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Abstract

The following paper discusses the application of a multigrid-in-time scheme to Least Squares
Shadowing (LSS), a novel sensitivity analysis method for chaotic dynamical systems. While
traditional sensitivity analysis methods break down for chaotic dynamical systems, LSS is
able to compute accurate gradients. Multigrid is used because LSS requires solving a very
large Karush-Kuhn-Tucker (KKT) system constructed from the solution of the dynamical
system over the entire time interval of interest.

Several different multigrid-in-time schemes are examined, and a number of factors were
found to heavily influence the convergence rate of multigrid-in-time for LSS. These include
the iterative method used for the smoother, how the coarse grid system is formed and how
the least squares objective function at the center of LSS is weighted.

1 Introduction

Although computers are becoming more powerful at a rapid pace, the size of the problems we
wish to solve are growing even faster. An example of a potentially very large problem is Least
Squares Shadowing (LSS), a novel computational method that can be used for sensitivity
analysis of chaotic dynamical systems.

LSS requires solving a linear system of O(mn) equations, where m is the number of
time steps and n is the number of dimensions or degrees of freedom of the system, both
of which can be very large (∼ 105 or greater) for many problems of interest in a number
of fields including fluid dynamics. Fortunately this system can be written as a 2nd order
boundary value problem in time with homogeneous Dirichlet boundary conditions. Therefore
a multigrid-in-time scheme is attractive because of its fast convergence relative to other
iterative methods for many boundary value problems in time [1].
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1.1 Motivation for Least Squares Shadowing

Sensitivity analysis of systems governed by ordinary differential equations (ODEs) and partial
differential equations (PDEs) is important in many fields of science and engineering. Its goal
is to compute sensitivity derivatives of key quantities of interest to parameters that influence
the system. Applications of sensitivity analysis in science and engineering include design
optimization, inverse problems, data assimilation, and uncertainty quantification.

Adjoint based sensitivity analysis is especially powerful in many applications, due to
its efficiency when the number of parameters is large. In aircraft design, for example, the
number of geometric parameters that define the aerodynamic shape is very large. As a result,
the adjoint method of sensitivity analysis has proven to be very successful for aircraft design
[2], [3]. Similarly, the adjoint method has been an essential tool for adaptive grid methods
for solving PDEs [4], solving inverse problems in seismology, and for assimilating observation
data for weather forecasting.

Sensitivity analysis for chaotic dynamical systems is important because of the prevalence
of chaos in many scientific and engineering fields. One example is highly turbulent gas
flow of mixing and combustion processes in jet engines. In this example, and in other
applications with periodic or chaotic characteristics, statistical averaged quantities such as
mean temperature and mean aerodynamic forces are of interest. Therefore, the general
problem we seek to solve with sensitivity analysis is:

Given
du

dt
= f(u, ξ), J = lim

T→∞

1

T

∫ T

0

J(u, ξ)dt, Compute
∂J

∂ξ
(1)

Where u is the state vector, ξ is some parameter in the governing equation, du
dt

= f(u, ξ) and
J(u, ξ) is some quantity of interest.

Sensitivity analysis for chaotic dynamical systems is difficult because of the high sensi-
tivity of these systems to the initial condition, known as the ”Butterfly Effect”. Slightly
different initial conditions will result in very different solutions, which diverge exponentially
with time [5]. This also results in exponential growth of sensitivities and therefore the sen-
sitivity of long-time averaged quantities is not equal to the long-time average sensitivities of
chaotic systems [6]. Because the derivative and long-time average do not commute, the tra-
ditional adjoint method computes sensitivities that grow exponentially with time, as shown
in the work done by Lea et al. [6].

The least squares shadowing (LSS) method does not encounter the exponential growth
of sensitivities observed in traditional methods [7]. The method requires that the chaotic
system is ergodic; that long time behavior of the system is independent of initial conditions.
LSS finds a perturbed trajectory that does not diverge exponentially from some trajectory
in phase space. This non-diverging trajectory, called a “shadow trajectory”, has its existence
guaranteed by the shadowing lemma [8] for a large number of chaotic systems and can be used
to compute sensitivities. The shadow trajectory is found by solving a quadratic programing
(QP) problem with linear constraints. It is the large size and bandwidth of the KKT system
associated with the QP system that requires an efficient, iterative linear solver.
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Lyapunov Exponents: Avg. Rate of deformation
Covariant Vectors:Direction of deformation

Uniform
Perturbations

Trajectory for u̇ = f(u)

Figure 1: Schematic of Lyapunov exponents and covariant vectors

1.2 Outline

The following paper discusses the implementation of LSS using a multigrid-in-time scheme to
solve the KKT system derived from the QP problem. Several schemes were considered, each
resulting in different convergence rates and computational costs. The paper is structured as
follows: first, LSS is presented through a discussion of non-linear dynamics and demonstrated
on the Lorenz system. Next, several multigrid-in-time schemes are presented and their
performance solving for sensitivities of the Lorenz system is presented and discussed. Finally,
some concluding remarks and directions for future work are presented.

