cracking step. This order is even valid for entries that
were not in the heap at the same time, but shared presence
with a third element, and hence, a transitive relationship is
established. Every pair element that is ordered in this process
is never swapped in future queries, and thus, the number of
swaps is reduced. The above approach of buffered crack-in-
two is similar to [21], where two heaps are used to improve the
stability of the replacement selection algorithm. By adjust-
ing the maximal heap size in buffered crack-in-two, we can
tune the convergence speed of the cracked index. Larger heap
size results in larger sorted runs. However, larger heaps incur
high overhead to keep its data sorted. In the extreme case, a
heap size equal to the number of (swapped) elements results
in full sorting while a heap size of 1 falls back to stan-
dard crack-in-two. Of course buffered crack-in-two can be
embedded in any method that uses the standard crack-in-two
algorithm. To separate it from the remaining methods, we
integrate it into a new technique called buffered swapping
that is a mixture of buffered and standard crack-in-two. For
the first n queries, buffered swapping uses buffered crack-
in-two. After that, buffered swapping switches to standard
cracking-in-two. Figure 8b shows the number of swaps in
standard cracking, hybrid crack sort, and buffered swapping
over 1000 queries. In order to make them comparable, we
force all methods to use only crack-in-two operations. For
buffered swapping, we vary the number buffered queries nb
along the X axis, i.e. the first nb queries perform buffered
swapping, while the remaining queries still perform the stan-
dard crack-in-two operation. We vary the maximal heap size
from 100 K to 10 M entries. From Fig. 8b, we can see that
the number of swaps decrease significantly as nb varies from
1 to 1000. Compared to standard cracking, buffered swap-

123

36 F. M. Schuhknecht et al.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Proj. Attributes: 2
Proj. Attributes: 3
Proj. Attributes: 4
Proj. Attributes: 5
Proj. Attributes: 6
Proj. Attributes: 7
Proj. Attributes: 8
Proj. Attributes: 9

Proj. Attributes: 10

(a)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Proj. Attributes: 1
Proj. Attributes: 2
Proj. Attributes: 3
Proj. Attributes: 4
Proj. Attributes: 5
Proj. Attributes: 6
Proj. Attributes: 7
Proj. Attributes: 8
Proj. Attributes: 9

Proj. Attributes: 10

(b)

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Number of Projected Attributes

Standard Cracking
Sideways Cracking
Covered Cracking

(c)

Fig. 9 Comparing tuple reconstruction cost of standard, sideways, and covered cracking. a Varying number of projected attributes for sideways
cracking, b varying number of projected attributes for covered cracking, c covering trade-off for tuple reconstruction

ping saves about 4.5 million swaps for 1 buffered query and
73 million swaps for 1000 buffered queries and a heap size
of 1 M. The maximal size of the heap is proportional to the
reduction in swaps. Furthermore, we can observe that the
swap reduction for 1000 buffered queries improves only mar-
ginally over that of 100 buffered queries. This indicates that
after 100 buffered queries the cracked column is already close
to being fully sorted. Hybrid cracking performs even more
swaps than standard cracking (including moving the quali-
fying entries from the initial partitions to the final partition).

Next let us see the actual runtimes of buffered swapping
in comparison with standard cracking and hybrid crack sort.
Figure 8c shows the result. We see that the total runtime grows
rapidly as the number of buffered queries (nb) increases.
However, we also see that the query time after performing
buffered swapping improves. For example, after performing
buffered swapping with a maximal heap size of 1 M for just
10 queries, the remaining 990 queries are 1.8 times faster
than hybrid crack sort and even 5.5 % faster than standard
cracking. This shows that buffered swapping helps to con-
verge better by reducing the number of swaps in subsequent
queries. Interestingly, a larger buffer size does not necessarily
imply a higher runtime. For 100 and 1000 buffered queries,
the buffered part is faster for a maximum heap size of 10 M
entries than for smaller heaps. This is because such a large
heap size leads to an earlier convergence towards the full sort-
ing. Nevertheless, the high runtime of initial buffer swapped
queries is a concern. In our experiments, we implemented
buffered swapping using the gheap implementation [7] with
a fan-out of 4. Each element that is inserted into a gheap
has to sink down inside of the heap tree to get to its posi-
tion. This involves pairwise swaps and triggers many cache
misses. Exploring more efficient buffering mechanisms in
detail opens up avenues for future work.

3.2 Improving tuple reconstruction

Our goal in this section is to see how well sideways crack-
ing [15] addresses the issue of tuple reconstruction and

whether we can improve upon it. Let us first see how the
sideways cracking from Fig. 7b scales with the number of
attributes. Figure 9a shows the performance of sideways
cracking for the number of projected attributes varying from
1 to 10. We see that in contrast to standard cracking (see
Fig. 3c), sideways cracking scales more gracefully with the
number of projected attributes. However, still the perfor-
mance varies by up to one order of magnitude. Furthermore,
sideways cracking duplicates the index key in all cracker
maps. So the question now is, can we have a cracking
approach which is less sensitive to the number of projected
attributes?

Covered cracking Group multiple non-key attributes with
the cracked column in a cracker map. At query time, crack
all covered non-key attributes along with the key column for
even more efficient tuple reconstruction.

Note that with sideways cracking all projected columns are
aligned with each other. However, the query engine still needs
to fetch the projected attribute values from different columns
in different cracker maps. These lookup costs turn out to be
very expensive in addition to the overhead of cracking n repli-
cas of the indexed column for n projected attributes. To solve
this problem, we generalize sideways cracking to cover the
n projected attributes in a single cracker map. In the follow-
ing, we term this approach covered cracking. While cracking,
all covered attributes of a cracker map are reorganized with
the cracked column. As a result, all covered attributes are
aligned and stored in a consecutive memory region, i.e. no
additional fetches are involved if the accessed attribute is
covered. However, the drawback of this approach is that we
need to specify which attributes to cover. To be on a safer
side, we may cover all table attributes. However, this means
that we will need to copy the entire table for indexing. We can
think of fixing this by adaptively covering the cracked col-
umn, i.e. not copying the covered attributes upfront but rather
on-demand when they are accessed. An option is to copy the
covered attribute columns when they are accessed for the first
time. An even more fine granular approach is to copy only the

123

An experimental evaluation and analysis of database cracking 37

accessed values of covered attributes and thus reflecting the
query access pattern in the covering status. Figure 9b shows
the performance of covered cracking over different numbers
of projected attributes. Here we show the results from cov-
ered cracking which copies the data of all covered attributes
in the beginning. We can see that covered cracking remains
stable when varying the number of projected attributes from 1
to 10. Thus, covered cracking scales well with the number of
attributes. Figure 9c compares the accumulated costs of stan-
dard, sideways, and covered cracking. We can see that while
the accumulated costs of standard and sideways cracking
grow linearly with the number of attributes, the accumulated
costs of covered cracking remain pegged at under 40 s. We
also see that sideways cracking outperforms covered crack-
ing for only up to 4 projected attributes. For more than 4
projected attributes, sideways cracking becomes increasingly
expensive, whereas covered cracking remains stable. Thus,
we see that covering offers huge benefits.

3.3 Improving cracking robustness

In this section, we look at how well stochastic cracking [11]
addresses the issue of query robustness and whether we can
improve upon it. In Fig. 7c, we can observe that stochastic
cracking is more expensive (for first as well as subsequent
queries) than standard cracking. On the other hand, the ran-
dom splits in stochastic cracking (MDD1R) create uniformly
sized partitions. Thus, stochastic cracking trades perfor-
mance for robustness. So the key question now is: Can we
achieve robustness without sacrificing performance? Can we
have high robustness and efficient performance at the same
time?

Coarse-granular index Create balanced partitions using
range partitioning upfront for more robust query perfor-
mance. Apply standard cracking later on.

Stochastic cracking successively refines the accessed data
regions into smaller equal-sized partitions, while the non-
accessed data regions remain as large partitions. As a result,
when a query touches a non-accessed data region, it still ends
up shuffling large portions of the data. To solve this problem,
we extend stochastic cracking to create several equal-sized4

partitions upfront, i.e. we pre-partition the data into smaller
range partitions. With such a coarse-granular index, we shuf-
fle data only inside a range partition, and thus, the shuffling
costs are within a threshold. Note that in standard cracking,
the initial queries have to anyways read huge amounts of
data, without gathering any useful knowledge. In contrast,
the coarse-granular index moves some of that effort to a pre-

4 Please note that our current implementation relies on a uniform key
distribution to create equal-sized partitions. Handling skewed distribu-
tions would require the generation of equi-depth partitions.

pare step to create meaningful initial partitions. As a result,
the cost of the first query is slightly higher than standard
cracking but still significantly less than full indexing. With
such a coarse-granular index, users can choose to allow the
first query to be a bit slower and witness stable performance
thereafter. Also, note that the first query in standard cracking
is anyways slower than a full scan since it partitions the data
into three parts. Coarse-granular index differs from standard
cracking in that it allows for creating any number of ini-
tial partitions, not necessarily three. Furthermore, by varying
the number of initial partitions, we can trade the initializa-
tion time for more robust query performance. This means
that, depending upon their application, users can adjust the
initialization time in order to achieve a corresponding robust-
ness level. This is important in several scenarios in order to
achieve customer SLAs. In the extreme case, users can create
as many partitions as the number of distinct data items. This
results in a full index, has a very high initialization time, and
offers the most robust query performance. The other extreme
is to create only a single initial partition. This is equivalent to
standard cracking scenario, i.e. very low initialization time
and least robust query performance. Thus, coarse-granular
index covers the entire robustness spectrum between stan-
dard cracking and full indexing.

