
Put It Together
Animating Machine Assembly Instructions

for Novices

by

Pok Yin LEUNG
Bachelor of Arts in Architectural Studies BA(AS)
The University of Hong Kong ,2011

Submitted to the

Department of Architecture in partial fulfillment
of the requirements for the degree of

Master of Science in
Architecture Studies

at the

Massachusetts
Institute of
Technology
June 2016

©2016 Pok Yin Leung. All rights reserved.

The author hereby grants to MIT permission
to reproduce and to distribute publicly paper
and electronic copies of this thesis document in
whole or in part in any medium now known or
hereafter created.

Signature of Author:

Victor Leung
Department of Architecture
May 18, 2016

Certified by:

Terry Knight
Professor of Design and Computation
Thesis Advisor

Accepted by:

Takehiko Nagakura
Associate Professor of Design and Computation
Chair of the Department Committee on Graduate
Students

I am indebted to Terry Knight for her help and
advice throughout the course of this research. Her
thoughtful comments and continuous support
had been most helpful during my years at MIT.
Her speed of reading text still amazes me.

Thanks to Alexander Slocum and Neil Gershenfeld
for their insightful contextualization of my
research. Their opinion was very helpful for me to
see the bigger picture.

Thanks to Takehiko Nagakura for his patient
advice and the opportunity to work with him. He
treated me as a friend more than as a student. I
wish I hadn’t crash the drone in Italy.

Thanks to Diego Pinochet who has been an
inspiring friend, providing me with joyful
conversations. His polished presentation graphics
and video influenced me, both in good and bad
ways. I wish I had spent more time with him.

Thanks to Inés Ariza and the relaxing coffee
breaks we had. It has been a very joyful time with
her during the last months of this journey.

Thanks to Alexandros Charidis who keep saying
there are methods online for everything. He
wasn’t very patient but still explained difficult
mathematics and design space concepts to me.

Thanks to many other supporting staff and
technical instructors who offered me kindness
and help; their actions may have been simple
but they meant a lot: Justin A. Lavallee from
the workshop, Marilyn Levine from the writing
center, Cynthia Stewart, our administrator, staff
from the MIT-SUTD Collaboration and staff from
Makeblock.

Finally, I wish to thank my parents Susanna Yu and
Romeo Leung, who have always given me their
love and support. I hope I made you proud.

Thesis Committee

Terry Knight
Professor of Design and Computation

Thesis Advisor

Neil Gershenfeld
Professor of Media Arts and Sciences

Thesis Reader

Alexander Slocum
Professor of Mechanical Engineering

Thesis Reader

Table of Content

Introduction

Technical Background

Put It Together - Assembly Instructions Animated

CNC Workshops for Novices - Learning Experiment

Observations and Interpretations

Content preparation guidelines

Conclusion

Future Work

Appendix

Reference

7

13

21

47

55

73

79

83

89

99

Abstract

We are no longer satisfied with rapid prototyping machines! The new frontier in digital fabrication is
the rapid prototyping of rapid prototyping machines. Using modular electronics and robotic parts, the
essence of machine making now lies in part assembly. With the advancement of online education, how
will schools teach part assembly? How will Makers share the knowledge of putting things together?

Traditional assembly instructions designed with
text, diagrams and images are often not effec-
tive in showing complex assembly motions, and
are poorly adapted to large complex machines.
Demonstration videos are expensive to produce,
and they are limited to a single camera view.

Put It Together is a new digital workflow that
consists of two parts: (1) A CAD plugin that allows
machine designers to easily create assembly ani-
mations, and (2) an interactive web player that al-
lows novices to view the animation. Starting with
a CAD model, designers can easily create and edit
an animation using a visual graph. The software

interprets the graph and creates a step-by-step
3D animation. Novices can view the animation
using a web browser, interact with the viewing
angle, and progress at their own pace.

The web player was tested, developed, and
evaluated through multiple workshops in which
students learned machine assembly with succes-
sive versions of the player, and proved its value
in an educational environment. Other potential
applications of the Put It Together approach, be-
yond machine assembly, include self-assembled
furniture, DIY projects and toys.

Thesis Supervisor: Terry Knight
Title: Professor of Design and Computation

Put It Together
Animating Machine Assembly Instructions for Novices

by Leung Pok Yin

Submitted to the Department of Architecture on May 18, 2016 in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Architecture

1.1	 About this thesis

1.2	 Mass-customization and fabrication machines

1.3	 Relevance to DIY culture and maker’s movement

1.4	 Relevance to design education

1.5	 Open education

1.6	 Assembly instructions

1.7	 Contribution of this thesis

7

 1
Introduction

Today, we have significant research about personal fabrication. Laser cutters and 3D printers are
getting cheaper and easier to use and they are slowly getting into the homes of people as a desktop
fabrication machine. However, existing fabrication machines only cover a small palette of processes: 3D
printers extrude, laser cutter fire laser, and water jet cutter shoots water…. There are many other manu-
facturing and industrial processes that are not covered by these general purpose machines.

A more powerful approach towards digital fabrication, enabling people to build anything, is to enable
them to build the very machine that makes things. Just as a good carpenter makes his own tools, a
good designer should also be interested in the processes and machines that make their products.

I believe modular hardware1, modular electronics2
and open source software3 will lower the barrier
of making machines and shift the focus of ma-
chine making towards assembly. However, CNC
machines have many parts, and assembling them
requires many tedious steps. The problem is that
current methods that show instructions are
either difficult for machine designers to pro-
duce, or difficult for readers to understand.
An effective method for designing instructions is
needed to communicate how to assemble these
complex machines.

I started teaching workshops in early 2015 using a
robotic hardware made by Makeblock, electronics
using Arduino, and using open source controlling
software grbl. These workshops aim to teach de-
signers and makers — with no engineering back-
ground — how to make CNC machines that make
things. Because those classes were rather large,
I gave students a step by step illustrated hand-
out to explain the assembly process, so students
could assemble it at their own pace. But I quickly
realized that students were making all sorts of
mistakes because the instructions are causing a
lot of confusion.

1	 Products such as Makeblock construction system,
Vex Robotics and Lego Mindstorm

2	 Open source projects and products such as Ar-
duino microcontrollers and Raspberry Pi are cheap control-
lers available for quick customization. Gestaut framework
(Moyer 2013) integrates software and hardware control into
modularized network nodes for quicker and easier develop-
ment of new fabrication machine control.

3	 Open source control software such as grbl and
tinyg2 are easy to use, multipurpose G-Code controllers.

1.1	 About this thesis

With this thesis, I propose a new method to
replace paper instructions using an Interactive 3D
animation. This solves a fundamental limitation
associated to paper instructions, where viewers
can only see snapshots of the assembly process,
and also only from a fixed angle. With today’s
WebGL and JavaScript technology, we are able to
create a step by step animation where assembly
movements no longer require drawing arrows,
and viewers can advance the animation according
to their own learning speed. They are also able to
interact with the viewing angle and see all sides
of the 3D geometry.

Machine designers can easily convert their exiting
CAD assembly models into the instruction ani-
mation by using a special CAD plugin. Through a
graphical interface, designers create an assembly
graph that represents connective relationships
and assembly actions between parts. The plugin
interprets the graph and creates the instruction
animation automatically.

1.2	Mass-customization and

fabrication machines

Traditional manufacturing design optimizes one
product that fits the widest audience. This “one
size fits all” model has been surpassed by recent
applications of CNC machines in manufacturing,
which allow products to be mass customized at a
reasonable cost. The current Fab Lab movement
aims to standardize CAD/CAM software and
fabrication tools to create a workspace that aims
to make almost anything. However, this updated

9

model is still limited by what those machines can
make. The next step towards customized produc-
tion and design freedom depends on developing
novel machines.

Recent developments in modular robotic parts
(such as Makeblock and VEX) and open source
software and electronics (such as grbl and tinyg2
which run on Arduino Uno and Due) have offered
an opportunity for rapidly designing and making
CNC machines. These off-the-shelf parts obviate
much of the part-making process, allowing ma-
chine-making to focus on an effective combina-
tion of these parts.

1.3	Relevance to DIY culture

and maker’s movement

This culture of “rapid prototyping of rapid pro-
totyping machines”4 was quickly embraced by
the Maker’s Movement whereby designers and
hobbyists with no background in engineering are
motivated by a desire to make their customized
CNC machines or cheaper-than-market CNC ma-
chines. This entails an unconventional method of
learning how to design and make machines.

In the context of ready-designed machines such
as DIY kits and open source machine designs5, the
engineer often prepares assembly instructions in
the form of texts, images or videos for novices to
follow. In the context of custom-designed ma-

4	 A phrase coined by Neil Gershenfeld to describe
the impact of Fab Lab.

5	 RepRep 3D printer is an example of an open
source machine that aims to be easily made by novices.

chines, hobby designers often rely on web blogs
and web forums to exchange experience and in-
formation. In both of these scenarios, the hands-
on experience in assembling machines is hard
to communicate. The trendy Maker Faire events
with their slogan “The Greatest Show (& Tell) on
Earth”, perhaps address some of this problem by
encouraging makers to gather and interact with
the people and their creations in person. Howev-
er, these events only accommodate the privileged
few who can travel to the venue.

1.4	Relevance to design

education

It is common for students to study and visit good
buildings as part of their education in architectur-
al design. Case-based reasoning theory describes
such a learning model, where the knowledge and
intuition of solving new problems can be based
on the solutions of similar past problems.

In order to study complex objects with many
parts, such as machine design, product design,
furniture design, and architecture, it is beneficial
to study the spatial relationships and the as-
sembly process of these objects. We have seen
many examples of the use of exploded diagrams,
annotated illustrations and cut-away drawings
in engineering and architecture textbooks. One
good example is David Macaulay’s series of illus-
trated books in 1970s (Cathedral: The Story of Its
Construction 1973) that explain how things work.
His careful selection of drawing styles, viewing
angles and cut away positions made technical and
non-technical readers enjoy it alike.

1.5	Open education

Motivated by the same belief of Open Education,
this thesis aims to develop methods of sharing
knowledge and experience that are accessible
and understandable by most people. The recent
trend in developing more types of course content
for Massive Open Online Course (MOOC) prompts
us to rethink how practical lab demonstrations
and hands-on experience can be recorded and
communicated via the browser. And in such a
process, exploring new opportunities are offered
by this new medium.

Instructables.com provides an online platform
for knowledge exchange between designers
and novices. The platform allows designers to
upload text and images to explain how to do or
make things. Since its start in 2005, it contains
more than 200,000 user submitted tutorials and
receives 4 million visitors a month. Most of the
tutorials involve some form of assembly. There
clearly isn’t a lack of hobbyists willing to share
instructions. What is lacking is a good meth-
od, other than just text and images, to com-
municate how to assemble.

1.6	Assembly instructions

Recently some designers who are capable of cre-
ating CAD models embraced the open-source or
free license movement. They share their work on-
line in repositories such as GrabCAD and 3DWare-
house. While these CAD models are effective at
communicating shapes and spatial relationships,
common CAD software (such as Inventor, Sketch-
Up, Rhino, TinkerCAD) and CAD standards used

by novice makers do not emphasize how parts are
assembled together. On the other hand, profes-
sional CAD systems are expensive and difficult to
learn, and they also assume their users to be engi-
neers and that the assembly logic can be inferred
from static 3D models. This is often not true for
novice makers.

This topic of assembly instructions that I’m trying
to improve, is applicable not only to machines. It
can also be used in self-assembled products such
as DIY projects, flat-pack furniture and user-as-
sembled architecture such as shelters and DIY
housing. It is a means of communicating “how
to assemble”. It is also a valuable tool in design
education where it can be used to show parts
being put together in the most illustrative way.
In the case where taking apart real objects is not
possible, an interactive animation is a cost effec-
tive way to study many examples.

In the context of ready-designed machines and
objects, a one-to-many relationship exists be-
tween a corporation and their customers. These
companies are able to afford the effort to produce
high quality texts, drawings, images and videos to
convey the assembly instruction of their products.
For example, IKEA produces paper-based instruc-
tions for their self-assembled furniture. They are
famous for their non-language specific instruc-
tions and graphic clarity. Lego produces colourful
instruction books for kids to follow and construct
pre-designed objects. However, even with careful
design, it is not uncommon to hear users com-
plaining about confusing instructions.

In the context of individual hobbyists sharing
their designs, it is often too much effort for them

11

to bother making illustrations and video. This
leads to an overwhelming focus in their blog and
forum posts to show off superficial images of their
projects without much useful information that
other hobbyists can learn from.

1.7	Contribution of this thesis

This thesis proposes an alternative medium to
communicate assembly instructions using web
animation. This replaces or augments the tradi-
tional use of texts, photos and videos in commu-
nicating movements during the assembly process.

There are three main contributions. (1) Tools
for designers (authors of the instructions) to
create and edit the animation. I designed and
developed an assembly relationship graph and
the associated algorithms for designers to create
and edit the relationships between parts. These
relationships are then translated into animation
movements; (2) A file format to encode and
share the animation online. I developed a
schema to encode this animation. (3) A software
for novices to playback and interact with the
animation. I developed a Web Player that is easy
to learn and easy to use for novices, and I tested it
in an educational environment.

This thesis targets two audiences at the same
time, ensuring the workflow is meaningful to both
parties of the cycle: (1) Designers who design ma-
chines (or any other products) and their assembly
instructions. (2) Novices who follow instructions
to assemble machines (or any other products).

To validate this new instruction method, I taught
a number of hands-on workshops to observe
students’ reactions to this new medium. This
thesis provides a written record of the problems
students encountered, and offers insights into
their causes and solutions. These observations will
help direct future software implementations and
provide guidelines for creating contents.

I named the whole software package
Put It Together to reflect the ease and joy of both
desigers and novices using this software.

2.1	 Assembly (Computer science and robotics)

2.2	 Part models and libraries

2.3	 Computer animation

2.4	 CAD software and animation

2.5	 Camera

2.6	 Online CAD viewer

2.7	 Three.js

2.8	 Rendering colour and materials and styles

2.9	 Cognitive psychology

13

 2
Technical Background

This section gives a brief background of the technical issues related to this thesis. A brief explanation is
included about the similarity and difference to the method I propose.

2.1	Assembly (Computer

science and robotics)

Assembly is a classic problem in robotics. Re-
searchers in computer science and robotics have
conducted research on automatic assembly
sequence planning and automatic instruction
presentation. Although the scope of this thesis
does not include sequence planning, they share
similar issues.

Maneesh Agrawala et al (2003) have developed
algorithms to produce assembly instructions
for any given object geometry, orientation, and

optional grouping and ordering constraints on
the assembly’s parts. Their system automatically
finds and optimizes the assembly sequence and
camera angle based on cognitive psychology for
effective visual communication. It can produce as-
sembly instructions as graphical illustrations. My
proposed tool differs by presenting the informa-
tion in an interactive 3D animation in a browser
based environment thus reducing the need to
search for the best viewing angle. Yet, his quantifi-
able cognitive approach is useful when applied to
other problems.

