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Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems.
One of its bottlenecks is the lack of a general and efficient update algorithm for large size systems close to the phase
transition, for which local updates perform badly. In this Rapid Communication, we propose a general-purpose
Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first
learned from the training data generated in trial simulations and then used to speed up the actual simulation.
We demonstrate the efficiency of SLMC in a spin model at the phase transition point, achieving a 10–20 times
speedup.
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The Monte Carlo (MC) method is a powerful and unbiased
numerical tool for simulating statistical and condensed matter
systems [1–5]. MC simulation obtains statistically exact
values of physical observables by sampling a large number
of configurations according to the Boltzmann distribution.
Configurations can be generated sequentially by the local
update method [6,7]. However, when the system is close to
a phase transition, the local update can be highly inefficient as
sequentially generated configurations are strongly correlated,
causing a significant slowing down in the simulation dynamics.
For certain classes of models, this slowing down can be over-
come by global update methods [8–14], where an extensive
number of local variables are changed in a single update.
However, for any generic model, it is highly challenging to
design an efficient global update method.

Inspired by great developments in machine learning [15],
in this Rapid Communication we propose an approach to
speed up the MC simulation. The MC sampling process
generates a sequence of configurations in a Markov chain,
which constitutes a massive set of data containing valuable
information about the system. Meanwhile, machine learning
is a powerful technique to uncover unknown properties in the
data and make new predictions. Thus we expect that machine
learning can extract the information hidden in the Markov
chain, which we then use to improve the performance of MC
simulation.

Specifically, we propose an MC update method applicable
to generic statistical models, dubbed the self-learning Monte
Carlo (SLMC) method. The essence of SLMC is to first
perform a trial simulation with a local update to obtain
a sequence of configurations and their weights, serving as
the training data, and then to learn a rule that guides the
configuration update in an actual simulation. To demonstrate
the power of SLMC, we study a statistical model [see Eq. (1)]
for which no efficient global update scheme is known. We find
that, in comparison to the local update, SLMC significantly
reduces the autocorrelation time, especially near the phase
transition.
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Outline of SLMC. Before presenting our method, let us
recall that configurations in MC simulation can be updated
through a Markov process, where the transition probability
from configuration A to B, P (A → B), is required to satisfy
the detailed balance principle (DBP) [6], P (A → B)/P (B →
A) = W (B)/W (A), where W is the probability distribution of
configurations. Update methods can be roughly divided into
two types: local and global.

The local update is a general-purpose, model-independent
method, consisting of two steps. First, one randomly chooses
a single site in the current configuration and proposes a new
configuration by changing the variable on this site. Second, one
decides whether the proposed move is accepted or rejected
based on DBP. If accepted, the next configuration in the
Markov chain will be the new one; otherwise, it will be a copy
of the current one. Clearly, the way a local move is proposed
in the first step is completely general and does not use any
knowledge of the model. The local update works well for many
systems, but suffers heavily from a critical slowing down close
to phase transitions [8,9]. In such cases, the autocorrelation
time within the Markov chain τ becomes very large, and in
fact diverges with the system size L as τ ∼ τ0L

z at the critical
points, where z is the dynamical exponent of MC simulation.

To overcome the dramatic increase of autocorrelation time
for the local update, many global update methods have been
developed, such as Swendsen-Wang [8], Wolff [9], worm [10],
loop [11,12], and directed loop [13,14] algorithms. In all
these methods, variables on an extensive number of sites are
simultaneously changed in a single MC update, thus reducing
the dynamic exponent z significantly. However, unlike the
local update, here the proposal of a trial configuration and the
determination of its acceptance are intricately linked, because
the proposed move already takes into account the DBP. Thus
global updates are ingeniously designed methods targeted for
special models. For a given generic model, it is very difficult
to design an efficient global update method.

From a comparison of local and global updates, we
conclude that a general-purpose MC update method that
can outperform the local update must satisfy the following
requirements: (1) A large number of sites should be involved
in each move that updates the current configuration; (2) the
proposal and the acceptance of moves should be independent.
For systems at the critical point, we further require the number
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FIG. 1. Schematic illustration of the learning process (top panel)
and simulating process (bottom panel) in self-learning Monte Carlo.

of sites involved in each move to increase with the system size
in order to reduce the dynamical exponent z in MC simulation.

Guided by these requirements, we now propose the detailed
procedure of the SLMC method. As shown in Fig. 1, SLMC
consists of four steps: (i) Perform a trial MC simulation using
the local update to generate a large number of configurations,
which serve as the training data; (ii) learn an effective
Hamiltonian Heff from this training data; (iii) propose moves
according to Heff in the actual MC simulation; and (iv)
determine whether the proposed moves will be accepted or
rejected based on the detailed balance principle of the original
Hamiltonian H . Steps (i) and (ii) constitute the learning
process, whereas steps (iii) and (iv) are repeated in the actual
MC simulation to calculate physical observables.

