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Time-energy high-dimensional quantum key distribution (HD-QKD) leverages the high-dimensional nature
of time-energy entangled biphotons and the loss tolerance of single-photon detection to achieve long-distance
key distribution with high photon information efficiency. To date, the general-attack security of HD-QKD has
only been proven in the asymptotic regime, while HD-QKD’s finite-key security has only been established
for a limited set of attacks. Here we fill this gap by providing a rigorous HD-QKD security proof for general
attacks in the finite-key regime. Our proof relies on an entropic uncertainty relation that we derive for time
and conjugate-time measurements that use dispersive optics, and our analysis includes an efficient decoy-state
protocol in its parameter estimation. We present numerically evaluated secret-key rates illustrating the feasibility
of secure and composable HD-QKD over metropolitan-area distances when the system is subjected to the most
powerful eavesdropping attack.
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I. INTRODUCTION

Quantum key distribution (QKD) enables secure commu-
nication based on fundamental laws of quantum physics [1,2],
as opposed to the security that is presumed from computa-
tional complexity in conventional public-key cryptography.
Current work on QKD focuses on patching security holes
in practical implementations, increasing secret-key rates and
secure-transmission distances, and unifying the understanding
of the many different protocols [3]. Existing QKD protocols
can be divided into two major categories: discrete-variable
(DV) [1,4–6] and continuous-variable (CV) [7] QKD. The
predominant discrete-variable QKD (DV-QKD) is more robust
to loss than continuous-variable QKD (CV-QKD) and thus
offers longer secure-transmission distance [8–11]. CV-QKD,
on the other hand, offers higher photon information efficiency
(PIE) than DV-QKD, and thus potentially higher key rates at
short distances [12].

High-dimensional QKD (HD-QKD) exploits the best fea-
tures of DV and CV protocols to simultaneously achieve
high PIE and long secure-transmission distance [13–19].
One of the most appealing candidates for implementation is
time-energy HD-QKD [17,20–25]. It generates keys by using
the detection times of time-energy entangled photon pairs,
whose continuous nature permits encoding of extremely large
alphabets. The security analysis of time-energy HD-QKD
has been improving ever since the protocol was proposed
[20–25]. Nevertheless, a rigorous security proof that satisfies
the composability condition [26] and takes full account of the
finite-size effects against general attacks (the most powerful
eavesdropping attack) has been missing. For this reason, the
feasibility of secure, metropolitan-area, time-energy HD-QKD
using a reasonable time interval for signal transmission has yet
to be fully established.

In this paper we make three contributions. First, we derive
an entropic uncertainty relation between time and conjugate-
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time measurements that are made via nonlocal dispersion
cancellation. Second, we use the uncertainty principle to
prove the composable security of time-energy HD-QKD in the
finite-key regime against general (coherent) attacks. Third, we
find the dispersion strength for the conjugate-time basis trans-
formation [21] that maximizes HD-QKD’s secret-key rate.

The entropic uncertainty relation is indispensable for
analyzing general attacks against time-energy HD-QKD.
Although an entropic uncertainty relation for field quadratures
has been developed [27] and applied recently to CV-QKD se-
curity analysis [28], it cannot be directly applied to time-energy
HD-QKD because time and conjugate-time measurements are
not described by maximally incompatible operators [29], such
as position and momentum. To overcome this challenge, we
construct an entropic uncertainty relation specifically for time
and conjugate-time measurements. Because entropic uncer-
tainty relations figure prominently in quantum metrology [30],
quantum randomness certification [31,32], entanglement wit-
nesses [33,34], two-party cryptography [35,36], QKD security
analysis [11,37–41], and other applications [42], we expect
that our uncertainty relation for time and conjugate-time
measurements may have uses well beyond what will be
presented below.

The secret-key-rate formula we obtain by using our
entropic uncertainty relation allows us to verify important
advantages that HD-QKD offers over alternative protocols.
In particular, HD-QKD offers higher PIE (3.3 bits/photon)
than both CV-QKD (0.5 bits/photon [43]) and DV-QKD (0.1
bits/photon [44]), thus ensuring higher secret-key rates under
photon-starved conditions, in which the photon-detection rate
is much lower than the photon-generation rate because of the
loss incurred in long-distance propagation and the relatively
long recovery times of available single-photon detectors.
Also, HD-QKD offers a longer maximum secure-transmission
distance for general attacks (e.g., 160 km for a 30 min.
session using the system parameters given below in Sec. V) as
compared with that for CV-QKD [28,45], even in the case of
reverse reconciliation (e.g., 16 km [43]). Furthermore, because
our entropic uncertainty relation is parametrized by the
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HD-QKD protocol’s time-bin duration, δ, and conjugate-
time basis transformation’s group-velocity dispersion (GVD)
coefficient βD , optimizing the βD value can increase HD-
QKD’s secure-transmission distance to 210 km—and provide
a 17 Mbit/s expected secret-key rate at zero distance—without
resorting to a higher clock rate.

The remainder of the paper is organized as follows: The
HD-QKD protocol is described briefly in Sec. II, with a
detailed account—including its use of decoy states for channel
estimation—appearing in Appendix A. The security analysis
for coherent attacks in the finite-key regime is contained in
Sec. III. Its security proof relies on the entropic uncertainty
relation that is derived in Sec. IV. (For comparison, the
entropic uncertainty relation obtained from the conventional
dilation assumption is presented in Appendix B.) A numerical
evaluation of HD-QKD’s secret-key rate and PIE follows
in Sec. V, which illustrates the advantages offered by this
protocol, and Sec. VI provides a summarizing discussion.

