
Latent State Space Models for Prediction

by

Prashan Wanigasekara

Submitted to the Systems Design and Management Program

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering and Management

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2016 C

@ Massachusetts Institute of Technology 2016. All ghts reserved.

Signature redacted
A uthor ................. .................

Systems Design and Management Program
January 15, 2016

Signature redacted
C ertified by .....................................

Patrick Hale
Director, Systems Design and Management Program

Thesis Supervisor

Signature redacted
A ccepted by ...................................

Patrick Hale

MASSACHUSETTS INSTITUTE Director, Systems Design and Management Program
OF TECHNOLOGY

JUN 213 2016

LIBRARIES
ARCHIVES



2



Latent State Space Models for Prediction

by

Prashan Wanigasekara

Submitted to the Systems Design and Management Program
on January 15, 2016, in partial fulfillment of the

requirements for the degree of
Master of Science in Engineering and Management

Abstract

In this thesis, I explore a novel algorithm to model the joint behavior of multiple correlated
signals. Our chosen example is the ECG (Electrocardiogram) and ABP (Arterial Blood
Pressure) signals from patients in the ICU (Intensive Care Unit). I then use the generated
models to predict blood pressure levels of ICU patients based on their historical ECG and
ABP signals. The algorithm used is a variant of a Hidden Markov model. The new extension
is termed as the Latent State Space Copula Model. In the novel Latent State Space Copula
Modelthe ECG, ABP signals are considered to be correlated and are modeled using a bivari-
ate Gaussian copula with Weibull marginals generated by a hidden state. We assume that
there are hidden patient "states" that transition from one hidden state to another driving
a joint ECG-ABP behavior. We estimate the parameters of the model using a novel Gibbs
sampling approach. Using this model, we generate predictors that are the state probabilities
at any given time step and use them to predict a patient's future health condition. The pre-
dictions made by the model are binary and detects whether the Mean arterial pressure(MAP)
is going to be above or below a certain threshold at a future time step. Towards the end
of the thesis I do a comparison between the new Latent State Space Copula Model and a
state of the art Classical Discrete HMM. The Latent State Space Copula Model achieves
an Area Under the ROC (AUROC) curve of .7917 for 5 states while the Classical Discrete
HMM achieves an AUROC of .7609 for 5 states.

Thesis Supervisor: Patrick Hale
Title: Director, Systems Design and Management Program
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Chapter 1

Introduction

In a machine learning and data analytics setting researchers deal with multiple correlated

signals (features, variables) from data sets on a day to day basis. This can be in the form of

a financial analyst modelling correlated stock prices, or a health care data analyst modelling

correlated patient signals, or a bio-engineer modelling correlated DNA sequence structures

or in many other forms. In any context modelling the joint behavior of multiple signals

and making predictions based off them can be a challenging task. In this thesis we try

to address the challenge of modelling the joint behavior of multiple correlated signals and

making predictions. We also provide a general framework where the modelling and prediction

task can be easily parametrized and used on data from any domain. For this thesis we chose

health care as our domain and ECG (Electrocardiogram), ABP (Arterial Blood Pressure)

signals from patients in the ICU as our correlated signal pair. This chapter presents the

objectives of the research, motivations behind why joint modelling is important, discusses

related work, technical challenges and lists the contributions.

1.1 Objectives and Motivations

In this thesis the main objectives and their underlying motivation or rationale are

1. Modelling joint behavior

Modelling the joint behavior of multiple correlated signals is the main objective of

this thesis. This raises the natural question of why joint modelling is important.

13



The underlying rationale is that when signals are correlated we can use information

from correlated signals to make better inference and prediction. The information from

multiple signals can also be used to reduce the noise, improve signal quality, reduce

false alarms [Zong et al., 2004]. If one signal dominates all others joint modelling may

only add slight incremental value. But if most signals are correlated but non dominated

each new signal can add significant inference and predictive power.

2. Keeping the original form of the signal intact during the modelling stage.

The actual (or at most aggregated) continuous signals are used as input to our al-

gorithm as opposed to other methods where the signals are discretized during the

modelling stage. During the discretization process important information related to

the signal might be lost whereas our model preserves the original version of the signal.

By preserving the original form of the signal we are able to use every minute form of

information that is present in the signal for inference and prediction.

3. Making predictions based on generated models

After introducing a joint modelling framework we introduce the associated prediction

framework where our models can be used to predict the value of a future outcome and

create value to the user. The underlying hypothesis is that joint modelling may lead

to better predictive power.

4. Providing a framework that can be parametrized

We hope to provide a framework which can be used in any domain, on any data set

for any number of correlated signals. This is achieved by having easily configurable

parameters related to the modelling and prediction tasks.

The model that we propose is termed the Latent State Space Copula Model. It is a

variant of a Hidden Markov Model (HMM). We assume that there are "latent" or hidden

patient "states" that transition from one hidden state to another driving joint ECG-ABP

behavior. Some of the reasons why we chose a "latent" state space model are that such

models

1. Capture the temporal nature of the signals well

14



2. Automatically group similar patterns in the patient data into associated hidden states

3. Provide a framework where the prediction parameters are easily configurable.

An in depth discussion about why we chose a latent space model is found in Chapter 3.

In this thesis we use ECG and ABP as our pair of correlated signals. The ECG signal

is related to the electrical depolarization and re-polarization of the heart's atria and ventri-

cles. The ABP is more related to mechanical dynamics of the heart (i.e contracting cardiac

muscles). Although the signals are in different domains (mechanical vs electrical) they are

strictly coupled (since they are generated by the same source) and the temporal, morpho-

logical dynamics of both signals and the coupling can be modelled by a single model with

different parameters or states. They are very similar in terms of rhythm and timing. There

are other signals (which are not used) that are correlated with the ABP signal of an ICU

patient. Potential candidates for correlated signals are other vital signals like arterial oxygen

saturation, respiration rate, temperature and other data sources such as electronic medical

records. By using information from these correlated signals we can build a more comprehen-

sive modelling and prediction structure. Better modelling and prediction structures lead to

early detection of critical events and rapid interventions by the hospital staff. This can help

improve the patient's condition before it deteriorates and reduce the morality rate.

Moving on to prediction, our specific prediction task in this thesis is to predict the Arte-

rial Blood Pressure (ABP) in an ICU setting. A single Acute Hypotensive Episode (AHE)

which is a significant drop in blood pressure is correlated with more than double the risk

of death in the ICU among patients in the MIMIC2 data set [Clifford et al., 2009]. "An

episode of acute hypo-tension is defined as a prolonged period of time (around 30 minutes

or more) during which the mean arterial blood pressure falls and stays below 60 mmHg"

[Stell et al., 2009], [Singh et al., 2010].The blood pressure fluctuation in the proximity of an

Acute Hypotensive Episode (AHE) is shown in the Figure 2-5. The prediction framework

will be discussed in Chapter 3

'in this thesis we effectively take the time period to be 20 minutes
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Figure 1-1: Definition of a AHE event.Figure adopted from [Stell et al., 2009]

When modelling the joint behavior of ECG, ABP and making predictions most stud-

ies impose assumptions like treating the signals as being independent or assume that the

observations follow known distributions. Some of the techniques that are currently used are

1. Gaussian mixture models [Sayadi and Shamsollahi, 2013]

These models assume that the ECG, ABP signals follow known distributions like the

Gaussian distribution. In our approach we try not to impose such restrictions on the

ECG, ABP signals and try to further model their joint behavior without making any

assumptions on the type of underlying distribution. The correlations are allowed to

have non linear characteristics and our model is built to capture that behavior.

2. Dynamic Bayesian Networks [Kim et al., 2014], [Waldin, 2013]

In these models the observed ABP value is discretized. In some models the observations

are considered to be independent. Our model does not discretize the original signal

and uses it in its original (maybe aggregated) continuous form. Our model also does

not make the independence assumption.

These various modelling techniques will be discussed in depth in section 1.2.
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1.2 Related work

As mentioned briefly in section 1.1 there are approaches based on Gaussian Mixture Models,

Dynamic Bayesian Networks and a number of other methods to model and predict blood

pressure and ECG. Below is a summary of each approach.

1.2.1 Other approaches for joint modelling

* Gaussian Mixture models

In [Sayadi and Shamsollahi, 2013] a Gaussian mixture model based approach is used

to model the dynamics between the ECG, ABP signals. A set of time-varying differ-

ential motion equations was used to model the ECG, ABP waveforms. The waveform

parameters have a Gaussian Mixture Model representation with parameters for the

amplitude, phase (angular speed, angular difference) and noise of the signal. Addition-

ally the joint behavior of ECG, ABP is captured by using the fact that there is phase

shift (that dynamically changes) between the ECG and ABP signal and modelling it

with an additional set of phase related parameters.

This model imposes an assumption that the parameters are distributed according to a

Guassian distribution. In actuality ECG, ABP distributions may not always display

Gaussian behavior. In our model we do not make any such assumptions. The patient

data set size in [Sayadi and Shamsollahi, 2013] is 76 patients from the MIMIC database

whereas ours is a 650 patient data set.

e Dynamic Bayesian Networks (DBN) and Temporal Bayesian Networks

In [Kim et al., 2014] a DBN is used to model the ABP waveforms and there is a compar-

ison of the prediction performance between the DBN and K nearest neighbors method.

For the Dynamic Bayesian Network first a HMM is trained and the initial, state tran-

sition and observation probabilities are obtained. The expectation maximization algo-

rithm is used in the learning process. The data set is divided into 2 sets where one

is with patients that had a AHE condition and the other with patients with no AHE

conditions. Each data set is used to train a separate model. The posterior probabilities

17



of a test object is obtained on each model to make a decision on its classification.

This method only uses the ABP signal to train the Dynamic Bayesian Network. Our

method uses both the ABP and ECG signal for modelling and prediction.

In [Waldin, 2013] a Temporal Bayesian Network is used on the ABP signal to make

predictions. An aggregate window is defined and seven features are extracted based

on the ABP signal. These features are quantized into 10 discrete bins. These are then

used in a Temporal Bayesian Network to perform predictions. The model also assumes

that when the state is given the observations are independent of each other.

In our model we do not make this independence assumption and present a structure

that can model the correlation between the observations. Additionally we do not

discretize the aggregated features and directly use the continuous signal.

Various other methods are also used to model EGG, ABP too. For example in

[El-Gohary and McNames, 2007] cross correlation analysis is performed to learn the struc-

ture between 2 signals. In [Fong et al., ] echo state networks which is a specific type of

neural network is used to model the joint structure of ECG, ABP. There are also attempts

to create online realtime systems that use ECG, ABP signals to predict AHE as described

in [Stell, 2015].

1.2.2 Previous research

The current research work builds on the work in PhysioMiner:[Gopal, 2014] where the ECG

signals were extracted on a beat by beat basis and stored on the Amazon cloud. This ECG

beat data for 650 patients was downloaded and used for this thesis. It also builds on work

done on ABP beat processing in beatDB:[Dernoncourt et al., 2013]. beatDB is a large scale

machine learning and analytics framework for mining knowledge from high resolution phys-

iological waveforms. The ABP beat data for 650 patients were obtained from the beatDB

database. There is also prior work on making predictions using only the ABP signal in

[Waldin, 2013] where a Temporal Bayesian Network was used. The above mentioned re-

search work were a good foundation and starting point for the research conducted in this

18



thesis.

1.3 Technical Challenges

The technical challenges that were encountered in this thesis are given below

" Proposing the extension to the HMM to model the joint ECG, ABP be-

haviour.

In general working on the Latent State Space Copula Model and the novel sampling

process involved learning about Copulas, Sklar's Theorem, Weibull distributions and

Gibbs sampling (these are discussed in depth in Chapter 3). This was indeed challeng-

ing and required a steep learning curve. To the best of the author's knowledge there

are no other prior research work that attempts to model correlated variables using

HMMs, Copulas and Gibbs sampling in this manner.

* Processing a large number of patients in parallel for each time step.

During each time step of the HMM around 500-650 patients data was required to be

processed in parallel. This required a lot of computation power and the processing was

distributed over a large number of cores in a distributed computer cluster.

