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Abstract

The common approach of designing a communication device is to maximize a well-
defined objective function, e.g., the channel capacity and the cut-off rate. We propose
easy-to-implement solutions for Gaussian channels that approximate the optimal re-
sults for these maximization problems. Three topics are addressed.

First, we consider the case where the channel output is quantized, and we find the
quantization thresholds that maximize the mutual information. The approximation
derived from the asymptotic solution has a negligible loss on the entire range of SNR
when 2-PAM modulation is used, and its quantization thresholds linearly depend on
the standard deviation of noise. We also derive a simple estimator of the relative
capacity loss due to quantization, based on the high-rate limit.

Then we consider the integer constraint on the decoding metric, and maximize
the mismatched channel capacity. We study the asymptotic solution of the optimal
metric assignment and show that the same approximation we derived in the matched
decoding case still holds for the mismatched decoder.

Finally, we consider the demodulation problem for 8PSK bit-interleaved coded
modulation(BICM). We derive the approximated optimal demodulation metrics that
maximize the general cut-off rate or the mismatched capacity using max-log approxi-
mation . The error rate performances of the two metrics’ assignments are compared,
based on Reed-Solomon-Viterbi(RSV) code, and the mismatched capacity metric
turns out to be better. The proposed approximation can be computed using an
efficient firmware algorithm, and improves the system performance of commercial
chips.
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Chapter 1

Introduction

A common goal of designing a communication system is to minimize the chances

of getting incorrect messages, given the transmission rate and other implementation

constraints. However, the actual error rate non-trivially depends on the configuration

of the entire signal chain and the channel condition; thus it cannot be used as the

cost metric when optimizing the design of a simple block.

Various objective functions have been proposed (e.g., the channel capacity and the

cut-off rate) to be used as alternative metrics in the optimization problem. Numerical

solutions were derived in many past studies based on these metrics.

The objective of this thesis is to solve the above optimization problem while taking

the implementation cost into account. We derive results that are simple to implement,

yet approximate well the optimal solutions. We then compare the error rate between

the solutions based on different metrics. We also show that the optimized solution

derived in this thesis can be implemented on commercial chips with an improvement

of system performance.

1.1 Overview of Digital Communication Systems

The basic structure of a modern digital communication system consists of two func-

tions: error correction and analog-digital conversion (see Fig.1-1).

The physical channel that delivers the information is commonly modeled as a

13



Figure 1-1: The basic structure of a digital communication system.

randomized analog function, which corrupts the transmitted signal and creates error.

Since the error correction codes operate in the digital domain, it is necessary to have

the analog-digital conversion.

The modulator maps strings of bits from the coded message to values in a fixed

set of constellation points; then the demodulator quantizes the channel output back

into discrete values.

The non-ideal conversion between analog and digital signals lowers the system

performance, so it is valuable to optimize these conversion blocks to achieve the best

performance given implementation constraints.

The transmitter path is usually fully characterized by the standard, but the same

restriction does not apply to the receiver. Hence, we want to optimize the design of

the receiver, and specifically the design of the demodulator.

1.2 Background

The optimal receiver, one that minimizes the error probability, should obey the maxi-

mum likelihood (ML) decision rule. This ideal condition is not practically achievable,

due to implementation constraints. These includes the upper limit of the quanti-

zation resolution, the integer constraints on the decoding matrices, and the use of

bit-interleaved coded modulation (BICM).

There have been extensive studies on the optimal receiver design, given the above

restrictions.
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When the only constraint is the number of quantization regions, the mutual infor-

mation is commonly used as the optimization metric. Numerical solutions of quan-

tization thresholds were derived for 2-PAM Gaussian channels [23]. Since deriving

a numerical solution in the general case is considered difficult, several sub-optimal

approaches have also been discussed [8, 10, 14, 19, 25].

When the other two constraints are also applied, the problem is commonly mod-

eled as a mismatched decoding problem. A lower bound of the highest achievable

rate for mismatched decoding is discussed in [11, 17], which is later referred to as the

generalized mutual information (GMI). The GMI bound is equal to the mismatched

capacity in some special cases[2, 3], and a generalized version of GMI was recently

proved to be a tight bound [27]. Therefore, the GMI is commonly used as the objective

function in optimization problems [1, 6].

The generalized cut-off rate (GCR) was introduced in [5] as the cut-off rate in the

mismatched case. It is another commonly used objective function. Investigations of

the GCR maximization problem under integer metrics constraint have been made in

[6, 24].

1.3 Thesis Layout

We study the optimal demodulator implementations and their approximations for

Gaussian channels, under different implementation constraints.

In chapter 2, we start with the simplest case, in which the decoder allows matched

decoding, and we find the optimal quantization that maximizes the mutual informa-

tion. In chapter 3, we add the integer decoding metric constraint into consideration

and generalize our results to the mismatched channel capacity. In chapter 4, we in-

vestigate the optimal decoding metrics assignment for 8PSK BICM systems. Then,

in chapter 5, we summarize our results and propose future work from this thesis.

15



1.4 Preliminaries

In this thesis, we make the following assumptions:

We consider the memoryless channels, with their inputs denoted by 𝑋 and their

outputs denoted by 𝑌 .

For each channel, the output is linear to the input with gain 𝑔, and there is an

additive Gaussian noise 𝑊 independent of the input. In other words,

𝑌 = 𝑔𝑋 +𝑊 (1.1)

Without loss of generality, we assume that the channels are always normalized so that

the inputs and the noises have zero mean and unit variance.

16



Chapter 2

Optimization Quantizer for

Matched Decoding

This chapter describes the approximation solutions of the capacity maximal quan-

tization problem. We first briefly review the algorithmic approach of obtaining the

numerical solution, then develop a novel approach of obtaining low complexity ap-

proximation schemes by observing the asymptotic solutions. We also provide a simple

estimator of the capacity loss due to quantization.

2.1 Problem Definition

Consider a scalar memoryless channel, with its transition density function charac-

terized by 𝑓𝑌 |𝑋 . We assume that the channel input takes its value from a fixed

constellation, with a given distribution 𝑃𝑋 .

The quantization process takes the channel output and converts it to an integer

from a finite set: {1, 2, ..., 𝑁} . We use 𝑍 to denote the quantized version of the

channel output (see Fig. 2-1).

In this case, 𝑁 represents the number of possible quantized outputs, and we

consider the upper limit of 𝑁 as a constraint in our optimization problem.

The optimal quantization refers to schemes 𝑍(𝑌 ) : R → {1, 2, ..., 𝑁} that max-

imize the highest achievable information rates on such channels, which is to maxi-

17



Figure 2-1: An example of the analog-digital conversion.

mize the mutual information of the equivalent channel 𝐼(𝑋;𝑍), based on Shannon’s

paper[26]:

𝐼(𝑋;𝑍) =
∑︁
𝑥,𝑧

𝑃𝑋,𝑍(𝑥, 𝑧) ln
𝑃𝑋|𝑍(𝑥|𝑧)
𝑃𝑋(𝑥)

𝑑𝑦. (2.1)

A necessary condition of the optimal solution can be derived in the following

way: Given an arbitrary mutated scheme 𝑍 ′(𝑌 ), which only differs from the optimal

solution 𝑍(𝑌 ) in an extremely small interval [𝑦0, 𝑦0 + 𝛿], we calculate the change of

the mutual information:

Δ𝐼(𝑋;𝑍) ≈
∑︁
𝑋,𝑍

𝑙𝑛(𝑃𝑋|𝑍)Δ𝑃𝑋,𝑍 (2.2)

≈
∑︁
𝑋

𝑃𝑋

∫︁ 𝑦0+𝛿

𝑦0

𝑓(𝑦|𝑥) ln 𝑃 (𝑥|𝑧′(𝑦))
𝑃 (𝑥|𝑧(𝑦))

𝑑𝑦. (2.3)

Since the optimal solution can never be improved, the choices of 𝑍 satisfy the

following equation:

𝑍(𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑍

{
∑︁
𝑋

𝑃𝑋𝑓(𝑦|𝑥) ln(𝑃𝑋|𝑍)}. (2.4)

18



This formula takes an arbitrary quantization scheme and calculates a revised

scheme with mutual information improvement. Thus the numerical solution can be

calculated by repeatedly executing this operation.

Although we are able to derive the optimal solution for any specific channel,

sometimes it is also desirable that the quantization scheme can be adjusted when

there are multiple possible channel conditions. For example, we may want to adjust

the quantization thresholds for variable SNR Gaussian channels.

The direct implementation of this adjustment requires an array of lookup tables,

which is complex. More practically, approximated solutions that analytically depend

on the channel parameters (e.g., SNR in the Gaussian channel case) are desired.

Techniques like curve-fitting have been used in solving this problem[23].

In this rest of this chapter, we aim at obtaining such simple schemes based on the

asymptotic solutions of the quantization thresholds.

2.2 An Upper Bound on Number of Intervals That

Map to the Same Quantized Output

To describe a quantization scheme, a common approach is to describe all the inter-

vals on the channel output space that are mapped to each quantized output. For

each quantized output 𝑧, we call the corresponding set of intervals the quantization

intervals of 𝑧, denoted by 𝑆(𝑧).

Since (2.4) does not directly rule out the possibility of an arbitrarily large number

of disjoint intervals being mapped to the same quantization output, we provide an

upper bound on that number, in order to simplify the implementation of numerical

search algorithms and our discussion.

Theorem 1. Given an optimally quantized K-PAM modulated Gaussian Channel,

with the number of possible quantized outputs to be 𝑁 , the number of disjoint intervals

that map to any quantized output is upper bounded by (𝑁 − 1)⌊𝐾−1
2

⌋+ 1.

The proof is contained in Appendix A.
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A useful corollary immediately follows for the special case of 2-PAM modulated

channel:

Corollary 2. For 2-PAM Gaussian Channel, the optimal quantization always assigns

single intervals to each quantized output.