Figure 10a shows the query response time region (con-
vex hull) of different indexing methods, including stochastic
cracking (MDD1R), coarse-granular index, and full index
(quick sort + binary search). We vary the number of initial
partitions, which are created in the first query by the coarse-
granular index from 10 to 100,000. While stochastic cracking
(MDD1R) shows a variance similar to that of standard crack-
ing, as observed in Fig. 3d, coarse-granular index reduces
the performance variance significantly. In fact, for different
number of partitions, coarse-granular index covers the entire
space between the high-variance standard cracking and low-
variance full index. Figure 10b shows the results. We can see
that the initialization time of stochastic cracking (MDD1R)
is very similar to that of standard cracking. This means that
stochastic cracking (like standard cracking) shifts most of
the indexing effort to the query time. On the other extreme,
full sort does the entire indexing effort upfront and thus has
the highest initialization time. Coarse-granular index fills the
gap between these two extremes, i.e. by adjusting the num-
ber of initial partitions, we can trade the indexing effort at the
initialization time and the query time. For instance, for 1000
initial partitions, the initialization time of coarse-granular
index is 65 % less than full index, while still providing more
robust as well as more efficient query performance than sto-
chastic cracking (MDD1R). In fact, the total query time of
coarse-granular index with 1000 initial partitions is 41 % less
than stochastic cracking (MDD1R) and even 26 % less than
standard cracking. Thus, coarse-granular index allows us to
combine the best of both worlds.

123

38 F. M. Schuhknecht et al.

 1

 10

 100

 1000

 10000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Stochastic Cracking (MDD1R)
Coarse-granular Index 10

Coarse-granular Index 100
Coarse-granular Index 1K

Coarse-granular Index 10K
Coarse-granular Index 100K

Full Index

(a)

 0

 2

 4

 6

 8

 10

 12

 14

Standard

Stochastic

Coarse 10

Coarse 100

Coarse 1K

Coarse 10K

Coarse 100K

Quick Sort +

Binary Search

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Initialization
Query Response - Initialization

(b)

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Number of Projected Attributes

Standard Cracking
Sideways Cracking
Covered Cracking

Coarse-granular Index 1K
Coarse-granular Index 100

(c)

Fig. 10 Comparing robustness of standard cracking, stochastic cracking, coarse-granular index, and full index. a Variance in response time, b
initialization time trade-off, c extending Fig. 9c by nearby clustering

We can also extend the coarse-granular index and pre-
partition the base table along with the cracker column. This
means that we range partition the source table in exactly
the same way as the adaptive index during the initializa-
tion step. Though, we still refine only the cracked column
for each incoming query. The source table is left untouched.
If the partition is small enough to fit into the cache, then
the tuple reconstruction costs are negligible because of no
cache misses. Essentially, we decrease the physical dis-
tance between external random accesses, i.e. the index entry
and the corresponding tuple are nearby clustered. This
increases the likelihood that tuple reconstruction does not
incur any cache misses. Thus, as a result of pre-partitioning
the source table, we can achieve more robust tuple recon-
struction without covering the adaptive index itself, as in
covered cracking in Sect. 3.2. However, we need to pick
the partition size judiciously. Larger partitions do not fit
into the cache, while smaller partitions result in high ini-
tialization time. Note that if the data is stored in row layout,
then the source table is anyways scanned completely during
index initialization and so pre-partition is not too expensive.
Furthermore, efficient tuple reconstruction using nearby clus-
tering is limited to one index per table, same as for all primary
indexes.

Figure 10c shows the effect of pre-partitioning the source
table. We create both 100 and 1000 partitions. The cost of
pre-partitioning the source table is included in the accumu-
lated query response time of coarse-granular index. Both
standard cracking and coarse-granular index in Fig. 10c start
with perfectly aligned tuples. However, in standard crack-
ing, the locality between index entry and corresponding tuple
decreases gradually and soon the cache misses caused by
random accesses destroy the performance. Coarse-granular
index, on the other hand, exploits the nearby clustering
between the index entry and the corresponding tuple. Since
tuples are never swapped across partitions, the maximum
distance between an index entry and the corresponding tuple

is at most the size of a partition. Thus, we can see from
Fig. 10c that coarse-granular index has a much more stable
performance when scaling the number of projected attributes,
without reorganizing the base table at query time. In fact,
coarse-granular index 1 K even outperforms covered crack-
ing for any number of projected attributes. For example, when
projecting all 10 attributes, coarse-granular index 1 K is 1.7
times faster than covered cracking, 3.7 times faster than side-
ways cracking, and 4.3 times faster than standard cracking.
However, for 1000 table partitions, each partition has a size
of 8 MB and thus fits completely in the CPU cache. For 100
partitions, the partition size increases to 80 MB, and thus, it
is over 6.5 times larger than the cache. The results show that
the concept still works. Although coarse-granular index 100
is slower than covered cracking for more than 4 attributes, it
is still faster than sideways and standard cracking for more
than 3 attributes. It holds: the fewer partitions that we create
the closer is the performance to that of standard cracking.
To strengthen the robustness evaluation, we scale all experi-
ments from Fig. 10 to a dataset containing 1 billion entries. As
we want to inspect how well the methods scale with the data
size, Table 2 shows the factor of increase in time when switch-
ing from 100 million to 1 billion entries. For an increase in
data size by factor 10, an algorithm that scales linearly is 10
times slower. Obviously, all tested methods scale very well.
As expected, only nearby clustering suffers from larger par-
titions which exceed the cache size by far. Overall, we see
that coarse-granular index offers more robust query perfor-
mance both over arbitrary selection predicates as well as over
arbitrary projection attributes.

Finally, Table 3 classifies the three cracking extensions
discussed above—buffered swapping, covered cracking, and
coarse-granular index—along the same dimensions as dis-
cussed in Sect. 2.6. Please note that the entry of coarse-
granular index classifies only the initial partitioning step as
it can be combined with various other cracking methods as
well.

123

An experimental evaluation and analysis of database cracking 39

Table 2 Scalability under data size increase by factor 10

Factor slower
(from 100 M to 1 B)

Initialization Remaining TOTAL

Standard cracking 10.01 9.92 9.93

Stochastic cracking (MDD1R) 12.92 9.57 9.75

Coarse-granular index 10 11.73 9.92 10.56

Coarse-granular index 100 11.72 9.81 10.79

Coarse-granular index 1 K 11.69 9.96 11.09

Coarse-granular index 10 K 11.31 9.94 10.95

Coarse-granular index 100 K 10.90 10.02 10.73

Full index 11.48 9.97 11.29

Sideways cracking – – 11.92

Covered cracking – – 9.98

Coarse-granular index 100
(nearby clustered)

– – 11.64

Coarse-granular index 1 K
(nearby clustered)

– – 13.33

Table 3 Classification of extended cracking algorithms
DIMENSIONS CATEGORY NO

INDEX
BUFFERED
SWAPPING

COVERED
CRACKING

COARSE
GRANULAR
INDEX

FULL
INDEX

ZERO
NUMBER OF FEW
SPLIT LINES SEVERAL

ALL

NONE
SPLIT QUERY BASED
STRATEGY RANDOM

DATA BASED

NEVER
SPLIT PER QUERY
TIMING UPFRONT

4 Extending cracking experiments

In this section, we compare cracking with different sort and
index baselines in detail. Our goal here is to understand how
good or bad cracking is in comparison with different full
indexing techniques. In the following, we first consider dif-
ferent sort algorithms, then different index structures, and
finally the effect of query selectivity.

4.1 Extending sorting baselines

The typical baseline used in previous cracking works was a
full index wherein the data is fully sorted using quick sort
and queries are processed using binary search to find the
qualifying tuples. Sorting is an expensive operation, and as
a result, the first fully sorted query is up to 30 times slower
than the first cracking query (See Fig. 2b). So let us consider
different sort algorithms.

Quick sort is a reasonably good (and cache-friendly) algo-
rithm, better than other value-based sort algorithms such as
insertion sort and merge sort. But what about radix-based

sort algorithms [12]? We compared quick sort with an in-
place radix sort implementation [4]. This recursive radix sort
implementation switches to insertion sort (lets call this radix
insert) when the run length becomes smaller than 64. We
applied a similar switching to quick sort as well (lets call
it quick-insert). Figure 11a shows the accumulated query
response times for binary search in combination with several
sorting algorithms. We compare these with standard cracking
and hybrid crack sort. The initialization times (i.e. the time
to sort) for quick sort, quick-insert sort, and pure radix sort
around 10 s are included in the first query. However, the ini-
tialization time for radix-insert sort drops by half to around
5 s. As a result, the first query with radix insert is only 14
times slower, compared to 30 times slower with quick sort,
than the first standard cracking query. Furthermore, we can
clearly identify the number of queries at which one methods
pays off over another. Already after 600 queries radix-insert
sort shows the smaller accumulated query response times
than standard cracking. For the two quick sort variants, it
takes 12,000 queries to beat standard cracking.

4.2 Extending index baselines

Let us now consider different index structures and contrast
them with simple binary search on sorted data. The goal is
to see whether or not it makes sense to use a sophisticated
index structure as a baseline for cracking. We consider three
index structures: (1) AVL-tree [1], (2) B+-tree [3], and (3) the
very recently proposed ART [20]. We choose ART since it
outperforms other main memory optimized search trees such
as CSB+-tree [24] and FAST [19].

