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Abstract Assessment of undiscovered oil and gas resources has been an important component of 

energy policy for the governments of the United States and Canada for many years. A pool-size-

by-rank statistical procedure is a centerpiece of the Geological Survey of Canada’s Petroleum 

Exploration and Resource Evaluation System (PETRIMES and of the U.S. Department of 

Interior’s Geological Resource Assessment Program (GRASP). Both employ discovery process 

modeling to make inferences about the number of pools in a play and about parameters of the 

play’s pool size distribution. The pool-size-by-rank procedure implemented in these two systems 

abandons a key primitive postulate on which modern discovery process models are based — 

sampling proportional to pool size and without replacement.  This logical disjunction has 

consequences: the predictive distribution of number of pools remaining to be discovered and the 

predictive distribution of undiscovered pool sizes generated by use of pool-size-by-rank 

procedures differ substantially in shape, location and spread from predictive distributions that 

incorporate sampling proportional to size. Uncertainty about total undiscovered oil and gas in a 

play is diminished. 

 

Keywords Oil and Gas Discovery Modeling, Successive Sampling, GRASP, PETRIMES, Pool 

Size by Rank, Sampling Proportional to Size 
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1 Introduction 

 

The 1975 USGS nationwide oil and gas assessment of conventional resources pioneered the use 

of subjective probability methods for projecting undiscovered oil and gas in US petroleum 

provinces. Probabilistic projections in the 1975 study are subjective, although geological 

reasoning guided study participants in their assignment of probability distributions to in place 

and recoverable oil and gas in US petroleum basins (Miller et al. 1975). This exercise 

foreshadowed the next major shift in methods designed to appraise undiscovered petroleum: use 

of these resources discovery process models based on primitive assumptions about how they are 

discovered to generate probabilistic projections of remaining undiscovered oil and gas in a 

petroleum play as a function of discovery history. Both the Geological Survey of Canada (GSC) 

and the U.S. Bureau of Ocean and Energy Management (BOEM) adopted oil and gas discovery 

modeling to aid in assessment of undiscovered pools in U.S. and Canadian petroleum provinces. 

This paper identifies strengths and weaknesses of these models as devices for probabilistic 

projection of undiscovered oil and gas in petroleum plays. Section 1 presents a compact 

summary of essential features of oil and gas discovery process models used by the CSC and the 

BOEM. Section 2 briefly describes the history of use of discovery process modeling by these two 

agencies and lays the ground for Sect. 3, in which a logical disjunction in the pool-size-by-rank 

protocol is identified. Pool-size-by-rank is one of several procedures used by these agencies to 

appraise undiscovered conventional oil and gas. It was created in the 1980s to simplify 

computation of probabilistic prediction of oil and gas remaining to be discovered in a petroleum 

play. Methods for computing probability distributions of complicated uncertain quantities have 

grown explosively over the intervening thirty-five years. Markov Chain Monte Carlo (MCMC) 
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and importance sampling enable easy computation of quantities, which in the 1980s, appeared 

difficult to compute and time consuming (West 1994, 1996). PETRIMES and GRASP systems 

currently in use do not incorporate the latest statistical computation methods. In Sect. 4 we 

discuss enhancements to discovery process models. 

   Oil and gas discovery process models are designed to compute of predictive probability 

distributions for oil and gas remaining undiscovered in a petroleum play. Most account for the 

observation that, on average, large accumulations in a petroleum play are discovered before 

small accumulations. PETRIMES and GRASP discovery process models rest on two primitive 

postulates. The first is that that the empirical size distribution of accumulations in place in a 

petroleum play is generated by identically independently distributed (iid) sampling of 

accumulation sizes endowed with a probability density concentrated on  Any reasonable 

choice of functional form is allowable. However, in the 1950s petroleum geologists with a 

statistical bent noticed that empirical frequency distributions of pool sizes in mature petroleum 

plays are approximately Lognormal (Blondel 1955; Allais 1957). Figure 1 is a Q-Q plot of log 

sizes of 2,509 Lloydminster play accumulations versus a Normal distribution computed by one 

of the authors using data provided by McCrossan et al. (1981). Pool sizes in this play vary by six 

orders of magnitude.  

(Figure 1 Here) 

The first key assumption is 

Assumption I. Magnitudes X1,...,XN of N in place accumulations in a petroleum play are 

generated by iid sampling NkxfkX ,...,1,)(~   of a density with domain indexed 

by a parameter  

).,0( 

),0( 

.
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Empirical evidence such as Fig. 2 led many modelers to specify  as Lognormal indexed 

by parameter ),(),(  0and 2  with domain . A realization  of 

 
creates a finite population of in place accumulation magnitudes on which discovery 

effort operates. As Fig. 2 shows, the second key idea is that large accumulations are on average 

discovered earlier in the discovery sequence than small accumulations.   