2 Least Squares Shadowing Method

2.1 Lyapunov Exponents and the Shadowing Lemma

Before LSS and the shadowing lemma from which it is derived is discussed, a more in-depth
discussion of Lyapunov exponents and Lyapunov covariant vectors is required. For some sys-
tem du

dt
= f(u), there exist Lyapunov covariant vectors φ1(u), φ2(u), ..., φi(u) corresponding

to each Lyapunov exponent Λi, which satisfy the equation [9]:

d

dt
φi(u(t)) =

∂f

∂u
· φi(u(t))− Λiφi(u(t))

To understand what Λi and φi represent, consider a sphere comprised of perturbations
δf to a system du

dt
= f(u) at some time, as shown in the far left of figure 1. As this system

evolves in time, this sphere expands in some directions, contracts in some, and remains
unchanged in others. The rate at which the sphere expands or contracts corresponds to the
Lyapunov exponent Λi and the corresponding direction of expansion or contraction is the
Lyapunov covariant vector φi. It is important to note that the vectors φi are not the same
as local Jacobian eigenvectors along a trajectory. The φi vectors depend on all Jacobian
eigenvectors along a trajectory. Also, the φi are not necessarily orthogonal, but the number
of Lyapunov covariant vectors is the same as the number of dimensions of the system.

A strange attractor, the type of attractor associated with chaotic dynamical systems,
has at least one positive and one zero Lyapunov exponent [9]. To illustrate the effect of the
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Figure 2: Phase space trajectory of a chaotic dynamical system. The unstable manifold, in
red, is the space of all Lyapunov covariant vectors corresponding to positive exponents. The
stable manifold, in green, corresponds to the space of all covariant vectors associated with
negative exponents. A perturbation to the system (in red) has components in both manifolds,
and the unstable component causes the perturbed trajectory (pink) to diverge exponentially
from the unperturbed trajectory (in black). LSS chooses a perturbed trajectory with a
different initial condition (in blue) that does not diverge from the unperturbed trajectory.

positive exponent, we consider figure 2. We see that if the perturbed trajectory has the same
initial condition as the unperturbed trajectory, the two trajectories diverge exponentially,
leading to the issues with traditional sensitivity analysis discussed in the introduction.

However, the assumption of ergodicity means that it is not necessary to compare a per-
turbed and an unperturbed trajectory with the same initial condition. Therefore, an initial
condition can be chosen such that the perturbed and unperturbed trajectories do not di-
verge, resulting in the blue trajectory in figure 2. The existence of this trajectory, called a
“shadow trajectory”, follows from the shadowing lemma [8] : Consider a reference solution
ur to

du

dt
= f(u, ξ)
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Shadow
Trajectory
u′(t)

Original
Trajectory

u(t)
dt

dτ

u(ti)

u(ti+1)

u′(τi+1)

u′(τi)

Shadow
Trajectory
u′(t)

Original
Trajectory

u(t)
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dτ

u(ti)

u(ti+1)

u′(τi+1)
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Figure 3: LEFT: Original and shadow phase space trajectories without any time transfor-
mation (dτ/dt = 1). RIGHT: Original and shadow phase space trajectories with a time
transformation dτ/dt = 1 + η that minimizes the distance between the two trajectories in
phase space for all time. Note that η is a “time stretching factor” and that −1.0 < η < 1.0.

If this system has a Hyperbolic strange attractor and if some system parameter ξ is slightly
perturbed:

For any δ > 0 there exists ε > 0, such that for every ur that satisfies ‖dur/dt− f(ur)‖ <
ε, 0 ≤ t ≤ T , there exists a true solution us and a time transformation τ(t), such that
‖us(τ(t))− ur(t)‖ < δ, |1− dτ/dt| < δ and dus/dτ − f(us) = 0, 0 ≤ τ ≤ T .

Note that ‖ · ‖ refers to distance in phase space
Therefore, relaxing the initial condition allows us to find the shadow trajectory us(τ). The

key assumption of the shadowing lemma is that the attractor associated with the system of
interest is hyperbolic. The key property of hyperbolic attractors for the shadowing lemma is
that tangent space can be decomposed into stable, neutrally stable and unstable components
everywhere on the attractor [10]. Another way to state this property is that the Lyapunov
covariant vectors make up a basis for phase space at all points on the attractor. Although
this not the case for many attractors, including the Lorenz attractor, there is a Chaotic
Hypothesis which states that many high-dimensional chaotic systems will behave as if they
were hyperbolic [11]. For example, since the single point on the Lorenz attractor that is not
hyperbolic is the unstable fixed point at the origin, most phase space trajectories do not pass
through it and the shadowing lemma holds.

The time transformation alluded to in the shadowing lemma is required to deal with
the zero (neutrally stable) Lyapunov exponent, whose covariant vector is simply f(u). This
time transformation, referred to as “time dilation” in this paper and other LSS literature, is
required to keep a phase space trajectory and its shadow trajectory close (in phase space)
for all time as demonstrated in figure 3.
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2.2 Computing the Shadow Trajectory

Although LSS could be implemented by computing Lyapunov exponents and covariant vec-
tors (as in [7]), this is not necessary. To find the shadow trajectory, an optimization problem
is solved, where the objective function is the L2 norm of the tangent solution. That is, for
some system of equations du

dt
= f(u, ξ), the tangent equations are solved, where v = ∂u

∂ξ
:

min
v,η

1

2

∫ T

0

v2 + α2η2dt, s.t.
dv

dt
=
∂f

∂u
v +

∂f

∂ξ
+ ηf , 0 < t < T, (2)

where η is the time dilation term, corresponding to the time transformation from the shad-
owing lemma discussed in the previous section. For a detailed derivation of equation (2), see
the appendices of “Sensitivity computation of chaotic limit cycle oscillations.” by Q. Wang,
R. Hui and P. Blonigan, available at arXiv:1204.0159.