Let us first see the total indexing effort of different index-
ing methods over 1000 queries. For binary search, we simply
sort the data (radix_insert sort), while for other full indexing
methods (i.e. AVL-tree, B+-tree, and ART), we load the data
into an index structure in addition to sorting (radix_insert
sort). Standard cracking self-distributes the indexing effort
over the 1000 queries, while the remaining methods per-
form their sorting and indexing work in the first query. For
the B+-tree, we present two different variants: one that is
bulk loaded and one that is tuple-wise loaded. Figure 11b
shows the results. We can see that AVL-tree is the most
expensive, while standard cracking is the least expensive
in terms of indexing effort. The indexing efforts of binary
search and B+-tree (bulk loaded) are very close to stan-
dard cracking. However, the other B+-tree as well as ART
do more indexing effort, since both of them load the index
tuple by tuple.5 The key thing to note here is that bulk load-
ing an index structure adds only a small overhead to the
pure sorting. Let us now see the query performance of the
different index structures. Figure 11c shows the per-query

5 The available ART implementation does not support bulk loading.

123

40 F. M. Schuhknecht et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4000 8000 12000 16000 20000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

Standard Cracking
Hybrid Crack Sort

Quick Sort
Quick_Insert Sort

Radix Sort
Radix_Insert Sort

 0
 2
 4
 6
 8

 10
 12

 0 250 500 750 1000

First 1000 Queries

(a)

 1

 10

 100

Radix_Insert Sort + Index Creation

A
cc

um
ul

at
ed

 T
im

e
[s

]

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Scan

Binary Search
AVL-Tree

B+Tree
B+Tree (bulk loaded)

ART

(b) (c)

Fig. 11 Comparing standard cracking with different sort and index baselines. a Comparing different sort algorithms, b indexing effort of diff.
indexes, c per-query response time of diff. indexes

response times of different indexing methods. Surprisingly,
we see that using a different index structure has barely an
impact on query performance. This is contrary to what we
expected and in the following let us understand this in more
detail.

4.3 Effect of varying selectivity

To better understand this effect, let us now vary the tuple
selectivity of queries. Recall that we used a selectivity of
1 % in all previous experiments. Selectivity is given as frac-
tion of all entries. Figure 12a shows the accumulated query
response times of different methods when varying the selec-
tivity. We can see that the accumulated query response times
change over varying selectivity for standard cracking, binary
search, B+-tree (bulk loaded), and ART. However, there is
little relative difference between these methods over differ-
ent selectivities. To dig deeper, let us split the query response
time into two components: (1) the indexing costs to sort the
data and to build the structure, and (2) the index lookup and
data access costs to retrieve the result.

Figure 12b shows the accumulated indexing time for
different methods when varying selectivity. Obviously, the

indexing time is constant for all full indexing methods. How-
ever, the total indexing time of standard cracking changes
over varying query selectivity. In fact, the indexing effort
of standard cracking decreases by 45 % when the selectiv-
ity changes from 10−5 to 10−1. As a result, the indexing
effort by standard cracking surpasses even the effort of binary
search (more than 18 %) and B+-tree (bulk loaded) (more
than 5 %), both based on radix_insert sort for as little as 1000
queries. The reason standard cracking depends on selectivity
is that with high selectivity the two partition boundaries of a
range query are located close together and the index refine-
ment per query is small. As a result, several data items are
shuffled repeatedly over and over again. This increases the
overall indexing effort as well as the time to converge to a full
index.

Figure 12c shows the accumulated index lookup and data
access costs of different methods over varying selectivity. We
can see that the difference in the querying costs of different
methods grows for higher selectivity. For instance, AVL-tree
is more than 5 times slower than ART for a selectivity of
10−8. We also see that standard cracking is the most light-
weight method in terms of the index lookup and data access
costs and is closely followed by ART. However, for high

 1

 10

 100

 1000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Selectivity

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

(a)

 1

 10

 100

 1000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

A
cc

um
ul

at
ed

 In
de

xi
ng

 T
im

e
[s

]

Selectivity

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

(b)

 0.1

 1

 10

 100

 1000

 10000

 100000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100A
cc

um
ul

at
ed

 In
de

x
Lo

ok
up

 +
 D

at
a

A
cc

es
s

T
im

e
[m

s]

Selectivity

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

Data Access

(c)

Fig. 12 Comparing standard cracking with index baselines while varying selectivity (note that: (a) = (b) + (c)). a Accumulated query response
time, b accumulated indexing time, c acc. index lookup + data access time

123

An experimental evaluation and analysis of database cracking 41

selectivities, the index lookup and data access costs are small
compared to the indexing costs. As a result, the difference in
the index lookup and data access costs of different methods
is not reflected in the total costs in Fig. 12a.

To conclude, the take-away message from this section is
threefold: (1) using a better index structure makes sense only
for very high selectivities, e.g. one in a million, (2) cracking
depends on query selectivity in terms of indexing effort, and
(3) although cracking creates the indexes adaptively, it still
needs to catch up with full indexing in terms of the quality
of the index.

4.4 Effect of varying cracking depth

The cracking algorithms tested so far reorganize the cracker
column till the fully sorted state is reached. However, the
authors of [17] suggested, in their original work, that it might
make sense to stop further reorganization at a certain partition
size and filter the partitions instead. Thus, in the following
experiment, we vary the threshold at which we stop applying
standard cracking and inspect the effect on the runtime. Fig-
ure 13 shows the results. We present the accumulated query
response time over our query sequence of 1000 queries and
split the bars into indexing time, representing the time to
reorganize the partition(s), and index lookup with data access
time, representing the query result computation. This result
computation corresponds to a simple scan if the column has
been cracked by this query or a scan with a filtering, if no
cracking has been performed previously. The threshold at
which we stop cracking is varied from 16,000 (250 KB) to
256,000 (4000 KB) entries. In Fig. 13, we can observe that
a threshold larger than 64,000 entries has a clear impact on
the accumulated query response time. The larger the thresh-
old, the smaller is the indexing time as less cracking effort
is needed. As a consequence of the reduced indexing effort,
the querying time increases due to the additional filtering.
Unfortunately, the savings in indexing effort are eclipsed by
the larger increase in querying time. As a result, the overall

 0

 2

 4

 6

 8

 10

Standard

16K
32K

64K
128K

256K

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Partition Size (# Entries)

Indexing Time
Index Lookup + Data Access Time

Fig. 13 Stopping cracking at a certain partition size

 0

 20000

 40000

 60000

 80000

 100000

 0 500 1000 1500 2000

P
re

di
ca

te
 R

an
ge

Predicate Sequence

Sequential Predicates

(a)

 0

 20000

 40000

 60000

 80000

 100000

 0 500 1000 1500 2000

P
re

di
ca

te
 R

an
ge

Predicate Sequence

Skewed Predicates (Alpha = 2.0)

(b)

Fig. 14 Generated predicates for different access pattern. a Sequential
pattern, b skewed pattern

runtime increases. Therefore, stopping cracking at a certain
partition size and applying filtering does not improve perfor-
mance.

4.5 Effect of query access pattern

So far, all experiments applied a uniform random access pat-
tern to test the methods. However, in reality, queries are
often logically connected with each other and follow cer-
tain non-random and non-uniform patterns. To evaluate the
methods under such patterns, we pick two representatives:
the sequential access pattern and the skewed access pattern.
We create the sequential access pattern as follows: starting
from the beginning of the value domain, the queried range is
moved for each query by half of its size towards the end of
the domain to guarantee overlapping query predicates. When
the end is reached, the query range restarts from the begin-
ning. The position to begin is randomly set in the first 0.01 %
of the domain to avoid repetition of the same sequence in
subsequent rounds. Figure 14a visualizes the generated pred-
icates. In Fig. 15a, we show the query response time under
the sequential access pattern for standard cracking, stochas-
tic cracking, coarse-granular index with 1000 partitions, and
hybrid crack sort. We can clearly separate the figure into
the first 200 queries and the remaining 800 queries. As the
selectivity is 1 % and the query range moves by half of its
size per query, it takes 200 queries until the entire data set has
been accessed. Within that period, the query response time of
standard cracking and hybrid crack sort decreases only grad-
ually. Large parts of the data are scanned repeatedly, and
the unindexed upper part decreases only slightly per query.
Furthermore, hybrid crack sort is considerably slower than
standard cracking in this phase. Stochastic cracking reduces
this problem significantly by applying additional splits to the
unindexed upper area. Coarse-granular index shows the most
stable performance. After the initial partitioning in the first
query, the query response time does not significantly vary.
Additionally, the query response time is the lowest of all
methods (except for the first query). For the remaining 800
queries, the performance differences between all methods
decrease as the entire data set has been queried and is there-

123

42 F. M. Schuhknecht et al.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Hybrid Crack Sort

Stochastic Cracking (MDD1R)
Coarse-granular Index 1K

(a)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

T
im

e
[m

s]

Query Sequence

Standard Cracking
Hybrid Crack Sort

Stochastic Cracking (MDD1R)
Coarse-granular Index 1K

(b)

 0

 10

 20

 30

 40

 50

Sequential Skewed

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

] Standard Cracking
Hybrid Crack Sort

Stochastic Cracking (MDD1R)
Coarse-granular Index 1K

(c)

Fig. 15 Effect of query access pattern on adaptive methods. a Sequential access pattern, b skewed access pattern, c accumulated query response
times

fore cracked more or less. Now, stochastic cracking is slower
than standard cracking as the additional effort of random
cracking and materializing the result is no more necessary to
provide a decent performance.

Finally, let us investigate how the methods perform under
a skewed access pattern. We create the skewed access pattern
in the following way: first, a Zipfian distribution is generated
over n values, where n corresponds to the number of queries.
Based on that distribution, the domain around the hotspot,
which is the middle of the domain in our case, is divided inton
parts. After that, the query predicates are set according to the
frequencies in the distribution. The k values with the l highest
frequency in the distribution lead to k query predicates lying
in the l-th nearest area around the hotspot. Figure 14b shows
the generated predicates for α = 2.0. These predicates are
randomly shuffled before they are used in the query sequence.
Figure 15b shows the query response time for the skewed
pattern. We can observe a high variance in all methods except
coarse-granular index. Between accessing the hotspot area
and regions that are far off, the query response time varies by
almost 3 orders of magnitude. Early on, all methods index the
hotspot area heavily as most query predicates fall into that
region. Stochastic cracking manages to reduce the negative
impact of predicates that are far off the hotspot area. However,
it is slower than standard cracking if the hotspot area is hit.
Hybrid crack sort copies the hotspot area early on to its final
partition and exhibits the fastest query response times in the
best case. However, if a predicate requests a region that has
not been queried before, copying from the initial partitions
to the final partition is expensive.

