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Abstract

Many important computational problems, including those of computer vision, are charac-
terized by data-parallel, low-precision integer operations on large volumes of data. For such
highly structured problems, this thesis develops Abacus, a high-speed reconfigurable SIMD
(single-instruction, multiple-data) architecture that outperforms conventional microproces-
sors by over an order of magnitude using the same silicon resources.

Earlier SIMD systems computed at relatively slow clock rates compared to their unipro-
cessor counterparts, The thesis discusses the problems involved in operating a large SIMD
system at high clock rates, including instruction distribution and chip-to-chip communica-
tion, presents the solutions adopted by the Abacus design.

Although the chip was implemented in a 1989-era VLSI technology, it was designed to
contain 1024 processing elements (PEs), operate at 125 MHz, and deliver 2 bhillion 16-bit
arithmetic operations per second (GOPS). The PE and chip architecture are described in
detail, as well as the results of testing the chip at 100 MHz.

Despite this high performance, the Abacus one-bit ALU is not the optimal point in the
design space., An analytical model is developed for performance as a function of ALU width
and off-chip memory bandwidth, Intuition provided by the model leads to the conclusion
that an eight-bit ALU is an optimal choice for the current technology.

Finally, using the analytical model, area and time parameters from the Abacus chip, and
some lessons learned from the chip implementation, a design is presented for a 320 GOPS
low-cost single-board system,

Thesis Supervisor: Thomas F. Knight, Jr.
Title: Senior Research Scientist of Electrical Engineering
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Chapter 1

Introduction

Computer vision, the understanding of images by a computer, is both an exciting component
of artificial intelligence and a daunting computational task considered as one of the Grand
Challenge problems of parallel processing. The scope of the challenge becomes apparent
when the computational requirements of early vision are considered. A moderately sized
image contains approximately 65,000 pixels, each of which may be used a hundred times in
a computation. A single vision algorithm may require ten iterations per image, and as many
as fifty algorithms may be required to extract essential information such as depth, motion,
shapes, and shadows. All of this processing must be repeated thirty times per second to
sustain real time response. The aggregate sustained computing power is therefore on the
order of 100 billion operations per second (GOPS).

Hundreds of parallel system designs have been proposed to attain this level of performance.
These systems can be broadly categorized as Single-Instruction Multiple Data (SIMD) ma-
chines that consist of identical processing elements (PEs) executing the same instructions
in lockstep, and Multiple-Instruction Multiple-Data (MIMD) machines, whose PEs execute
independent programs and use explicit communication to synchronize operations. Histor-
ically, SIMD machines have been built with large numbers of simple PEs, while MIMD
machines relied on a small number of complex PEs.

Currently, the most prevalent parallel architectures are MIMD machines consisting of collec-
tions of workstation-class RISC processors. Indeed, only one major SIMD vendor, MasPar,
still exists, while there are many MIMD vendors, including Cray, Convex, IBM, and Intel.
This overwhelming commercial success is due to the constant improvement in microproces-
sor performance, driven by marketplace pressure and fueled by enormous investment,

Parallel MIMD machines are excellent general-purpose computing and development plat-
forms, since they come equipped with the software inherited from their workstation heritage.
As with the uniprocessors on which they are based, these machines excel at computations
with irregular and unpredictable instruction streams. Unfortunately, the price of this flexi-
bility is reduced performance. On problems with a data-parallel, highly regular structure,
such as image processing, these processors continue to be unnecessarily flexible at every
instruction step.
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The MIMD model incurs enormous overhead for every functional unit that actually manip-
ulates data. This overhead consists of silicon area required to store the program (a 10K
word program of 32 bits each corresponds to 1.8 million transistors!), instruction decoding,
addressing, and control circuitry. The overhead can easily be a factor of ten larger than the
functional unit actually processing the data.

Despite this apparently inherent advantage, there are few SIMD systems in existence, The
reason for the lack of widespread adoption of SIMD machines becomes obvious when the
clock rates of RISC and SIMD systems are compared. Figure 1-1 compares the improvement
in clock rate within several families of RISC processors to (mostly academic) SIMD designs,

450
> MIPS
400 /.t Alpha
;B SPARC
350 i+ siMD
300 ’

250

MHz

200
150
100

50,

R7T B8 HY 90 91 92 93 94 95 ye

Year

Figure 1-1: CPU and SIMD System Comparison

The advent of VLSI technology gave SIMD systems a substantial advantage over their
discrete-component based uniprocessor competition. With time, this advantage disappeared
as SIMD machines failed to incorporate high-speed circuit techniques and therefore retained
unnecessarily low clock rates. This work aims to substantially improve the clock rates of
SIMD and microprocessor systems and thereby regain the performance lead. Experience
obtained through the detailed design shows that the clock rate barrier is largely illusory.

Thesis. The thesis of this dissertation is that for the problem domain of early vision,
parallel computers based on a SIMI) architecture can outperform those based on conventional
processors by over an order of magnitude using the same silicon resources.

The overall research approach is to:

¢ Design, implement, and test a VLSI chip containing Abacus processing elements, A
working chip will unearth any inaccurate assumptions about high speed SIMD opera-
tions,
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o Complete a system-wide design to ensure that there are no unexpected system-level
bottlenecks.

e Develop an analytical performance model based on the chip parameters. The existence
of a concrete instantiation of the architecture allows empirical evaluation of the costs
and benefits of reconfiguration,

o Use the chip implementation experience and the analytical model to develop a design
for a second generation architecture.

The contributions of this work can be grouped under three categories: implementational,
analytical, and cultural. A successful implementation has demonstrated a SIMD chip with
the highest clock rate to date and forced the development of system interfaces generally
ignored in the academic field, The collection of high-speed techniques forms a framework
for future SIMD designs.

The analytical model allows the selection of an optimal point in implementation space as
technology parameters vary. For example, novel high-bandwidth devices such as Rambus
memory components may allow reduction in the amount of on-chip memory, The model
will allow quantification of these tradeoffs.

An operational chip will also have several positive cultural effects. It will provide a. convinc-
ing demonstration of the effectiveness of SIMD processing. Important applications of SIMD
technology are near but may be hampered by the unconvincing performance and architec-
tural deficiencies of existing SIMD processor arrays. Vision-related tasks, such as MPEG
coding, OCR, paper document processing, digital picture manipulation, medical imagery,
face recognition, vehicle collision avoidance, and automatic vehicle guidance all provide im-
portant practical applications which can be solved on SIMD machines. Finally, the project
will demonstrate that high performance design can be done in a university environment,

An existing system design will allow the construction of a cheap tera-op level supercomputer
for vision research. Such a platform will allow important image, signal, and text processing
applications to be prototyped. A successful design will encourage research on specialized
architectures, which has been decreasing recently due to the success of RISC-based MIMD
machines,

Abacus. The Abacus architecture can be classified as a reconfigurable bit-parallel (RBP)
machine. The key idea of a RBP design is to provide programmable interconnect to link
multiple PEs into a single Processing Site (PS) that can operate on several bits of a data
word simultaneously. Reconfiguration allows word width to be matched to the need of each
algorithm. Even more significantly, on-chip memory capacity at each processing site can
also be adjusted by changing the number of PEs in a PS. Since off-chip memory references
can be a factor of 20 slower than on-chip accesses, decreasing the miss rate at the cost of
ALU capacity may lead to substantial performance increases for many algorithms.

Reconfigurable processors provide a smooth transition between the two extremes of a slow,
small bit-serial PE and a complex, fast bit-parallel PE. The tradeoff between the two is that
simple one-bit PEs are capable of arbitrary precision and can run at a high clock speed,
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but require manv cycles per operation. Hardware bit-parallel PEs require few cycles, but
run slower and waste valuable silicon when computing with data narrower than their ALU
width, RBP designs retain bit-serial flexibility and bit-parallel performance.

Organization Chapter 2 presents an overview of the substantial body of previous work
relating to the topics of this thesis, from SIMD machines to modern architectural alterna-
tives: the SRC PIM chip, Berkeley’s PADDI-2 DSP, and FPGA based computing platforms.
After demonstrating the the SIMD approach is competitive if the clock speed can be raised
above previous levels, the discussion turns to issues of high-speed SIMD system designs.
The chapter concludes with a review of related architectural performance evaluations,

Chapter 3 describes the implementation of the Abacus-1 chip at a fairly detailed level, as
well as chip test results. Chapter 4 describes the system-level design of the Abacus machine,
including the approach to issues of high-speed SIMD operation.

Chapter 5 is the performance evaluation. It introduces the benchmark algorithms used
to evaluate the architectural tradeoffs and evaluates architectural tradeoffs such as local
memory size, ALU width, off-chip memory bandwidth and network bandwidth, based on
instruction traces from the parallel algorithms.

Chapter 6 develops an analytical model for the performance of SIMD chips, based on pa-
rameters from the Abacus implementation.

Chapter 7 describes the lessons learned from the design of the Abacus-1 architecture, and
the set of changes required to produce a smaller yet more powerful design. Looking farther
ahead, it introduces modifications that allow a redesigned Abacus element to function in
multiple-SIMD inode, as a systolic processor, or to emulate random logic circuits effectively.

Chapter 8 concludes with the implications of what has been learned from the design and
suggests avenues for future research.
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Chapter 2

Previous and Related Work

Many systems have been developed to perform vision and image processing. The perfor-
mance of the Abacus-1 design must be considered in the context of other major approaches.
When the clock rate is boosted with aggressive design, SIMD machines are more than com-
petitive with other approaches. A survey of previous work on the challenges of high-speed
SIMD design indicates that an effective high speed design has not yet been worked out. Once
such a design is developed, the processor/memory bottleneck becomes apparent. Dynamic
reconfiguration may be used for tuning on-chip memory size to the needs of a particular
algorithm at run-time. After analyzing previous reconfigurable machines it is clear that
none of them have been optimized for this sort of reconfiguration.

2.1 Architectural Design

There has been a considerable amount of research on architectures for image processing
and image understanding. A variety of processor designs and interconnection networks
have been proposed (but few have been implemented). This review concentrates on SIMD
designs and on alternate approaches with comparable performance.

Early examples of machines designed for image processing include Goodyear’s MPP(Potter
1985), NCR'’s GAPP (Cloud 1988), and ICL’s DAP (Parkinson & Litt 1990). The most
widely produced SIMD machine was Thinking Machines’ CM-2. A contemporary commer-
cial product was produced by MasPar (Blank 1990), and recently upgraded to the MP-2
(Tuck & Kim 1993).

There are also several research designs which have not been put into commercial production.
These designs explored different aspects of SIMD architectures. For example, IBM’s poly-
morphic torus (Li & Maresca 1989) concentrated on adding connection autonomy by the
addition of locally reconfigurable network switches. The MCNC Blitzen project (Blevins,
Davis, Heaton & Reif 1988) updated the original MPP design for VLSI technology by adding
on-chip RAM, local modification of addresses, and an X-grid 8-neighbor interconnect, A
unique Some/None network intended for associative processing was stressed in the CAAAP
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Figure 2-1: SIMD System Block Diagram. The five interfaces shown are: local memory,
instruction distribution, global feedback, inter-chip communication, and data input/output,
Although the PEs are shown arranged in an array, most architecture organize them in a
2-dimensional mesh.

architecture (Shu, Nash & Weems 1989) developed at the University of Massachusetts at
Ambherst, As in the polymorphic torus, network switches were locally controlled, but groups
of processors could be electrically connected. This feature allowed efficient connected com-
ponents and global statistics algorithms.

A number of recent research efforts promise to achieve substantially higher performance than
these early designs. A 256-element SIMD array driven by an on-chip RISC-like processor
has been designed at the University of Shefficld (Thacker, Courtney, Walker, Evans & Yates
1994). The performance is reasonable, given the number of processors, but is limited hy
the instruction issue rate of the RISC controller, the low 1/0 bandwidth, and the lack of
off-chip memory support. The Supercomputer Research Center has developed a processor-
in-memory chip which augments a 128 Kbit SRAM array with bit-serial processors at cach
row (Gokhale, Holmes & Iobste 1995). The performance of this design is rather low due to
the small number of PEs and modest clock rate.

An alternate processor-in-memory MIMD/SIMD architecture has been developed by IBM
(Kogge, Sunaga, Miyataka, Kitamura & Retter 1995). The Execube chip incorporates 8
16-bit PEs, each with 64 KB of DRAM memory, and can be operated in SIMD mode from
a global instruction bus. The performance is again rather low due to the long cycle time of
DRAM and because instructions are stored in the same memory as data.

An integrated micro-MIMD chip, integrating 48 16-bit processors and an interconnection
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network on each chip has been designed at UC Berkeley (Yeung & Rabaey 1995). The
IC delivers an impressive 2.4 GOPS on a variety of DSP algorithms and is designed to
communicate efficiently with other chips. However, since each PE’s instruction memory is
only 8 words deep, with no provision for expansion, the architecture is not suitable for more
complex algorithms.

A class of DSP chips, most notably the Texas Instruments C40 and the Analog Devices
SHARC processors, have been designed to support efficient execution over data arrays
and inter-processor communication. These appear more promising than the RISC based
systems, but still lack performance.

Another technology that delivers comparable performance to Abacus and PADDI is the
use of reconfigurable logic as exemplified by Field Programmable Gate Arrays. An array
of programmable logic can be used to configure applications specific hardware and thereby
obtain excellent performance. For example, research at DEC Paris have implemented al-
gorithms ranging from Laplace filters to binary convolutions (Bertin, Roncin & Vuillemin
1993). If the per-chip performance is computed as aggregate performance divided by the
number of FPGA chips in the system, each Xilinx chip delivers approximately 500 million
16-bit operations per second.

Machine Performance | Clock | I/O BW Mem BW Tech

16-bit MOPS | MHz | MB/sec | Internal | External 7
TMC CM-2 8 8 8 32 16 1.5
SRC TeraSys 20 10 5 80 5 !
IBM EXECUBE 50 25 300 400 0 8
TI C40 50 50 200 0 200 8
MasPar MP-2 133 12,6 45 1600 45 1
HP8000 200 200 800 0 960 )
Sheffield DIP 320 40 160 2660 0 l
Xilinx XC3090 500 20 NA NA NA 1
Berkeley PADDI-2 2400 50 800 14400 0 1
MIT Abacus-1 2000 125 1000 | 32000 512 1

Table 2.1: Architectural performance comparison

It is unfair to directly compare the 16-bit performance of Abacus compared to the wider-
width Execube and MasPar PEs, as they incorporate floating-point support. lowever, even
granting a factor of five in area, their performance still lags Abacus. Both of these designs
make the mistake of using single-ported register files. The implication of requiring three
cycles to perform a single instruction is that three times the area could have been allocated
to triple-porting the memory, and the performance per unit area would have remained
constant. In this case, the area refers to the entire silicon area, including communication
pads and support circuitry.

The only architecture comparable in performance is the Berkeley PADDI-2 chip, and it is
not suitable as a general computing element as it can only store eight instructions per PE.
Of course, when the computation task can be expressed as piping data through a systolic
array, the PADDI is an ideal high-performance, low chip-count solution.
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No other research SIMD machine in the literature even approaches the Abacus design in
terms of performance per silicon area on low-precision integer operations. The advantage
occurs for a variety of reasons, including an aggressive clock rate of 125 MHz, made possible
by careful custom design, high density manual circuit layout, and the inherent advantage
of RBP operations.