" Aligning the ECG and ABP signals.

Once the ECG, ABP beat data were obtained an aligning algorithm was required to

be written to match the ECG, ABP signals.

1.4 Contributions

The research done in this thesis builds on the previous projects mentioned in section 1.2.2

and the new contribution comes in the form of

1. Aligning and matching the separate ECG and ABP signals.

To the best of the author's knowledge there were no other off the shelf algorithms that
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extract ECG, ABP signals and sync them by aligning the signals at a beat level. This

thesis proposed the matching algorithm while leveraging on the original ECG beat

data provided by PhysioMiner: [Gopal, 2014] and the original ABP beat data provided

by beatDB:[Dernoncourt et al., 2013].

2. Proposing the novel Latent State Space Copula Model for jointly modelling

the ECG and ABP.

The proposed extension to the HMM is novel and is one of the contributions of this

thesis.

3. Comparing the novel Latent State Space Copula Model with a Classical

Discrete HMM.

The proposed novel structure is compared with the industry standard so that the reader

can get an idea of the performance and prediction accuracy.

1.5 Organization

An overview of the data set, waveforms, feature extraction and the challenges faced while

syncing and aligning the ECG, ABP signals is discussed in Chapter 2. An introduction to

the novel Latent State Space Copula Model, HMMs and Copulas is given in Chapter 3. The

experiment setup and challenges in data processing are discussed in Chapter 4. The results

are discussed in Chapter 5 where the Latent State Space Copula Model has a AUROC of

.79175 for 5 states. Conclusion and future work is given in Chapter 6.
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Chapter 2

Data Processing and Alignment

This chapter will first give an overview of the MIMIC II database. Then the individual

ECG, ABP waveforms will be presented along with a figure depicting their tightly coupled

nature. We hope that this will give the reader an idea of the data set we are using and

the nature of signals that we are trying to model. Then we will discuss challenges faced

while pre-processing the raw ECG, ABP signals. Although the pre-processing step is not a

direct contribution of this thesis it is included because it's a vital part of the overall process.

A section about feature extraction will follow. Towards the end, the distributions for the

sub selected 650 patient data set that were used for the experiments will be shown and the

chapter will conclude with the signal aligning algorithm which is a direct contribution of this

thesis.

2.1 Overview of the MIMIC II data set

Our data is taken from the Multiparameter Intelligent Monitoring in Intensive Care II

(MIMIC II) version 3 waveform database. The data is recorded from patients at Boston's

Beth Israel Deaconess Medical Center over a 7 year period. The total database has records

for 25,328 ICU stays from 22,870 hospital admissions. "Of those admissions, 1360 (5.9%)

had multiple ICU stays, and on average there were 1.11 ICU stays per hospitalization. The

median ICU stay lasted 2.2 days" [Saeed et al., 2011], [Clifford et al., 2009].

There are 2 main types of data in the MIMIC II database
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1. Clinical Data - These are data from patients' electronic medical records, doctors notes

collected form the hospital medical systems etc.

2. High resolution physiological data - These are data captured from bedside monitor

waveforms, associated derived parameters and events.

The ECG, ABP physiological signals that are used in our study were captured by Patient

monitors (Component Monitoring System Intellivue MP-70; Philips Healthcare) that were

located at the bedside of ICU patients. The patient bedside monitor acquires, digitizes,

process the signals and produces alarms when critical events occur [Saeed et al., 2011].

The waveform Database is an aggregate of 23,180 sets of recordings which amount to over

3 TB of data [Saeed et al., 2011], [Waldin, 2013]. Ideally one recording is supposed to map

to one patient except in some rare instances where there are recording anomalies. The time

of the recordings can range from a few hours to a few days (the average duration being 2.2

days) [Saeed et al., 2011]. Out of all the patients in the MIMIC II v3 database, 6232 patients

have ABP waveform records [Dernoncourt et al., 2013], [Waldin, 2013], [Kim et al., 2014]

[Saeed et al., 2011]. The ABP measurements are from the arterial lines and the lines gen-

erally placed in the same location for each patient. The ECG data used in this research

was obtained form [Gopal, 2014] where the ECG line II signal from 6118 patients from the

MIMIC database was processed. From the 6232 patients with ABP readings and 6118 pa-

tients with ECG readings, 6118 patients had both ECG and ABP readings. Out of those

6118 patients 650 patients were randomly selected for our study. We limited ourselves to 650

patients because our main objective was not to show the scalability of our algorithm but to

show how well we can model the joint behavior of ECG, ABP. 650 patients is a moderately

sized data set when compared to studies like [Sayadi and Shamsollahi, 2013] where only 76

patients were used, [Fong et al., ] where 6 patients were used, [Li and Clifford, 2012] where

data from 182 visits were used. On the other end of the spectrum [Waldin, 2013] uses 1000

patients, [Dernoncourt et al., ] uses 5000 patients. We consider our 650 patient data set to

be of appropriate size to highlight the challenges of using the Latent State Space Copula

Model while not being hampered by scalability and computation issues. The associated

ECG, ABP distributions for 650 patients will be given in section 2.5.
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2.2 The individual ECG, ABP waveforms

In this section we take a look at the individual ECG, ABP waveforms and the strict coupling

that exists between them in order to get a better idea about the signals that we are modelling.

This section gives a very brief overview of the waveforms and sets up the vocabulary which

will be helpful when discussing challenges in the next section.

An isolated ABP beat waveform is given in Figure 2-5.

Systolic pressure
125 -Dicrotic Notch

t- (Aortic Valve Closes)
E

Mean pressure

--.. ---.. --.. --- -- ... ..- --.
ILDiastolic

Diastolic Decay
75 Y 1Curve
pressure

Time -

Figure 2-1: Chracteristic ABP waveform.Figure taken from [Cornell, 20111

In Figure 2-5 the Systolic pressure (Ps) is the highest pressure reached and this is when

the heart contracts and sends blood out. The Diastolic pressure (Pd) is the lowest pressure

reached and this is when the heart refills with blood. The Dicrotic Notch is a short dip in

the blood pressure due to a back flow of blood [PhysiologyWeb, 2015]. The mean arterial

pressure is defined as 2PdPs

The characteristic ECG beat waveform is shown in Figure 2-2.

The ECG signals in Figure 2-2 capture waveform components which indicate electrical

activities during one heart beat. These waveforms are divided into a P wave, QRS complex

and T wave. The P wave is associated with the atria contracting and pumping blood

into the ventricles. The QRS complex, which generally starts with a small downward dip

Q; a larger upward peak R; and then a downwards S wave is associated with ventricular

depolarization and contraction. The T wave is a small upwards waveform representing

ventricular repolarization. The PR interval is an indication of the transit time for the

electrical signal to travel from the sinus node to the ventricles [Dubin, 2000].

The tight coupling that exists between the ECG and ABP signal is shown in Figure 2-3.
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Figure 2-2: Chracteristic ECG waveform.

We see that the beginning of the ABP systole happens some time period (180 ms in

Figure 2-3) after the R wave of ECG. "The interval between the R wave and the upstroke of

the systole represents the delay between actual ventricular depolarization and the arrival of

the signal to the pressure transducer" [Yartsev, 2015]. This delay between the ECG, ABP

can vary from patient to patient and within a single patient based on the patients health

condition.
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Pulse pressure
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There is a delay of 180msec:
The interval between the R wave and the upstroke of systole; it
represents the delay between actual ventricular depolarization and
the arrival of the signal to the pressure transducer.

Figure 2-3: The coupling between the ECG and ABP waveforms. The phase shift that exists

between the ECG, ABP signal is highlighted in this figure. Figure taken from [Yartsev, 2015]
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2.3 Challenges faced while processing raw ECG, ABP

signals

This section will discuss the challenges faced while bringing the raw ECG, ABP signals to

a state that can be given to a machine learning algorithm. As stated in Chapter 1, one

of the main contribution of this thesis is the signal aligning algorithm (discussed in section

2.6) and not the actual processing, cleaning or validation of the raw ECG, ABP waveforms.

Nevertheless the pre-processing of signals is a vital component of the overall process and this

section will provide a brief overview. These challenges were actually addressed and imple-

mented in [Gopal, 2014] and [Dernoncourt, 2014].

Our data is recorded in an ICU setting which can be chaotic at times (i.e the patients having

sudden movements). This contributes to a large number of misaligned and invalid signals.

The raw signals are also non-contiguous. By non-contiguous we mean that the time series of

the ECG, ABP signal can be broken at certain points due to causes like readjustment of the

measuring devices. When this happens we identify such occurrences and divide the signal

into contiguous sections called "segments".

One of the key insights in pre-processing is to extract the ECG, ABP signals at the beat

level. We hypothesize that the key features that lead to modelling and prediction should be

captured at the beat level. The features associated with a beat can change from patient to

patient and within a single patient as the patient's health condition changes.

As part of overcoming the challenges mentioned above the following steps were taken (in

order) to pre-process the ABP signals

1. To detect the ABP beats an ABP beat onset detection algorithm described in

[Zong et al., 2003] was used. This returns the start, stop indexes of the beat.

2. The validy of the beats were identified using the algorithm described in [Sun et al., 2006].

ABP Beats that do not pass a certain threshold were removed.

3. Beats that are contiguous were identified and grouped. Whenever two consecutive

beats are more than 5.6 seconds apart, they are considered to be non-contiguous
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[Waldin, 2013]. A contiguous series of ABP beat measurements is termed as a seg-

ment.

As part of pre-processing the ECG signals the following steps were taken in order

1. A QRS detection (the QRS complex was introduced in section 2.2) algorithm was run

on the ECG signal to detect the QRS complexes. For this the QRS detection algorithm

introduced in [Zong, 1998] was used. The algorithm annotates the beginning and end

of a QRS complex.

2. The signal was divided into beats around the identified QRS complexes. The beat

division algorithm started at the left side of a QRS complex and travelled in either

direction appropriately to detect beat divisions [Gopal, 2014].

One of the challenges faced during ECG signal pre-processing that was specially men-

tioned was that the QRS detector mistakenly detected P waves to be QRS waves. This was

overcome by subdividing the signals and running a QRS detector on the subdivided chunks

[Gopal, 2014].

By going through these pre-processing steps [Gopal, 2014] and [Dernoncourt, 2014] were

successfully able to segment the ECG, ABP signals at the beat level. These initial efforts

were vital for the research conducted in this thesis. This concludes the brief overview of the

pre-processing stage. A discussion about feature extraction, the sub-sampled 650 patient

data set and the aligning algorithm will follow.

2.4 Extracting features from the ECG, ABP signals

After pre-processing the data we are ready to extract features for the ECG, ABP signals at

the beat level. For ABP we first extract the mean arterial pressure 2Pd+ps for every valid

beat in a "segment" (a contiguous time interval which has an uninterrupted signal). Later on

we would define an aggregation interval and get summary statistics like the mean, standard

deviation, kurtosis and skew associated with this interval [Waldin, 2013]. In our study the

mean of the mean arterial pressure (MAP) was used as a feature. For ECG, again contiguous

27



time segments were identified and features like the ECG heart rate, Q-S interval length, Q-R

interval length and wavelet features were extracted for each beat. Later on we would define

an aggregation interval and get summary statistics for ECG associated with the aggregation

interval. In our study we used the mean of the heart rate as a feature.

After describing the feature extraction step we would now move on to looking at the distri-

butions of the chosen ECG, ABP feature values for the 650 patient data set.

2.5 The ECG, ABP distributions for the chosen data

set

The ECG heart rate distribution and ABP mean arterial pressure (MAP) distribution for

the randomly chosen 650 patients in our data set is shown in Figure 2-4, Figure 2-5. The

following scale is used for the x axis of the plots

" ECG [0, 1] -+ [0.0082 , 359.63 ] beats per minute

" ABP [0, 1] -+ [31.81 , 167.39 ] mmHg

The y axis shows the ECG, ABP counts. The distributions shown in Figure 2-4, Figure

2-5 are for our 650 patient population and they are the true underlying distributions that we

are trying to model. In the context of inference, modelling these distributions are important

because once we have an accurate generative model we can use it to "generate" future patient

ECG, ABP signal values.