Finally, Fig. 15c shows the accumulated query response
time for both sequential and skewed access patterns. Obviou-
sly, handling sequential patterns is challenging for all adap-
tive methods; especially, hybrid crack sort suffers from large
repetitive scans in all initial partitions and is therefore by
far the slowest method in this scenario. Stochastic crack-
ing (MDD1R) manages to reduce the problems of standard
cracking significantly and fulfils its purpose by providing a
workload robust query answering. In total, coarse-granular

index is the fastest method under this pattern. Overall, for the
skewed access pattern, the difference between the methods
is significantly smaller than for the sequential pattern.

5 Parallelising cracking algorithms

Of course, the concept of So far, we looked entirely at single-
threaded implementations of cracking algorithms, sorting
methods, and index structures (Table 4). However, nowa-
days, with commodity hardware offering multiple hardware
threads and server machines easily consisting of several
multi-core processors, parallelizing an algorithm is crucial
for efficiency. Thus, in the following section, we investigate
the current state-of-the-art parallel cracking algorithms and
identify their strengths and weaknesses.

5.1 Parallel cracking methods

In general, parallel query processing can be realized in two
ways: (1) inter-query parallelism, which interleaves the exe-
cution of multiple queries while isolating them semantically,
and (2) intra-query parallelism, which serializes the answer-
ing of the query sequence, while each individual query is

Table 4 All single-threaded algorithms evaluated in this paper

Algorithm References

Standard cracking [17]

Predication/vectorized cracking [23]

Hybrid crack/radix/sort sort [16]

Buffered swapping This paper resp. [25]

Stochastic cracking (MDD1R) [11]

Coarse-granular index This paper resp. [25]

Sideways cracking, Covered cracking [15], this paper resp. [25]

Sorting: Quick(_insert) sort, Radix(_insert) [12,13]

Full index: AVL-tree, B+-tree, ART [1,3,20]

123

An experimental evaluation and analysis of database cracking 43

Table 5 All multi-threaded algorithms evaluated in this paper

Algorithm Abbreviation References

Parallel standard cracking P-SC [8,9]

Parallel coarse-granular index P-CGI [2]

Parallel-chunked standard
cracking

P-CSC [2]

Parallel-chunked vectorized
cracking

P-CVC Variant of [23]

Parallel-chunked
coarse-granular index

P-CCGI [2]

Parallel range-partitioned radix
sort

P-RPRS [2]

Parallel-chunked radix sort P-CRS [2]

Parallel sideways cracking
(with P-CSC)

P-SW-CSC This paper

Parallel sideways cracking
(with P-CCGI)

P-SW-CCGI This paper

Parallel range-partitioned radix
sort (cluster complete)

P-PC-RPRS This paper

Parallel range-partitioned radix
sort (cluster lazy)

P-LC-RPRS This paper

evaluated in parallel. In the following, let us look at the main
representatives of these two classes of parallelism. Table 5
gives an overview alongside with their initial sources and
used abbreviations. To the best of our knowledge, these algo-
rithms form the complete set of parallel cracking algorithms
known to date. Obviously, many of the methods originate
from our own study on parallel adaptive indexing techniques
[2] that was the follow-up work of the paper that this article
extends. Thus, we use this chance to combine both works
and re-evaluate the methods under a new set-up as well as
in comparison with new methods. Let us now look at the
different parallel algorithms in detail.

Parallel standard cracking (P-SC) Interleave answering of
multiple queries in isolation by serializing crack-in-two on
the granularity of partitions.

A very natural form of inter-query parallelism is realized in
parallel standard cracking [8,9], denoted as P-SC from here
on. It is based on the observation that a query modifies at most
two partitions of the cracker column. Thus, if we want to exe-
cute multiple queries at the same time on the same cracker
column, all we have to do is serializing the cracking of parti-
tions. To do so, the authors of [8,9] introduce read and write
locks on the partition level. An incoming query, running in
its own thread, tries to acquire (at most two) write locks for
the partitions at the border, that it has to crack, and read locks
for the inner partitions. Since acquiring write locks is exclu-
sive, only one query at a time can modify a certain partition.
Similar to the single-threaded case, we can apply the concept
of coarse-granular index to P-SC as well. To do so, the first

query applies the lock-free parallel range-partitioning algo-
rithm we used in our study on parallel cracking algorithms [2]
before starting the actual query answering. We will refer to
this method as P-CGI.

Parallel coarse-granular index (P-CGI) Apply a parallel
range partitioning to bulk-load the cracker index before start-
ing the query answering using P-SC.

Obviously, for P-SC and P-CGI, the degree of parallelism
highly depends on the current cracking state of the cracker
column and on the query access pattern. Thus, the following
algorithm, that we introduced in [2], implements the paral-
lelism inside the answering of a single query to create a more
stable parallel execution over the query sequence.

Parallel-chunked standard cracking (P-CSC) Divide the
cracker column non-semantically into independent chunks
and apply standard cracking on each chunk in parallel.

The concept of parallel-chunked standard cracking [2],
denoted P-CSC from here on, is as simple as effective. We
divide the column logically into multiple chunks and treat
each chunk as a separate cracker column with its own cracker
index. The incoming queries are executed sequentially within
the query burst, while each individual query is evaluated on
all chunks in parallel. Thus, each chunk is cracked individu-
ally and produces a local query result. When all threads finish
the evaluation of the query locally, the global result can be
computed. As there is almost no communication or synchro-
nization necessary during cracking and result computation,
this method naturally offers a high degree of parallelism from
the very first query on. The same concept has been used in
[23] in combination with vectorized cracking. Thus, we also
test a vectorized version, denoted as P-CVC6 from here on.
Of course, the concept of work division can be applied to
more advanced cracking algorithms as well. Since our coarse-
granular indexing method offers an interesting alternative to
the standard version, we also test our chunked implementa-
tion of parallel coarse-granular index that we first introduced
in [2].

Parallel-chunkedcoarse-granular index (P-CCGI)Divide
the cracker column non-semantically into multiple indepen-
dent chunks and apply coarse-granular index on each chunk
in parallel. Then, apply standard cracking locally for the
query answering.

The concept remains the same. The only difference to P-
CSC is an initial step of range partitioning within each chunk
as performed by the single-threaded coarse-granular index.
After that, the single-threaded standard cracking is used in
each chunk for the local result computation. We will call this
method from here on P-CCGI [2].

6 In contrast to [23], we do not merge the chunks after each query as
this results in overhead.

123

44 F. M. Schuhknecht et al.

In comparison with the different multi-threaded crack-
ing versions, we test our two parallel radix-based sorting
methods from [2]. The first version, called P-RPRS, applies
first a parallel range partitioning and then sorts the par-
titions locally in parallel using a single- threaded radix
sort. The second version, denoted P-CRS from here on,
chunks the input non-semantically and then applies single-
threaded range partitioning and radix sort on each chunk in
parallel.

5.2 Hardware set-up

For the multithreading experiments, we use a high-end server
of 4 sockets, each equipped with an Intel Xeon E7-4870 v2
processor with 15 physical and 30 logical cores, running at
2.3 GHz. Therefore, the machine has 60 physical and 120
logical cores available. The overclocking capabilities of the
processors (Intel Turbo Mode) are disabled for all experi-
ments, as they unnecessarily complicate the analysis. The pri-
vate L1 and L2 caches of each core have a size of 32 and 256
KB, respectively, while the shared L3 cache of each proces-
sor has a size of 30 MB. Each processor has 3 QPI links such
that remote memory access is equally expensive for all neigh-
bouring processors. Each socket is attached to 128 GB of
1600 MHz DDR3 RAM running in Intel Performance Mode,
resulting in 512 GB of available main memory. The oper-
ating system is a 64-bit Debian with kernel version 3.2. As
the memory bandwidth plays an important role in the follow-
ing discussion, we measured the throughput of the machine
using the STREAM benchmark [22] that runs a set of simple
read/write vector kernels. Instead of relying on the computed
bandwidth of the benchmark, we measured the throughput
directly at the memory controller using Intel VTune Ampli-
fier 2015. Figure 16 shows the aggregated bandwidth for all
4 sockets. As we can see, we reach 65 GB/s per socket and
thus achieve a total machine bandwidth of 260 GB/s.

5.3 Experimental set-up

Before we can start with any experimental evaluation, let us
define the way in which the queries are fired and executed.
As in previous experiments, we have a set of 1000 queries
that should be answered as fast as possible. All queries are
directly ready to be processed, and there is no artificial idle
time introduced between queries. Depending on the type
of the algorithms, this query batch is processed differently.

For algorithms that perform inter-query-parallelism, like P-
SC for instance, we divide the set of queries into k parts,
which are processed using k threads with each thread work-
ing 1000/k queries sequentially. This resembles the way of
firing queries in [8]. In contrast, for algorithms that perform
intra-query parallelism, like P-CSC, the 1000 queries will
be answered sequentially one after another. However, each
individual query is answered by k threads in parallel on a
portion of the data. Please note that to get a more realistic
set-up, we introduced a barrier in the query execution loop:
the answering of the next query starts only after all threads
completed the current one.

5.4 Scaling of parallel cracking algorithms

In Sect. 5.1, we described the set of algorithms for paral-
lelizing database cracking. As mentioned before, many of
these algorithms originate from our earlier study on paral-
lel adaptive indexing [2]. In that work, we studied both the
absolute runtimes and the scalability of the parallel cracking
algorithms. In this paper, we revisit the scalability of parallel
cracking algorithms in depth. To do this, we extend the paral-
lel cracking experiments in two ways. First, in contrast to our
previous study that used a low-end server with only 8 cores,
we now use a massively parallel high-end machine consisting
of 4 sockets and 60 physical, respectively, 120 logical cores
(see Sect. 5.2 for a detailed description of the hardware).
We believe that it is valuable to re-evaluate these techniques
under a vastly different set-up to get possibly new insights
from them. Second, we dig into and analyse the performance
of parallel cracking by looking at contention and bandwidth
using Intel VTune Amplifier. Our goal is to understand and
explain the scalability of parallel cracking algorithms in a
massively parallel environment.