We further outline how to implement steps (ii) and (iii)
in actual simulations for a model to be presented below. We
use machine learning [15] in step (ii) to train an effective
Hamiltonian, which can be efficiently simulated using a global
update method even though the original Hamiltonian cannot.
Then step (iii) can be easily implemented using this global
update.

Model and results. To demonstrate the power of SLMC,
we study a classical model on a two-dimensional (2D) square
lattice,

H = −J
∑

〈ij〉
SiSj − K

∑

ijkl∈�
SiSjSkSl, (1)

where Si = ±1 is the Ising spin on site i. J is the nearest-
neighbor (NN) interaction and K is the interaction among
the four spins in the same plaquette. We set ferromagnetic
interactions, i.e., J > 0 and K > 0. For any finite J and K ,
there is a phase transition from the paramagnetic phase at high
temperature to the ferromagnetic phase at low temperature,
which belongs to the 2D Ising universality class. For K = 0,
this model reduces to the standard Ising model which can
be simulated efficiently by the Wolff method. However, for
K �= 0, no simple and efficient global update method is known.
Below we will show that the SLMC method significantly
reduces the autocorrelation time near the critical point, using
K/J = 0.2 as an example. More results can be found in the
Supplemental Material (SM) [16].

As outlined before, the initial step of the SLMC is
to train an effective Hamiltonian Heff from a sample of

TABLE I. The trained parameters {J̃n} of the effective model in
Eq. (2), without and with setting J̃n = 0 (n � 2).

J̃1 J̃2 J̃3 Mean error

Train 1 1.2444 −0.0873 −0.0120 0.0009
Train 2 1.1064 0.0011

configurations generated by the local update based on the
original Hamiltonian in Eq. (1). We choose Heff to be a
generalized Ising Hamiltonian with two-body spin interactions
over various ranges,

Heff = E0 − J̃1

∑

〈ij〉1

SiSj − J̃2

∑

〈ij〉2

SiSj − · · · , (2)

where 〈ij 〉n denotes the nth NN interaction and J̃n is the
corresponding interaction parameter.

We now train Heff from the training sample by optimizing
E0 and {J̃n}. In principle, this can be viewed as an unsupervised
learning process [15,17], where a new statistical model Heff

is trained using a subset of features extracted from the
configurations. However, by taking advantage of knowing
H for each configuration, we can more efficiently train
Heff through a simple and reliable linear regression. For the
ath configuration in the sample, we compute its energy Ea

[from Eq. (1)] and all the nth NN spin-spin correlations
Ca

n = ∑
〈ij〉n SiSj , which serve as the actual training data.

Then, E0 and {J̃n} can be easily trained from a multilinear
regression of Ea and {Ca

n}, Ea = ∑
n J̃nC

a
n + E0. The results

are as shown in Table I (Train 1). It is clear that J̃1 is
dominant and much larger than others, which implies we
could set J̃n = 0 (n � 2). And then, by a linear regression,
we can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same as the case without setting J̃n = 0 (n � 2), which is
expected since all J̃n (n � 2) obtained from the multilinear
regression are negligible. Through this training process, we
conclude that only the nearest interaction is relevant there,
thus we only keep this term in the following simulations.
We emphasize that this trained model Heff only approximates
the original one for the configurations that are statistically
significant in the sample, i.e., the ones near the free-energy
minimum. Thus Heff can be regarded as an effective model.
We notice that, recently, there are many other attempts to apply
machine learning to MC simulations [18–23].

In addition, it should be addressed that the training of
Heff could be self-improved by a reinforced learning process.
Usually, a good initial sample could be very hard to generate
using only the local update, especially for systems at the
critical temperature Tc or with strong fluctuation. In this case,
we first train an effective model Heff using a simulation at
temperature T > Tc, and then generate another sample at Tc,
using the self-learning update with Heff learned from the first
iteration. Later, a more accurate Heff can be learned from the
second-iteration sample. In actual simulations, one can further
improve this process by using more iterations, each done with a
smaller sample. More details can be found in the Supplemental
Material.
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FIG. 2. Fitting of the distribution drawn from a sample of config-
urations in a Markov chain. The green dots represent configurations
in the sample, for which the x axis shows the feature of the
nearest-neighbor spin-spin correlation C1, and the y axis shows the
energy (per site) E/N computed from the original model in Eq. (1).

Through this iterative training process, we successfully
arrive at the final Heff. As shown in Fig. 2, Heff (self-learning
fit) indeed fits the energy of the configurations that are
statistically significant in the simulation. In the main part of
the figure, the data points are concentrated in the vicinity of
the fitted line, indicating that trained Heff is indeed a good
description of the low-energy physics.