We are interested in predicting incidents where the ABP is below 60 mmHg. In the 650

patient data set there are only 6.0344% of instances where the ABP is below 60mmHg for

20 minutes. And there are only 3.25% of instances where ABP is below 60 mmHg for 40

minutes. Thus it is very sparse in the incidents that we want to predict. This is usually

the case with many real world data sets and to make predictions based on sparse data the

prediction algorithms have to be very robust. These statistics are highlighted in 2-6 where

a histogram of the number of Acute Hypotensive Events per patient is shown.

After getting a rough idea about the data set we move on to explain the ECG, ABP

matching algorithm which is one of the contributions of this thesis.
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Normalized ECG heart rate : 650 patients

ECG heart rate

Figure 2-4: Distribution of the ECG heart rate signals for 650 patient

Normalized ABP distribution : 650 patients
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Figure 2-5: Distribution of the ABP mean arterial pressure for 650 patient
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AHE events per patient I total patients : 650

total AHE event count: 2633
% of AHE events/all events: 3.2546%400 #patients with no AHE events : 426

#patients with AHE events : 22

300

Q)

200

100

0 .-............. -..- ......

#AHE events

Figure 2-6: Histogram of AHE events per patient

2.6 Aligning the ECG, ABP waveforms

As part of the contribution of this thesis we take the 2 standalone ECG and ABP signals

and align them so that their time intervals match. We then perform an aggregation over an

aggregation window of 150,000 measured ECG & ABP sample indices (which corresponds

to a 20 min interval = 150,000 assuming a 125Hz sampling rate) and obtain the average ABP125*60

and ECG values for the aggregation window. The data assembly algorithm is described in

this section and our end result is a 3-tuple shown in Table 2.1. The interpretation of the

columns in Table 2.1 is given below. Note that the ECG, ABP share the same sample index

and this is helpful when aligning the signals.

e Sample index start - The ECG, ABP is sampled at 125 Hz. This column shows the

sample index at the start of the aggregation window of size 150,000 sample indices.

The ECG, ABP share the same sample index and this is helpful when aligning the
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signals.

" ECG heart rate - The Aggregated heart rate over the specified interval.

" ABP - The aggregated ABP over the specified interval

(Sample Index start, aggregated heart rate, aggregated ABP)

Table 2.1: Final aggregated and aligned ECG, ABP table or patient ID 3003618

Note that that there is at least a 150,000 sample index gap between each adjacent entry

in Table 2.1. The aligning algorithm is presented next with an example for the ECG, ABP

tables for patient ID 3003618.

The ECG table for patient ID 3003618 is shown in Table 2.2. The interpretation of the

columns are given below

" Sample index - The ECG is sampled at 125 Hz. The sample index is the sampling

index at the beginning of the ECG beat. The ECG, ABP share the same sample index

and this is helpful when aligning the signals.

" ECG Heart rate - The measured ECG Heart rate value.
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Sample index start ECG Heartrate ABP

(of the aggregation window) (beats per min) (mmHg)
1526565 114.26 105.16
1676565 113.83 122.90
1826565 114.35 122.15
1976565 113.80 120.00

Sample Index ECG Heartrate

(index) (beats per min)

1526565 115.38462

1526631 115.38462

1526696 113.63636

1526762 113.63636



1526826 115.38462

Table 2.2: ECG beats file for patient ID 3003618

The ABP table for patient ID 3003618 is shown in Table 2.3. The definitions for the

columns are given below

9 Sample index start - The ABP is sampled at 125 Hz. The sample index is the sample

index at the beginning of the ABP beat. The ECG, ABP share the same sample index

and this is helpful when aligning the signals.

" Sample index end - The sample index is the sample index at the end of the ABP

beat. The ECG, ABP share the same sample index and this is helpful when aligning

the signals.

" Valid status - This indicates whether the ABP beat is valid.

* ABP - The mean arterial pressure of the beat in mmHg.

32

sample index start sample index end valid status ABP

(index) (index) (binary) (mmHg)
1528198 1528243 1 71.1924075409
1528243 1528264 0 nan
1528264 1528309 0 nan
1528309 1528341 0 nan
1528341 1528396 0 nan
1528463 1528528 1 119.500527267
1528528 1528594 1 124.797983314
1528594 1528659 1 118.674359136

Table 2.3: ABP beats file for patient ID 3003618



Signal aligning algorithm

The following steps were taken when aligning the ECG and ABP beats

" Step 1: Select a window length w. (i.e w = 150, 000 -+ 20min)

" Step 2: Get the starting point for the aggregation window. An immediately available,

valid entry is read from the sample index column of the ECG table (Table 2.2). Note

that there is no specific reason for choosing ECG over ABP for this step.

sample index start = sample index of(ECG)

(i.e sample index start = 1526565 read from Table2.2)

" Step 3: Compute the end point of the aggregation window

sample index end = sample index start + w

(i.e sample index end = 1526565 + 150000 = 1676565)

" Step 4: Compute the average of the ECG, ABP in the selected range

range = (sample index start, sample index end).

i.e range = (1526565, 1676565)

" Step 5: Slide the window a length of w indexes forward

" Step 6: Go back to step 2 and repeat the process until the end of either the ECG or

the ABP file is reached.

Some of the edge cases that we had to consider were

1. In step 4: What if the exact sample end index (i.e 1676565 in the example) couldn't

be found in the corresponding ECG, ABP signal of the patient?

Even if an exact index match is not found we still aggregate the ECG, ABP signals

that fall within that range (i.e range = (1526565, 1676565). This also does not affect

the next range which is range-next = (1676565+ 150000, 1676565+150000*2)). If we

encounter time periods where 40% of the indexes within a 150,000 interval is missing

then we consider the patient's contiguous time series signal to end at that point in

time.
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2. In step 4: What if there are no ABP readings for the corresponding time period (i.e

range = (1526565, 1676565))?

If there are no ABP readings in the corresponding ECG time period we consider the

time series signal to end at that point. Basically we stop when we encounter a time

period that has missing data for either ECG or ABP. This prevents us from having

time series signals that have missing 20 minute blocks (our aggregation time interval

is a 20 minute block) for ECG or ABP observations.

3. How many NaN's will be tolerated within a time interval before considering the time

period as invalid?

If there are more than 40% NaNs the time step is considered as invalid and we end the

time series signal at that time step.

4. If there is a levy allowed in the end point of the time period, how would we deal with

a stacking up effect?

In general we average ECG, ABP beats in a 150,000 time interval which is around

20 minutes. We start at a point and keep moving the 150,000 window forward. For

example if we started at time index tidx the time intervals will be within {tidx, tidx+

150, 000, t_idx + 150, 000 * 2, .. }. Because of this some time intervals may have more

beats than others but this does not lead to a stacking up effect. Since we average over

a 20 minute interval, make sure that at least 60% of the indexes have valid beats and

make sure to stop if more than 40% of the beats are missing or NaNs, we get accurate

alignment and aggregation.

The final output is shown in Table 2.1 at the beginning of this section. The aligning

algorithm performed well because we leveraged the ECG, ABP beats that were already

processed at the beat level in [Dernoncourt, 2014] and [Gopal, 2014]. After aligning the

ECG, ABP signals we are ready to perform the modelling and prediction. The subsequent

Chapters will discuss these efforts in detail.
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Chapter 3

Latent State Space Models

This chapter discusses the modelling stage of this thesis. First we discuss why we chose

Hidden Markov Models. Then we show that we have 2 different approaches when using

HMMs. One being the Classical Discrete HMM which has been around for decades. The

second approach is the Latent State Space Copula Model which is a novel method. The

Latent State Space Copula Model was conceived by Kalyan Veeramachaneni and Alfredo

Cuesta-Infante who, as mentioned in the acknowledgement section are the guiding forces

behind this thesis. Each of the 2 approaches have a dedicated section. A section on Model

Prediction then follows where we discuss how the Latent State Space Copula Model is used

in a prediction context.

3.1 Why Hidden Markov Models

We chose Hidden Markov Models because we wanted to capture the temporal trends in a sig-

nal for classification, by modeling the temporal information as a sequence of "state" changes.

HMMs are well known for modelling the connections between adjacent states, symbols, se-

quences and is heavily used in speech recognition [Rabiner, 1989], digital communications

and biological sequencing [Yoon, 2009]. In general, a patient becoming hypotensive is not

only dependent on the present vital sign measurements, but also on a sequence of measure-

ments from the past. These relationships can be modelled well with HMMs. Additionally

the notion of "states" allow us to automatically group similar patterns or similar patient
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signals together (i.e a state that's related to low ABP, low ECG vs low ABP, normal ECG).

This leads to better predictions. A HMM structure also allow us to model different lead and

lag times for a prediction problem. An in depth discussion about the prediction problem will

be presented in section 3.6. To be consistent this chapter will use the notation given below

t - time

X - states in a hidden markov model

Xt - state at time t

No - total number of states

Y - ECG observation at time t

Zt - ABP observation at time t

A HMM operates on the Markovian assumption which is

1. Given the state Xt_ 1 at time t - 1 the state Xt at time t is independent of the past

P(X= i|Xo 1-') = P(Xt = i|Xt,)

Where i E fc , 2, ... , Nxj}

2. The observations or emissions only depend on the current hidden state

3.2 Two different approaches

In this thesis we evaluate 2 different approaches for blood pressure prediction. The first

approach is to use a Classical Discrete HMM. This is a standard algorithm that is widely

used in the research community. When using the Classical Discrete HMM in addition to

the Markovian assumptions there are other assumptions made. It is generally assumed that

the observations (ECG, ABP in our case) are independent of each other and that those

observations are observed in discrete values.

The second approach which is the Latent State Space Copula Model throws away these 2

additional assumptions mentioned above and tries to view the observations (ECG, ABP in

our case) as correlated, continuous variables. At the start of this research we do not exactly
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know whether this new approach woukl improve prediction accuracy. The thesis is in a way

an effort, to evaluate how the Latent State Space Copula Model compares with the Discrete

HMM. Our current patient data set size is 650 patients. The prediction accuracy of specific

algorithms is shown to vary with the size of the data set as noted in [Dernoncourt. 2014].

This prompts us to state the data set size whenever we make a statements about prediction

accuracy.

3.3 Classical Discrete HMM

T=T1 T=T3
T=Tend

ECGIY) ABPIZ)

0: 0<=Y 40 C: =Z< 3C

1: 40<=Y<SC 1: 30c=Z<60

2: 80<=Y<120 2: 60<=Z<90

3:120<=Y<160 3: 90<=Z<120

Figure 3-1: Classical Discrete HMM

As mentioned above Classical Discrete HMMs are widely used in the research conmnunity.

The structure of the Classical Discrete HMM related ECG. ABP is given in Figure 3-1. The

time series in the Figure 3-1 is a sequence from T {T1 , T... T ... T,1(i}. The ECG, ABP

observations have discrete values ranging froin {0, 1. 2, 3} which correspond to ranges of the

original signal.

A brief overview of a Classical Discrete HMMis given below.

The sources used are

1. A tutorial on hidden Markov nodels [Rabiner, 1989]

2. Hidden Markov Models for modeling blood pressure data to predict acute hypotension
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[Singh et al., 2010]

"Consider a discrete time signal of length T. This signal is first subdivided into L windows,

each window consisting of T/L samples" [Singh et al., 2010]. In our case L is a 20 minute

aggregation window and we get a time series of T/L samples where each entry is a 20 minute

aggregate of the original time series of the ECG, ABP signal as discussed in Chapter 2. We

then obtain features related to each time window which is considered as our observation (or

emission) sequence Y = Y1, Y2 , ... , Y. For our model the observations are the mean of ABP,

mean of ECG for the 20 minute window. For each patient we will have a sequence of such

observations. Hidden Markov models are widely known to be able to model observation

sequences by making the assumption that those observations are driven by "latent" states

that switch between each other based on a transition and emission matrix that can be learnt.