Schulz et al (2004) used graphs for their “Da-
ta-driven fabrication design software” to keep

track of the relationships between parts. My
system implements a similar graph but with the
fundamental difference that I do not hide this
graph internal to the software. Authors can see
this graph directly to understand the order of
assembly actions and they are able to interact
with this graph to add, remove and change
the sequence of the operations. Schulz also
separated the “connecting parts” and the “prin-
cipal parts” to simplify the design process. In his
definition, connecting parts (such as screws and
brackets) are automatically inferred from the
placement of the “principle parts”. My proposed
software does not make this clear cut separation.
Because in practical design applications, it is pos-
sible to use the two interchangeably (e.g. when a
screw is designed to act as a mechanical stop, it is
not connecting two parts together but it is a part
of itself). Instead, I represent these fixture parts as
hidden “part” nodes that are linked by the “ac-
tion” node.

2.2	Part models and libraries

CAD models for mechanical parts are increasing-
ly available for free, on online platforms such as
GrabCAD, Thingiverse and Google 3D warehouse.
This phenomenon is driven by two separate
factors. The first comes from the parts manufac-
turers and vendors: they are motivated to provide
CAD models of their products, free of charge, to
make it easy for engineers to design machines
with their products in their CAD design workflow.
For example McMaster-Carr has over 100,000 CAD
models freely available from their online cata-
logue.

Another motivation comes from the show and
tell culture of the Maker’s movement. This culture
views the act of sharing designs as a contribution
to the movement itself. Makers who designed
various types of objects share their CAD models
with open license.

This movement towards free access of almost any
part models assured the premise of an ecosystem
where machine design effort lies in the combina-
tion of these parts. Machine designers can focus
on the combination of these parts and create
custom component only when it is necessary.

2.3	Computer animation

3D Computer animation is a long existing field
in computer graphics. A generic description of
animation is “A change in model attributes over
time”. These attributes can be position, rotation,
size, colour, opacity and many more. Typically,
animators manipulate polygon mesh models
and create key frames on a timeline, and then a
computer software interpolates the motion and
renders all the still frames in between.

Because most mechanical parts are non-deform-
able, we can simplify the animation problem by
interpolating an affine transformation across time.
In a 3D modelling environment, an affine transfor-
mation is typically represented using a 4 by 4 ma-
trix. However, linearly interpolating the values in
the matrix will not produce smooth motion. Erik
et al. (1998) provided a comprehensive study for
animation interpolation. They described a meth-
od of interpolating rotations with quaternions to
achieve a visually pleasing trajectory.

15

Assembling deformable parts such as springs
requires deformation of the mesh model, and
additive and reductive processes such as gluing,
welding and cutting requires changing the model.

The list below shows examples of actions found in
mechanical assembly that can be categorized into
the four types.

Rigid body transformation:

•	 Inserting pin, screws, washers, nails into each
other (translation)

•	 Mating two parts together (translation)

•	 Tightening screws, nuts, set screws. (transla-
tion + rotation)

•	 Inserting shafts and rods through bearings,
linear guide rails (translation)

•	 Inserting nut into lead screw (translation +
rotation)

•	 Taping

Deformation:

•	 Installing retaining ring, clips, rivets (deforma-
tion + translation)

•	 Bending, wiring and routing cables, belts,
chains, tapes (deformation)

•	 Compressing and preloading springs (defor-
mation)

•	 Tightening spring washer (deformation)

•	 Installing zip ties, sticky tape, cable ties (defor-
mation)

Additive Modification:

•	 Gluing parts with contact glue / super glue

•	 Gluing with hot glue / epoxy glue / filler

•	 Welding metal

•	 Painting

Reductive Modification

•	 Cutting cables, belts, chains, tapes

•	 Stripping electrical cables, plastic coated
cables

•	 Carving, milling, turning, sawing and other
machining process

In this thesis, I focus on the assembly process
that can be animated without deformation.
In the context of machine making by hobbyist, it
is common to use modular robotic parts that do
not require deformation and machining. It is also
common to find parts that can be easily detached
for reuse or modification, such as in robotic sets.
For example screws are favoured against deform-
able rivets because they can be easily undone. For
that reason, this thesis will focus on affine trans-
formation animation and consider other anima-
tion types as future work.

2.4	CAD software and

animation

Animating CAD models is not a new idea. It has
been implemented in many professional CAD
systems such as Solidworks, Inventor and CATIA.

Autodesk Inventor contains an animation feature
that deals with presenting robotic kinematic
movement. It is designed for animating robotic

joints to demonstrate the operation of a robot.
Their method allows the user to have fine control
over the animation of individual objects. Howev-
er, this fine control requires the designers to plan
carefully and make a lot of decisions to set up
one movement. Thus it is very time consuming
to animate the many steps required for machine
assembly. My software allows machine designers
to pick the relationship between two parts (such
as bolting), and the tool automatically infers the
animations parameters (position of the various
parts and the bolt before and after the action,
animation speed, camera position, appearance
of the screwdriver and wrench). The software
also allows users to edit the assembly sequence
through a tree like structure through a graphical
user interface and the animation will be automati-
cally modified.

2.5	Camera

3D animation requires a theoretical camera to be
placed in a scene with the 3D models. The com-
puter renders each frame of the animation from
the perspective of this theoretical camera. There
are two common camera types, corresponding to
their method of 3D to 2D projection: Orthograph-
ic Camera and Perspective Camera. Orthographic
projections is a common method for technical
drawing because it is easy to draw by hand and
the 2D drawing preserves scale and measurability.
Perspective projection is more closely related to
what the human eye sees. It gives an immersive
viewing experience and better perception of
depth. In this thesis, I have chosen to use Per-
spective Camera because most CAD novices are
more familiar with it from their exposure to 3D
animation and first-person video games. It is also

unlikely for them to take measurement from the
screen.

In a multi-step assembly instruction, the loca-
tion of interest will change and require adjusting
the camera position and angle. For traditional
paper-based illustration, Agrawala et al. (2003)
proposed an algorithm that decides when to
change the viewing orientation in generating 2D
assembly instructions. The intention is to improve
the visibility of subsequent parts or take the
natural orientation for the object. My proposed
system allows the viewer to interact with the cam-
era with a mouse drag gesture, thus the model
can be viewed from any angle. However, it is still
beneficial to provide a suggested viewing angle
at the beginning of each step; ensuring viewers
are aware of all the components that need to be
installed.

2.6	Online CAD viewer

GrabCAD and Google 3D Warehouse are online
3D model repositories for open-source models.
They feature web-based 3D CAD model viewers
to allow readers to interact with the model. Both
viewers are programmed with WebGL libraries
and Three.js libraries. Google’s 3D viewer is based
on SketchUp’s online viewer. It contains only
camera controls for changing camera position.
GrabCAD’s viewer implementation also allows
sectioning and measurement. However none of
these platforms allow amination.

17

2.7	Three.js

The recent trend in internet-browser applications
proved the feasibility of using browsers to present
3D interactive animation to a large audience. The
Web Player in Put It Together takes advantage of
recently available WebGL libraries and Three.js
framework to create a browser based interface for
displaying 3D graphic animation.

Three.js allows developers to setup a scene with
complex lighting and 3D models and provide
rendering wrappers from OpenGL libraries. Com-
bining JavaScript’s ability to gather user input
from mouse and keyboard and dynamic html
document alteration, it is currently the best tool
to build 3D-rich online applications.

2.8	Rendering colour and

materials and styles

Visual communication is a matter of cognitive the-
ory. It concerns how people understand drawings
and animation.

The developed web interface uses OpenGL
rendering features to render frames to create an
animation. Various rendering materials and styles
offer different stylistic approachs to render the
CAD models. WebGL libraries allowed me to test
different colouring schemes and materials with
little programming effort. I was able to test grey
scale materials, real colour materials, transparent
materials and outlines.

While photorealistic raytracing rendering and
complex lighting techniques allow a realistic
depiction of the model, they consume more
computing power and result in a low frame rate.
Because assembly animation concerns little with
realism, I chose to work with simple materials and
attempted non-photorealistic styles. This aims to
guide the reader’s attention towards the assembly
instead of the parts.

Transparency, selective rendering style, post
rendering effects and outlines are used to direct
or focus viewers’ attention. For example, Bruckner
and Gröller (2007) described a method to render
halos around 3D models to enhance depth per-
ception. Further discussion and implementation
can be found in the next chapter.

2.9	Cognitive psychology

Mitra et al. (2013) presented several visual tech-
niques to convey the movements of parts in their
work on communicating mechanical linkages: (1)
motion arrows that are not obscured, (2) careful
selection of frame sequences that highlight key
snapshots of complex motion and (3) the use of
animation. While (1) and (2) are applicable to 2D
graphics, they point out the need to evaluate the
method’s effectiveness with cognitive assess-
ments.

Agrawala et al. (2003) pointed out that “repetitive
operations in detail can make the instructions
unnecessarily long and tiresome. A better ap-
proach is to skip repetitive operations after they
have been presented in detail a few times.” Their
approach is to group parts that require similar

attachment operations as similar-action groups.
In this thesis I have tested various methods when
I created the animation. The results are summa-
rized in section 6.1.

19

3.1	 Assembly graph

3.2	 CAD Plugin - for Rhino 5

3.3	 From graph to animation

3.4	 Web Player

21

 3
Put It Together - Assembly

Instructions Animated

Put It Together is a software package that consists
of two parts, each with a different audience —
machine designers and novice machine makers.
For the machine designers, I propose a CAD
Plugin to easily create an assembly animation
by specifying the relationships of the assembled
parts. Section 3.1 discuss a novel method to rep-
resent animation sequence, Section 3.2 describe
implementation details for the CAD plugin and
Section 3.3 describe an encoding format for the
animation for web exchange.

For the novice makers, I propose a Web Player to
view the animation from a web browser. In sec-
tion 3.4, I describe the implementation details for
the Web Player.

3.1	Assembly graph

The creation of CAD models is outside the scope
of this thesis. This thesis focuses on the rela-
tionship between the parts within an assembly.
The role of the CAD plugin6 is to allow machine
designers to define the assembly logic after a CAD
model is created. The assembly logic includes
Connectivity relationships and sequence rela-
tionships. The CAD plugin will then compute the
object visibility, position and movement for each
step and generate keyframes for the final anima-

6	 A plugin is a small software component that func-
tions with a larger software with the intent of adding more
functionality.

tion. The plugin will encode the animation in a
file format (explained in next chapter) for the web
player to playback.

In this thesis, I have implemented this software as
a plugin for Rhinoceros 5.0. However, the con-
cepts and algorithms of this CAD plugin can be
applied to many other CAD platforms for different
types of assemblies. Therefore, I will describe the
algorithms in a generalizable way, not specific to
a particular CAD software. I will be using machine
construction as an example to explain its func-
tions, but the same logic can be applied to many
other objects.

Defining parts and actions

In order to describe the relationships between
parts, I propose a graph structure with two types
of nodes. Part nodes represent physical parts
in the assembly, for example a screw, a plate, a
bracket or a motor. Each part node should have
a one to one relationship with each physical
occurrence of a part. For example, in a flat pack
furniture, a part represents one loose component

that is delivered to the user, even if that part was
pre-assembled with multiple parts.

Action nodes represent the assembly actions
that connects two parts together, for example:
Bolting, Inserting, Placing and Tightening. Each
action represents the operation on one or more
Part Nodes, thus edges can be drawn between an
Action Node and its related Part Nodes. Below is
an example of an Inserting Action between a gear
and a shaft.

Unassembled

Inserting

Shaft

Gear
Gear

Shaft

Graph Assembled

Below is an example of a Bolting Action describ-
ing the relationship between a bolt and two
beams. Numbering labels are added next to the
Action Node to denote the sequence of the bolt-
ing stack, which will be explained later.

Bolting
2

10

Long Beam

Short BeamBolt

Long Beam

Short Beam

Bolt

UnassembledGraph Assembled

23

Each type of action has a specific set of properties
to describe the action. For example, the Inserting
Action requires a movement vector, the Bolting
Action requires the center line of the bolt, and an
ordered list of the parts in the bolt stack. This in-
formation may be automatically inferred from the
CAD model, or can be specified by the user man-

ually7 when creating the Action Node, users may
later choose to override these properties manually.

7	 For example, user can pick the Part Nodes by
clicking on the CAD models, in the sequence of how the bolt
stack is assembled.

Defining assembly sequence

The vertical arrangement of the nodes describes
the assembly sequence. The first step is step 08,

8	 The first step is named step 0 because no action
can be specified on the first step. It is a step that is reserved
for the first part(s) for the first action to be placed in the
scene.

which starts at the bottom of the graph. Each step
contains one or more Action Nodes that repre-
sent the actions to be performed in that step.
The resulting animation will animate the parts
according to the information defined in each step.
The example below is a bolting action, represent-
ed using a traditional paper-based illustration
technique with arrows indicating the direction of
movement.

Bolt

Step 1 - Begin

Bolting
2

10

Long Beam

Short BeamBolt

Long Beam
Short Beam

Step 0Graph Step 1 - End

Step 0

Step 1

Inserting Bolting
2

10

Shaft

Gear Inserting Direction:
 - Unit Vector (0,0,-1)
 - Distance (30mm)
Active Node:
 - Gear Node
Receiving Node:
 - Shaft Node Long Beam

Short BeamBolt

Bolting Direction:
 - Unit Vector (0,1,0)
Nodes in Stack:
 - Bolt Node
 - Small Beam Node
 - Large Beam Node
Node Movement:
 - Distance (50mm)
 - Distance (20mm)
 - Distance (0mm)

Properties of Inserting NodeInserting Action Properties of Bolting NodeBolting Action

It is common to have connections from a Part
Node to multiple Action Nodes. For example, a
rectangular frame assembled from 4 Part Nodes
and 4 actions have connections like a loop. The
arrangement of the Nodes in the vertical order
determines the sequence in which the parts are
assembled and how the assembly will be ani-

mated. It is up to the designer to decide how to
arrange this sequence based on the designer’s
experience, although some guidelines are pro-
posed later in this thesis which can offer sugges-
tions to the designer from the software. Below is
an example of a rectangular frame, assembled in
two different ways.

Note: The connections in the two graph are iden-
tical, only the arrangements are different. Node
to node connection represent actual relation-
ships between parts while vertical arrangements
represent assembly sequence. Horizontal arrange-
ments is only for aesthetical layout.

Defining tools

It is possible to store and provide information
about the tools that are required for each action
in the assembly. For example, Bolting Action al-

most always requires a screwdriver. If a nut is pres-
ent, then a wrench is also needed. Because tool
information is closely associated to the part itself
(for example, an M3 screw and M4 screw require
different drivers), it is possible to store the tool
information as a part property in the Part Library9,
which is provided by manufacturers. This includes
one or more pointers to instances in a Tool Library
and the tool position relative to the part.