Besides the raw query processing times of different algo-
rithms, parallel methods offer another important dimension
to analyse: the capabilities to scale with the multi-threading
resources of the hardware. An algorithm, which scales poorly,
might be the winner in terms of runtime on a small machine,
but completely looses the pace on a large server. Therefore,
in the following, we will inspect for each method individu-
ally how it scales with an increase of the number of threads.
We run each method using 4, 8, and 15 threads to utilize the
computing cores up to 1

4 -th of the machine. Additionally, we
test 30, 45, and 60 threads to investigate the scaling over the
sockets. Finally, we run 120 threads to utilize all logical cores

Fig. 16 Stream benchmark
with 60 threads. We can reach
65 GB/s per socket for the
aggregated read/write
bandwidth per socket

123

An experimental evaluation and analysis of database cracking 45

of the machine as well. We do not apply any form of thread
pinning and let the operating system decide.

Figure 18 presents the accumulated speedups of the algo-
rithms relative to their single-threaded counterparts. We
inspect the individual parts (copying, range partitioning,
sorting, query answering) of the methods to analyse them
separately as well as the total speedup. Let us go through the
methods one by one and analyse their scalability.

Parallel standard cracking (P-SC) Figure 18a presents the
scaling capabilities of the well- known, lock-based P-SC.
Unfortunately, it scales poorly with the increasing number
of threads. The highest total speedup we observe is around
3.7× for 120 threads. The situation is particularly bad in the
early phase of the query answering as the measured speedups
are only between 1.5× and 2×. To understand this scaling
problem, let us visualize the processing behaviour of the algo-
rithm. To do so, each time a thread is processing a partition,
we log the time it takes as well as the processed area in
the cracker column. This time includes possible waiting to
acquire locks as well as the actual data processing. Figure 17
shows the plotted result. A rectangle [x1, y2, x2, y2] means
that within the time from x1 to x2, a thread was processing
the cracker column at the range y1 to y2. The colours indicate
the processing type, where red is modifying access (cracking)
and green reading access (querying). Figure 17a presents the
results for P-SC for 8 threads. We can observe a severe access
contention in the first half of the run. The early queries lock
huge parts of the cracker column as there exist only large
partitions and thus serialize each other heavily. Therefore,
the algorithm has no chance to scale linearly when starting
from an unpartitioned state. Thus, let us see how the problem
decreases when prepending a range-partitioning step in the
next algorithm.

Parallel coarse-granular index (P-CGI)As described before,
this algorithm extends P-SC by applying an initial paral-
lelized range-partitioning step that creates 1024 partitions
right away before any query answering starts. This should
have a positive effect on P-SC and significantly reduce the
contention that we have measured before. Figure 17b presents
again the partition processing contention, this time for P-CGI.
The blank space between time 0 and 0.7 s is the range-
partitioning phase. Afterwards, we see from 0.7 s till 1.2 s
the actual query answering, which indeed parallelizes nicely
now. No heavy contention is visible anymore and the algo-
rithm behaves as intended, as the partitions are already small
and the chance of two threads accessing the same parti-
tion is small. This is confirmed by the scaling factors of
the P-CGI query answering phase in Fig. 18b, which now
reaches a factor of 11× for 45 threads. For more threads, the
performance significantly drops again, as access contention
(both on the column as well as on the protected cracker
index) throttles the throughput again. Figure 19a presents

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
ra

ck
er

 C
ol

um
n

R
an

ge
 [M

ill
io

n
E

nt
rie

s]

Time since Start of Query Answering [s]

P_SC_M: Cracking (8 Threads) P_SC_M: Querying (8 Threads)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
ra

ck
er

 C
ol

um
n

R
an

ge
 [M

ill
io

n
E

nt
rie

s]

Time since Start of Query Answering [s]

P_SC_M: Cracking (8 Threads) P_SC_M: Querying (8 Threads)

(a)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
ra

ck
er

 C
ol

um
n

R
an

ge
 [M

ill
io

n
E

nt
rie

s]

Time since Start of Query Answering [s]

P_CGI_M: Cracking (8 Threads) P_CGI_M: Querying (8 Threads)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
ra

ck
er

 C
ol

um
n

R
an

ge
 [M

ill
io

n
E

nt
rie

s]

Time since Start of Query Answering [s]

P_CGI_M: Cracking (8 Threads) P_CGI_M: Querying (8 Threads)

(b)

Fig. 17 Visualization of the partition processing contention for 8
threads. A rectangle [x1, y1, x2, y2] means that within the time from
x1 to x2, a thread was processing the cracker column at the range y1
to y2. Processing also includes wait times to acquire a lock. A red
square indicates a writing process (cracking a partition), while a green
square visualizes a reading process (querying a partition). Overlapping
squares indicate that multiple threads intent to work on the same area
of the cracker column at the same time. a Parallel standard cracking
(P-SC), b parallel coarse-granular index (P-CGI) (colour figure online)

a query-wise view on the answering phase. We can see that
directly in the first query, the scaling is still very limited.
This is caused by the set-up and assignment of the threads
to the tasks, which is expensive in comparison with the short
running queries. Additionally, NUMA remote accesses are
throttling the query answering phase. As the parallel range-
partitioning algorithms creates partitions that are scattered
across regions, a thread that answers a query has conse-
quently a large number of remote accesses. Table 6 shows
that based on hardware counters 2 out of 3 accesses are
remote for P-CGI. Let us now look at the range partitioning
itself. For 120 threads, we achieve the best speedup of factor
15×. Memory bandwidth is clearly not the problem, as it can
be seen in the early phase of Fig. 19b, where only the his-
togram generation maximizes the bandwidth utilization. Our
VTune analysis indicates that the range-partitioning algo-

123

46 F. M. Schuhknecht et al.

 0

 1

 2

 3

 4

 5

 6

 7

Copy Query Answ. Total

S
pe

ed
up

 o
ve

r
S

ta
nd

ar
d

C
ra

ck
in

g
(1

 T
hr

ea
d)

 0

 2

 4

 6

 8

 10

 12

 14

 16

Range Par. Query Answ. Total

S
pe

ed
up

 o
ve

r
C

oa
rs

e-
gr

an
ul

ar
 In

de
x

(1
 T

hr
ea

d)

 0

 5

 10

 15

 20

 25

 30

 35

Copy Query Answ. Total

S
pe

ed
up

 o
ve

r
S

ta
nd

ar
d

C
ra

ck
in

g
(1

 T
hr

ea
d)

 0

 5

 10

 15

 20

 25

 30

Copy Query Answ. Total

S
pe

ed
up

 o
ve

r
V

ec
to

riz
ed

 C
ra

ck
in

g
(1

 T
hr

ea
d)

 0

 5

 10

 15

 20

 25

Range Par. Query Answ. Total

S
pe

ed
up

 o
ve

r
C

oa
rs

e-
gr

an
ul

ar
 In

de
x

(1
 T

hr
ea

d) (4 Threads)
(8 Threads)

(15 Threads)

(30 Threads)
(45 Threads)
(60 Threads)

(120 Threads)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Range Par. Sorting Query Answ. Total

S
pe

ed
up

 o
ve

r
R

ad
ix

 S
or

t (
1

T
hr

ea
d)

 0

 10

 20

 30

 40

 50

 60

 70

Range Par. Sorting Query Answ. Total

S
pe

ed
up

 o
ve

r
R

ad
ix

 S
or

t (
1

T
hr

ea
d)

 0

 2

 4

 6

 8

 10

 12

14 8 15 30 45 60 120

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Number of Chunks

Parallel-chunked Standard Cracking (P_CSC)
Parallel-chunked Coarse-granular Index (P_CCGI)

Parallel-chunked Radix Sort (P_CRS)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 18 Speedup of parallel cracking and sorting algorithms over their
single-threaded counterparts while varying the number of threads. We
show both the speedups of the characteristic phases as well as the over-
all achieved speedups. Coloured horizontal lines show the expected
perfect linear speedup. In h, we show for the chunked algorithms
how the chunking itself influences the methods by serially working

the chunks. a Parallel standard cracking (P-SC), b parallel coarse-
granular index (P-CGI), c parallel-chunked standard cracking (P-CSC),
d parallel-chunked vectorized cracking (P-CVC), e parallel-chunked
coarse-granular index (P-CCGI), f parallel range-partitioned radix sort
(P-RPRS), g parallel-chunked radix sort (P-CRS), h serial execution of
chunked algorithms (colour figure online)

rithm is heavily back-end bound by the random nature of the
partitioning. Advanced partitioning techniques like software-
managed buffers and non-temporal streaming stores might
improve upon this problem, as we investigate in a separate
study on partitioning [26].

Parallel-chunked standard cracking (P-CSC) After looking
at the inter-parallel version of standard cracking, let us now
inspect the scaling behaviour of the intra-parallel version
named P-CSC. The results are shown in Fig. 18c. We can
see that this algorithms scales considerably better than the
previous ones, which is what we expect from a method that
parallelizes by chunking. However, we can also observe that
the scaling is not linear with the number of threads. The
highest total speedup that we achieve for 120 threads is only
around 25×. To understand this behaviour, let us inspect the
individual parts. Interestingly, the copying phase, which sim-
ply duplicates the input column into a separate array, scales
particularly bad with a maximum speedup of 8×. As we
can see from the bandwidth plot of Fig. 20a for 60 threads,
the memory bus is not the limiting factor, which is poorly
utilized within the first 150 ms. We identified page faults,
which are surprisingly expensive to resolve when touching
the cracker column for the first time during the copying phase
as the cause of this behaviour. Let us now see how the query
answering part alone scales in P-CSC. In Fig. 18c, we see a
maximal speedup of the query answering phase of 33× for
60 threads, which is still not linear. NUMA effects are not
a problem here as we can see in Table 6, all accesses are
local. Apparently, the scaling is limited from 45 threads on,

so let us inspect the utilized bandwidth of the query answer-
ing phase for 30 threads (Fig. 20b), 45 threads (Fig. 20c),
and 60 threads (Fig. 20d). We can see that in the early phase
the bandwidth for 30 threads is with almost 59 GB/s already
close to the cap of 65 GB/s, so we cannot expect a linear
scaling when increasing the number of threads by a factor of
1.5× (45 threads), respectively, 2× (60 threads).

