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Variance-Based Sensitivity
Analysis to Support Simulation-
Based Design Under Uncertainty
Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engi-
neering systems. A variance-based global sensitivity analysis is often used to rank the
importance of input factors, based on their contribution to the variance of the output
quantity of interest. However, this analysis assumes that all input variability can be
reduced to zero, which is typically not the case in a design setting. Distributional sensitiv-
ity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random vari-
able, and defines a variance-based sensitivity index function that characterizes the
relative contribution to the output variance as a function of the amount of uncertainty
reduction. This paper develops a computationally efficient implementation for the DSA
formulation and extends it to include distributions commonly used in engineering design
under uncertainty. Application of the DSA method to the conceptual design of a commer-
cial jetliner demonstrates how the sensitivity analysis provides valuable information to
designers and decision-makers on where and how to target uncertainty reduction efforts.
[DOI: 10.1115/1.4034224]

1 Introduction

During the initial stages of the design of a system, the inputs to
and parameters of that system are still very much uncertain, while
at the same time decisions made here have the largest effect on
risk, performance, and cost of the final design [1–3]. It is therefore
of utmost importance to take these uncertainties into account,
both when making design decisions and also when considering the
allocation of resources (people, time, financial budget, computer
resources, experimental resources, etc.) throughout the design pro-
cess. Techniques for the quantitative evaluation of the impacts of
these uncertainties in engineering design are increasingly being
studied and developed. Two significant aspects of uncertainty
quantification in engineering design are uncertainty analysis and
sensitivity analysis. Uncertainty analysis approaches, such as
sampling-based techniques [4–7], surrogate modeling techniques
[8–10], and surrogate uncertainty representation techniques
[11–14], are all employed to ensure the efficient propagation of
uncertainty from model inputs to model outputs. Once this has
been achieved, sensitivity analysis in the form of screening meth-
ods [15], global sensitivity analysis [4,16–18], entropy based
methods [4,19], and moment independent methods [20–22] are
often conducted to quantitatively evaluate the impact of a given
input on output quantities of interest.

Sensitivity analysis plays an important role in engineering deci-
sions under uncertainty, by quantifying the effects of uncertainties
on the output quantities of interest. For example, sensitivity analy-
sis informs a ranking of the most influential uncertain input
parameters and it yields insight into how reducing uncertainty in
those inputs might correspondingly reduce uncertainty in the out-
put quantities of interest [16]. This paper explores these ideas and
extends the so-called distributional sensitivity analysis (DSA) that
targets decision-making for the allocation of resources throughout
the early stages of engineering design.

One goal of sensitivity analysis of model output is “to ascertain
how a given model (numerical or otherwise) depends on its input
factors” [23]. One way of performing sensitivity analysis is to find
the linearized sensitivity of an output with respect to an input

around a baseline, the so-called local approach [16]. These meth-
ods are usually cheap and based on computing derivatives; how-
ever, they do not paint a complete picture, because they are
inherently local. Instead, a global sensitivity analysis (GSA)
explores the full space of the input factors [16]. A variance-based
GSA apportions the variance of a quantity of interest among the
contributions from each uncertain factor and from interactions
among factors.

GSA results are often used in factor prioritization, which ranks
the input parameters based on the expected influence that uncer-
tainty reduction in those parameters has on the system output
[17,18]. In this method, one ranks the factors based on which fac-
tor, if fixed to its true value, yields the largest expected reduction
in output uncertainty; however, Oakley and O’Hagan [24] noted
that it is rarely possible to fix a factor to its true value. Allaire and
Willcox addressed this limitation of GSA by developing a distri-
butional sensitivity analysis (DSA) [25], which computes the
influence on the output variance as a function of the amount of
variance reduction in the input parameters. This results in a
variance-based sensitivity index function. This function can be
used directly to inform decision-making, or alternatively, by con-
sidering the amount of variance reduction in each factor as a ran-
dom variable, the mean value of the variance-based sensitivity
index function provides an average main effect sensitivity index
used for ranking purposes.

This paper expands and extends the DSA approach to create a
sensitivity-based methodology to support resource allocation deci-
sions in engineering design under uncertainty. Specifically, this
paper contributes methods to improve the quality and efficiency
of the sampling within the DSA, which is essential for application
to computational expensive models. Section 2 presents the prob-
lem setup. Section 3 describes the overall methodology. We apply
the method to an engineering system—the conceptual design of a
commercial jetliner—in Sec. 4. Section 5 concludes the paper.

2 Problem Setup

We represent a general engineering system of interest as

y ¼ gðxÞ (1)

where y is the quantity of interest (QoI) and x is the vector of sys-
tem input variables. For clarity of exposition, we consider a scalar
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quantity of interest, although the methodology is straightforward
to apply when there are multiple quantities of interest. These
quantities typically represent design objectives and constraints,
such as the fuel consumption, maximum takeoff weight, and envi-
ronmental performance of an aircraft. We consider n input varia-
bles, x ¼ ½x1;…; xn�>, where xi denotes the ith input variable. The
input parameters represent quantities within the designer’s con-
trol, such as aircraft flight speed, aircraft geometry, density of the
materials used, etc. We consider the model that maps the inputs to
the output quantity of interest, gðxÞ : Rn ! R, to be a black box
function that can be used to evaluate y at any point in the input
space.

We consider the input parameters x to be uncertain, which in
turn induces uncertainty in the output quantity of interest y. In this
paper, our focus is on the task of deciding how to allocate resour-
ces in the design process. That is, we pose the question: How
should the designer allocate design effort to reduce uncertainty in
the input parameters, so as to appropriately manage uncertainty
in the output quantity of interest? For example, in the conceptual
design of an aircraft, the uncertain input parameters represent dif-
ferent aspects of the aircraft design, including aerodynamic per-
formance, structures, weights, stability, controls, propulsion, and
environmental performance. At any current state of the design,
uncertainty in the inputs for each of these disciplines results in
uncertainty in the corresponding system-level metrics (the quanti-
ties of interest). Our goal is to provide quantitative guidance to
the designer on which disciplines to focus design effort and by
how much to reduce uncertainty in each discipline, so as to
achieve desired confidence levels on the quantities of interest.
This information is especially important in early-stage design
where time and money resources are limited, yet critical decisions
are made that lock in later options.

This paper builds on the work of Allaire and Willcox [25] on
the distributional sensitivity analysis (DSA) methodology, which
is proposed as a basis for providing this kind of quantitative guid-
ance. A DSA provides not only an average main effect sensitivity
index that can be used to prioritize efforts but also a function that
estimates uncertainty reduction in y as a function of the uncer-
tainty reduction in each component of x. This information can be
translated directly into deciding how much effort to expend on

reducing uncertainty in a given parameter (e.g., deciding what
fidelity of analyses to run, whether to conduct an experiment,
whether to task a disciplinary team with conducting more detailed
design work, etc.).