Hence in the rest of this chapter, when 2-PAM is used, we can simply treat the

quantized output as a single interval on the real axis.

2.3 Asymptotic Solutions to the Optimal Quanti-

zation Threshold on 2-PAM Modulation with

3 Quantization Outputs

In this section, we consider 2-PAM modulated channel, with input constellation at

±1, and channel output quantized into 3 possible values.

We assume that the channel output is quantized into 3 symmetric regions :(−∞,−𝑏),

(−𝑏, 𝑏), (𝑏,+∞). We also assume that the channel input is distributed uniformly:

𝑃𝑋(−1) = 𝑃𝑋(1) =
1
2
.

We now apply (2.4), and obtain the following equation:

2𝑏𝑔 = ln(− ln(2𝑄(𝑏+ 𝑔)/(𝑄(𝑏+ 𝑔) +𝑄(𝑏− 𝑔)))

ln(2𝑄(𝑏− 𝑔)/(𝑄(𝑏+ 𝑔) +𝑄(𝑏− 𝑔))
). (2.5)

Here the 𝑄(𝑥) is the Gaussian 𝑄-function, defined as:

𝑄(𝑥) =

∫︁ +∞

𝑥

1√
2𝜋

𝑒−
𝑘2

2 𝑑𝑘. (2.6)

2.3.1 Large SNR Limit

We first consider the case where the SNR is large, i.e., 𝑔 ≫ 1.

In order to simplify equation (2.5), we quote a useful approximation, supported

20



by [7]:

𝑄(𝑥) ≈ 1√
2𝜋𝑥

𝑒−
𝑥2

2 for 𝑥 ≫ 1 (2.7)

Based on the above approximation, we can simplify the RHS of (2.5):

𝑅𝐻𝑆
𝑔→+∞

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ln( (𝑏+𝑔)2

2 ln 2
), 𝑏 < 𝑔

ln( 2𝑏𝑔
ln 2

), 𝑏 > 𝑔

(2.8)

(2.8) shows that for any fixed non-zero value of 𝑏, the RHS increases much slower

than the LHS of (2.5) when 𝑔 is large. This indicates lim𝑔→∞ 𝑏 = 0.

We use this fact and resolve (2.5), and the first significant term of 𝑏 is thus:

𝑏 ≈ ln(𝑔)

𝑔
(2.9)

2.3.2 Small SNR Limit

Now we consider the case where the SNR is small, i.e., 𝑔 → 0+.

In order to solve for the optimal boundary, we treat 𝑔 as a perturbation, and

observe the Taylor series of the quantization boundary 𝑏:

𝑏 = 𝑏0 + 𝑏1𝑔
2 + 𝑏2𝑔

4... (2.10)

Then we can perform Taylor expansion on (2.5) to obtain these coefficients.

We define soft bit 𝛼 for convenience:

𝛼 =
𝑄(𝑏− 𝑔)−𝑄(𝑏+ 𝑔)

𝑄(𝑏− 𝑔) +𝑄(𝑏+ 𝑔)
(2.11)

We simplify (2.5) to reduce the complexity of the expansion:

cosh(𝑏𝑔) ln(1− 𝛼2) + sinh(𝑏𝑔) ln(
1 + 𝛼

1− 𝛼
) = 0 (2.12)
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The first-order expansion of (2.11)(2.12) indicates1:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝛼2 + 2𝛼𝑏0𝑔 = 0

𝛼 = −𝑔𝑄′(𝑏0)
𝑄(𝑏0)

(2.13)

Equations (2.13) can be solved numerically, and the solution is 𝑏0 ≈ 0.6120.

We also derive the second-order term, in appendix B, which can be expressed as:

𝑏1 = −1

6
𝑏0 (2.14)

Theoretically, we can continue this process and solve for the solution up to an

arbitrary order of significance; however, the complexity of the calculation increases

dramatically, and the solutions become less valuable due to overfitting, which will be

discussed later.

2.3.3 Comparison with Numerical Results

So far we have derived the asymptotic solutions of the optimal quantization threshold,

summarized below:

Large SNR case: 𝑏𝐿 = ln(𝑔)
𝑔

Small SNR case (up to 1st order): 𝑏𝑆 ≈ 0.6120

Small SNR case (up to 2nd order): 𝑏𝑆2 ≈ 0.6120(1− 𝑔2

6
)

We extend these solutions to the entire range of the SNR as the approximated

schemes. To eliminate the 𝑏 < 0 case, we replace negative boundary values with 0.

Now we compare these approximations with the numerical solution.

We plot the quantization thresholds with respect to the SNR in Fig. 2-2. We also

calculate the relative difference of the capacity compared with the numerical solution

and plot the curves in Fig. 2-3.

We can see that all three approximations converge to the numerical result in their

corresponding region, for both quantization threshold and channel capacity, as we

1𝑄′(𝑥) represents 𝑑𝑄(𝑥)
𝑑𝑥 .
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Figure 2-2: The quantization threshold against SNR.

Figure 2-3: The relative loss of capacity against SNR.

23



expected.

More importantly, the 1st-order small SNR approximation provides minimal ca-

pacity loss on the entire range of SNR. The intuition is that the mutual information

at large SNR is not sensitive to the quantization threshold; so, as long as a scheme

satisfies the small SNR approximation, and does not overfit in the large SNR region,

we can expect the loss to be reasonably small.

Thus we can also expect that the 1st-order small SNR approximation provides

minimal loss for arbitrary quantization constraints when using 2-PAM modulation.

For simplicity, in the rest of the paper we call this approximation the small SNR

approximation.

2.4 A Generalized Approach to Calculate the Small

SNR Approximation

In this section, we generalize the small SNR approximation to the case that the

number of quantization intervals can be arbitrarily large.

Instead of solving the optimality equations, we can first derive the 1st-order ap-

proximation of capacity in the small SNR case, and then generate an effective cost

function based on the approximation.

The small SNR limit of the channel capacity has been discussed in [12, 22] for

both scalar channels and vector channels. For a scalar channel with transition density

function 𝑓(𝑦|𝑥), the approximation can be conveniently represented using the Fisher

information:

𝐼(𝑋;𝑌 ) ≈ 𝑉 𝑎𝑟(𝑋)

2
ℐ(0) (2.15)

where ℐ(𝑥) is defined as:

ℐ(𝑥) =
∫︁

1

𝑓(𝑦|𝑥)
(
𝜕𝑓(𝑦|𝑥)

𝜕𝑥
)2𝑑𝑦. (2.16)
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For simplicity, we make the following substitution:

𝐿(𝑦|𝑥) = 𝜕 ln 𝑓(𝑦|𝑥)
𝜕𝑥

. (2.17)

Then the Fisher information can be conveniently represented as:

ℐ(𝑥) = E𝑌 |𝑋(𝐿(𝑦|𝑥)2). (2.18)

We can easily generalize the equation for the quantized channel:

ℐ𝑞𝑢𝑎𝑛𝑡(𝑥) = E𝑍|𝑋(E𝑌 |𝑍,𝑋(𝐿(𝑦|𝑥))2). (2.19)

Then we consider using the relative loss of the capacity 𝑅, defined below, as the

cost function.

𝑅 = 1− 𝐼(𝑋;𝑍)

𝐼(𝑋;𝑌 )
(2.20)

With (2.15)(2.18)(2.19), the relative loss of the capacity in the small SNR can be

represented as:

𝑅 = 1− ℐ𝑞𝑢𝑎𝑛𝑡(0)

ℐ(0)
(2.21)

=
E𝑍|𝑋(Var𝑌 |𝑍,𝑋(𝐿(𝑦|0)))

E𝑌 |𝑋(𝐿(𝑦|0)2)
(2.22)

Now we look at the special case of Gaussian channels. We can easily derive that

𝐿(𝑦|0) = 𝑔𝑦. Then our cost function becomes:

𝑅 = E𝑍(Var𝑌 |𝑍(𝑦)) (2.23)

Hence the problem is completely reduced to an ordinary MSE quantization prob-

lem on a unit Gaussian variable.

A list of solutions, represented using the quantization thresholds, are included in
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Table 2.1, The results agree with those given in [16].

Table 2.1: The small SNR optimal quantization thresholds for matched decoding
Quantization Regions Locations of Positive Quantized Boundaries

3 0.6120

4 0.9816

5 0.3823, 1.2443

6 0.6589, 1.4468

7 0.2803, 0.8744, 1.6107

8 0.5005, 1.0499, 1.7479

9 0.2218, 0.6812, 1.1976, 1.8655

10 0.4047, 0.8338, 1.3246, 1.9682

11 0.1837, 0.5599, 0.9656, 1.4357, 2.0592

12 0.3401, 0.6943, 1.0812, 1.5344, 2.1407

Note that in the general case when the signals are not normalized, additional gain

should be applied to these results. So the actual thresholds based on the small SNR

approximation are proportional to the standard deviation of noise.

Now we compare the performance of our proposed solution with those of the

numerical solution and the two traditional MSE quantization schemes introduced in

[25].

We plot the relative loss of capacity with respect to the SNR in Fig. 2-4, in

the case where the channel output is quantized into 5 possible values. We observe

that the small SNR approximation has strictly better performance than the MSE

quantizations.

We also make a plot that compares the relative capacity loss of the small SNR ap-

proximation and the optimal solution with different numbers of quantization regions

(Fig. 2-5). The plot shows that our approximation has a stable performance under

different quantization constraints.

2.5 Asymptotic Loss of Capacity in High Rate Limit

In this section we study the trade-off relationship between the capacity loss and the

resolution constraint in the high rate limit, i.e., 𝑁 → +∞.
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Figure 2-4: Comparison between different sub-optimal schemes.

Figure 2-5: Performance of small SNR approximation under different quantization
constraints.

27



We make the following assumptions: 1. Each quantized output maps to a single

interval. 2. 𝑁 is large enough so that, within a single interval, the conditional

distribution 𝑃𝑋|𝑌 and its first order derivative
𝑑𝑃𝑋|𝑌

𝑑𝑦
are nearly constant.