2.2 High-Speed SIMD Issues

Recently a number of researchers have started to address system-level high-speed SIMD de-
sign issues (Rockoff 1993, Allen & Schimmel 1995, Weems 1994).! The consensus problems
are clock distribution, instruction generation and broadcasting, non-local data access.

Clock Distribution Since the clock skew budget is typically less than 10% of the clock
period, a 200 MHz SIMD array must maintain skew below 500 picoseconds. To overcome
this problem, Weems (Weems 1994) proposes a loosely synchronized SIMD processor, This
degree of complexity is somewhat surprising since commercial chip sets with tunable delay
times are easily available, and the salphasic (Chi 1994) clock distribution scheme has been
used to provide a 160 MHz clocks to 60 system boards with less than 200 psec of skew
across a 10-foot-long system.

Instruction Broadcasting Rockoff (Rockoff 1993) believes that distribution of finely
synchronized instructions to hundreds of PE chips is a fundamental limitation on the clock
rate due to transmission skew. His doctoral thesis is based on the idea of using instruction
caches internal to each PE chip to allow operation faster than the transmission limit. The
approach appears to be a complex solution to a non-problem, since sufficiently frequent
registers along the transmission path can resynchronize the instruction stream.

The cost of this retiming is increased latency in instruction distribution. Allen analyzes a
tree-structured transmission and retiming model to determine an optimal number of stages.
The model is mostly theoretical as it uses RC delays and clock rate as limitations instead
of the actual transmission-line effects encountered at high speeds. Further, there is no good
reason for different stages to have identical fanout factors, since there are differences both
between inter-board and on-board wire delays, and between the receiving circuitry.

The Abacus system design presents a method for synchronized instruction distribution
along widely varying transmission paths that adds programmable delay elements to the
instruction pads on each chip and retimes the signals on a pin-by-pin basis. This scheme
allows propagation variations on the order of several cycle times with a skew equal to the
clock skew.

'Mention Pixel-Planes 5!
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Instruction Generation Another suggested bottleneck in SIMD performance is instruc-
tion generation. The traditional SIMD model is that instructions for operations such as
16-bit addition are sent from the host to the sequencer, where they are converted to a se-
quence of microinstructions to be executed by the PE array. Weems claims that between
20 and 50 RISC-like instructions are required to transform a single array instruction, The
system design chapter presents three instruction generation techniques that in combina-
tion reduce the ratio of sequencer/array cycles to 1. In contrast, Weems proposes to solve
the problem by substantially increasing the complexity of each PE chip to allow on-chip
expansion of broadcast instructions.

Data Cache As in mainstream conventional microprocessors, high-speed implementa-
tions widen the gap between processor speed and main memory speed. The common ap-
proach is to insert a medium-speed memory between the small fast register file and the
large slow main memory. SIMD machines are inherently cache-unfriendly, since any cache
miss by any PE will cause the entire machine to stall, and with a large enough machine,
such a miss is virtually guaranteed. Allen observes that as long as PEs are allowed only
direct meraory accesses, all PEs will either miss or hit at the same time, and therefore pro-
poses direct-only-data caches. This is an interesting approach, but many vision and image
processing algorithms are oblivious in the sense that their execution does not change as a
function of data, and therefore the memory access patterns are known at compile time. As
a result, the compiler can optimally manage the slower memory without using additional
hardware at run-time.

High Latency Issues Allen points out that one of the costs of instruction synchronization
via pipelined distribution is the increased latency of the array response to a sequencer
command. This is an important issue, especially in the Abacus-1 design, which has a 10-
stage pipeline. However, since the global OR computation already requires about 5 or 6
cycles, the extra two cycle cost of instruction pipelining is negligible, especially when the
controller runs at least two (and possibly four) times slower than the parallel array. lFor
any reasonable implementation, the pipeline cost is either zero or one one extra stall cycle
per compare.

In the pathological case of a very tight loop, there is a software technique for reducing the
effect of a pipeline stall. Most iterative code does not damage the solution if it executes an
extra iteration or two. Qur proposed solution is to unroll the loop, checking for completion
only once every 3 or 4 iterations. Since iterative code usually executes for at least dozens
of iterations, the extra two or three iterations at the end are reduced to a 10% cost,

2.3 Reconfigurable Architectures

The basic idea of RBP is the concatenation of several processing elements into a processing
site. The advantages of the technique can be viewed from several angles. First, if an algo-
rithm requires many data bits per pixel, then the silicon area of the ALU is small compared
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with total data area, and therefore adding a few more ALUs will improve performance lin-
early, with a tiny increase in total area. This interpretation assumes that all data is kept
on chip and physically near the ALU.

Bit Serial Reconfigurable Bit Parallel

| ALU ALU ALU ALU
Memory Bit

Figure 2-2: A bit-serial organization compared to a reconfigurable bit-parallel one. Each of
the RBP processors is also capable of acting as a bit-serial unit, if appropriate.

Alternately, RBP may be viewed as a method of adding the appropriate number of reg-
isters to a processing site to minimize the frequency of expensive off-chip accesses. The
improvement in performance is due mostly to decreased stall time rather than additional
ALU bits,

The idea of dynamically changing the data path width to better match the algorithm re-
quirements has been around since the earliest days of SIMD computing. The Illiac-IV,
initiated in 1965 and completed in 1975 (Barnes, Brown, Kato, Kuck, Slotnick & Stokes
1968), had 641 641-bit PEs that could be partitioned as 128 32-bit PEs or as 512 8-bit PEs,
Three years before its completion, work started in Britain on the Distributed Array Pro-
cessor (DAP) (Parkinson & Litt 1990), a bit-serial machine whose PEs could be configured
together with a ripple-carry path to perform 64-bit arithmetic. This capability was not
central to the architecture and operated with one eighth the throughput of the bit-serial
mode. A prototype was produced in 1976 and a commercial model in 1980,

The first VLSI-era member of the class, the reconfigurable processor array (RPA) (Rushton
1989) wa« developed between 1985 and 1989 at the University of Southampton. Although
a chip was designed and fabricated, a full scale computer was not completed. The RPA
uses a mixed approach to reconfigurability. Although each PE processes two bits at a time
and a data word is shared among several PEs, considerable hardware resources are devoted
to supporting bit-slice operations. As a result, each PE is quite complex for a fine-grained
machine.

A substantially finer-grain architecture, Silt (Barman, Boloiski, Camporese & Little 1990),
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was designed at the University of British Columbia between 1988 and 1990. The design
took a minimalist path, exploring the approach of minimal area and high clock speed. The
Silt chip led to the Abacus design presented in this thesis. Work on Abacus began in 1991,
and a full-scale chip was fabricated in 1995.

In 1992, a reconfigurable processor, MGAP, was developed at the Pennsylvania State Uni-
versity. Its key distinction was the orientation towards a fully-redundant radix-4 arithmetic
system. A second generation design, the MGAP-2, was completed in 1996,

Mainstream processors have recently rediscovered and fully embraced reconfigurable pro-
cessing. Driven by multimedia applications with similar characteristics to image processing,
Sun’s UltraSparc, Hewlett-Packard’s PA-RISC, and Intel’s MMX chips all support the par-
titioning of the 64-bit data path into 8 independent byte-wide processors.

2.4 Architectural Studies

SIMD machines are an attractive class of architectures to study since the effects of data path
enhancement can be easily isolated from issues of control circuitry or cache organization
improvements. A number of studies have been done, especially for vision applications.

2.4.1 Normalized Analysis

A methodology for comparing parallel computer performance was described by Holman
and Snyder (Holman & Snyder 1989, Ho & Snyder 1990). They introduced the distinction
between three types of analysis:

1. cost-free analysis, where absolute performance is the relevant metric, and the amount
of consumed resources is not relevant. For example, cache studies are typically cost-
free analyses since the comparison metric is absolute performance, neglecting the
resource cost of the caches.

2. budget-constrained analysis, where different systems are compared under the con-
straint that they use identical amounts of hardware,

3. normalized analysis, where an improvement in a PE is compared to using the same
hardware as the original PE, but using more processors.

The approach is based on the generally true observation that “There are two ways to improve
any parallel architecture using additional hardware - by speeding up the processor elements
or by adding more processor elements.”

There are clearly situations in which neither approach is very effective and indeed can be
counterproductive. For example, in memory-bandwidth or communication-limited designs,
speeding up the PE is not going to have a substantial effect on performance. Similarly,
if the computation is already fully parallelized, with one PE per data item, adding PEs
cannot improve the performance.
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The curious part of the work is that while analyzing optimal data path size, due to a fraction
inversion error, the authors drew the exact opposite conclusion from the data. Specifically,
analysis assumed that any area applied to making a PE more powerful could instead he
applied to create a larger number of simple PEs, and that the resulting speedup is linear,
Similarly, the area cost is linear in the size of the register file and ALU, and quadratic in
the size of the shifter,

by

The machine composed of many simple elements is termed the XPE machine, and the
machine composed of fewer complex elements is the [IPE machine. The basic unmodified
architecture is the BA (base architecture) machine. I'hey derive the following performance
metrics for execution time, assuming SU is the speedup provided by the enhancement, f
is the fraction of instructions affected by the enhancement, and ¢ is the chip arca of the
respective machines.

Tipe = Tga (l -/ + —Sil) (2.1)
c ’
Txpe = TBACI’:::; (2.2)
Combining the two yields
: Txpre _ cBa ( f )"
B e p—1 —_— — 1 —_— — e
et Tipe  cipe 50 (23)

"To choose an example from the paper, consider a 4-bit PE and a 32-bit PE, with area ratio
approximately 1:8. The Batcher implementation has f = 0.75, leading to su = 0.36 (the
paper computed 0.41), This is as expected, since the arca penalty was a factor of 8, while
the performance improvement was only a factor of 3. Nevertheless, the authors conclude
that “the best performance is obtained with a 32-bit data path”,

Chapter 6 shows that the determining factor in this design choice turns out to be the amount
of silicon area dedicated to the memory, and the memory access patterns of the algorithm.
‘The Holman/Snyder model does not account for the diminished storage capacity of cach
simplified PE. I the algorithm needs to access 16 32-bit words per pixel for one iteration,
and only 2 32-bit. words are available, the machine will perform a large number of memory
spills. With the growing gap between processor and memory speeds, this effect becomes
critical,

2.4.2 Simulation-Based Performance Evaluation

A simulation approach to SIMD performance evaluation was taken by Ierhordt (Herbordt
1994). His trace compilation technique compiled traces generated on an abstract virtual ma-
chine for a specific target architecture. The technique can be two orders of magnitude faster
than a detailed simulation. This flexibility allows quick evaluations of different architectural
parameters, such as register file size or communication latency.
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Although the centerpiece of his dissertation is the trace compilation methodology, the tool
was used to perform a number of architectural studies, and resulted in some interesting
conclusions. For example, some studies showed that increasing ALU width substantially
improved performance only up to a width of 8 bits, After that, performance improved only
slightly.

The simulator is an excellent tool for evaluating system performance. It allows the archi-
tect to experiment with different virtualization ratios, datapath width, register file size, and
off-chip memory latency. The potential danger is the unknown effect of the trace compiler
quality on performance. The other inherent problem with the methodology is that algo-
rithms were not optimized on a per-case basis: the same address trace was used for a wide
variety of system parameters. Algorithms designed for the virtual machine are not necessar-
ily optimal for a large memory or narrow datapath variant. Similarly, the virtual inachine
compiler generated code for a uniform memory access model, which is almost guaranteed
to be suboptimal for a contemporary machine with a high disparity between on-chip and
off-chip access times.

Nevertheless, many of the results in Herbordt’s work can be used directly as a starting point
for selecting good concatenation factors for reconfigurable architectures,

2.4.3 Dynamic Concatenation

The performance advantages of reconfigurable architectures due to memory limitations were
first evaluated by Audet et al (Audet, Savaria & Houle 1992), who referred to reconfiguration
as the Dynamic Concatenation Approach. The goal of the research was to determine the
optimal number of PEs to be grouped into a processing site (PS), given particular hardware
and algorithmic parameters. This number is called the concatenation factor, w.

Although the critical issue of off-chip memory traffic minimization was addressed, the pub-
lished work contained some shortcomings. For example, a particularly strange pipelining
model was chosen, and execution times were scaled by factors based on pipelining elfects.
The method of deriving these parameters is based on arbitrary assumptions about compilers
and hardware implementation. Quantifying pipelining effects applies more to a VLIW-style
system where multiple functional units can be triggered by a single instruction. The model
appears to apply to multi-cycle, relatively complex functional units, which are not usually
present in simple, small SIMD PEs.

The model assumes a static type of register assignment: the most frequently used variables
are placed into registers, and the rest into memory locations. Algorithms that use one
variable frequently in the first half of operation, and use another during the second half,
would be forced to assign different registers even if their use did not overlap in time. As the
methodology used UNIX-based C profiling tools to determine the often referenced variables,
it is not clear whether the compilation was optimized for the right number of registers, or
whether loop unrolling optimizations were made.

Virtualization requirements were not considered and program segments appear trivially
short. Further, the only program example shown in detail is of a systolic type. Short
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computation chains between virtual PE synchronizations could lead to a large number of
register save and restore operations. Virtualization could play a large role due to the time
involved in restoring context.

2.4.4 Phase-Specific Reconfiguration

Unlike earlier comparisons that maintained the same concatenation factor (CF) throughout
an algorithm, this work broke vision algorithms into phases, and evaluated the performance
of a particular CF on each phase (Ligon & Ramachandran 1994). They found that changing
CF between phases could improve performance by approximately 25%.
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Chapter 3

Abacus Chip

This chapter describes the design, implementation, and testing of the Abacus-1 chip in con-
siderable detail. After reading this section, the reader should understand the issues involved
in the design of a high-speed SIMD computer. The discussion focuses on the implemen-
tation, assuming that the broad architectural issues were previously decided. Of course in
reality the design did not proceed unidirectionally from architecture to implementation; low
level issues significantly affected the architecture.

The design goals of the Abacus-1 chip were not simply to obtain the highest possible perfor-
mance, but more importantly to investigate issues of high-speed SIMD computers. There-
fore, performance improvements at the cost of higher complexity and lower clock rate are
less desirable than those due to a higher clock rate. Further, the high speed must transfer
over to the system level, so the chip design must handle inter-chip synchronization effec-
tively. Proceeding up the hierarchy, the lessons learned from the design must apply to
practical systems. A critical requirement of real systems is the capability of expanding the
memory allocated to each processing element. Finally, the system must support high speed
(at least real-time) I/O of image data.

A large collection of on-chip subsystems is required to satisfy these goals. The subsystems
can be divided into three broad categories: the processing element core that performs the
computation; the off-chip interface that delivers network, instruction, and data streams to
the core; and the control logic that binds the two together, This chapter addresses each of
these categories in turn,

3.1 Abacus PE Architecture

The Abacus processing element (PE) consists of 64 1-bit registers organized into two banks.
There are two 3-input ALUs, each of which takes two inputs from its memory bank and one
input from the other bank. The four available data bits allow complex boolean functions,
and two result bits can be written in each cycle, one bit to each bank.
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Figure 3-1: Processing Flement Block Diagram.