A simple notional example to illustrate these ideas is presented
in Fig. 1. On the left, a standard GSA computes the sensitivity
indices that apportion the variance in the output y: 50% from input
parameter x2, 40% from input parameter x1, and the remaining
10% from the interaction between x1 and x2. These sensitivity
indices are based on the premise that all variance in each parame-
ter is reduced. On the right, a DSA computes the sensitivity index
function, which apportions the expected reduction in output var-
iance as a function of the amount of input variance reduction. For
illustration, consider the case that the goal is to reduce the uncer-
tainty of the output y by 50%. A prioritization of effort based on
the GSA would suggest focusing on x2: reducing all the variance
in x2 is expected to yield the desired reduction in output variance.
One could perhaps decide to allocate effort between x2 and x1, but
the GSA results provide no guidance on how to do this and no
indication of the expected result on uncertainty reduction in the
output. Using the DSA results, however, we can combine partial
variance reductions of each input parameter and choose our reduc-
tions accordingly. For example, the DSA results show that reduc-
ing variance in x1 by 45% and reducing variance in x2 by 22%
together provide an expected reduction in output variance of 50%.
From Sec. 3.2 onward, we further explain the methodology that
permits these ideas to be applied in the engineering design setting.

3 Methodology

Global sensitivity analysis and distributional sensitivity analysis
are introduced in Secs. 3.1 and 3.2, respectively. Methodologies
for computing the sensitivity index function for DSA are intro-
duced in Sec. 3.3, while Sec. 3.4 focuses on the surrogate model-
ing technique used throughout this work.

3.1 Global Sensitivity Analysis (GSA). Variance-based
global sensitivity analysis computes a variance decomposition of
the output variance to apportion it among the input variables. This
provides information about the influence of these variables on the

Fig. 1 Comparison of design process using global sensitivity analysis and distributional sen-
sitivity analysis
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output variance, if their respective uncertainties are entirely
reduced. The decomposition of the variance of the random vari-
able Y can be written as

varðYÞ ¼ E½varðYjXiÞ� þ varðE½YjXi�Þ for i ¼ 1;…; n (1)

where Xi denotes the random variable representing the uncertain
input xi.

The quantity E½varðYjXiÞ� is the unexplained variance—the
part of the variance in Y that remains after Xi is fixed somewhere
in its domain. GSA exploits this definition to compute the main
effect sensitivity indices, defined as

Si ¼
var E YjXi½ �ð Þ

var Yð Þ
(2)

where Si is the main effect sensitivity index of input variable Xi.
These main effect sensitivity indices are usually computed using
either the Fourier amplitude sensitivity test (FAST) or the Sobol’
method [18,26,27]. The FAST method uses Fourier transforms,
while the Sobol’ method employs Monte Carlo simulation. The
Sobol’ method is computationally more intensive and depends on
the chosen sample size, but it can more easily compute the higher-
order sensitivity indices, which is required when there are interac-
tions between the parameters [28]. A different approach to
compute a GSA, employed in this work, is to use a high-dimensional
model representation (HDMR) and build up the ANOVA-HDMR.

High-Dimensional Model Representation (HDMR) is used to
represent high-dimensional relations between inputs and outputs
[29–31]. HDMR is a representation that decomposes the model
y ¼ gðxÞ into component functions corresponding to the input var-
iables acting alone, the interactions between two input variables,
and so on [32]

gðxÞ ¼ g0 þ
Xn

j¼1

giðxiÞ þ
X

1�i<j�n

gijðxi; xjÞ þ � � �

þ
X

1�i1<…<il�n

gi1i2…ilðxi1 ; xi2
;…; xil

Þ þ � � �

þ g12…nðx1; x2;…; xnÞ (3)

Here, g0 represents the mean response to gðxÞ over the input
space. The first-order component function giðxiÞ captures the inde-
pendent contribution of the ith input variable alone. The compo-
nent subfunction gijðxi; xjÞ represents the effect of the interaction
between the ith and jth input variable on gðxÞ, and so on, for the
higher-order terms.

The decomposition as written in Eq. (3) is not unique [33]. The
vanishing condition [26,33–35,] states that the integral of an
HDMR component function with respect to any of its own varia-
bles is zeroð

fsðxsÞgi1i2…ik ðxi1 ; xi2 ;…; xik Þdxs ¼ 0 8s 2 fi1; i2;…; ikg (4)

where fsðxsÞ is the probability density function of the sth input
variable.

Due to the orthogonality constraints in Eq. (4), the variance of
the QoI can be decomposed as

VðyÞ ¼
X

i

Vi þ
X

1�i<j�n

Vij þ � � � þ V12…n (5)

where Vi is the contribution to the QoI variance of input variable
Xi

Vi ¼ VðgiðXiÞÞ ¼ V½EðYjXiÞ� (6)

and Vij the contribution of the interactions between Xi and Xj

Vij ¼ VðgijðXi;XjÞÞ ¼ V½EðYjXi;XjÞ� � V½EðYjXiÞ� � V½EðYjXjÞ�
(7)

Similar expressions can be built up for the third-order terms Vijk

and higher-order terms. The decomposition of sensitivity indices
is then obtained by dividing through the total variance

X
i

Si þ
X

1�i<j�n

Sij þ � � � þ S12…n ¼ 1 (8)

where Si ¼ Vi=V are the main effect sensitivity indices, as defined
in Eq. (2). The second-order sensitivity index is Sij ¼ Vij=V, and
so on, for the higher-order sensitivity indices.

3.2 Distributional Sensitivity Analysis. In GSA, the factor
prioritization is based on the main effect sensitivity indices in Eq.
(2), and sometimes also on the total sensitivity indices—the sum
of all sensitivity indices to which the ith variable contributes.
Such a factor prioritization strategy relies on the assumption that
all uncertainties of a particular input variable can be reduced. Dis-
tributional sensitivity analysis relaxes this assumption by treating
the amount of variance reduction in a particular input variable as a
random variable instead of assuming it can be reduced completely
to zero [25]. For a given amount of variance reduction in the input
variable Xi, DSA considers a family of reasonable distributions
and calculates an average change in the variance of Y over this
family. In the design setting this is particularly useful, because
reducing the uncertainty in an input parameter to zero is generally
an impractical option.

In DSA, we define a variance-based sensitivity index function
fi for variable Xi. When reducing the variance of Xi by a percent-
age 100ð1� kiÞ%, this variance-based sensitivity index function
fi is defined as

fi kið Þ ¼
var Y0ð ÞS0

i �E½var Y0ð ÞS0i jKi ¼ ki�
var Y0ð Þ (9)

Here, varðY0Þ and S0
i denote the variance of Y and the main effect

sensitivity index of Xi, respectively, corresponding to the original
input distribution used to represent input variable xi. X0i is an
updated random variable for input xi, which results from design
effort to reduce that variable’s uncertainty (e.g., further research,
experiments, higher-fidelity modeling, etc.). varðY0Þ is the updated
variance of Y and S0i is the updated main effect sensitivity index,
both associated with the updated random variable X0i. The quantity
ki ¼ varðX0iÞ=varðXiÞ is the ratio of the variance of Xi that is not
reduced to the variance of the original distribution. The variance-
based sensitivity index function fi is therefore the relative differ-
ence between the global sensitivity index and the expected value
of the updated variance with the sensitivity index if we were to
only reduce the uncertainty partially. When ki ¼ 1, this expected
value is zero and therefore the variance-based sensitivity index
function reduces to the global sensitivity index.