We first calculate the capacity loss due to quantization, denoted by Δ𝐶:

Δ𝐶 =

∫︁ ∑︁
𝑥

−𝑓𝑌 𝑃𝑋|𝑌 𝑙𝑛
𝑃𝑋|𝑍

𝑃𝑋|𝑌
𝑑𝑦. (2.24)

Given that 𝑃𝑋|𝑌 is almost unchanged within each interval, we have 𝑃𝑋|𝑍 ≈ 𝑃𝑋|𝑌 .

Hence the following approximation holds:

𝑙𝑛
𝑃𝑋|𝑍

𝑃𝑋|𝑌
≈

𝑃𝑋|𝑍 − 𝑃𝑋|𝑌

𝑃𝑋|𝑌
−

(𝑃𝑋|𝑍 − 𝑃𝑋|𝑌 )
2

2𝑃 2
𝑋|𝑌

(2.25)

Then the capacity loss contributed from a single interval can be approximated as:

Δ𝐶𝑧 ≈
∑︁
𝑥

𝑃𝑍

Var(𝑃𝑋|𝑌 ;𝑍)

2𝑃𝑋|𝑍
(2.26)

Again, given the linear approximation of 𝑃𝑋|𝑌 for each single interval, the capacity

loss can be represented as a weighted distortion function about 𝑌 :

Δ𝐶 =

∫︁ ∑︁
𝑥

𝑓𝑌
2𝑃𝑋|𝑌

(
𝑑𝑃𝑋|𝑌

𝑑𝑦
)2Var(𝑌 ;𝑍)𝑑𝑦 (2.27)

We slightly generalize the minimum distortion formula in the unweighted case,

which was stated as equation (13) in [20], and obtain the minimum weighted distor-

tion:

Δ𝐶𝑚𝑖𝑛 =
1

12𝑁2
(

∫︁
3

√︃∑︁
𝑥

𝑓𝑌
2𝑃𝑋|𝑌

(
𝑑𝑃𝑋|𝑌

𝑑𝑦
)2𝑑𝑦)3. (2.28)

The above equation can be simplified under the case of normalized Gaussian chan-

nels:
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Δ𝐶𝑚𝑖𝑛 =
𝑔2

24𝑁2
(

∫︁
3
√︀

𝑓𝑌Var(𝑋;𝑌 )𝑑𝑦)3 (2.29)

Now we can compare the asymptotic solution with the numerical result in the case

of 2-PAM modulation. We plot the relative loss 𝑅, defined in (2.20), for both results,

in Fig. 2-6.

Figure 2-6: The relative capacity loss against 𝑁 .

The numerical solutions quickly converge to the asymptotic curves; thus the

“inverse-square law” can be used as a low-cost estimation of the capacity loss.

Finally, the approximated relative loss in the small SNR case can be easily calcu-

lated and expressed:

lim
𝑔→0

𝑅 ≈ 1

𝑁2
lim
𝑔→0

𝑔2

24
(
∫︀

3
√
𝑓𝑌 𝑑𝑦)

3

𝑔2

2

(2.30)

≈
√
3𝜋

2

1

𝑁2
(2.31)
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We conjecture that the relative loss of capacity monotonically decreases with re-

spect to SNR, based on the observation from Fig. 2-6. If the conjecture is true, then

the above formula gives an extremely simple estimator of the relative capacity loss in

the worst case condition.

2.6 Summary

We examined the optimal quantization problem for a scalar Gaussian channel. Three

main results are derived in this chapter:

1. We proved that the optimal quantization regions for K-PAM Gaussian channels

consist of a finite union of intervals. Especially in the 2-PAM case, the region

that corresponds to any quantized output is proved to be a single interval. This

result corresponds to the single-interval assumption in the MSE quantization

case, and simplifies the discussion of the capacity maximization quantization

problem.

2. We showed that a linear approximation of the optimal quantization thresholds

can be derived based on the asymptotic solutions in the small SNR case. The

scheme gives no more that 0.6% of relative capacity loss for 2-PAM modulated

Gaussian channels. This quantization scheme can be implemented with low

complexity (e.g. a linear analog gain control) when the receiver measures the

channel condition and adapts its quantization strategy correspondingly.

3. We derived a simple estimator of the relative capacity loss, based on the asymp-

totic solution in the high rate limit. For 2-PAM modulation, the worst case loss

is
√
3𝜋/2𝑁2, if the conjecture that the relative loss of the capacity is maxi-

mized at small SNR is true. This estimator gives a straightforward trade-off

relationship between the system performance and the quantizer resolution. It

also simplifies the system design by simplifying the process of picking the proper

quantizer resolution.
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Chapter 3

Optimal Quantizer for Mismatched

Decoding with 2-PAM Modulation

This chapter generalizes the asymptotic approximations we derived in chapter 2 to the

case of mismatched decoding. We derive the asymptotic solutions of the quantization

thresholds, and study the trade-off between the loss of the mismatched capacity and

the number of bits representing the decoding metrics.

3.1 Problem Overview

We consider a discrete memoryless channel (DMC), with input alphabet 𝒳 , output

alphabet 𝒴 , and transition probabilities 𝑃𝑌 |𝑋 .

Given a transmission of a coded message with length 𝑛, the receiver aims to

reconstruct the transmitted string 𝑋𝑛, which is known to be selected from a given

codebook ℳ, based on the channel output 𝑌 𝑛.

We suppose the receiver is equipped with a set of symbol-to-symbol decoding

metrics 𝑞(𝑥, 𝑦), such that the receiver makes the decision by picking the string that

maximizes the sum of the metrics.
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�̂�𝑛(𝑌 𝑛) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑋𝑛∈ℳ

{
𝑛∑︁

𝑖=1

𝑞(𝑥𝑖, 𝑦𝑖)} (3.1)

The maximum likelihood decision can be implemented by making the decoding

metrics satisfy the following condition.

𝑞(𝑥, 𝑦) = 𝐴 ln 𝑓𝑌 |𝑋(𝑦|𝑥) +𝐵(𝑦) (3.2)

where 𝐴 is a positive constant and 𝐵(𝑦) is an arbitrary function.

However, in many cases, the decoding metrics in a practical system can only take

integers from a finite set. This prevents the optimal solution from being implemented.

The corresponding maximum achievable rate is referred to as the mismatched capacity

𝐶 ′.

In this chapter, we restrict our discussion to 2-PAM Gaussian channels and study

the quantization problem under this scenario.

We denote the quantized output alphabet as 𝒵, each corresponding to a possible

pair of decoding metrics 𝑞(𝑥, 𝑧). For convenience, we define the relative metric 𝑞(𝑧)

as follows.

𝑞(𝑧) = 𝑞(1, 𝑧)− 𝑞(−1, 𝑧) (3.3)

We restrict our quantizer to be symmetric, that is

𝑞(𝑍(𝑦)) = −𝑞(𝑍(−𝑦)) (3.4)

We want to pick the quantization function 𝑍(𝑦) : 𝒴 → 𝒵 that maximizes the mis-

matched capacity.
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3.2 Background and Numerical Optimization

The mismatched capacity 𝐶 ′ for a binary input discrete output channel 𝑃𝑍|𝑋 can be

represented using the generalized mutual information 𝐼𝐺𝑀𝐼(𝑍;𝑋) [3].

𝐶 ′ = max
𝑃𝑋

𝐼𝐺𝑀𝐼(𝑋;𝑍) (3.5)

where the generalized mutual information 𝐼𝐺𝑀𝐼(𝑋;𝑍) is defined as:

𝐼𝐺𝑀𝐼(𝑋;𝑍) = min
𝑃 ′
𝑋|𝑍

{𝐻(𝑋)−𝐻𝑃 ′(𝑋|𝑍)} (3.6)

s.t.
∑︁
𝑧

𝑃𝑍(𝑧)𝑃
′
𝑋,𝑍(𝑥, 𝑧) = 𝑃𝑋(𝑥) (3.7)

∑︁
𝑥,𝑧

𝑃𝑍(𝑧)𝑃
′
𝑋,𝑍(𝑥, 𝑧)𝑞(𝑥, 𝑧) ≥ E[𝑞(𝑥, 𝑧)] (3.8)

Because it is non-trivial to maximize (3.5) directly, an equivalent expression is com-

monly used for optimization problems.

𝐶 ′ = max
𝑃𝑋 ,𝑓𝑋 ,𝛼≥0

𝐻(𝑋) +
∑︁
𝑥,𝑧

𝑃𝑋,𝑍(𝑥, 𝑧) ln(
𝑓𝑥𝑒

𝛼𝑞(𝑥,𝑧)∑︀
𝑥′ 𝑓𝑥′𝑒𝛼𝑞(𝑥′,𝑧)

) (3.9)

For binary input symmetric channels, the capacity is optimized when 𝑃𝑋 is uniform

and 𝑓𝑋 is a constant vector [6].

𝐶 ′
𝑆𝑦𝑚 = log 2 + max

𝛼≥0

∑︁
𝑥,𝑧

𝑃𝑋,𝑍(𝑥, 𝑧) ln(
𝑒𝛼𝑞(𝑥,𝑧)∑︀
𝑥′ 𝑒𝛼𝑞(𝑥

′,𝑧)
) (3.10)

Then, for the optimized quantization scheme, ∃𝛼 ≥ 0 such that the assignment of the

decoding metrics satisfies

𝑍(𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑧

𝑃𝑌 |𝑋(𝑦|1) ln(
1

1 + 𝑒−𝛼𝑞(𝑧)
) + 𝑃𝑌 |𝑋(𝑦| − 1) ln(

1

1 + 𝑒𝛼𝑞(𝑧)
) (3.11)
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From (3.11), given any two quantized outputs 𝑧1,𝑧2, the boundary of their quantiza-

tion regions (if it exists), denoted by 𝑏, satisfies

𝑃𝑌 |𝑋(𝑏|1)
𝑃𝑌 |𝑋(𝑏| − 1)

= − ln(
1 + 𝑒𝛼𝑞(𝑧1)

1 + 𝑒𝛼𝑞(𝑧2)
)/ ln(

1 + 𝑒−𝛼𝑞(𝑧1)

1 + 𝑒−𝛼𝑞(𝑧2)
) (3.12)

So far, we have derived that the optimal quantization regions only depends on the

scalar parameter 𝛼. The derivative of the maximum mismatched capacity as a func-

tion of 𝛼 can be easily calculated.