II. PROTOCOL

Time-energy HD-QKD that relies on dispersive optics
works as follows [21,22]: In each round, Alice generates a
time-energy entangled photon pair from a spontaneous para-
metric down-conversion (SPDC) source, sends one photon to
Bob and retains the other. Alice and Bob choose independently
and at random to measure their photons in either the time
basis T or the conjugate-time basis W, where the latter is a
dispersive-optics proxy for a frequency measurement. Alice
and Bob discretize their outcomes into time bins of duration δ.
The process repeats for N rounds until Alice and Bob obtain
enough detections to begin postprocessing. At the end of all
measurements, the two sides reveal their basis choices and
discard all data measured with mismatched bases. Secret keys
are extracted from the events in which Alice and Bob both
chose the T basis, while the W basis outcomes are publicly
announced for parameter estimation. By using the decoy-state
method [4–6,24,44], Alice and Bob estimate the number of
detections in T that were generated from single-pair SPDC
emissions, and the corresponding L1 code distance in the
W basis; see Appendix C for the details. They abort the
protocol if this distance exceeds a predetermined value d0

(see Appendix D). Otherwise, they perform error correction
and privacy amplification to generate the secret key.

The conjugate-time measurement for the W basis is realized
by direct detection at Alice and Bob’s terminals after they have
sent their photons through normal and anomalous GVD ele-
ments, respectively [21,22]. These GVD elements’ dispersion
coefficients have equal magnitudes (and opposite signs) so
their effects are nonlocally canceled [46]. As a result, Alice
and Bob’s W-basis measurements are as strongly correlated as
those in the T basis, i.e., the dispersion transformation allows
them to perform a spectral-correlation measurement with only
time-resolved single-photon detection [21,22].

III. SECURITY ANALYSIS

A. Security definition

Given that the parameter-estimation test is passed with
probability ppass, Alice and Bob end up with final keys that

are classical random vectors, KA and KB, which might be
correlated with a quantum system E held by Eve. Mathe-
matically, this situation corresponds to a classical-quantum
state ρKAE = 1

|S|
∑

s |s〉〈s| ⊗ ρs
E, where {|s〉} denotes an or-

thonormal basis for Alice’s dimension-|S| key space, and the
subscript E indicates Eve’s quantum state. We characterize
a QKD protocol by its correctness and secrecy. For that we
use a notion of security based on the approach developed in
Ref. [26]. A protocol is called εc-correct if the probability
that KA differs from KB is smaller than εc. We say that
a protocol is εs-secret if the state ρKAE is εs-close to the
ideal situation described by the tensor product of uniformly
distributed keys on Alice’s side and Eve’s quantum state,
UKA ⊗ ρE, such that ppass‖ρKAE − UKA ⊗ ρE‖1 � εs . A QKD
protocol is then said to be ε-secure if it is both εc-correct and
εs-secret, with εc + εs � ε. Our security definitions ensure
that the protocol remains secure in combination with any
other protocol, i.e., the protocol is secure in the universally
composable framework [26].

B. Assumptions

Before deriving our lower bound on secret-key length, we
first specify the assumptions that will be employed: (1) Alice’s
SPDC source produces independent, identically distributed
biphotons whose correlation time and coherence time are
well characterized. (2) For each pump pulse, Alice is able
to randomly set her SPDC source’s biphoton intensity (mean
photon-pairs generated per pump pulse) to be either μ1, μ2, or
μ3 with probabilities pμ1 , pμ2 , and pμ3 . (3) Alice and Bob’s
laboratories are secure, i.e., free from any information leakage.
(4) Alice and Bob independently and randomly choose
between measuring in the time and conjugate-time bases with
probabilities q and 1 − q. Most of these assumptions are
already made in conventional CV-QKD and DV-QKD security
analysis.

C. Security proof

To characterize information leakage in a realistic quantum
communication system with a finite number of communication
rounds, we use smooth min-entropy instead of von Neu-
mann entropy [26,47]. Discretizing Alice and Bob’s photon-
detection times to time bins of duration δ results in data
vectors comprised of integers representing bin numbers. In
particular, with random vectors XA and XB denoting Alice
and Bob’s raw keys from her μ1-intensity transmissions,
Eve’s uncertainty (lack of knowledge) is measured by her
difficulty in guessing Alice’s raw key XA, i.e., the conditional
smooth min-entropy Hmin(XA|E), where E denotes Eve’s
quantum state. Hmin(XA|E) quantifies the randomness that can
be extracted from XA, which is statistically independent of
E [26,47] with error probability ε.

The secret-key length � that is εs-secret is given by [26]

� � Hε
min(XA|E) − leakEC + log2

(
ε2
s εc

)
. (1)

Here, leakEC is the information leaked to Eve during error
correction, which can be directly measured during that
correction process, and Hε

min(XA|E) is the smooth min-entropy
maximized over states that are ε close to the classical-quantum
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state ρXAE = 1
|S|

∑
s |s〉〈s| ⊗ ρs

E. The correctness of the proto-
col is guaranteed by the key-verification step, which uses a
two-universal hash function to ensure that Bob’s corrected key
differs from Alice’s with probability at most εhash, implying
that the protocol is εc-correct with εc = εhash.

The essential insight is that Eve’s information about the
μ1-intensity, T-basis detection times can be bounded by using
the complementary W-basis measurements. In particular, if
Alice and Bob’s W-basis measurements are highly correlated,
then Eve’s knowledge about the outcome of their T-basis
measurements is nearly zero, because the two observables are
incompatible.

Let YA and YB be Alice and Bob’s random vectors of μ1-
intensity conjugate-time measurement outcomes. Without loss
of generality we set the length of these four classical strings
to be equal: |XA| = |XB| = |YA| = |YB| = nT,μ1 . Then, from
Refs. [27,28,38,39], we have the uncertainty relation

Hε
min(XA|E) + Hε

max(YA|YB) � −nT,μ1 log2[c(δ,βD)], (2)

where the smooth max-entropy Hε
max(YA|YB) measures the

amount of information needed to reconstruct YA given YB

with error probability bounded above by ε, and c(δ,βD) is the
overlap between the time and conjugate-time measurement
operators, which depends on δ, the time-bin duration, and βD ,
the magnitude of the GVD elements’ dispersion coefficient.