Figure 3-2 shows a standard 3 state Markov chain where the state numbers are inside the

a12
all a22

X~ 1 a2

a13 a32

a31 a23

X3 

a33,/

Figure 3-2: A generic 3 state HMM, with state transition probabilities shown on the transi-
tion arrows. Figure taken and modified from [Singh et al., 2010].

circles and state transition probabilities are on the arrows. In a more general case consider

a system to have N, distinct states i E {1, 2....., N, } and be in one of them at a given

time. The transition from one state to another happens at regularly spaced, discrete times

based on state transition probabilities associated with the current state. The state transition

probabilities are given by

aij = P(X j X_ 1 = i) ; 1 ij < |N

where Xt is the state at time t and Xt_ 1 is the state at time t - 1.
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The next set of probabilities associated with an HMM are the observation or emission

probabilities. While in a state, a state specific emission or observation occurs. The emissions

or observations follows a probability distribution associated with that particular state. The

purpose of the training phase of an HMM is to learn these transition and emission probabili-

ties. "Using these observation probability distributions and the transition probabilities, it is

possible to come up with a state transition sequence X = X 1, X2 , ... Xt for the given HMM,

which can "best explain" a given observation sequence Y = Y, Y2 , ... , Y. The parameters

that characterize the Classical Discrete HMM are given below:

1. The state transition probability matrix, A = {a}.

2. The probability distribution B of observations Y at each state which will be learnt

during the training phase. B = P(Yjstate)

3. The initial state distribution 7r {7r(xi)} (the probability mass function of the initial

state distribution).

The following notation is used to describe a Classical Discrete HMM:

E - (A, B, 7r)

Given an HMM and some observation sequences, there are two types of computations that

are relevant for the application at hand:

1. Learning HMM parameters : Given the observation sequence(s) Y = Y, Y2 , ... , Y find

the parameters of the HMM e = (A, B, 7r) that maximizes the probability P(Y 1).

2. Given a model E = (A, B, 7r), and an observation sequence Y = Y, Y2 , ... , Y compute

P(Y 1), that is, the probability that the given model generated- the given sequence.

Step 1 is used for training the HMM using a given observation sequence. The Baum-Welch

algorithm which uses the expectation maximization algorithm is a well known procedure for

training an HMM. 1

'The material related to the generic HMM presented above is referenced form [Singh et al., 2010] and
[Rabiner, 1989].
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There are a variety of off the shelf Classical Discrete HMM's available. Commercial software

like MATLAB, R, python offer HMM functionality in their toolboxes. For this thesis I used

the HMM toolbox implemented in MLBlocks [Collazo, 2015]

MLBlocks

MLBlocks [Collazo, 2015] is a machine learning system that enables the user to use Discrim-

inative Modeling, Generative Modeling techniques to make predictions on any data set. It

is highly parameterizable. In this thesis MLBlocks is chosen above others (i.e MATLAB, R)

to train a Classical Discrete HMM on the 650 patient data set.
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3.4 Latent State Space Copula Model

The maiu contribution of this thesis is to propose this novel structure in order to better model

the correlations between the ECG and ABP signals. The model also allows the observations

to be continuous thus we also expect it to capture more information. An in depth discussion

of the Latent State Space Copula Model is given in the following sections. Instead of diving

right into explaining the model, the concepts andl distributions that are used in the Latent

State Space Copula Model will be introduced first. Thus a section on Weibull distributions,

Copulas and Sklar's Theorem will be followed by the section that introduces the Latent State

Space Copula Model.

3.4.1 Weibull distribution

A- =1. S=05
A=1.S=1
A=1.S=15
A=1.S=5

-C -

C)

00 05 10 15 20 25
x

Figure 3-3: PDF of a WXeibull distribution with scalc(A). shape(S).

The observations (Y. Z) for (ECG. ABP) for time T = {T1 T2. .., 1 T,,,,} are real

valued. We chose to model the ECG, ABP observations individually using Weibull Distribu-

tions. The Weibull PDF is a 2 parameter distribution with scalc(A). shapc(s). It's usually
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used to model failure rates. By changing the shape(s) parameter the Weibull distribution

can interpolate between the exponential distribution (shape(s) = 1) , Gaussian and the

Rayleigh distribution. We chose the Weibull dostibution because of this flexibility.

The probability density function of a Weibull random variable with scale(A), shape(s) is

(Ek-i e_(x/A)k X > 01
f(x; A, s) = -~ _ 

>0
0 x <0,

In the above equation x is a generic parameter.

* If shape s < 1 (shown in blue)

The Weibull distribution behaves as shown in blue in the plot.

* If shape s = 1 (shown in red)

The Weibull distribution reduces to an exponential distribution.

" If shape s > 1 (shown in the dashed line and green)

The Weibull distribution can take Gaussian, Rayleigh distribution forms.

Sources for the Weibull distribution: [Abernethy, 1996], [Rinne, 2008], [McCool, 2012],

[Liu et al., 2010]. The next important building blocks of the Latent State Space Copula

Model are Copulas and Sklar's theorem and they will be explained in the next sections.

3.4.2 Introduction to Copulas and Sklar's Theorem

The word Copula is a Latin noun that means "A link, tie,bond" [Simpson, 1968], [Nelsen, 2007].

Copulas

Copulas are used to model multivariate probability distributions and how multiple random

variables are linked. There is a special restriction where the marginal distributions of each

random variable has to be uniform. In other words copulas are "functions that join or couple

multivariate distribution functions to their one-dimensional marginal distribution functions"

[Nelsen, 2007].
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Applications with a large number of correlated random variables can be modelled well

with Copulas and they can be broken down into separate marginal distributions and a copula.

Some of the copula families that are available are Gaussian, Archimedean. The Archimedean

copula has subfamilies (i.e Clayton, Frank etc) where there are parameters to control the

dependence between variables. Copulas are widely used in quantitative finance, reliability

engineering, warranty data analysis, weather research etc.

Mathematical Definition of Copulas

(In this subsection we deviate from the notation table introduced in the beginning of the

chapter. Thus consider X to be a generic random variable.)

Consider a random vector (X1 , X2 , ... , Xd) where the marginal cumulative distribution func-

tions (CDF's) are given by F(x) = P(Xi K x). Consider the vector (U1 , U2 , ..., Ud) =

(F1 (X1), F2 (X 2 ), ... , Fd(Xd)) to have uniformly distributed marginals. Then the copula C of

(X 1, X2 , ... , Xd) is defined as the joint CDF of (U 1, U2 , ..., Ud)

C(ui, u 2, ..., Ud) = P[U1 5 ui, U2 < U2, .... , Ud Ud]

Here the copula C contains information on the dependence structure between the variables

(X1, X2 , ... , Xd). [Nelsen, 2007], [Dalla Valle, 2009], [Veeramachaneni et al., 2015].

Sklar's Theorem

Sklar's theorem states that a multivariate joint distribution can be completely represented by

its univariate marginal distribution functions and a copula that models how the univariate

marginal distribution functions are dependent on each other [Nelsen, 2007].

Mathematical Definition of Sklar's Theorem

(In this subsection we deviate from the notation table introduced in the beginning of the

chapter. Thus consider X to be a generic random variable.)

Consider a random vector (X 1, X 2, ... , Xd) where the marginal cumulative distribution func-

tions (CDF's) are given by F(x) = P(Xi < x). Consider a multivariate cumulative distri-

43



bution function H where

H(xi,x2, ... , Xd) = P(X1  X 1, X 2  X2, .... , Xd Xd)

then the joint cululative distribution function can be described by only using the marginals

CDF's and a Copula C as shown in [Nelsen, 2007] page 18.

H(xi, 2, ... , Xd) = C(F1 (X1), F2 (X2 ), ..., Fd(Xd))

In case that the multivariate distributions has a density f then the following will hold

f (Xi, ... ,Xd) = c(Fi(xi), ... , F(d)) * fi(Xi) * ... * fd(xd)

where

X1, ... , X - are random variables

c - is the density of the copula

fi - the marginal distribution of xi

Fi - the cumulative distribution function of xi

After introducing the Weibull distribution, Copulas and Sklars theorem we will now go

into the details of the Latent State Space Copula Model.

3.4.3 The structure of the Latent state space copula model

In this section the Latent State Space Copula Model will be introduced in formal notation

as well as using graphics. First the equation related to the multivariate joint ECG, ABP

distribution will be presented. Then the structure of the Latent State Space Copula Model

will be discussed using Figure 3-4 and Figure 3-5.

The equation that models the joint behavior in the Latent State Space Copula Model is

given below in formal notation. Given that we are at time t, the state is Xt = i, the random

variable related to ECG at time t is yt, the random variable related to ABP at time t is

zt and using Sklar's theorem the multivariate joint distribution between ECG, ABP can be
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written as

p(yt, zt) = c(F(yt), F(zt); E(i)) * p(yt; A(') Sf) * p(zt, A'), SFi))

where

the superscript (i) denotes that the variable is associated with state (i)

c - density of the copula

F - CDF of the random variable

A( - scale of the Weibull distribution for ECG

SI/- shape of the Weibull distribution for ECG

A/- scale of the Weibull distribution for ABP

S - shape of the Weibull distribution for ABP

p(yt; AYJ, S()) = Weibull(yt; A)), S )
p(zt, A', S)) = Weibull(zt; A , Sz )

E( - a parameter that models the dependence structure

The above equation is the underlying equation that uses Copulas, Sklar's theorem and

Weibull distributions. It models the much anticipated joint behavior of ECG, ABP. We see

that the joint distribution is broken down to the product of marginals that are Weibull dis-

tributions and a copula according to Sklar's theorem. We chose our copula to be a Gaussian

copula because such copulas (along with Frank and Plackett Copulas) model positive as well

as negative dependence well [Wang et al., 2008]. Next, we will graphically convey the ideas

related to the Latent State Space Copula Model and hope that the reader will find it more

intuitive. The structure of the Latent State Space Copula Model is given in Figure 3-4.

The key points to note are that the ECG, ABP circles are connected with double sided

arrows. This indicates that those observations are modelled as being correlated. The ECG,

ABP observations are also denoted as continuous random variables (YECG, ZABP) E R.

Modelling the correlation between 2 continuous correlated observations in a HMM time slice

can be a challenging task. The novel structure shown in Figure 3-4 achieves this. In Figure

3-4 for each time slice

1. The patient state can be in 1 out of the JNxJ total number of states. For example

if the total number of states Nx = 3, then the patient state at time t; Xt can be
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Stat 72

Figure 3-4: The structure of the Latent State Space Copula Model for ECG. ABP observa-

tions

X, i; E {1, 2, 3}.

2. For a given state we model the ECG. ABP to be drawn from a A'ibull (listribution

that's specific to that state. If X, = i. then the ECG. ABP are drawn from a Weibull

with scale = Aj. shape = Si.

3. The values scale = A> shape = Si of the Weibull (listributions are learnt during the

training stage through a Gibbs sampling process discussed in section 3.5.

We zoom into the model further in Figure 3-5 and look at what happens during a single time

slice. This will give us a better picture of how the joint pdf is calculated.

The steps involved are given below with explanations for each vertical level in Figure 3-5

1. Level 0 : The Figure 3-5 considers that there are INx= 3 total number of states (this

parameter can he changed to any number). Given that Nxl= 3 lets assume that the

patient state at time t; X, is given by

X, = 1; 1 E{, 2, 3}

2. Level 1 : The Weibull distributions for each state X, = i: i E {1. 2, 3} for ECG.

ABP is shown right below the blue ECG, ABP observation circles in Figure 3-5. The

YVIC, Z,113 random variables are assumed to be generate(l from these state specific
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Figure 3-5: The view wheii zoomed into 1 time step

Xeibull distributioiis. We chose to use the WAeibull distributioln to model the state

specific distriblltiolls because Weibull is a very flexible ipdf.

3. Level 2 : Once we know the shape, scale values for a speeific state X, i, We

call conistruct the CDF of the Weibull dlistributioii. Given the Weibull CDF and the

training ECG. ABP data poillts we can get the associated quantiles that the training
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points fall in. This is denoted as "Get state specific CDF value for ECG/ ABP" in

Figure 3-5. The values that are output are in the range [0, 1].

4. Level 3 : We use the ECG, ABP CDF values and a Gaussian copula to model the

joint behavior of ECG, ABP.