This optimization problem is a linearly constrained least-squares problem, with the fol-
lowing KKT equations, derived using calculus of variations (see appendix A.1):

∂w

∂t
= −

(
∂f

∂u

)∗
w − v w(0) = w(T ) = 0 (3)

α2η = −〈f, w〉 (4)

dv

dt
=
∂f

∂u
v +

∂f

∂s
+ ηf (5)

Equations (3), (4) and (5) can be combined to form a single second order equation for
the Lagrange multiplier w, as in [12]:

−d
2w

dt2
−
(
d

dt

(
∂f

∂u

)∗
− ∂f

∂u

d

dt

)
w +

(
∂f

∂u

(
∂f

∂u

)∗
+

1

α2
ff ∗
)
w =

∂f

∂ξ

w(0) = w(T ) = 0 (6)

Equation (6) shows that the LSS method has changed the tangent equation from an
initial value problem in time to a boundary value problem in time. The LSS solution can be
used to compute gradients for some quantity of interest J (i.e. Drag):

∂J̄

∂ξ
=

〈
∂J

∂u
, v

〉
+ ηJ − ηJ (7)

Where x ≡ 1
T

∫ T
0
x dt. See appendix A.2 for a derivation of equation (7).

2.3 Solving the KKT system numerically

Equations (3), (4) and (5) are discretized using finite differences and combined to form the
following symmetric system:
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

I FT
0

I GT
1 FT

1

. . . GT
2

. . .

I
. . . FT

m−1

I GT
m

α2 fT1
α2 fT2

. . .
. . .

α2 fTm
F0 G1 f1

F1 G2 f2
. . .

. . .
. . .

Fm−1 Gm fm





v0
v1
...
...
vm
η1
η2
...
ηm
w1

w2

...
wm



= −



0
0
...
...
0
0

...
0
b1
b2
...
bm



Fi =
I

∆t
+

1

2

∂f

∂u
(ui, ξ), Gi = − I

∆t
+

1

2

∂f

∂u
(ui, ξ),

bi =
1

2

(
∂f

∂ξ
(ui, ξ) +

∂f

∂ξ
(ui+1, ξ)

)
, fi =

1

2
(f(ui) + f(ui+1)) , i = 0, ...,m

This KKT system is a block matrix system, where each block (I, Gi, and Fi) is n by n,
where n is the number of states (i.e. the product of the number of nodes and flow variables
(density, velocities, enthalpy) in a Computational Fluid Dynamics (CFD) simulation). wi
and vi are length n vectors, and ηi is a scalar. The blocks highlighted in red correspond to
equation (3), white to equation (4), and yellow to (5).

Note that as the system is symmetric, the adjoint is computed simply by changing the
right hand side, allowing many gradients to be computed simultaneously [13].

For an example of using LSS, we consider the Lorenz system. The Lorenz system is a
low order model of Rayleigh-Bénard convection [5]:

dx

dt
= s(y − x),

dy

dt
= x(r − z)− y, dz

dt
= x y − b z . (8)

The Lorenz system was solved forward in time using a 4th order Runge-Kutta time
stepping scheme. To solve the KKT system for the Lorenz system, the KKT system is
rearranged to a banded block matrix system, as shown in “Sensitivity computation of chaotic
limit cycle oscillations.” by Q. Wang, R. Hui and P. Blonigan. This system is then solved
using a direct method. Solutions were integrated from a random initial condition and run
for 100 time units before LSS was applied, to ensure that the portion of the solution being
used was on the attractor manifold.

Figure 4 shows an approximate shadow trajectory for the Lorenz system. Note how
the trajectory stays close for all times, as governed by the shadowing lemma. The shadow
trajectory allows the computation of accurate sensitivities for relatively short integration
times as shown in figure 5. The gradients shown in figure 5 are within the bounds of the
gradient found using linear regression: 1.01± 0.04∗ [7].
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Figure 4: Lorenz equation phase space tra-
jectory (u(t)) for r = 28 (blue) and a cor-
responding approximate shadow trajectory
(u(t) + v(t)) (red). Integration time was
T = 20 in dimensionless time units.

25 26 27 28 29 30
0

0.5

1

1.5

r

dz
/d

r

Figure 5: Gradient of long-time averaged z
with respect to the parameter r. Gradients
computed with trajectory length T = 20 are
shown as black diamonds. Those computed
using T = 1000 are shown as a red line.

Although rearranging the system to a banded system and solving with a direct works
well for smaller systems like the Lorenz system, it would not be very efficient for LSS with
larger systems.

Firstly, the KKT system is quite large, with 2mn + n + 1 by 2mn + n + 1 elements for
m time steps. For a discretization with a stencil of five elements, the matrix would have
approximately 23mn non-zero elements. Consider a CFD simulation with 1× 105 nodes and
16000 time steps. For a 2D compressible flow solver, there are four unknowns at each node,
therefore, the number of degrees of freedom, n is 4 × 105. For this simulation, the KKT
matrix would be 1.28× 1010 by 1.28× 1010 with 1.47× 1011 non-zero elements.