Following the procedure of SLMC, once the training
process is finished, a cluster update with the Wolff algorithm
according to Heff can be constructed. Then, the generated
cluster update is accepted or rejected with a probability
accounting for the energy difference between the effective
model and the original model. The probability of accepting a
cluster is as follows,

α(A → B) = min{1,e−β[(EB−Eeff
B )−(EA−Eeff

A )]}, (3)

where A and B denote the configurations before and after
flipping the cluster. EA and Eeff

A denote the energies of a
configuration A, for the original model in Eq. (1) and the
effective model in Eq. (2), respectively. The derivation of
Eq. (3) can be found in the SM. With Eq. (3), the detailed
balance is satisfied, and the SLMC is exact, despite the use of
an approximate effective model in constructing the cluster.

To test the efficiency of the update scheme in SLMC,
we measure the autocorrelation time τ , which signifies how
correlated the MC configurations are in the Markov chain (the
detailed relation of τ with the computational complexity of
MC algorithm can be found in SM). In Fig. 3, we plot τ of
the ferromagnetic order parameter M = 1

N
| ∑i Si |, where N

is the number of sites, measured at each step of the Markov
chain, generated by different update algorithms on a square
lattice of linear size L = 40. The simulation is done at Tc,
which is determined by the Binder ratio, as shown in SM.

We compare results of the local update, the self-learning
update using Heff, and also a naive Wolff-like cluster update
with the bare two-body J term from the original model in

FIG. 3. The decay of autocorrelation functions as a function of
MC steps, obtained using different update algorithms. Inset: Semilog
plot of the same data.

Eq. (1) that is used to construct a cluster. The autocorrelation
functions generated by all updates decay with the MC steps
�t , and the autocorrelation time τ can be obtained from fitting
in the form of e−�t/τ . Our results show that comparing to
the local and naive cluster updates, the self-learning update
has the much shorter τ . In particular, at this system size, the
self-learning update is about 24 times faster than the local
update, while the naive Wolff-like cluster update does not gain
much of a speedup.

While Fig. 3 is an example of the better performance of
SLMC for a fixed system size at Tc, we have further collected
the autocorrelation time τ at Tc for local and self-learning
updates with many different system sizes, and hence extract the
scaling behavior of τ with respect to L. The results are shown
in Fig. 4. The blue squares are the τL, i.e., autocorrelation time
for local update, and it follows τL ∼ L2.2, well consistent with
the literature on critical slowing down [8,9]. The green dots are

FIG. 4. The scaling behavior of the autocorrelation times of the
local update τL, SLMC update τS , and the restricted SLMC update
τR . The inset is a zoom-in for L < 80.
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the τS , i.e., autocorrelation time for the self-learning update.
For all the tested systems size L � 80, the τS delivers a large
speedup of about 20 times (see the inset of Fig. 4 for clarity).

For a very large system size, we find τS increases expo-
nentially with L, τS ∝ eL/L0 (more details in SM). This is
because of a finite energy difference between the effective
model in Eq. (2) and the original model in Eq. (1). Therefore,
the acceptance ratio of flipping the whole cluster in Eq. (3)
decreases exponentially as the length of the cluster boundary
grows with increasing L, which renders the exponential
increase of the autocorrelation time. But this drawback in
SLMC can be easily remedied by simply restricting the
maximum size of the cluster in the Wolff algorithm [24].
With this improvement, the averaged acceptance ratio can
be expected to be fixed and SLMC should have the same
scaling function for the autocorrelation time as the local
update, τR = τ0L

z. However, by tuning the maximum size
of the cluster, we can achieve a much smaller prefactor τ0,
and the optimized maximum cluster size can be automatically
self-learned via a model-independent procedure (more details
in SM). This is indeed the case. As shown by the red dots in
Fig. 4, when the growth of the cluster is restricted to an area
within 40 lattice spacing, the autocorrelation time τR becomes
τR ∝ L2.1, which obeys the same power law as τL, but with
a prefactor of about 10 times smaller (more details about the
design of this restricted SLMC are provided in SM). Therefore,
although SLMC still suffers from a critical slowing down in
the thermodynamic limit, we can gain a tenfold speedup. That
means SLMC can achieve a much larger system size than the
local update, which helps to overcome the finite-size effect.
Moreover, for medium-sized systems, the SLMC without
restriction can easily gain a 20-fold speedup, as shown by τS .

Discussion. We now discuss the applicability of the SLMC
method to a broader class of problems in statistical and

condensed matter systems. Besides spin systems, many models
of great interest may be transformed into spin models with
short-range interactions [5,25], for which efficient global
update methods are available. In such cases, SLMC can be
readily implemented similar to our model studied above. In
particular, we expect SLMC to be very useful for studying
strongly correlated fermion systems [26,27], where no efficient
global update method is currently known. Moreover, by
employing rapidly developing machine learning techniques,
the SLMC method may be able to learn the configuration
update on its own, without relying on a given form of the
effective Hamiltonian. If realized, this will further increase the
efficiency and versatility of SLMC.

SLMC may also bridge numerical and theoretical studies.
The effective Hamiltonian trained or learned from the MC
simulation may guide the theoretical study of the original
model. The benefit is mutual: A theoretical understanding
may improve the accuracy of the effective model and thus
the performance of the numerical simulation.

Note added. Recently, a related work is described [28].
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