   (Figure 2 Here) 

The outlier in the right hand graph is the Statfjord field. This and similar studies of discovery 

order by size in petroleum plays provide empirical support for Assumption II below.   

Assumption II Given the probability of discovering Nxx ,...1  in the order

 is 

    
 

n

k Nxkxkx

kx

1 1 ......
 .                            

(1.1) 

In the finite population sampling literature, the acronym for this sampling scheme is SWORP; an 

alternative name is successive sampling. 

   Both PETRIMES and GRASP couple a super-population process for in place pool sizes to 

finite population successive sampling (Kaufman et al. 1975). Lee and Wang (1985) generalize 

Assumption II by introducing a discoverability parameter  

     ),(,
......


 




n

k
Nxkxkx

kx

1
1

       (1.2) 
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When  (Eq. (1.2)) becomes ordinary hypergeometric sampling, as  accumulations 

are discovered exactly in order from largest to smallest and as accumulations are 

discovered in order from smallest to largest. Combining I and II, the joint probability that N  pool  

sizes NN dxxdxx  ,...,11 are in place and that successive sampling yields an ordered sequence

),...,( nn dxxdxx  11 ) of pool sizes is 

 

                                 j

N

j

j

n

k Nk

k dxxf
xx

x

n

N
n )(

...
! 




















11

                .                             

(1.3) 

If )(
n

Zf  
 
is defined to be the density of a sum of n mutually independent exponential random 

variables with means  Njjj xxbb  ...)(,)(/1  , nj ,..,1 , the probability of observing a 

discovery sequence ),...,( nn dxxdxx  11 and realizing undiscovered pool sizes     

),...,( NNn dxxdxx  11  is 

                 .])([)()(! 
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      (1.4) 

so the joint density of conditional on a discovery record consisting of an ordered 

sequence ),...,( nn dxxdxx  11 of discovery sizes is 

                     ).(])([
),,s(
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       (1.5) 

 

Here is the cumulative distribution of a data dependent (discovered pool sizes) sum of 

independent but not identically distributed exponential random variables. Defining 

0 



NX,...,1nX 

nZF
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        ,         (1.6) 

   .        (1.7) 

The distribution of the data dependent sum nZ  plays a crucial role. Because of very large 

cancellations, numerical integration of Eq. (1.5) requires extreme accuracy. While feasible, this 

involves subtle programming and much calculation time. When this model was first proposed in 

the mid-1970s computation of one value of Eq. (1.6) to sixteen digits accuracy took four hours 

on a dedicated DEC 10!  MLE done by steepest descent in a uniform asymptotic regime requires 

analysis of coalescing saddle points and computation of Airy functions (Barouch and Kaufman 

1976).  Viewed differently, this computational barrier becomes a computational blessing! West 

was the first to show that, in a Bayesian setting, acceptance-rejection sampling can be deployed 

along with MCMC to compute Eq. (1.5) and a variety of predictive distributions efficiently 

(West 1994, 1996).  

   For fixed parameter values , andN   , the predictive density of given

is a probability mixture of conditionally mutually independent random 

variables.  Define = . Then the predictive density is  

             )}
~
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     (1.8) 

 

 making it evident that Nn XX ,...,1 given nn dxxdxx  ,...,11 possess identical marginal 

distributions and are symmetric with distribution independent of labeling. 

 

    If the number of discovered pools n is less than N a principal objective is to compute 

properties of the set of N-n undiscovered pool sizes based on their joint probability distribution 
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posterior to observation of a set of pool sizes in order of discovery. Given a discovery record, the 

probability distribution of a measurable function ),..,1( NXnXg   of  can be 

numerically approximated to a high order of accuracy by methods West advocates. This is true 

for a large variety of specializations: size or magnitude can be defined to be a function of a priori 

uncertain quantities such as rock volume, area, porosity, water saturation. For example, prospects 

can be distinguished from pools and the distinction modeled probabilistically, parameters 

controlling the discoverability of pools can be introduced, and pool sizes can be adjusted for 

reserve growth over time. Projections produced by pool-size-by-rank substantively differ from 

those produced by the sampling proportional to size model just described.   