As mentioned earlier the steps described above are activated during each time step. A

key intuition here is that even if the underlying ECG, ABP distributions are different for

each patient we can use a Gaussian Copula to model their joint behavior.

Gibbs sampling is used as the mechanism to learn the shape(S), scale(A) of the Weibull

distributions during the training stage. The next section gives a brief description of the

Gibbs sampling procedure.

3.5 Gibbs sampling

Gibbs sampling is used to generate a sequence of observations from a multivariate prob-

ability distribution in situations where direct sampling from the distribution is difficult

[Bishop, 2006]. The distribution that we are interested in this thesis is the joint distri-

bution between the hidden states X = {X1, X2, .., XJ}, the ECG, ABP observations (ECG):

Y = {Y1, Y2 -, yt}, and (ABP): Z = {zi, z2 ,... . , Zt} and the parameters E of the model. The

parameters E consists of the scale(A), shape(S) of ECG and ABP.

P(X, Y, ZJ )

In a general sense, "Each step of the Gibbs sampling round will replace the value of one

variable, drawn from the distribution of that variable conditioned on the values of the other

variables" [Bishop, 2006]. After a variable is sampled it will be immediately used to update

the distributions so that the next variable that's being sampled will see the result of the

update. After all the variables are sampled and updated the next Gibbs sampling round

would start. After a certain number of initial Gibbs sampling rounds (termed as "burn in"

rounds) the sampled that are drawn can be used to approximate the joint and marginal

distributions of interest.
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Around 1000 Gibbs sampling rounds are performed while doing the experiments. The

shape(s) and scale(A) parameter values are seen to converge after around 20-30% of Gibbs

sampling rounds are done. The convergence results are shown in Chapter 5. The setup for

Gibbs sampling is shown in Figure 3-6.

Choose
# states: Nx
# Gibbs Sampling rounds: Ns

Running the HMM and Gibbs sampler

Ns== 1 IfNs>1
(first Gibbs Sampling round) (subsequent Gibbs

sampling rounds)
If Nt == 1 (first time step)
Set Prior Probabilites for states I
Set Prior transition matrix
Set Prior Emission Parameters
(scale,shape) for (ECG, ABP)

Updaed
HMM and matrices and HMM and
Sampling parameters Sampling

Gibbs sampling ends
V

Output = Model
e Initial State Probabilities after each sampling round
e State Transition Matrices after each sampling round
* (shape, scale) for (ECG, ABP) after each sampling round
* Loglikelihood after each sampling round

Figure 3-6: Gibbs sampling iterations.

At the beginning the number of states Nr and the number of Gibbs sampling rounds Ns

is chosen by the user. For the very first time step in the first Gibbs sampling round the prior

probabilities, transition matrix, emission probabilities are preset. For the subsequent steps

the parameters are chosen by the Gibbs sampling process. The steps of the Gibbs sampling

process are given below. The equations are froi [Cuesta Infante and Veerainachaneni, 2015.

1. Sample from the initial state distribution. Our initial state distribution is chosen to
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be a Dirichlet distribution.

PD(7r; 1 1(X1 ))

Where

* PD - Dirichlet Distribution

* 7r - initial state probability distribution

* I(xi) - returns a row vector of Nx - 1 zeros and 1 one in the position of the active

state

The equation is from [Cuesta Infante and Veeramachaneni, 2015].

2. Sample from each row of the transition matrix. Each row follows a Dirichlet distribution

PD(7r(i); I K(xt = i))

Where

e xt - state at time t

* aij - transition matrix from state i to j

0 rTi) = [aii, ... , ai,N] be the pmf over the transition from xt = i to every xt-4 .

* Function K(xt = i) returns a row vector where position j is the count of visits

from xt = i to xt+l = j, for t = 1 to T. Here i, j E {1, 2, .. , Nx}

The equation is from [Cuesta Infante and Veeramachaneni, 2015].

3. For each state(Nx) sample the relevant shape(S) and scale(A) parameters for each

variable from the relevant distribution.

generalized.

For scale(A):

Assume the transformation A = f1/s

PIG (fi;

The equations below are for Y but can be

T \

t= I(Xt = si)
(3.1)
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Where

" xt - state at time t

* PIG - Inverse Gamma distribution

" a - parameter associated with the Inverse Gamma distribution

* - parameter associated with the Inverse Gamma distribution

Sni=EI(Xt = i) where I is the indicator function.

* yt - observation

" si - scale related to xt = i

The equation is from [Cuesta Infante and Veeramachaneni, 2015].

For shape(S):

PG(Si IYT) C fE ' PG(Si, (3.2)

Where

* PG - Gamma distribution

*' - parameter associated with the Gamma distribution

(' - parameter associated with the Gamma distribution

* si - scale related to Xt = i

" yt - observation

" f - taken from the transformation A = 1/S

fE = exp I(xt = (3.3)

The equations are from [Cuesta Infante and Veeramachaneni, 2015].

51



4. Sample from the Markov chain of states

p(x1 = i-) 7ri -PO(yi, ZI I = i)

-P(Y2:Nti Z2:Nt JX =1

p(xt = jlxt-_=i,.. -) c< aij-po(yt,zt xt=j)

-P(Yt+1:Nt, Zt+1:Nt Xt =)

Where

* po(yt, ztIxt = i) is the observation probability of the pair (y, z)

that state xt = i.

at time t, given

* 71(i) = [ai,1, ... , ai,Nx] be the pmf over the transition from xt = i to every xt+1.

* asj - transition matrix from state i to j

The equations are from [Cuesta Infante and Veeramachaneni, 2015].

5. Store the sampled variables.

6. Go back to step 1.

The Gibbs sampling section concludes the description of the Latent State Space Copula

Model. The prediction framework will be introduced in the next section where we use the

Latent State Space Copula Model to make predictions on whether the patient blood pressure

levels are going to be below a certain threshold in a future time window.

3.6 Model Prediction

The blood pressure prediction problem is shown in Figure 3-7.

If the current time is t, the historical signals of -y time steps before is used to train the

machine learning algorithm. The prediction is made for T period of time steps ahead, for a
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T aICU Admission I
Lag Lead

- - ~- I/----

- t t+T t+T+CU

Figure 3-7: The blood pressure prediction problem. Figure taken from [XWaldin, 2013]

time window of length . This is the fundamental prediction problem and over the past few

years there have been attempts to predict blood pressure using various algorithms based on

this prediction problem definlitioll [Waldin, 2013], [Dernoncourt et al., ], [Kim et al., 2014].

For the Latent State Space Copula Model the implementation of the prediction process

is given below.

We run a large number(i.e ~ 1000) of Gibbs sampling rounds and store the updated models.

The following parameters are extracted from the final Gibbs sampling round

1. shape(A), scale(s) paralieters of the W\eibull pdfs associated with ECG, ABP

2. transition matrix(A). initial matrix (Initial) of the Hidden Markov Model

With these parameters we make predictions on a test data set. Ve train on 500 patients

and test on 150 patients. Our prediction problem is to observe lay lllum1lber of historical times

steps and predict lead tine steps ahead for a window of ?v length. The current results are

for

1. lag = 6 - 120min

2. lead = 1 -+ 20in

3. window length w =1 -> 20miwn/

In the text below Y ECG, Z = ABP, X = states{ 1, 2, .. , NX}. Consider the time to

go form t = 1, 2.. The algorithin for making predictions is given below.

At time step k;

0 Step 1 :

Compute P(X.Y , Z.-1) using the parameters learnt from the HMM training phase:
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P(Xk 71l-l, Zi--1 ) is a Nx 1 vector (i.e If N, = 3 then P(XkJY1k-, Z- 1) is a 3 x 1

vector).

Step 2 :

Use P(Xklylk-, Z- 1 ) and the tranistionmatrix(A) from the final Gibbs sampling

round to predict a lead + window time ahead;

P(Xk+ead+window Y1-~, Zi-) = P(X k-, Zi-1 ) * Alead+window

We assume that the transition matrix to be the same for the period of lead + window

number of time steps. Additionally since the window size = 1, we can do a simple

addition in the exponent of Alead+windou when projecting ahead. If the windowsize > 1

the process would be different.

* Step 3

Compute the P(Zk+ead+window < 60mmg ZI-);

In order to compute this value we need to use the precomputed values of

P(Z < 6 0mmHg X; Ay, Sy, Az, Sz). The steps to pre compute this value is given below

- Given the Ay, Sy, Az, Sz parameters taken from the final Gibbs sampling round

we first find P(Y, ZJX) = C(U, V; Q) * P(YIX) * P(ZIX), where C is a Gaussian

Copula, U = CDFmarginai(Y), V = CDFmargina(Z) and Q a covariance matrix

for a given state X

- Then we marginalize to get

/y-max
P(ZIX) = min P(Y, ZIX)dy

- We can get the probability of Z being less than 60 mmHg by

/60P(Z < 60m~MHg I X) = JO P(ZIX)dz

Since the scale(A),shape(s) are parameters are known immediately after training

this value can be precomputed. The precomputed marginals and cdf's are shown

in figure 3-8 and 3-9 '
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- This value is the same for any time step. Thus

P(Zk+ead+window < 6 0mmH g Xk+lead+window) = P(Z < 6 0mmHgfX)

Finally we use the pre-computed P(Zk+ead+window < 6 0mmHg Xk+lead+window) value to

calculate

P(Zk+lead+w < 60mmHglyk-1, Z- 1 )

P(Zk+lead+w < 6 0mmHg IXk+lead+w) * P(Xk+lead+w 1yk-1, Zk-1) (3.6)
Xk+lead+w=l

This is our chosen method of implementing prediction

e Step 3 (Alternative)

Another option for step 3 is

Given the observations find the most likely state and associated probability from step

2

P(X yk-1 Z-1) = argmaxxPXk1eadwndow yk-1 Zk-1)

Given P(Z|Yik-, Z- 1 ) and the pre-computed P(Z < 6 0mmHg|X) find the joint prob-

ability of X and ABP < 60mmHg conditioned on the observations

P( Zk+ead+w < 6 0 mmH g, Y 1 -, Z- 1 )= P(Zk+lead+w < 60mmH Z )
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The marginal distributions and cdf's for step 3 is given below.

1. Marginal distributions and cdf's N, = 3

2.5

2

1.5

1

0.5

0

.10-2
Z marginal

Nx:1 rho:0.2

Nx:2 rho:0.6

. Nx:3 I rho:0.8

0 0.2 0.4 0.6 0.8 1
X

1

0.8

0.6

0.4

0.2

0

(a) The precomputed marginal
distributions based on the joint.

The dashed black line is the ABP= 60mmHg.

cdf using cumsum

Nx 1 rho:0.21 P(<601 X)=.10046

. . . Nx :2 1 rho:0.61 P(<601X)=.0693

Nx :3 rho:0.8 P(<60 X)=.0035

0 0.2 0.4 0.6 0.8 1
x

(b) The precomputed cdf's based on the
marginals.The dashed

black line is the ABP=60mmHg.

Figure 3-8: Marginal distributions and CDFs based on the marginals

2. Marginal distributions and cdf's N, = 5

.10-2
Z marginal cdf using cumsum

2 Nx: rho:0.21 P(<601 X)=0.00283
- - - Nx:2 I rho:0.4[ P(<601X)=0.1512

...... Nx:3 lrho:0.61 P(<601 X)=0.0016

Nx:4 lrho:0.71 P(<601 X)=0.0622

...... Nx:5 lrho:0.81 P(<601 X)=0.0009
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(a) The precomputed marginal
distributions based based on the joint.

The dashed black line is the ABP= 60mmHg.
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(b) The precomputed cdf's based on the

marginals.The dashed
black line is the ABP=60mmHg.

Figure 3-9: Marginal distributions and CDFs based on the marginals
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The code for pre-computing P(Z < 60mmHgIX; Ay, Sy, Az, Sz) is given in Appendix A.

Basically the key takeaway for this section is that the equation

P(Zk+lead+w < 60mmHg Yk, ZI) =

P(Zk+ead+w < 6 0mmHg Xk+lead+w) * P(Xk+lead+w 1k 1 37)
NX

Xk+lead+w=l

which allows us to make predictions using the Latent State Space Copula Model. This model

was implemented in MATLAB and tested on the patient data set mentioned in Chapter 2.