9	 Part library will be introduced in next the few
pages.

Step 0

Step 1

Bolting
2

10

Bolting
2

01

Bolting
1

20

Bolting
1

20

Beam A

Bolt BoltBeam B Beam C

Bolt BoltBeam D

Step 2

Step 0

Step 1

Step 2

Step 3

Step 4

Bolting

Bolting

Bolting

Bolting

Beam A

Bolt Beam B

Beam C

Beam D

Bolt

Bolt

Bolt

2

10

1

20

0

1

20

1 2

Two di�erent assembly sequences of the same rectangular frameRectangular frame

Beam B

Beam A

Beam D

Bolt

Bolt

Bolt

Bolt

Beam C

25

This tool information allows the Web Player to
display a list of tool names or images during the
animation playback, or animate the tool together
with the animation.

In this thesis, using machine assembly as ex-
amples, screwdrivers are not animated. This is
because if tools are animated together with the
parts, each part in each step has to be animat-
ed separately, otherwise there will be multiple
instances of the same tool shown at the same
time and these might also clash with each other.
This would produce a rather lengthy, complex
animation. However, the possibility of animating
tools remains open for future development where
applications demand.

Simplifying the graph

In a machine assembly, it is common to have
many fasteners such as screws, washers and nuts.
These fasteners always have a one to one rela-
tionship with a Bolting Action and they do not
have connectivity with any other parts. Because it
is impossible for these Part Nodes to make more
than one connection and it is rare for the design-

er to edit them independently, it is possible to
distinguish these parts with a different UI style,
and simplify the visual appearance of the assem-
bly graph by hiding these components. The graph
below is the same graph as the previous example,
but “Dependent Part Nodes”, the bolts, are drawn
in a different style and another graph where they
are hidden. Note the hidden version is clearer for
the designer to edit.

Step 0

Step 1

Bolting
2

10

Bolting
2

01

Bolting
1

20

Bolting
1

20

Beam A

Bolt BoltBeam B Beam C

Bolt BoltBeam D

Step 2

Step 0

Step 1

Step 2

Dependent part node drawn in a di�ferent style Dependent part node hidden

Beam A

Bolting
2

1

Bolting
1

2

Bolting
1

2

Bolting
2

1

Beam B Beam C

Beam D

27

For the same reason, we can also combine similar
screws that have identical bolting parameters into
one Bolting Action and one Part Node. This allows
similar bolts to share parameters and simplify the
graph editing process. The following graph shows
a rectangular frame similar to the previous exam-

ple. Instead of one screw per connection, there
are two screws per connection. The graph on the
left have one Bolting Action Node per bolt and
the graph on the right have combined two similar
Action Nodes into one representation.

Bolting

Bolting Bolting

Bolting

Bolt M4 x 14

Bolt M4 x 14 Bolt M4 x 14

Bolt M4 x 14

2

10

1

20

Beam A

Beam B

2

01

1

20

Bolting

Bolt M4 x 14

1

20

Beam C

Beam D

Bolting

Bolt M4 x 14

2

10

Bolting

Bolt M4 x 14

2

01

Bolting

Bolt M4 x 14

1

02

Step 0

Step 1

Step 2

Similar bolting node not collapsed

Bolting

Bolting Bolting

Bolting

Bolt M4 x 14 2pcs Bolt M4 x 14 2pcs

Bolt M4 x 14 2pcsBolt M4 x 14 2pcs

2

10

1

20

Beam A

Beam B

2

01

1

20

Beam C

Beam D

Step 0

Step 1

Step 2

Similar bolting node collapsed

Detecting an invalid graph

The designer can edit and rearrange the sequence
of nodes in an assembly graph using the CAD
plugin’s graphical user interface. However, some
of these arrangements may be invalid or problem-
atic. It is possible to encode a “rule set” specific
to each Action Node, such that the plugin can
automatically detect and warn the designer about
potential problems.

For example, a Bolting Action will have edges con-
necting to multiple Part Nodes. For the Bolting
Action to be represented meaningfully, all of its
connected Part Nodes should belong to the same
step as the Bolting Action, or they should belong
to an earlier step. In the example below (left), the
two Bolting Actions (highlighted in red) in Step 2
are incorrectly connected to ‘Beam D’ in Step 3,

thus being invalid. The invalid connection is also
highlighted in red.

For the animation algorithm to pick a non-moving
part in the bolting movement, at least one Part
Node must belong to an earlier step. In the exam-
ple below (right), the Bolting Action (highlighted
in red) in Step 1 is connected to ‘Beam C’ and
‘Beam D’ which are both in Step; thus violating
this rule.

These conceptual relationship between Part
Nodes and Action Nodes is generalizable to many
types of assembly. When the need arises to de-
velop a different type of Action Node, one should
re-visit the set of properties that is specific to the
action, the validation checks, the visual represen-
tation of the nodes in the graph, the animation
logic and its global settings.

2

Beam D

1

Step 0

Step 1

1

2

1

2

Beam A

Beam B Beam C

Step 2

12

Bolting

Bolting

Bolting Bolting

2

1

2

1

Beam D

1

2

1

2

Beam A

Beam B Beam C

Step 0

Step 1

Step 2

Step 3

Bolting Bolting

Bolting Bolting

Invalid arrangements for bolting action

29

3D Model, part libraries and custom

parts

Although this thesis does not deal with the
creation of CAD models or CAD assemblies, it is
important for these CAD models to be paired with

their properties for the CAD plugin to use them.
This allows the plugin to extract not only the geo-
metrical models but also associated properties
such as name, colour and model number of the
parts. The table below provides an overview of
properties and how they are used.

Property Relevance How it is used

Displayed Name All Parts •	 Web player provides a part list and automatically generat-
ed textural assembly instructions.

Category Name/
Subcategory Name

All Parts •	 Web player can provide a Bill of Material that is sorted by
categories.

•	 Action nodes may use this information for validation.

Model Number All Parts (only if
displayed name is not
specific enough)

•	 The displayed name should be kept short or quick reading.
Model number allow more specific name for Bill of Materi-
als, sourcing, purchasing.

[list] URL of 3D model All Parts •	 Web player retrieves the 3D model of each part from a
given repository (list of URL for redundancy)

Assembly Tool
(Pointer to a tool
library)

Parts that require
tools

•	 Web player can provide a tool list and/or animate the tool.

Tool Position Parts that require
tools

•	 Position information of where the tool should be located
and animated relative to the part

URL of photo All Parts •	 Web player can show a photo of a part to the user for iden-
tifying it

Information Message Parts that require
extra information

•	 Web player can show information message about further
assembly instructions

Warning Message Parts that require
warning

•	 Web player can show a warning message about potential
assembly mistakes

Some of these properties are specific only to a certain type of part. For example, “diameter” is relevant
to a screw, but not applicable to a rectangular beam. The table below is an example of parameters
relevant to a screw part.

Property How it is used
Diameter •	 Web player can be developed to highlight all screws of the same diameter.

Length •	 When animating a bolting action, the bolt is inserted into the bolt stack. The
length property determines the distance of this movement.

Many CAD platforms have already implement-
ed some object associated properties such as
part name, layer name or colour. Some of these

platforms or file formats even allow users to add
custom property fields. However, there is current-
ly no file format that supports custom properties

fields and is supported by major CAD platforms.
In order to develop a plugin algorithm that can
use the same model library between different
CAD software, I suggest a pragmatic approach to
link a separate data file to the part models.

In the scenario where a part model is created by
part manufacturers, this data file can be distrib-
uted together with the 3D model. When the
machine designer imports the CAD model, the
plugin can automatically attempt to read the
associated data. These data are then copied and
stored with the Part Node object. Designers can
later choose to override the data for each individ-
ual instance of the part, without altering the data
sheet.

Custom designed parts can be handled differently
by the plugin and the exact method is specific
to the CAD platform10. For example, if a designer
designed a custom screw in a CAD platform using
a specific “screw command”, it may be possible
for the CAD Plugin to interrogate the properties
of this screw using the CAD software’s API, thus
obtaining the essential information. It is also pos-
sible to present users with a form to fill in these
information.

Parts that have one or more rotational axes
should be modelled such that their axes pass
through the model frame’s origin point. This
ensures naturally looking rotational movement
during the interpolation. Further details will
be explained in the later chapter “Web Player:

10	 Because each CAD platform requires a separate
implementation of the Put it Together CAD Plugin, it is possi-
ble to develop functionalities case by case.

Interpolating Movements”. The following diagram
shows an example of how common fasteners
should be modelled with respect to their origin
point and their primary axis parallel to the Z axis11.

Part origin guideline for modeling fasteners

z z z z z z z z

3.2	CAD Plugin - for Rhino 5

The CAD Plugin is a software that interfaces with
the CAD package that designers use. It offers tools
to create and edit the assembly graph and the
properties of the nodes. This thesis encourages
other developers to contribute in developing
the CAD Plugin for different CAD platforms. This
chapter describes the requirements and concerns
for developing such plugins.

As part of the technical demonstration, I have
developed a CAD Plugin for Rhinoceros 5.0 using
VB.Net language. I implemented most of the
assembly graph features but not the graphical
user interface due to time constraints. This plugin
allowed me to create test cases of assembling
different machines. The test cases are used in later
development of the Web Player which was shown
to students in the educational workshops.

11	 The reason to model the screws parallel to the Z
axis is a convention such that the ‘Bolting Node’ can infer
the bolting direction automatically. This convention is not a
result of interpolation limitation.

31

Graph editing

The designer interacts with a Graphical User Interface of the CAD plugin to create and edit the graph.
The image below is an example of the user interface, showing a canvas with a visual representation of
the assembly graph and tools to edit the graph.

Λ  Example of the CAD Pluin

The Part Nodes are automatically created when
the Action Nodes are linked to a part. The Action
Nodes are created by clicking on one of the Ac-
tion Node buttons and then selecting the related
part models in the CAD environment.

Designers can pan the canvas by holding the right
mouse button while dragging; zoom in or out can
be controlled by the mouse wheel. Node selec-
tion is possible on all nodes by the left mouse
button click; designers can delete a node after
selecting it. Multi-select is possible by Shift-Click
or window lasso selection method. These mouse
interactions are a generic guidelines and actual
implementation should match the camera control
system of the CAD platform.

The graph can be rearranged by mouse actions
that select and drag the nodes into different
vertical or horizontal positions. Vertical drag and
drop should provide automatic snapping to assist
a neat layout. The Insert Step Button and Remove
Step button can be conveniently used to insert or
remove a step in the middle of a long sequence.
The example below shows how the Drag & Drop
and Insert Step Button can be used to achieve the
same result.

Bolt
2

1

Bolt
2

1

Beam D

2

1

2

1

Beam D

Step 0

Step 1

Bolting
1

2

Beam A

Beam B
+

-

+

Step 2
+

-

Step 3
+

-

Step 0

Step 1

Bolt
1

2

Bolt
1

2

Beam A

Beam B Beam C

+

-

+

Step 2
+

-

Step 3
+

-

Bolt
1

2

Beam C

Group selection and dragRectangular frame

Rectangular frame

Drop selection to another step

Drag and drop editing

Beam B

Beam A

Beam D

Bolt

Bolt

Bolt

Bolt

Beam C

Beam B

Beam A

Beam D

Bolt

Bolt

Bolt

Bolt

Beam C

Click on insert step button New step added

Step editing buttons

Bolting

BoltingBolting
BoltingBolting

BoltingBolting

Bolting
2

1

Bolting
2

1

Beam D

Step 0

Step 1

Bolting
1

2

Bolting
1

2

Beam A

Beam B Beam C
+

-

+

Step 2
+

-

Step 3
+

-

Bolting
2

1

Bolting
2

1

Beam D

Step 0

Step 1

Bolting
1

2

Bolting
1

2

Beam A

Beam B Beam C

+

-

+

Step 2
+

-

Step 3
+

-

33

Various visualization modes can be implemented
to assist the designer’s workflow. (1) Hide / Show
Dependent Parts, (2) Show Full Name / Common
Name, (3) Tri Colour Visualization in CAD Envi-
ronment. The tri-colour feature allows the parts
in the model space to temporarily change their
visualization colour, to show whether they have
already been included in the graph (orange) or
not included in the graph (grey) or included and is

currently selected (green). The following example
shows the process of specifying the actions on
a rectangular frame with 4 parts and 4 bolting
actions. (In this example, (1) Dependent Parts
are hidden, (2) Common Name is shown, and (3)
Tri-colour visualization is turned on.) Notice the
designer performed a drag and drop to rearrange
the two Bolting Actions.

Persistent storage of the graph

The nodes and edges that make up the assembly
graph is specific to a particular CAD assembly
file. Depending on the extendibility of the CAD
file format of a particular CAD platform, the CAD
Plugin can either store the graph within the CAD
file format or store it separately as a file alongside
the CAD file. If a separate file is used, it is advised
to keep the file name identical to the assembly

file. It is also ideal to trigger the saving action of
the graph when the CAD document is saved.

In this thesis, an experimental CAD plugin is de-
veloped for Rhinoceros 5 in VB.net language. The
native file format of Rhinoceros (.3dm) allows the
plugin to store the graph internally as a custom
“User Data” serialized into XML format.

Step 0

Step 1

Bolting
2

1

Bolting
1

2

Bolting
2

1

Bolting
1

2

Beam A

Beam B Beam C

Beam D

+

-

+

Step 2
+

-

Step 3
+

-

Bolting
1

2

Beam A

Beam B

Step 0

Step 1
+

-

+

Step 2
+

-

Step 3
+

-

Bolting
1

2

Beam C

Bolting
1

2

Beam A

Beam B

Step 0

Step 1
+

-

+

Step 2
+

-

Step 3
+

-

Bolting
2

1

Beam D

Step 0

Step 1

Bolting
1

2

Bolting
1

2

Beam A

Beam B Beam C
+

-

+

Step 2
+

-

Step 3
+

-

Bolting
1

2

Beam C

Bolting
1

2

Beam A

Beam B

Step 0

Step 1
+

-

+

Step 2
+

-

Step 3
+

-

Step 0

Step 1

Bolting
1

2

Beam A

Beam B
+

-

+

Step 2
+

-

Step 3
+

-

Bolting
1

2

Beam C

Steps to de�ne the assembly sequence of an rectangular frame

3.3	From graph to animation

This thesis has limited the scope of animating
machine parts to parts that are rigid bodies; thus
reducing the complexity of animation to motion
that are proper-rigid-transformations — a com-
bination of only translation and rotation move-
ment12. This section discuss about algorithms that
analyse the assembly graph and create keyframes
for the animation.

Keyframes

Each Action Node in the assembly graph will
translate into one short assembly animation. The
Part Nodes connected to an Action Node are the
parts involved in that animation. This animation
is described with a group of keyframe containers
that represent the motion of each involved part
during the animation.

A separate keyframe timeline is created for each
individual component and allows each to move
independently. A timeline consists of at least two
keyframes that describe a transformation from
one position to another position, from a specific
time to another specific time. Both position and
orientation of a part (a transformation from the
world frame to the model frame) are stored in the
keyframe as a translation vector and a rotation
quaternion. While translation vectors can easily be
interpolated linearly, Gortler’s book (Foundations

12	 Uniform and non-uniform scaling, skewing and
mirroring are unlikely or impossible to happen to a rigid
body during assembly. Think about the impossibility of
shrinking a steel bolt.

of 3D computer graphics 2012) provides the algo-
rithms for interpolating quaternions smoothly.