𝑑𝐶 ′(𝛼)

𝑑𝛼
=

𝜕𝐶 ′(𝛼,𝑍(·))
𝜕𝛼

=
∑︁
𝑧

𝑃𝑍|𝑋(𝑧|1)𝑞(𝑧)
1 + 𝑒𝛼𝑞(𝑧)

(3.13)

Then the numerical solution of the optimal quantization scheme can be calculated by

any 1D peak-finding algorithm.

3.3 Optimal Quantization for 2-PAMGaussian Chan-

nels

We start by formally labeling the quantized outputs based on their relative metrics,

and also labeling their quantization thresholds.

Practically, a quantized output with relative metric of 0 gives no extra cost in

the size of the decoder implementation, because no action is required in the decoding

process. Hence, we assume there always exists a zero metric output in our discussion,

and we label this quantized output as 0.

For all the quantized outputs with a positive relative metric, we sort their metrics

in an increasing order and label them from 1 to 𝐾 (𝐾 represents the number of such

quantized outputs). Based on the symmetric quantizer assumption, we label their

negative counterparts from −1 to −𝐾.

When a Gaussian channel is used, it is easy to verify that the relative decoding

metric 𝑞(𝑍(𝑦)) is an increasing function of the channel output 𝑦 based on (3.12),
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Figure 3-1: An example of a mismatched quantization.

given that the quantization is optimal.

So the optimal quantization matches the quantized outputs to single intervals,

and we can conveniently label the quantization thresholds using ±𝑏0,±𝑏1, ...,±𝑏𝐾−1

(see Fig. 3-1).

The quantization intervals in this case can be expressed as

𝑏𝑖 =
1

2𝑔
ln(− ln(

1 + 𝑒𝛼𝑞(𝑖)

1 + 𝑒𝛼𝑞(𝑖+1)
)/ ln(

1 + 𝑒−𝛼𝑞(𝑖)

1 + 𝑒−𝛼𝑞(𝑖+1)
)) (3.14)

where 𝛼 is the quantization parameter introduced in section 3.2.

3.4 Asymptotic solutions

In this section, we solve for the optimal quantization thresholds when the SNR is

small or large for arbitrary decoding metrics. The solutions are fully determined by

(3.13) and (3.14).

3.4.1 Large SNR Case

In the large SNR case, 𝑔 → +∞. We expect the optimal quantization parameter 𝛼

to grow to +∞ so that the thresholds derived from (3.14) provide non-zero solutions,

which give a better capacity compared with a hard quantizer.

In this case, the thresholds can be approximated as

𝑏𝑖 =
𝛼𝑞𝑖
2𝑔

+ 𝑜(1) (3.15)
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Then, by applying 𝑑𝐶′(𝛼)
𝑑𝛼

= 0 to (3.13), we can derive the optimal quantization

scheme for large SNR (for brevity, we put the derivation in Appendix C).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛼 = 𝑔2

2𝑞𝐾
+𝑂(ln 𝑔)

𝑏𝑖 = 𝑔𝑞𝑖
4𝑞𝐾

+ 𝑜(1)

(3.16)

3.4.2 Small SNR Case

In the small SNR case, 𝑔 → 0. We expect that the optimal quantization parameter

𝛼 decays to 0.

The optimal quantization thresholds can be approximated as

𝑏𝑖 =
𝛼(𝑞(𝑖) + 𝑞(𝑖+ 1))

4𝑔
(3.17)

We can also expand (3.13) about 𝑔 and 𝛼.

𝑑𝐶 ′(𝛼)

𝑑𝛼
= E𝑌 (

𝐿(𝑦|0)𝑞(𝑧)
2

− 𝛼𝑞(𝑧)2

4
) (3.18)

where function 𝐿(𝑦|𝑥) is defined as

𝐿(𝑦|𝑥) = 𝜕 ln 𝑓(𝑦|𝑥)
𝜕𝑥

(3.19)

When a Gaussian channel is used, 𝐿(𝑦|0) = 𝑔𝑦, the optimal quantization param-

eter satisfies the following equation.

𝛼

𝑔
=

𝐸𝑌 (2𝑞(𝑧)𝑦)

𝐸𝑌 (𝑞(𝑧)2)
(3.20)

Essentially, the solution of the optimal quantization thresholds defined by (3.17)

and (3.20) is independent of the channel gain 𝑔. Thus we can calculate the thresholds

numerically.

Interestingly, the optimal quantization is uniform, when integer decoding metrics
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(i.e., 𝑞(𝑖) = 𝑖) are used. Later in this chapter, we will see that the small SNR ap-

proximation gives negligible loss on the entire range of SNR, similar to the matched

decoding quantization case. This explains the fact that uniform quantizers, which

are implemented on most digital communication devices, do not give significant per-

formance loss compared to non-uniform quantizers, even if the optimal solution is in

general non-uniform.

In Table 3.1, we list the optimal quantization thresholds for integer metric quan-

tizers with different quantization region numbers (defined as 𝑁 = 2𝐾 + 1). For

brevity, we include only the largest quantization threshold 𝑏𝐾−1.

Table 3.1: The small SNR optimal quantization thresholds for mismatched decoding
Quantization Region Number 3 5 7 9 11 13

Largest Quantization Threshold 0.6120 1.2645 1.6269 1.8683 2.0460 2.1846

Quantization Regions 15 17 19 21 23 25

Largest Quantization Threshold 2.2975 2.3922 2.4735 2.5445 2.6074 2.6638

Quantization Regions 27 29 31 33 35 37

Largest Quantization Threshold 2.7148 2.7614 2.8042 2.8437 2.8805 2.9148

Remarkably, the optimal quantization thresholds for a 3-region quantizer have the

same values as the solution we derived in the matched decoding case. This outcome

is expected because at 3-region quantization, any symmetric decoding metrics are

equivalent to matched metrics.

3.5 Comparing with Numerical Solutions

We compare the approximation schemes we derived from the asymptotic solutions to

the numerical result, in the case of a 5-region quantizer with integer decoding metrics.

In Fig. 3-2, we plot the quantization thresholds against the SNR, and in Fig. 3-3,

the relative loss of the mismatched capacity due to the asymptotic approximation.

Similarly to the matched quantization case, we observe that all the approxima-

tions converge to the numerical result in their corresponding region. In addition, the

capacity loss produced from the small SNR approximation is extremely small, so that
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Figure 3-2: The mismatched quantization thresholds against SNR.

Figure 3-3: The relative loss of mismatched capacity against SNR.

this approximated scheme is almost strictly better than the large SNR approximation,

even in the large SNR case.

We also compare the relative capacity loss from the small SNR approximation
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and the optimal solution with different quantization constraints. In Fig. 3-4, we plot

the capacity loss due to quantization for integer metric decoding when the number of

quantization regions equals 3, 5, or 7. We can see that the small SNR approximation

has stable performance.

Figure 3-4: Performance of small SNR approximation under different quantization
constraints.

3.6 Trade-off between Capacity Loss and Quanti-

zation Resolution

Finding the trade-off relationship between the capacity loss and the quantization

resolution in the mismatched case is also a practically useful topic. Detailed analysis

shows that the relative loss of mismatched capacity for integer metric decoding grows

at the speed of ln𝑁
𝑁2 (see Appendix D). However, this high-rate approximation is not a

good estimator of the capacity loss, since the convergence to this asymptotic solution

requires
√
ln𝑁 ≫ 1, which in practice is not true.
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We also plot the trade-off curves for the matched and mismatched decoding case

based on the numerical solutions (see Fig. 3-5). We can observe that the additional

capacity loss due to the mismatched decoding is increasingly higher, which can be

explained by the additional ln𝑁 factor in the high rate approximation formula.

Figure 3-5: The trade-off between capacity loss and quantization resolution for
matched and mismatched decoding.

3.7 Summary

We studied the optimal quantization problem for mismatched decoding in this chap-

ter.

We showed that the optimal quantization thresholds using small SNR approxima-

tion are still linear functions of the standard deviation of the noise, and they still give

negligible loss on the mismatched capacity.

We also showed that the relative loss of the mismatched capacity decays more

slowly when we increase the resolution of the quantizer, compared with the matched

decoding case. However, the asymptotic solution of the capacity loss no longer well
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approximates the numerical result; thus, finding a simple form estimator for the

capacity loss is more difficult.
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Chapter 4

Mismatched Decoding for 8PSK

Modulation

In this chapter, we explore the mismatched decoding problem in the case of 8PSK

bit interleaved modulation.

We first calculate the optimal decoding metrics assignment that maximizes the

generalized mutual information or the general cutoff rate, and compare their error-

rate performances. Then we introduce a low-complexity LLR decomposition algo-

rithm for the 8PSK modulation, and show that the proposed demodulation scheme

implemented on a commercial chip improves its performance.

4.1 Problem Definition

The bit interleaved coded modulation, invented by Zehavi [28], describes a scenario

where a pair of bit interleavers are added to the signal chain of communication devices,

so that each received symbol has to be decomposed to several bit metrics, and the

decoder makes the decision correspondingly.

Assigning the bit metrics to minimize the probability of getting an incorrect mes-

sage for modulation types like 8PSK or 4PAM is non-trivial, because the a posteriori

probability distributions of the bits are not independent given the received symbols.

Alternatively, a common approach to solving this problem is to consider it as a
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mismatched decoding scheme, and to maximize objective functions like the GMI or

the GCR [13, 15, 18].