With � = {�n} and �′ = {�′
m} being an arbitrary pair

of positive operator-valued measurements (POVMs), their
overlap c(�,�′) = supn,m ‖√�n

√
�′

m‖2 quantifies their in-
compatibility, i.e., lower values of c(�,�′) mean increased
incompatibility. Our uncertainty bound involves the overlap-
quantified incompatibility between the time and conjugate-
time POVMs whose outcomes are used for key generation
and parameter estimation, respectively. Typically (see Sec. V),
lower c(δ,βD) values allow longer secret keys to be extracted.
Our tripartite entropic uncertainty relation and the security
analysis that follows therefrom are adapted from CV-QKD’s
finite-key analysis [28], an approach that works for all QKD
protocols that rely on a pair of incompatible continuous
measurements for key generation and parameter estimation. In
our case, the security analysis requires accounting for our use
of discretized time and conjugate-time measurements that are
obtained from underlying continuous POVMs. Note that the
different measurement operators employed in different QKD
protocols lead to different overlap behavior in their entropic
uncertainty relations.

The major difficulty in determining c(δ,βD) for our
protocol comes from the absence of negative energy for
electromagnetic-field modes, which implies that, under the
conventional commutation relation, the time-measurement
operator cannot be projective [48,49], thus preventing existing
results [50] from being applied to the time and conjugate-time
POVMs. We can, however, dilate the time and conjugate-time
operators by forsaking the constraint of positive frequency
on photon-annihilation operators [51,52]. Such dilations are
well justified for the quantum theory of coincidence mea-
surement [46,53], because the negative frequency components
do not contribute to detection outcomes. But, because we
are not assured that the dilation-assumption c(δ,βD) will
suffice for our security proof, we derive the following entropic

uncertainty relation for time and conjugate-time measurements
without dilation in Sec. IV:

Hε
min(XA|E) + Hε

max(YA|YB) � −nT,μ1 log2

(
1.37δ2

2π2βD

)
. (3)

Next, we use a generalized chain-rule result [54] to
decompose XA into X0

AX1
AXm

A, which is a concatenation of
the raw keys arising from vacuum, single-pair, and multipair
coincidences. Neglecting the multipair contribution, we have
nT,μ1 � (nT,0 + nT,1), with nT,0 and nT,1 being lower bounds
on nT,0 and nT,1, the coincidence-count contributions from
vacuum and single-pair events, respectively, when Alice’s
SPDC intensity is μ1 (see Appendix C). We then have the
following lower bound on the smooth min-entropy [44]:

Hε
min(XA|E) � −(nT,0 + nT,1 log2[c(δ,βD)]

−Hε
max(YA|YB). (4)

By using a result from CV-QKD [28], we get the following
upper bound on the smooth max-entropy:

Hε
max(YA|YB) � nT,μ1 log2[γ (d0 + 
)], (5)

where γ (x) obeys

γ (x) = (x +
√

1 + x2)

(
x√

1 + x2 − 1

)x

. (6)

The 
 parameter is the statistical fluctuation that quantifies
how well the data subset used for parameter estimation
represents the entire dataset:


 ≈ Tf

δ

√√√√ 1

q2(1 − q)2nT,01
ln

[
1

εs/4 − 2f (pα,nT,01)

]
, (7)

where f (pα,nT,01) = {2[1 − (1 − pα)nT,01 ]}1/2, pα is the prob-
ability, for a given pump pulse, that Alice and Bob detect
photons separated by more than a frame duration Tf , and
nT,01 = nT,0 + nT,1.

Combining the preceding results, we obtain the following
lower bound on the secret-key length:

� � −nT,01 log2[c(δ,βD)] − nT,μ1 log2[γ (d0 + 
)]

− leakEC + log2

(
ε2
s εc

)
. (8)

IV. TIME-CONJUGATE TIME ENTROPIC
UNCERTAINTY RELATION

To justify Eq. (3), we only need to evaluate the overlap,
c(δ,βD), in Eq. (2) for the discretized single-photon time
and conjugate-time measurement operators that derive from
their continuous-time counterparts, T (t) and W (t), by coarse-
graining to time bins of duration δ. Here, we omit polarization
degrees of freedom because they do not affect the overlap. Our
starting point is the infinite-dimensional version of the general
uncertainty relation for smooth min-entropy and smooth max-
entropy [38] that was derived in Ref. [27].

We use |ω〉 = a†(ω + ω0)|0〉 to denote the single-photon
state detuned by frequency ω from some fixed center frequency
ω0. (Later, this center frequency will be ωP /2, i.e., half
the SPDC source’s pump frequency.) This state satisfies
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the orthonormality condition 〈ω1|ω2〉 = 2πδ(ω1 − ω2). The
single-photon Hilbert space is simply H = L2(), i.e., the
space of square-integrable, complex-valued functions on
the frequency-domain region ω ∈  ≡ [ωmin,∞), where the
minimum detuning satisfies ωmin � −ω0. In particular, we
associate a function f ∈ L2() to the state

|f 〉 =
∫



dω

2π
f (ω)|ω〉, (9)

so the inner product between two such states, |f 〉 and |g〉, is
〈f |g〉 = ∫


dω
2π

f ∗(ω)g(ω).
By using the above notation we have that the time-

measurement operator T (t) can be expressed as

T (t) =
∫



dω1

2π

∫


dω2

2π
ei(ω1−ω2)t |ω1〉〈ω2| = |φt 〉〈φt |, (10)

where φt (ω) = eiωt . Similarly, we can write

W (t) =
∫



dω1

2π

∫


dω2

2π
ei(ω1−ω2)t eiβD(ω2

1−ω2
2)/4|ω1〉〈ω2|

= |ψt 〉〈ψt |, (11)

where ψt (ω) = ei(ωt+βDω2/4). We then introduce partitions, {Ik}
and {Jk}, of the time and conjugate-time axes, from which we
obtain the coarse-grained versions of T (t) and W (t); namely,
the POVMs T δ = {Tk} and Wδ = {Wk}, where