Also, the bandwidth of the rearranged KKT system scales with the size of the system n,
which means that direct methods, whose operation count scales with the matrix bandwidth
squared times the rank, do not scale well for larger problems like CFD simulations. On
the other hand, an iterative method scales with the number of non-zero elements, not the
product of bandwidth and rank. Therefore, the operation count of an iterative method scales
with mn, not mn3 like a direct method. Because of this, iterative methods, such as multigrid,
should be used to apply LSS to CFD simulations and other larger dynamical systems.
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3 Multigrid-in-time for the Least Squares Shadowing

Method

As discussed in section 2.3, the KKT system is very large for many problems of interest,
therefore we consider iterative methods to solve the KKT system. As equation (6) is a
boundary value problem in time, a multigrid-in-time scheme is attractive because of its fast
convergence relative to other iterative methods for many boundary value problems [1].

Several multigrid schemes were used to solve the LSS KKT system, with vastly varying
convergence rates and computational costs. The first scheme considered, referred to as
“classic” multigrid, is based upon the geometric multigrid scheme outlined by Briggs et al.
[1]. This scheme leads to very slow convergence of the KKT system’s residual. The second
scheme considered was cyclic reduction. This scheme converges in one cycle if the system
is solved exactly on the coarsest grid. However, the implementation of this scheme would
use too much memory or require too many floating point operations to be viable for solving
large scale systems with the computational resources that are currently available to most
engineers and scientists. Finally, it was found that using a scheme with a Krylov subspace
solver as a smoother and higher order averaging between the KKT systems on the fine and
coarse grids led to textbook multigrid convergence rates. This was found to be the case for
schemes which satisfied the variational condition and those that did not, although schemes
that did not satisfy the variational condition converged slightly slower than those that did.

This section is comprised of a detailed discussion of the above results. Each subsection
will outline each scheme. Also, each subsection will present the performance of each scheme
when used to apply the LSS method to the Lorenz equations. Finally, the implications of
these results for the computational efficiency of each scheme will be discussed.

3.1 KKT system Schur complement

Rather than directly discretizing equation (6), we solve the Schur complement of the KKT
system shown in section 2.3. The KKT system can be written as: I 0 BT

0 α2I CT

B C 0

 v
η
w

 = −

 0
0
b


where B is a mn× (m+ 1)n matrix and C is a mn×m matrix. Conducting block Gaussian
elimination, the Schur complement is found to be:

(BBT +
1

α2
CCT )︸ ︷︷ ︸

A

w = b
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Written in terms of the block matrices in section 2.3:
F0F

T
0 +G1G

T
1 + 1

α2 f1f
T
1 G1F

T
1

F1G
T
1 F1F

T
1 +G2G

T
2 + 1

α2 f2f
T
2 G2F

T
2

. . .
. . .

. . .

Fm−1G
T
m−1 Fm−1F

T
m−1 +GmG

T
m + 1

α2 fmf
T
m


︸ ︷︷ ︸

A

(9)

From this form we see that the Schur complement is a mn×mn SPD and block tridiagonal
matrix.

3.2 Classic Multigrid

The first multigrid scheme implemented was a simple geometric scheme, referred to in this
paper as “classic multigrid”. Injection is used for restriction and prolongation is carried out
by linear interpolation. Injection is also used to restrict the system of equations (9). A
“V” cycle was used, in which the system is coarsened until only one equation remains, then
prolongated back to the full fine grid. Block Gauss-Seidel iterations (one block per time
step) were used for relaxation, with 4-10 cycles before restriction and after prolongation on
each level.

The scheme is found to be unstable if the under-relaxation factor for the Gauss-Seidel
iterations is kept the same on the coarser grid. An empirical formula was used to reduce the
under-relaxation factor as the time-step ∆t increases in length on the coarse grid.

The method was tested on the Lorenz system. The gradient of time-averaged z with
respect to the parameters b, r, and s was computed:

dz̄

ds
= 0.122,

dz̄

dr
= 1.00,

dz̄

db
= −1.67. (10)

The gradients with respect to r and b are within the error bounds of the gradients obtained
by [7] using linear regression, while the gradient with respect to s was slightly over-predicted.

The gradients converged within 20-30 cycles, as shown in figure 6. However, the residual of
the system did not converge as quickly, as in figure 7. In fact, the residual was not observed
to converge to machine precision until around 104 cycles. Subsequent analysis explored
the causes of the slow convergence of the residual. Firstly, the method was analyzed by
conducting Ideal Coarse Grid (ICG) iterations, as defined in [14]. The convergence of the ICG
iterations was found to be satisfactory, suggesting that the relaxation scheme was working
well and the convergence issues arose from the grid coarsening scheme. Also, convergence on
individual grids was analyzed. It was found that the residual did not decrease in magnitude
on the coarsest grids.

Although this implementation of the multigrid in time method found correct gradient
values, the slow convergence of the residual makes the robustness of the method questionable.
The multigrid analysis methods carried out indicate that different grid coarsening techniques
need to be explored to ensure textbook multigrid convergence to a near-zero residual.
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Figure 6: Convergence of the gradient of
time-averaged z with respect to r, as com-
puted using multigrid in time with 10 relax-
ation iterations before restriction and after
prolongation on each level.