 

2   PETRIMES and GRASP Background 

 

The Institute of Sedimentary and Petroleum Geology, Geological Survey of Canada, created the 

Petroleum Exploration and Resource Evaluation (PETRIMES) system in the 1980s to provide 

scientifically sound procedures for projecting undiscovered oil and gas in petroleum plays based 

on a discovery record. The US Department of the Interior’s Minerals Management Service (now 

BOEM) built its version of PETRIMES called Geological Resource Assessment Program 

(GRASP) soon after. Discovery process models proposed in the 1970s are at the core of these 

systems. Walter Stromquist’s 1998 review is an excellent summary supplemented with a detailed 

mathematical explanation of how PETRIMES works. An alternative summary of GRASP 

modeling methods and issues appears in OCS Report MMS 99-0034 (Lore et al. 1999). 

PETRIMES allows both a fully subjective approach to projection of undiscovered oil and gas 

and a discovery process model approach. The subjective approach is used in frontier basins with 

NX,...,1nX 
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little or no exploration history. Assessors provide subjective assessments of probability 

distributions of key geologic attributes. When a solid exploration history is available, discovery 

process modeling is appropriate.  Both PETRIMES and GRASP are structured to employ Lee 

and Wang’s pool-size-by-rank protocol for projection of undiscovered oil and gas in a petroleum 

play (1986). Pool-size-by-rank in particular was created to reduce computational complexity and 

to allow geologists to manipulate key parameter estimates produced by discovery process models 

imbedded in PETRIMES and GRASP so that final output appears reasonable.   

    In unpublished 2004 and 2011 reports the American Association of Petroleum Geologists 

Committee on Resource Evaluation summarized their reviews of hydrocarbon assessment 

methodology employed by the BOEM.  In both reports they expressed concern that, in their 

judgment, GRASP’s discovery history methodology under-represented uncertainty of the number 

and sizes of undiscovered conventional oil and gas fields in the Gulf of Mexico.  The 2011 report 

states that the BOEM should not use statistical methods exclusively to address this 

methodological problem in favor of some type of subjective assessment method designed to 

increase uncertainty about both sizes and numbers of undiscovered fields. A quality statistical 

method is one that incorporates first principles, data when available and subjective judgment in a 

rigorous and reproducible manner.  Unfortunately, the approach suggested in the 2011 report 

dodges a fundamental scientific issue: what constitutes an acceptable model for making 

inferences about undiscovered oil and gas in a mature petroleum play? A purely subjective 

approach to assessment raises its own problems. How thoroughly have those geologists been 

trained in probability assessment? In particular, have these geologists been calibrated to avoid 

assessment bias? Has the method employed to combine expert judgments been subjected to 

controlled experimentation designed to avoid a variety of pitfalls that commonly arise? The best 
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guarantee of both coherence and eliminating assessment bias is a yet to be invented omnibus 

method. 

  

 

 

3   Pool Size by Rank  

 

P.J. Lee’s authoritative book entitled Statistical Methods of Estimating Petroleum Resources 

(2008) provides a detailed description of how PETRIMES is used to answer the questions posed 

above. His death is a true loss, but fortunately he was able to complete this compendium. He 

describes how he and Wang derived pool-size-by-rank distributions and how to use them. They 

begin by specifying either a fixed value for the number N of pools in a play or an a priori 

distribution for N. Next they use the record of pool sizes in order of discovery and the 

PETRIMES discovery process model to compute point estimates of the super-population 

distribution assumed to generate pool sizes. Finally, they compute a rank distribution for pool 

sizes assuming that super-population distributions are fixed at reasonable values. If, for example, 

the in place pool size distribution is Lognormal with parameters  and , their procedure starts 

with computation of maximum likelihood estimates (MLEs) of  and given N and the 

discoverability parameter . Then , and N are manipulated to provide sensible fits to 

properties of order statistics of undiscovered pool sizes. Once the number of pools and super-

population (field or pool size) distribution parameters are fixed, values of undiscovered pools are 

assumed to be mutually independent and identically distributed from the pool or field size 

distribution. This leads to projections of undiscovered pool sizes that can differ substantially 

 2

 2

  2
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from predictive probability distributions conditioned on parameter estimates derived from a 

discovery process model likelihood function—a departure from established methods of statistical 

inference and a logical fork in the road.  

   If the process generating discoveries is modeled as successive sampling coupled with a super-

population process for pool sizes, then conditional on observation of a suite of discovered pool 

sizes, undiscovered pool sizes are not mutually independent. (See Appendix A for a proof.) To 

be probabilistically coherent, properties of order statistics for undiscovered pool sizes should be 

based on the joint distribution (Eq. (1.5)) of undiscovered pool sizes given the discovery record.  

Using this joint distribution to calculate pool-sizes-by-rank can yield projections significantly 

different from those produced by the current GRASP pool-size-by-rank procedure.  