This concludes our discussion of Model Description and Prediction and we will now move

on to explain the experiments in Chapter 4 and the results analysis in Chapter 5.
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Chapter 4

Experiments

This chapter discusses the experiment setup for running the Latent State Space Copula

Model and Classical Discrete HMM on the patient data set. Other various methodologies

that we utilized while doing the experiments will also be discussed. The chapter will end

with a brief mention of the computing costs associated with the experiments.

4.1 Data splits and 5 fold crossvalidation

We split our 650 patient data set into 150 patients (23.1%) as the withheld data set and

perform 5 fold cross validation on the rest of the 500 patients (76.9%). 5 fold crossvalidation

gives us an idea about the variance within the training data set and also an idea about how

well our models are going to generalize. The experiments were run with number of states

N, = {3, 5}. The following procedure was used when running the experiments

1. Step 1: Run 1000 sampling rounds on training folds and save the model.

2. Step 2: From the saved model get the final shape(s), scale(A) from the last Gibbs

sampling iteration.

3. Step 3: Run the prediction algorithm on the testing folds using the shape(s), scale(A)

from step 2
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In addition to cross validation there was training on the complete training data (500

patients) and the prediction algorithm was run on the withheld data (150 patients). The

ROC curves for each state and the analysis is given in Chapter 5.

To compare the Latent State Space Copula Model with the Discrete HMM we ran the

discrete HMM for N = {3, 5} on the same data set. The following procedure was used to

generate the plots for the Discrete HMM

1. Select the number of states Nx={3, 5}

2. Select lead = 20 minutes

3. Run the Discrete HMM for various lags = 20, 40, 60,80,100,120 min

The results and analysis for each state for various lags is given in Chapter 5.

4.2 Parallel Data processing

When running experiments with the Latent State Space Copula Model , (ECG, ABP) read-

ings from 500 patients needed to be processed for each time step. Considering the fact that

there are approximately 500 time steps for each patient, this computation would take a long

time if done sequentially. In order to speed up the computation and to make use of multicore

computer clusters (MIT CSAIL provides compute nodes with 16-24 cores) we utilized the

"parallel for loops" programming paradigm. This essentially involves parallel processing of

"n"number of patients at a time. Data from a single patient would be assigned a single core

in a multicore computer cluster environment. By using this paradigm we were able to bring

down the processing time by a factor of 1/num-cores.

The basic structure of a parfor loop is given below. MATLAB and python offer parallel

for loop capabilities and for this thesis the "parfor" loops from the MATLAB programming

environment were used.

The MATLAB parfor variable classifications are shown below
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0 - ;

c = pi;
2 = 0;

r = rand(1,10);

parfor i = 1:10

temporary variable a = i; - loop variable

reduction variable z = 2+1; sliced input variable
b (i) = r i);

sliced output variable f <= c : - broadcast variable
d - 2*a;

end
end

Figure 4-1: MATLAB parfor variable classification. Figure taken from
[The MathWorks, 2015].

The definition of each type of variable and how it was used in the context of medical

data is given below. Source [The MathWorks, 2015].

1. Loop Variable : This is the variable that's considered as the index for each parallel run

of the parfor loop. In our context each patient p was used as the loop index variable

for each parallel run.

2. Broadcast Variables: These variable values are broadcast to all parallel workers. The

value is assigned before the loop starts and is used without modification inside the

loop. The model (0) varibales were used as broadcast variables during the prediction

phase.

3. Sliced variables : Arrays or data structures that store values generated or used when

the loop runs. The ROC probability values were stored in a sliced variable array during

the prediction phase.

4. Reduction Variables : Variables that accrue values as the loop runs, disregarding

execution order. A reduction variable was used to count the number of patients that

were currently processed.

5. Temporary Variables : Variables created and used inside the loop.
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4.3 Computation cost

During the training stage of the HMM 1000 Gibbs sampling rounds were run for states

Nx = {3, 5}. For Nx = 3 a single Gibbs iteration took 10 minutes on average on a cloud

node that has 24 cores, 24 GB RAM when running for 400-500 patients in parallel. Thus

1000 Gibbs sampling rounds takes 10*60*1000/(24*3600) = 6.94 days. From another view

point each Gibbs sampling round deals with 400-500 patients. Thus it took 10 minutes to

process 400-500 patients for Nx = 3 during 1 Gibbs sampling round. This makes the time

to process a single patient to be roughly 10*60/500= 1.2 seconds during 1 Gibbs iteration.

For Nx = 5 a single Gibbs iteration took 15 minutes on average on a cloud node that has

24 cores, 24 GB RAM when running for 400-500 patients in parallel. Thus 1000 Gibbs

sampling rounds takes = 15*60*1000/(24*3600) 10.41 days and time to process a single

patient within 1 Gibbs iteration is = 15*60/500 = 1.8 seconds.

During testing the models generated from training were extracted an evaluated on the

testing data set. During the testing stage we were able to use the MATLAB parfor paradigm

and cut the processing down to 1/num-cores = 1/24 cores.

After painting a clear picture of the experiments we now move on to Chapter 5 where we

discuss the results from the experiments.
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Chapter 5

Results and Discussion

Our novel Latent State Space Copula Model and the associated Gibbs sampling process

provides a set of parameters associated with the Weibull distributions at the end of a complete

Gibbs sampling simulation. In this chapter we discuss how we select the parameter values

that accurately model the underlying (ECG, ABP) distributions, evaluate how well they

fit the data using the loglikelihood function, see how well they perform when doing Acute

Hypotensive Episode (AHE) prediction and compare them to a Classical Discrete HMM

which was introduced in Chapter 3. This chapter addresses the following high level questions

1. How can we evaluate the convergence characteristics of the models generated by the

Latent State Space Copula Model? (A discussion and definition of convergence will be

given in section 5.1)

2. How good are the models in terms of predicting Acute Hypotensive Episodes? (Ad-

dressed in Section 5.2)

3. How does the model compare to the Classical Discrete HMM? (Addressed in Section

5.3)

5.1 Convergence

During the Gibbs sampling process we sample parameters shape(S), scale(A) from prior and

posterior distributions. If we are sampling k parameters , each parameter is visited "in or-
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der" within a single Gibbs sampling round.

In this context, convergence means when the number of sampling rounds N, is made very

large (the exact number is problem specific) the samples we draw would be very close to

samples drawn from the actual marginal and joint distributions [Gelfand and Smith, 1990].

This is rigorously proven in the original Gibbs sampling paper [Geman and Geman, 1984]

and summarized in [Gelfand and Smith, 1990]. Another very intuitive way of interpreting

convergence is to consider the Gibbs sampling process as a Markovian update scheme where

a Markov chain of samples is generated (each sample is correlated with the nearby sample).

The Markov chain achieving steady state after a large number of state transitions is analo-

gous to the Gibbs sampler producing samples that approximate the joint distribution after

a large number of Gibbs sampling rounds [Casella and George, 1992].

In this thesis we define the parameters to have converged when the shape(S), scale(A)

values of the ECG, ABP Weibull distributions show approximately the same value for a

large number of iterations with minimum fluctuation. We can observe this by looking at

convergence statistics for each state for a given experiment.

Convergence statistics for each state

The simplest way to observe this is by observing the parameter values achieve a steady

value as seen in Figure 5-1 and Figure 5-2 for Nx = 3 and in Figure 5-8 and Figure

5-9 for Nx = 5. But to be more precise we constructed a series of Tables [5.1 - 5.8]

to quantify convergence statistics. Since there are parameters associated with multiple

states and some state associated parameters achieve convergence faster than others we

decided to look at parameter values for each state separately and evaluate convergence.

We then try to come up with a common threshold for each group of parameters. Namely

{Tecgscale, T-ecg-shape, T-abp-scale, T-abp-shape}. If the standard deviation of the

associated parameter value is equal to or below this threshold for a I number of iterations

then we consider the parameter values to have converged. We observe the tables and propose

values for the suggested parameters.
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In the tables the first column is the iteration number. The next columns are the mean

and standard deviations for the scale (S) and shape (A) values for ECG, ABP.

1. N, = 3 1 state = 1

ECG (Nx =3) ABP (Nx =3)
Scale Shape Scale Shape

Itera- mean std.dev mean std.dev mean std.dev mean std.dev
tion
1-200 0.423 0.028 2.981 0.352 0.397 0.031 3.343 0.52
201-400 0.432 0.002 3.047 0.035 0.432 0.002 2.987 0.013
401-600 0.428 0.001 2.975 0.016 0.435 0.001 2.99 0.014
601-800 0.428 0.001 2.977 0.021 0.435 0.001 2.983 0.011

Table 5.1: The Mean and standard deviation of the shape(S), scale(A) for Nx = 3 1 state = 1

2. Nx = 3 | state = 2

ECG (Nx =3) ABP (Nx =3)
Scale Shape Scale Shape

Itera- mean std.dev mean std.dev mean std.dev mean std.dev
tion
1-200 0.214 0.013 5.421 0.991 0.372 0.033 5.509 0.805
201-400 0.221 0 6.183 0.032 0.331 0.002 5.369 0.1
401-600 0.22 0 6.173 0.012 0.329 0.001 5.532 0.038
601-800 0.22 0 6.138 0.022 0.33 0.001 5.544 0.036

Table 5.2: The Mean and standard deviation of the shape(S), scale(A) for Nx = 3 1 state = 2

3. Nx = 3 1 state = 3

If we observe the standard deviation for shape (S) for (ECG,ABP) we see that after

the 400th Gibbs iteration the standard deviation for the shape is below 0.061 for the next
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ECG (Nx = 3) ABP (Nx = 3)
Scale Shape Scale Shape

Itera- mean std.dev mean std.dev mean std.dev mean std.dev
tion
1-200 0.228 0.043 4.111 1.269 0.563 0.143 6.011 0.578
201-400 0.206 0 5.705 0.044 0.487 0.004 6.045 0.164
401-600 0.206 0 5.725 0.03 0.482 0.002 6.421 0.061
601-800 0.206 0 5.715 0.029 0.483 0.002 6.55 0.058

Table 5.3: The Mean and standard deviation of the shape(S), scale(A) for Nx = 3 1 state = 3

400 iterations and the mean is approximately constant for each state. We also see that the

standard deviation for scale (A) for (ECG,ABP) is below 0.002 after the 400th iteration for

a 400 iteration period while the mean remains approximately constant. These observations

motivate us to offer a simple' definition of convergence in the following paragraphs.

To observe this pattern further, we look at Tables [5.4 - 5.8] where the shape(S), scale(A)

values for (ECG,ABP) related to each state for Nx = 5 is shown.