Here, we focus on the case of 8PSK Gaussian channel, with its bit-constellation

assignment specified in Fig. 4-1.

Figure 4-1: 8PSK bit-constellation assignment

We assume that each transmitted symbol 𝑥 is converted from three input bits 𝑏1,

𝑏2, and 𝑏3, and each received symbol 𝑦 is decomposed into three bit metrics 𝑞1, 𝑞2,

and 𝑞3. Based on the definition of BICM, the metrics 𝑞(𝑥, 𝑦) that are used by the

decoder can be expressed using the three bit decoding metrics.

𝑞(𝑥, 𝑦) =
3∑︁

𝑖=1

𝑞𝑖(𝑏𝑖, 𝑦) (4.1)

=
3∑︁

𝑖=1

𝑞𝑖(𝑦) 1(𝑏𝑖 = 0) (4.2)

To simplify our discussion, we ignore the integer metric constraint and assume the

bit metrics can be arbitrary real numbers.
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4.2 Decoding Metrics that Maximize GCR or GMI

Now we consider the GMI and the GCR of BICM channels under the uniform input

distribution constraint, and we compare the error rate performance of the optimal bit

metrics assignments that maximizes these objective functions.

4.2.1 Decoding Metrics that Maximize GMI

First we derive the optimal bit metric assignment that maximizes the generalized

mutual information. This solution has also been discussed in [15].

From section 3.2, we recall that the generalized mutual information can be ex-

pressed as

𝐼𝐺𝑀𝐼(𝑋, 𝑌 ) = max
𝑓𝑋 ,𝛼≥0

𝐻(𝑋) +
∑︁
𝑥,𝑦

𝑃𝑋,𝑌 (𝑥, 𝑦) ln(
𝑓𝑥𝑒

𝛼𝑞(𝑥,𝑦)∑︀
𝑥′ 𝑓𝑥′𝑒𝛼𝑞(𝑥′,𝑦)

) (4.3)

For an 8PSK modulated channel with a symmetric input distribution, the above

formula can be further simplified into

𝐼𝐺𝑀𝐼(𝑋, 𝑌 ) = 3 log 2 + max
𝛼≥0

∑︁
𝑥,𝑦

𝑃𝑋,𝑌 (𝑥, 𝑦) ln(
𝑒𝛼𝑞(𝑥,𝑦)∑︀
𝑥′ 𝑒𝛼𝑞(𝑥

′,𝑦)
) (4.4)

When bit-interleaved coded modulation is also used, by applying (4.1), the gen-

eralized mutual information equals the sum of the GMI of three independent binary

input channels.

𝐼𝐺𝑀𝐼(𝑋, 𝑌 ) = max
𝛼≥0

3∑︁
𝑖=1

(log 2 +
∑︁
𝑏𝑖,𝑦

𝑃𝐵𝑖,𝑌 (𝑏𝑖, 𝑦) ln(
𝑒𝛼𝑞(𝑏𝑖,𝑦)∑︀
𝑏′𝑖
𝑒𝛼𝑞(𝑏

′
𝑖,𝑦)

)) (4.5)

Hence, the optimal bit metrics that maximize the GMI are proportional to the log-

likelihood ratios of the marginal probability distribution of each bit.
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𝑞𝑖(𝑦) = 𝐴 ln
𝑃𝐵𝑖,𝑌 (0, 𝑦)

𝑃𝐵𝑖,𝑌 (1, 𝑦)
(4.6)

= 𝐴 ln

∑︀
𝑥:𝑏𝑖=0 𝑃𝑌 |𝑋(𝑦|𝑥)∑︀
𝑥:𝑏𝑖=1 𝑃𝑌 |𝑋(𝑦|𝑥)

(4.7)

where 𝐴 is an arbitrary constant.

For 8PSK Gaussian Channels, the log-likelihood ratio equals

𝐿𝐿𝑅𝑖 = ln

∑︀
𝑥:𝑏𝑖=0 𝑒

− ||𝑥−𝑦||2
2∑︀

𝑥:𝑏𝑖=1 −
||𝑥−𝑦||2

2

(4.8)

= ln

∑︀
𝑥:𝑏𝑖=0 𝑒

𝑥·𝑦∑︀
𝑥:𝑏𝑖=1 𝑒

𝑥·𝑦 (4.9)

where we use || · || to denote the norm of a vector, and use · to denote the dot product.

Practically, the max-log approximation ln
∑︀

𝑖 𝑥𝑖 ≈ max𝑖 ln(𝑥𝑖) is frequently used

in the calculation of the marginal LLR.

𝐿𝐿𝑅𝑖 ≈ max
𝑥:𝑏𝑖=0

𝑥 · 𝑦 − max
𝑥:𝑏𝑖=1

𝑥 · 𝑦 (4.10)

In this way, the approximated LLR can be calculated without an exponential

function calculator.

4.2.2 Decoding Metrics that Maximize GCR

The general cut-off rate, derived as a cut-off rate in the mismatched decoding case,

was defined in [24].

𝑅𝐺𝐶𝑅 = −max
𝛼>0

ln
∑︁
𝑥

𝑃𝑋,𝑌 (𝑥, 𝑦)

∑︀
𝑥′ 𝑃𝑋′(𝑥′)𝑒𝛼𝑞(𝑥

′,𝑦)

𝑒𝛼𝑞(𝑥,𝑦)
(4.11)

When 𝑃𝑋 is uniform, the formula can be simplified to
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𝑅𝐺𝐶𝑅 = 𝐻(𝑋)−max
𝛼>0

ln
∑︁
𝑥,𝑦

𝑃𝑋,𝑌 (𝑥, 𝑦)

∑︀
𝑥′ 𝑒𝛼𝑞(𝑥

′,𝑦)

𝑒𝛼𝑞(𝑥,𝑦)
(4.12)

Thus, finding the bit metrics that maximizes the GCR is equivalent to solving the

equation below.

(𝑞1, 𝑞2, 𝑞3) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑞1,𝑞2,𝑞3

∑︁
𝑥

𝑃𝑋,𝑌 (𝑥, 𝑦)

∑︀
𝑥′ 𝑒𝛼𝑞(𝑥

′,𝑦)

𝑒𝛼𝑞(𝑥,𝑦)
(4.13)

For 8PSK modulated channels, although deriving the exact solution to (4.13)

is non-trivial, a simple approximated solution exists, when the signal-to-noise ratio

of the channel is large enough that the max-log approximation can be applied (see

Appendix E for the derivation).

𝑞1 =

⎧⎨⎩𝐴 𝐿𝐿𝑅1, 𝐿𝐿𝑅1 < 𝐿𝐿𝑅2

𝐴 (𝐿𝐿𝑅1 − |𝐿𝐿𝑅3

2
|sgn(𝐿𝐿𝑅1)), 𝐿𝐿𝑅1 > 𝐿𝐿𝑅2

(4.14)

𝑞2 =

⎧⎨⎩𝐴 𝐿𝐿𝑅2, 𝐿𝐿𝑅1 > 𝐿𝐿𝑅2

𝐴 (𝐿𝐿𝑅2 − |𝐿𝐿𝑅3

2
|sgn(𝐿𝐿𝑅2)), 𝐿𝐿𝑅1 < 𝐿𝐿𝑅2

(4.15)

𝑞3 = 𝐴 𝐿𝐿𝑅3 (4.16)

where A is an arbitrary positive value.

From (4.10), we know this approximated solution can also be calculated without

an exponential function calculator. Hence it can also be implemented on hardware

with reasonable cost.

4.2.3 Error Rate Performances of the Two Demodulation

Schemes

We compare the error rate performances of the two bit-metric assignments on a

powerline communication system developed by Maxim Integrated. We simulate the

operation of the chip in a model written in C, and we use time domain AWGN
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channels to evaluate its performance.

The system uses RSV code for error correction, so we plot the bit error rate at the

Viterbi decoder’s output, as well as the message error probability, against different

time domain SNR (see Fig. 4-2).

Figure 4-2: The error rates for two different bit-metric assignments.

From the plots, we can see that the bit-metric assignment that maximizes the

GMI gives a better performance, whether the Reed-Solomon code is active or only

the convolutional code is used. We also conclude that, although the general cut-off

rate is a function that evaluates the performance of convolutional code based sys-

tems, choosing a demodulation scheme that maximizes the GCR does not necessarily

minimize the error probability.
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4.3 Error Rate Performance of the GMI Maxi-

mization Demodulation Based on a Fast LLR

Decomposition Algorithm

The following text discusses the implementation of the GMI-based 8PSK demodula-

tion algorithm, and the test result of its performance on a physical chip.

4.3.1 Firmware Implementations of 8PSK Demodulation Al-

gorithms

The main task of calculating the optimal bit metrics that maximizes the GMI is to

calculate the LLR for each bit. Several low-complexity approximations and their

implementations have been discussed in [4, 9, 21]. For 8PSK modulation, we propose

a simple algorithm that calculates the max-log approximated LLRs as defined in

(4.10).

Proposed Demodulation Algorithm

From (4.10), we know that in order to calculate the LLR for each bit, we need to first

find the closest constellation points to the channel output 𝑌 that correspond to bit

values 0 and 1, and then calculate the difference of their dot products to 𝑦.

We divide the complex plane into 8 regions (see Fig. 4-3) so that, for each region,

the selection of the closest constellation points remains the same. Thus the LLR

calculation in each region can be directly implemented by calculating the dot product

of Y and a fixed vector.

For each channel output 𝑦, we denote the closest constellation point that satisfies

𝑏 = 0 by 𝑥0. Similarly we denote the counterpart by 𝑥1. Then the approximated LLR

equals

𝐿𝐿𝑅𝑖 ≈ (𝑥0 − 𝑥1) · 𝑦 (4.17)
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Figure 4-3: The 8-region devision of the channel output space for 8PSK demodulation.