   Another issue afflicts pool-size-by-rank: probabilistic judgments about undiscovered pool sizes 

in a play posterior to observation of a suite of discoveries in it should be processed differently 

from judgments made prior to observation of these discoveries and that both types of judgments 

must be used in accordance with Bayes’ Theorem.  A bedrock principle governing the order of 

computation is:  

 A priori judgments about model parametersObserved discoveries  

 Likelihood function Posterior distribution of model parameters  

 Predictive joint distribution of undiscovered pool sizes 

In Chapter Three (pages 45 to 47) of his monograph, P.J. Lee provides a detailed description of 

PETRIMES and in GRASP pool-size-by-rank procedures. On page fifty he says that it is based 

on the assumption that, given fixed super-population parameter estimates, rank statistics for the 

set of discovered pool sizes can be computed as if observations (discovery sizes) are drawn by 

iid sampling of the super-population distribution. Lee and Wang’s pool-size-by-rank procedures 
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are based on this independence assumption (1983a, 1985, 1986).  PETRIMES and GRASP 

codify it.  Figure 3 is a pictorial summary of pool-size-by-rank projections for the Rimbey-

Meadowlark play in Alberta, as calculated by Lee and Wang (1985, Fig. 8). 

                           (Figure 3 Here) 

 

3.1 The Discoverability Parameter 

The discoverability parameter plays an important role in calculation of super-population 

parameter estimators but does not appear at all in GRASP rank r calculations. Given the 

discovered pool sizes 

in a play, a subjective appraisal of the largest pool remaining to be discovered depends on the 

assessor’s judgments about discovery process efficiency. If discovery is very efficient the largest 

pools are highly likely to be discovered early in the sequence of discoveries and the largest pool 

remaining to be discovered is likely to be small. On the other hand, as discovery becomes 

increasingly inefficient, the probability distribution of the size of the largest undiscovered pool 

approaches that of the largest order statistic for independent identically distributed random 

variables, each equipped with the super-population size distribution. This is longhand for saying 

that the distribution of the largest pool remaining to be discovered depends heavily on the 

assessor’s judgments about the value assigned to a discovery process model’s discoverability 

parameter (Lee and Wang 1985; West 1996).
 
 

P.J. Lee, a principal architect of PETRIMES, (Lee and Wang 19983a, 1983b; Lee and Tzeng 

1993) and his co-workers understood the importance of conditioning order statistics calculations 

on the discovery record (Lee and Wang 1985). Nevertheless, current PETRIMES and GRASP 

pool-size-by-rank procedures are based on the assumption that the discoverability parameter is 
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zero, equivalent to assuming that undiscovered pool sizes are mutually independent and 

identically distributed with distribution that of the discovery process model super-population 

process—this, in spite of the fact that these systems both contain modules that compute 

maximum likelihood estimates (MLEs) of pool size parameters, the number N of pools in the 

play and the discoverability parameter. The Compute the Pool Size Rank (PSRK) module in the 

GRASP system does this.  When there is a substantial discovery record, the assumption that the 

discoverability parameter is zero—when in fact it is not—can lead to large differences between 

the distribution of the largest remaining undiscovered pool size produced by the discovery 

process model and that produced by the pool-size-by-rank procedure. 

   Walter Stromquist’s review of PETRIMES and GRASP is the most authoritative explanation 

of the underlying mathematics done to date. He provides a precise description of assumptions 

and calculations in all PETRIMES modules as of 1998. Stromquist’s detailed mathematical 

derivation of the rank-r density function in his review of the PSRK model confirms that ranks are 

computed assuming that underlying random variables are iid from a super-population 

distribution (not necessarily Lognormal). Stromquist further challenges the assumption that pool 

sizes are generated by iid sampling from a single probability distribution for pool sizes from a 

different vantage point, noting that the PSRK module is absolutely reliant on a pool size model 

in which the number of pools is a random variable. Pool sizes are drawn independently from a 

super-population distribution and are also independent of the number of pools. Stromquist views 

this as reasonable because, in his opinion, there is no obvious alternative. To demonstrate that 

this assumption is not always appropriate, Stromquist visualizes two extreme scenarios: a play 

contains only a few very large pools or, in contrast, it contains many small pools. If these are the 

only possible cases, the number of pools in the play cannot be independent of pool sizes. The 
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consequence is that in such cases resource appraisers cannot always use PSRK as currently 

constructed. This scenario has in fact been addressed in work on translation of geologists’ a 

priori judgments about relative likelihoods of elements of a set of geologic analogies into a 

probability model for discovery process modeling (Schuenemeyer and Kaufman 2005). The 

principal idea is to replace a single pool size distribution with a probability mixture of distinct 

pool size distributions. The spread of the predictive distribution of an undiscovered pool size 

increases, in some cases substantially. 