A PE also has a 1-bit network interface and background I/O interface. Seven of the registers
are used for control, leaving 57 general-purpose registers.
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Figure 3-2: Network

Activity Register Conditional execution of an if (cond) then ... else ... sc-
quence on SIMD arrays operates by disabling those PEs for which cond is true, executing
the true branch, disabling the other set of PEs, and executing the false branch. One of the
Abacus PE registers serves as the activity bit which, when cleared, disables computation
by inhibiting the write of the result to the destination register.

The ability of the ALU to serve as a multiplexer greatly reduces the use of the activity
register. For example, the sequence if A then B < C incurs two cycles of overhead if
implemented with the activity register. Alternately, the operation can be expressed as B «
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mux(A,C|B), eliminating all overhead.

Network The reconfiguration network serves for both bit-slice interconnection and inter-
word communication. The network is a wired-OR reconfigurable mesh. As in a conventional
mesh topology, each PE listens to the output node of one its four mesh neighbors. Fach PE
is provided with a configuration register that specifies which neighbor to listen to. Unlike a
mesh, each PE<an connect its output node to the selected neighbor’s output node. Shorted
nodes behave as a wired-OR bus: if any PEs in a connected chain send a 1, all PEs listening
to the chain receive a 1.

Background I/O Each PE contains a data plane (DP) register, used for background
off-chip data transfers, The DP registers of PEs in a column of the array form a 32-bit shift
register, At the edge of the PE array, the 32 shift registers are connected to an off-chip
memory port, These registers can be shifted without interfering with PE computation,
Although the DP register is not used in arithmetic operations it is essential in hiding the
latency of external memory accesses.

3.2 Processing Element Core

3.2.1 Memory

Design Processor memory size is a critical design parameter as it is the main determinant
of the overall processor size and therefore the number of PEs per chip. Too little on-chip
memory, and machine performance becomes limited by off-chip memory bandwidth; too
much memory and the amount of processing power on a chip drops. Thus, the memory size
should be carefully chosen based on extensive simulations.

In the case of the Abacus-1 chip, the choice was mostly guided by intuition. There are
only a few feasible sizes, ranging between 32 and 1024 bits. The low end of the range is
inefficient as much of the memory is consumed by configuration and temporary bits, The
32-bit configuration, in vertical mode, cannot perform any algorithm that requires more
than two 16-bit data items. The 1024-bit configuration, in horizontal mode, allocates 1
Kword per pixel site, which is far more memory than needed. Two other disadvantages of
larger memories are a longer access time, and more address bits, which translates directly
into higher instruction bandwidth, already one of the more challenging board-level design
tasks, The Abacus-1 design has 64 bits of memory per PLE.

Implementation The 64-bit register file is arranged as two banks of eight rows and four
columns. Each cell is a standard six-transistor SRAM cell. The bit and bit lines are used
single-ended to provide two read ports, allowing four bits to be read and two written in
each cycle.
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‘T'he bitlines are precharged to Vyy — Vi to speed pulldown time and reduce power dissipa-
tion. Precharging is done through the column select transistors, further reducing power by
charging only those bitlines that are about to be read.

The SRAM cell is susceptible to false writes, especially because the bitlines are typically not
charged to opposite values. ‘Thus, the high-capacitance bitlines, charged to opposing values
during the read phase, can act as a line driver, overwriting cells not selected by the column
selects. This problem is avoided by shorting the bit and bit lines during the precharge
interval, even if those lines are charged. In other words, all bitline pairs are shorted, but
only the ones to be read are charged.

One of the key space-saving ideas was Lthe integration of the five control registers and the
network interface into the SRAM array. The initial design included fully static master-slave
flip-flops, multiplexers to connect them to read busses, and separate control wires. This
auxiliary circuitry substantially increased the non-ALU PE arca. In the current imple-
mentation, edge cells in the SRAM array, together with buffers that isolate the internal
data storage node, are used as control registers. In the case of the network and data plane
registers, the multiplexing occurs inside the SRAM cell.

3.2.2 ALU

Design The main design issue of the ALU is its range of computations. 'The initial ALU
design was a 4:1 multiplexer that could compute all 16 two-input one-output functions.
Computation of a full binary one-bit addition therefore required five cycles, emulating all
five 2-input gates,

The limited complexity is due to available data sources and sinks, A single-ported memory
bank can produce only two bits for reading, and can ahsorb only a one bit result. If
operations such as addition are required, the extra input bit must come from another
source such as an auxiliary register or the communication network.

Previous bit-serial computers incorporated dedicated adders and carry registers, Abacus
does not follow this approach because of the additional area and because the circuitry is only
useful in vertical mode, A dedicated full adder circuit would be useful in horizontal mode,
assuming its outputs could he steered appropriately, but it requires three input bits while
the memory only produces two per cycle. The Abacus design’s solution was based on the
realization that the memory required much more area than the ALU. Splitting the memory
into two banks doubles the memory bandwidth and adding another ALU doubles the peak
computing power, If the ALU requires one tenth of the memory area, the twin-bank, twin-
ALU (TBTA) design occupies 1.1 times the area, but has 2.0 times the performance, for an
overall advantage of 1.8 over the single ALU,

A significant penalty occurs because the chip is pad-limited. The inner pad-ring is arranged
in a 56 by 44 rectangle. Without the 20 extra instruction bits (corresponding to 10 double-
cycled pads) the pad ring could be reduced to a 51 by 44 rectangle. Assuming a 170 micron
pad pitch, the area decrease is 6.4 mm?. Since the entire PE array occupies 38.4 mm?, the
extra instruction bits cost an additional 17% overhead. As long as the design remains pad
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SBSA TBTA

Circuit Element | 1 ALU, 1 bank | 2 ALU, 2 bank
Qty | Area Qty | Area

Memory Array 1 205 2 102
Column Mux 8 20 8 20
Read/Write Logic | 1 18 2 36

Aux Logic 1 64 1 64

ALU | 38 2 76
Network l 52 | 52
Total 397 452

Table 3.1: Silicon area requirements of the single-banked, single-ALU and the twin-banked,
twin-ALU designs. As expected, silicon area increases by only 15%.

limited, this effect will grow worse as technologies scale down, mostly because the pad size
stays constant while the PE density improves. Thus, any design decision that increases the
number of chip pads should be considered carefully. This is an important example of how
architectural analysis must be done at all levels of design in order to be accurate.

The algorithmic advantage is more difficult to quantify. Each 3-input ALU can perform an
arbitrary 3-input operation each cycle, which could take a 2-input ALU at least 3 (and as
many as 5) cycles. To see this, consider the an arbitrary function of three boolean variables
Z = (A,B,C). Using the Shannon expansion, Z can be expressed as

Z=z'fA=0(B’C))+A'f/l:l(B!C) (31)

where the two subfunctions are obtained from the truth table entries corresponding to
the cases where A is 0 and 1 respectively. Most useful functions are actually simpler.
For example, consider the the multiplexing operation Z = (!A & B) | (A & C).! For this
function, fa=o(B,C) is simply B, and steps | and 3 of Figure 3-3 can be eliminated.

Converting to two 3-input ALUs improves the peak bit-manipulation performance by a
factor of ten, but several effects limit this improvement. First, the addressing is limited to
sharing certain bits between the two banks. Second, these five-cycle operations are relatively
rare. Third, data dependencies require waiting for bits to arrive from the network.

Table 3.2 shows the number of cycles required per arithmetic operation, including reconfig-
uration overhead. The ratio is about 1.75. Of course, the proper instruction mix for real
applications should be evaluated for true improvements, but this analysis suffices to bound
performance improvement in the range of 1.25 to 2.1,

There is another subtle effect of a more complicated ALU. A 2-input ALU can require up to
two temporary storage locations to evaluate most 3-input functions, When operating near

!This function is used frequently when some bits must be conditionally updated, The idiom is Z :=
mux(flag, Z, newZ),
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T1 = £0(B,C)
Tt = T1&'A
T2 = f1(B,C)
T2 = T2 & A

Z = T1 +T2

Figure 3-3: Evaluation of an arbitrary 3-input function by a two-input ALU, Two auxiliary
memory locations are required.

Operation SBSA | TBTA

(cycles) | (cycles)
Add 9 4
Shift 4 3
Grid Move 7 6
Accumulate 10 4
Average 7.5 4.3

Table 3.2: Number of cycles required for common operations in horizontal mode, The count
includes reconfiguration cost.

the memory capacity, two memory spills can have a substantial effect on performance.

We can now evaluate the overall advantage of the twin ALU design. The area cost is
dominated by the pad ring increase, and is a factor of 1.35. The performance improvement
is 1.75. Thus, the overall advantage of the design is only about 30%. This advantage will
increase slightly as compiler technology improves and as memory accesses become more
expensive.

Implementation. Each ALU is implemented as a precharged 8-to-1 multiplexer that uses
three data bits to select one of eight instruction bits, Initial design used predecoded cells but
this was slower and larger due to the non-regularity. This design does have four transistors
in the pulldown path, but the timing and capacitances are designed to minimize the body
effect and reduce charge-sharing problems.

Immediate Constant. The ALU also incorporates an additional circuit that allows the
architecture to support effective constant distribution, Without this feature, there is no
clean method of distributing a run-time value generated in the scalar unit to the array.
Indeed the only way of transferring such a value would be to send it via the image [/0
interface.

Instead, the output of the left ALU passes through a NAND gate controlled by a global
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wire common to each column of PEs. In normal operation, these 32 global “literal” wires
are held at 1. When a constant is to be loaded, the instruction decoder generates a set
ALU op code, and loads the literal bus with the logical inverse of the constant. Thus, in
every column whose bus is at 1, the result will be forced to a 0, as desired.

3.2.3 Network

Design The two questiuns in network design are where the PE obtain its network data
and how does it route data around itself. Two alternatives of routing data are shown in
Figure 3-4. The first, the two-channel crossbar, allows messages to pass in a wide variety
of directions. For example, the PE can connect the north port to the east port while
simultaneously connecting the west port to the south. The second is far less flexible, and
can only make one connection.

The original network design used four independent switches in a mesh topology. Each
switch had a dedicated control register. The independent switch control allowed many

cluster configurations.

2-Channel Crossbar  1-Channel Switchpoint

Figure 3-4: Various network types. The Abacus type is of the single channel, but even more
restrictive in that each PE can turn on only one switch.

The price of this flexibility is additional registers and increased reconfiguration time, If a
register is allocated to each switch, the four registers represent 5% of the total addressable
registers, More importantly, reconfiguration time doubles. Even with dual ALUs (which
were added primarily to speed reconfiguration), two cycles are required to change topology.
Since reconfiguration may be required after each arithmetic operation, and since most op-
erations require only two or three cycles, the additional 1 cycle penalty is a perforinance
hit of approximately 20%.

Reconfiguration time can be reduced at a slight loss in flexibility, Since information flow in
arithmetic operations is usually along the MSB/LSB path, configuration in a line is usually
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Arithmetic Broadcast Grid Move

Figure 3-5: Various network configurations. Arithmetic, bit broadcast, and mesh move
modes are shown. For example, broadcast of a bit to all 16 cluster elements can be done
with only 8 (2V/N) switch delays if the cluster is configured as a tree with fanout of 4,

sufficient, The design implemented in Abacus-1 incorporates a decoder to select only one of
the four switches, and a connect configuration bit that controls whether any of the switches
are activated at all. The addressing cost of the two approaches is not substantially different:
three registers instead of four. But now, changing reconfiguration directions requires only
one cycle, and conditional bypass, another frequent operation, also requires only one cycle
instead of two.
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Figure 3-6: Network Block Diagram. Magnified view and mesh view.

Implementation. The on-chip communication network consists of a precharged output
node and four isolating switches. The node is a simple precharged inverter whose input is
driven by the network output register. The four switches are NMOS transistors driven by
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a 2:4 precharged decoder.

Communication with signaling times longer than a cycle period is performed by controlling
network precharge via software. As long as precharge is turned off, processors connected to
a bus node continue to discharge it.

Propagation delay across a series of pass transistors is usually quadratic in the number of
devices. This delay is greatly reduced by a local accelerator circuit at each node which
regeneratively pulls a node to ground as soon as the node voltage drops by a transistor
threshold. The circuit is a dynamic NORA style circuit and is well suited to the precharged
operation of the network. We found it to be several times faster than an implementation
based on a complementary inverter. At the nominal process corner, simulations show that
a bit propagates through 18 switches and long network wires in one 8 ns cycle.

T—
Precharge
BLIP_Q r_—q ) Precharge
A * .
NetData L)————{ 12 'l"_
12 | :Ll

NetNode <->\r

Figure 3-7: Network accelerator in the NORA circuit style,

This circuit has a noise margin of Vr, so careful layout was done to reduce coupling ca-
pacitance to the pre-discharged node. Further, the chip is provided with on-chip bhypass
capacitance and over 200 power and ground pins to reduce dI/dt noise.

3.2.4 Data and I/O Planes

The architecture supports a background loading mechanism for both the external memory
data and image data. Data is shifted through the PE array without interfering with com-
putation. One memory location in each PE is dedicated as the data plane (DP) registers.
All DP registers in a column are connected in a 32-element shift register. This shift register
is clocked by a global signal. The PE addresses the DP register as a normal SRAM cell,
and is not aware of the alternate write path.
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3.2.5 Global OR Operation

The global OR (GOR) mode is used to signal completion of some computation by the entire
PE array to the sequencer. Off-chip, the GOR is computed by dedicated logic. On-chip, the
GOR can be computed with the multiple-writer capability of the network. In this mode,
all PEs connect their network nodes into one chip-wide node. The shortest propagation
path is obtained by connecting all PEs in a row to the left-most PE of that row, and then
connecting all left-edge PEs together vertically, as in Figure 3-5. The on-chip evaluation
time is five cycles in the worst case.

3.2.6 Layout Summary

‘The simplicity of each PE resulted in a compact, 83 micron by 453 micron implementation
in a 2.6 micron contacted metal pitch technology.

Subsystem Area | Percentage
(Kp?)

Memory 22.9 61.0

ALU 6.3 16.8

Network 6.2 16.6

Misc PE 1.2 3.1

Data Plane 1.0 2.6

Table 3.3: PE Area resources

This data differs from the earlier table in that configuration registers are now allocated to
the resource they serve instead of to the memory array. For example, there are four control
registers (2 select, 1 connect, 1 data) dedicated to the network. Similarly, two are dedicated
to the I/O and data planes.

Figure 3-8: PE Layout with the second layer of metal removed. ADD OVERLAYS
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3.3 On-Chip Signal Distribution

A previously unanticipated design task was the challenge of distributing control signals
to the PEs. As discussed in Section 3.3.3, there are four phases in the clock cycle, and
each phase must complete before the other can begin. For example, all word lines in the
register file must be unasserted while bitlines are being precharged, and any overlap may
cause memory cells to be overwritten. This nonoverlap is guaranteed by separating the
clock phases sufficiently to account for the worst case rise/fall times. Signal transitions that
occur in the same phase but must follow each other are separated by inserting an inverter
or two as delay elements,

There are two problems with this approach. Given 8 ns cycle time of the PE, each of the
four phases has only 2 ns to rise, stay level, and fall. This means that even if the level
time is 1 ns long, each rise/fall time must be 500 ps or less. This is an aggressive RC
product, given the long and narrow signal wires and the high gate loading of the wire. The
usual technique of simply widening the signal wires cannot be used due to the wire density.
The second problem is that even if the four phases can be safely separated, non-overlap
within the cycle by using inverters as delay elements may not work because the variation in
wire loading may dwarf inverter delays. Both of these problems can be addressed by local
buffering of the global signals.