While quaternions are ideal for producing natural-
ly looking rotation movements, it is worth noting
that that typical code implementation for quater-
nion interpolation will find the shortest distance
between two orientations. Thus, it cannot create
a rotation more than 180 degrees. For animations
that require more than 180 degrees, the CAD
Plugin should create intermediate keyframes to
ensure a complete rotation.

Real time unit (seconds) is used to mark the posi-
tion of a key frame. Different from many comput-
er animation software which use frame numbers,
real time rendered animations do not always
have a constant frame rate. To ensure consistent
motion in a variable frame rate, the exact position
of the object in each frame is calculated based on
the elapsed time when the frame is drawn.

Animating strategy

Each Action Node has its specific animating strat-
egy. For example, inserting animation is a transla-
tion of a part, bolting animation requires trans-
lating and rotating the bolt at the same time and
while simultaneously animating other parts in the
bolt stack. Even the same Action Node can have
multiple animating strategies. For example, a bolt
can be animated simply by translating it into the
nut; or it can have the more realistic helical move-
ment. The exact animating strategy depends on
the implementation of the CAD plugin and should
reflect the need of the target audience. It is the
CAD plugin’s responsibility to compute these

35

keyframes from the properties in the Action Node
and its connections to the Part Nodes.

The following diagram shows one of the possible
animating strategies for a Bolting Action. The
animation starts by showing an exploded bolt
stack and then translating all components of the
bolt stack towards the final assembled position.
There are only two keyframes per object in this
animation. The amount of translation in each part
is calculated based on a global setting (k) and its
position relative to a chosen static part. The Rel-

ative Position is an integer (positive or negative)
that starts from the Bolt, Bolt Washer, Parts in
the Bolt Stack, End Washer, and Nut13. The parts
that belong to the previous steps have a relative
position of zero. The exception is the movement
of the bolt, which also takes into account the bolt
length (l).

13	 Bolt Washer, End Washer and Nut are optional in
defining the Bolting Action. Together with the Bolt, these
are Dependent Parts of the Bolting Action. When multiple
bolts are collapsed into one Bolting Action, all these depen-
dent parts have to have the same number as the number of
bolts.

The example below shows a more complex
Bolting Action where two parts belong to a
previous step. Both of their relative positions are

set to zero, which causes them not to move in the
animation.

Graph AssembledExplode Displacement Calculation Displacement Exploded

Graph AssembledExplode Displacement Calculation Displacement Exploded

Bolting
2

30 1

Long Beam

Short BeamBolt

Step 0

Step 1

Bolt Nut

-k

k

k

l

k

Bolting
32

540 1

Beam B Beam C

Beam A Beam DBolt

Step 0

Step 1

Bolt Nut

-k

k

k

l

k

-k

-k

Bolt
Beam A
Beam B
Beam C
BeamD
Nut

0
1
2
3
4
5

+2
+1
0
0
-1
-2

+2k + l
+1k

0
0

-1k
-2k

D
is

pl
ac

em
en

t

Beam A

Beam B

Beam C

BeamD

Re
la

tiv
e

Po
si

tio
n

Pa
rt

Se
qu

en
ce

Bolt
Short Beam
Long Beam
Nut

0
1
2
3

+2
+1
0
-1

+2k + l
+1k

0
-1k

D
is

pl
ac

em
en

t

Re
la

tiv
e

Po
sit

io
n

Pa
rt

Se
qu

en
ce

Graph AssembledExplode Displacement Calculation Displacement Exploded

Graph AssembledExplode Displacement Calculation Displacement Exploded

Bolting
2

30 1

Long Beam

Short BeamBolt

Step 0

Step 1

Bolt Nut

-k

k

k

l

k

Bolting
32

540 1

Beam B Beam C

Beam A Beam DBolt

Step 0

Step 1

Bolt Nut

-k

k

k

l

k

-k

-k

Bolt
Beam A
Beam B
Beam C
BeamD
Nut

0
1
2
3
4
5

+2
+1
0
0
-1
-2

+2k + l
+1k

0
0

-1k
-2k

D
is

pl
ac

em
en

t

Beam A

Beam B

Beam C

BeamD

Re
la

tiv
e

Po
si

tio
n

Pa
rt

Se
qu

en
ce

Bolt
Short Beam
Long Beam
Nut

0
1
2
3

+2
+1
0
-1

+2k + l
+1k

0
-1k

D
is

pl
ac

em
en

t

Re
la

tiv
e

Po
sit

io
n

Pa
rt

Se
qu

en
ce

Note that there are many other ways to animate
a bolt stack, section 5.10 describes how strategies
can be designed to reflect human behaviour and
provide a more illustrative approach in explaining
the movements.

The function that computes the displacement
value is specific to the Action Node and is devel-
oped by the developer of the CAD plugin. This
function is invoked during the creation of the Ac-
tion Node in the assembly graph. The computed
displacement values are then stored in a table in
the Action Node’s property. They can be manually
overridden by the designer if necessary.

Because it is possible to place multiple Action
Nodes into one step and animate them together,
and it is also possible for them to have different
animation times (up to the Action Node’s designer
or user to override), the shortest animation will
wait until the longest animation is completed be-
fore looping or proceeding to next step. Typically
3 seconds per translation is appropriate for the
animation.

Encoding the animation

When the assembly graph is completed by the
machine designer, an “Export” function can be
triggered to compute all the motion keyframes
and encode them in an animation description file.
This file combines information from the part file’s
property and the movements of the animation
in a readily useable format for the web player.
This file is encoded in JavaScript Object Notation
(JSON) and its schema is attached in the appen-
dix. It contains metadata of the animation, de-
scriptions of the parts used, descriptions of each

part instance in the finished assembly and a list of
motion keyframes for each step. This file does not
contain the 3D geometrical models of the parts,
but contains a pointer to the repository of those
files.

These decisions are made to optimize for web
deployment where JSON can be readily used by
the Web Player written in JavaScript. 3D models
are loaded separately from an online repository
to reduce redundant file exchange and enable
offline caching of the models by the Web Player.
In the context where hobbyist design, create and
share different machine assemblies, it is very com-
mon for them to use similar parts but arranged in
a different way; therefore, offline caching of part
models can save significant bandwidth.

This thesis has envisioned the Web Player to be
an open source software that can be developed
by different developers and modified for different
user interfaces or functionalities as appropriate
for different applications. Thus, the animation
description file is intentionally designed to be as
extensible and flexible as possible to function
across various permutations and implementations
of the Web Player.

3.4	Web Player

The Web Player is the final step of the
Put It Together tool chain. It is a 3D environment
that can be accessed from a web browser, show-
ing a real time rendered animation, and can be
controlled by the viewer interactively. Its role is
to automatically read the animation description

37

file, fetch the 3D models from repositories, and
display the animation to the novice.

The goal of the Web Player is to present the as-
sembly sequence in an interactive way most easily
understood by the novice. Therefore, it features
various user interface techniques that make it
easy to learn and easy to use by the novice, thus
reducing the overhead effort for learning how to
use the interface itself.

This section provides an overview of the functions
of the web player and technical development
details. The next chapter, “Observation”, discuss-
es advanced features that are inspired from the

workshops that can be implemented in future
works.

The Web Player implementation in this thesis
underwent an iterative software development,
through successive evaluations in the educational
workshops that are described in the next chapter.
While certain features described in this chapter
constitute the basic implementation of the player,
some features respond to the specific needs in
the education setting of these workshops and
may not be valid in all applications. In the de-
velopment of this thesis, 5 iterations of the Web
Player have been developed as incremental test
to these features. The following table gives an
overview of the key features tested.

Iteration 1:

First test on Step by Step Animation
controlled by two step-control buttons.
World Coordinate Symbol is added to
help orient the model.

Iteration 2:

Models are modelled with a texture that
resembles the true colour of the compo-
nents.

Iteration 3:

Part list for each step are shown in a
collapsible menu on top-left corner of the
screen.

Iteration 4:

Automatically generated captions are
added to the bottom of the screen to
explain the action.

Iteration 5:

Camera automatically reposition and
centers on the objects of interest at the
beginning of each step.

Virtual environment with Three.js

The core of the player is to provide a 3D environment where 3D models are placed and rendered for
the user. This requires a framework to store the position and orientation of 3D models and functions to
manipulate them. Three.js is a JavaScript library that provides most of these functionalities. It provides
functions for importing and transforming 3D models in a virtual scene. It also wraps WebGL function
calls that initiate the rendering process by the user’s graphics hardware. It contains OrbitControl.js,
which provides the mouse gesture functions for camera control.

39

The Web Player development in this thesis con-
sists of an html page that hosts a series of JavaS-
cript files which imports the Three.js libraries. CSS
files are also included to control the visual ap-
pearance. During the “Initialization stage” of the
player, the script sets up the 3D environment with

an empty scene, a virtual camera and various con-
trol functions. After all 3D models are loaded, the
player enters and stays in a “Playing stage” where
a number of functions update object positions
and perform the redraw cycle. A brief workflow
diagram is shown below.

Player Script Loaded / Player in Loading Stage Player in Playing Stage

Web Player Loading Stage and Playing Stage Flowchart

Load Animation Description JSON �le

Update elapsed time

Compute Interpolated Model Position

Update Model Position / Colour

Update Camera Control

Redraw frame

Setup Scene / Camera / Lighting

Setup Camera Control

Wait till all OBJ and MTL �les loaded

Create DataTables (BlockTable / ObjectTable / StepTable)

(For Each Block) Load OBJ and MTL �les Update UI features (Caption / Part List)

Importing models

The part models described in the section 3.2
are exported in two file formats. OBJ for the 3D
geometry (in mm units) and MTL for the material
property. Both are plaintext-based open file for-
mat14 that are supported by many CAD platforms.
They can be easily exported by those platforms

14	 Open file format are formats that can be used free
of charge.

and can be easily imported by the OBJMTLLoader.
js in Three.js library.15

The current player implementation reads the Ani-
mation Description JSON file during the “Loading
Stage” and creates a few data tables to assist the
process of loading and placing the 3D models. A
“Block Table” is created to represent all the unique

15	 One drawback is the large file size of OBJ and MTL
format causing bottleneck in loading time. This should be
addressed in future works on either compressed OBJ MTL or
other file formats.

3D parts used16; each row in the table contains
the link to the OBJ and MTL files. The software
will create one asynchronous loading call per row
to fetch the OBJ and MTL files. Once the files are
fetched, they are stored as a Three.js Geometry
representation.

Each part used in the animation is represented by
a row in an “Object Table”. Even when some parts
share the same 3D model (for example, many
screws of the same geometry), they require their
unique row in this Object Table to represent their
unique locations and animation keyframes.

It should be noted that the complexity of these
3D models directly impairs the performance of
the rendering process. The polygon count of
the 3D mesh models should be reduced when
designing for devices with slower graphic hard-
ware17. In the pen plotter experiment (refer to the
next chapter), the assembly have 224 parts with
an average of 1.5k vertices and 1.7k polygons; the
largest model has 13k vertices and 13k polygon.
When all the parts are displayed (the last step is
the most complex step), it was able to maintain 50
fps on a 2015 mid-range PC laptop18 and 20 fps on
a 2015 mid-range Android phone19.

16	 For example, many of the same type of screw
(M4x16 Button Head Screw) is used in the assembly. Only
one record of the screw will be found in the “Block Table”,
but each records of its many instantiation will be recorded in
the “Object Table”

17	 Most complex 3D model we have tested contains
13k polygons.

18	 CPU: Intel(R) Core(TM) i7-3630QM @ 2.40GHz,
2401 Mhz, GPU: GeForce GT 650M@745MHz, 2GB GDDR5

19	 CPU: Quad-core 2.2 GHz Cortex-A17 & quad-core
1.7 GHz Cortex-A7, GPU PowerVR G6200

Camera, and camera control

A perspective projection provides a more natu-
ral appearance to novice users and conveys the
depth of the scene better than parallel projection;
therefore, a 60 degree field of view20 perspective
camera is used in this thesis. Near plane is set at 1
and far plane is set at 10000. Units are in millime-
tres.

Three.js camera uses a right hand coordinate
system, which is similar to most CAD systems. By
the conventions of computer graphics, objects on
the XY plane are drawn on the screen and the Z
axis conceptually points out of the screen. How-
ever, with the convention of machine design, it is
common for objects to be modelled where the Z
axis points to the top of the machine or towards
the sky. And it is more natural to display these 3D
models where its “Up” direction (Z axis) corre-
sponds to the top of a computer screen. There-
fore, changing the “Up” setting of the perspective
camera to “Z axis”, can result in a default camera
that shows a more natural side view of the ma-
chine, instead of the top view.

Users can orbit the camera by first holding down
the right mouse button, and then dragging the
mouse. This dragging motion translates to the
camera orbiting around an imaginary center point
while the Z axis of the model space will always
point towards the top of the screen. This Z axis
lock is intentionally programmed to prevent the

20	 Three.js perspective camera accounts for the field
of view based on the width of the screen only. Special care is
needed when developing for vertical screen devices.

41

user from disorientation, such as when using a
trackball control.

The mouse wheel controls the dolly of the cam-
era, so that users can magnify the object of inter-
est. Scrolling the mouse wheel moves the camera
towards or away from the imaginary point while
the field of view (FOV) is constant. Even though
this is commonly referred to as “zoom”, dollying is
different from the concept of zooming in photog-
raphy where FOV changes. One down side of the
dolly control is the saturation of the dolly when

it is very close to the imaginary point. A potential
workaround is described in next chapter.

Users can also control the panning of the camera
by first holding down the left mouse button and
then dragging the mouse. This translates both
the imaginary orbiting point, camera position
and camera target position. It is worth noting that
novice users generally have difficulty grasping
and differentiating the concept of orbiting and
panning the camera. Two suggestions are made
in the next chapter to reduce the need for pan-
ning.

Dolly Orbit Pan Walk

Di�erent types of Camera Control

Center of Orbit Movement

Top View

Front View

Camera Control

Stationary Stationary Parallel to Screen Normal to Screen

The above diagram shows the difference between
the three camera controls. The black cross is the
imaginary orbit center.

Alternatively, users can also use their trackpad
or touch screen to control the viewing angle.
In the case of touch screen control, single-fin-
ger-drag-gesture orbits the camera, two-finger-
pinch-gesture dollies the camera and three-fin-
ger-drag-gesture pans the camera.

Light

One ambient light is added to the scene and one
directional light is added to cast shadows on the
3D model. Both lights are light grey to avoid over
exposing the colour channel during the rendering
pass.

The directional light is set at an angle relative to
the camera, to create different shades on differ-
ent face normals. Without this directional light,
all faces of an object will have the same shading
intensity and it will be impossible to distinguish
the 3D shapes. A comparison chart is included
below to show how the directional light is angled
relative to the camera to create a more identifi-
able shading.

This directional light is set to follow the camera
position and orientation, such that the differential
shading effect is maintained at all viewing angles.
When the camera angle is changed by the us-
er’s gesture, the shade of the objects changes at
the same time. This dynamic shadow help users
understand the 3D shape better when they rotate
the camera around the object. This is similar to
the effect of rotating an object in the real world
while the lighting condition and eye position are
fixed.