There are effectively 8 possible values of (𝑥0 − 𝑥1) (see Fig. 4-4), thus the dot

product can be implemented with no more than 4 fixed complex multiplications.

Figure 4-4: 8 possible values of (𝑥0 − 𝑥1)

At the same time, these dot products also provide information about which region

contains the channel output 𝑦. Thus, no extra complex multiplication is needed to

look up the regions.

Now we propose a firmware algorithm that uses jump look-up to handle the LLR

calculations in all 8 regions.

Step 1: We calculate all 4 dot products marked in Fig. 4-5 using 2 complex mul-
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tiplications. Because all those vectors are parallel to the boundaries of the 8 regions,

we can also identify the region that contains channel output from the multiplication

results.

Figure 4-5: 4 dot products (marked as red) required to be calculated in step 1.

Step 2: For each region, in order to calculate the LLRs for all 3 bits, only one

extra dot product operation is needed. Thus we use another complex multiplication

to complete the calculation.

4.3.2 Error Rate Performance of the Proposed Algorithm

We implemented the proposed algorithm on the powerline communication chip pro-

vided by Maxim Integrated, and tested the performance of different demodulation

algorithms using the configuration described in Fig. 4-6. A function generator is

used to generate the noise, and we control the SNR by changing the noise amplitude.

We plot the error probability under different noise amplitudes, for three different

demodulation algorithms (in Fig. 4-7).

What we refer to as the old soft phase demodulation is the original demodulation

scheme that was implemented on the powerline communication chip. It calculates

the bit metrics based only on the phase of the received symbol. A direct replacement
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Figure 4-6: Board test configuration

of the look-up table, which is referred to as the new soft phase demodulation, gives a

better performance. The fixed shift demodulation is the scheme that we implemented

in this thesis, which has the best performance among the three demodulation schemes

according to the plot. Compared to the original demodulation scheme, the fixed shift

gives a 0.6dB improvement for coherent modulation, and a 0.3dB improvement for

differential modulation.

Figure 4-7: The error probability curves for three different demodulation algorithms
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4.4 Summary

In this chapter, we explored the problem of finding the optimal bit-metric assignment

for 8PSK modulated channel.

First we showed that the marginal LLRs, are the bit metrics that maximize the

generalized mutual information. This is also partially the reason that many BICM

systems use it in the demodulator. However, this metric is not always optimal under

different objective functions, e.g., the general cut-off rate. We derived the correspond-

ing optimal bit metrics when max-log approximation holds, and they are simple linear

functions that depend on the LLRs.

We also developed an efficient algorithm that calculates the max-log approximated

LLRs. The demodulation scheme based on this algorithm was implemented and tested

on a physical chip. From the testing result, this scheme improves the system for 0.6dB

in the coherent mode and for 0.3dB in the differential mode.
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Chapter 5

Conclusion and Future Work

Finding the optimal demodulation schemes is a practical problem attracting much

research interest. Various objective functions have been proposed as the optimiza-

tion metric. In this thesis, we explored the problem from multiple aspects, which

include maximizing different objective functions under different scenarios, and de-

riving asymptotic solutions with low implementation cost that well approximate the

numerical solutions.

We started from the simplest case, where the modulation type of the signal is 2-

PAM, and the channel output is quantized into finitely many regions. We developed

approximate quantization schemes based on the small SNR asymptotic solutions of

the optimal result. It gives negligible capacity loss in both the matched decoding and

the mismatched decoding cases, while being simple to implement. We also studied

the trade-off between the capacity loss and resolution of the quantizer. We showed

that a very simple estimator of the relative loss of capacity can be derived in the

matched decoding case using the high-rate limit approximation.

Then we considered a more practical case where not only is the channel output

quantized, but the decoding metrics are also constrained to given values. We showed

that the small SNR approximation of the quantization thresholds still works in this

case, which provides an approximation scheme that can be directly used on most

modern communication devices.

Finally we looked into the demodulation problem for 8PSK modulated channels.
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We discussed the optimal bit-metric assignment for the GMI and the GCR. We also

implemented a simple algorithm that decomposes the marginal LLRs based on the

received symbol, which improves the performance of the chips where it was imple-

mented.

In addition to the topics we have discussed, there are still many related problems

that remain open.

1. In the case of matched decoding quantization, we have shown that the approx-

imate quantization scheme derived from asymptotic solutions gives negligible

capacity loss on binary input channels. However, solving the asymptotic solu-

tions in the general cases, e.g. when 8PSK modulation is used, is less trivial.

Thus, extending this approximation approach to different modulation types re-

mains to be researched.

2. In the analysis of the trade-off between the capacity loss and the quantizer reso-

lution, we conjectured that the minimum relative loss of capacity is a decreasing

function of the SNR for 2-PAM Gaussian channels. If this is true, we can derive

a simple formula that estimates the worst case relative loss of the capacity in

this scenario.

3. Although the mismatched capacity is equal to the GMI for binary input chan-

nels, it is not equal to the GMI lower bound, and its formula provided in [27]

does not single-letterize in the general case. This makes it hard to maximize the

actual mismatched capacity in many cases. Whether a simple formula exists for

specific cases like 8PSK BICM channels, would be an interesting and valuable

problem to research on.
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Appendix A

Proof of Theorem 1

Proof. First we apply the Gaussian channel condition to (2.4):

𝑧(𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑍

{
∑︁
𝑋

𝑃𝑋𝑒
−(𝑔𝑥−𝑦)2

2 𝑙𝑛(𝑃𝑋|𝑍)} (A.1)

For 𝐾-PAM modulation, any possible channel input value 𝑥 can be represented

as:

𝑥 = 𝑥𝑖 = 𝑥0 + 𝑖𝑑 (A.2)

Where 𝑖 takes value from {0, 1, 2, ..., 𝐾 − 1}.

Then (A.1) can be further simplified:

𝑧(𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑍

{
𝐾−1∑︁
𝑖=0

𝑃𝑋𝑒
−(𝑔𝑥𝑖)

2

2
+𝑖𝑑𝑔𝑦𝑙𝑛(𝑃𝑋|𝑍)} (A.3)

We define variable 𝜑 = 𝑒𝑑𝑔𝑦. Then the quantization intervals of each quantized

output 𝑧 can be fully determined by a set of polynomial constraints:

𝐾−1∑︁
𝑖=0

(𝑎𝑖,𝑧 − 𝑎𝑖,𝑧′)𝜑
𝑖 ≥ 0 (A.4)

for every 𝑧′ ̸= 𝑧, with 𝑎𝑖,𝑧 = 𝑃𝑋𝑒
−(𝑔𝑥𝑖)

2

2 𝑙𝑛(𝑃𝑋|𝑍).
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Since each polynomial constraint produces a set of disjoint intervals, and that

the quantization intervals are the result of their intersection, the entire problem is

reduced to a mathematical problem about counting the number of intervals.

So we first introduce some definitions in order to simplify the following discussion.

Definition 3. The boundaries of a union of disjoint intervals 𝑆 = ∪𝑖[𝑎𝑖, 𝑏𝑖] are

defined as ∪𝑖{𝑎𝑖, 𝑏𝑖}, denoted by 𝐵(𝑆).

Definition 4. The inner boundaries of a union of disjoint intervals 𝑆 and defined

as 𝐵(𝑆)− {𝑆𝑚𝑎𝑥, 𝑆𝑚𝑖𝑛}, denoted by 𝐵′(𝑆).

For simplicity, we denote the number of elements in an finite set 𝐵 by |𝐵|, and

we denote the number of intervals in their union 𝑆 to be |𝑆|

We then prove the following lemma:

Lemma 5. Given two arbitrary unions of disjoint intervals 𝑆1,𝑆2. We have

|𝐵′(𝑆1 ∩ 𝑆2)| ≤ |𝐵′(𝑆1)|+ |𝐵′(𝑆2)| (A.5)

Proof. For an arbitrary set of disjoint intervals 𝑆, a necessary condition for a real

number 𝑥 to belong to 𝐵′(𝑆) is that 𝑥 satisfies 𝑆𝑚𝑖𝑛 < 𝑥 < 𝑆𝑚𝑎𝑥.

Thus the following relation holds:

𝐵′(𝑆1 ∩ 𝑆2) = 𝐵(𝑆1 ∩ 𝑆2)

− {𝑆1,𝑚𝑎𝑥, 𝑆1,𝑚𝑖𝑛, 𝑆2,𝑚𝑎𝑥, 𝑆2,𝑚𝑖𝑛} (A.6)

It is easy to prove that

𝐵(𝑆1 ∩ 𝑆2) ⊆ 𝐵(𝑆1) ∪𝐵(𝑆2). (A.7)
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Then we have

𝐵′(𝑆1 ∩ 𝑆2) ⊆ (𝐵(𝑆1)− {𝑆1,𝑚𝑎𝑥, 𝑆1,𝑚𝑖𝑛})

∪ (𝐵(𝑆2)− {𝑆2,𝑚𝑎𝑥, 𝑆2,𝑚𝑖𝑛}) (A.8)

= 𝐵′(𝑆1) ∪𝐵′(𝑆2) (A.9)

The following can thus be derived directly:

|𝐵′(𝑆1 ∩ 𝑆2)| ≤ |𝐵′(𝑆1)|+ |𝐵′(𝑆2)| (A.10)

Now we can look at the intervals number counting problem we mentioned earlier.

From (A.4), each single constraint generates a set of disjoint intervals. Since the

constraints are polynomial on 𝜑 with degrees no larger than 𝐾 − 1, there are at most

𝐾−1 roots for each constraint. We know that the number of inner boundaries has to

be even, so the upper bound on the number of inner boundaries from one constraint

is 2⌊𝐾−1
2

⌋.

Since there are 𝑁 −1 constraints for each quantized output 𝑧. We ultilize Lemma

5 and conclude that |𝐵′(𝑆(𝑧))| ≤ 2(𝑁 − 1)⌊𝐾−1
2

⌋.