From Fig. 18d, we can see that Parallel-chunked vec-
torized cracking (P-CVC) shows a very similar scaling
behaviour as P-CSC. It scales slightly worse than P-CSC
due to its nature of being even more bandwidth bound.

Parallel-chunked standard cracking (P-CCGI) Let us now
inspect the intra-parallel version of coarse-granular index in
Fig. 18e. Interestingly, the range-partitioning phase scales
almost exactly the same as the one of P-CGI in Fig. 18b,
although the former uses a parallel range partitioning while
the latter one chunks a single-threaded implementation. This
shows again that the partitioning is heavily back-end bound
and that stalls throttle the algorithm. The query answering
phase scales with 20× for 60 threads much better than that
of P-CGI. One reason is that each chunk can be processed
individually without any concurrency control except the bar-
rier at the end of each query. Another reason is the almost
perfect NUMA locality that we can observe in Table 6.

Parallel-chunked standard cracking (P-RPRS) Finally, we
want to analyse the scaling capabilities of the sorting base-
lines. Let us start with P-RPRS presented in Fig. 18f. The
initial range-partitioning phase resembles the one of P-CGI

123

An experimental evaluation and analysis of database cracking 47

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800 900 1000S
pe

ed
up

 o
ve

r
C

oa
rs

e-
gr

an
ul

ar
 In

de
x

(1
 T

hr
ea

d)

Query Sequence

(4 Threads)
(8 Threads)

(15 Threads)
(30 Threads)

(45 Threads)
(60 Threads)

(120 Threads)

100ms50ms 150ms 200ms 250ms 300ms 350ms 400ms

53.2

53.2

53.2

53.2

CPU
Util 4500%

(a)

(b)

Fig. 19 Bandwidth of P-CGI measured at 4 sockets in GB/s. The
bottom line shows the CPU utilization in percentage. a Scaling of
parallel-chunked standard cracking (P-CGI) of the query answering
phase without the range-partitioning phase, b parallel-chunked stan-
dard cracking (P-CGI) with 45 threads. Highest bandwidth observed:
53.25 GB/s

which is why we see exactly the same scaling behaviour.
Afterwards, each created partition is sorted individually in
parallel. Obviously, this phase scales much better with 45×
for 120 threads at best. The reason lies in the great cache
locality created by the previous range partitioning. By divid-
ing the dataset into 1024 pieces, each partition has a size of
1.49 MB. Since each processor has a L3 cache size of 30
MB and 15 physical cores, each core has basically 2 MB of
cache available (1 MB per logical core). This is obviously
enough to keep all currently worked partitions completely
inside the caches in the case of 60 threads. The scaling of the
query answering phase is at best only 13× for 45 threads.
This is again due to the high number of remote accesses in
Table 6 caused by the initial parallel range partitioning. They
also have a negative impact on the sorting phase, although
the worked partition is loaded once into the cache and then
worked locally.

Parallel-chunked standard cracking (P-CRS) The second
sorting algorithm, which does not create a global sorting,
range partitions and sorts all chunks locally in parallel. In
the scaling result of Fig. 18g, we can see that the sorting
phase scales even better than in P-RPRS. One reason lies in
the NUMA local accesses, as we can see in Table 6. Another
reason is presented in Fig. 18h. As sorting multiple smaller
chunks is by default cheaper than sorting a large one, a part
of the speedup also originates from that. This also causes

100ms50ms 150ms 200ms 250ms 300ms 350ms 400ms 450ms

62.7

62.7

62.7

62.7

100ms50ms 150ms 200ms 250ms 300ms 350ms 400ms

58.8

58.8

58.8

58.8

100ms50ms 150ms 200ms 250ms 300ms

64.0

64.0

64.0

64.0

100ms50ms 150ms 200ms 250ms 300ms

65.2

65.2

65.2

65.2

(a)

(b)

(c)

(d)

Fig. 20 Bandwidth measured at 4 sockets with Intel VTune Amplifier
2015 in GB/s. a Parallel-chunked standard cracking (P-CSC) with 60
threads. The initialization phase (copying the data into the cracker col-
umn in parallel) utilizes the bandwidth only partially (around 8 GB/s),
b parallel-chunked standard cracking (P-CSC) with 30 threads with-
out initialization phase. Highest bandwidth observed: 58.77 GB/s. c
parallel-chunked standard cracking (P-CSC) with 45 threads with-
out initialization phase. Highest bandwidth observed: 64.02 GB/s, d
parallel-chunked standard cracking (P-CSC) with 60 threads without
initialization phase. Highest bandwidth observed: 65.24 GB/s

Table 6 Number of LLC cache misses that are served with local,
respectively, remote DRAM access presented in millions of measured
events

Method Local accesses (Mio) Remote accesses (Mio)

P-SC 107 418

P-CGI 99 202

P-CSC 442 0

P-CVC 357 0.2

P-CCGI 44 0.2

P-RPRS 115 230

P-CRS 365 0.6

The measured counters are OFFCORE_RESPONSE.DEMAND_DATA_RD.

LLC_MISS.LOCAL_DRAM and OFFCORE_RESPONSE.DEMAND_DATA_RD.

LLC_MISS.REMOTE_DRAM

the super-linear sorting speedup for 30 and 45 threads. The
query answering phase of P-CRS also scales better than the
one of P-RPRS due to the NUMA local processing nature.

5.5 Runtime of parallel cracking algorithms

After investigating the scaling capabilities of the algorithms
on an individual basis, let us see how they compete against

123

48 F. M. Schuhknecht et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

Parallel Standard Cracking (P-SC)
Parallel Coarse-granular Index (P-CGI)

Parallel-chunked Standard Cracking (P-CSC)
Parallel-chunked Vectorized Cracking (P-CVC)

Parallel-chunked Coarse-granular Index (P-CCGI)
Parallel Range-partitioned Radix Sort (P-RPRS)

Parallel-chunked Radix Sort (P-CRS)

(c)

Fig. 21 Accumulated query response time of parallel cracking algorithms in comparison with parallel radix-based sorting methods. a 4 threads,
b 15 threads, c 60 threads

each other. To do so, we measure and compare the accu-
mulated query response time over 1000 queries and present
the results using different thread configurations in Fig. 21.
For 4 threads in Fig. 21a, there is a clear difference in run-
time between the individual algorithms visible. Obviously,
P-CSC has the lowest initialization time with almost 0.5 s,
while the sorting methods need with around 1.7 s consider-
ably more time for their first query. Over 1000 queries, the
cracking methods P-CCGI and P-CGI clearly win in terms of
accumulated runtime, while P-SC is far behind the remain-
ing methods due to its serialization behaviour in the early
querying phase. When increasing the number of threads to
15 in Fig. 21b and to 60 in Fig. 21c, we see a clear trend: the
difference between the sorting and cracking methods signif-
icantly decreases. For 60 threads, the time of the first query
for P-CSC is with 191 ms only 46 ms shorter than that of
P-CRS, which fully sorts the chunks and answers the first
query in 237 ms, caused by the superior scaling of the sort-
based algorithms. This analysis indicates, that for a large
number of threads, the sorting algorithms are a clear alter-
native over the adaptive methods, especially since they are
easier to integrate into the system stack and offer interest-
ing orders. Nevertheless, we believe that in a real system
with many queries processing several columns at the same
time, only a portion of the physical resources are available
to initialize a column. Under such circumstances, cracking
remains its advantage of offering the significantly cheapest
option of enabling indexing.

5.6 Tuple reconstruction in the context of parallelism

So far, we have looked at the parallel indexing methods with-
out considering tuple reconstruction in order to focus solely
on the cracking and sorting algorithms. Now, let us see how
the tuple reconstruction concepts we have seen already in
the single-threaded case, like sideways cracking [15], can
be applied on top of multi-threaded algorithms. Precisely,
we will investigate how sideways cracking can be combined

with parallel cracking algorithms. To the best of our knowl-
edge, this is the first work to approach this question. Then,
we will compare the tuple reconstruction performance of the
parallel cracking algorithms with a clustered table that has
been ordered with respect to the sorted index column using
our parallel range-partitioned radix sort. As the basis for par-
allel sideways cracking, we pick the two cracking algorithms
that performed the best in the previous evaluation—P-CSC
and P-CCGI. This allows us to apply the concept of chunking
to sideways cracking as well. For each chunk, we keep sep-
arate cracker maps and a separate tape, and thus, the chunks
can be worked independently by the individual threads. We
name these two methods P-SW-CSC, respectively, P-SW-
CCGI in the following. The baseline for parallel sideways
cracking is formed by a clustered table that can be created
in two ways. The first version, coined P-PC-RPRS, clusters
the entire table (stored in column layout) directly in the first
query with respect to the selection column. The sorting is per-
formed using our parallel range-partitioned radix sort. The
second version, called P-LC-RPRS, establishes the clustering
in a lazy manner, by copying and clustering only the columns
that are actually touched by a query. In this case, the clus-
tering of a column is created by applying a fresh sort on the
selection column. To put these methods to the test, we apply
different workloads. All share the property that the selection
is performed on a single, fixed attribute of a table composed
of 10 columns following a uniform random distribution. We
perform separate runs projecting 1 and 5 attributes, respec-
tively, that are randomly selected for each query. Figure 22
shows the accumulated query response times for 4 and 60
threads. Let us focus on the 4 threaded case first in Fig. 22a, b.
For all numbers of projected attributes, P-PC-RPRS behaves
in the most predictable way. Clustering the entire table of 10
columns takes around 11 seconds and the following query
answering takes only a small amount of additional time, even
if 5 attributes are projected. P-LC-RPRS, which clusters a
column when it is touched for the first time is heavily affected
by the number of projected attributes. Interestingly, the larger