3.3.1 Load Equalization

Local buffering both reduces the load on each wire and decreases the variation between
signal arrival times due to unequal loads. This section describes the calculations used to
obtain the load values, wire widths, and row buffer sizes.

In addition to reducing the capacitive load by local buffering, the RC product was improved
by reducing wire resistance by widening the signal traces. Although the wire capacitance
increases, the lowered resistance decreases the effect of the load capacitance, as shown in
Equation 3.2,

7 = RC = (Ryjre + Ryriver) (Cwire + Cdriver) (3.2)

The equation can be made more rigorous to account for the distributed wire loads and the
lumped driver load, but those calculations do not capture the most difficult characterization:
the variation in wire capacitance due to fringing fields and to the material underlying
the wires. Further, the wire pitch, and therefore width and spacing, undergoes different
constraints in different parts of the circuit. Instead of obtaining an analytical solution for
the wire width, spreadsheet models were developed for common wiring situations and driver
configurations, and used to determine case-specific trace widths,
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3.3.2 Layout Issues: The Trench

The Abacus-1 design had to deliver 76 signals across a | cm chip with very little skew even
though the array is tolerant of gradual signal skew across the part since communication is
purely local. Problems arise in two cases: intra-PE signal skew and interfaces to logically
synchronous zones at at the pad ring. The task was decomposed into two parts: delivering
the signals to the horizontal row drivers and then their outputs. Vertical signal delivery
was not an issue due to the low resistivity of the metal 3 layer. The design easily tolerated
high uniform latency in instruction distribution so the row buffers could be composed of
several scale-up stages. As a result, the loads presented to the vertical wires were that of
minimum sized inverters, and therefore dwarfed by wiring capacitance. The vertical wires
were metal-3, 3.2 microns wide, and spaced by 3.3 microns. The nominal capacitance of a
7 mm vertical wire is 2.5 pI°, and the nominal resistance is 75 ohms. The distributed RC
delay of this wire is only 184 picoseconds.

The problem arises after the signals have been delivered on the vertical wires. The row
buffers are rather large, and there are 152 of them packed into one PE height, 76 for each
side. This occupies a significant area, and spans 1.1 mm! Fully one-sixth of the core area
is dedicated to these buffers. To connect a row buffer at the extreme edge of the trench
to the vertical wire requires a horizontal wire of 500 (nicrons. This horizontal load almost
doubles the signal capacitance, and therefore skew. Also, a little bit of horizontal skew is
introduced, as the row buffer output wires end up differing in length, depending on the
buffer position.

3.3.3 Timing

The processor timing is driven by the basic design choice of double-cycling the register file
to perform a read and a write operation in one cycle. The cycle starts with the instruction
clock, which clocks out the decoded instruction bits., At the same time, the word lines are
gated off to avoid overwriting memory cell contents in the upcoming precharge interval.
After the word lines are safely off, , the bitline precharge signal is asserted. This signal
enables precharge transistors onto the A and B busses, charging them, and the bitlines that
are about to be read. The column selects must therefore be stable at their read phase values
during this phase. A circuit diagram of the memory system is shown in Figure 3-9.

After the bitline is unasserted, the read phase executes. The word lines are enabled, allowing
the selected SRAM cells to pull down their respective bitlines, and through the column
selects, to pull down the A and B lines. When the read cycle is over, the contents of the
A and I busses are latched on a simple NMOS dynamic latch. The ALU evaluate cycle
begins next (the ALU evaluate is the read signal delayed by one inverter). All inputs to
the ALU were guaranteed high for long enough during its precharge phase (since the A and
B busses were precharged). The ALU outputs are stable until the next read cycle. During
the ALU evaluate the bitlines are equilibrated and precharged. As in the read precharge
phase, the word lines must be gated off. During this off interval, they may safely transition
to the write addresses,
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Figure 3-9: Memory read and write path

When the ALU cycle completes, the write cycle begins. The write is a double-sided write
and occurs through the write enables, the column selects, and the SRAM pass transistor,
so it is fairly slow. In fact, once the coupled inverters are flipped to their future state, the
write completes slightly into the next cycle. This delay is safe because the written state is
not examined until after the precharge phase of the next cycle.

The write signal also controls the network precharge/evaluate timing. As soon as the write
is over, the network evaluates. The dynamic decoder evaluates and selects one of the four
switches. Simultaneously, the X node is pulled down (or not, based on the NetData register).
Thus, for neighbor to neighbor communication, the just written bit has the combined time
of the bit precharge period and the read period to propagate to the neighbor and pull down
the bitline.

3.4 External Interfaces

3.4.1 System Synchronization

Careful synchronization is essential to a high-speed SIMD architecture. On the Abacus PE
board the system clock is distributed in differential ECL to each PE chip. Propagation
delays are matched by snaking traces so that trace lengths are equalized. To compensate
for skew introduced by process variations in the on-chip clock distribution, each chip phase
locks its internal clock to the received clock. Phase locking is performed by a delay locked
loop (DLL) based on a mostly-digital delay line with a fine-tuning analog section. The
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Figure 3-10: PE Timing,

DLL uses the simple and accurate arbiter circuit shown in Figure 3-11, The arbiter has a
symmetric 30 ps uncertainty window at nominal process.

The next design issue is the choice of which of the several signals should be synchronized
across chips, There are several internal clocks: instruction register, PE register read, net-
work precharge, etc. Abacus synchronizes to the clock that drives the mesh output pads.
As a result, off-chip communication is synchronized system-wide.

3.4.2 Instruction Distribution

A spatially distributed SIMD system must ensure not only that all clocks are synchronized,
but also that all chips are executing the same instruction at the same time. Several effects
complicate this requirement.

First, signal propagation time across a large circuit board is significant at high frequencies.
Propagation time is approximately 2 nanoseconds per foot. Thus for a 60 cm board, chips
near the distribution point receive their signals four nanoseconds before chips on the far
edge. Even wires connecting to the same chip can deliver signals at slightly different times
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Figure 3-11: Arbiter used in the delay-locked loop

due to routing differences. For example, wires routed on outside PCB layers experience
a different effective ¢, and therefore different propagation velocities. Finally, PCB thick-
ness variations can cause impedance variations that affect signal velocity. Two common
techniques to overcome this problem are snaking traces to equalize propagation delay, or by
using specialized clock distribution parts with programmable delays such as the ClockWorks
family (Synergy 1995). Neither technique is feasible for a board with four 30-bit instruction
busses running at 250 MHz.

Another source of instruction skew is the variability of discrete parts in the distribution
path. For example, the clock to output delay on a high-performance ECL shift register has
an uncertainty of 0.4 ns. A signal traversing two parts can be skewed by a much as 0.8 ns.
The combined effect of these skews is that some chips receive an instruction a cycle later
than others, even though all chips are supposed to be executing the same instruction at
once. Worse yet, bits of an instruction can be mixed with bits of the next instruction due
to component variability.

Thus, the instruction distribution scheme must solve three problems. First, it must sample
safely within the 4 nanosecond data window. Second, it must align all bits of an instruction
to arrive at the same time. Third, it must align instructions across all chips in the system.
The Abacus-1 instruction pads incorporate retiming logic, shown in Figure 3-12 that solves
each of these problems in turn. Retiming occurs as part of the system startup process and
proceeds in three stages.

The sampling alignment stage first finely adjusts the delay of each bit until the sampling
clock transitions safely after the data is stable. The variable delay is performed by an all-
digital delay line consisting of inverter chains and multiplexers. A binary value generated
by a free-running counter selects the delay. The counter runs until the sampling clock
transitions after a delayed version D’ of that data. That event disables the counter, freezing
the delay. Ideally D’ is one quarter of the cycle time, so that the sampling occurs in the
middle of the data valid period, but the quarter-delay line is limited to approximately 30
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Figure 3-12: Instruction Pad Block Diagram,

inverter delays. Notice that the instruction generator must ensure that the data transitions
on every cycle during this phase,

Once this phase is complete, the bit alignment stage lines up all instruction bits. This
technique proceeds by passing the received data bits through a shift register. The shift
register outputs are ORred together to generate a got_one hit. As soon as all instruction
pads assert this bit, the shift register is disabled. The position of the leading one selects
the delay to be applied to the data of that particular pad by selecting the tap location from
another tapped delay line.

Finally, the instruction sequencer performs the system-wide alignment phase by broadcast-
ing instructions and using the global OR feedback to determine the delay to each chip. Once
this delay is known, the sequencer uses the boundary-scan interface to set a register in each
chip that determines another delay to be applied to all pads in the chip. To eliminate the
need for yet another delay line, the control register value is added (in unary) to the delay
computed in the previous phase, and the sum is actually used to select the tap location.

The development history of this design is somewhat interesting. When it became apparent
that instruction distribution time was comparable than cycle time, a proposed design used
the PE chips as pipeline registers, receiving and sending instructions point to point. To
synchronize instruction execution, successive chips in a column would have to execute out
of different stages in an internal instruction buffer. A natural next step is to unpipeline
the process, and have the chips load the internal delay buffer direction from the bus. Once
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the idea of cycle-level delay is accepted, it leads to using nanosecond-level delays at the pin
level.

3.4.3 Inter-Chip Mesh Communication

The next system level challenge is to provide synchronous high-bandwidth, low-latency
mesh communication between PE chips. Due to pin limitations, the edges of the 32 by 32
PE array on each chip are time multiplexed onto 16-bit ports, The required clock rate is
therefore 250 MHz, which presents a number of design problems.

Chips are separated by significantly varying transmission times. For example, chips on
board edges communicate over wires as long as 2 feet, while neighboring on-board chips are
separated by less than two inches. Also, different signal paths have different propagation
speeds. For example, the ribbon cables used between board have a characteristic impedance
of 90 ohms, compared to 50 ohms for PCB traces, and are therefore almost twice as slow.

Process skews between chips introduce more differences. Although the chips are synchro-
nized at the start of a cycle, subsequent edges diverge in time. Therefore, the faster chips
can sample the second transmitted bit too early, getting a copy of the first bit,

Unlike the instruction pads, the mesh port design assumes that all wires in a port are
bundled and experience similar delays. Each of the four mesh ports sends out an escort
clock along with the data. Since the off-chip drivers and propagation time are identical for
data and clock, the receiving chip can safely use the escort clock (delayed by the setup time
of the receiving registers) to sample the data. Metastability problems do not arise as data
is sampled well before the receiving data needs to use it.

The communication pads are driven with custom 1V, on-chip series terminated drivers and
matching receivers in order to minimize power dissipation and transmission line reflections
(DeHon, Thomas F. Knight & Simon 1993). Impedance calibration for the series termina-
tion is performed at system initialization. Each of the four ports on a chip is calibrated
independently, since on-board and board-to-board impedances may differ.

In addition to the pipelined, high bandwidth mode of operation, the mesh pads can operate
in a flow-through mode that bypasses the on-chip pulldlown network with a single wire,
allowing fast multi-chip broadcast algorithms. Propagation through a chip is reduced from
three clock cycles to half a cycle, However, the time multiplexing is disabled, reducing the
effective bandwidth. This was added to investigate the practicality of algorithms designed
under the architectural model of meshes with reconfigurable busses.

Crossing a chip boundary costs an extra cycle for move operations. That occurs because
on-chip nearest neighbor is on the edge of making it to the adjacent processor, never mind
across a board. (Note that with aggressive cycle times, worst-case travel in a real system is
at least a cycle time).
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3.4.4 External Memory Interface

Any SIMD architecture that does not support relatively efficient access to off-chip memory is
simply unable to process to data sets that do not fit in the small on-chip memory. This type
of hard limit does not fit the common expectation that a computer should be able to process
larger than optimal data sets, albeit at a performance degradation. Any such architecture
is limited to algorithms with little memory requirements such as systolic processing,.

Each Abacus PE chip is backed by two IM x 32 specialized DRAM modules. The data
interface is 64 bits wide and operates at 16 ns, which matches the 32-bit, 8 ns PE array.
The 16 ns cycle time is made possible by the Ramtron extended DRAM part, which contains
an SRAM cache integrated in the DRAM. When an address not in the cache is referenced,
a relatively slow (35 ns) DRAM read cycle is initiated, and in each memory chip, 512 bits
are loaded into the SRAM cache. The long DRAM read latency is encountered only once,
after which all reads operate at SRAM speeds. This mode of operation is ideal for the
block transfer requirements of Abacus, in which 1024 PEs request a bit stored in the same
address,

Control signals for the memory chips are synchronized to the PE chips by sending them as
part of the instruction stream. Fine control over DRAM timing is made possible by the
small instruction cycle time, which is comparable to that of a dedicated DRAM controller.
A useful side-effect of this approach is the elimination of memory glue logic, and the ability
to use different memory components by changing only the control software. A counter in
each PE chip generates the external memory addresses. This counter can be loaded from
the top row of the PE array, allowing indirect addressing,

3.4.5 Image I/O Interface

While early SIMD designs were concerned with limited image [/O bandwidth, it is not an
issue today’s high-speed designs. Since I/0 is distributed among 256 chips, a single pin on
each component results in a very wide bus.

The Abacus PE chip has a one-bit single-ended ECL input and a one-bit differential ECL
output for external data I/0Q. The aggregate bandwidth of a 32-byte, 125 MHz bus is
4 GB/sec, which is almost three orders of magnitude than the 7.7 MB/sec required by
512 by 512 images at 30 Hz. The I/O bottleneck, if anywhere, is clearly going to occur
upstream of the PE array. This very high I/O bandwidth makes the architecture well-suited
to applications requiring real-time processing of large amounts of data such as video and
synthetic aperture radar.

The [/O bandwidth can be scaled down to reduce the interface logic and wiring cost. For
example, if only the 16 chips comprising the top row of the 256-chip array were connected,
the 4 GB/sec bandwidth would be reduced to 250 MB/sec, which is more than an order of
magnitude higher than frame rate,

A single PE instruction initiates a burst transfer of 32 bits from the edge of the PE array
to the output pin (or from input pin to the PE array). This background transfer frees the
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array to perform computation, or in the case of the lower cost interface, to use the mesh
connections to shift data towards the connected chips.

3.5 Chip Floorplan and Control Logic

The chip is organized into three major parts: the PE array, split into two halves; the
control signal drivers in the middle; and control logic at the left, as shown in Figure 3-13.
The control logic includes address decoders, instruction decode, external memory control,
and a scan path controller. The PE core is organized as 16 strips of 64 PEs each. Each
strip also contains two sets of 76 buffers that drive control signals outward from the center,
Skew is reduced by distributing signals vertically in a lightly-loaded metal-3 bus, buffering
horizontally with identical drivers, and equalizing the load on each horizontal control wire.

The Abacus PE chip contains several mechanisms required for high-speed system-level op-
eration: skew-tolerant instruction distribution pads, high-bandwidth local DRAM interface,
low voltage swing impedance-matched mesh pads, and low pin-count I/O interface.

System Area | Fraction
mm? %

Pad Ring 24.23 25.4
Control Logic 9.43 9.9
PEs 38.30 40.1
Row buffers 7.95 8.3
Busses 13.09 13.7
Edge Interfaces 2.57 2.7
Total 95.57

Table 3.4: Chip Area by Subsystem

The PE array formed approximately 40% of the chip area and 56% of the chip core area.