It is straight forward to prove that |𝐵′(𝑆)| = 2(|𝑆| − 1). So the upper bound

on the number of disjoint intervals that map to the same quantized output in the

optimal quantization scheme can be represented as:

|𝑆(𝑧)| ≤ (𝑁 − 1)⌊𝐾 − 1

2
⌋+ 1 (A.11)

59



60



Appendix B

The Second Order Expansion for

Small SNR Matched Quantization

We solve for the second order term of the quantization threshold 𝑏1, for the problem

defined in 2.3.2.

First we expand the soft bit 𝛼 to the second order:

𝛼 = −
𝑄′(𝑏0)𝑥+𝑄′′(𝑏0)𝑥𝑏1 +

1
6
𝑄′′′(𝑏0)𝑥

3

𝑄(𝑏0) +𝑄′(𝑏0)𝑏1 +
1
2
𝑄′′(𝑏0)𝑥2

(B.1)

Based the properties of 𝑏0 and the 𝑄 function, the following equation holds:

2𝑏0𝑄(𝑏0) = −𝑄′(𝑏0) (B.2)

𝑄′′(𝑏0) = −𝑏0𝑄
′(𝑏0) (B.3)

𝑄′′′(𝑏0) = (𝑏20 − 1)𝑄′(𝑏0) (B.4)

These equations can simplify the expression of 𝛼:

𝛼 = −𝑔
1− 𝑏0𝑏1𝑔

2 + 1
6
(𝑏20 − 1)𝑔2

− 1
2𝑏0

+ 𝑏1𝑔2 − 1
2
𝑏0𝑔2

(B.5)

Now we expand (2.12) to the second order:
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(1 +
(𝑏0𝑔)

2

2
)(−𝛼2 − 𝛼4

2
)

+ (𝑏0 + 𝑏1𝑔
2)𝑔(1 +

(𝑏0𝑔)
2

6
)(2𝛼 +

2𝛼3

3
) = 0 (B.6)

Plugging (B.5) into (B.6), we can solve for 𝑏1:

𝑏1 = −1

6
𝑏0 (B.7)
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Appendix C

Large SNR Approximation for

2PAM Mismatched Quantization

by applying 𝑑𝐶′(𝛼)
𝑑𝛼

= 0 to (3.13), we have

ln
−𝐾∑︁
𝑧=−1

−
𝑃𝑍|𝑋(𝑧|1)𝑞(𝑧)
1 + 𝑒𝛼𝑞(𝑧)

= ln
𝐾∑︁
𝑧=1

𝑃𝑍|𝑋(𝑧|1)𝑞(𝑧)
1 + 𝑒𝛼𝑞(𝑧)

(C.1)

Using max-log approximation ln
∑︀

𝑖 𝑥𝑖 ≈ max𝑖 ln(𝑥𝑖), C.1 can be simplified to

ln−𝑃𝑍|𝑋(−1|1)𝑞(−1) = max
𝑧>0

{ln𝑃𝑍|𝑋(𝑧|1)𝑞(𝑧)− 𝛼𝑞(𝑧)} (C.2)

We can approximate the transition probability of the quantized channel using

(2.7).

ln𝑃𝑍|𝑋(𝑧|1) ≈ max
𝑦:𝑍(𝑦)=𝑧

−(𝑦 − 𝑔)2

2
(C.3)

Thus,

ln𝑃𝑍|𝑋(−1|1) ≈ −𝑔2

2
(C.4)
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For any 0 < 𝑧 < 𝐾, the following inequality can be derived.

ln𝑃𝑍|𝑋(𝑧|1) ≤ −(𝑔 −min{𝑏𝑧, 𝑔})2

2
(C.5)

Then using (3.15), we have

ln𝑃𝑍|𝑋(𝑧|1)𝑞(𝑧)− 𝛼𝑞(𝑧) ≤ −𝑔2

2
+𝑂(ln 𝑔) (C.6)

So C.2 can be simplified to

−𝑔2

2
= ln𝑃𝑍|𝑋(𝐾|1)− 𝛼𝑞(𝐾) +𝑂(ln 𝑔) (C.7)

= −(𝑔 −max{𝑏𝐾−1, 𝑔})2

2
− 𝛼𝑞(𝐾) +𝑂(ln 𝑔) (C.8)

The solution is

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛼 = 𝑔2

2𝑞𝐾
+𝑂(ln 𝑔)

𝑏𝑖 = 𝑔𝑞𝑖
4𝑞𝐾

+ 𝑜(1)

(C.9)
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Appendix D

High-rate Limit for Mismatched

Quantization with Integer Metrics

Given a 2-PAM Gaussian channel with a quantize function 𝑍(𝑦), the loss of mis-

matched capacity equals

Δ𝐶 = min
𝛼

∫︁
𝑓𝑦

∑︁
𝑥

𝑃𝑋|𝑌 (𝑥|𝑦)(ln
𝑒𝑥𝑦∑︀
𝑥′ 𝑒𝑥

′𝑦
− ln

𝑒𝛼𝑞(𝑥,𝑧)∑︀
𝑥′ 𝑒𝛼𝑞(𝑥

′,𝑧)
)𝑑𝑦 (D.1)

When the number of quantization region is large, the optimal relative decoding

metric 𝑞(𝑧) should match with the actual log-likelihood ratio, so that the loss of

capacity can approach zero, i.e.,

𝛼𝑞(𝑧) ≈ 2𝑔𝑦 (D.2)

with probability of 1.

Thus, we can Taylor expand (D.1) and derive the capacity loss in the high-rate

limit.

Δ𝐶 ≈ min
𝛼

∫︁
𝑓𝑦(𝛼𝑑− 2𝑔𝑦)2

2(𝑒𝑔𝑦 + 𝑒−𝑔𝑦)2
𝑑𝑦 (D.3)
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The approximate loss of capacity, defined by (D.3), can be calculated by dividing

the integral into 2 parts: |2𝑔𝑦| < 𝛼𝐾 and |2𝑔𝑦| > 𝛼𝐾. For convenience, we define

this boundary to be 𝑦𝑚 = 𝛼𝐾
2𝑔

.

The first part of the integral can be treated by assuming the length of the quan-

tization intervals approaches to 0 when the number of quantization regions 𝑁 is

large. Thus the coefficients of the “square error” function is almost constant within

a interval.

∫︁
|2𝑔𝑦|<𝛼𝐾

𝑓𝑦(𝛼𝑑− 2𝑔𝑦)2

2(𝑒𝑔𝑦 + 𝑒−𝑔𝑦)2
𝑑𝑦 ≈

∫︁
|2𝑔𝑦|<𝛼𝐾

𝑓𝑦Var(2𝑔𝑦|𝑍 = 𝑍(𝑦))

2(𝑒𝑔𝑦 + 𝑒−𝑔𝑦)2
𝑑𝑦 (D.4)

≈
∫︁ +∞

−∞

𝑓𝑦
2(𝑒𝑔𝑦 + 𝑒−𝑔𝑦)2

(2𝑔𝑦𝑚)
2

3𝑁2
𝑑𝑦 (D.5)

To simplify the above equation, we substitute the coefficients that are independent

of the quantizer parameters 𝛼 and 𝑁 .

𝐴 =

∫︁ +∞

−∞

2𝑓𝑦𝑔
2

3(𝑒𝑔𝑦 + 𝑒−𝑔𝑦)2
𝑑𝑦 (D.6)

Then the first part of the integral can be simply expressed as 𝐴𝑦2𝑚/𝑁
2.

Before calculating the second part of the integral, we derive the following lemma.

Lemma 6. For any 𝑥 > 0, the following inequality hold.

2− 𝑒−(𝑥+ 1
2
)(𝑥2 + 3𝑥+ 13

4
)

(𝑥+ 1
2
)3

𝑒−
𝑥2

2 ≤
∫︁ +∞

0

𝑒−
(𝑥+𝑦)2

2 𝑦2𝑑𝑦 ≤ 2

𝑥3
𝑒−

𝑥2

2 (D.7)

Proof. First we derive the upper bound

∫︁ +∞

0

𝑒−
(𝑥+𝑦)2

2 𝑦2𝑑𝑦 ≤
∫︁ +∞

0

𝑒−
𝑥2

2
−𝑥𝑦𝑦2𝑑𝑦 (D.8)

=
2

𝑥3
𝑒−

𝑥2

2 (D.9)
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Then we derive the lower bound

∫︁ +∞

0

𝑒−
(𝑥+𝑦)2

2 𝑦2𝑑𝑦 ≥
∫︁ 1

0

𝑒−
𝑥2

2
−(𝑥+ 1

2
)𝑦𝑦2𝑑𝑦 (D.10)

=
2− 𝑒−(𝑥+ 1

2
)(𝑥2 + 3𝑥+ 13

4
)

(𝑥+ 1
2
)3

𝑒−
𝑥2

2 (D.11)

From Lemma 6 we obtained a convenient approximation

∫︁ +∞

0

𝑒−
(𝑥+𝑦)2

2 𝑦2𝑑𝑦 ≈ 2

𝑥3
𝑒−

𝑥2

2 (D.12)

which simplifies the second part of the integration of the capacity loss.

∫︁
|2𝑔𝑦|>𝛼𝐾

𝑓𝑦(𝛼𝑑− 2𝑔𝑦)2

2(𝑒𝑔𝑦 + 𝑒−𝑔𝑦)2
𝑑𝑦 ≈

∫︁
𝑦>𝑦𝑚

4𝑔2√
2𝜋

𝑒−
(𝑔+𝑦)2

2 (𝑦 − 𝑦𝑚)
2𝑑𝑦 (D.13)

≈ 8𝑔2√
2𝜋(𝑔 + 𝑦𝑚)3

𝑒−
(𝑔+𝑦𝑚)2

2 (D.14)

Similarly, we make the following substitution for the coefficient of the second

integral.

𝐵 =
8𝑔2√
2𝜋

(D.15)

Combining (D.6) and (D.14), we obtain a simple formula that approximates the

capacity loss.