123

An experimental evaluation and analysis of database cracking 49

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

Perfect Clustering (P-PC-RPRS)
Lazy Clustering (P-LC-RPRS)

Parallel Sideways Cracking (P-SW-CSC)
Parallel Sideways Cracking (P-SW-CCGI)

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[s

]

Query Sequence

(a) (b)

(c) (d)

Fig. 22 Accumulated tuple reconstruction cost for 1000 queries and a
table consisting of 10 columns, shown for 4 and 60 threads. We select on
a single fixed attribute. In a and c, each query projects a single randomly
chosen attribute. In b and d, each query projects five randomly selected
attributes. a 4 threads: one σ , one π , b 4 Threads: one σ , five π , c 60
Threads: one σ , one π , d 60 threads: one σ , five π

the number of projected attributes, the smaller is the accu-
mulated query response time. This makes sense as a query
projecting multiple attributes can cluster multiple columns
in a single sorting run. We can also observe that the lazy
clustering pays off only for the first few queries, at least for a
table consisting of only 10 columns. In comparison with that,
parallel sideways cracking offers in both implementations a
significantly smaller initialization time. The first query of
P-SW-CCGI is slightly more expensive than that of P-SW-
CSC, as it range partitions the dataset during the initialization
of a cracker map. In the long run, it always clearly pays off
to prepend a range-partitioning step. Overall, for 4 threads
and 1000 queries, P-SW-CCGI shows the best accumulated
runtime in all tested cases. This picture changes if we switch
to 60 threads in Fig. 22c, d. Obviously, all methods benefit
from the increased number of threads; however, the sort-
based methods win at a higher degree. Obviously, the better
scaling capabilities of the sort-based methods that we saw
in the previous analysis pay off in the tuple reconstruction
case as well. P-PC-RPRS needs less than 10 queries to beat
both parallel sideway cracking implementations. The differ-
ence between the lazy P-LC-RPRS and P-PC-RPRS has also
significantly decreased, and even P-LC-RPRS outperforms
P-SW-CSC around 40 queries for 1 projected attribute and
8 queries for 5 projections. Overall, we see the same trend
as before: the more threads available, the more the advan-
tage shifts to the sorting side. Still, if only few threads are
available for the initialization step, parallel sideways crack-
ing shows a significantly smaller preparation time. Further,
for tables consisting of multiple hundreds of attributes, only

on-demand initialization of columns is a viable option, as
offered by parallel sideways cracking.

5.7 Skew in the context of parallelism

Up to this point, we evaluated the parallel methods under a
uniformly distributed random workload on top of uniformly
distributed data. In the following, we will investigate how
different kinds of skewness affect the parallelism. We will test
both skewed query predicates as well as skewed input data.
Furthermore, we cluster the input data into range partitions
and inspect the impact on the methods. Precisely, we run the
following configurations independently:

1. The query predicates follow a normal distribution with
mean μ = 263 (middle of the domain). The deviation is
varied from σ = 258 (high skew) to σ = 262 (low skew).
This pattern simulates a high interest in certain keys.

2. The keys of the input data follow a normal distribution
with mean μ = 263 (middle of the domain). The deviation
is varied from σ = 258 (high skew) to σ = 262 (low skew).
This pattern simulates a higher appearance frequency of
certain keys.

3. The keys of the input data follow a uniform distribution.
However, the input is physically clustered into k uniform
range partitions. We test a low clustering using k = 4 and a
high one using k = 60. This pattern simulates data where
the key locality resembles physical locality, typically the
case for sensor or financial data.

Figure 23 shows the results in form of speedup factors that
different methods achieve when switching from the uni-
formly random distributed data and queries seen so far to
the respective form of skewness. A factor below 1 indicates
a speedup. We compare the runtimes of the entire query
sequence of 1000 queries. Figure 23a shows the influence
of skewed query predicates on the methods. We can observe
that only P-SC is affected negatively by the skew with a slow-
down of up to 1.2×, interestingly even the low skew triggers
it. All remaining methods improve with a higher selectivity
by factors between 0.67× (P-CSC) and 0.91× (P-CGI) for a
deviation of 258. P-SC suffers from the focus on a certain data
region due to a higher lock contention, P-CGI can outweigh
this problem with the initial range partitioning. The remain-
ing algorithms exploit the denser access locality that result in
more fine granular cracks and a better cache utilization. The
parallelism of the chunked algorithms is not affected at all by
the skewed predicates as the work balance remains the same.
Figure 23b presents the impact of skewed input data. As we
can see, this has a more severe influence on some of the meth-
ods. P-SC and especially P-RPRS are heavily slowed down
by a factor of 2.10× and 6.42×, respectively, for the highest
skewness. P-SC suffers from the fact that queries falling into

123

50 F. M. Schuhknecht et al.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
lo

w
do

w
n

Fa
ct

or
 o

ve
r U

ni
fo

rm
 D

is
tri

bu
tio

n P-SC P-CGI P-CSC P-CCGI P-RPRS P-CRS

2
58

2
59

2
60

2
61

2
62

Deviation of Normal Distribution with Mean

x

x

x

x

x

x

x

x

263

0

1

2

3

4

5

6

7

S
lo

w
do

w
n

Fa
ct

or
 o

ve
r U

ni
fo

rm
 D

is
tri

bu
tio

n P-SC P-CGI P-CSC P-CCGI P-RPRS P-CRS

258 259 260 261 262

Deviation of Normal Distribution with Mean

x

x

x

x

x

x

x

x

263

0

1

2

3

4

5

6

7

4 Cluster 60 ClusterS
lo

w
do

w
n

Fa
ct

or
 o

ve
r U

ni
fo

rm
 D

is
tri

bu
tio

n P-SC P-CGI P-CSC P-CCGI P-RPRS P-CRS

x

x

x

x

x

x

x

x

(a) (b) (c)

Fig. 23 Impact of skewness variants on the methods for 60 threads. The shown numbers present the speedup over the uniform random dataset
using uniformly distributed query predicates. A number smaller than 1 represents a speedup of the version under skew. a Skewed queries, b skewed
input, c clustered input

the skewed region work on a larger part of the column and
thus limit the amount of possible parallelism. P-RPRS has
the problem that the range-partitioning phase creates par-
titions of unbalanced size, and thus, the following sorting
work is unequally divided among the threads. The creation
of equi-depth partitions could help here; however, we leave
this to future work. Again, the chunked methods are com-
pletely unaffected by this type of skew. However, the picture
changes when data clustering is introduced in Fig. 23c. We
test a lower clustering of 4 partitions and a heavy cluster-
ing of 60 partitions. Under these circumstances, the chunked
algorithms experience a severe slowdown. The pre-clustered
input leads to an unbalanced work division, as only some of
the chunks contain data that is relevant for the query. P-CSC
suffers the most, as its entire behaviour is query driven and
thus influenced by the clustering. For P-CCGI and P-CRS, at
least the range partitioning and sorting is query independent
and thus balances well. To resolve this problem, a cluster-
aware chunk division would be necessary, e.g. as proposed
in [5]. However, this is left for future work.

Overall, we learned that the chunked methods are com-
pletely resilient to both skewed queries and input. However,
in their current state, they have severe problems in handling
clustered input. P-RPRS suffers from skewed input as the
range-partitioning phase creates equi-width partitions that
do not balance the sorting work. P-SC reacts negatively to
both skewed input and queries due to the higher contention.

6 Lessons learned and conclusion

Let us now put together the major lessons learned.

1. Database cracking is a mature field of research Data-
base cracking is a simple yet effective technique for
adaptive indexing. In contrast to full indexing, database
cracking is lightweight, i.e. it does not penalize the first
query heavily. Rather, it incrementally performs at most
one quick sort step for each query and nicely distrib-

utes the indexing effort over several queries. Moreover,
database cracking indexes only those data regions which
are actually touched by incoming queries. As a result,
database cracking fits perfectly to the modern needs of
adaptive data management. Furthermore, apart from the
incremental index creation in standard cracking, several
other follow-up works have looked into other aspects
of adaptive indexing as well. These include updating a
cracked database, convergence of database cracking to a
full index, efficient tuple reconstruction, and robustness
over unpredictable changes in query workload. Thus, we
can say that database cracking has come a long way and
is a mature field of research.

2. Database cracking is repeatable In this paper, we
repeated eight previous database cracking works, includ-
ing standard cracking using crack-in-two and crack-
in-three [17], predication cracking [23], hybrid crack-
ing [16], sideways cracking [15], and stochastic crack-
ing [11] as well as the whole line of parallel cracking
works [2,8,9]. We reimplemented the cracking algo-
rithms from each of these works and tested them under
similar settings as in the previous works. Our results
match very closely to the ones presented in the previous
works, and we can confirm the findings of those works,
i.e. hybrid cracking indeed improves in terms of conver-
gence to full index, sideways cracking allows for more
efficient tuple reconstruction, and stochastic cracking
offers more predictable query performance than standard
cracking. We can say that cracking is repeatable in any
ad hoc query engine, other than MonetDB as well.

3. Still, lot of potential to improve database cracking There
is still a lot of potential to do better in several aspects
of database cracking, including faster convergence to
full index, more efficient tuple reconstruction, and more
robust query performance. For example, by buffering the
elements to be swapped in a heap, we can reduce the
number of swaps and thus have better convergence. Sim-
ilarly, by covering the cracked index, we can achieve
better scalability in the number of projected attributes.

123

An experimental evaluation and analysis of database cracking 51

Likewise, we can trade the initialization time to create
a coarse-granular index which improves query robust-
ness. All these are promising directions in the database
cracking landscape. Thus, we believe that even though
cracking has come a long way, it still has a lot more to
go.