3.56.1 Timing Generator

The timing generator is a straightforward design, based on tapping a delay line composed
of inverters. Clocks are generated by ANDing a tapped signal and a delayed version. This
method provides an accurate method of generating pulses quantized in terms of inverter
delays, and therefore tracking process variation. Another useful property of this timing
method is that all clocks are generated from the leading edge of the delay line input, so the
chip can operate at a variable clock rate.

The timing generator includes a debugging feature that doubles the delay of each inverter
stage by opening a pass gate to a capacitor. This technique stretches out the clock waveforms
uniformly, affecting both pulse widths and pulse start times, The feature was intended to
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allow testing of the chip in case the original pulse widths were too narrow. The original
design was based on an analog-controlled delay line (Johnson 1988), in which the voltage
controlled the gate voltage on the switch. This flexibility was unnecessary and routing an
analog line to each chip in a system was judged to be impractical,
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Figure 3-14: Time Unit,

3.5.2 Pad Ring Summary

3.5.3 Instruction Decode

Instruction decode is very simple, primarily because the instruction word is effectively hor-
izontal microcode. The decoder logic is equivalent to approximately forty two-input gates,
A sizeable fraction of those gates detect when a special instruction is specified, Once that
occurs, further decoding of special instructions requires at most two more gate delays. Ordi-
nary instructions are not decoded at all; addresses are sent directly to the address decoders
and ALU op codes directly to the pipeline registers. Including the address decoders, the
logic depth of the decode stage is approximately eight gates,

3.5.4 TAP Control

T'he Abacus chip incorporates a standard IEEE Test Access Port ('TAP) interface. This
interface is used not only for testing the chip, but is a necessary part of system initialization
and configuration. It is used to initiate clock synchronization and instruction pad retiming,
to program impedance settings on the mesh communication ports, and to inform each chip
about its location on the circuit board.

The test interface provides access to the decoded instruction pipeline registers., ‘These
registers can be scanned out to evaluate instruction pad functionality or scanned in to
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Pins Number | Direction | Voltage | Freq
Grid clock in 4|1 v 250
Grid clock out 410 1V 250
Grid data 64 [ 10 v 250
ECL Vref 1|1 ECL DC
Clock 211 ECL 125
Data In 1] 1 ECL 125
Data Out 210 ECL 125
Global OR 210 ECL 125
Instruction 301 ECL 250
DRAM address 1110 CMOS | 62,5
DRAM control 1010 CMOS | 62.5
DRAM data 64 | 10 CMOS | 62,5
TAP in 4|1 CMOS 125
TAP out 110 CMOS 125
Debug 410 CMOS 125
Total signal 204
Power (5V) 74
Power (1V) 32
Ground 114
Total 424

Table 3.5: Pin Requirements

override the instruction decoder and allow testing of the PE array in case of a design fault.

The current design has a fault in that the initial value of the pipeline registers upon powering
up is unknown. As a result, all decoded address lines could be activated and cycling at the
full clock rate. Thus, until a correct bit pattern is scanned in, power consumption could be
higher than in normal operation.

3.6 Design Style

The high clock speed of the Abacus-1 chip is due to careful circuit design and physical
layout. This section identifies the factors that contributed to fast execution.

Layout Style. The processin; '‘ment was implemented entirely in full custom using
the Cadence tool suite. A number of small standard cells used in the control logic were
synthesized from schematics, The control section, including instruction decoding and TAP
control, was assembled from these cells and interconnected with a greedy router locally
developed by Larry Dennison. The router introduced some layout violations, and those
errors were manually corrected,
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Layout synthesis was also used in creating the scan registers surrounding the instruction
decode, but this turned out to be a mistake. A rough estimate indicates that a manual
layout would have required approximately the same amount of design effort, and would
have achieved almost 30% area reduction.

A substantial contributor to layout density was the use of vendor-specific layout rules instead
of the common scalable design rules provided to universities by MOSIS. The effort invested
in customizing the Cadence tools to the Hewlett-Packard technology was quickly repaid, as
the area penalty due to scalable rules is estimated at 40%, especially for full custom layout.

Circuit Design. A number of design principles independent of layout optimizations con-
tributed to the high clock speed.

1. Dynamic logic was used extensively in the ALUs, network configuration decoder, and
the network pathway itself.

2. As a corollary, the design was optimized to use mostly NFETSs for pass gates and
precharge transistors. Not only are N devices smaller, leading to denser layout, but
they also load the control signal more lightly.

3. Global signals were carefully distributed by the use of matched wiring, driver buffers,
and dummy logic elements. As a result, timing was more predictable, enabling smaller
timing margins.

4, Some circuit elements were used for multiple purposes. For example, precharging
bitlines through the column select transistors required only one precharge transistor
per bus, instead of one per bitline.

5. Noise margins were sacrificed where necessary. For example, the bitlines were precharged
to a Vr drop below Vyq. Also, inverters were ratioed based on preferred transition
directions. Thus, if a particular node was precharged high and evaluated low, the
corresponding inverter was ratioed to switch at a higher voltage.

6. Dynamic latches were used to capture data and allow the previous stage to be reset
as soon as the data was latched. This increased the effective recovery time.

7. Signal buffering was optimized both at the schematic and layout levels, A tool was
written to probe a wire in a schematic and calculate its total capacitive load. As the
design changed, the program constantly recalculated optimal buffer sizes. A layout
macro was optimized to generate a fingers-style layout (Weste & Eshragian 1993),
greatly reducing parasitic diffusion capacitance.

Functional Optimizations. Some performance optimizations relied on the use of soft-
ware to compensate for layout quirks. For example, reading from the network port produced
the inverse of what was written, Correct execution depended on the assembler to detect the
network port as one of the sources and modify the ALU operation, relying on the flexibility
of the ALU to generate a compensating function.
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Another class of optimizations arose as a result of removing abstraction boundaries. For
example, reading from the bit bus results in inverted values, but this value need not be
corrected until it reaches the ALU inputs, and there the correction need not add an inverter
delay but simply reverse the outputs of a local buffer,

3.7 Testing the Chip

This section describes the methodology and results of testing the chip. Its primary purpose
is to document the testing environment to validate the test measurements.

The test setup consisted of four hardware and software modules: the test board itself, a
clock driver, a scan controller, and a Sun workstation, The test chip was mounted on the
test board described earlier. The clock was provided by a clock board which was essentially
an ECL flip flop in a divide-by-two configuration connected to an oscillator socket. The
socket was driven by an ECL-level oscillator or a waveform generator for high and low-
speed tests, respectively. ‘The flip-flop ensured that the clock duty cycle would be close to
50%. The scan controller was a DSP board based on the TI C30 processor. The controller
interfaced with the test board through a four-wire CMOS-level IEEE TAP interface. A Sun
workstation communicated with the controller through a conventional RS-232 interface.

3.7.1 Test Board

The test board consisted of 12 layers, as described in Table 3.6. As well as testing the
chip, designing the board served to demonstrate that routing of the fairly wide busses, both
instruction and mesh, was possible. The routed single-chip wiring can easily be replicated
as a macro route multi-chip boards. Six signal layers proved sufficient to route all signals.
The test board also demonstrated that PCB design software was able to route differential
ECL signals well.

The board wiring methodology was controlled impedance offset stripline, with horizontal
and vertical pairs of routing between two power or ground planes. These planes isolated
the layers, and the orthogonal orientation between the planes ensured that signals within
the same ground plane pair did not couple over long distances.

The board accepted four separate power supplies. Even though the ECL circuits were
operated at CMOS levels in offset mode, between 0 and 5 volts, instead of -5.2 V and 0 V,
the board also included a 3 V termination voltage plane, and a 1 V mesh signaling plane,

The top and bottom layers of the PC hoard were not used for wiring. The bottom was
unused because the dense wiring area around the PE chip was covered by the interposer
clamp block.
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Layer | Name | Orientation | Purpose

1 { TOP | Random SMT/via connectors.

21t Vrr Plane ECL termination voltage. Tied to 2V.
3| X1 Horizontal | Routing

41Y1 Vertical Routing

5| Vcc | Plane Positive power supply. Tied to 5V,
6 | X2 Horizontal | Routing

71Y2 Vertical Routing

8| Veg Plane Negative power supply. Tied to 0V.
91 X3 Horizontal | Routing
10 [ Y3 Vertical Routing

11 | Veg | Plane 1 V power supply. Tied to 1V.
12 { BOT | Plane Negative power supply. Tied to 0V.

Table 3.6: Board Stackup

3.7.2 Test Process

The chip was tested through the Test Access Port (TAP) interface as follows:

1. The user writes a C-based test program on the Sun workstation using calls to the
Abacus assembler library.

2. The test program runs on the Sparc and generates a driver C program targeted for
the DSP board.

3. The user downloads the driver object code to the DSP board.

4. The driver runs on the DSP board and uses the C30 digital I/O ports to control the
TAP interface on the Abacus chip.

The clock board was driven by one of two crystals, either 200 MHz or 160 MHz, or a
waveform generator with a maximum frequency of approximately 25 MHz. Since the clock
board divided the clock by two, the resulting chip test speed was either 100, 80, or 12.5
MHz.

3.7.3 Test Results
All data shown in this section was obtained with a Tektronix TDS 460 digital sampling

oscilloscope. The probes were custom low-capacitance 21:1 shop probes made with a | KQ
isolating resistor and RT58 coax cable.

Heartbeat monitor. The first test was to ensure that the differential ECL clock signal
was received properly and reached the on-chip timing generator. One of the four debug pins
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output a copy of the Read clock taken from the eastern edge of the PE array, This 3.3 ns
pulse is shown in Figure 3-15, As expected, the pulse occurs a fixed amount, of time after
the rising clock edge and is not affected by the duration of the clock period.

Tek Run: 10.0GS/s ET Sample
% 1

A 3.3ns
®: -2.9ns

2 44T o s

M5.00ns Tha 1 BmV

Ch3 20.0mvQ ch4 100mvQ

Figure 3-15: The heartbeat monitor: a copy of the read clock.

TAP Interface. The next testing step was to communicate with the TAP interface,
Figure 3-16 shows the output of the serial TDOQ (TAP Data Qut) pin after the reset signal
was asserted, This test demonstrated that the TAP was functional and that further testing
could proceed.

I/O Burst. A bit pattern was loaded into the top PE row with the literal load command.
[t was then transferred to the I/0 plane, and then to the output register. Finally, the I/0
burst was enabled to produce the waveform shown in Figure 3-17. The specific bit pattern is
0xFF30A7. The pattern is reversed, since the LSB appears first on the output of the scope.
The ground/supply voltage bounce is about 200 mV. Although only a single- ended trace
is shown in the figure, the output is driven differentially, eliminating the common-mode
bounce,

Data Plane Shift. The next test involved testing the operation of the data plane, The
DP register was set high, and then the data plane shifting was enabled. The DRAM [/0
pins floated low, so that a zero propagated through the data plane as shown in Figure 3-18.
As expected, after thirty-two cycles, the zero appeared at the top row. For this test, the
global OR output pin was used, testing both subsystems,
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Figure 3-16: TAP Interface
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Figure 3-17: Output Burst Trace, 100 MHz.
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Figure 3-18: Data plane toggle at 100 M1z, The data planc is loaded with 1s. A zero is
then introduced at the input. 32 cycles later the 0 is has been shifted through.

External Memory Pads. The DRAM pads were toggled at 100 MHz,

Register File Toggle. 'The next test showed the first failure of the chip. The repeated
instruction was very simple: toggle a memory bit and copy it onto the burst output pin,
This operation started failing at 80 MHz. Instead of a pattern of alternating zeroes and
ones, the pin showed two high values followed by a low,

Mesh Shift Operation. The on-chip mesh communication was tested next. As shown
in Figure 3-21, the pattern was shifted out. Although only 20 MHz operation is shown, the
mesh shifting worked at 80 MIlz, and failed (by shifting incorrect data) at 100 M1z,

3.7.4 Testing Summary
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Figure 3-19: DRAM pads were designed to toggle at only 62.5 MHz.

Subsystem Status

Burst Output Operational at 100 MHz
Internal Memory toggle Operational at 80 MHz
On-chip mesh communication | Operational at 80 MHz
Data Plane shift Operational at 100 MHz
TAP interface Fully operational

Table 3.7: Testing Summary

59



Tek Run: 1.00GS/s EISan}ple
- 1

l N
1 'll
A 156nS
®: 233ns
h‘ﬁ r\ﬁ ’Nﬁ g e
- [ i
o+ - . -
4-0,-,.,1‘ [ -wf.\ rv {kjm-*
Il 4
i A "
v il 9 v 1
S0.0rs T wﬁW‘J
Ch3 20.0mvQ Ch4 20,0mvQ
Tek Stop: 5.0005/'5 EJ 168 ;Iﬂcqs R
r 1 ) ]
i i " a: 2s.0ns
s ©: 37.0ns
WLERUARL
MR AR
A A p
t EVENANEIEV
W\ IR} ~\ﬁ N A
v v v v
™ U‘UVCJ U 14qm
Ch3 20.0mvQ Ch4 20.0mvQy
Tek Stop: 10.0GS/S ET 900 Acqs
[ — |
A. 10 0ns
®:9.2ns

Mt MM
JIRNFIA\FIA\FIANGIY

w
N
<
<4

a+

[\ Van '\/\ﬂ/ R A fias

M5 00AS THA TA3IMV_
Ch3 20.0mvQ Chd4 20.0mvQ 60



Tek Stop: Z’OOMS/§I ET 207 Acgs .

1314 \
) o 1A:2.400Ns
©: -1.050us

E-N
—

ﬁ ,h A ) ];n__
mLLuﬂwuﬁ ML;'W

uuv LUR£1Y thi 2.8
omvQ Ch4 20.0mvQ

nl
Ch3 2

Figure 3-21: Mesh shifting at clock rate. Only the 20 MHz operation is shown.
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Chapter 4

Abacus-1 System-Level Design

This section contains a detailed design of the entire system, including sequencer, PE array,
and I/O interfaces. The topics of this section have largely been ignored by architecture
researchers, with most of the attention going to the more theoretically interesting process-
ing element and interconnection network design. However, system interfaces are precisely
those elements most responsible for bottlenecks and therefore most likely to cripple the per-
formance of the carefully designed PEs and network. This preliminary design is therefore
essential to the viability of the Abacus chip in a realistic environment. Although the sys-
tem description in this chapter uses present tense, the system has not been built, However,
various subsystems, such as the I/O boards, were designed to the point of specifying the
chips and completing timing diagrams for typical mudes of operation.

The Abacus-1 system consists of the sequencer and instruction memory, the PE array, the
input and output boards, and the video I/O boards. They are connected by a shared 32-hit
bus and several direct interfaces.

Instruction | Address | .

Memory Sequencer Video In
Instructions Global OR T

PEAray  «®2 » 10 Board Video Out

Figure 4-1: Abacus-1 System Block Diagram
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4.1 Sequencer

In conventional SIMD systems, low-level microinstructions that drive the processor array
are generated at runtime from high-level macroinstructions. For example, an 8-bit integer
addition operation expands to eight bit-serial add-with-carry instructions. Since the PE
array can operate much faster than the host computer, this instruction expansion places
high demand on the host’s computation and bandwidth. Even if the host’s cycle time is
comparable to that of the array, it must typically execute multiple instructions to interpret
the macroinstruction.