Since it is not known how we can reduce the uncertainty in the
input variables, we take the expected value of the reduction in var-
iance of Y over reasonable distributions. E½varðY0ÞS0i jKi ¼ kiÞ� is
the expected value of the product of the updated sensitivity indi-
ces and the updated variance of Y, taken over reasonable distribu-
tions. Those reasonable distributions are further defined below for
different distribution families. However, it is unknown how much
uncertainty can be reduced before doing further research, there-
fore the parameter ki is considered a uniform random variable Ki

on ½0; 1�. We note that further research could indicate that the
uncertainty of the input variable increases, but that would mean
the original input distribution was flawed. Therefore, ki > 1 is not
considered in this work. Other distributions for k could also be
considered; for instance, one might wish to bias k toward smaller
reductions in uncertainties. This work could easily accommodate
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such a model, but it is not included in this paper because choosing
such a model is problem dependent.

For factor prioritization using DSA, we consider the expected
value of fiðkiÞ to obtain the average main effect sensitivity index
(g) as

gi ¼ EKi
½fiðKiÞ� (10)

While the variance-based sensitivity index function provides more
insight about how reducing a factor’s uncertainty impacts variance
in the output, the average main effect sensitivity index is useful
because it permits us to perform factor prioritization. In particular,
the average main effect sensitivity index can be used to rank input
variables based on the average amount of variance of Y that can
be reduced by doing further research on a particular input vari-
able. This is analogous to the typical ranking in a conventional
GSA. Note that as written, these average main effect sensitivity
indices do not add up to one, whereas the variance-based sensitiv-
ity indices do. However, the values of these gi indices are impor-
tant in an absolute sense, because they relate to the expected
reduction of variance.

Figure 2 shows the overall DSA approach, where Nk is the
number of samples used to compute gi and Ndist is the number of
times a new distribution is drawn for a given ki. fi;j is the
variance-based sensitivity index function for the ith input parame-
ter corresponding to the jth sample of ki.

3.3 Modeling Variance Reduction. This section defines the
reasonable distributions over which we sample to obtain fi. We
focus on distributions that are relevant in an engineering design
setting. The uniform distribution is often used when limited infor-
mation is available about the input parameter, but its range is
available (or can be estimated). The normal distribution is often
used for error modeling (e.g., model error in a simulation code). A
triangular distribution is often used in an engineering setting when
the designer has insight about a most-likely value in addition to
the variable’s range. The general DSA methodology is extensible
to other distributions; here, we present the details for these three

distributions. We build off the work in Refs. [25,36]. Algorithm 1
is taken directly from Ref. [25], whereas Algorithm 1 is a varia-
tion where we also compute the variance-based sensitivity func-
tion with quadrature. For the normal distribution, Algorithms 3
and 4 deviate from Ref. [25] because we allow the mean of the
updated distribution to vary as well. Finally, for the triangular dis-
tribution, Algorithm 5 uses the same idea as in Ref. [25], but uses
a different implementation.

3.3.1 Uniform Distribution. The variance of a uniformly dis-
tributed random variable X � U½a; b� is varðXÞ ¼ ðb� aÞ2=12.
Consider the original distribution to be X � U½a0; b0� and the
updated distribution to be X0 � U½a0; b0�. Then we have
ki ¼ ½ðb0 � a0Þ=ðb0 � a0Þ�2. All updated distributions for a given
ki have the same width, as k1=2

i ðb0 � a0Þ. In order to compute
E½varðY0ÞS0i jKi ¼ ki�, we sample over different distributions
using Algorithm 1.

Algorithm 1: Computing the variance-based sensitivity index
function for a uniform distribution using sampling (from Ref.
[25]).
1 Sample ki from a uniform distribution on the interval ½0; 1�;

for j 1 to Ndist do
2 Sample b0 from a uniform distribution on the interval

½a0 þ
ffiffiffiffi
ki

p
ðb0 � a0Þ; b0�;

3 Let a0 ¼ b0 �
ffiffiffiffi
ki

p
ðb0 � a0Þ;

4 Compute varðY0Þj and S0i;j for the distribution U½a0; b0�;
end

5 Compute E½var Y0ð ÞS0i jKi ¼ ki� ¼ 1
Ndist

P
jvar Y0ð ÞjS0i;j;

6 Compute variance-based sensitivity index function using Eq.
(9) for ki.

An improved approach uses Gauss–Legendre quadrature to
compute E½varðY0ÞS0i jKi ¼ kiÞ�, instead of sampling over new
distributions for every ki. By using Gauss–Legendre quadrature,
we can specify the mean and standard deviation of the new distri-
bution. This is not possible with a sampling-based method,
because one is dependent on the original samples and may there-
fore not get the exact mean and variance. To solve for the

Fig. 2 Flow chart for distributional sensitivity analysis

111410-4 / Vol. 138, NOVEMBER 2016 Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 10/31/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



expected value over the mean of the updated distributions, we
rewrite this expected value as an integral over l0, the mean of the
updated distribution

E½var Y0ð ÞS0i jKi ¼ ki� ¼

ð
var Y0ð ÞS0idl0ð

dl0

����
Ki¼ki

(11)

A method for computing the variance-based sensitivity index
function fi using Gauss–Legendre quadrature is given in
Algorithm 2.

Algorithm 2: Computing the variance-based sensitivity index
function for a uniform distribution using Gauss–Legendre
quadrature.
1 Sample ki from a uniform distribution on the interval ½0; 1�;
2 Let lower bound for the mean ll be a0 þ ðð1=2Þ

ffiffiffiffi
ki

p
ðb0 �

a0ÞÞ and the upper bound lu be b0 � ðð1=2Þ
ffiffiffiffi
ki

p
ðb0 � a0ÞÞ;

for j 1 to NGauss do
3 Let lj be Gauss–Legendre quadrature node on the interval
½ll;lu�;

4 Let a0 ¼ lj � 1
2

ffiffiffiffi
ki

p
b0 � a0ð Þ and b0 ¼ lj þ 1

2

ffiffiffiffi
ki

p
b0 � a0ð Þ;

5 Compute varðY0Þj and S0i;j for the distribution U½a0; b0�;
end

6 Compute E½varðY0ÞS0i jKi¼ ki� ¼
P

j wjvarðY0ÞjS0i;j= ðlu�llÞ,
where wj are the Gauss–Legendre quadrature weights on the
domain ½ll;lu�;

7 Compute variance-based sensitivity index function using Eq.
(9) for ki

3.3.2 Normal Distribution. The procedure for computing the
variance-based sensitivity fi for a normal distribution is similar to
that for a uniform distribution. Let the original distribution be
given by Nðl0; r

2
0Þ and the updated distribution by Nðl0;r02Þ,

where r02 ¼ kir0
2. A method for computing fi by sampling over

possible distributions is given in Algorithm 3. Considering the
support of the normal distribution is infinite, we need to bind the
mean of the updated distribution to sample over it. This is similar
to the method for the uniform distribution where we only allow
for the updated distributions to be confined to the support of the
original distribution. We therefore only allow the mean of the
updated distribution to vary within the interval l0 2 ½l0l;l0u�, where
l0l is the minimum allowable mean and l0u is the maximum allow-
able mean of the updated distributions. Here we choose l0l and l0u
such that l0l � r0 ¼ l0 � r0 and l0u þ r0 ¼ l0 þ r0. This is also
illustrated in Fig. 3. One could choose wider bounds, but we do
not want the updated distribution to extend too far into the tails of
the original distribution, because these regions had a low probabil-
ity in the original distribution.