Tk =
∫

Ik

dtT (t) and Wk =
∫

Jk

dtW (t). (12)

From Refs. [27,38] the overlap for these discrete POVMs
satisfies

c(δ,βD) = c̄(T δ,Wδ) = sup
k,l

‖
√

Tk

√
Wl‖2

= sup
s,t

‖
√

T δ(s)
√

Wδ(t)‖2, (13)

where T δ(s) = ∫ s+δ

s
duT (u) and Wδ(t) = ∫ t+δ

t
duW (u).

Because the {Tk} and {Wk} are not projective, it is
difficult to evaluate Eq. (13) directly. Instead, we will use the
approximation from Ref. [27], in which an uncertainty relation
is derived in the continuous-time case. We take T and W to
represent the continuous-time classical outcomes of the time
and conjugate-time measurements, and Tδ and Wδ to be their
discretized versions. From Ref. [27] we have that

Hmin(Tδ|E) � hmin(T |E) − log2(δ), (14)

Hmax(Wδ|B) � hmax(W|B) − log2(δ), (15)

where hmin(T |E) and hmax(T |B) are the differential min-
entropy and differential max-entropy of the continuous-time
outcome T conditioned on Eve’s state E and Bob’s state B,
respectively. We also know that these differential entropies
satisfy [27]

hmin(T |E) + hmax(W|B) � − log2[c̄∞(T ,W )], (16)

where

c̄∞(T ,W ) = lim inf
δ→0

[
c̄(T δ,Wδ)

δ2

]
. (17)

Inequalities (14) and (15) yield the following uncertainty
relation for coarse-grained measurements:

Hmin(Tδ|E) + Hmax(Wδ|B) � − log2[c̄∞(T ,W )δ2]. (18)

We can find the overlap for the differential entropies via

c̄∞(T ,W ) = lim inf
δ→0

[
c̄(T δ,Wδ)

δ2

]

= sup
s,t

lim inf
δ→0

[
1

δ2
‖
√

T δ(s)
√

Wδ(t)‖2

]

= sup
s,t

lim inf
δ→0

∥∥∥∥∥
√

T δ(s)

δ

√
Wδ(t)

δ

∥∥∥∥∥
2

= sup
s,t

‖
√

T (s)
√

W (t)‖2, (19)

where we have used limδ→0
1
δ

∫ s+δ

s
dtT (t) = T (s) and simi-

larly for W . Inserting the definitions of T (s) and W (t) from
Eqs. (10) and (11), we obtain

c̄∞(T ,W ) = sup
s,t

|〈φs |ψt 〉|2. (20)

A simple calculation now gives us

c̄∞(T ,W ) = sup
s,t

∣∣∣∣
∫



dω

2π
eiω(t−s)e−iβDω2/4

∣∣∣∣
2

. (21)

For  = [ωmin,∞), performing the optimization with ωmin �
−ω0 and −∞ < t, s < ∞ yields the maximum overlap

c̄∞(T ,W ) ≈ 1.37

2π2βD

. (22)

Inserting the above result into Eq. (18) gives us the overlap for
the discrete measurements used in the secret-key length bound

c(δ,βD) ≈ 1.37δ2

2π2βD

. (23)

This uncertainty bound is tighter than the c(δ,βD) =
δ2/2π2βD overlap obtained in Appendix B when dilation
is used by taking  = (−∞,∞) so that the T (t) and W (t)
operators become projective and maximally incompatible,
i.e., analogous to position and momentum. These overlap
results showcase the subtle difference between the entropic
uncertainty relation of quantum time and conjugate-time
measurements and that of the homodyne measurements from
Ref. [28]. Indeed, the factor of 1.37 in Eq. (23) is crucial for
the general-attack security of HD-QKD, because a secret-key
length that presumed the dilation result for the overlap would
be insecure.

V. PERFORMANCE EXAMPLE

Based on the secret-key rate formula (8), we numerically
evaluated the performance of the time-energy HD-QKD
protocol in the finite-key regime under general attacks. See
Table I for the parameters that were assumed. The calculated
secret-key rates and PIEs at different lengths of standard
telecom fiber are shown in Figs. 1(a) and 1(b). We see that
HD-QKD can easily tolerate a 100 km standard fiber within
a reasonable running time for transmission (e.g., 10 min.).
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TABLE I. List of parameters, mostly from Ref. [17], used in
numerical evaluation: detection efficiency ηd , dark-count rate Y0,
detector time jitter σjit [55], fiber-loss coefficient α, GVD coefficient
βD , system clock rate Rrep, biphoton correlation time σcor, pump
coherence time σcoh ≈ Tf , time-bin duration δ, reconciliation (error-
correction) efficiency βe, probability of choosing the time basis q,
and overall security bound ε.

ηd Y0 σjit α βD Rrep

90% 1 kHz 18 ps 0.21 dB/km 2 × 104 ps2 55.6 MHza

σcor σcoh δ βe q ε

2 ps 6 ns 20 ps 0.91 0.9 10−10

aThe clock rate is assumed to be the inverse of three times the pump
coherence time.