The typical solution is to place a circuit called a sequencer or microcontroller hetween the
host and the array. The sequencer is responsible for interpreting macroinstructions sent
from the host and sending the microinstructions to the array, The sequencer thus acts as a
bandwidth amplifier between the host and PE array,

In this model, the host computer executes scalar code on its own. When it is time to
perform a parallel operation, the host sends a request to the sequencer to execute a block
of instructions,

Although the simplest implementation of the sequencer is little more than an address counter
and a microcode dispatcher, its complexity invariably grows, The first step down the slip-
pery slope of complexity is the observation that loops are common and the extra latency of
repeated block issues by the host is substantial. Thus, a loop counter is added. Uncondi-
tional loops become too restrictive, so sequencer gains the ability to sample the global OR
flag from the array. Conditional loops often require a single scalar value obtained from the
array (such as the active pixel count) to be compared with some other quantity, and the
overhead of transferring this value to the host for comparison is too high, Now registers
are added to the sequencer, as well as simple program structure. The sequencer begins to
resemble a conventional microcontroller.

"This process is of course familiar as the wheel of reincarnation, as more and more function-
ality migrates between the main computing system and the formerly dumb controller. This
migration occurs as a result of technological changes as more silicon area becomes available,
as new algorithms are developed, or as subsystem speeds change. It has occurred in systems
ranging from disk controllers to graphics renderers.

The Abacus-1 sequencer design is a new point in the evolutionary cycle. It is based on
recognition of the following technological factors:

* Memory density has been growing far faster than code size, especially the highly repet-
itive code of image processing. There is no need to interpret instructions at runtime
when the microinstructions themselves can be stored,

o Contemporary microprocessors already internally run faster than the PE array, and their
external bus speeds are within a factor of two of array speeds,

The Abacus-1 sequencer integrates the conventional roles of the host and sequencer. [t
executes scalar code intermixed with parallel code at a much finer level than before. Specif-
ically, it executes parallel instructions by performing a read operation to a set of addresses,
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Figure 4-2: Sequencer and instruction delivery path,

as shown in Figure 4-3. A specialized circuit watches the address bus, detects the read,
and converts it to a parallel instruction address (PIADDR). The PIADDR is applied to
the parallel instruction memory (PIMEM), which is then sent to the PE array. If no read
request is issued during a particular cycle, the buswatcher sends a NOP (no operation)
instruction to the array. This ability allows variable timing on the part of the sequencer
(due to cache effects, for example).

ADD R3, R1, R2 ; Bome scalar operation
MULT R4, R4, RS ; another scalar operation
LD RO, 0xF1000000 ; NETSOURCE := EAST

LD RO, 0xF1000001 ; NET_OUT = P1

LD RO, 0xF1000002 ; P2 := P2 + NET_IN
LD RO, 0xF1000003 ;  NETSOURCE := WEST

LD RO, 0xF1000001 ; NET_OUT :=P1

LD RO, 0xF1000002 i P2 = P2 + NET_IN
ADD R6, R3, R2 ; back to scalar code

Figure 4-3: Example of interleaved scalar and parallel code. The parallel code implements
a 2-point horizontal boxcar filter. Notice that the issued addresses are identical for dif-
ferent microinstructions, This reduces instruction memory requirements. In actual code,
instruction reuse will not be as frequent, since instructions are grouped in pairs,

Bandwidth matching between the sequencer’s slow bus speed and the array’s fast instruction
speed is accomplished with the straightforward approach of grouping microinstructions
together into blocks. Each read request causes several consecutive instructions to be fetched
at once and then delivered to the array in sequence. The disadvantage of blocking is that
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when control flow changes, NOP instructions have to be inserted to fill the block.

A number of interesting optimizations are possible with this approach. Since the instruc-
tions are referenced indirectly, with the read address functioning as a pointer, identical
microinstructions need only be stored once despite being referenced from multiple program
locations.

The Abacus sequencer consists of a conventional medinm-speed DSP chip, the Texas Instru-
ments C40. It has uniform cycle times as it does not use caches. The DSP chip is limited
to clock rates of 40 MHz, leading to 3:1 blocking: for every instruction address, three in-
structions are fetched from the memory. Controller versions of modern fast microprocessors
such as the PowerPC or the Alpha support 66 MHz bus speeds, and will allow 2:1 blocking.

4.2 PE Board

"The processor board contains 16 PE chips, their associated memories, and instruction dis-
tribution circuitry. A floorplan is shown in Figure 4-4.

Instruction Distribution The processor chips are organized in a 4 by 4 array. BEach
column of PE chips shares a bus of 30 instruction wires. These wires are driven by single-
ended FCL drivers at 250 MHz. The bus is parallel-terminated to a 3V power plane (-2 in
unoffset ECL) by 50 ohm resistors. The resistors, housed in a SIP with integrated bypass
capacitors, serve hoth as pulldowns and as line terminations. Each set of column buffers is
in turn driven by differential line receivers connected to the instruction distribution ribbon
cable. The termination for the initial bus is identical to the column bus.

Data Distribution Image data is delivered to the board at 125 MHz, over a 32-wire
differentially-driven cable. It is retimed by a set of registers. The retiming allows for
different time of flight from the I/O boards to different PE boards. Similarly, output data
is driven differentially from the PE chips to retiming registers, This retiming compensates
for the varying time of flight on the PCB bhoard itself, and eliminates the need to snake traces
f[rom nearby PE chips to equalize delays. The registers drive the retimed data differentially
off-board. Global OR differential signals from the chips are registered before heing presented
to an OR gate.

Although the Abacus-1 chip was designed for glucless integration with memory, the SSI
chips lower the integration level. In production, a two custom VLSI chips, each with 164
signal pins, can replace the 37 SSI chips listed in Table 4.1.

Inter-Chip Network Wiring. Mesh inter-board wiring uses conventional ribbon cable
in a GSG (ground-signal-ground configuration). Although this is a surprisingly low-tech
approach for 250 MHz signalling, calculations show that it is very effective over short dis-
tances (Johnson & Graham 1993). Each ribbon cable is wrapped in a ground shield to
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Part | Desc Qty | Comment
E122 | 9-bit buffer 16 | 4 chips/instruction bus
E451 [ 6-bit D register, diff-in 6 | 1 register/ chip (GOR and DATAI)
E452 | 5-bit D register, diff 4 | 1 register/ chip (DATAOQO)
E101 | Quad 4-input OR/NOR 5 | 1 gate/chip, | to sum (GOR)
E116 | Quint diff receivers 6 | 30 instruction bits
El11 | Clock repeater 311/ 8 clocked chips
Total 37

Table 4.1: Board Level SSI ECL Parts Count

reduce interference between cables in the rack.

Power And Thermal Considerations. FEach PE chip dissipates 18 W at 125 MHz, In
addition, EDRAM parts are estimated to have a static column read current of 105 mA per
chip at 16 ns cycle times, or about 500 mW. Sixteen of these chips, forming two SIMMS,
consume 8 W, Termination resistor power is negligible, amounting to 24 mW per resistor,
or 2.9 W for the system.

Neglecting termination power, a fully populated PE hoard requires 416 W and 8 A. Large
heat sinks are used on the chip to reduce thermal resistance, and forced air cooling is
clearly required. As a result, the boards cannot be spaced closely together. This limitation
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increases the worst-case signal travel time on mesh wires. Although the cooling and power
delivery systems have not been designed, arrays of small fans have been successfully used
to cool large dense TTL boards dissipating 3000 W.

4.3 1/0O Boards

A key design decision in the array I/O subsystem is the access of the sequencer to the
array data. Direct access to the PE chip internals requires additional data pathways. This
was judged to be too pin-intensive. Instead, the access model is that an entire plane is
dumped from the array to a memory bank close to the PE. This approach supports dense
data transfers such as that of image data directly to the frame buffer, In a sparse access,
the sequencer accesses a small subset of the computed results. A block transfer of one data
plane requires approximately 1000 cycles, or 8 microseconds. We assume that this is not a
substantial overhead compared to the overall algorithm time.

Block transfer is used in both the input and output boards. Since the boards are fairly
symmetrical in design, only the output (array to sequencer) board is described.

The first challenge is to receive the large number of ECL level signals from the PE boards.
There are 16 signals per board and 16 boards in the system, for a total of 256 signals at a
data rate of 125 Mbits/second. The received signals must then be converted from a bit-serial
to bit-parallel form. This is more complicated than a simple serial-to-parallel conversion
since a single data word is scattered across several serial transmissions (four in the case of
a 16-bit four by four arrangement). After the pixels are reformatted, they must be stored
in memory as a linearly accessible frame buffer. This organization allows the sequencer to
operate on the image efficiently, with loops and auto-incrementing of pointers,

All 1/0 from a group of 16 chips comprising a board is processed by a collection of circuitry
called a reformat unit. A reformat unit is composed of a 32-word, 16-bit ECL FIFO, two
ECL/CMOS level converters, a SHMUX unit, and two SRAMs. The SHMUX is composed
of two FPGAs and is effectively a chain of shift registers and multiplexers. The multiplexer
outputs are connected to two SRAM chips. The reformatting proceeds as follows:

1. The FIFO is enabled for input and reads in the 32-bit burst.

2. The FIFO is enabled for output. The ECL signals are converted to CMOS levels and
entered into the SHMUX.

3. The controller sequences the multiplexers inside the SHMUX units to select the appro-
priate bit groups for output. At the same time, appropriate addresses are presented
to the SRAM so that the bitwise reformatted data are image-wise reformatted,

Notice that the data transfer is pipelined, as the FIFO can be loaded at the same time as
the SHMUX is transferring data to the SRAMs.

The 16 reformat units are controlled by the format controller. The controller consists of a
small state machine, a counter, and an address lookup table. The table contains addresses

68



Shift/Mux Unit
FIFO Level — [ [ [T T]

Convert [ TTT{TTI]
y y A Mux
\ /L Contrul
Data ’ =To Bus

SR’AM Addpress

Figure 4-5: Reformatting Circuitry Block Diagram.

to be presented to the SHMUX units for appropriate reformatting.

The sequencer accesses the board memory by presenting the desired address to the format
controller, which maps the address to the appropriate SRAM chip based on the prepro-
grammed image size table. This address translation adds two cycles of latency to sequencer
memory accesses, but allows fast random access.

The input board symmetrically reverses the reformatting process by loading the SHMUX
chips from the SRAMs, loading the FIFO from the SHMUX, and then executing burst
transfer operations. If need be, the functionality of the two boards can be combined into
one with a few multiplexers and extra wiring demands.

Chip Quantity
Differential receivers 4
FIFO |
Level converters 3
FPGA 2
SRAM 2
Total 12

Table 4.2: Reformatting subsystem part count

The total chip count for the board is 192 plus the 8 or so chips implementing the format
controller for a total of 200. Assuming 1 inch chip pitch, and a double-sided surface mount
design, each board is about ten inches on a side, which is quite reasonable. We estimate that
a single custom VLSI chip can replace two reformat units, for a substantial improvement
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in integration and cost. The major limitation is the number of pins required: 16 input pins
and 32 output pins.
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Chapter 5

Abacus-1 Performance Evaluation

This section describes the implementation of several arithmetic, communication, and vision
algorithms on the Abacus architecture.

5.1 RBP Arithmetic Algorithms

RBP arithmetic algorithms resemble circuits more than bit-serial programs, since they are
unrolled in both space and time. During each time step, each PE emulates part of the logic
comprising an arithmetic circuit, reconfiguring connections if necessary. In the examples of
this section, PSs are shown organized as a line in order to resemble a circuit. In reality,
clusters are often arranged as squares or rectangles (a square organization minimizes the
average inter-cluster communication distance), and topologically form a ring. In arithmetic
circuits, boundary logic cells such as the LSB and MSB are configured differently from the
middle cells. Similarly, PEs corresponding to cluster edges are marked as MSB or LSB. In
addition, each PE is labeled with its bit position within the cluster. The LSB/MSB bit can
be computed from this position, as can network configuration bits.

Data Representation RBP architectures can use a wide variety of number representa-
tions. The usual representation is the conventional binary one. In the case of the accumulate
operation, the redundant carry-save representation is preferred, as carry computation can
be postponed until a non-redundant operation is required. The MGAP designers are pro-
ponents of the redundant radix-4 representation where each processor stores a digit in the
range of —3..3 (Irwin & Owens 1991). This is not a very memory-efficient representation,
as it requires five bits to store a two bit number.

Logical Shift. The simplest RBP arithmetic operation is the shift. As shown in Figure 5-
1, each PE simply replaces its bit with its neighbor’s. For logical shifts, the MSB or LSB is
cleared; for arithmetic shifts the MSB is retained.
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Figure 5-1: Logical shift right. The number 6 is shifted down to become 3,

Sum Accumulation. Accumulating a sum is a very common operation. The sum of a se-
quence of n numbers can be evaluated in ©(n) cycles with a carry-save (CS) algorithm. The
CS adder computes the sum and carry bits separately for each addition. The computation
is purely local, and the delay of each CS stage is independent of word size. At the end of a
summing sequence the carry and sum values must be summed with a full carry-propagation
adder, but this delay is amortized over many summations. Many computations usually
expressed as additions can be reformulated as accumulations, improving the performance
of algorithms such as region summing. It is interesting to note that accumulation is an
inherently simpler and faster operation than addition, and yet conventional processors do
not make the distinction.

MsSB LSB

QU e~
—0 .
—
ocoo

é e initially
s' .= sum(t,s,c)

= NetOut := carry(t,s,c)

o
T B T
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Figure 5-2: Accumulate., The addition of the number 3 to a sum of 11 represented as 2+9,
After the operation, the sum is 14, represented as 6+8. All operations are purely local or
nearest neighbor. Steps 1 and 2 can happen during the same cycle if a copy of t is present
in both memory banks.

Addition. Fast addition relies on quick computation of the carry bit. A RBP algorithm
based on the the well-known logarithmic-time technique was described in (Bolotski, Barman,
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Little & Camporese 1993). The algorithm “looks-ahead” at the carry by computing the
eventual carry into each one-bit adder, It can be shown that the carry ¢x into bit &k can
be expressed as cxy, = gk + prck, Where gi is the generate bit and py is the propagate bit,
Since the computation of successive p and ¢ values can be expressed in terms of a hinary
associative operator, it can be performed in time logarithmic with the number of bits, This
technique forms the basis of many hardware implementation of adder circuits,

The Abacus architecture uses a different approach, one based on the hardware implementa-
tion of Manchester carry computation. In this technique, the carry bit propagates clectri-
cally down the line of bits unless prevented by a switch controlled by the p signal. Although
computation time is linear with the number of bits, the constant factors result in faster
operation than software emulation of the logarithmic-time circuit,

MSB LSB
g! 8 e ? e l *. ! 8 }. initially
; connect ;= (a = b) & ~Isb;
0 lq L _L_le 0 J|[< ' 0 r S;:al\b( )
0 Lol ro ‘ Lu_ NetOut:=a &b
I |
S 1l 0 L 0o ! o | S:=if (Isb)then S
J‘ F else S A Netin

Figure 5-3: Manchester-carry addition. A NOP cycle occurs after step 2 to allow the carry
bit to propagate. Steps 1 and 2 are actually merged into one cycle, and the S bit can be
computed during the NOP cycle.