Other computer graphic researchers have ded-
icated efforts into Non-Photographic Render-
ing (NPR) techniques that are more suitable for
technical illustrations then photorealistic render-
ings. The implementation of NPR techniques are
outside the scope of this thesis, but a summary of
illustration techniques can be found in the paper
by Gooch et al. (1998).

Ambient Light Ambient Light +
Directional Light (top)

Ambient Light +
Directional Light (right)

Ambient Light +
Directional Light (top right)

Flat shade Top face is brighter but left
and right faces have similar
shade.

Right face is brighter but top
and left face have similar
shade

All faces have different
shades. Top face has the
brightest shade.

Material and shading

The 3D models rendered in this thesis are given a
Lambertian material that simulates matte surfac-
es. This avoids the distracting artefacts caused by
specular highlights. The diffuse colour is stored in

the MTL file which can represent different colours
for each individual mesh face.

In some special cases, when two objects are
touching each other, tangential surfaces may be
rendered with the same shading. Or in another

43

case, where the orientation of different face nor-
mals have the same angle to the light source, the
shading will also be the same. Both of these will
cause confusion as the faces appear merged into
one single face. It is therefore desirable to include

a silhouette outline to the rendered objects in the
scene to clarify the shape. A shader based imple-
mentation of silhouette can be found in Card and
Mitchell’s paper. (2002)

Left and right beam can be distinguished Left and right beam cannot be clearly seen because
shading colour is merged together

Two beams can be seen separately during animation Top faces of both beams merged into one colour after
they are assembled together

Silhouette provides definition and separation
between different objects and crease lines add
definition to augment the shading. It is generally
good to include one or both methods in the an-
imation if hardware performance permits. There
are different rendering techniques that can pro-
duce aesthetically pleasing silhouette or crease
lines. Most of them use a custom GPU shader or
multi pass rendering. Refer to the book by Gooch

and Gooch (2001) for various non-photorealistic
rendering techniques and their implementation.

Real time rendering

It is worth noting that both animated motion and
interactivity are illusions created by the ability to
redraw the scene with a high framerate — such
that objects and camera appear to be moving
in a continuous motion to the user. In order to
animate a motion, the framework updates the
position of the 3D models at every frame redraw.
For the interactive camera control, user inputs
are processed by OrbitControl.js at every frame
and the camera positions are updated, such that
the viewing position appears to be an interactive
view, controlled by the user.

It is ideal to redraw the image at 60 frames per
second (fps). However, due to hardware limitation
and load sharing with other applications, it is not

always possible to achieve this frame rate. There-
fore, it is best not to hardcode this frame rate
and utilize the requestAnimationFrame() function
which is supported by most browsers through
JavaScript. This allows the browser to govern the
redrawing speed and optimize for performance.

Interpolating movements

The Web Player designed for this thesis imple-
mented a rather sophisticated animation se-
quence. Even though there could be as few as
two keyframes describing one assembly step, the
animation consists of 5 phases to improve under-
standability for the novice. The following graph
shows the action and suggested duration of each
phase. Notice the animation will loop phase #3
and #4 indefinitely until user moves on to another
step.

Action

Various Phase in one Step

Phase #0 #1 #2 #3 #4

Suggested Duration(sec) 0.5 1.0 0.5 ~3* 2

Position/Orientation

Opacity

KeyFrame[�rst] interpolated KeyFrame[last]

Pause Pause PauseFade In Animate

Hidden interpolated Visible

* Actual animating time for Phase #3 is determined by the keyframes and may not always be 3 seconds.

The player keeps track of three variables related
to this playback: Step, Phase and Time. Step, refers
to the step of the assembly. This comes from the
vertical levels in the assembly graph. The player
by default starts at Step 1 and is then controlled

by the user using two buttons on the interface
to move forward or backward. Phase21, describes

21	 Animation Phase is an optional implementation
for the player. It may not be relevant in all applications.

45

different phases when the animation is played (an
optional feature in this specific implementation).

Time, is the current time of the animation. When
the browser requests a redraw (typically at 60
frames per second), the value of time is updated
automatically to integrate the elapsed time (delta
t) since the last redraw. The player recalculates the
current position, orientation and visibility of each
object based on values of Step, Phase and Time.
The value of time will be reset to zero at the end
of each phase or when user advances to the next
step.

Phase #3 is the key step for interpolating the po-
sition and orientation of the 3D model to create
the animation. Each keyframe stores the position
as a vector and orientation as a quaternion of the
model frame relative to the world frame. Quater-
nion is chosen to be an unambiguous description
of the orientation for interpolation. The position
of the object at any instant between two key-
frames is linearly interpolated, while the quaterni-
ons are spherically interpolated. Implementation
and theoretical background of interpolating
quaternions can be found in Gortler’s book (2012).

It should also be noted that such interpolation
results in a natural looking rotation movement
only if the rotation axis goes through the origin
of the model frame. For rotationally symmetric
components such as shafts and screws, it is best
to model their meaningful center point at the
model frame’s origin. For parts that cannot avoid
rotation around an arbitrary center point, care
should be taken to generate enough key-frames
to maintain a visually meaningful trajectory.

4.1	 Assembly task

4.2	 Instructions (Variables)

4.3	 Observables

47

 4
CNC Workshops for Novices -

Learning Experiment

In order to reveal issues and implications from people using the Web Player, I designed a series of ed-
ucational workshops as usability tests. These workshops served as a demonstration and validation for
Put It Together to function in an educational environment.

Eight workshops were conducted with university
level students. The first three were pilot work-
shops taught using traditional methods such as
paper instructions and static 3D models. They
revealed problems in those methods and outlined
the requirements for the Web Player.

Five more workshops were conducted using the
Web Player described in Section 3.4 to provide
feedback along with development of the player.
These workshops were designed to be education-
al and attractive for university level students with
no prior background in mechanical engineering.
They contained a lecture about the fundamen-
tals of CNC controlled machines and a hands-on
assembly task to assemble a 2-axis pen plotter.
Students were then given time to play with the
assembled pen plotter to make drawings of their

own design22. Each workshop was 8 hours long,
spanned between one or two days. The majority
of the students came from MIT’s undergraduate
and graduate population. All students volun-
teered to provide feedback about the software.

Makeblock23 sponsored 6 sets of the mechanical
parts used in these workshops and these were re-
used for each workshop. I sponsored the consum-
able materials such as drawing paper and drawing
pens. Workshops were free for the students to
attend.

22	 The drawings that students made are designed by
the students using tools I provided. Teaching students how
to use these tools and operate the machine is outside the
scope of this thesis.

23	 Makeblock is a Chinese company that makes
Robotic Parts for DIY robot building.

Dates Location Series Students

1 2015/01/12-16 The University of Hong Kong HKU Winter Workshop 12
2 2015/07/20-30 City University of Hong Kong AA Visiting School 10
3 2016/01/11-15 Massachusetts Institute of Technology MIT IAP Class 12
4 2016/02/06 Massachusetts Institute of Technology Weekend Workshop 5
5 2016/02/13-14 Massachusetts Institute of Technology Weekend Workshop 10
6 2016/02/20 Massachusetts Institute of Technology Weekend Workshop 5
7 2016/02/27-28 Massachusetts Institute of Technology Weekend Workshop 4
8 2016/03/06 Massachusetts Institute of Technology Weekend Workshop

(DCG)1

4

* Workshop #1 was co-taught with Diego Pinochet

* Workshop # 3 was assisted by Julia Litman-Cleper and Mitchell Gu

49

Λ  Poster of workshop #1 Λ  Poster of workshop #3

4.1	Assembly task

The students were asked to assemble a pen
plotter as part of learning how to design and
make CNC machines. A pen plotter was chosen
because of its moderate complexity, covering
three linear axis and different framing and mo-
tion transmission components. It contains many
bolting and inserting actions that are relevant to
general mechanical assembly. It required three
different types of screw drivers and a wrench to

assemble. The assembly task took an average nov-
ice 3.5 hours to complete (or 3 hours in teams of 2
students). The method of instruction is described
in the next section.

The photo below shows the pen plotter I de-
signed using mostly Makeblock components and
a few custom made components. The assembly
task did not require students to design anything.

Λ  Pen plotter assembled by students

51

4.2	Instructions (Variables)

In each workshop (#3 to #8)24, students were given the same task to assemble, but the instruction
method was different in each workshop. The highlight of each workshops’ goal is given in the follow-
ing table:

Workshop # Instruction Intent
Workshop 1 Paper instructions prepared by Makeblock. Make-

block-designed plotter.
Reveal problems of paper instruc-
tions.

Workshop 2 3D model (in Rhino 5) of a large machine. Parts do not
have names or realistic colour.

Observe student’s behaviour when
only a static model is given.

Workshop 3 3D model (in Rhino 5). Parts in the model contain their
part names. Parts do not have realistic colour. Make-
block-designed plotter.

Reveal problems from the most
common type of 3D model sharing
method available online.

Workshop 4 Method same as above but with my Pen Plotter
design. The following workshops will be in the same
plotter design.

Intention same as above but act as
control experiment for the follow-
ing workshops.

Workshop 5 First use of Put It Together Web Player Observe problems associated with
the player.

Workshop 6 Added itemized part list for each step and realistic
part color

Observe if part list help identify
screw lengths. Observe if realistic
color is confusing.

Workshop 7 Added captions for each step Observe if captions helped assem-
bly.

Workshop 8 Added automatic view zooming for each step. Observe if automatic zooming help
reduce time in finding parts.

24	 Workshop #1 and #2 is taught using a different version of the pen plotter. The later plotter design, is modified
from the earlier one for better drawing quality, so that students can make better drawings.

Λ  Snap shot during the workshop

Λ  Drawings made by students with the XY Plotter.

53

4.3	Observables

The success of the Web Player depends on the
criteria we use to evaluate it. It is similar to asking
what constitutes a good teacher — it depends.
In some applications, speed of understanding
the step is important. In some, unambiguity and
clarity is important. In some, mistakes should
be avoided. And in some, it needs to be fun and
educational.

This thesis is interested in observing the
mistakes that students make. For example,
assembling the wrong component, in the wrong
direction, using the wrong tool, in the wrong
sequence, in the wrong place, or completely
forgetting to assemble a part. By observing these
mistakes, we can draw conclusion on how the
instruction method or Web Player can be im-
proved towards different goals, without limiting
ourselves to a certain type of application. It is also
useful to analyse the questions that students
ask the instructor, because these questions reveal
the information that is missing or communicated
ineffectively.

A questionnaire was also given to students to
gather their opinions on the medium. A sample
questionnaire is attached in the Appendix.

5.1	 Basic knowledge

5.2	 Identifying parts

5.3	 Play / Pause mode

5.4	 Occlusion

5.5	 User interface navigation

5.6	 No mouse

5.7	 Showing alignment

5.8	 Hard-to-animate steps

5.9	 Calibration and other non-assembling step

5.10	How do people actually assemble a bolt stack

5.11	 Sub-assembly

55

 5
Observations and

Interpretations

5.1	Basic knowledge

The design of the Web Player in this thesis has a
hypothetical audience in mind. It is imagined to
be undergraduate level students without engi-
neering backgrounds who are interested to learn
how to assemble a CNC machine. I have made
these assumptions to estimate the audience’s
knowledge and capability. For example given two
screwdrivers of different hex head, the person
should be able to pick the right one by looking at
the screw and the screwdriver. Or for example, if
you tighten a bolt stack with a nut at the end, you
need to use a wrench together with the screw-
driver. However, observation from the workshops
proves that even with careful consideration, there

can be a lot of variation between students. The
mistakes that they made are often interesting and
point to usability problems that are often over-
looked.

One typical problem is not knowing how to use
a tool. There are numerous instances where
students confuse the tightening and loosening
direction of their screws. I also found that it is not
obvious to some people, that both the long and
short arm of an L-shaped Hex key can be used
for different clearances. The current Web Player
implementation does not animate the location
of the tool during the assembly (mainly due to
the messiness of many tools obscuring the scene
when there are multiple screws in a step). How-

ever, it is possible to animate the tool together
with the part. This will require redesigning the
animation phases of the web player, preferably
with an extra step to show the attachment of the

tool, and another step to show the release of the
tool. Below is an example of the animation flow in
8 phases.

It is worth noting the tedious process involved for
the designer to select the right tool. For example
a hex-head cap screw can be tightened by a hex
screwdriver, by the long arm of the Hex key, or
by the short arm of the Hex key. It can also be
finger-tightened. However, the reward of this
process allows the designer to visualize potential
difficulty in the assembly process, such as a tight
ratcheting window and unreachable location by
hand.

For people who have never assembled things
with screws, it is common for them to over- or
under-tighten a screw. Too loose and the machine
falls apart; too tight and the threads or the parts
are broken. Among other fascinating issues, I
found that it is extremely difficult to communicate
“how tight is tight enough”. Even a live demon-
stration is not possible to show the amount of
torque that is felt by the hand. Without going
into professional tools such as torque wrench, I
have experimented with two ways to overcome
this challenge. First is an undo approach: Let the

student tighten a few joints, and the teacher tries
to tighten or loosen it and feel if the tightness
is correct. The second method only requires a
demonstration, I give a verbal instruction like this:
“Tighten it hard enough so that none of the ele-
ments in your bolt stack can move independently
from each other, test them by pushing them
apart as hard as you can. (I show them how I use
my fingers to push and where to push) For Tee
joints, bend them slowly and observe if the joint
opens a gap (I show them what a gap looks like).”
Both methods are effective, but the second one
does not require the presence of the instructor,
the showing part can be captured in a video and
distributed.

These basic knowledge assumptions are not
trivial in the design process of the Web Player for
a specific application. For example the audience
watching a furniture assembly animation made
by a furniture company is very different from a car
mechanic watching a repair instruction made by a
car company.

57

5.2	Identifying parts

One of the key mental processes for user when
watching the instructions is to identify the part
being animated on the screen. I tested a number
of ways to do this and their effects are recorded
below.

Λ  3D models with only grey colour

The first attempt was to use parts that had a
generic grey colour, experimenting if the students
can recognize the parts purely by the geometry.
However, there was considerable feedback from
students asking for a model that is coloured with
the part’s realistic colour, to help with identifica-
tion.

Λ  3D models with real colour

The second revision of the web player incorporat-
ed realistic colour. The MTL file allows each indi-
vidual mesh face to have a unique colour, reflect-
ing the realistic colour of the part. This worked
well in the workshops and substantially reduced
students asking “Is this the right part?”

However, for products that have different colour
variation but not functional difference, the colour
on the screen might be confusing to the user who
has a different colour at hand. One possible miti-
gation is to produce a different animation for each
product colour. Another possibility is to ask users
to pick their product’s colour before the start of
the animation (applicable to furniture). Another
possibility is to provide more information in a
separate panel or as a warning dialog for the user,
showing the alternative colour (applicable in DIY
machines where parts may come from different
manufacturer).

The third revision addresses a specific problem
where different screw lengths are difficult to
discern. The image below showed three different
screw lengths (left to right: 12, 14, 16mm) which
look very similar. The problem is worsened by the
perspective projection of the camera. A part list
with names is necessary to help users identify the
right screw from the animation25.