Δ𝐶 ≈ min
𝑦𝑚

{𝐴𝑦
2
𝑚

𝑁2
+

𝐵

(𝑔 + 𝑦𝑚)3
𝑒−

(𝑔+𝑦𝑚)2

2 } (D.16)

When 𝑦𝑚 ≫ 1, with some simple analysis, the loss of capacity is minimized at

𝑦𝑚 =
√
4 ln𝑁 +𝑂(1) (D.17)
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and the capacity loss equals

Δ𝐶 ≈ 4𝐴 ln𝑁

𝑁2
+𝑂(

√
ln𝑁

𝑁2
) (D.18)

So far, we have derived the minimum mismatched capacity loss for 2-PAM Gaus-

sian Channels in the high-rate limit. In terms of using (D.18) as a estimator of the

capacity loss, it requires
√
ln𝑁 ≫ 1, which in practice is not true. So the approxi-

mate formula of capacity loss in the mismatched case can not be derived from this

approach.
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Appendix E

Optimal Demodulation Maximizing

GCR for 8PSK Gaussian Channel

Finding the optimal bit metrics that maximizes the GCR is essentially solving equal-

tion (4.13). Although finding an exact formula of the solution is generally difficult, we

can instead derive an approximate result when max-log approximation can be used,

i.e., solving the below equation instead.

(𝑞1, 𝑞2, 𝑞3) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑞1,𝑞2,𝑞3

max
𝑥

𝑃𝑋,𝑌 (𝑥, 𝑦)

∑︀
𝑥′ 𝑒𝛼𝑞(𝑥

′,𝑦)

𝑒𝛼𝑞(𝑥,𝑦)
(E.1)

Specifically, for 8PSK Gaussian channel with the labeling of constellation points

specified in Fig. 4-1, the above equation is equivalent to

(𝑞1, 𝑞2, 𝑞3) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑞1,𝑞2,𝑞3

∏︁
𝑖

(1 + 𝑒−𝛼𝑞𝑖)(𝑒𝑔𝑦·1 + 𝑒𝑔𝑦·𝑒
𝑖 𝜋4 +𝛼𝑞3 + 𝑒𝑔𝑦·𝑒

𝑖 𝜋2 +𝛼(𝑞2+𝑞3)

+𝑒𝑔𝑦·𝑒
𝑖 3𝜋4 +𝛼𝑞2 + 𝑒𝑔𝑦·𝑒

𝑖𝜋+𝛼(𝑞1+𝑞2) + 𝑒𝑔𝑦·𝑒
𝑖 5𝜋4 +𝛼(𝑞1+𝑞2+𝑞3)

+𝑒𝑔𝑦·𝑒
𝑖 3𝜋2 +𝛼(𝑞1+𝑞3) + 𝑒𝑔𝑦·𝑒

𝑖 7𝜋4 +𝛼𝑞1) (E.2)

To simplify our discussion, we divide the channel output space into 8 symmetric

regions (see Fig. E-1) based on the complex phase of the channel output 𝑦. We shall

only derive the solution to (E.2) when the channel output phase belongs to [−𝜋
8
, 𝜋
8
],

and the rest part of the solution can be easily obtained due to the symmetry.
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Figure E-1: The 8-region devision of the channel output space for 8PSK demodula-
tion.

When the channel output belongs to the region specified above, we have the

following inequalities

𝑦 · 1 ≥ 𝑦 · 𝑒±𝑖𝜋
4 ≥ 𝑦 · 𝑒±𝑖𝜋

2 ≥ 𝑦 · 𝑒±𝑖 3𝜋
4 ≥ 𝑦 · 𝑒𝑖𝜋 (E.3)

Then the target function defined in (E.2) is lower bounded by 𝑒𝑦·1, and this expo-

nent can be achieved when 𝑒𝛼𝑞𝑖 ≫ 1 and the following inequalities hold.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦 · 1 ≥ 𝑦 · 𝑒𝑖𝜋4 + 𝛼
𝑔
𝑞3

𝑦 · 1 ≥ 𝑦 · 𝑒𝑖𝜋2 + 𝛼
𝑔
(𝑞2 + 𝑞3)

𝑦 · 1 ≥ 𝑦 · 𝑒𝑖 3𝜋4 + 𝛼
𝑔
𝑞2

𝑦 · 1 ≥ 𝑦 · 𝑒𝑖𝜋 + 𝛼
𝑔
(𝑞1 + 𝑞2)

𝑦 · 1 ≥ 𝑦 · 𝑒𝑖 5𝜋4 + 𝛼
𝑔
(𝑞1 + 𝑞2 + 𝑞3)

𝑦 · 1 ≥ 𝑦 · 𝑒𝑖 3𝜋2 + 𝛼
𝑔
(𝑞1 + 𝑞3)

𝑦 · 1 ≥ 𝑦 · 𝑒𝑖 7𝜋4 + 𝛼
𝑔
𝑞1

(E.4)

Applying (E.3) to the above inequalities, we can derive a simplified version of the
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constraints on the optimal bit metrics.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑞𝑖 ≥ 0

𝑦 · 1 ≥ 𝑦 · 𝑒𝑖𝜋4 + 𝛼
𝑔
𝑞3

𝑦 · 1 ≥ 𝑦 · 𝑒𝑖𝜋2 + 𝛼
𝑔
(𝑞2 + 𝑞3)

𝑦 · 1 ≥ 𝑦 · 𝑒𝑖 7𝜋4 + 𝛼
𝑔
𝑞1

(E.5)

Now we start solving for the optimal values of the decoding metrics. Taking the

partial derivative of the objective function in (E.2) with respect to the bit metrics,

we obtain the equations that restrict its solution.

2𝛼𝑞1 = 𝑙𝑜𝑔
𝑒𝑔𝑦·1 + 𝑒𝑔𝑦·𝑒

𝑖 𝜋4 +𝛼𝑞3 + 𝑒𝑔𝑦·𝑒
𝑖 𝜋2 +𝛼(𝑞2+𝑞3) + 𝑒𝑔𝑦·𝑒

𝑖 3𝜋4 +𝛼𝑞2

𝑒𝑔𝑦·𝑒𝑖𝜋+𝛼𝑞2 + 𝑒𝑔𝑦·𝑒
𝑖 5𝜋4 +𝛼(𝑞2+𝑞3) + 𝑒𝑔𝑦·𝑒

𝑖 3𝜋2 +𝛼𝑞3 + 𝑒𝑔𝑦·𝑒
𝑖 7𝜋4

(E.6)

2𝛼𝑞2 = 𝑙𝑜𝑔
𝑒𝑔𝑦·1 + 𝑒𝑔𝑦·𝑒

𝑖 𝜋4 +𝛼𝑞3 + 𝑒𝑔𝑦·𝑒
𝑖 3𝜋2 +𝛼(𝑞1+𝑞3) + 𝑒𝑔𝑦·𝑒

𝑖 7𝜋4 +𝛼𝑞1

𝑒𝑔𝑦·𝑒
𝑖 𝜋2 +𝛼𝑞3 + 𝑒𝑔𝑦·𝑒

𝑖 3𝜋4 + 𝑒𝑔𝑦·𝑒𝑖𝜋+𝛼𝑞1 + 𝑒𝑔𝑦·𝑒
𝑖 5𝜋4 +𝛼(𝑞1+𝑞3)

(E.7)

2𝛼𝑞3 = 𝑙𝑜𝑔
𝑒𝑔𝑦·1 + 𝑒𝑔𝑦·𝑒

𝑖 3𝜋4 +𝛼𝑞2 + 𝑒𝑔𝑦·𝑒
𝑖𝜋+𝛼(𝑞1+𝑞2) + 𝑒𝑔𝑦·𝑒

𝑖 7𝜋4 +𝛼𝑞1

𝑒𝑔𝑦·𝑒
𝑖 𝜋4 + 𝑒𝑔𝑦·𝑒

𝑖 𝜋2 +𝛼𝑞2 + 𝑒𝑔𝑦·𝑒
𝑖 5𝜋4 +𝛼(𝑞1+𝑞2) + 𝑒𝑔𝑦·𝑒

𝑖 3𝜋2 +𝛼𝑞1
(E.8)

Utilizing in inequalities in (E.5) and the max-log approximation, the above equa-

tions can be simplified into

2𝛼𝑞1 = 𝑔𝑦 · 1−max{𝑔𝑦 · 𝑒𝑖𝜋 + 𝛼𝑞2, 𝑔𝑦 · 𝑒𝑖
3𝜋
2 + 𝛼𝑞3, 𝑔𝑦 · 𝑒𝑖

7𝜋
4 } (E.9)

2𝛼𝑞2 = 𝑔𝑦 · 1− 𝑔𝑦 · 𝑒𝑖
𝜋
2 − 𝛼𝑞3 (E.10)

2𝛼𝑞3 = 𝑔𝑦 · 1−max{𝑔𝑦 · 𝑒𝑖
𝜋
4 , 𝑔𝑦 · 𝑒𝑖

𝜋
2 + 𝛼𝑞2} (E.11)

Solving the above equations, we derive the formulas for the optimal solution, which

can also be expressed using their corresponding log-likelihood ratios.
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𝑞1 =
𝑔𝑦 · (1− 𝑒𝑖

7𝜋
4 )

2𝛼
=

𝐿𝐿𝑅1

2𝛼
(E.12)

𝑞2 =
𝑔𝑦 · (1 + 𝑒𝑖

𝜋
4 − 2𝑒𝑖

𝜋
2 )

4𝛼
=

𝐿𝐿𝑅2 − 1
2
𝐿𝐿𝑅3

2𝛼
(E.13)

𝑞3 =
𝑔𝑦 · (1− 𝑒𝑖

𝜋
4 )

2𝛼
=

𝐿𝐿𝑅3

2𝛼
(E.14)

Since scaling the quantization metrics does not affect the decoding result, the

parameter 𝛼 can be an arbitrary positive value.
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