Algorithm 3: Computing the variance-based sensitivity index
function for a normal distribution using sampling.

1 Sample ki from a uniform distribution on the interval ½0; 1�;
for j 1 to Ndist do

2 Sample l0 from a uniform distribution on the interval
½l0 � ð1�

ffiffiffiffi
ki

p
Þr0;l0 þ ð1�

ffiffiffiffi
ki

p
Þr0�;

3 Compute varðY0Þj and S0i;j for the distribution N ½l0; kir2
0�;

end
4 Compute E½var Y0ð ÞS0i jKi ¼ ki� ¼ 1

Ndist

P
j var Y0ð ÞjS0i;j;

5 Compute variance-based sensitivity index function using Eq.
(9) for ki

Again, instead of sampling over the distributions we can
also solve for E½varðY0ÞS0i jKi ¼ ki� using Gauss–Legendre
quadrature. The algorithm then becomes as given in
Algorithm 4.

Algorithm 4: Computing the variance-based sensitivity index
function for a normal distribution using Gauss–Legendre
quadrature.
1 Sample ki from a uniform distribution on the interval ½0; 1�;
2 Let lower bound for the mean ll be l0 � ð1�

ffiffiffiffi
ki

p
Þr0 and the

upper bound l0 þ ð1�
ffiffiffiffi
ki

p
Þr0;

for j 1 to NGauss do
3 Let lj be Gauss–Legendre quadrature node on the interval
½ll;lu�;

4 Compute varðY0Þj and S0i;j for the distribution N ½lj; kir2
0�;

end
5 Compute E½varðY0ÞS0i jKi¼ ki� ¼

P
j wjvarðY0ÞjS0i;j=ðlu�llÞ,

where wj are the Gauss–Legendre quadrature weights on the
domain ½ll;lu�;

6 Compute variance-based sensitivity index function using Eq.
(9) for ki

3.3.3 Triangular Distribution. The triangular distribution has
three parameters, which makes the sampling more complicated
than for the normal and uniform distributions. We present two
different ways of sampling and it depends on the problem at
hand which strategy makes most sense. Let T ða0; b0; c0Þ be the
original input distribution and T ða0; b0; c0Þ the updated distribu-
tion. For a triangular distribution T ða; b; cÞ2 the variance is
ða2 þ b2 þ c2 � ab� ac� bcÞ=18. Therefore, ki is given by

ki ¼
a02 þ b02 þ c02 � a0b0 � a0c0 � b0c0

a02 þ b02 þ c02 � a0b0 � a0c0 � b0c0
(12)

The first strategy considers distributions whose shape does not
change. That is, if all distributions were mapped to the ½0; 1�
domain, they would overlay one another. The maximum allowable
shift in mean is then constrained by the fact that the support of the

Fig. 3 Reasonable distributions for the normal distribution. In this example ki 5 0:5 : (a) lower
bound for the updated distribution and (b) upper bound for the updated distribution.

2Following standard notation, a denotes the minimum value in the distribution, b
the maximum value of the distribution, and c the most likely value of the
distribution.
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updated distribution should be within the support of the original
distribution, i.e., a0 � a0 and b0 � b0. This strategy is illustrated
in Figs 4(a) and 4(b) and the algorithm for it is shown in Algo-
rithm 5.

Algorithm 5: Computing the variance-based sensitivity index
function for a triangular distribution using Gauss–Legendre
quadrature where the shape of the distribution is kept constant.
1 Sample ki from a uniform distribution on the interval ½0; 1�;
2 Let lower bound for a0 be a0l ¼ a0 and the upper bound

a0u ¼ a0 þ ð1�
ffiffiffiffi
ki

p
Þðb0 � a0Þ;

for j 1 to NGauss do
3 Let a0 be xjða0u � a0lÞ=2þ ða0l þ a0uÞ=2, where xj is the

Gauss–Legendre quadrature node on the interval ½0; 1�;
4 Compute varðY0Þj and S0i;j for the distribution T ½a0; b0; c0�;

end
5 Compute E½varðY0ÞS0i jKi ¼ ki� ¼

P
jwjvarðY0ÞjS0i;j, where wj

are the Gauss–Legendre quadrature weights on the domain
½0; 1�;

6 Compute variance-based sensitivity index function using Eq.
(9) for ki

In the second strategy, the most-likely value of the distribu-
tion is kept fixed and we sample distributions around that, as
proposed by Allaire [36]. Thus, we consider c0 ¼ c0. At the
same time, the support of the updated distribution has to be
within the support of the original distribution, i.e., a0 � a0 and
b0 � b0. The algorithm for computing the variance-based
sensitivity index function using this strategy is shown in Algo-
rithm 6.

Algorithm 6: Computing the variance-based sensitivity index
function for a triangular distribution where the most-likely
value is kept constant.

1 Sample ki from a uniform distribution on the interval ½0; 1�;
%Compute minimum a0l

2 Solve for a0l using Eq. (12) with b0 ¼ c0 and c0 ¼ c0;
if a0l < a0 then

3 a0l ¼ a0;
end
%Compute maximum a0

4 Solve for b0u using Eq. (12) with a0 ¼ c0 and c0 ¼ c0;
if b0u > b0 then

5 Solve for a0u using Eq. (12) with b0 ¼ b0 and c0 ¼ c0;
else

6 a0u ¼ c0;
end
for j 1 to Ndist do

7 Sample a0 from a uniform distribution on the interval
½a0l; a0u� and set c0 ¼ c0;

8 Solve for a0 using Eq. (12);
9 Compute varðY0Þj and S0i;j for the distribution T ½a0; b0; c0�;

end
10 Compute E½var Y0ð ÞS0i jKi ¼ ki� ¼ 1

Ndist

P
j var Y0ð ÞjS0i;j;

11 Compute variance-based sensitivity index function using Eq.
(9) for ki

3.4 HDMR-Based Surrogate. Computing the sensitivity
indices for every new distribution using the full model gðxÞ is pro-
hibitively expensive. Reference [25] addressed this challenge by
reusing the original Monte Carlo samples from the global sensitiv-
ity analysis by means of rejection sampling. We instead use the
ANOVA-HDMR both to reduce the initial cost of performing the
GSA and to evaluate updated distributions where rejection sam-
pling is inaccurate. One such example is the triangular distribu-
tion: when the most-likely value of the updated distribution is

Fig. 4 Reasonable distributions for different strategies for triangular distributions. In this
example, ki 5 0:5 : (a) Lower bound for strategy where shape is kept fixed, (b) upper bound for
strategy where shape is kept fixed, (c) lower bound for strategy where most-likely value is kept
fixed, and (d) upper bound for strategy where most-likely value is kept fixed.
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almost at the tail of the original distribution, there are very few
samples one can use to compute the sensitivity indices.