25	 Assuming students have screws that are properly
labelled.

Λ  Three different screws look similar in perspective

The part list provides useful information, but it
adds an extra panel on the screen. On devices
with a small screen, the part list and the main 3D
environment fight for screen space. This problem
did not caused major trouble in my workshops
because most students viewed the animation
with a laptop. The image below is two other po-
tential solutions to solve this problem, by showing
the name tags as a 3D leader together with the
3D environment. The part list is (1) either con-
stantly displayed, (2) displayed smartly only for
confusing parts, or (3) displayed on user click.

Part list occupying main screen
area Constantly displayed leader Leader displayed on click/point

5.3	Play / Pause mode

In the early implementation of the web player,
there were three buttons for the user to control
the playback: (1) Play/Pause, (2) Previous Step,
(3) Next Step. Users were expected to click Play
button once after the “Loading Stage”, to start the
animated movements. Then users were expect-
ed to go forward or backward in step using (2)

and (3). This “Play/Pause” button was originally
designed to allow users to pause at a specific mo-
ment during the animation cycle26 for examining
the objects.

26	 The animation cycle is typically 3s long followed
by 1s pause before repeating itself.

59

However, during workshop #5, a team of two
students did not realize the player is in “paused”
mode when the Web Player started. They did
not see the animated movement on the screen
but they assumed it was normal. They used the
player only by clicking button (2) and (3), which

still caused the player to progressively show the
parts, but without the animated sequence. The
team still managed to assemble the task but with
substantially more difficulty, as reported in their
feedback form.

Λ  The Pause Button Λ  Removed the pause button and state

In the next iteration of the web player, the “Play/
Pause” button was removed. The player is always
in play mode, and the animation will always loop.
This is a quick compromise to eliminate a poten-
tially confusing feature, because there was no
report from any students having trouble because
they cannot pause the video. An alternative solu-
tion is to keep the button, but start the software
in play mode.

Miller (2011) have explained the cognitive fric-
tion caused by multi-modal software state in his
course in MIT. The Play/Pause button created two
modes for the software and this caused a con-
fusion when users entered the “paused” mode
without realizing it. User interfaces are generally
more novice-friendly when they do not have
multiple modes.

This problem in fact points to more careful design
of the player controls. The Web Player has many

similarities to a video player (both load a file and
play some video), and it is convenient to borrow
UI elements from a video player that users are
already familiar with. However, a simple task anal-
ysis can reveal that our web player receives much
more user interaction (clicking button to advance
step and camera control) than a traditional video
player (where you load a file, click play and sit
back). It is therefore worth rethinking the design
of the player control. Below is a table of the rela-
tive frequency that a user access as the features,
and can point towards future implementation of
the interface.

Feature Frequency

Forward to next step Frequent

Back to previous step Occasional

Seek/Scroll to previous or next steps Never

Go to final step Rare

See overall progress
(see current step and total step number)

Frequent

Seek/Scroll animation within a step
(change time / phase)

Rare

Pause animation
(pause time / phase)

Rare

Toggle visibility of part list Rare

Toggle visibility of caption Rare

5.4	Occlusion

The animation itself did not provide any means
for the user to see a complete list of all the parts
in a step. Users need to pay attention to the parts
that are animated on the screen to figure out

what is new in each step. With the ability to orbit
the camera and choose any viewing angle, it is
often possible for the users to accidentally pick
an angle where some small parts are occluded by
others, and users are not aware of it. For example
there were two small shims in the plotter that
were often left out by users.

Λ  small piece visible from this angle Λ  small piece being occluded when assembled

61

Λ  small piece being occluded from this angle Λ  small piece being occluded when assembled

I once believed that the part list would provide
awareness of all the parts in a step and can act as
a counter-check for novices to avoid missing or
forgetting parts. However, in practice, students
did not consult the part list at the beginning of
each step. Their main focus was the animated
models and they only looked at the part list when
they had doubt in identifying a part. This problem
where users ignore information on a User Inter-
face is discussed in the third chapter in Cooper
(1999). He explained that users pay attention to
information that they think is essential to achieve
their goal and ignore the rest. 27

User interface can be designed to change user
behaviour. For example, we can strongly enforce
the part list in the beginning of each step by max-
imizing it, and require the user to click a button

27	 What users think are important may not always be
correct and thus they ignored important information.

to return to the animation screen. The maximised
part list may even provide image cues of the
necessary parts. This extra step encourages users
to gather all the necessary parts from the material
stack before watching the assembly animation,
thus increasing the awareness of all the required
parts, at the cost of intruding into more advanced
user’s workflow.

Another approach is to introduce occlusion vi-
sualization techniques to ensure users are aware
of occluded parts. Kruger et al. (2006) described
a number of Focus and Context (F&C) aware
rendering techniques that combine occluded
objects with the objects in front using a locally
selective transparency to produce a see-through
appearance. A simpler algorithm is shown below,
to overlay a rendered silhouette of the occluded
objects on top of the final image to hint their lo-
cation. Users can then manually orient the camera
to discover the occluded parts.

Λ  Occluded silhouette overlay on rendered image

5.5	User interface navigation

Orbiting is the most frequently used camera
interaction in the web viewer. This is because it
is most convenient to orbit around an object of in-
terest to understand the 3D geometry. However,
in some cases when the user needs to shift from
one object of interest to another, the user needs
to pan the camera such that the invisible center
of orbit lies close to the new object. I frequently
found users who have no CAD experience having
trouble performing this manoeuvre.

This manoeuvre is complex, first, the user needs
to be aware of the imaginary center of orbit and
move this center by panning. Second, the pan
control of the camera is limited to directions

parallel to the screen (Pan left, right, up and
down), thus it cannot pan forward or backward.
Professional users often use the trick “pan , orbit
90°, pan, orbit 90°” to move the center of orbit to
a desired location, but this is very hard for novices
to learn. When novices attempt to use the closest
matching function: to dolly in or out (which seems
to move the camera normal to the screen), they
will fail miserably because the dolly function does
not actually move the center of orbit.28 When
the novices continue to dolly until their camera
reaches the near or far limit of the dolly, they are
puzzled why they cannot “zoom” anymore.

28	 Dolly only moves the camera towards the center
of orbit.

63

Dolly Orbit Pan Walk

Di�erent types of Camera Control

Center of Orbit Movement

Top View

Front View

Camera Control

Stationary Stationary Parallel to Screen Normal to Screen

This whole confusion is inherited from the con-
vention of professional CAD environment control,
which is not natural for the novice to pick up.
One potential suggestion is to change the mouse
wheel function from dolly-in/out to walk-forward/
backward, such that when the mouse wheel is
scrolled, both the center of orbit and the cam-
era position moves perpendicular to the screen.
However, this will constrain the center of orbit
and camera position at a fixed distance, and this
means the user will not be able to orbit around
a point at different distance. It is therefore best
to bind the mouse wheel to a dolly function, and
activate the walk function only when the dolly
reaches its distance limit.

Dolly In

Mouse Wheel Scroll Forward

Walk Forward

Combined dolly and walk

Dolly Near Limit

Center of Orbit

User Action

Camera Control

Observing how professional CAD users frequently
pan the imaginary center of orbit such that it is in
the center of an object of interest, and use orbit

control to view the different sides of the object, I
experimented with an automatic panning and
zooming feature that liberate the novice users
from using panning at all. This feature automati-
cally moves the orbiting center to the center of an
object of interest. It also dollies the camera to a
distance such that the object of interest is maxi-
mized on the screen but without clipping.

Compute the bounding box of target object (using camera frame)

Compute the ideal
camera position
based on camera
�eld of view

Move camera to
to idea position;
Center of orbit to
object centroid

y/2
x/2

x

y

l

d

θ

l = x / 2 tan θ
where: θ = Field Of View /2 d = l + y / 2

Automatic panning and zooming algorithm

In the 5th iteration of the Web Player, this feature
is implemented and is triggered in the beginning
of each step. Users still have the control to pan, if
necessary. I have also animated the camera move-
ment to give the user a direction cue of where
the camera has moved. Note that this feature
preserves the viewing direction of the original
camera, which helps in preventing users from
disoriented.

A variation of this feature is to move the cam-
era and orbit target to an ideal, pre-determined
location which has the best angle to show the
assembly objects and motion. Agrawala (2003)
provides some examples of how this angle can
be computed automatically. Care should be taken
such that users are not disoriented by the shift of
camera orientation.

5.6	No mouse

As laptop computers, tablets and smart phone
become more popular, users of these portable
devices frequently abandon the computer mouse,
while professional CAD users still prefer a comput-
er mouse for precise pointing. Because the Web
Viewer can afford much less precise pointing,
and it should cater to users without a computer
mouse. The implementation of the camera con-
trol using OrbitControl.js in this thesis monitors
both mouse and touch gesture.

65

Mouse Trackpad TouchScreen

Pan Hold and Drag Left Mouse Hold Left Key and Drag on Track-
pad 3 Finger Drag

Rotate Hold and Drag Right Mouse Hold Right Key and Drag on
Trackpad 1 Finger Drag

Zoom Mouse Wheel / Hold and Drag
Mouse Wheel 2 Finger Zoom Gesture * 2 Finger Pinch

* Not supported by all computer trackpad driver

One problem I have observed is related to stu-
dents using the trackpad on their laptop. Because
most trackpads do not have a zooming wheel,
it is not possible for them to zoom. A potential

solution is shown below. Buttons or a slider bar
can be added on screen for zoom control, which
the user can easily click or drag either by mouse
or on touch screen.

Λ  Two examples of zoom control implemented as UI elements

5.7	Showing alignment

During the assembly of a machine, it is often nec-
essary to align edges or faces between different
parts. In the plotter experiment, students were
often not aware of alignment between parts. I
realized that it is often enough to point out the
alignment, by pointing to the pair of surfaces or
edges on two parts. Therefore I suggest that fu-

ture implementation of the software incorporate
a method to point out or highlight points, edges
or surfaces to show alignment.

This alignment action can be implemented as
a separate action in the graph, or embedded
as a standard feature within all existing actions.
Changes on the animation description file will
also be necessary to accommodate this.

Λ  This image shows two faces being highlighted to draw attention.

5.8	Hard-to-animate steps

While mechanical parts are usually rigid, there
are other applications where parts are flexible or
deformable. When students were installing the
rubber timing belt in the plotter, they need to
bend the belt around multiple pulleys and thread-
ing it through holes and slots.

This type of motion is very difficult to encode
using the keyframe interpolation method and

requires deformable mesh rigged with some
skeletal control points. It is difficult to define such
motions using the assembly graph, and also very
difficult to animate using the interpolation meth-
ods we developed.

It is more practical to include a recorded video
of the assembly process during these steps. This
feature is not implemented in this thesis but a fu-
ture version can easily incorporate this by adding
a special action node to the CAD plugin to handle
these steps and ask the designer for the URL of a

67

video. The Web Player should handle these nodes
and display the parts using fade-in animation, and
prompt the user to view the video.

5.9	Calibration and other non-

assembling step

Precise machines often require some calibration.
While the method of calibration varies substan-
tially across different types of machines, we can
analysis the general pattern of this assembly step.
For example, in the workshop29, the students
need to calibrate the angle between the X axis
and Y axis. They need to install a few temporary
parts into the machine for alignment30. The set
screw on one of the pulleys is loosened and then
the belt rotated until the temporary parts have no
gaps on each side (adjust and observe). Then the
set screw is tightened and the temporary parts
are removed.

Temporary parts are not difficult to animate from
the graphics point of view. However, the current

29	 In my workshop experiments, this calibration
action is demonstrated by myself.

30	 In other cases, a measuring device is temporarily
introduced.

assembly graph structure cannot represent the
actions to place a temporary part and then later
remove it. It was designed to model how parts
are connected. It is also difficult to show the
“adjust” movement that transforms an uncali-
brated assembly into a calibrated one, because
those movements are often very small. A different
visualization technique is required to inform the
user where to look and what to look for proper
alignment.

One solution is to learn from Ikea assembly in-
structions, which often include drawings of both
the “Good Alignment” and the “Bad Alignment”
state, with a big “Tick” or “Cross” to indicate which
is correct. We need to introduce a new type of
Action Node in the assembly graph to represent
an Adjustment Action, because the assembled
CAD model given to the CAD plugin is often in a
perfect state of alignment. This Action Node can
animate the parts to wiggle31 between two ex-
tremes of “Bad” state, to show the middle “Good”
state. Future work will be required to study more
examples of calibration actions and produce an

effective visual communication method.

31	 Wiggle motion can be a combination of transla-
tion and rotation. The designer needs to tell the software
how that adjustment motion is made, so that the Adjust-
ment node can compute two “Bad” extremes.

5.10	 How do people actually assemble a bolt stack

The bolt stack animation strategy described in
section 3.3 is based on a simple two-keyframe
animation which works well for animating a bolt
stack that contains only a few parts. However, for
a more complex bolt stack, the motion of multiple
parts coming together and (sometimes multiple)
bolts being inserted simultaneously are far from
the realistic limitation that human have only two
hands and ten fingers. The absence of the human
hand in all the animation requires the novice to
infer where the hands and fingers have to be
placed to hold the assembly.

Students assembling a complex bolt stack often
redesign the assembly sequence for each com-

ponent in the bolt stack based on what his hands
can hold. It is more convenient for a human to
assemble a bolt stack starting with components
closer to the bolt head, because the bolt can act
as a temporary alignment that holds the loose
parts together. The example below shows a
comparison between how the bolt stack was an-
imated using the 2-keyframe strategy described
in section 3.3, and a 4-keyframe strategy which
resembles more closely to how a human assem-
bles the stack. Note that the parts “immediately
next to the bolt head”, are first inserted into the
bolt, and that stack is then inserted into the static
parts. This animation strategy is more descriptive
but require more time to animate.

Graph 2 Keyframes 4 Keyframes

Bolting
2

30 1

Long Beam

Short BeamBolt

Step 0

Step 1

Bolt Nut

In the 2-keyframe strategy, when multiple bolts
are grouped under one Bolting Action, they are
animated together simultaneously. However,
in reality, the bolts must be installed one after
another; and sometimes, a particular order is
required. It is therefore useful to animate the bolts
one after another or with a small delay between
them. This can be combined with the previous

strategy that animates the first bolt, and then
subsequent bolts are animated one by one. The
diagram below shows the keyframes of multiple
bolts being animated with a delay between them.
Note that the installation sequence can be easily
understood.

69

Comparision of 2-keyframe strategy and multiple-bolt sequenced-installation strategy

In machine assembly, it is a common practice for professionals to install and hand-tighten all bolts in
one step, before fully tightening all of them. This operation cannot solely be described using animation
methods because hand-tightened bolts and fully tightened bolts look exactly the same. Future work
can look into designing a visual representation to differentiate between hand-tightened and fully tight-
ened bolt.

5.11	 Sub-assembly

For complex assemblies, it is often beneficial to
assemble a small sub-assembly and then later add
it to the main assembly. A smaller sub-assembly
at hand allows easier manoeuvring and reduces
the effort to correct a mistake. It also contributes
to a higher user satisfaction because of the final
assembly goal appears more achievable when
grouped into a few large steps. This also allows
multiple people to work on the same assembly
simultaneously by focusing on different sub-as-
semblies and then combining them.