 

3.2 A Combinatorial Problem 

The PETRIMES pool-size-by-rank procedure takes into account the discovery record in the 

following way. Given MLEs of super-population parameters and the total number N of pools in 

the play, discovered pool sizes are ordered from largest to smallest and N-n undiscovered pool 

sizes are assigned to order statistics intervals or gaps.  Said slightly differently, undiscovered 

pool size order statistics are calculated conditioned on knowledge of where in the sequence of 

discovered pool size order statistics undiscovered pool sizes they fit.  Lee and Wang’s Theorem 

1 is the basis for calculation of undiscovered order statistics distributions (1985). The theorem 

assumes iid sampling from a super-population distribution with parameters fixed at the discovery 

process model, an assumption equivalent to assuming that the discoverability parameter is zero, 

even when discovery record based PETRIMES MLE calculations yield a positive value for it. 

Zhouheng Chen showed by example that explicit incorporation of discoverability into calculation 

of projections of undiscovered pool sizes leads to projections very different from those generated 

by PETRIMES (personal communication). 
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   Given a discovery record composed of n pool sizes in order of discovery and a number N > n 

of pools, pool-size-by-rank requires that N-n undiscovered pool sizes be assigned to order 

statistics intervals. This poses a combinatorial problem.  By ordering discovery sizes from largest 

to smallest, they can be used to define n+1 discovery record intervals.  Given discovery sizes 

},...{ 1 nxx define )(kx  to be the k
th
 largest. Use the sx k )( to partition ),0(   into n+1 (half open) 

intervals ),(],...,,(],...,,( )()()()(  110 xxxx kkn . A pool-size-by-rank requires the assessor to 

assign each of N-n undiscovered pool sizes to one of these intervals. How should this be done? 

How it is usually done? Each undiscovered pool size can, in principle, be assigned to any one of 

n+1 intervals so that the number of possible assignments is nNn  )1( .  As N-n increases with 

either n fixed or in the asymptotic regime )1,0( ff
N

n
n as N the number of possible 

assignments becomes exponentially large. Of course, some assignments may be judged to have 

vanishingly small probability of occurring. In practice, a geologist often chooses exactly one 

assignment and then uses PETRIMES or GRASP to compute the conditional distribution of each 

undiscovered pool size. Once an undiscovered pool size is assigned to an order statistic interval, 

its probability   distribution is then restricted to lie in that interval.  

   Let )(kq  be the number of undiscovered pools assigned to the interval ])(,)(( kxkx 1  with   

01  )(nx .Then the probability distribution for each of these )(kq undiscovered pool sizes 

possesses a (posterior to the discovery record) domain of support restricted to ],( )()( kk xx 1 . This 

restriction is an artifact of assignment of undiscovered pool sizes to that interval with probability 

one! More realistically, one should allow for assignments of undiscovered pool sizes other than 

to each interval. According to Desselles, this is where conflicts in assessor’s judgments )k(q



16 

 

appear. Assignment of N-n undiscovered pool sizes to order statistics intervals assumes an 

unachievable level of certainty regarding when these pools are expected to be discovered. He 

notes that the timing and sizes of discoveries on the Outer Continental Shelf often break out of 

pool-size-by-rank restricted order statistics intervals. Technology more than geology controls 

these phenomena. Incremental technological advances (ultra-deep water, high pressure high 

temperature drilling etc.) led to large discoveries in mature plays. Desselles goes on to say that 

unless the N-n undiscovered pool sizes are properly incorporated into the discovery process 

model, the effect is to bias the discoverability efficiency parameter. This technology based effect 

needs to be integrated into the model in order to assure a reasonable estimate of the 

discoverability parameter.    

 BOEM personnel recognize that these features of pool-size-by-rank raises difficulties. The 

North Sea is a prime non-US offshore example. When exploration accelerated back in the 1970s 

and 1980s, the timing of release of lease blocks severely restricted targets available for drilling. 

Inferences about North Sea discoverability parameters based on straightforward sampling 

proportional to size and without replacement (SWORP) leads to a biased MLE of discoverability 

and so to bias in the projection of what remained to be discovered. Restrictions of this type can 

be incorporated into GRASP. The model becomes more complex. However, the real world must 

dictate the model—the reverse doesn’t work well. North Sea computational examples show how 

such restrictions impact inference about the discoverability parameter (Adelman et al. 1983).
 