Building up the full ANOVA-HDMR as in Eq. (3) is often
unnecessary. For many systems and models, the third-order and
higher terms are negligibly small [29]. That allows us to truncate
the HDMR by neglecting these higher order terms, yielding the
approximation [30]

gðxÞ � g0 þ
Xn

j¼1

giðxiÞ þ
X

1�i<j�n

gijðxi; xjÞ (13)

Following Ref. [33], an accurate and fast surrogate model can
be built up by approximating the remaining component functions
as expansions of an appropriate set of basis functions

giðxiÞ �
X‘
r¼1

ai
rurðxiÞ (14)

gijðxi; xjÞ �
X‘
p¼1

X‘
q¼1

bij
pqupqðxi; xjÞ (15)

where giðxiÞ is approximated using ‘ basis functions u1;…;u‘,
and ai

r is the coefficient for the rth basis function, corresponding
to the ith input variable. In the same way, bij

pq is the coefficient
corresponding to the pqth basis function and the ijth second-order
component function. Here, we take upqðxi; xjÞ ¼ upðxiÞuqðxjÞ.

In this work, we choose orthonormal polynomials as basis func-
tions. The choice of orthonormal basis functions leads to the fol-
lowing evaluations of the coefficients of the component functions:

ai
r ¼

ð
gðxÞurðxiÞfxðxÞdx (16)

bij
pq ¼

ð
gðxÞupðxiÞuqðxjÞfxðxÞdx (17)

Because we need orthonormal basis functions with respect to
the distribution, different basis functions are needed for every dis-
tribution considered. For the uniform distribution, we use normal-
ized shifted Legendre polynomials, and the integrals in Eqs. (16)
and (17) are then solved efficiently using Gauss–Legendre quadra-
ture. For the normal distribution, we use the normalized probabi-
lists’ Hermite polynomials, and we solve the integrals for every ai

r
and bij

pq in Eqs. (16) and (17) efficiently using (probabilists’)
Gauss–Hermite quadrature. In building up the ANOVA-HDMR
for the triangular distributions, one has to deal with the discontin-
uous derivative of the probability density function. This compli-
cates finding the correct basis functions and also requires splitting
the integral into multiple parts. Furthermore, the basis functions
now also depend on the shape of the probability density function
directly. This in contrast to the uniform and normal distribution,
where we map Uða; bÞ to Uð0; 1Þ and Nðl; r2Þ to Nð0; 1Þ, respec-
tively. Here, we map T ða; b; cÞ to T ð0; 1;lÞ, which means that
the basis functions depend on l and therefore depend directly on
the shape of the probability density function. The first three basis
functions for the triangular distributions are derived by Wang
et al. [34] and are used here.

Following the strategy outlined in Fig. 2, we build up the
ANOVA-HDMR for the original input distributions and then
reuse that surrogate, instead of the black-box model, to find the
new standard deviation of the QoI for every updated input distri-
bution. In order to find the sensitivity indices for this updated
input distribution, we build up a new ANOVA-HDMR for the
new distribution by computing an integral over the new input
space using the original ANOVA-HDMR. In other words, we re-
solve for ai

r and bij
pq using Eqs. (16) and (17) with the new distri-

butions and replacing gðxÞ with the original ANOVA-HDMR.

We note that other choices of surrogate modeling technique are
possible. Our choice of HDMR surrogate model is based on our
goal of estimating variance-based sensitivity indices. An HDMR
surrogate model approximates the very subfunctions needed to
compute these sensitivities, thus it is a natural choice in this set-
ting. In particular, a polynomial chaos expansion might be a suita-
ble alternative choice [37,38], particularly when tailored for
computation of global sensitivity indices [39]. One limitation of
HDMR is that for higher-dimension problems (e.g., greater than
dimension five or six), evaluation of the integrals to estimate the
coefficients in the HDMR expansion will be computationally
expensive, even with quadrature rules. One way to address this is
to use the cut-HDMR [30], which we employ in a high-
dimensional example in Sec. 4. A polynomial chaos expansion
could address high-dimensional problems by using a sparse poly-
nomial basis and evaluating the coefficients with regression.

4 Results

The proposed DSA method is employed on a test function in
Sec. 4.1 to assess the convergence and the accuracy of the surro-
gate. Section 4.2 presents results for an engineering system—the
conceptual design of a commercial jetliner aircraft.

4.1 Test Function Analysis. To assess the convergence of
the method, we consider the Ishigami function, which is also used
in Ref. [25]

Y ¼ sin X1 þ a sin2X2 þ bX4
3 sin X1 (18)

with a¼ 5 and b¼ 0.1, as used in Ref. [40]. Here, the Xi’s are con-
sidered to be independent and uniformly distributed on U½�p;p�.
The main effect sensitivity indices for this function and these dis-
tributions are S1 ¼ 0:40; S2 ¼ 0:29 and S3 ¼ 0:00 and the only
nonzero interaction term is S1;3 ¼ 0:31. These were computed
using the analytical expressions in Ref. [16].

The variance-based sensitivity index function as computed
using Algorithm 2 is shown in Fig. 5. These results were gener-
ated using an ANOVA-HDMR consisting of up to eighth-order
basis functions and using nine quadrature points in one dimension.
With three input variables, we therefore need a total of 729 func-
tion evaluations of Eq. (18). This is a substantial reduction in the
number of function evaluations required, since, in comparison, the
sampling approach in Ref. [25] needed 4096 function evaluations.
We compare the accuracy of our method versus the method in
Ref. [25] with the analytical average main effect sensitivity index
in Table 1. We see that our method provides more accurate results
with considerably less samples required.