Match. The match operation compares two bit patterns for equality. Iirst, all Plis form
a wired-OR bus. Then, all PEs write a !'= b to the bus. If any bits differ, the bus hecomes
a l; if all bits are identical, the bus remains at 0.

Comparison. The comparison algorithm is based on the observation that the most sig-
nificant differing bit (MSDB) between two words determines which word is greater, Thus
il the MSDB occurs in position ¢, A > B when A; > B;, or equivalently A; = 1 and B3, = 0.
In the first step of the algorithm, all PEs with identical bits bypass themselves and do not
participate in the rest of the computation. Then, all PEs send A - B towards the MSB PL,
Now, the MSB PE knows the value of A > B for the rest of the word, and merges the
result with its own data bits to produce the final answer. This entire process is equivalent
to performing a Manchester-carry subtraction and testing for the borrow bit at the MSB.

73



MSB | LSB
| }. 1 g ! [ ) lr ) - initially

o ,  connect:=(a==b)&~Isb

l
0 roocpal l .l e~ NetOut:=a&~b

a1+ . b j | '« . » «  X:=if(a==b) then Netln
A N A else a & ~b

Figure 5-4: The compare operation. After the broadcast, the MSB PE receives A;B for the
rest of the word. It then merges the result with the MSB bit result,

Multiplication. RBP integer multiplication is composed of iterating through a sequence
of shifts, broadcasts and carry-save adds. These operations can be partially overlapped
so that an iteration requires 7 cycles, Thus, a 16 by 16 multiply requires 112 cycles,
plus about 10 cycles of overhead. These numbers are for unsigned multiplication with a
double-length result. If only the low word of the result is required, an iteration requires
only 6 cycles. Two’s complement multiplication is implemented with a software version
of the Baugh-Wooley multiplier, and requires one additional iteration. While hardware
multipliers frequently use the modified Booth algorithm to halve the number of iterations,
this algorithm is not very efficient on the Abacus architecture since it requires the broadcast
of three bits,

Mesh Move. In a mesh move each cluster rearranges itself into several shift registers in
the direction of movement. The move operation is relatively expensive, as k bits must be
transferred through a v/k-wide bus, requiring vk time steps. Further, unlike arithmetic
operations, mesh moves cross chip houndaries and therefore suffer an additional 1-cycle
latency cost,

Performance Summary. The performance of a single Abacus chip on the operations
described in this section is given is in Table 1. The left half of the table gives cycle counts,
while the right gives the MOPS rating assuming 1024 PEs per chip and a 125 MHz clock
rate.

These ratings are somewhat pessimistic for two reasons. First, they include an additional
one-cycle penalty for reconfiguration. For example, if a right shift instruction is followed
by an add instruction, PEs must be reconfigured from reading from the MSB direction to
reading from the LSB direction. This penalty does not occur during every instruction, and
a clever compiler can group instructions with identical configurations to reduce reconfigu-
ration costs.
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Cycle Count MOPS
Operation | 8-bit | 16-bit | 32-bit || 8-bit | 16-bit | 32-bit
Add, Compare 4 4 5 (| 4000 2000 700
Shift 3 3 3 |[ 5300 2700 1300
Accumulate 4 4 4 1 4000 2000 1000
Mesh Move 5 6 8 ([ 3200 1300 500
Multiply 66 126 235 || 242 63 17

Table 5.1:

Second, as discussed earlier, microcode for several arithmetic operations can be overlapped,
By the table entries above, the sequence a = b+ 2d + 2¢ performed on 16-bit values appears
to require 14 cycles (two shifts, an accumulate, and an add). Yet a handcoded program
performs the same operations in only 9 cycles by eliminating three reconfiguration steps,
overlapping two broadcasts, and duplicating a data bit in both memory banks.

5.2 Communication Operations

5.2.1 Scans

A set of computational primitives known as parallel prefiz or scan operations have been
found to be useful programming constructs across a variety of machine architectures. These
operations take a binary associative operator ¢, and an ordered set [ag,ay,...,a,_)] and
return the ordered set [ag,(ag @ ay),...,(aoth @) b ... ¢x—y)]. Common scan operations
include or-, and-, maz-, min-, and +-scan. There are also corresponding reduce primitives
that reduce the values in a vector to a single value. For example, +-reduce calculates the
sum of a vector, as shown in Figure 5-5.

T=1|3 5 1 2 4 8 6 3
T=2 8 3 12 9
T=3 1 21

Figure 5-5: A +-reduce operation,

The bypass capability of the Abacus network can be used to implement fast scan operations,
A message can propagate across a chip in two cycles. Crossing a chip boundary requires
an additional cycle of latency. The prototype is a 16 by 16 chip array, so that 48 cycles are
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required for a bit to cross the array. Assuming a 4 by 4 bit PS organization, propagation of a
16-bit cluster requires 200 cycles. Since each stage of a logarithmic scan doubles propagation
time, an entire scan operation requires approximately 500 cycles, or 4 microseconds. This
can be optimized further by pipelining bit transmission.

5.2.2 General Routing

Sorting algorithms can be converted into routing algorithms by associating data with the
sort key and ensuring that the combined packet is moved together, This allows packets to
be routed to a destination. Two types of sorting algorithms were examined: those with a
fixed execution time, and those with a data-dependent execution time.

ShearSort and RevSort ShearSort is a \/N(log N + 1) step sorting algorithm (Leighton
1992). It consists of sorting rows in alternating opposite directions starting at the left
edge of the array, then sorting the columns from top to bottom. ShearSort relies on the
‘TranspositionSort (Quinn 1987) procedure to get things sorted. TranspositionSort is the
basic linear array sort. It works similar to the uniprocessor BubbleSort: comparing then
exchanging (where necessary) alternating pairs of items.

An improvement of ShearSort is called RevSort (Schnorr & Shamir 1986). It is identical
to ShearSort, except CyclicSort is used to sort rows instead of Transposition Sorts. This
algorithm finishes in v/N(loglog N + 3) steps and the complexity of the each step is equiv-
alent to each step of ShearSort. CyclicSort is a descendant of the TranspositionSort, and
performs as fast as its ancestor. The smallest item is sorted to a chosen processor instead
of the leftmost processor.

Mesh Greedy Routing Algorithm A very different packet-based routing algorithm was
developed by Herbordt (Herbordt, Corbett, Weems & Spalding 1994). Each PE emulates
two communication channels, one vertical and one horizontal. Packets are moved one step
through the X channel until the correct X coordinate for the packet is reached. At that point
the packet is moved to the Y channel and proceeds vertically, The X and Y routing steps
are interleaved, so that one of each occurs during each iteration, Notice that packets can
be blocked from switching to the Y channel if that section of the channel is full. When this
occurs, packets behind the blocked PE in the X direction are also blocked. The blocking
information propagates backward along the X channel one step at a time. Since cach
PE contains space for two packets, collisions will not overwrite data, and the blocking
information can afford to propagate only one step per cycle,

The key difference from the user’s point of view is that this algorithm is not guaranteed
to finish in O(V/N) iterations. In fact, the worst case performance is O(N ), where N is
the number of PEs. According to Herbordt, the worst case is very unlikely to arise in
cither a completely random, or typical routing conditions. In fact, the algorithm generally
does not need to be iterated more than 2.5 times the optimal case of 2N - 2. The
paper demonstrates that this property holds for a number of common permutations, such
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as transpose, bit shuffle, and rotations.

5.3 Basic Vision Algorithms

Edge Detection The widely used Marr-Hildreth edge detection algorithm consists of
smoothing the image with a Gaussian filter, computing the Laplacian of the filtered image,
and locating the zero crossings of the result (Horn 1986). Convolution with a Gaussian can
be approximated by repeated convolution with a triangular filter, with weights §, 3, and f,
requiring only arithmetic shifts and accumulates. Since the Gaussian filter is separable, it
can be implemented by two one-dimensional convolutions. Further, since zero crossings are
independent of absolute magnitude, the expensive scaling operation of the Laplacian kernel
is not required.

Surface Reconstruction Surface reconstruction is the task of computing the surface
shape (height and slope) from a set of potentially sparse and noisy measurements. Har-
ris (Harris 1986) introduced the coupled depth/slope model for surface reconstruction and
developed an iterative solution technique suitable for a mesh-based massively parallel com-
puter. The update equations in each iteration are simple and local and consist of five or six
additions and subtractions, followed by a division.

The summation of multiple values at a pixel is computed efficiently by the multi-operand
addition algorithm. Division is expensive on a RBP architecture, as it is on a word-parallel
bit-serial machine. This algorithm only requires division by a constant, which can he
implemented by a special purpose sequence of shifts and adds.

Optical Flow In correlation-based optical flow (Little & Bulthoff 1988) the original imn-
age is displaced in a variety of directions. At each displacement the difference between
the two images is computed and summed over a window. If the images are processed to
produce binary image features, the difference at a pixel is the exclusive OR of the shifted
and unshifted images in a window around the pixel. neighborhood. Finally, each pixel
chooses the displacement with the smallest difference value in a winner take all step. Im-
ages manipulated by the algorithm may consist either of simple brightness values or of more
complex features such as edges. This algorithm has been implemented on the simulator for
the binary feature case. The edge detection algorithm discussed earlier could bhe used to
obtain the features (in this case edges) from a raw intensity image.

5.4 The DARPA IU Benchmark

This section describes the subset of the DARPA Image Understanding Benchmark that falls
in the domain of early vision.
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Figure 5-6: Optical flow calculation with maximum displacement of 2 pixels and a 5 x5
summation region. (a) original image. (b) displaced image. The top shape moved up by
one pixel and partially off the image; the right shape moved down by one pixel and the
lower shape moved three units down and one to the left,

Connected Components: Broadcast. A common problem in image analysis involves
labeling the connected regions of constant pixel intensity, where unique regions are con-
stituted from a definition of either 4-connectedness (horizontally or vertically adjacent),
or 8-connectedness (horizontally, vertically, or diagonally adjacent). This operation is dis-
cussed for binary images in the literature ((Levialdi 1972), (Leighton 1992), (Ziavras 1993),
(Choudhary & Patel 1990), (Cypher, Sanz & Snyder 1990)) but has heen extended for
grayscale values in the following three algorithms. The first approach described here is
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Figure 5-7: Optical flow field resulting from the raw data in Figure 5-6. Some confusion is
caused by the movement of the top shape off the image, and by the movement of the lower
shape by a distance exceeding the maximum displacement layer.
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the most straightforward but requires the most time, the second alternative is faster but
requires considerable amounts of memory, and the third is a modification of the second that
compresses memory requirements drastically at the cost of increased computation.

In the simplest algorithm, each pixel of the intensity image is labeled uniquely from its PI
row and column. This intensity and its corresponding label (of O(log V) bits) are broadcast
to each of its 8-connected neighbors. At each PE, the neighbors of matching intensity are
determined, and the minimum of the their corresponding labels and the current label be-
comes the new label. This process continues until no more labels in the mesh are updated
(checked by a global compare). The number of broadcasting operations required is propor-
tional to the largest “intrinsic diameter” of all connected components in the image, defined
as the maximal shortest connected path between any two pixels in the region (Leighton
1992). For spirals and other high-curvature images, this intrinsic diameter can he as high
as O(N?)in the worst case, resulting in O(N?%log N ) bit operations.

Connected Components: Shrinking. Levialdi's region shrinking operation (Levialdi
1972) provides a iterative method to directionally compress each region down to a single
pixel and then remove it entirely without fragmenting or fusing separate regions. If the
results of each operation are saved away, the operation can be reversed to generate a unique
label when a region consists of only one pixel, and that label can be transmitted to all
possible neighbors in the direction of expansion so that they can make a decision should
they become connected in the next stage. The third algorithim modifies the basic one by
storing only a subset of the shrunk images and reconstructing on the fly by repeating the
shrinking operation.

K-curvature Tracking and Corner Detection The connected components map is
processed to produce A'-curvature values for those pixels on the component borders, which
are then smoothed with a Gaussian filter to eliminate multiple peaks near corners. Pixels
with smoothed curvature values exceeding a threshold value (peaks) are intersected with the
zero-crossings of the first derivative of smoothed curvature to extract candidate corners in
the image. Border pixels are defined to be any pixel adjacent (N,E,W,S) to a pixel belonging
to another component. K -curvature is defined at each border pixel as the interior angle
hetween the two lines passing through the current pixel and those A" border pixels away in
either direction along the region'’s border. See ligure 5-8.

Median Filter The median filter is a common image processing operation, Unlike linear
filters, each pixel replaced not by a linear combination of its neighbors but rather by the
median value. The operation is effective for removing high frequency “speckle” noise without
degrading the rest of the image.

Gradient Magnitude By computing the magnitude of a discrete intensity gradient in
the image and thresholding the result, strong direction-independent edges in the map can
be located. Every pixel intensity in a 3x3 neighborhood about the current PE is multiplied
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Figure 5-8: K-curvature definition. In this figure, @ is the K-curvature for K'=3. Note that
all pixels shown are edge pixels.

by a weight according to the Sobel X and Y masks and summed to form the Sobel X and
Y magunitudes. Since the weights are either 0, 1, or 2, the multiplications are converted to
shifts.

The gradient magnitude is the square root of the sum of the squares of the X and Y
magnitudes. Results greater than a threshold value are flagged to create a boolean edges
map. The operation is constant in space and time with respect to N,

Hough Transform The Hough transform partitions a binary image into discrete bands
one pixel thick and oriented at a certain angle, and sums the values within the band to
yield a set of projections that can be scanned to locate strong edges in the original image
at that angle (Cypher & Sanz 1090). Usually transforms are computed for many angles, so
that the aggregate data can provide insights into the image properties,

The implemented algorithm partitions the image into bands of constant line offset p for a
given angle § according to the equation: {(z,y): z cosf + ysin 8 = p} where (z,y) are PE
coordinates and 6 is assumed to be in the range 7/2 < 6 < 37/4 (the other angles can be
accommodated by pre-rotation of the image). A “band total” variable visits all PEs in its
assigned band by shifting east, and north if necessary (a result of the angle range is that
at most two pixels in the same column belong to the same band). The PEs in the first
column are visited first, and then the variable travels eastward across the columns. Since
there are many angles to be projected, they are pipelined one column at a time, yielding P
projections on an NxN image in O(N + P) time.

5.5 Performance Summary

In the vision algorithms table, computation times are shown for a 128 by 128 array pro-
cessing 128 by 128 pixel images, without virtualization. Processing larger images would not
scale up linearly, since communication time would be reduced, but data I/0 time would be
increased. Memory-intensive algorithms would therefore degrade much faster,
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Algorithm Cycles | Time | Memory

1000s | (psec) | 16-bit regs
Edge Detection o = 2.0 0.45 3.6 3
Optical Flow, A = 5, 5 x5 region 10 80 8
Surface Reconstruction (1 iteration) 0.38 3 6
Connected components, D = 256 42.5 340 9
Hough transform, P = 90, multiplies 113 904 22
Hough transform, P = 90, differencing 25.6 204 22
Hough transform, P = 90, precompute 10.4 83 67
K-curvature, K = 4 8.2 66 46
Gradient Magnitude 0.5 4 9
Shear Permute, 1 data item 167 | 1340 15
Rev Permute, 1 data item 78 624 15
MGRA (average case), | data item 45 360 18

Table 5.2: Vision Algorithm Performance Summary
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Chapter 6

Analytical Modeling

This chapter presents two analytical models of SIMD performance. The first addresses the
relative merits of bit-serial vs. reconfigurable bit-parallel designs in the case of a system
that lacks an off-chip memory cache. The second deals with selecting the optimal datapath
width at design time, and models the effect of slow off-chip memory.