 

Because, in GRASP type models, undiscovered pool sizes are positively correlated.  It is difficult 

for geologists to make coherent subjective projections of undiscovered pool sizes given a post-

discovery record. In the absence of information beyond a geologist’s a priori judgments about 
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pool sizes and prospects prior to the first discovery, the joint predictive distribution of 

undiscovered pool sizes summarizes all relevant probabilistic information.  

 

3.3 An Example 

 

To demonstrate how prediction conditioned on a discovery record using Eq. (1.5) yields results 

quite different from predictive quantities produced by a pool-size-by-rank, suppose that the 

largest pool size in the discovery record is *x . Given discovery record 

  

          1 - . 

 (3.1) 

For fixed values of , N and  Eq. (1.5) and Eq. (1.8) lead to 

 

  ),;*(~},...,{ **  xFxXxXProb nN
hNn


 1     (3.2) 

so unconditional as regards  

           
),,s(

}s**,...,{
n

nNn
C

xXxXProb
1

1  )(),;*( 
n

Z
dFxF nN

h
 

0
      (3.3) 

Canadian Arctic Archipelago Western Sverdrup Basin Heiberg gas play data from Chen and 

Osadetz shows how sensitive largest pool sized predicative distributions are to variations in the 

discoverability parameter (2006). (Recall that pool-size-by-rank assigbns value zero to it when 

computing order statistics intervals). As of 2005, there were twenty gas discoveries and a 

projection of in place gas in an additional thirty-six prospects (Chen and Osadetz 2006). Treating 

prospect projections and discoveries as a complete finite population of N = 56 accumulation sizes 

),..,( 11 nnn dxxdxx s

 }*},..,max{{ 1 nNn xXXProb s },..,{ **
1 nNn xXxXProb s

 , 
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generated by a Lognormal sampling process, MLEs of Lognormal parameters are

. Figure 4 is a lognormal accumulation size distribution with parameters 

fixed at MLEs in units of cubic meters of gas. Discovered accumulation sizes are shown as tick 

marks on the x-axis. Gaps between tick marks can be interpreted as PSRK Module order 

statistics gaps. For this distribution, the probability of observing an undiscovered pool size 

greater than the size ( ) of the largest discovered accumulation is less than 0.012. (Fig. 

4). 

   (Figure 4 Here) 

Discovery magnitudes in order of observation are generated by successive sampling. The MLE 

of the discoverability parameter is . Figure 5 displays distributions of the largest gas 

pool remaining to be discovered in the Heiberg play as a function of the discoverability 

parameter and the first twenty discoveries alone. The number N-n of pools remaining to be 

discovered is chosen to be thirty-six.  Two predictive distributions for the largest pool remaining 

to be discovered using fixed MLEs of Lognormal pool size parameters and a variant of the PSRK 

module in GRASP are displayed in Fig. 5.  

    (Figure 5 Here) 

These two distributions tell the story for = 0 (green) the distribution of the largest pool size has 

observable positive probability on a large interval from 0 to 200 with a modal value at 

44 . For =0.8371 (black) the distribution of the largest pool size has positive 

probability on a much smaller interval—from 0 to approximately 50 with a mode at 8 

.  The red and blue lines corresponding to = 0.3 and = 0.6, respectively, fill in the 

gaps. 

2ˆ ˆ1.863 , 1.617  

6 3102x10 m

ˆ 0.8371 




3610 M


3610 M ̂


3610 M


3610 M  
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The BOEM adopted recommendations of an American Association of Petroleum Geologists 

(AAPG) committee 2007 GRASP review and removed the Pool Size Constrained by Discovery 

module from GRASP. The model’s likelihood function should be tailored to include information 

about prospects and revisions of discovered pool sizes accruing after a suite of discoveries in a 

play. In particular, the revised likelihood function should account for new technological 

developments that expand the set of economically viable prospects and for lease restrictions that 

block prospect drilling.  

An important issue is how best to incorporate information about targets for drilling not on the 

table at the outset of exploration but which appear as exploration progresses. Information about 

targets not currently drillable influences a geologist’s judgments about sizes of undiscovered 

pools and so must influence how a geologist allocates undiscovered pool sizes to order statistics 

gaps. This data type requires a change in the sample frame used for inferences about discovery 

process model parameters.  