Figure 7: L2 norm of the residual while solv-
ing for the gradient of time-averaged z with
respect to r using multigrid in time. Simi-
lar behavior was observed when computing
other gradients

3.3 Cyclic Reduction

In classic multigrid, linear interpolation is used for prolongation, but it is not the best method
when the coefficients of the equation being solved are highly oscillatory or discontinuous [15].
If this is the case, the coarse grid correction is a poor approximation for the low order error,
and textbook multigrid convergence is not achieved. In this case, interpolation to some fine
grid point with index i should be carried out by solving (6) with ∂f

∂ξ
= 0 between the two

nearest coarse grid points, i − 1 and i + 1, with the boundary conditions w(ti−1) = wi−1
and w(ti+1) = wi+1. It can be proved that this interpolation scheme leads to a multigrid
scheme that converges independently of grid size for 1D problems [15]. Furthermore, it can
be shown that this scheme is equivalent to cyclic reduction [15]. Cyclic reduction is carried
out as follows: defining the lower, main and upper diagonal blocks in equation (9) as Li, Di

and Ui, elimination is conducted as follows for three given rows:

Li−1wi−2 +Di−1wi−1 + Ui−1wi = bi−1 (11)

Liwi−1 +Diwi + Uiwi+1 = bi (12)

Li+1wi +Di+1wi+1 + Ui+1wi+2 = bi+1 (13)

Equations (11) and (13) give expressions for wi−1 and wi+1, which can be substituted
into equation (12):

LIwi−2 +DIwi + UIwi+2 = bI

Where:

11



LI = −LiD−1i−1Li−1
DI = −LiD−1i−1Ui−1 +Di − UiD−1i+1Li+1

UI = −UiD−1i+1Ui+1

fI = −LiD−1i−1fi−1 + fi − UiD−1i+1fi+1

bI = −LiD−1i−1bi−1 + bi − UiD−1i+1bi+1

(14)

If the system is solved exactly on the coarsest grid, cyclic reduction will converge in one
cycle. Also, the algorithm can be implemented in parallel, as each coarse grid equation only
depends on three adjacent fine grid equations.

Although equation (14) involves inverting the main diagonal matrices D, which contains
products of Jacobians ∂f

∂u
, in practice these inversions do not need to be carried out (see

appendix B.1). However, the operation count of this scheme does not scale very well with
the size of the KKT system. It can be shown (see appendix B.2) that the number of floating
point operations, N , required for matrix multiplication with the coarse grid matrix scales
approximately as:

N ∼ O(2p(2q)l)

Where p is the number of operations required to multiply a vector by an Fi or Gi matrix,
q is the number of iterations needed by an iterative solver to solve any system involving D−1i ,
and l is the number of levels, assuming the coarsest grid is n × n (one time step). This is
very large relative to the approximate operation count for a single Jacobi iteration on the
LSS KKT system:

N ∼ O(2(l+2)p)

To summarize, the advantages of cyclic reduction are in its memory efficiency and po-
tential for parallel implementation, not its operation count.

3.4 Higher Order Averaging/Krylov Subspace Scheme

Taking into account the performance of classic multigrid and cyclic reduction, a new multigrid
scheme was designed for solving the KKT system associated with LSS. The slow convergence
of classic multigrid and the rapid convergence of cyclic reduction indicate that the accuracy
of the coarse grid correction has a large effect on the convergence rate of the scheme. To
obtain a more accurate coarse grid correction, higher order averaging was used to coarsen
the KKT system. Higher order averaging ensures that the coarse grid non-linear solution
u(t) from which the KKT system is constructed is smooth, which leads to better multigrid
performance [15].

Higher order averaging schemes are formed as follows: consider a two point (first order)
average of some value x at time step i:

xi =
1

2
xi−1/2 +

1

2
xi+1/2

12



A first order scheme is formed by setting xi−1/2 = xi−1 and xi+1/2 = xi+1. For a second
order scheme, set xi−1/2 = 1

2
xi−1 + 1

2
xi and xi+1/2 = 1

2
xi + 1

2
xi+1:

xi =
1

4
xi−1 +

1

2
xi +

1

4
xi+1

The third order scheme can be derived by substituting first order averages into the second
order scheme, and so on:

xi+1/2 =
1

8
xi−1 +

3

8
xi +

3

8
xi+1 +

1

8
xi+2 3nd Order

xi =
1

16
xi−2 +

1

4
xi−1 +

3

8
xi +

1

4
xi+1 +

1

16
xi+2 4th Order

xi+1/2 =
1

32
xi−2 +

5

32
xi−1 +

10

32
xi +

10

32
xi+1 +

5

32
xi+2 +

1

32
xi+3 5th Order

Higher order averaging was applied to multigrid-in-time in two ways. Matrix restriction
multigrid uses higher order averaging on the KKT matrix itself, using McCormick et al’s
variational conditions [16]. Solution restriction multigrid uses higher order averaging on the
non-linear solution u(t). The KKT system is formed on the coarse grid from the restricted
solution u(t).

In addition, it was observed that stationary iterative methods such as the Block Gauss
Seidel method used in section 3.2 converge very slowly for the KKT system. Krylov sub-
space methods such as conjugate gradient and MINRES1 were examined as smoothers as
an alternative to the stationary methods used in classic multigrid. Other parameters of the
KKT system and the multigrid solver were also examined and some were found to have a
considerable effect on convergence rates, especially the parameter α2 from equation (6), the
weighting of the time dilation term in the minimization statement.