1. Nx = 5 | state = 1

ECG (Nx = 3) ABP (Nx = 3)
Scale Shape Scale Shape

Itera- mean std.dev mean std.dev mean std.dev mean std.dev
tion
1-200 0.423 0.028 2.981 0.352 0.397 0.031 3.343 0.52
201-400 0.432 0.002 3.047 0.035 0.432 0.002 2.987 0.013
401-600 0.428 0.001 2.975 0.016 0.435 0.001 2.99 0.014
601-800 0.428 0.001 2.977 0.021 0.435 0.001 2.983 0.011

Table 5.4: The Mean and standard deviation of the shape(S), scale(A) for Nx = 5 1 state = 1

2. Nx = 5 state = 2

3. Nx = 5 state = 3
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ECG (Nx =3) ABP (Nx =3)
Scale Shape Scale Shape

Itera- mean std.dev mean std.dev mean std.dev mean std.dev
tion
1-200 0.214 0.013 5.421 0.991 0.372 0.033 5.509 0.805
201-400 0.221 0 6.183 0.032 0.331 0.002 5.369 0.1
401-600 0.22 0 6.173 0.012 0.329 0.001 5.532 0.038
601-800 0.22 0 6.138 0.022 0.33 0.001 5.544 0.036

Table 5.5: The Mean and standard deviation of the shape(S), scale(A) for Nx = 5 1 state = 2

ECG (Nx =3) ABP (Nx =3)
Scale Shape Scale Shape

Itera- mean std.dev mean std.dev mean std.dev mean std.dev
tion
1-200 0.228 0.043 4.111 1.269 0.563 0.143 6.011 0.578
201-400 0.206 0 5.705 0.044 0.487 0.004 6.045 0.164
401-600 0.206 0 5.725 0.03 0.482 0.002 6.421 0.061
601-800 0.206 0 5.715 0.029 0.483 0.002 6.55 0.058

Table 5.6: The Mean and standard deviation of the shape(S), scale(A) for Nx = 5 1 state = 3

4. N, = 5 | state = 4

ECG (Nx = 3) ABP (Nx = 3)
Scale Shape Scale Shape

Itera- mean std.dev mean std.dev mean std.dev mean std.dev
tion
1-200 0.214 0.013 5.421 0.991 0.372 0.033 5.509 0.805
201-400 0.221 0 6.183 0.032 0.331 0.002 5.369 0.1
401-600 0.22 0 6.173 0.012 0.329 0.001 5.532 0.038
601-800 0.22 0 6.138 0.022 0.33 0.001 5.544 0.036

Table 5.7: The Mean and standard deviation of the shape(S), scale(A) for Nx = 5 1 state = 4

5. Nx = 5 | state = 5

If we observe the standard deviation for the shape(S) for (ECG,ABP) we see that after
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ECG (Nx = 3) ABP (Nx = 3)
Scale Shape Scale Shape

Itera- mean std.dev mean std.dev mean std.dev mean std.dev
tion
1-200 0.228 0.043 4.111 1.269 0.563 0.143 6.011 0.578
201-400 0.206 0 5.705 0.044 0.487 0.004 6.045 0.164
401-600 0.206 0 5.725 0.03 0.482 0.002 6.421 0.061
601-800 0.206 0 5.715 0.029 0.483 0.002 6.55 0.058

Table 5.8: The Mean and standard deviation of the shape(S), scale(A) for Nx = 5 1 state = 5

the 400th Gibbs iteration the standard deviation remains below 0.061 and the mean is ap-

proximately constant. We also see that the standard deviation for the scale(A) is below or

approximately equal to 0.002 after the 400th iteration while the mean remains approximately

constant in that period. We also see that 400 iterations is a sufficiently large enough period

to observe to detect parameter convergence.

Based on these observations if the mean value of the parameters for each state was con-

stant for a I = 400 iteration period and the standard deviation of parameters for each state

is less than or equal to a certain threshold I consider the parameter values to have converged.

The threshold values for each set of parameters is given below

T-ecg-scale = .002

Tabp-scale = .002

T-ecg-shape = .061

T-abp-shape = .061

I = 400 iterations

Another alternative way to define convergence would be to use statistics averaged over

all states instead of looking at each state specifically.

After convergence there are various ways to pick the final parameter values. In this thesis

after observing that the parameter values have converged we extract the parameter values
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from the last Gibbs sampling iteration and use it to recreate the underlying distributions.

Another good approach to discuss convergence is to look at cases where there is "non-

convergence". In general we would observe the parameter values to show large fluctuations

or oscillate when the Gibbs sampler is in a "non-convergent" state. This might occur in

the initial rounds of a Gibbs sampling process (i.e the first 5% of the iteration in Figure

5-1, Figure 5-2). Additionally "non-convergence" might also occur when the Gibbs sampler

is exploring multiple locally optimum values and moving through them before reaching the

global optimum(if it reaches the global optimum at all).

The convergence results for N, = {3, 5} and a discussion is given below.

Results for N, = 3

The values of the scale(A), shape(S) Weibull parameters for ECG and ABP are seen to

converge after about 400-600 Gibbs iterations based on Table [5.1 - 5.3] and the definition

provided in section 5.1. This can also be visually observed in Figure 5-1 and Figure 5-2.

Notice that generally the shape(S) values for both ECG, ABP is greater than 1 which leads

to a Weibull plot that has the shape of a Gaussian or Rayleigh distribution.
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Variable: ECG I Scale
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(b) The S parameter for ECG

Figure 5-1: ECG scale and shape as iterations progressed.
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(b) The S parameter for ABP

Figure 5-2: ABP scale and shape as iterations progressed.

The convergence of scale(A), shape(S) parameters can be further verified by looking at

the standard deviation of the values over iterations in Tables [5.1 - 5.3]. We see the standard

deviations decrease and stabilize as the number of iterations increase.

As mentioned above the shape and scale value from the last Gibbs sampling round is
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extracted and used to plot the graphs in Figure 5-3. In Figure 5-3 the following scale is used

" ECG [0, 1] - .0082 , 359.63] bpm

" ABP [0,11 - [ 31.81 , 167.39 ] mmHg

" ABP 60 mmHg = 0.2079

Figures 5-3 (a) and (b) shows the state specific Weibull pdfs. When the state specific pdfs

are plotted together the resultant distribution approximately matches the original ECG, ABP

distributions. This can be observed from Figure 5-4 and Figure 5-5 where the overlapped

Weibull plots are placed side by side with the original ECG, ABP plots. The fact that we

see the parameter values converging in Figures 5-1, 5-2 and the fact that we see the original

distributions approximately recreated in Figure 5-4, 5-5 provides us useful feedback about

the overall convergence of our Gibbs sampler.

The figure in 5-3 (c) is the cdf of the univariate ABP distributions. The black vertical

line in 5-3 (c) is the ABP = 60mmHg (associated with x = 0.2079). By observing Figure

5-3 (c) we can state that a patient having his/her ABP < 60mmHg for a 20 minute interval,

has a higher probability of being in state 1 as opposed to state 2 or 3.

Weibull distributions ECG | states: 3 Weibull distributions ABP I states: 3 Weibull cdf ABP states: 3

12 1 -
- N.1 " ho0.2 .Nx1 1-0,2

1- Nx:2 rh:0 - - - Nx:2 rho:0.6

------ Nx:3 | rh.0. -.--. Nx:3 rho:0.8 0 8

8
4 0.

6
0.4

2
0.2 1 | r 0.21 P(<601 X)=.093

- Nx:2 1 rho:0.6 P(<601X)=060

-.....- Nx:3 Irh:08 P(<60 X)=002

00- ------ 00
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 12 0.4 0.6 0.8 1

X X X

(a) (b) (c)

Figure 5-3: #Patients: 500 1 #Sampling iterations: 892 ECGABP pdfs, cdf
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Weibull distributions ECG I states: 3
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Figure 5-4: Nx = 3 1 Comparison of aggregate pdf vs original pdf for ECG
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Figure 5-5: Nx = 3 1 Comparison of aggregate pdf vs original pdf for ABP
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The figures above gave us an idea of the convergence of parameters. Next we look into

how the latent states are distributed after the parameters have converged. The (list ribution

of states in the time series of the last Gibbs sampling round is shown in figure 5-6.

State distribution Nx3

3

2.51
2

1.5

states

Figure 5-6:
iterations =

State

892 1
distribution over time slices for all patients patients

total # states = 61135

500 1 sampling

There are a total number of 61135 state associated with 61135 time slices. Given that

there are 500 patients there are an average number of 61135/500 122.27 states or time

slices per patient. Given that each state or time slice is associated with a 20 minute interval

this is equivalent to 122.27 * 20/(60 * 24) = 1.6982 days worth of readings. We see that

the majority of the patients are in state 1. By observing Figure 5-3 we can see that state 1

is associated with a high ECG and medium ABP values (based on the modes of the ECG,

ABP distributions for state 1: in red).
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Table 5.9 shows the statistics related to the scale(A), shape(s) values over all the Gibbs

sampling rounds. This table was populated by recording the scale(A), shape(s) value for each

ECG, ABP state at the end of each Gibbs iteration and calculating the statistics (standard

deviation and mean) for each parameter. We observe that the scale(A) has lower standard

deviations than the shape. Our choice of using the Weibull distribution gives us more

flexibility in exploring different shapes of distributions (exponential, Gaussian, Raleigh).

Table 5.9: Mean and
3, Ns = 892)

standard deviation over all iterations for estimated parameters (Nx =

Finally we evaluate the loglikeliood fit of our model to the data. Suppose there are

t observations Y1, Y2, ... , Yt which come from an unknown probability distribution that is

parametrized by e (vector of parameters) the likelihood L is defined as

L(O ; y1,y2, ..., iYt) = P (YI, Y2, ... , Yt I E))

In order to get the log likelihood we take the logarithm of the above function. In our model

we do not assume that the data is independent. Thus based on our structure introduced in

Chapter 3 we use a copula based approach to calculate the loglikelihood. The likelihood for

our model is

L(6; Y1, Y2, ... , Yt) = P(Yill() * P(Y218) *..*P(yt|E)) * copula-pdf (yi, Y2, ... , Yt)
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ECG (Nx = 3)
Scale Shape

State mean std.dev mean std.dev
1 0.428 0.014 2.993 0.17
2 0.219 0.007 5.996 0.562
3 0.211 0.022 5.355 0.899

ABP (Nx 3)
Scale Shape

State mean std.dev mean std.dev
1 0.426 0.022 3.067 0.287
2 0.339 0.024 5.495 0.391
3 0.502 0.075 6.284 0.371



t

ln L(E;y 1,y 2, ---,Yt) = lnP(yilE) +lncopula-pdf(y1 ,y 2, ---,yt)

In our example there are 2 variables Y = ECG, Z = ABP and each follow a Weibull

distribution with shape S and scale A. For simplicity we assume that we are computing the

equations for a specific state i.

W - denotes the cumulative distribution function of the Weibull pdf

c - denotes the Gaussian copula pdf

p - denotes a correlation parameter associated with the copula

U = W(Y; Sy, Ay)

V = W(Z; S, Az)

p = [1 pi; pi 1]

the copula-pdf can be wriiten as

copula-pdf (Y, Z) = c (U, V; p)

The individual marginal pdfs P(yilO) can be written as

P (Y|E) = Weibull(YISy,Ay)

P (Z|E) = Weibull(ZISz, Az)

The loglikelihood equation can be rewritten as

ln L(E; y1 , y 2 , ---, yt) = ln Weibull(YISy, Ay) + In Weibull(ZIS, Az) + In c (U, V; p)

With the above equations we compute the loglikelihood fit of our model to the data. The

resulting plot is given in Figure 5-7. The likelihood is a measure of proportionality of the

probability of observing the data given the model. Thus it is a relative measure and the

actual value of a point measure of the loglikelihood does not carry any interpretable value.

It can also have positive values [Eliason, 1993]. We observe that as the sampling iterations

increase the loglikelihood improves suggesting that the relative probability of observing the
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data given the model improves.

Loglikelihoocvs Gibbs iteration Nx: 3 Np: 500 Ns:892
100~

1

0
C0.5

-1 0

~-0.5

0 200 400 600 800 1,000
Gibbs Iteration

Figure 5-7: Loglikelihood vs Gibbs iteration for Nx: 3

Results for N., 5

From Tables [5.4 - 5.8] we see that for N, = 5 it takes around 400-600 Gibbs iterations for the

parameter values to converge (based on the definition of convergence given in section 5.1).

This is approximately similar to the number of iterations needed for N, = 3 to converge. The

convergence behavior can also be visually observed from Figure 5-8 and Figure 5-9 where we

see the parameter values converge around the 400-600 iteration range.
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Variable: ECG Scale
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Figure 5-8: ECG scale and shape as iterations progressed.
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Figure 5-9: ABP scale and shape as iterations progressed.
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Similar to N, = 3 from Figure 5-10 a) and b) we see that when the ECG, ABP pdf's for

each state are plotted together the resultant distribution approximatly matches the original

ECG, ABP distributions. This can also be verified from Figure 5-11 and 5-12 where the

overlapped distribution is placed side by side with the original distribution.
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Figure 5-10: #Patients: 500 1 #Sampling iterations: 1000 1 ECG,ABP pdf,cdfs
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Figure 5-11: Nx =5 1 Comparison of aggregate pdf vs original pdf for ECG

The state distributions for Nx = 5 is given in Figure 5-13. We see that there are a large

number of states associated with state = 4 (yellow) which is related to low ECG and low

ABP.