This secure-transmission distance significantly exceeds that
of CV-QKD (around 10 km [43]). In addition, the secret-key
rate of HD-QKD at zero distance is about 8.6 Mbit/s (see
Table II), which is comparable to that of CV-QKD with
the same 55.6 MHz clock rate, and to that of decoy-state
BB84 with a state-of-the-art 1 GHz clock rate [56]. Moreover,
HD-QKD can offer a higher PIE, up to 4.3 bits/photon (with 30
min. running time), than does decoy-state BB84 [44], whose
PIE can never exceed 1 bit per use.

TABLE II. Performance comparison for different protocols with
finite-key analysis against general attacks. The first and second rows
compare the PIEs and the secret-key rates at 0 km fiber length. The
third row compares the maximum secure-transmission distance. All
three protocols are evaluated at the block size of 109, equivalent to
1 min. running time in HD-QKD with the parameters specified in
Table I.

Parameters BB84 [44] CV-QKD [43] HD-QKD

PIE (bits/photon)a ≈0.1 0.5 3.3
Key rate at 0 dist. (bits/s) ≈8 Mb ≈6 Mc 8.6 M
Max dist. (km) 170 16 96

aPIE in HD-QKD is defined as secret bits per single photon detection
by Bob given that Alice has made a detection in the same basis, PIE
in BB84 is defined as secret bits per use [56], and PIE in CV-QKD is
defined as secret bits per signal [43].
bAssumes a decoy-state BB84 system with a 1 GHz clock rate [56].
cAssumes a CV-QKD system with the same 55.6 MHz clock rate as
HD-QKD.

In Fig. 1(c) we show the secret-key rate as a function of
block size. Here we see that the minimum required block
size for HD-QKD is slightly larger than those of decoy-state
BB84 [44] and CV-QKD [43]. Finally, Fig. 1(d) plots the
secret-key rate versus transmission distance for different
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FIG. 1. Numerically evaluated performance of time-energy HD-QKD with threshold code distance d0 = 2 and other parameters as listed
in Table I. (a) Secret-key rate (bits/s) versus transmission distance (km) for different total running times of transmission: top curve (yellow)
30 min., middle curve (red) 10 min., bottom curve (blue) 1 min. (b) PIE (bits/photon) versus transmission distance (km) for different running
times: top curve (yellow) 30 min., middle curve (red) 10 min., bottom curve (blue) 1 min. (c) Secret-key rate (bits/s) versus block size (running
time/clock rate) for different transmission distances: top curve (blue) 0 km, middle curve (red) 20 km, bottom curve (yellow) 40 km. (d)
Secret-key rate (bits/s) versus transmission distance (km) for different time-bin durations δ, where the running time is fixed at 30 min.: top
curve (blue) 20 ps, middle curve (red), 80 ps, bottom curve (yellow) 100 ps.
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time-bin durations, showing that shorter duration time bins
offer higher key rates for a given biphoton source. We remark
that detectors with less than 20 ps jitter have already been
demonstrated in recent experiments [55].

Our work clarifies how the secret-key rate of time-energy
HD-QKD using dispersive optics depends on the time-bin
duration δ and the GVD coefficient βD . Indeed, a higher
GVD coefficient and a lower detector time jitter—so that time-
bin duration may be decreased—might increase HD-QKD’s
secret-key rate. The secret-key rates shown in Fig. 1 have
already presumed a bin duration limited by state-of-the-art
detector time jitter, but the βD value used is achievable with
commercial devices [16]. Increasing the GVD coefficient
without changing the other system parameters, however, does
not always increase the secret-key rate. In particular, Eq. (8)
shows that a K-fold increase in βD increases secret-key length
by nT,01 log2(K), if there is no offsetting increase in the
error rate between Alice and Bob’s raw keys, as quantified
by the γ (d0 + 
) term in Eq. (5). Our numerical evaluation
of the secret-key rate at zero distance versus βD—using the
other parameters from Table I and the d0 = 2 threshold code
distance employed in Fig. 1—verifies this insight, see Fig. 2.
Here we see the secret-key rate initially increasing linearly
with increasing log10(βD), until it saturates and begins to
decrease. Saturation occurs because our protocol requires
d0 > dmin for there to be a positive secret-key rate, and the
minimum threshold code distance increases with increasing
βD , as shown in Appendix D. So, the secret-key rate saturation
and decay in Fig. 2 results from the d0 increases that are
required at high βD values. That said, Fig. 2 still shows that the
highest key rate, 17 Mbit/s, is realized with the experimentally
feasible β = 2 × 106 ps2 [16], and we have found that the
maximum distance for a nonzero secret-key rate is then
210 km.
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FIG. 2. Secret-key rate at zero distance versus GVD coefficient
log10(βD) for 30 min. running time. The conventional units for βD

are employed here: ps per nm of bandwidth at telecom wavelength.
The secret-key rate at zero distance achieves its 17 Mbit/s maximum
at βD = 105 ps/nm at telecom wavelength, which is equivalent to
2 × 106 ps2 in the units used in Table I.

VI. SUMMARY

We have reported a general-attack security analysis for the
time-energy HD-QKD protocol in the finite-key regime by
combining the entropic uncertainty-relation security analysis
of CV-QKD with the decoy-state technique from DV-QKD. In
particular, we derived an entropic uncertainty relation for the
time and conjugate-time operators by using optical dispersion
transformations. This result validates the difference between
the uncertainty relation of time and conjugate-time operators
and that of conventional maximally incompatible operators,
such as position and momentum. With the uncertainty bound,
we showed that, under the most powerful attacks, time-energy
HD-QKD can produce a higher PIE than conventional decoy-
state BB84 and CV-QKD and still tolerate long-distance fiber
transmission. We also showed that optimizing the HD-QKD
protocol’s GVD coefficient enables realizing a 17 Mbit/s
secret-key rate at zero distance and a 210 km maximum
secure-transmission distance, the latter being comparable to
that of state-of-the-art decoy-state BB84. We expect this
finding will provide theoretical support for optimizing HD-
QKD implementations. Our results constitute an important
step toward a unified understanding of distinct QKD schemes
that is needed for development of practical long-distance
high-rate quantum communication.
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APPENDIX A: PROTOCOL

a. Preliminaries. Before contacting Bob, Alice makes
measurements on her trusted spontaneous parametric down-
conversion (SPDC) source of time-energy entangled biphotons
to determine the coherence time of the pulsed pump field σcoh,
the biphoton correlation time σcor, and the SPDC intensities
{μ1,μ2,μ3}, i.e., the mean photon pairs generated per pump
pulse with different pump powers. Then, Alice and Bob use
a preshared key to authenticate each other, after which they
negotiate parameters to be employed during the protocol run.