4. Database cracking depends heavily on the query access
pattern As the presented techniques are adaptive due to
their query-driven character, each of them is more of less
sensitive to the applied query access pattern. A uniform
random access pattern can be considered the best case for
all methods as it leads to uniform partition sizes across
the data. In contrast to that sequential patterns crack the
index in small steps and the algorithms have to rescan
large parts of the data. Skewed access patterns lead to a
high variance in runtime depending on whether the query
predicate hits the hotspot area or not. Overall, stochas-
tic cracking (MDD1R) and coarse-granular index, which
extend their query- driven character by data driven influ-
ences, are less sensitive to the query access pattern than
the methods that take only the seen queries into account.

5. Workload selectivities affect the amount of indexing effort
in database cracking Since cracking reorganizes only the
accessed portions of the data, the total indexing effort
varies with the query selectivities. In fact, the total index-
ing effort in standard cracking drops by 45 % when the
selectivity changes from 10−5 to 10−1. Although high
selectivity queries reorganize smaller portions of the
data, the reorganization happens much more often before
reaching the final state. Additionally, earlier cracking
works suggested to stop data reorganization at a cer-
tain partition size, in order to reduce the indexing effort.
However, we saw that the overhead of additional filtering
eclipses the savings from indexing effort.

6. Database cracking needs to catch up with modern index-
ing trendsWe saw that for sorting radix sort is twice as fast
as quick sort. After 600 queries, the total query response
time of binary search based on radix sorted data is even
faster than standard cracking. This means that a full sort-
ing pays off over standard cracking in less than 1000
queries. Thus, we need to explore more lightweight tech-
niques for database cracking to be competitive with radix
sort. Furthermore, several recent works have proposed
main memory optimized index structures. The recently
proposed ART has 1.8 times faster lookups than stan-
dard cracking after 1000 queries and 3.6 times faster
lookups than standard cracking after 1 M queries. We
note two things here: (1) the cracker index offers much
slower lookups than modern main memory indexes, and
(2) the cracker index gets even worse as the number of
queries increase. Thus, we need to look into the index
structures used in database cracking and catch up with
modern indexing trends.

7. Database cracking needs to improve mapping to par-
allel hardware We inspected several different parallel
cracking algorithms that use either inter- or intra-query
parallelism and compared them in terms of scaling with
available hardware resources and absolute runtimes with
sort-based approaches. We identified lock contention and
the shared memory bus as main limitations for par-
allel cracking algorithms. In terms of absolute query
response times, the sorting methods are a hard match
for their cracking-based competitors and offer nice addi-
tional properties like interesting orders—however, only
if a large number of threads is available. This picture is
confirmed in the tuple reconstruction case, where parallel
sideways cracking is the winner over parallel clustering
only under limited computing resources. Skew affects the
parallel algorithms at different degrees depending on its
type: a higher skewness is preferred by most algorithms
although, e.g. clustered input heavily throttles certain
methods in their current realizations.

8. Different indexing methods have different signatures We
looked at several indexing techniques in this paper. Let us
now contrast the indexing behaviour of different index-
ing methods in a nutshell. To do so, we introduce a way
to fingerprint different indexing methods. We measure
the progress of index creation over the progress of query
processing, i.e. how different indexing methods index
the data over time as the queries are being processed
(Fig. 24). This measure essentially acts as a signature of
different indexing methods. The x-axis shows the normal-
ized accumulated lookup and data access time (querying
progress) and the y-axis shows the normalized accu-
mulated data shuffle and index update time (indexing
progress). We can see that different indexing methods
have different curves. For example, standard cracking
gradually builds the index as the queries are processed,
whereas full index builds the entire index before process-
ing any queries. Hybrid crack sort and hybrid sort have
steeper curves than standard cracking, indicating that
they build the index more quickly. On the other hand, sto-
chastic cracking has a much smoother curve. Sideways

0
0.2
0.4
0.6
0.8

1

Standard Cracking Scan
Quick Sort

+ Binary Search Hybrid Crack Sort Hybrid Sort Sort

0
0.2
0.4
0.6
0.8

1

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

Stochastic Cracking

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

Coarse-granular
Index 1K

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

Buffered Swapping
10|990

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

Sideways Cracking
(# Proj. Attributes: 5)

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

Covered Cracking
(# Proj. Attributes: 5)

Querying Progress

In
de

xi
ng

 P
ro

gr
es

s

Fig. 24 Signatures of indexing methods

123

52 F. M. Schuhknecht et al.

and covered cracking perform large parts of their query-
ing process already in the first query by copying table
columns into the index to speed up tuple reconstruction.
It is interesting to see that each method has a unique curve
which characterizes its indexing behaviour. Furthermore,
there is still lot more room to design adaptive indexing
algorithms with even more different indexing signatures.

Acknowledgments Special thanks to Stratos Idreos for helping us in
understanding the hybrid methods. Work partially supported by BMBF.

Compliance with ethical standards

Competing interests As we re-evaluate research, there are potential
competing interests with CWI Amsterdam and the authors of [8].

References

1. Adelson-Velsky, G., et al.: An algorithm for the organization of
information. In: USSR Academy of Sciences, pp. 263–266 (1962)

2. Alvarez, V., Schuhknecht, F.M., Dittrich, J., Richter, S.: Main
memory adaptive indexing for multi-core systems. In: DaMoN,
Snowbird, UT, USA, pp. 3:1–3:10 (2014)

3. Bayer, R., McCreight, E.M.: Organization and maintenance of large
ordered indices. Acta Inf. 1, 173–189 (1972)

4. Birkeland, O.R.: Searching large data volumes with MISD process-
ing. Ph.D. Thesis (2008)

5. DeWitt, D.J., Naughton, J.F., et al.: Practical skew handling in par-
allel joins. In: VLDB, Proceedings, pp. 27–40 (1992)

6. Finch, T.: Incremental Calculation of Weighted Mean and Variance.
University of Cambridge Computing Service, Cambridge (2009)

7. Generalized Heap Impl. https://github.com/valyala/gheap
8. Graefe, G., Halim, F., Idreos, S., et al.: Concurrency control for

adaptive indexing. PVLDB 5, 656–667 (2012)

9. Graefe, G., Halim, F., Idreos, S., et al.: Transactional support for
adaptive indexing. VLDB J. 23(2), 303–328 (2014)

10. Graefe, G., Kuno, H.: Self-selecting, self-tuning, incrementally
optimized indexes. In: EDBT, pp. 371–381 (2010)

11. Halim, F., Idreos, S., et al.: Stochastic database cracking: towards
robust adaptive indexing in main-memory column-stores. PVLDB
5, 502–513 (2012)

12. Hildebrandt, P., Isbitz, H.: Radix exchange: an internal sorting
method for digital computers. J. ACM 6(2), 156–163 (1959)

13. Hoare, C.A.R.: Quicksort. Commun. ACM 4(7), 321 (1961)
14. Idreos, S., Kersten, M., Manegold, S.: Updating a cracked database.

In: SIGMOD, pp. 413–424 (2007)
15. Idreos, S., Kersten, M., Manegold, S.: Self-organizing tuple recon-

struction in column-stores. In: SIGMOD, pp. 297–308 (2009)
16. Idreos, S., Manegold, S., et al.: Merging what’s cracked, cracking

what’s merged. PVLDB 4, 586–597 (2011)
17. Idreos, S., et al.: Database cracking. In: CIDR, pp. 68–78 (2007)
18. Kersten, M., et al.: Cracking the database store. In: CIDR, pp. 213–

224 (2005)
19. Kim, C., et al.: FAST: Fast architecture sensitive tree search on

modern CPUs and GPUs. In: SIGMOD, pp. 339–350 (2010)
20. Leis, V., et al.: The adaptive radix tree: ARTful indexing for main-

memory databases. In: ICDE, pp. 38–49 (2013)
21. Martinez-Palau, X., Dominguez-Sal, D., et al.: Two-way replace-

ment selection. PVLDB 3, 871–881 (2010)
22. McCalpin, J.D.: STREAM benchmark, version from January 17.

https://www.cs.virginia.edu/stream/FTP/Code/stream.c (2013)
23. Pirk, H., Petraki, E., Idreos, S., Manegold, S., Kersten, M.L.:

Database cracking: fancy scan, not poor man’s sort! In: DaMoN,
Snowbird, UT, USA, pp. 4:1–4:8 (2014)

24. Rao, J., Ross, K.A.: Making B+-trees cache conscious in main
memory. In: SIGMOD, pp. 475–486 (2000)

25. Schuhknecht, F.M., Jindal, A., Dittrich, J.: The uncracked pieces
in database cracking. PVLDB 7, 97–108 (2013)

26. Schuhknecht, F.M., Khanchandani, P., Dittrich, J.: On the sur-
prising difficulty of simple things: the case of radix partitioning.
PVLDB 8, 934–937 (2015)

123

https://github.com/valyala/gheap
https://www.cs.virginia.edu/stream/FTP/Code/stream.c

	An experimental evaluation and analysis of database cracking
	Abstract
	1 Introduction
	1.1 Background
	1.2 Our focus

	2 Revisiting cracking
	2.1 Crack-in-two versus crack-in-three
	2.2 Standard cracking algorithm
	2.3 Cost breakdown
	2.4 Key concerns in standard cracking
	2.5 Advanced cracking algorithms
	2.6 Cracking classification

	3 Extending cracking algorithms
	3.1 Improving cracking convergence
	3.2 Improving tuple reconstruction
	3.3 Improving cracking robustness

	4 Extending cracking experiments
	4.1 Extending sorting baselines
	4.2 Extending index baselines
	4.3 Effect of varying selectivity
	4.4 Effect of varying cracking depth
	4.5 Effect of query access pattern

	5 Parallelising cracking algorithms
	5.1 Parallel cracking methods
	5.2 Hardware set-up
	5.3 Experimental set-up
	5.4 Scaling of parallel cracking algorithms
	5.5 Runtime of parallel cracking algorithms
	5.6 Tuple reconstruction in the context of parallelism
	5.7 Skew in the context of parallelism

	6 Lessons learned and conclusion
	Acknowledgments
	References