The following sections discuss matrix restriction multigrid and its application to LSS
for the Lorenz equations, followed by a discussion of solution restriction multigrid. The
computational cost of both multigrid methods is compared to MINRES.

3.4.1 Matrix restriction multigrid

Matrix restriction multigrid was designed to satisfy the variational conditions [16]:

I2hh = ch(Ih2h)
T , A2h = I2hh A

hIh2h

Where Ah is the fine grid matrix, Ah is the coarse grid matrix, I2hh is the restriction
matrix, Ih2h is the prolongation matrix and ch is some constant that could depend on the grid
dimension.

Satisfying the variational condition ensures that the error of the solution will decrease
monotonically, assuming the smoother decreases or does not change the magnitude of the
error on all grids [16].

1These methods were chosen because the KKT system is Symmetric Positive Definite.
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Figure 9: Convergence of matrix restric-
tion multigrid with dtf = 0.01 for differ-
ent orders of averaging.

Matrix restriction multigrid has been demonstrated on LSS for the Lorenz equations,
in particular the solution shown in figure 8. Unless otherwise stated, the results presented
correspond to a multigrid scheme with conjugate gradient (CG) smoothing with ν1 = 30
presmoothing iterations, ν2 = 30 postsmoothing iterations, 4th order averaging, dt = dtf =
0.0012 on the finest grid and dt = 0.08 on the coarsest grid. Although 30 is a large amount
of smoothing iterations, it will be shown in section 3.4.2 that it results in a multigrid method
that requires less operations than a Krylov subspace method on its own.

Since the typical Lorenz equation solution in figure 8 is oscillatory, a higher order averag-
ing scheme can be used to improve the coarse grid correction by ensuring that the components
of the block matrices (which depend on u(t)) that make up KKT matrix vary smoothly even
on very coarse grids. Because of this, the use of higher order averaging drastically improves
the convergence rate of multigrid-in-time, as shown by figure 9.

Block Gauss-Seidel and other stationary solvers that are used for smoothing in classic
multigrid schemes were found to converge very slowly. Also, the convergence of these solvers
worsen as the grid is coarsened, as shown in figure 10. This is because the largest eigenvalue
of the KKT system, which can be shown to set the convergence rate of a stationary solver
[17], decreases at a slower rate as the KKT system is coarsened, as shown in figure 11. This
is in contrast to the behavior of the finite difference (or finite element) matrix of the Poisson
equation, whose largest eigenvalue decreases exponentially as the grid is coarsened, resulting
in much faster convergence of Jacobi or Gauss-Seidel solvers on the coarser grids [17].

To accelerate convergence of multigrid-in-time, conjugate gradient (CG) is used as a
smoother. With a CG smoother, the rate of convergence is bounded by ((κ− 1)/κ)N , where
κ is the condition number of the KKT matrix Ah and N is the number of smoothing iterations

14
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[18]. The condition number decreases quickly as the grid is coarsened (see figure 11), leading
to faster CG convergence on coarser grids, as seen in figure 10.

A matrix restriction scheme with a CG smoother and 4th order averaging has been
observed to converge independently of the number of fine grid points, as shown in figure 12.

In addition, a number of tuning parameters were observed to affect this convergence
rate. The parameter α2 from equation (6), the weighting of the time dilation term in the
minimization statement, has a strong effect on multigrid convergence, as shown in figure 13.
There is an optimal α2, found to be equal to around 40 in the case of our sample problem,
but this number is most likely specific to the Lorenz system. α2 has an effect on convergence
because it affects the condition number and the eigenvalue spectrum of A on all grids.

The coarsening threshold dtc is defined as the time step size below which multigrid is
not called recursively. Figure 14 shows that there is an optimal value for dtc. Below this,
the coarse grid correction actually slows convergence in some cases, because it is a poor
approximation for low order errors.

To determine the relative efficiency of matrix restriction multigrid we compare its com-
putational cost to that of using MINRES to solve the fine grid solution. Figure 20 shows
that the solution of the KKT system converges after about 4700 iterations, and the gra-
dient converges after about 1800 iterations. For a Krylov subspace method applied to a
sparse matrix, the number of floating point operations for a single iteration, pMINRES, is
pMINRES ∼ O(mn), m is the number of time steps, n is the number of dimensions of the dy-
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Figure 15: LEFT: Convergence of MINRES for an LSS system for the Lorenz equations with
dtf = 0.004 and α2 = 40. RIGHT: Convergence of matrix restriction multigrid for an LSS
system for the Lorenz equations. The dashed lines shows the gradient computed at a given
iteration, which should be roughly 1.01± 0.04 [7]

namical system, and mn is the size of the Schur complement of the KKT system in equation
(9) [17]. Therefore, for the solution in figure 15 the total number of operations, PMINRES,
is roughly

PMINRES ∼ 4700O(mn)

Using the variational condition to form the coarse grid matrix makes the matrix restric-
tion multigrid more expensive than classic multigrid. To conduct matrix multiplication on
a coarse grid, the coarse grid solution is prolongated to the fine grid, multiplied by the fine
grid matrix Ah and then restricted to the coarse grid. Ignoring the cost of restriction and
prolongation, for a fixed number of smoothing iterations N = ν1 + ν2 and 10 grids, the cost
of one V-cycle of matrix restriction multigrid, pMMG, is:

pMMG ∼ 10O(mn(ν1 + ν2))) = 600O(mn) (15)

Figure 15 shows that the solution of the KKT system converges after about 17 cycles
with matrix restriction multigrid, therefore:

PMMG ∼ 10200O(mn) ≈ 2PMINRES

Matrix restriction multigrid requires roughly twice as many operations as MINRES. How-
ever, matrix restriction multigrid computes the correct gradient after 2 cycles, which requires
1200O(mn) operations, slightly less than the roughly 1800O(mn) operations required by
MINRES.
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Figure 16: Convergence of solution restriction multigrid for different values of dtf .