b. Biphoton preparation and distribution. Alice pumps
her SPDC source at a clock rate (repetition rate) Rrep. For
each pump pulse, Alice prepares a time-energy entangled
state within a Tf -duration (Tf ≈ σcoh) frame centered on the
peak of the pump pulse. She sends one photon to Bob via
a quantum channel (e.g., an optical fiber) and retains the
companion photon for her own measurements. To implement
decoy states [5,6,24], Alice randomly pumps the SPDC
source to select intensities μk ∈ {μ1,μ2,μ3} with probabilities
pk ∈ {pμ1 ,pμ2 ,pμ3}.

c. Measurement phase. For each frame, Alice and Bob
select their measurement basis at random and independently
from {T,W} with probabilities {q,1 − q} and perform mea-
surements in their chosen bases. Their T-basis measurements
are made by using time-resolved single-photon detectors
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with a temporal resolution set primarily by the detectors’
time jitter σjit [17]. They sort their data into time bins of
duration δ, where σcor � σjit < δ � σcoh, that will generate
log2(Tf /δ) raw-key bits when they both obtain T-basis photon
detections in the same frame. Their W-basis measurements
are realized by means of dispersive optics and single-photon
detection [21], i.e., they pass their photons through normal
and anomalous group-velocity dispersion (GVD) elements,
respectively, measure them with time-resolved single-photon
detectors, and then sort that data into duration-δ time bins.

d. Basis reconciliation. Alice and Bob announce their
measurement bases over an authenticated public channel and
discard all measurement results for frames in which they
measured in different bases. They are then left with detection-
time coincidence measurements of nT (nW) frames in which
they both used the T (W) basis and both obtained one photon
detection.

e. Decoy-state processing. Alice announces her SPDC
intensity choice for each frame. Alice and Bob thus identify
sets Tμk

and Wμk
for μk ∈ {μ1,μ2,μ3}, in which they have

both made T-basis or W-basis measurements when Alice’s
SPDC source intensity was μk . They repeat their quantum
communication, i.e., steps (b)–(e), until the cardinality of
these sets satisfies |Tμk

| � nT,μk
and |Wμk

| � nW,μk
, where

{nT,μk
,nW,μk

} are prechosen values that ensure sufficient
quality in the ensuing parameter-estimation steps. Note that
nT = ∑

μk
nT,μk

. Next, they publicly announce their W-basis
detection times {twa,j,μk

, twb,j,μk
} for each SPDC intensity,

where a, b denote Alice and Bob, j indexes the frame,
and each detection-time value is relative to the peak of
its associated pump pulse. After that, they compute these
detection times’ mean-squared differences for each μk , viz.,
σ 2

cor,W,μk
= ∑

j (twa,j,μk
− twb,j,μk

)2/nW,μk
. By virtue of their use

of normal and anomalous GVD elements, σ 2
cor,W,μk

can be
used to find the anticorrelation between the detunings from the
SPDC outputs’ center frequencies of the single-photon pairs
(i.e., biphotons) that Alice and Bob detected in their W-basis
measurements when Alice’s SPDC intensity was μk [21]; see
Appendix C.

f. Parameter estimation. Alice and Bob use only their μ1

data for secret-key generation, while they use their μ2 and
μ3 data for parameter estimation. Alice and Bob use their
T-basis data to estimate nT,0, the number of frames out of their
nT,μ1 that are due to vacuum coincidences (either Alice or
Bob did not detect a photon), and nT,1, the number of frames
out of their nT,μ1 that are due to single-pair coincidences
(Alice and Bob each detected one photon). They use their
W-basis data to estimate dW,1, which is the L1 distance
between their detected photons’ frequency detunings (after
accounting for their anticorrelation) that is due to single-pair
coincidences [24,44] (see Appendix C). Finally, they check
that dW,1 is less than d0, where d0 is a predetermined threshold
(see Appendix D). If this condition is not met, they abort the
protocol. Otherwise they proceed to the protocol’s next step.

g. Key generation and error correction. Alice and Bob use
their T-basis data to generate raw keys (XA,XB) from the
frames in which Alice’s SPDC intensity was μ1. Each frame
used in generating these raw keys contains log2(Tf /δ) bits.
Alice and Bob perform error correction on their raw keys by
using an algorithm with reconciliation efficiency βe � 1 [57].

This procedure reveals at most leakEC bits of information to
Eve. Next, to ensure that they have shared identical keys, Alice
and Bob perform key verification by using a two-universal hash
function that publishes �log2(1/εhash)� bits of information,
with εhash being the probability that a pair of nonidentical
keys passes the test.

h. Calculation of secret-key length. By using the results
from steps (f) and (g), Alice and Bob calculate the secret-key
length �. If � is negative, they abort the protocol. Otherwise,
they apply another (different) two-universal hash function
(for privacy amplification) to their error-corrected raw keys
to produce the length-� secret keys, KA and KB.