One of the steps in the plotter animation shown
in the workshops was a simple implementation
of animating sub-assembly, using an Insert Action
to substitute a Bolting Action. However, due to

the current limitation of the implemented Action
Nodes, each Part Node can only be animated
once32. The following diagram explains the differ-
ence between the sub-assembly I animated under
this constraint, a normal linear assembly anima-
tion, and an ideal sub-assembly animation where
parts needs to be moved twice.

32	 Either one Insert Action, or one Bolting Action.

In the current implementation: One Action Node corre-
sponds to the one animation of the Part Node. Although
each Part Node can be connected to multiple Action Nodes,
current implementation limits that, once the Part is inserted
to the main assembly at a certain step, future connections to
any Action Node, will not further animate the Part. The Part
is considered static.

Sub-assembly animation within current limitation

main
assembly begin sub-assembly assembling sub-assembly attaching sub-assembly

to main assembly

A better sub-assembly animation

main
assembly assembling sub-assembly

begin sub-assembly
(opacity change to indicate

the shift of focus)

attaching sub-assembly
to main assembly

(moving the pieces second time)

71

By animating the screw in the final step, I was
trying to convey a sub-assembly operation, where
some parts are assembled in a group, and the
group is then assembled in the main assembly.
However, limited by only one single movement,
Part B was already in its final place during the first
step of sub-assembly and that was confusing to
most people. During the workshops, less than
half of the students understood that animation
was supposed to mean sub-assembly. They were
instead wondering how to hold Part A and B
temporarily while attaching Part C and D and later
realized that they do not actually have to hold
Part A and B.

One workaround of the single-move limitation is
to hide the main assembly during the sub-assem-
bly. However, care must be taken not to confuse
the user as “Why did the assembly suddenly
disappear?” A better solution is to support mul-
tiple-move, allowing the group of sub-assembly
parts to be assembled adjacent to the main
assembly, and then later attached to the main as-
sembly. From the Web Player’s animation point of
view, this can be easily implemented by introduc-
ing more keyframes in different steps. However,
the user interface need to be carefully designed
to explain “Put aside the main assembly”, and “We
are now working on a sub-assembly”. The most
challenging part is to create a proper represen-
tation of the sub-assembly with the assembly
graph, for example, allowing the designer to
group Part Nodes and Action Nodes together to
form a sub-assembly. Future work should also in-
vestigate the properties of sub-assemblies in the
graph, to allow automatic creation of this multi-
step animation.

6.1	 Baby steps

6.2	 Avoiding mistakes

6.3	 Beware of seemingly symmetrical parts

6.4	 Warn novices about irreversible mistakes

73

 6
Content preparation

guidelines

This chapters contains practical guidelines for how to prepare the assembly graph. This advice is de-
duced from observations of student’s performance during the workshops, as discussed in the previous
chapter. They can be studied by the machine designer as application guidelines, or implemented in the
CAD Plugin’s code base to automatically check the assembly graph.

6.1	Baby steps

The mental cycle of a novice when viewing each
instruction step in the Web Player goes like this:
(1) View the animation, understand the assembly
action and put this action in memory, (2) Put all
the part’s description and quantity into memory.
(3) Look for the part from the material pile. Re-
calling each part from memory. (4) Assemble the

parts, recalling the spatial orientation and move-
ment from memory.

The problem is that human short term memory
can hold only a few things for a short amount of
time. It is generally believed that this short term
memory or working memory can hold about 5-9
things, and last about 15 seconds (Miller 1956).
Also observed in the workshops, it is common for

students to search for the parts from the material
pile, and then check the screen again to refresh
their memory of the assembly movement again.

For the comfort of the novice, it is best to sepa-
rate an assembly into steps as small as possi-
ble, to reduce the mental load and reduce error.
As a general rule of thumb, do not contain more
than 5 unique parts per assembly step. It is also
possible for the Web Player to show the part list

and force the novice to pick the parts before
watching the animation. The diagram below
shows this strategy compared to the current
method. Notice that if we show the part list first
and force the user to pick materials before watch-
ing the animation, both amount and duration of
short term memory is reduced. Yet, this method
greatly reduces the enjoyment of the user be-
cause it substantially reduces “thinking”, and
thus should be used only if enjoyment and fun is
unimportant.

Show Part List Wait for User Con�rm

User Pick Material

User Pick Material

User Memorize
Material List

User Memorize
Movement

User Perform
Movement

User Perform
Movement

Normal Animate Cycle

Normal Animate Cycle

Mental Load - Strongly Enforced Part List

Mental Load - Typical Animation with Part List

Web Player Action

Novice's Action

Novice's Memory

Web Player Action

Novice's Action

Novice's Memory
User Memorize

Material List

User Memorize
Movement

It is also very common for novices to mix screws
of different length. In fact, any parts that look
similar (for example M4x14 bolt and M4x16 bolt)

should not be placed in the same step. Below are
two examples of similar looking screws being
placed in one step.

75

6.2	Avoiding mistakes

When novices make a mistake and did not realize
that immediately, it often takes a lot of time and
effort disassembling parts to correct the mis-
take. Because the Web Player is designed to be a
self-learning tool without any instructor’s super-
vision, the users relies on visually comparing their
ongoing assembly and the 3D model on screen to
verify their correctness.

It is hard for the designer to estimate which steps
are more prone to error, therefore a user study is
generally the best method to reveal these poten-
tial problems. The designer should first attempt to
fix these problems by redesigning the assembly
sequence, otherwise an information text should
be added to provide guidance. Below is an exam-
ple of an information bubble.

6.3	Beware of seemingly

symmetrical parts

One of the most common mistakes students
made is mis-orienting parts. Some parts may
be very similar in their symmetry but must be
installed in a specific orientation. Even if the 3D
model in the animation has correctly modelled
the small features of the asymmetry, users who
have overlooked the part as a symmetrical part,
will also tend to overlook the animated models.

Below is an example of an asymmetrical warning
flag that is implemented in the definition of parts
(in the part description file), to automatically raise
a warning symbol next to the part list.

6.4	Warn novices about irreversible mistakes

If a mistake is not reversible, then it should be carefully communicated to the user via a warning mes-
sage to warn the user of a potential damage.

Λ  Wrning message displayed in the Web Player

77

7.1	 New issues in instructions design

7.2	 Allowing variations in the assembly step

79

 7
Conclusion

The first part of this thesis proposed a new workflow to represent an assembly sequence and
assembly motion using a graph structure. This graph can be easily created and edited by designers
and then interpreted by computers. The software can then automatically create 3D animations that
can be presented to novices using a Web Player. I named this workflow Put It Together. This instruction
method has the following advantages over the traditional methods such as paper-based instructions,
sharing static CAD models or watching demonstration videos.

•	 Novices can see the animated motion of the parts from any angle.

•	 Novices can follow the animation and progress at their own pace.

•	 Designers can create and edit the animation easily.

The second part of the thesis demonstrated the Web Player being used in an educational envi-
ronment, showing mechanical assembly instructions to students. Discrepancies between expect-
ed and observed performance were recorded and analysed. New issues that arose in such settings
were documented, and suggestions for future improvements were made. The majority of students
considered the tool an improvement over traditional methods primarily due to its effective communi-
cation of movements.

7.1	 New issues in instructions

design

While the primary goal of the animation is to
allow the unambiguous communication of the
assembly process, we should be careful not to
treat novices as robots executing instructions.
Not only does this undermine the ability of the
human brain to perform tasks that are far superior
to what the animation can describe, it also takes
away the learning experience by which novices
process information with their braisn and make
new connections from their past experiences.

The Web Player is designed with utmost flexibility,
allowing users to customize the user interface to
suit their levels of competency. Helper features
should be able to provide more information to
novice users while not causing disturbances to
more advanced users. This flexibility is not pos-
sible from previous instruction methods, such as
illustrations or videos. The features implemented
in this thesis encompass this design approach,
which can be turned off easily by the user.

Communication between experts and novices is
always a difficult task. Experts care about pre-
cision and efficiency, speak in technical jargon,
and make incorrect assumptions. Novices vary in
experience, skills and intentions. They make mis-
takes, don’t understand technical limitations, and
don’t like to follow instructions. It is not easy to
create a communication conduit between experts
and novices while respecting both of their goals.

The Put It Together tool chain offers a new per-
spective in thinking about instruction design.

This is a result of understanding designers’ CAD
routines and their struggles with preparing tradi-
tional instructions. The clever use of the assembly
graph allows designers to easily express their
intent and focus on designing a good assembly
sequence. This software does the hard work in
converting this into an animation and presenting
it with an effortless interface so that novices can
focus on following the instructions.

7.2	Allowing variations in the

assembly step

The aim of this thesis is to communicate a set
of pre-defined steps that lead to one pre-deter-
mined outcome. The process does not demand
nor suggest much creativity. The creative design
process of the assembly ends as the designer fin-
ishes the assembly graph and exports the files.

However, this thesis still fits into a creative learn-
ing scenario. In the case where the goal is to
develop creativity in students, the animated
instructions in this thesis fit into the first stage
of learning where students learn by mimicking.
El-Zanfaly (2015) provides a context for how mim-
icking can fit into a complete learning model. For
example, an educational website can utilize the
animated instructions to guide students through
various assembly exercises within a larger curric-
ulum.

In the case where the users need to perform an
assembly task only once33, or the speed and accu-

33	 For example assembling flat pack furniture.

81

racy of the assembled object is prioritized34, the
Web Player can be developed to include various
features to enforce a very simplistic “do as I say”
instruction. It is effective in reducing misunder-
standing and avoiding mistakes.

34	 For example a mechanic performing a one-time
repair to an unfamiliar car.

8.1	 Screwdriver and the hand

8.2	 Rethinking the assembly graph for temporary objects

8.3	 Animating glue, paint, tape and other nonrigid bodies

8.4	 Integration with robotic sets

8.5	 Integration with discussion and feedback

8.6	 Embeddable Web Player

8.7	 Quantifiable results through web deployment

8.8	 Making grammars in robotic sets

8.9	 Assembling electronics, furniture, architecture and other things

8.10	Decoupling content and presentation

83

 8
Future Work

8.1	Screwdriver and the hand

As discussed in section 5.10, the presence of a hu-
man hand or the installation tool in the animation
can help novices better understand where to hold
the parts and how certain motions are performed.
It will be helpful in certain difficult situations such
as: (1) Assembly that requires many different tools.
(2) Assembly that requires tool change frequently.
(3) Assembly that requires positioning the tool or
hand in an unobvious position or moving it along
an unobvious path.

The current implementation of the tool chain
supports the use of recorded video clips to show
complex motion or complex hand coordination.
Further work is required to study an effective ani-

mation strategy for tools and hand and to validate
its effectiveness in the mentioned scenarios.

8.2	Rethinking the assembly

graph for temporary objects

As discussed in section 5.8 and 5.9, it is common
in mechanical assembly to use temporary guides
and props to assist assembly and alignment. It is
also useful to be able to show removal of packag-
ing materials in the animation.

The current set up of the assembly graph is a rep-
resentation of the connectivity relationship be-
tween parts, thus not accommodating temporary
objects and their removal from the scene after
they are installed. Further work needs to be done
to rethink assembly graphs to accommodate

temporary objects. This is challenging because
temporary objects are often not modelled in the
designer’s static CAD model. These temporary
objects may collide with a permanent object if
they are modelled in the same space. Future work
should seek a solution that can represent the
relationship while avoid changing the established
CAD workflow for the designers.

8.3	Animating glue, paint, tape

and other nonrigid bodies

There are other types of non-rigid body trans-
formations that are worth exploring. Non-rigid
bodies such as belts and cables are common in
machines; press fit fasteners, tapes and rope knots
are common in consumer products and furni-
ture. Animating these non-rigid bodies typically
require deformable mesh models rigged with a
skeleton. Thus is difficult for designers to model
and animate. Deformable mesh models are also
typically not supported in CAD software. Research
into an easier modelling interface for the designer
will be the first step in allowing non-rigid body
animation.

Other types of actions, such as applying glue and
paint, are hard to visualize because their 3D mod-
els change volume across time. Existing animation
techniques for animating liquid uses a simulation
based technique to generate a 3D model of the
liquid frame by frame. However, this is difficult to
model and slow to compute. Future work should
study how liquid materials are applied in an as-
sembly process, and how that can be abstracted
and represented in the assembly graph and the
animation description file.

8.4	Integration with robotic

sets

It is worth noting the close relationship between
instruction design with many kit-of-parts learning
sets offered in the market (such as Makeblock,
Vex Robotics and Lego). Most of these building
systems are open-ended systems where users can
explore different combinations. It is common for
these companies to produce paper-based in-
structions for their users to learn the basics of the
system before creating on their own.

The Put It Together tool chain can be used as a
drop-in replacement for paper-based instructions,
offering the users a better experience and reduc-
ing the effort for the designers to create them.
Most of these robotic kits have a finite set of parts
in their catalogue, which can be converted into a
CAD library as described in Section 3.1.

Users who are capable of creating CAD mod-
els can use the CAD Plugin to create their own
instructions and contribute their own designs.
Online instruction sharing platforms such as
Instructables.com have already proved popularity
among hobbyists to share their knowledge. The
Put It Together Web Player can be easily integrated
with an inline frame on HTML web pages on these
platforms to show animated instructions.

8.5	Integration with discussion

and feedback

The Web Player can also be integrated with online
discussion boards. Compared to other online

85

instructions that incorporate a discussion board
after the main content, Put It Together discussions
can happen separately at every step of the assem-
bly process, offering highly specific discussion for
users to talk about a particular step. These discus-
sions provide valuable feedback to the designers
to review and improve the instructions.

8.6	Embeddable Web Player

In order to broaden the application of the Web
Player, it is best to develop an embeddable player
that can be inserted into other web pages. For
example, an education web site may include an
assembly animation of only a few steps to illus-
trate a point, or a furniture company can show the
assembly sequence next to their product informa-
tion.

8.7	Quantifiable results

through web deployment

Online software can easily collect usage informa-
tion in real time. The Put It Together Web Player
has the potential to offer a large amount of user
studies to research on User Interface design and
Instruction Design. Previous methods have largely
relied on psychological analysis due to the high
cost involved in user studies.

Future work should determine which type of
user interaction can be quantified and what
potential conclusions can be drawn. For example,
time spent on each step can provide insight in
measuring complexity and improving time
estimation methods for mental and motor tasks.

Angles from which users view the 3D model can
prove assumptions about best viewing angles and
improve camera control algorithms. For example,
Blanz et al. (1999) have empirically shown that
people have a strong preference for viewing most
objects from above and at oblique angles, rather
than front or side views.

Experiments can be set up to vary UI elements,
colour, features, and controls to gather quantifi-
able data about effective communication.