3.4.2 Solution restriction multigrid

Although matrix restriction multigrid performs very well, it costs much more than MINRES.
We can reduce computational costs of multigrid by using solution restriction instead of matrix
restriction. Solution restriction only satisfies part of the variational condition, the restriction
and prolongation operators are transposes of one another:

I2hh = ch(Ih2h)
T

By restricting the non-linear solution u(t) instead of the matrix Ah, solution restriction
multigrid results in reduced smoothing costs on the coarse grid, because the KKT system
formed on the coarse grid from the restricted u(t) is half the size of the fine grid system. As
shown by figure 16, the solution restriction scheme also leads to convergence rates with little
dependence on dtf for a given dtc for the Lorenz equations 2.

As observed for matrix restriction multigrid, the value of the parameter α2 and the order
of averaging both affect the convergence rate, as shown in figures 17 and 18. However, higher
order averaging is only beneficial to a certain degree, as the 5th order scheme leads to slower
convergence than the 3rd order one (figure 18). This is because high order averaging could
smooth u(t) too much. If this is the case the course grid solution is a poor approximation
of the errors on the fine grid. Also, α2 has a much greater effect than the averaging scheme
on the convergence rate of solution restriction multigrid.

There is a slight trade-off for the lower costs of solution restriction multigrid. Figure
19 shows that solution restriction multigrid converges slightly slower than matrix restriction
multigrid. However, this slower convergence does not outweigh the benefits of the lower cost

2Parameter values used for this plots in this section (unless otherwise stated): dtf = 0.004 or m = 4096,
ν1 = ν2 = 30, dtc = 0.2, α2 = 40, MINRES smoothing, and 3rd order averaging
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Figure 20: LEFT: Convergence of MINRES for an LSS system for the Lorenz equations with
dtf = 0.004 and α2 = 40. RIGHT: Convergence of solution restriction multigrid for an LSS
system for the Lorenz equations. The dashed lines shows the gradient computed at a given
iteration, which should be roughly 1.01± 0.04 [7]

of solution restriction multigrid.
These benefits can be seen by comparing the cost of solution restriction multigrid to that

of matrix restriction multigrid and MINRES. For a fixed number of iterations N = ν1 + ν2,
the cost of smoothing is halved for one coarsening as mn is halved when the system is
coarsened. When a large number of grids are used for a V-cycle, the cost of one V-cycle of
solution restriction multigrid, pSMG, is:

pSMG ∼ O(mn(ν1 + ν2)) +
1

2
O(mn(ν1 + ν2)) +

1

4
O(mn(ν1 + ν2)) + ...

≈ 2O(mn(ν1 + ν2)) = 120O(mn)

Figure 20 shows that the solution of the KKT system converges after about 20 cycles
with solution restriction multigrid, therefore:

PSMG ∼ 2400O(mn) ≈ 1

2
PMINRES ≈

1

4
PMMG

In addition to requiring only half of the floating point operations of MINRES and a
quarter of the operations of matrix restriction multigrid, solution restriction multigrid com-
putes the correct gradient after 2 cycles, which requires 240O(mn) operations, an order of
magnitude less than the roughly 1800O(mn) operations required by MINRES and a quarter
of the cost of matrix restriction multigrid.
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4 Conclusion

In conclusion, a multigrid-in-time scheme could be used to implement the least squares
shadowing (LSS) method in a relatively computationally efficient manner. To solve the large
KKT system associated with LSS, several multigrid-in-time schemes have been investigated.
Classic geometric multigrid with a Gauss-Seidel smoother was found to converge very slowly.
Cyclic reduction converged in one cycle and can be run in parallel but it used a very large
number of floating point operations to solve the system if the number of dimensions of the
system, n, was very large. A higher order averaging multigrid scheme with a Krylov subspace
smoother was found to give textbook multigrid convergence. Matrix restriction multigrid
converges quickly, but smoothing on the coarse grid requires a similar amount of operations
to smoothing on the fine grid. Solution restriction multigrid converges slightly slower than
matrix restriction multigrid, but is considerably less expensive. It was also found that the
parameter α2, the weighting of the time dilation term in equation (2), had a large effect on
the rate of convergence of matrix restriction and solution restriction multigrid.

Because of its lower cost, solution restriction multigrid is currently the most promising
numerical method for implementing LSS for large scale systems. Therefore, future work
will start with further investigation of solution restriction multigrid-in-time. In particular,
a method to determine the α2 value corresponding to the fastest rate of convergence needs
to be found.