APPENDIX B: TIME-FREQUENCY UNCERTAINTY
RELATION FOR DILATED MEASUREMENTS

To compare with the overlap developed in the main text, we
derive the overlap with dilation in this appendix. Instead of the
frequency domain, it is now more convenient to work in the
time domain, using |t〉 = a†(t)|0〉 to denote the single-photon
localized at time t that satisfies the orthonormality condition
〈t1|t2〉 = δ(t1 − t2). The single-photon Hilbert space is simply
H = L2(T ), i.e., the space of square-integrable, complex-
valued functions on the time-domain t ∈ T . We evaluate the
overlap under dilation [51,52] when T = (−∞,∞). In this
case, the POVMs T (t) and W (t) for the time and conjugate-
time measurements are projection valued [21]:

T (t) = |t〉〈t |, (B1)

W (t) = UT (t)U †. (B2)

Here, W (t) is obtained from T (t) via the unitary transformation

U = 1√
πβD

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2e

−i(t1−t2)2/βD |t1〉〈t2|. (B3)

The associated time and conjugate-time observables are then

Ot =
∫ ∞

−∞
dtt |t〉〈t |, (B4)

Dt = 1

πβD

∫ ∞

−∞
dtt

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2e

−i(t2
1 −t2

2 )/βD

× e2i(t1−t2)t/βD |t1〉〈t2|. (B5)

The conjugate-time observable can be further simplified as
follows:

Dt = 1

πβD

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2e

−i(t2
1 −t2

2 )/βD

×
(

∂

∂t1

∫ ∞

−∞
dt

βD

2i
e2i(t1−t2)t/βD

)
|t1〉〈t2| (B6)

= βD

2i

∫ ∞

−∞
dt1e

−it2
1 /βD |t1〉

×
(

∂

∂t1

∫ ∞

−∞
dt2e

it2
2 /βDδ(t1 − t2)〈t2|

)
(B7)

=
∫ ∞

∞
dt1t1|t1〉〈t1| + βD

2i

∫ ∞

−∞
dt1|t1〉 ∂

∂t1
〈t1| (B8)

= Ot + πβDOω, (B9)
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where Oω = ∫ ∞
−∞

dω
2π

ω|ω〉〈ω| is the conventional unbounded-
frequency observable that is maximally incompatible with the
time observable. It immediately follows that

[Ot,Dt ] = iπβD. (B10)

Finally, by using the overlap result for maximally incom-
patible observables [50], we obtain

c(δ,βD) = δ2

2π2βD

, (B11)

for the dilated measurements. Compared with the overlap
derived with nonprojective POVM in Sec. IV, this overlap
is slightly smaller and thus offers a weaker bound on the
uncertainty relation. In the paper we therefore used the
nondilated overlap in bounding the secret-key length.

APPENDIX C: DECOY STATES WITH FINITE KEYS

A decoy-state method for HD-QKD in the asymptotic
regime was previously derived in Ref. [24]. Here, based on
Ref. [44], we extend the work in Ref. [24] to the finite-key
case against general attacks (i.e., without any assumptions on
the statistical distributions). We presume that Alice randomly
chooses between three intensity levels, μ1, μ2, and μ3 for her
SPDC source. Let sT,n be the number of frames in which Alice
and Bob both measure in the T basis and Alice’s source has
emitted n biphotons in each frame, so that nT = ∑∞

n=0 sT,n

is the total number of frames in which Alice and Bob both
made T-basis measurements. In the asymptotic regime, nT,μk

,
the number frames in which Alice’s source intensity was μk

and she and Bob made T-basis measurements approaches its
ensemble-average value; namely,

nT,μk
→ n∗

T,μk
=

∞∑
n=0

pμ|n(μk|n)sT,n for μk ∈ {μ1,μ2,μ3},

where pμ|n(μk|n) is the conditional probability of Alice’s
source emitting n = n biphotons in a frame, given its source
intensity was μ = μk . For finite sample sizes, Hoeffding’s
inequality for independent events [58] implies that nT,μk

will
satisfy

|n∗
T,μk

− nT,μk
| � ζ (nT,ε1), (C1)

with probability at least 1 − 2ε1, where ζ (nT,ε1) :=√
nT ln(1/ε1)/2. Note that the deviation term ζ (nT,ε1) is the

same for all μk . Inequality (C1) allows us to establish a relation
between the asymptotic values {n∗

T,μk
} and the observed values

{nT,μk
}. More precisely, we have the following bounds for

finite-key analysis:

n∗
T,μk

� nT,μk
+ ζ (nT,ε1) =: nT,μk

, (C2)

n∗
T,μk

� nT,μk
− ζ (nT,ε1) =: nT,μk

. (C3)

1. Lower-bound on the number of vacuum coincidences, nT,0

The following lower bound on sT,0 was derived in Ref. [44]:

sT,0 � sT,0 = τ0

(μ2 − μ3)

(
μ2e

μ3nT,μ3

pμ3

− μ3e
μ2nT,μ2

pμ2

)
. (C4)

By using this result we obtain the lower bound on the number
of vacuum coincidences when Alice’s source intensity is μ1

given by

nT,0 � nT,0 = sT,0pμ|n(μ1|0).

2. Lower bound on the number of single-pair coincidences, nT,1

The following lower bound on sT,1 was derived in Ref. [44]:

sT,1 � sT,1

= μ1τ1

μ1(μ2 − μ3) − (
μ2

2 − μ2
3

)
×

[
eμ2nT,μ2

pμ2

−eμ3nT,μ3

pμ3

+μ2
2 − μ2

3

μ2
1

(
sT,0

τ0
− eμ1nT,μ1

pμ1

)]
.

(C5)

By using this result we obtain the lower bound on the number
of single-pair coincidences when Alice’s source intensity is μ1

given by

nT,1 � nT,1 = sT,1pμ1|1 − ζ (sT,1pμ|n(μ1|1),ε2),

with probability at least 1 − 2ε2.