Table 5.10 shows the statistics related to the scale(A), shape(s) for each state over all the

Gibbs sampling rounds for N, = 5.

This table was populated by recording the scale(A), shape(s) value for each ECG, ABP

state at the end of each Gibbs iteration and calculating the statistics (standard deviation
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Weibull distributions
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Figure 5-13: State distribution over time
iterations = 1000 1 total # states = 61135

slices for all patientsl patients = 500 1 sampling

and mean) for each parameter. The entries with the higher standard deviations correspond

to plots where there are large fluctuations of the parameters values during the initial Gibbs

sampling iterations.

The loglikelihood fit for N, = 5 is shown in figure 5-14. Again we see that as the number

of sampling iterations increase the loglikelihood improves suggesting an improvement in the

relative probability of observing the data given the model.
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ECG (Nx 5)
Scale Shape

State mean std.dev mean std.dev
1 0.344 0.032 2.478 0.267
2 0.427 0.025 2.913 0.24
3 0.211 0.003 5.589 0.511
4 0.22 0.003 5.59 0.456
5 0.508 0.015 6.942 1.553

ABP (Nx 5)
Scale Shape

State mean std.dev mean std.dev
1 0.564 0.025 5.563 0.384
2 0.294 0.008 4.883 0.298
3 0.44 0.035 8.358 1.271
4 0.324 0.015 6.621 0.452
5 0.406 0.018 9.807 1.007

Table 5.10: Mean and standard deviation over all iterations for estimated parameters (Nx
5, Ns = 1000)

Loglikelihood vs Gibbs iteration I Nx: 5 1 Np: 500 1 Ns:1000
-10
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Figure 5-14: Loglikelihood vs Gibbs iteration for Nx: 5
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5.2 Acute Hypotenisive Episode(AHE) event predic-

tion

One of the main use cases of our model is to predict Acute Hypotensive Episodes (AHE).

Our predictions are binary and predict whether the aggregated ABP was above or below a

certain threshold. The Area Under the Receiver Operating Characteristic(AUROC) Curve

is a good method to analyse the Sensitivity vs (1-Specificity) trade off of the predictions at

different threshold levels. An area close to 1.00 is considered the best and an area near 0.5

is considered as an outcome of a random experiment.

Crossvalidation AUROC curves for Nx = {3}

The AUROC curves generated after 5 fold crossvalidation, testing on the withheld data is

shown in Figure 5-15. The AUROC is for a lead = 20 min , lag = 120 min. The AUROC

on the withheld data is 0.68538 for N_ = 3.

We observe that the AUROC of 0.685 on the withheld data set is not an extremely good

value (since it's close to 0.5 which is associated with a random experiment). The reason for

this might be that for N_ = 3 we might not be accurately modelling the original ECG, ABP

distributions. The number of states might be too low to capture the complex characteristics

that exist within a 500 patient data set. We also observe that fold 4 has a relatively high

AUROC but since we do 5 fold cross validation we get a good idea of the variance that exists

within the training data set. Results from N = 3 motivates us to experiment with larger

number of states hoping to improve the AUROC.

Crossvalidation AUROC curves for Nx = {5}

For N, = 5 the AUROC plots are shown in Figure 5-16. The AUROC for the withheld data

is 0.79175. We observed that the prediction AUROC has improved with more states. This

indicates that going from 3 states to 5 states better models the complex characteristics that

lie in the ECG, ABP signals of ICU patients. We again see that the results for fold 4 is

better than the others which is consistent with the observations from N, = 3.
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Figure 5-15: Nx = 3 1 ROC curves for the crossvalidation folds and withheld data
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Figure 5-16: Nx 5 ROC curves for the crossvalidation folds and withheld data
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Table 5.11 shows a comparison between the average AUROC for the crossvalidation folds

vs withheld data. The results for the crossvalidation and withheld data are similar and this

indicates that there is no huge variance between the training and testing data sets.

N, Average over 5 folds Withheld

3 0.6234 .09 0.6853
5 0.8094 .03 0.7917

Table 5.11: Comparison table
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5.3 Comparison of Discrete vs Latent State Space Cop-

ula HMM

Part of our exercise involves comparing the Latent State Space Copula Model results with the

Classical Discrete HMM. We used the Classical Discrete HMM described in [Collazo, 2015]

as our choice of discrete HMM.

The results for N. {3, 5} for the discrete HMM is given in the following sections. In

Figure 5-17 we show results where we ran the discrete HMM with a lead = 20 muin and with

lags ranging from 20 min to 120 minutes. For each lead,lag combination we ran the discrete

HMM over 5 folds. The error bars in the plot are generated based on the results from the

folds.

Descrete HMM I Nx:3 I lead:20min

0

0.8

0.6

0.4

0.2

0

0 20 40 60 80 100 120

lag(minutes)

140

Figure 5-17: Discrete HMM AUROC for N, 3 for different lags

It's observed that beyond a certain point (80min for N = 3) increasing the lag does not
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increase the AUROC significantly. In other words the previous 80 min captures most of the

information that the HMM uses for prediction.
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Descrete HMM I Nx:5 I lead:20min
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Figure 5-18: Discrete HMM AUROC for N.,

100 120 140

= 5 for different lags

The results for the discrete HMM for N, = 5 is given in Figure 5-16. Again for a

lead = 20 min we experimented with different lags ranging from 20 min to 120 min. It's

observed that beyond 40 minutes an increase in lag does not increase the prediction AUROC.

A comparison between the Latent State Space Copula Model and the Classical Discrete

HMM is given in Table 5.12 below.

AUROC for lag = 120 min

HMM N = 3 N =5

Latent State Space 0.68538 0.79175
Discrete 0.74 0.7609

Table 5.12: Comparison table with results from the withheld data set

For Nx = 3 we compare the lead = 20 min, lag = 120 min entries of the Latent

State Space Copula Model and Classical Discrete HMM. The copula model has a AUROC of

0.6853 on the withheld data set. The discrete HMM has a average AUROC of 0.74. We see
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that for Nx = 3 the Classical Discrete HMM performs better than the Latent State Space

Copula Model. For Nx = 5 the copula model has a AUROC of 0.79175 on the withheld

data set. The discrete HMM has a AUROC of 0.7609. We see that for Nx = 5 the Latent

State Space Copula Model is better than the discrete HMM. In general going from 3 states

to 5 states leads to better predictions. We cannot definitely say that increasing the number

of states give us better AUROC but the structure of the HMM's gives us a framework where

we can experiment with the number of states and find a suitable number that's best for the

prediction problem at hand. In the context of this thesis, based on the Table 5.12 we can

state that with Nx = 5 states, a lag of 120 minutes and for a lead of 20 minutes the Latent

State Space Copula Model is the best model that can be used for blood pressure prediction.
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Chapter 6

Conclusion and future work

6.1 Contribution

As mentioned in Chapter 1 the contribution of this thesis is in

1. Aligning and matching the separate ABP and ECG signals.

This task was achieved successfully and the aligned and matched signals were used for

experiments and to generate results.

2. Proposing the novel Latent State Space Copula Model for jointly modelling the ECG

and ABP.

This task was achieved and the latent space copula model provides a framework where

correlated signals can be modelled and used for prediction.

3. Comparing the novel Latent State Space Copula Model with a Classical Discrete HMM.

This task was achieved with ROC results comparison between the Latent State Space

Copula Model and a Classical Discrete HMM. It was shown that the Latent State

Space Copula Model for states N, = 5 produces the best AUROC.

6.2 Future work

There are interesting avenues that can be explored and extensions that can be made with

this research. Some are
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1. Model more than 2 correlated variables.

Currently only 2 variables are used in the model. But the model can actually use up

to n correlated variables. The copula structure allows any number of variables to be

modelled and the only barrier to overcome is the computation cost.

2. Try other correlated variable combinations.

When using ECG, ABP as the example pair, the ABP signal is considered to domi-

nate when making predictions for future blood pressure or predicting AHE events. It

would be interesting to model correlated but non-dominated variables (i.e ABP and a

electronic medical record time series variable).

3. Try larger data sets.

In this thesis signals from 650 patients out of approximately a 6000 patient data set

was used. It would be interesting to see the performance of the model for all 6000

patients and address the associated challenges when scaling to larger data sets.

4. Try other data sets.

It would also be interesting to model a completely different data set and evaluate how

the model performs (i.e education data, financial data).

6.3 Conclusion

In this thesis we have presented a novel Probabilistic Graphical Model structure called the

Latent State Space Copula Model which provides a framework to model the joint behavior

of correlated random variables. We have used it to model the correlation between the ECG,

ABP signals from the data taken from the ICU. We have also used it to make predictions

of AHE events for ICU patients. We hope that this research is carried forward and used in

various domains to model complex relationships between variables and to make predictions

that contribute to society as a whole.
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Appendix A

I

Code

Code for model prediction, Chapter 3

i function [prob-under_60_cumsuml = ...

Prediction-generate-observations (y-range, z-range,Phi,..

2 rho, prediction-threshold-normalized)

z-length=length (z-range);

state-length=length (Phi. X1 (:, 1));

cc=hsv(state-length);

n_ ! .j riz 1. 1 ~ -i

"ob s va Iuesperstate"

[ymesh, z mesh, smesh]=meshgrid(y-range, z-range,i:stateilength);

obs values per-state= [ymesh (:) , z-mesh(:), s-mesh(:)];

[rows,cols]=size (obs values per-state);

joint-YZ-state=zeros(rows,1);

%compute l ( Y, >) 1_ If 5Z-- l1 I , -, , \ I t- -I. I i

for i=1:rows

y=obs-values-per-state (i,);

z=obs-values-per-state (i,2);

state=obs-values-per-state (i,3);

jointYZ-state (i)=priorObservation (y, z, state,

" -i ~ , 1 E ".
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21 {Phi.scalel (:,Phi.s) Phi.shapel (:,Phi.s) },

22 {Phi.scale2(:,Phi.s) Phi.shape2(:,Phi.s)},rho);

23

24 end

25

26 aIdD " 'c h _p-r A e" and " join _ t t e "

27 jointYZ-matrix=[obs-values-per-state jointYZ-state];

28

29 z-marginal=zeros (z-length, state-length);

:3o z-idx=0;

31 Sum U v11 (

32 for i=z-range

33 z-idx=z-idx+l;

34 for s=l:state-length

35 z-marginal(z-idx,s).

36 sum(jointYZ-matrix(jointYZ-matrix(,
2 )==i & ...

jointYZ-matrix(:,3)==s ,4));

37

38 rnd

39 end

40

41 <nOrmaize (Z X)

42 if sum(z-marginal(:)) /0

43 z-marginal=z-margina1./sum(z-marginal(:));

44 end

45

46

47 figure

48 prob-under_60_cumsum=zeros (state-length, 1);

49 legend-str={};

so for i=l:state-length

51 x-values=0:.01:1;

52 g3: P ( A X) m <( )

53 cumsum-values=cumsum (z-marginal (:,i) /sum (zmarginal(i)));

54 plot (x-values, cumsum-values, I ',cc (i, :));

55 hold on;
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56 check where the 60mmHg point i and gyt th' ossociated

57 F (Z<60mmHgnormI ed| K)

58 prob-under_60_cumsum (i)=.

59 max (cumsum-values (x-values<predict ionthreshold-normalized));

60 legend-str (i)=...

61 {['stat ' num2str (i), .

62 ' (u X) ',num2str (prob-under_60-cumsum (i))]};

63

64 end

65 prob-under-60_cumsum

66 plot (ones (length(0: .1:1) )*prediction-threshold-normalized,

67 0: .1:1, '

68 title('odf ui fi m :m'

69 legend (legend-str);

76 hold off

71

72

73 }plOt he ma rinal

74 figure

75 for s=l:state-length

76 plot (0: . 01:1, z-marginal (:,s) ,cc (s,

77 hold on;

78 end

79 plot(ones(length(0:.0001:max(z-marginal(:))))*..

8O predict ion-threshold-normali zed, ...

81 0: .0001:max (z-marginal(:)),' );

82 title ( 'Z ma-gin '

83 legend ({ t t L ' taa ' '}

84 hold off

85 end u l! I.] L

86

87 elid
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