Once a robust, scalable numerical method for solving the KKT equation is found, LSS
will be extensively tested on chaotic and turbulent fluid flows, such as homogeneous, isotropic
turbulence and turbulent channel flow. Eventually, LSS could be used to investigate more
complicated flows such as flow around a lifting body, the fuel injection system in a jet engine
or scramjet combustor, or an internal flow in a rocket engine.
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A Least Squares Shadowing Sensitivity Analysis

A.1 Deriving the KKT System

First form the Lagrangian function for equation (2):

L =

∫ T

0

v2 + α2η2

2
+

〈
w,

(
−dv
dt

+
∂f

∂u
v +

∂f

∂ξ
+ ηf

)〉
dt

Now consider the first variation, which can be rearranged and transformed by integration by
parts:

δL =

∫ T

0

〈
δv,

(
v +

dw

dt
+
∂f

∂u

∗
w

)〉
dt+

∫ T

0

(α2η + 〈f, w〉)δη dt+ 〈δv, w〉|T0

For first order optimality δL = 0 for all δv and δη, therefore:

v +
dw

dt
+
∂f

∂u

∗
w = 0, w(0) = w(T ) = 0 (16)

and

α2η + 〈f, w〉 = 0 (17)

Equations (16) and (17), along with the tangent equation, make up the KKT system.

A.2 Computing Sensitivities using a Shadow Trajectory

For a trajectory u(t) and shadow trajectory u′(t):

δJ̄ =
1

T

∫ T
0

J(u′(τ)) dτ − 1

T

∫ T

0

J(u(t)) dt

=

∫ T

0

1

T J(u′(τ(t)))
dτ

dt
+

1

T
J(u(t)) dt

For some perturbation to the tangent equation δf = ε∂f
∂ξ

, the time transformation is dτ
dt

=
1 + εη:

T =

∫ T

0

dτ

dt
dt = T + ε

∫ T

0

η dt︸ ︷︷ ︸
≡H

= T + εH

Therefore:

δJ̄ =
1

T + εH

∫ T

0

J(u′(τ(t)))− J(u(t)) + εηJ(u′(τ(t)))− εH

T
J(u(t)) dt
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Diving through by ε:

∂J̄

∂ξ
= lim

ε→0

[
1

T + εH

∫ T

0

(J(u′(τ(t)))− J(u(t))

ε
+ ηJ(u′(τ(t)))− H

T
J(u(t)) dt

]
=

1

T

∫ T

0

〈
∂J

∂u
, v

〉
dt+

1

T

∫ T

0

ηJ(u(t)) dt− H

T

1

T

∫ T

0

J(u(t)) dt

By the definition of H, and defining x ≡ 1
T

∫ T
0
x dt:

∂J̄

∂ξ
=

〈
∂J

∂u
, v

〉
+ ηJ − ηJ

B Cyclic Reduction

B.1 Conducting cyclic reduction without inverting main diagonal
matrices

Consider the following system: D1 U1 0
L2 D2 U2

0 L3 D3

 w1

w2

w3

 =

 b1
b2
b3


Applying equation (14), the following system is obtained:

Aw2 = b

with:

A = −L2D
−1
1 U1 +D2 − U2D

−1
3 L3

b = −L2D
−1
1 b1 + b2 − U2D

−1
3 b3

This system can be solved iteratively, using some preconditioner P :

P∆x = b− Axk, xk+1 = xk + ∆x

Where xk is the value of w2 after k iterations. To compute Axk, it is decomposed into three
parts:

Axk = −L2D
−1
1 U1xk +D2xk − U2D

−1
3 L3xk = α + β + γ

α and γ include an inverted matrix, but the inversion can be avoided as follows:

−L2D
−1
1 U1xk = α
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Compute yk = U1xk:
−L2D

−1
1 yk = α

Next, define zk = D−11 yk. Iteratively solve:

D1zk = yk

and use the result to compute α:

α = −L2zk

γ and the right hand side b can be computed using a similar method. This idea can
be applied to a much larger system and allows cyclic reduction to be conducted without
inverting any Jacobian matrices.

B.2 Estimating the operation count for cyclic reduction

The following section estimates the operation count of the algorithm of section B.1, in which
block cyclic reduction is conducted without directly inverting any blocks of the matrix. First
define:

• p: the number of flops required to multiply a vector by a Jacobian matrix for the
system of interest.

• q: the number of iterations required to carry out multiplication by an inverse matrix.

• n: the number of states in the system

As Li = Fi−1G
T
i−1 and Ui = GiF

T
i , multiplication by these matrices requires 2p flops. As

Di = Fi−1F
T
i−1 + GiG

T
i + fif

T
i , multiplication by these matrices requires 4p + 2n flops. For

a Jacobi solver, the number of flops for inverse matrix multiplication is qp.
An estimate of the operation count of cyclic reduction is shown for a few low order

terms. These were computed using a symbolic calculator. Starting from a 1 by 1 coarse
grid, the number of flops for multiplication by D, U or L were substituted into equation (14)
recursively. The highest order term for a few different grids is shown in table 1, with the
number of operations for a single Jacobi iteration (derived in the same way) for comparison.
These estimates do not take into account fixed number of operations to backward substitute
the coarse grid solution for the fine grid solution.
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Time steps m CR Flops Jacobi Flops
3 8pq2 20p+ 13n
5 16pq3 36p+ 23n
9 32pq4 68p+ 43n
17 64pq5 132p+ 83n

Table 1: Estimate of Operation Count per iteration for cyclic reduction and for the Ja-
cobi method for comparison. Note that the cost of cyclic reduction is similar to that of a
block Gaussian elimination scheme as block cyclic reduction is like applying block Gaussian
elimination in parallel to a permuted system.
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