To test the method for normal distributions, we consider the
same additive function as in Ref. [25]

Y ¼ 100X1 þ 4 exp ðX2Þ þ 350 sin X3 (19)

with Xi � Nð0; 4Þ; i ¼ 1; 2; 3. To build up the ANOVA-HDMR,
we use up to eighth-order basis functions and ten quadrature
points in each dimension. For three input parameters, this results
in a total of 1000 function evaluations required to build up the
ANOVA-HDMR, a substantial reduction from the 65,536 function
evaluations used in the rejection sampling method of [25]. 1000
samples are still a substantial number of samples for a three
parameter problem, but we note that this is an inherently compli-
cated function, and that the infinite support of the normal distribu-
tion requires us to approximate the function over a wide range. In
practice, one could choose the number of samples and the order of
the basis functions adaptively by monitoring changes in the
approximation; here, we analyze the convergence for different
number of samples and basis functions by estimating the error
between the surrogate and the actual function. The error is
defined as
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d g; ~gð Þ ¼ 1

D

ð
g xð Þ � ~g xð Þ½ �2fx xð Þdx (20)

with D ¼
Ð
½gðxÞ � g0�2fxðxÞdx

Here, g is the truth model, ~g is the truncated ANOVA-HDMR
model, and D is the variance of the truth output quantity of inter-
est Y. The integral in Eq. (20) is evaluated using quasi Monte
Carlo sampling with 65,536 samples (the same number of samples
as used in Ref. [25]).

Using an ANOVA-HDMR surrogate with up to eighth-order
basis functions and nine quadrature points in each dimension
(which yields an error of Oð10�2Þ as shown in Fig. 6), the main
effect sensitivity indices are found to be S1 ¼ 0:27; S2 ¼ 0:31,
and S3 ¼ 0:41. GSA-based factor prioritization would then lead to

the conclusion to focus research on uncertainty reduction in X3.
The distributional sensitivity analysis results in Fig. 7(a), how-
ever, show that it might be more worthwhile to invest in uncer-
tainty reduction in X2. This is also indicated by the average main
effect sensitivity indices in Fig. 7(b), again found by considering
ki � U½0; 1�. Those indicate a different ranking for factor prioriti-
zation compared to the GSA results. These results were generated
using Algorithm 4.

Note that the results in Fig. 7(a) differ slightly from the results
in Ref. [25]. This is because in that work the mean of the updated
distribution was constrained to be the same as the mean of the
original distribution.

4.2 Aircraft Conceptual Design. The conceptual sizing of a
commercial jetliner is considered using the transport aircraft siz-
ing and optimization tool (TASOPT). This tool uses low-order
physics-based aircraft sizing models with minimal reliance on
empirical and historical data, making it appropriate to use over a
wide range of possible designs [41]. In this work, the tool is used
in sizing mode, not in the optimization mode. That means that the
overall configuration (i.e., sweep angle, material properties, etc.)
are fixed, but that other quantities such as the subcomponent
weights, overall weight, span, and surface area of wings and tails,
are allowed to vary. Two different aircraft configurations are con-
sidered and the different impacts of uncertainty on each are
investigated.

4.2.1 Problem Setup. Two different aircraft are considered:
the Boeing 737-800 and the D8.6 double-bubble conceptual
design. For the Boeing 737-800, we consider a sizing mission
with a range of 2950 nautical miles, with 180 passengers, at a
cruise altitude of 35,000 ft. The D8.6 flies in the same class as the
Boeing 737-800, thus we consider the same mission—carrying

Table 2 Uniform distribution parameters (U½a;b�) of the uncertain design variables considered for the Boeing 737-800 from Refs.
[43] and [44].

Parameter Units Definition Lower bound Upper bound

Sth — Turbine cooling Stanton number 0.094 0.096
tfilm — Turbine cooling film effectiveness factor 0.315 0.325
gpollc

— Low pressure compressor efficiency 0.936 0.937
gpolhc

— High pressure compressor efficiency 0.903 0.905
gpollt

— Low pressure turbine efficiency 0.875 0.877
gpolht

— High pressure turbine efficiency 0.870 0.872
Tmetal K Turbine metal temperature 1 172 1 272
ðTt4ÞTO K Takeoff turbine inlet total temperature 1 783 1 883
ðTt4ÞCR K Cruise turbine inlet total temperature 1 541.5 1 641.5
OPRD — Overall pressure ratio 24.2 28.2
pfD — Fan pressure ratio 1.609 1.611
rfus;skin Psi Maximum allowable fuselage skin pressurization stress 14 250 15 750
rfus;bend Psi Maximum allowable fuselage shell bending stress 28 500 31 500
rwt;cap Psi Maximum allowable wing and tail spar cap stress 29 500 30 500
swt;web Psi Maximum allowable wing and tail spar web shear stress 19 000 21 000
Ewt;cap Psi Young’s modulus wing and tail spar cap 9:50	 106 10:5	 106

qfus;skin kg=m3 Fuselage pressure-skin material density 2 672 2 726
qfus;bend kg=m3 Fuselage bending-material density 2 672 2 726
qwt;cap kg=m3 Wing and tail spar cap material density 2 672 2 726
qwt;web kg=m3 Wing and tail spar web material density 2 672 2 726
CL?;max

— Maximum lift coefficient perpendicular to the chord of the wing 2.2 2.3
CL — Cruise aircraft lift coefficient 0.56714 0.58714

Fig. 5 Variance-based sensitivity index functions for X1, X2,
and X3 for the Ishigami test function

Table 1 Comparison of DSA results for the sampling-based method from Ref. [25] (denoted “MC”), our proposed method (denoted
“HDMR”), and the exact solution

X1 X2

MC HDMR Exact MC HDMR Exact

Main effect sensitivity index 0.4074 0.3999 0.4007 0.2870 0.2886 0.2881
Average main effect sensitivity index 0.06818 0.06861 0.06871 0.03211 0.03162 0.03085
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180 passengers over a range of 2950 nautical miles. The D8.6 is
part of the D8 family developed as part of the NASA Nþ3 project
[42]. The goal of that project was to come up with a design which
has, among other attributes, 70% less fuel burn and 75% less land-
ing and take-off NOx exhausts, all relative to the current Boeing
737-800. In order to achieve these ambitious goals, advanced new
technologies are employed in the design, many of which are still
in development. This implies uncertainties in the expected gain
from these developments, and therefore in the performance of the
aircraft.

In our study, two factors are considered to be uncertain: overall
pressure ratio of the engine, OPR, and the cruise Mach number,
M. OPR represents engine performance, allowing for a trade-off
between engine technology and mission parameters. For the Boe-
ing 737-800, OPR and M are modeled as uniform random varia-
bles, with OPR � U½24:2; 28:2� and M � U½0:77; 0:79�, see Refs.
[43,44] for details on how those distributions were derived. For
the D8.6, OPR and M are modeled as triangular random variables,
with OPR � T ½45; 52; 50� and M � T ½0:73; 0:75; 0:74�. These
distributions are derived using a combination of historical data
and expert opinion, as described in Refs. [44,45]. As the quantity
of interest, we consider PFEI, the fuel energy consumption per
payload-range.

This case study provides an opportunity to study the influence
of nonlinear responses on the DSA results. The Boeing 737-800

flies at a high Mach number (�0:78) and we expect there to be a
nonlinear effect on the fuel efficiency as we increase Mach num-
ber. The D8.6, however, is designed to fly at a lower Mach num-
ber (�0:74) for higher efficiency and we therefore expect a more
linear response.