8.8	Making grammars in robotic

sets

When Put It Together is used for sharing robotic
designs for robotic systems such as Makeblock,
Vex Robotics or Lego, it is possible to design com-
puter algorithms to analyse the user contributed
designs and understand how expert designers
assemble parts. Future work can explore the
automatic creation of assembly rules for creating
an assembly grammar. Formalized knowledge in
the form of making grammar will allow novices to
create novel machines. For example, (1) analysis of
how linear and rotary stage can be combined will
provide a useful set of case studies for learners.
(2) Analysis of different ways beams are joined
together can provide a set of geometrical and
functional grammars for joints.

Such work may also contribute to develop arti-
ficial intelligence systems that can design novel
machines automatically or provide assistance for
human designers in an interactive manner. For ex-
ample, Umetani et al. (2014) showed a data-driven

method to create an algorithm that can assist
human designers in designing paper airplanes.

8.9	Assembling electronics,

furniture, architecture and

other things

The Put It Together tool chain can be applied to
many other types of mechanical assembly. As
long as the assembly process and part relation-
ships fit within the limitations discussed before, it
can be converted easily into an animated anima-
tion. For example, Ikea flat-pack furniture often
requires end-users’ assembly. For instruction
sheets to be meaningful across language and
culture, they are often carefully designed with
illustrations and use pictograms instead of text.
Yet, it is still common to hear users’ complaints.
The Put It Together animation directly shows the
assembly action, reducing the dependency on
verbal explanation and avoiding miscommunica-
tion. It can be used as a drop-in replacement or
supplement to their current illustrations.

Electronics is another common object often
assembled by hobbyist. While digital files of
circuit diagrams and PCB drawings can be shared
easily online and personal milling machines are
highly automated for milling PCBs, the tasks of
assembling and soldering circuit boards are still
highly manual. Further research should study the
assembly process of electronics, such as cable
wiring, crimping, part insertion, lead trimming
and soldering.

In circuit board assembly, it is worth looking at
the work done in automatic pick and place ma-

chines and how they are programmed. It is also
interesting to develop CAD plugins for PCB design
software.

8.10	 Decoupling content and

presentation

The current workflow where: (1) the CAD Plugin
compiles the assembly graph into an animation
description file, (2) the user shares that file online,
(3) the Web Player interprets the JSON file, is a
remnant of the workflow of creating computer
animation. The CAD Plugin is an analog of anima-
tion software such as Autodesk Maya. The JSON
file is an analog of a compiled video file such as
.mov file, which can be uploaded and shared.

Future work should look into the elimination of
the assembly description JSON file entirely, so
that the compilation step can be avoided and
the description file is no longer needed. The Web
Player will interpret the assembly graph directly
to animate the CAD models. Although this meth-
od requires more computational power from the
viewer’s client browser, it has many other advan-
tages:

•	 The Web Player can read all the informa-
tion from the assembly graph and decides
how to animate the assembly. This provides
more flexibility to Web Player developers to
design the player without worrying about the
pre-compilation leaving out certain informa-
tion.

•	 It potentially allows the Web Player to cus-
tomize animation style, speed and keyframes,

87

to accommodate user’s competency and the
device’s hardware computing power.

•	 Less software maintenance is needed
when developing many plugins for different
CAD software. There will be no precomputa-
tion algorithms to maintain.

•	 The file being exchanged on the Internet
is the Assembly Graph. This systematic setup
encourages people to share the full source
code of the assembly. (The Assembly Graph is
similar to source code.)

9.1	 Electronics used for the workshops

9.2	 Software used for the workshops

9.3	 Workshops Curriculum (6 hours x 5 days)

9.4	 Workshop Curriculum (4 hours x 2 days)

9.5	 Sample Workshop Questionnaire (used on 2016-02-27)

9.6	 Animation Description JSON Schema

89

 9
Appendix

9.1	Electronics used for the

workshops

The controller of the plotter is Arduino Uno with
ATmega328p microcontroller. Mitchell Gu had

created an adapter board (shield) for relaying the
pins to various sockets. These sockets allows stu-
dents to securely connect motor drivers and limit
switches very quickly without tools. The schemat-
ic of the shield is shown below.

The stepper motors are driven by industrial step-
per driver running on TB67S109AFTG stepper driv-
er IC, it has reverse power polarity protection and
fool-proof sockets. It can drive motors up to 3.5A,
up to 32 microstepping. During the workshop, it
was set at 2.0A and 8 microstepping. I designed a
breakout board to receive data connection from a
6-pin ribbon cable via a shoulded header socket.

91

9.2	Software used for the workshops

CAD CAM software

Adobe Illustrator CS5 / CS6 / CC was suggested to
students as a tools for creating 2D vector draw-
ings. “Live Trace” was demonstrated to students
for converting raster images to vector drawings.

Rhinoceros 5.0 was used for creating 2D vector
drawings. Students are taught how to create and
edit 2D lines, arcs and splines.

Grasshopper 1.0 was used as a scripting platform
for Rhinoceros 5.0. I prepared a script for the
students to convert 2D drawings to G-Code. It

allows students to specify drawing sequence and
drawing speed.

Controller software

grbl v0.9j was loaded on Arduino Uno for con-
trolling synchronized motion of multiple motors.
Universal G-Code Sender v1.0.9 was used from
student’s laptop, to stream G-Code files to grbl
through USB connection.

9.3	Workshops Curriculum (6 hours x 5 days)

Day Content Duration
(min)

Day 1 Theory: Stepper / Control 30
Exercise: Run a stepper motor 15
Theory: Parts Terminology / Gear Ratio / Microstepping / Belt Pulley 30
Exercise: Basic Makeblock Use / Linear Stage 60
Discuss: Guide / Drive / Precision / Stiffness / Homing Cycle 60
Theory: Grbl settings / G-Code 60
Exercise: Homing the linear stage 30
Exercise: Design a 1 axis application 30

Day 2 Theory: Types of CNC machines / End Effector 60
Exercise: Assemble and test XY Plotter 240

Day 3 Guest Lecture: Background of drawing machines / pen plotters 90
Theory: Programming G-Code / Scripted Drawing 30
Exercise: Make drawings / Brainstorm about what drawing method / media 210

Day 4 / 5 Modify the machine or code some special drawings 240 ea.

9.4	Workshop Curriculum (4 hours x 2 days)

Day Content Duration
(min)

Day 1 Introduction to CNC technology, motor control and motion transmission 30
Introduction to Makeblock modular robotic system, fasteners and tools 10
Assemble XY Plotter 240

Day 2 Calibrate and test the plotter 20
Introduction to G-Code programming and drawing conversions 30
Program and make drawings with the plotter 210

93

9.5	Sample Workshop Questionnaire (used on 2016-02-27)

What is your Department / Course / School? _______________________________________

Check what you previously know

[]	 use a Screwdriver

[]	 use a Hex Key

[]	 use a Laser Cutter

[]	 use a Water Jet Cutter

[]	 program a CNC Mill

[]	 program a CNC Lathe

[]	 program a Robotic Arm

[]	 taken “How to make”

[]	 wired a Stepper Motors

[]	 wired a Hobby Servo Motors

[]	 program an Arduino (C++)

[]	 use a Solder Iron

[]	 designed and made PCB

[]	 program in Rhino Grasshopper

[]	 use Autodesk Inventor

[]	 use Rhinoceros

[]	 use Solidworks

[]	 draw illustration

[]	 paint painting

[]	 used Pen Plotter

There must be some difficulties you experienced during the assembly of the XY plotter. What instruc-
tions could have made that easier?

What are the instructions or information that you think is important but wasn’t communicated through
the animation?

How does the step-by-step animation help you

-1 0 1 2 3 4

Made things
worse

Made no differ-
ence

Somewhat
helpful

Very Helpful

Helped me understand the assembly sequence

Helped me identify parts

Helped me assemble faster

Helped me avoid mistakes

Helped me understand the functions of the parts

Helped me understand how parts fit together

The first half of the animation have captions, the second half does not. Do you think the presence of
the captions helped you assemble? If yes, in what way did it help? If no, do you think I can remove it?

Did you find the yellow border highlight helpful?
(Highlights parts in current step)

The first half of the animation have captions, the second half does not. Do you think the presence of
the captions helped you assemble? If yes, in what way did it help? If no, do you think I can remove it?

What could have been improved in today’s curriculum? (To make it more satisfying for you) Or just
anything else you want to say.

95

9.6	Animation Description JSON Schema

{
	 “$schema”: “http://json-schema.org/draft-04/schema#”,
	 “type”: “AnimationDescription”,
	 “description”: “An animation generated by Put It Together toolchain”,
	 “properties”: {
		 “animationTitle”: {
	 	 	 “type”: “string”
		 },
		 “animationAuthor”: {
	 	 	 “type”: “string”
		 },
		 “animationDate”: {
	 	 	 “type”: “string”
		 },
		 “blocks”: {
	 	 	 “description”: “Block Instances used by the animation”,
			 “type”: “array”,
			 “items”: {
				 “type”: “object”,
				 “properties”: {
					 “blockName”: {
	 	 	 	 	 	 “description”: “The unique identifier for a block”,
	 	 	 	 	 	 “type”: “string”
					 },
					 “objFileName”: {
	 	 	 	 	 	 “type”: “string”
					 },
					 “mtlFileName”: {
	 	 	 	 	 	 “type”: “string”
					 },
	 	 	 	 	 “mtlExist”: {
						 “type”: “boolean”
					 },
					 “metadata”: {
						 “description”: “Additional metadata in Key-Value Pair”,
						 “type”: “array”,
						 “items”: {
							 “description”: “the value”,
							 “type”: “object”,
							 “properties”: {
								 “key”: {
	 	 	 	 	 	 	 	 	 “type”: “string”,
									 “required”: true
								 },
								 “value”: {
	 	 	 	 	 	 	 	 	 “type”: “string”,
									 “required”: true
								 }
							 }
							
						 }
					 }
				 },
				 “required”: [
					 “guid”,
					 “blockName”,
					 “objFileName”,

	 	 	 	 	 “mtlExist”
]
			 }
		 },
		 “objects”: {
	 	 	 “description”: “Represent each instance of instantiated block”,
			 “type”: “array”,
			 “items”: {
				 “type”: “object”,
				 “properties”: {
					 “guid”: {
	 	 	 	 	 	 “description”: “The unique identifier for this instance”,
	 	 	 	 	 	 “type”: “string”
					 },
					 “blockName”: {
	 	 	 	 	 	 “description”: “The identifier pointing to a block”,
	 	 	 	 	 	 “type”: “string”
					 },
					 “objectName”: {
	 	 	 	 	 	 “type”: “string”
					 }
				 },
				 “required”: [
					 “guid”,
					 “blockName”,
					 “objectName”
]
			 }
		 },
	 	 “steps”: {
	 	 	 “description”: “Represent each animated step”,
			 “type”: “array”,
			 “items”: {
				 “type”: “object”,
				 “properties”: {
					 “id”: {
	 	 	 	 	 	 “description”: “Unique chronological number of this step”,
						 “type”: “integer”
					 },
					 “caption”: {
	 	 	 	 	 	 “description”: “Textural instruction of this step”,
	 	 	 	 	 	 “type”: “string”
					 },
					 “objects”: {
	 	 	 	 	 	 “description”: “List of animated objects in this step”,
						 “type”: “array”,
						 “items”: {
							 “type”: “object”,
							 “properties”: {
								 “objectID”: {
	 	 	 	 	 	 	 	 	 “description”: “The identifier pointing to an object”,
	 	 	 	 	 	 	 	 	 “type”: “string”
								 },
	 	 	 	 	 	 	 	 “startMatrix”: {
	 	 	 	 	 	 	 	 	 “description”: “4x4 affine transform matrix in starting position”,
									 “type”: “array”,
									 “items”: {
										 “type”: “number”
									 }
								 },

97

	 	 	 	 	 	 	 	 “endMatrix”: {
	 	 	 	 	 	 	 	 	 “description”: “4x4 affine transform matrix in ending position”,
									 “type”: “array”,
									 “items”: {
										 “type”: “number”
									 }
								 }
							 },
							 “required”: [
								 “objectID”,
	 	 	 	 	 	 	 	 “startMatrix”,
	 	 	 	 	 	 	 	 “endMatrix”
]
						 }
					 }
				 },
				 “required”: [
					 “id”,
					 “objects”
]
			 }
		 }
	 },
	 “required”: [
		 “animationTitle”,
		 “animationAuthor”,
		 “animationDate”,
		 “blocks”,
		 “objects”,
	 	 “steps”
]
}

99

 10
Reference

Agrawala, Maneesh and Phan, Doantam and
Heiser, Julie and Haymaker, John and Klingner,
Jeff and Hanrahan, Pat and Tversky, Barbara.
2003. “Designing Effective Step-By-Step As-
sembly Instructions.” SIGGRAPH 828-837.

Card, Drew, and Jason L. Mitchell. 2002. Non-Pho-
torealistic Rendering with Pixel and Vertex
Shaders. Wordware Publishing, Inc.

Cooper, Alan. 1999. The inmates are running the
asylum. Indianapolis, IN: Sams.

El-Zanfaly, Dina. 2015. “[I3] Imitation, Iteration and
Improvisation: Embodied interaction in mak-
ing and learning.” Special Issue: Computational
Making, Design Studies 79-109.

Erik, Dam B. and Martin, Koch and Martin, Lill-
holm. 1998. Quaternions, Interpolation and
Animation. Technical Report, Denmark: De-
partment of Computer Science, University of
Copenhagen.

Gooch, Amy, Bruce Gooch, Peter Shirley, and
Elaine Cohen. 1998. “A Non-Photorealistic
Lighting Model For Automatic Technical Illus-
tration.” Proceedings of SIGGRAPH 98 447-452.

Gooch, Bruce, and Amy Gooch. 2001. Non-pho-
torealistic rendering. Natick, Mass. : A K Peters,
c2001.

Gortler, Steven Jacob. 2012. Foundations of 3D
computer graphics. Cambridge: MIT Press.

Gröller, S. Bruckner and M.E. 2007. “Enhancing
Depth-Perception with Flexible Volumetric
Halos.” IEEE Trans. Visualization and Computer
Graphics, vol. 13, no. 6, (IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 13, no. 6,
2007.).

J. Kruger, J. Schneider and R. Westermann,. 2006.
“ClearView: An Interactive Context Preserving
Hotspot Visualization Technique.” IEEE Transac-
tions on Visualization and Computer Graphics,
vol. 12, no. 5 941-948.

Macaulay, David. 1973. Cathedral: The Story of Its
Construction.

Miller, George A. 1956. “The Magical Number
Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information.” The Psy-
chological Review, 63: 81-97.

Miller, Robert. 2011. “User Interface Design and
Implementation.” Massachusetts Institute of
Technology: MIT OpenCourseWare. http://ocw.
mit.edu.

Moyer, Ilan Ellison. 2013. “A Gestalt Framework for
Virtual Machine Control.” Master of Science in
Mechanical Engineering Thesis. MIT.

Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt,
Takeo Igarashi. 2014. “Pteromys: Interactive
Design and Optimization of Free-formed Free-
flight Model Airplanes.” ACM SIGGRAPH.

Volker Blanz, Michael J Tarr, Heinrich H. Bülthoff.
1999. “What object attributes determine ca-
nonical views?” Perception 28: 575-599.

101