 

 

 4 Subjective GRASP, Pool-Size-by-Rank, Discovery Decline Curve and Creaming 

 

When a discovery record assessments of pool sizes and pool counts is absent, judgments about 

undiscovered pool sizes are necessarily subjective. Subjective GRASP encodes a priori 

probability judgments about play, prospect and exploration risk, pool sizes, prospect and pool 

counts in a play and generates a large number of probabilistic projections. The PSRK module 

produces marginal probability distributions of rank order statistics generated by a random 

number of random pool sizes. In spite of the logical disconnect between the discovery process 

model and GRASP’s pool-size-by-rank calculations, pool size-by-rank mean values possess a 



20 

 

natural discovery process model analogue: the classical discovery decline curve composed of 

mean values of discovery sizes in order of discovery. 

 

    Given N and   in the special case when )(L is the LaPlace transform (1.6) with 1 and  

"LL and'  are first and second derivatives with respect to  the expected size of the n
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More generally, for ,...,21q  and 1  
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For some super-population densities equations 4.1a and 4.1b lead to exact expressions for 

moments. For example, if ),( rxf   is a Gamma density indexed by parameters r and then  
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When  is exponential with mean /1 the decline in discovery size as a function of discovery 

number is linear    
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In addition  
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Figure 6 is a family of discovery decline curves  versus n for lognormal f  (Barouch and 

Kaufman, 1976).  

 

   (Figure 6 Here) 

A plot of )()( 



n

k

kn YESE

1

 versus n is a version of a “creaming curve” popularized by 

Meissner and Demirmen (1981).  

 

 

5 Broadening the Discovery Process Model 

As stated at the outset, a 2007 review of GRASP II by an AAPG committee concluded that the 

pool-size-by-rank procedure understated play potential uncertainty. However, they did not 

identify where in the chain of GRASP computational logic this takes place. A starting point is to 

recognize that traditional discovery process models are limited band-width models fit to sample 

data consisting of pool sizes in order of discovery. How might discovery process models be 

broadened to incorporate richer types of geological and engineering information?   

   A first step is to consider how information beyond the discovery record—auxiliary 

information—can be used to compute a predictive distribution for undiscovered pool sizes. The 

model’s likelihood function should be expanded to incorporate this information and bring it to 

bear directly on inference about the discoverability parameter, pool size distribution parameters 

and the number N of pools in the play. The pool-size-by-rank procedure currently employed in 

GRASP does not use auxiliary information to compute MLEs of model parameters. GRASP 

treats auxiliary information as if it is ancillary. (The sampling distribution of an ancillary statistic 

does not depend on which of the probability distributions among those being considered is the 

distribution of the statistical population from which the data were taken.). PETRIMES and 

GRASP are designed to operate on a play’s discovery record consisting of discovered pool sizes 

)( nYE
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in order of discovery supplemented with assignment of a probability distribution to the total 

number of pools in the play. A GRASP MLE is not a function of geologists’ post-discovery 

record judgments and, in particular prospect information is not in the sample frame. 

   Suppose, as considered in Sect. 3, that twenty discoveries have been made in the Heiberg play 

by 2005. Now consider two (imaginary) extreme scenarios. At one extreme, geologists have 

detailed reconnaissance information that identifies all possible prospects that might possibly be 

drilled in this play; in particular, the in place BOE potential of each mapped prospect is known 

with near certainty. At the other extreme, the only information available to geologists consists of 

sizes of pools discovered as of 2005. Examine the latter case first. Absent any auxiliary 

information at all, a geologist’s judgment about play potential is shaped by the discovery record 

and little else. The discovery process model is then a vehicle for inferring properties of the joint 

predictive distribution of undiscovered pools in the absence of auxiliary information. However, 

once a knowledgeable geologist examines the discovery record, he forms opinions about 

remaining play potential. These opinions are not pre-discovery record opinions and so should not 

be processed via Bayes’ Theorem by assigning a judgmental prior distribution to model 

parameters prior to observing any drilling outcome in the play at all → observe data → compute 

posterior distribution of parameters → compute predictive distribution of play potential. The 

geologist’s judgments are confounded with (some would say contaminated by) his observation of 

and interpretation of the discovery record. The analyst who wishes to adhere to probability logic 

faces a few difficulties.  Once a geologist’s judgments about play potential are confounded by 

observation of the data (the discovery record) how should his judgments and the discovery 

record be combined? What sort of predictive distribution should be computed? The pool-size-by-

rank procedure cuts this Gordian knot but, unfortunately, in a fashion that is not always 
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probabilistically coherent. Turn next to the case when, in addition to the discovery record, the 

number of prospects along with each prospect’s BOE potential is known with certainty. The only 

major uncertainty remaining is the order in which prospects may be drilled and which prospects 

are in fact pools. The need for a super-population process pool size distribution disappears. 