4.2.2 Sensitivity Analysis. In order to perform the sensitivity
analysis, an ANOVA-HDMR surrogate is created for both air-
craft. For the Boeing 737-800, nine quadrature points per
dimension and up to seventh-order basis functions are used.
Therefore, a total of 81 TASOPT function evaluations are
required for the Boeing 737-800. The reason we need a fairly
large number of samples is because we expect the response of
PFEI with respect to Mach number to be nonlinear. For the
D8.6, we use a five-point quadrature scheme with up to third-
order basis functions. This combination results in a low error
with the true model (as also shown in Fig. 10(b)) and ensures
that the first-order sensitivity indices are converged. Because
the domain is split in four parts to account for the discontinu-
ous derivative in the triangular distribution, we need a total of
100 TASOPT function evaluations to create the surrogate for
the D8.6.

A GSA on the Boeing 737-800 model gives the main effect sen-
sitivity indices for OPR as 49% and for M as 51%. For the D8.6,
we find that the main effect sensitivity index for OPR is 27% and
the main effect sensitivity index for M is 73%. The variance-
based index function and the average main effect sensitivity indi-
ces for the Boeing 737-800 and D8.6—generated using Algorithm
6—are shown in Figs. 8 and 9, respectively. The main observation
in Fig. 8 is that the variance-based index function for M is nonlin-
ear. The global sensitivity indices indicate that OPR and M are
equally important in uncertainty reduction of the QoI. However,
the DSA sensitivity index function indicates that for partial var-
iance reductions, OPR is more important. In this case, DSA allows
a designer to make a more informed decision about where to
reduce uncertainty. For the D8.6, the variance-based sensitivity
indices are linear functions and therefore the ranking is the same
between GSA and DSA.

The nonlinear variance-based sensitivity index function for
the Mach number of the Boeing 737-800 is the result of the
nonlinear response surface of PFEI as a function of Mach num-
ber and OPR, as shown in Fig. 10. The response surface of the
D8.6 is much smoother, resulting in more linear variance-
based sensitivity index functions. The nonlinear response of
PFEI as a function of Mach number can be explained by look-
ing at the configuration of the Boeing 737-800. At the design
configuration of the Boeing 737-800—designed for
M¼ 0.78—the airplane is designed to have the highest effi-
ciency. This means that sweep angle of the wing is chosen

Fig. 7 Distributional sensitivity analysis results for the additive function with normal distribu-
tions: (a) variance-based sensitivity index functions for X1, X2, and X3 with ki 5 0.0, 0.05, . . ., 1.0
and (b) comparison between main-effect sensitivity indices Si and average main effect sensi-
tivity indices gi

Fig. 6 Convergence of dðg; ~g Þ for the additive function in Eq.
(19) for different numbers of quadrature points and basis func-
tions using quasi Monte Carlo simulation with 65,536 samples
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such that enough lift can be provided while avoiding large
drag increases due to high Mach number flow along the chord
line of the airfoil. Therefore when one sizes an aircraft for a
different Mach number, but does not change the configuration
(e.g., CL or sweep angle), the drag and corresponding fuel con-
sumption are expected to go up for both an increase and
decrease in Mach number. For a decrease in Mach number, the

sweep angle is too large for that condition, resulting in more
drag in the spanwise direction, increasing fuel burn. For higher
Mach numbers, the flow along the chord line of the airfoil is
highly transonic, resulting in a drag increase and hence fuel con-
sumption increase. The response of PFEI as a function of Mach num-
ber would be closer to linear if the CL and Mach number were
allowed to vary in the aircraft sizing.

Fig. 8 Distributional sensitivity analysis results for the Boeing 737-800 (a) variance-based
sensitivity index function and (b) average main effect sensitivity indices compared to global
sensitivity indices

Fig. 9 Distributional sensitivity analysis results for the D8.6: (a) variance-based sensitivity
index function and (b) average main effect sensitivity indices compared to global sensitivity
indices

Fig. 10 Contour of PFEI as a function of OPR and M for both aircraft. The shaded contour is the TASOPT “truth” output, while
the dashed lines represent the ANOVA-HDMR surrogate and the circles represent the quadrature points: (a) Boeing 737-800
and (b) D8.6.
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4.3 High-Dimensional Aircraft Design Problem. Finally,
we apply the method to a 22-dimensional aircraft design problem.
Specifically, we determine the influence of 22 uncertain design
variables on quantities of interest for the conceptual design of the
Boeing 737-800 from Sec. 4.2. However, building up a 22-
dimensional ANOVA-HDMR using the methods described so far
would be computationally intractable, because it would require

ðNquadÞ22
sample points. Instead, if we neglect higher-order terms

in the ANOVA-HDMR using the so-called cut-HDMR [30], the

number of required samples reduces to
22

2

� �
ðNquadÞ2. For this

problem, we build up a surrogate using Nquad ¼ 7 quadrature
points in each dimension and up to fifth-order basis functions.

We use a uniform distribution to characterize the uncertainty in
all 22 design variables, according to the distribution parameters in
Fig. 11, taken from Refs. [43,44]. For reference, the distribution
parameters for the 22 design variables are listed in Table 2. In
order to find which parameters we should focus uncertainty reduc-
tion efforts on, we perform a distributional sensitivity analysis on
this problem, using Algorithm 2. Our quantities of interest are
MTOW, the maximum take-off weight of the aircraft, PFEI, the
fuel energy consumption per payload-range, and L/D, the lift-to-
drag ratio of the aircraft during cruise.

The average main effect sensitivity indices from DSA are
shown in Fig. 11. The average main effect sensitivity indices pro-
vide an informative ranking about the influence of the input
parameters on our quantities of interest. We find that propulsion
uncertainties (Tmetal; ðTt4ÞTO; ðTt4ÞCR, OPRD), structural uncer-
tainties (rfus;bend; rwt;cap), and an aerodynamic uncertainty (CL)
have the most influence on our three quantities of interest.

We find that the ranking between GSA and DSA does not
change for the most important input parameters. However, rather
than obtaining just the ranking in the input parameters, we are
now able to quantify, using the variance-based sensitivity index
functions, the required reduction in uncertainty in each design
variable in order for the uncertainty in the quantities of interest to
reduce. These variance-based sensitivity index functions could
then be combined with cost models for changes in the input distri-
butions and requirements on the uncertainty and cost. This would
allow us to come up with new input distributions which meet
those requirements.

5 Conclusion

A new formulation of the distributional sensitivity analysis
method reduces its computational cost and makes it more widely
applicable to probability distributions commonly used in engi-
neering design. The paper formulates and illustrates different

strategies for performing the sampling on these distributions.
Application of the method to a case study in aircraft conceptual
design demonstrates how the variance-based sensitivity index
function provides useful information to the designer on where to
target uncertainty reduction efforts. The results also show that
when the output of interest depends nonlinearly on the uncertain
input parameters, the distributional sensitivity analysis can lead to
different conclusions about the relative importance of the inputs,
compared to using a standard global sensitivity analysis. This is
particularly important when design resources are limited and must
be directed as effectively as possible.