3. Upper bound on the L1 distance of single-pair
coincidences, dW,1

After the nonlocal dispersion cancellation that occurs when
Alice and Bob both make W-basis measurements on the same
frame, their mean-square time difference, σ 2

cor,W,μk
for μk ∈

{μ1,μ2,μ3}, can be written as

σ 2
cor,W,μk

= pμ|n(μk|1)sW,1

nW,μk

σ 2
cor,W,1

+
(

1 − pμ|n(μk|1)sW,1

nW,μk

)
σ 2

cor,W,m,

where σ 2
cor,W,1 and σ 2

cor,W,m
are the mean-squared differences

due to single-pair and multiple-pair coincidences including
all source intensities, and sW,1 is the number of frames in
which Alice and Bob both measure in the W basis given that
Alice’s source has emitted 1 biphoton in each frame. Then, we
have

nW,μ2σ
2
cor,W,μ2

− nW,μ3σ
2
cor,W,μ3

= sW,1σ
2
cor,W,1[pμ|n(μ2|1) − pμ|n(μ3|1)] + σ 2

cor,W,m

× [nW,μ2 − nW,μ3 + pμ|n(μ3|1)sW,1 − pμ|n(μ2|1)sW,1],

(C6)

where the σ 2
cor,W,m

term on the right is non-negative for μ2 >

μ3. Dropping the σ 2
cor,W,m

term, the preceding result can be
rearranged to provide the lower bound

σ 2
cor,W,1 � σ 2

cor,W,1 =
nW,μ2σ

2
cor,W,μ2

− nW,μ3σ
2
cor,W,μ3

sW,1[pμ|n(μ2|1) − pμ|n(μ3|1)]
, (C7)

where the sW,1 lower bound, sW,1, can be derived by using the
same method employed in Ref. [44] to obtain inequality (C5).
Our upper bound on the L1 distance of single-pair coincidences
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is then

dW,1 =
√

2

π
σ 2

cor,W,1, (C8)

where the
√

2/π factor arises from relating the L1 distance
to the mean-squared difference of jointly Gaussian random
variables.

APPENDIX D: THEORETICAL MODEL
FOR THRESHOLD d0

To find the threshold d0 for the mean-squared difference
between Alice and Bob’s single-pair W-basis measurements
beyond which Alice and Bob will abort the QKD protocol,
we start from the time and frequency wave functions for the
biphoton emission when Alice’s SPDC source is pumped by a
pulse centered at time t = 0 [23], i.e.,

ψ(tS,tI ) = exp
(−t2

−
/

4σ 2
coh − t2

+
/

4σ 2
cor − iωP t+

)
√

2πσcohσcor
, (D1)

�(ωS,ωI ) = exp
(−ω2

−σ 2
cor

/
4 − 4ω2

+σ 2
coh

)
√

π/2σcohσcor
. (D2)

Here, tS and tI denote the times of the biphoton’s signal
and idler photons, and ωS and ωI denote their frequen-
cies; t+ := (tS + tI )/2, t− := tS − tI , ω+ := (ωS + ωI )/2, and
ω− := ωS − ωI ; and we have assumed that Alice’s source is
phase matched at frequency degeneracy for its pump’s ωP

center frequency.
When both Alice and Bob choose the conjugate-time

basis, they send their photons into normal and anomalous
group-velocity-dispersion elements whose dispersion coeffi-
cients have common magnitude βD but opposite signs. After
propagation through the dispersive elements at Alice and Bob’s
terminal, the frequency wave function becomes

�D(ωS,ωI )

= exp
[−ω2

−σ 2
cor

/
4 − 4ω2

+σ 2
coh + iβD

/
4
(
ω2

S − ω2
I

)]
√

π/2σcohσcor
, (D3)

from which the associated time wave function can be found
via

ψD(tS,tI ) = 1

2π

∫ ∞

∞
dωS

∫ ∞

−∞
dωI�D(ωS,ωI )e−i(ωStS+ωI tI ).

(D4)

The W-basis mean-squared time difference in the absence of
Eve is therefore

σ 2
cor,W =

∫ ∞

−∞
dtS

∫ ∞

−∞
dtI (tS − tI )2|ψD(tS,tI )|2 (D5)

= σ 2
cohσ

2
cor + (βD/4)2

σ 2
coh

(D6)

= σ 2
cor + β2

D

16σ 2
coh

. (D7)

This correlation time measures how strongly Alice and
Bob’s single photons are correlated in the conjugate-time basis
in the absence of Eve. Subsequently, we find the minimum L1

distance for conjugate-time measurement outcomes without
any third-party interference to be

dmin =
√

16σ 2
cohσ

2
cor + β2

D

8πσ 2
cohδ

2
, (D8)

where the 1/δ factor normalizes the root-mean-square time
difference into time bins and the

√
2/π factor converts

root-mean-square bin difference into L1 distance. The d0 that
determines when Alice and Bob will abort their QKD protocol
thus should be bigger than dmin in order to have nonzero key
rate. In our performance evaluation, whose results are shown
in Fig. 1, we chose d0 = 2. This value is well above this dmin

lower bound for the parameter values given in Table I.
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[52] J. Kiukas, A. Ruschhaupt, P. O. Schmidt, and R. F. Werner,

J. Phys. A: Math. Theor. 45, 185301 (2012).
[53] J. H. Shapiro, IEEE J. Sel. Top. Quantum Electron. 15, 1547

(2009).
[54] A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner,

IEEE Trans. Inf. Theory 59, 2603 (2013).
[55] W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A.

Sergienko, and H. Tang, Nat. Commun. 3, 1325 (2012).
[56] M. Lucamarini, K. Patel, J. Dynes, B. Fröhlich, A. Sharpe, A.
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