Successive sampling applied to a finite population of prospect sizes and discovered pool sizes, 

each treated as known with certainty, is then a relevant model to project discovery order of 

undiscovered pools.  

   As exploration of a play unfolds, an increasingly rich set of geologic and engineering data 

accumulates. The play’s boundary may expand or contract and sizes and locations of new 

drillable prospects may be identified. Auxiliary information of this sort clearly influences how a 

geologist chooses an allocation of undiscovered pool sizes to order statistics gaps in the 

discovery record. But it does so in a completely informal way and is, to our knowledge, not used 

to revise judgments about model parameters before implementation of the pool-size-by-rank 

procedure. Another team of assessment geologists could make a different assignment of pool 

sizes into gaps. Revision of judgments about model parameters should be based on all sample 

information available. In their study of Canada’s Western Sverdrup Basin play Chen and Osadetz 

(2006) present prospect data that, along with the discovery record, can be used to this end. The 

model should be reformulated so that prior to any exploratory drilling at all the model embraces 

both tested and abandoned prospects pools and accumulations. In addition, they introduce spatial 

modeling of prospects and discoveries. Rabinowitz (1991) studied a version of this generalized 

successive sampling problem. Introduction of uncertainty about parameters, such as the number 

of pools and prospects in a play, as done in the PSRK module is not equivalent to expanding the 

likelihood function to embrace prospect data and spatial characteristics of deposition. 



24 

 

   An enriched sample frame that includes tested and abandoned prospects along with discovery 

sizes in order of observation is valuable. Chen and Osadetz (2006) recommend that dry holes be 

replaced with tested and abandoned prospects, as a more accurate description. At the outset, the 

set of targets for drilling consists of two objects: a set of dry prospect sizes and a set of prospect 

sizes, each of which when drilled turns out to be a productive pool (field) or a tested and 

abandoned prospect. It is reasonable to assume that both prospect sizes projected by geologists 

and productive pool sizes are generated by a super-population process. An essential distinction 

among GRASP, PETRIMES and a model designed to capture auxiliary information is that the 

last of these adopts sampling proportional to size and without replacement from a finite 

population composed of the union of a realization of a set of pools size and a set of prospect 

sizes that when tested will be abandoned.   

   Modifying the likelihood functions used in GRASP and PETRIMES type models to account 

for temporal effects on exploratory drilling imposed by lease blocking and technology breaks 

would substantially increase predictive validity.  Considerable recent progress has been made on 

spatial modeling of features of oil and gas fields and prospects that influence discoverability. For 

example, Chen and Osadetz (2006) define the set of targets for drilling to be the union of a set of 

dry prospect sizes and a set of prospect sizes each of which when drilled turns out to be a 

productive pool (field) or a tested and abandoned prospect. Elements of the union of these can 

two sets are treated as nodes in a spatial network with arcs that encode geologic and/or 

dependencies among them. Martinelli et al. (2011) show how Bayesian networks can be 

deployed to this end. Discovery process models that combine spatial networking and basic 

principles of discovery process modeling are an important next step. 
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Appendix A: Undiscovered Pool Sizes are Positively Correlated 

 

Assertion: Undiscovered pool sizes conditional on a discovery record are positively correlated. 
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Proof: Define ),;( kXE  to be the expectation of a generic NnkXk ,...,, 1  conditional on

  , pool size parameters and discoverability parameter . For the 

covariance ),,( mk XXCov  of mk XX and  conditional on pool size parameters and 

discoverability parameter is, using the covariance decomposition formula 

   ))(),((),;,(),,( mkmkmk XEXECovXXCovEXXCov        (A.1) 

As and are conditionally independent given ,  

        ))(),((),,( mkmk XEXECovXXCov   .      (A.2) 

Here  is a rv with range set ),( 0 .  Chebychev’s well known functional inequality says that if g 

and h are functions with common domain, then, if both g and h are strictly increasing or both are  

strictly decreasing as  traverses ),( 0  then 
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               Figure 1. Q-Q plot of log sizes versus a Normal distribution  
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Figure 2. North Sea oil field sizes in order of discovery within individual plays (from Adelman et 

al., 1983) 
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Figure 3. Predicted pool sizes by rank for the Rimbey-Meadowbrook reef play. Dots indicate 

reserves of pools and boxes indicate values at the 25
th
 and 75 percentiles (Lee and Wang, 1985, 

Fig. 8) 

 



31 

 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 4. Lognormal density for the Sverdrup play (red) and discovered pools (blue)  
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Figure 5. Distributions of the largest undiscovered pool size for four values of the 

discoverability parameter 
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Figure 6. Family of decline curves for a Lognormal Super-population 