A potential area of future work is to extend the methodology in
this paper to perform distributional sensitivity analysis for corre-
lated input variables. This would require use of an HDMR frame-
work that incorporates correlated inputs, an example being the
Generalized ANOVA-HDMR by Rahman [46]. Furthermore, the
way in which we sample over new input distributions in the DSA
framework would also need to be adapted to handle correlated
inputs.
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[31] Aliş, €O. F., and Rabitz, H., 2001. “Efficient Implementation of High Dimen-
sional Model Representations,” J. Math. Chem., 29(2), pp. 127–142.

[32] Smith, R., 2014. Uncertainty Quantification: Theory, Implementation, and
Applications, SIAM, Philadelphia, PA.

[33] Li, G., Wang, S.-W., and Rabitz, H., 2002, “Practical Approaches to
Construct RS-HDMR Component Functions,” J. Phys. Chem. A, 106(37),
pp. 8721–8733.

[34] Wang, S.-W., Georgopoulos, P. G., Li, G., and Rabitz, H., 2003, “Random
Sampling-High Dimensional Model Representation (RS-HDMR) With Nonuni-
formly Distributed Variables: Application to an Integrated Multimedia/Multi-
pathway Exposure and Dose Model for Trichloroethylene,” J. Phys. Chem. A,
107(23), pp. 4707–4716.

[35] Li, G., and Rabitz, H., 2012, “General Formulation of HDMR Component
Functions With Independent and Correlated Variables,” J. Math. Chem., 50(1),
pp. 99–130.

[36] Allaire, D. L., 2009, “Uncertainty Assessment of Complex Models With Appli-
cation to Aviation Environmental Systems,” Ph.D thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA.

[37] Ghanem, R., and Spanos, P., 1990, “Polynomial Chaos in Stochastic Finite Ele-
ments,” ASME J. Appl. Mech., 57(1), pp. 197–202.

[38] Ghanem, R. G., and Spanos, P. D., 2003, Stochastic Finite Elements: A Spectral
Approach, Dover Publications, Minneola, NY.

[39] Sudret, B., 2008, “Global Sensitivity Analysis Using Polynomial Chaos
Expansions,” Reliab. Eng. Syst. Saf., 93(7), pp. 964–979.

[40] Ratto, M., Pagano, A., and Young, P. C., 2009, “Non-Parametric Estimation of
Conditional Moments for Sensitivity Analysis,” Reliab. Eng. Syst. Saf., 94(2),
pp. 237–243.

[41] Drela, M., 2010, “N3 Aircraft Concept Designs and Trade Studies—Appendix,”
Technical Report No. NASA CR-2010-216794.

[42] Uranga, A., Drela, M., Greitzer, E. M., Titchener, N. A., Lieu, M. K., Siu, N.
M., Huang, A. C., Gatlin, G. M., and Hannon, J. A., 2014, “Preliminary Experi-
mental Assessment of the Boundary Layer Ingestion Benefit for the D8 Air-
craft,” AIAA Paper No. 2014-0906.

[43] Opgenoord, M. M. J., 2016, “Uncertainty Budgeting Methods for Conceptual
Aircraft Design,” SM thesis, Massachusetts Institute of Technology, Cam-
bridge, MA.

[44] Amaral, S., 2015, “A Decomposition-Based Approach to Uncertainty Quantifi-
cation of Multicomponent Systems,” Ph.D thesis, Massachusetts Institute of
Technology, Cambridge, MA.

[45] Ng, L. W.-T., 2013, “Multifidelity Approaches for Design Under Certainty,”
Ph.D thesis, Massachusetts Institute of Technology, Cambridge, MA.

[46] Rahman, S., 2014, “A Generalized ANOVA Dimensional Decomposition for
Dependent Probability Measures,” SIAM/ASA J. Uncertainty Quantif., 2(1),
pp. 670–697.

111410-12 / Vol. 138, NOVEMBER 2016 Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 10/31/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1137/1.9780898718713
http://dx.doi.org/10.1115/1.2205869
http://dx.doi.org/10.2514/6.2008-6038
http://dx.doi.org/10.1115/1.2168470
http://dx.doi.org/10.1504/IJRS.2006.010694
http://dx.doi.org/10.1080/00401706.1991.10484804
http://dx.doi.org/10.1002/9780470725184
http://dx.doi.org/10.1198/016214502388618447
http://dx.doi.org/10.1016/0951-8320(96)00002-6
http://dx.doi.org/10.1016/0951-8320(90)90065-U
http://dx.doi.org/10.1016/0951-8320(90)90065-U
http://dx.doi.org/10.1111/j.1539-6924.2006.00806.x
http://dx.doi.org/10.1016/j.ress.2006.04.015
http://dx.doi.org/10.1016/j.ress.2006.04.015
http://dx.doi.org/10.1016/S0951-8320(00)00068-5
http://dx.doi.org/10.1080/00401706.1999.10485594
http://dx.doi.org/10.1080/00401706.1999.10485594
http://dx.doi.org/10.1111/j.1467-9868.2004.05304.x
http://dx.doi.org/10.1111/j.1467-9868.2004.05304.x
http://dx.doi.org/10.1016/j.ress.2011.08.007
http://dx.doi.org/10.1016/S0951-8320(02)00229-6
http://dx.doi.org/10.1016/0098-1354(82)80003-3
http://dx.doi.org/10.1016/S0167-9473(97)00043-1
http://dx.doi.org/10.1016/S0010-4655(98)00152-0
http://dx.doi.org/10.1023/A:1019188517934
http://dx.doi.org/10.1023/A:1010979129659
http://dx.doi.org/10.1021/jp014567t
http://dx.doi.org/10.1021/jp022500f
http://dx.doi.org/10.1007/s10910-011-9898-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.2905&rep=rep1&type=pdf
http://dx.doi.org/10.1115/1.2888303
http://dx.doi.org/10.1016/j.ress.2007.04.002
http://dx.doi.org/10.1016/j.ress.2008.02.023
http://dx.doi.org/10.2514/6.2014-0906
http://dspace.mit.edu/handle/1721.1/103423
http://hdl.handle.net/1721.1/101490
http://dx.doi.org/10.1137/120904378

	s1
	s2
	FD1
	aff1
	l
	s3
	s3A
	1
	FD1a
	FD2
	FD3
	FD4
	FD5
	FD6
	FD7
	FD8
	s3B
	FD9
	FD10
	s3C
	s3C1
	2
	FD11
	s3C2
	s3C3
	FD12
	3
	FN1
	s3D
	4
	FD13
	FD14
	FD15
	FD16
	FD17
	s4
	s4A
	FD18
	FD19
	FD20
	s4B
	s4B1
	2
	5
	1
	s4B2
	7
	6
	8
	9
	10
	s4C
	s5
	1
	2
	3
	4
	5
	6
	7
	8
	9
	11
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46