6.1 RBP Performance Model

This section quantifies the regime in which the RBP organization is superior to a bit-serial
one. The main assumption is that a processing site, be it a bit-serial PE or a group of
RBP PEs, requires a certain amount of on-chip storage to operate without frequent off-chip
memory accesses, If this requirement is not met, performance will degrade catastrophically
due to the limited off-chip bandwidth.

In the following discussion, let B be the number of bits in a data word; W, the number
of words in the register file; V, the area of the non-memory overhead (ALU and network)
component of the PE; and S, the number of cycles required by the bit parallel operation.
Area measurements are normalized to the size of one memory bit. A bit-serial organization
requires B cycles to step through each bit of a data word and occupies V + BW area.
An RBP PS requires S cycles and occupies B(V + W) area. The silicon efficiency can
be expressed as performance per unit area, or simply as 1/AT. The ratio of efficiency,

bit-parallel to bit-serial, is:
V + BW

R= ————
S(V+Ww)

For the relevant vision algorithms, computations on 8-bit pixels are done with 16 bits to

preserve fractions, and as many as 64 words are frequently accessed. In the Abacus-1

implementation, V was approximately 50. The algorithms have S ranging from 3 to 6,

averaging around 4. A graph of R versus W, for relevant values of B, S and V is shown in

Figure 6-1.
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The important conclusion is that not only does the RBP approach result in faster (lower-
latency) computation, but that it is also more efficient in terms of computational power per
silicon area.
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Figure 6-1: Efficiency ratio R vs register file size W, for various values of non-memory
overhead V and algorithmic inefficiency S. The *X’ indicates the design point of our imple-
mentation,

6.2 Optimal Bit Width Analysis

Selection of the optimal datapath width in a SIMD computer is not yet a solved problem,
Early PEs were bit-serial due to VLSI area constraints. Some designs have upgraded to a
conventional 32-bit datapath, while others moved to only 8 bits, even in a contemporary
technology. This section develops a simple model that examines various slice widths in
terms of silicon area efficiency.

The initial ideal model estimates the area, delay, and cycles-per-instruction (CPI) of a given
bit width and simply multiplies to obtain a figure of merit. This metric, called qualily in
this work, is normally expressed in bit operations per nanosecond per unit area, but for
better intuition has been scaled to billions of 16-bit operations per second per standard
chip.

The first refinement uses Amdahl’s law to account for operations which are not sped up by
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a wider datapath. The next refinement recognizes that off-chip memory latency is a critical
bottleneck, and determines the effect of cache misses. Finally, the model incorporates the
effect of the background loading mechanism on 1/O performance,

Parameter | Value | Description

Aglu 8 ALU area, in units of SRAM cells

Agur 10 Overhead area, in units of SRAM cells

fa 0.9 Fraction of operations affected by wider datapath
Tinem 3 ns Register file access time

Talu 0.7 ns | ALU datapath bit delay

Tour 1.0 ns | Timing overhead

Table 6.1: Analytical Model Parameters from the Abacus-1 Implementation,

6.2.1 Ideal Model

PE Area. A processing element’s area is modeled as consisting of three parts: the memory
cells, the ALU, and the other overhead circuitry, including the network and the data plane
registers. T'he basic unit of area is the SRAM cell.

Ape(k) = Nmem + k/‘ulu + Auur (6'1)

where N,em is the number of memory bits and & is the width of the datapath. Thus, arca
growth is linear in the datapath. There will be slight area growth in overlicad components,
such as in the size of the buffers controlling the datapath, but that can be folded into the
ALU area. An important immediate assumption is that AT circuits such as multipliers and
barrel shifters are not present. These elements have important applications and should be
analyzed in later work, but their inclusion in a massively parallel system must he evaluated
carefully since their area grows quadratically with decreased cycle time, and parallelism
may provide a more efficient alternative.

Cycle Time. The model assumes an unpipelined design, in which the cycle time consists
of four parts: register file read, ALU ripple-style exccute, register file write, and miscella-
neous time margin, Register file access times are assumed identical for read and write, and
include precharge and equilibrate time.

Toe(k) = 2Tmem + kTutu + Tour (6.2)

ALU times are also assumed linear. This holds true for both the ripple-carry adder and the
Manchester-carry adder (although in that case the fixed part of the cycle will grow due to
the PG and Sum cells, and Ty, will decrease). Many more sophisticated adder structures
are possible but they require more area and gain in speed only for large word sizes.
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Performance. In the ideal model, the number of cycles required to execute an instruction
decreases linearly with the datapath width. Thus, a k-bit ALU requires twice as many cycles
to perform an operation as a 2k-bit ALU,

Poe(k) =k (6.3)

Quality Metric. The effectiveness of a PE is expressed as the number of operations per
unit area per unit time,

" k
idea k)= ™= ! p T, 6.4
Qideal(k) Apelpc (Ninem + kAgiu + Aor )(27mcm + kT + lour) (6.4)

This function is plotted in Figure 6-2. Several conclusions can be reached from this plot,
First, smaller memory sizes lead to higher performance. This is not surprising, since smaller
PEs with identical computational throughput lead to better quality measures, Second, as
memory increases, the optimal datapath width k also increases. This occurs because adding
a few more datapath bits to a large PE improves performance without a substantial change
in area. The final conclusion is that the function has a very flat optimum, so that it does
not cost much to err on the side of larger k.

16-bit GOPS/Chip

] 10 12 14 16
Datapath Width k

Figure 6-2: Ideal Performance (GOPS/chip) as a function of datapath width.

The next observation comes from normalizing the performance Lo the bit-serial case (k = 1).
Figure 6-3 shows that wide datapaths can be up to 4.5 times more efficient than the bit serial
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case. Unfortunately, the greatest relative advantage occurs at a lower absolute performance
level.

* Datapath Width'k

Figure 6-3: Normalized Ideal Performance. This shows the relative advantage of the wide
datapath over the bit-serial case.

6.2.2 Amdahl’s Law

The next refinement to the model is the application of Amdahl’s law, which essentially states
that if parallelization (or any speedup) affects only a subset of the total computation, the
remaining fraction will greatly reduce the effectiveness of the speedup, This is the basic
equation of computer architecture. Mathematically:

1

Sa(k) = m (6.5)

where f4 is the fraction of the computation affected by the speedup 5, and 5, is the actual
obtained speedup. Thus,
Sa

In the context of the current design, f4 represents the fraction of arithmetic oriented oper-
ations in a program. Operations that are not sped up by a wider datapath include network
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communication and logical flag-manipulating operations. In a multi-chip system, every
communication must cross a chip boundary, and the number of pins does not grow with
data path width. Simple filler-style algorithms such as convolutions require one mesh move
operation for each multiply and add. If the multiplication is by a known constant, an aver-
age eight-bit multiplication requires four shifts and five adds. T'hus, approximately 90% of
the operations benefit from a wider datapath.

The value of f4 used in the model was chosen to be 0.9. It was supported by the results
of two related research works, Holman (lolman & Snyder 1989) explicitly listed f4 for
a variety of algorithms, as in Table 6.2. The obtained values are slightly higher than
expected for vision algorithins, as most of the listed algorithms are dominated by floating
point manipulations.

Program fa
Bitonic Sort 0.75
Matrix Product 0.94
LU Decomposition 0.76
Cholesky Decomposition | 0.25
Jacobi Method 0.91
SOR Method 0.91
SIMPLE 0.71

Table 6.2: Fraction of Operation Costs Affi-ted by Data Path Width. Irom (Holman &
Snyder 1989)

Herbordt’s (Herbordt 1994) evaluation of parallel architectures included a set of simulation
results relating datapath width to execution time. The value of f; was extracted by fitting
Amdahl’s function to the published performance curves. The fitted functions agreed well
with the simulation data, although half of the algorithms had unexpectedly high perfor-
mance for the case k = . The data is tabulated in Table 6.3. The algorithms clearly fall
into two classes: mostly bit oriented, with only f4 = 0.2 and mostly word oriented, with
Ja = 0.9. The intermediate value shown for the IU Benchmark entry occurs becanse the
benchmark is a composite of several algorithms.

The same configurations as in the ideal case but with Amdahl’s-law correction are shown in
Figure 6-4. The greatest difference occurs in the high-performance low-memory case, Here,
the additional dead weight of the wide datapath is a relatively large penalty compared to
the small overall PE size. The maxima are much sharper than in the ideal case, but level
off quickly as memory size is increased.

The normalized equations behave similarly to the ideal case, except that maxima now
become apparent. Figure 6-5 also shows that the relative overall advantage of wider paths
decreases from a former peak of 4.5 to 3.

The effect of varying f4 is shown in Figure 6-6. The axis is actually labelled with (1 - f4),
the fraction not affected by the speedup. The expected interaction of the two parameters
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Figure 6-4: Amdahl-corrected quality values.
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Figure 6-5: Normalized Amdahl-corrected quality values
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Program fa
Region-based Line Finder | 0.15
Curve-Fitting Filter 0.92
Correspondence Problem | 0.21
Fast Line Finder 0.07
[U Benchmark 0.41
Depth From Motion 0.80

Table 6.3: Fraction of Operation Costs Affected by Data Path

. From (Herbordt et al, 1994)

occurs. The best k for this configuration appears to be 4-6 bits over a wide range of f,, 0.8
to 0.98. Notice that in the low f4 case, the multibit configurations perform worse than the

bit-serial ones.
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Figure 6-6; Normalized quality vs k£ and f,
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6.2.3 Off-Chip Data

The preceding analysis applies to algorithms that execute from the on-chip registers. As
soon as a data item must be brought in from off-chip, a significant delay occurs. This
section analyzes the impact of this delay.

An implicit assumption being made here is that commercially available memory chips are at
least one technology jump from that available to a university or a low-volume commercial
design. If the SIMD chip was implemented in a comparably dense technology, other design
points would become feasible, and the model will have to be expanded. A recent example
of research in this direction is the Execube chip, which integrates several 32Kx8 DRAM
memories with 16-bit PEs.

Once off-chip memories are part of the design, the model must determine two parameters:
the available bandwidth per pin, and the number of pins allowed on the PE chip. The former
is limited by the capabilities of commercial memory devices and the latter by packaging
constraints. A comparison of contemporary high-bandwidth memory alternatives are shown
in Table 6.4.

Name Width Cycle Initial | Data Rate | Address
(max) { Frequency | Latency Line

(MHz) (ns) | bits/pin/ns | Overhead

Rambus 9 600 50 0.6 4
Synchronous SRAM 32 100 5 0.1 18
Synchronous DRAM 32 100 50 0.1 22
Extended DRAM 8 66 30 0.066 22

Table 6.4: Contemporary Memories

The parameter that controls how long PEs must stall waiting for the data is latency: the
time from the data request until the data arrives. Different memory organizations have
varying latencies, from the 4 ns of high-speed SRAM (Chappell, Chappell, Schuster, Allen,
Klepner, Joshi & Franch 1991) to the 35 ns of a fast DRAM. SIMD architectures encounter
another cause of latency: bandwidth limitation. Since all PEs must wait until data is
received, the latency is increased by this wait period. Because of this phenomenon, memory
organizations with high latency but with a uigh burst bandwidth may well exhibit lower
latency, especially since SIMD-oriented transfers occur in units of hundreds (or thousands)
of bits. The initial latency is amortized over all elements in the hurst. The Rambus part
falls into this category. Unfortunately, even though products are beginning to incorporate
this interface, the technology is still difficult to use in a design.

A comparison of these latencies is shown in Table 6.5.

The more conservative design described here assumes a conventional SRAM operating at
a 16 ns cycle time through a 64-bit port. The aggregate bandwidth is therefore 4 bits/ns.
An important realization incorporated in the model is that for a fixed chip size, bandwidth
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Configuration Pins Pins BW Latency

Total | Signal | bits/ns | initial | data | total
Rambus, | port 13 9 5.4 50 1 190 | 240
Rambus, 2 ports 26 18 10.% H0 95 145
SSRAM, 32 bits H0 32 3.2 0] 320 320
SSRAM, 64 bits K2 (i1 6.4 01 160 160

Table 6.5: Latencies of Memories

(and therefore latency, as discussed earlier), is also fixed, and may therefore be expressed
as bits per nanosecond per unit area. This somewhat odd normalization is useful because
PIL area fluctuates as a function of datapath width, and the available bandwidth changes
with it. Based on the Abacus design, the total PE arca consisted of approximately 100,000
SRAM cell equivalents. Thus the bandwidth per unit area, #, is 0.00004.

‘The time to provide a data word to all PEs in the array from an off-chip chip memory is:

w (1)

T = =
T PE bandwidth A, I8

(6.7)

where w is the data word width, It will eventually cancel out, so its exact value is not
important,

The next parameter to be determined is 7,, the amount of time that passes between load
operations. Given these two quantities, the performance degradation D;, is given by:
4 Al
1
Di, = —— 6.8
{7} 'I" + ’I‘l ( )

We use a very simple model of load events, namely a fixed frequency. Conventional caches
often use Poisson (or other) distributions but control flow is much more predictable in SIMD
systems, and loops are likely to access variables in a repetitive stride, A load event oceurs
with a period of f,;,!" instructions. Another important realization of the model is that the
duration of a cache hit sequence is a function of the average instruction duration. 'T'hus,
T, is the number of instructions between misses, times the average number of cycles per
instruction, times the length of each cycle,

7;=( ' )T d (6.9)

s rer o
fmiu k'su

An interesting effect is shown in Figure 6-7. T'he ratio of 1) to T, exhibits a maximum at
about k = 6. This occurs because T, decreases very quickly at first, far faster than 7 drops
due to higher bandwidth per PE. The shape of the ratio curve should appear familiar, as
can he seen from the following derivation.
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Figure 6-7: Load Time Compared to Load Period. The upper monotonic curve is 7}, while
the lower one is T,. Their ratio, scaled up, is also shown

(6.10)

)
=(1+-T_;_#) (6.11)
(

j’l'llll
-1
JkSa ) .
= (1+ (6.12)
peBTpc
fQa ) -
= (1 + (6.13)
The performance degradation due to off-chip accesses therefore has a simple form:
1
D, = T 0. (6.14)
where p = f/B. Thus,
o __Qa
Qlo bt QuDuo = 1+ /’Qn (6~]5)
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‘This equation says that as the quality factor increases, the impact of off-chip accesses grows.
‘I'he method of achieving high performance is irrelevant. For a fixed algorithm ( finiss) and
a fixed memory bandwidth ( B), higher performance will throttle itsell back at the memory

level,
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Figure 6-8: 1/O-derated Quality Metrics

This effect can be seen in Figure 6-8. At high Q, values, Q,, begins to approach ﬁ
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IO-derated Quality Metrics m=64,256

Figure 6-9: 1/O-derated Quality Metrics (m=64,256))
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6.2.4 Background Loading

Performance of computer systems with predictable memory access patterns can be improved
with the technique of prefetching or background loading. The Abacus-1 design allows a
memory access Lo he initiated hefore the data is actually required, and relies on the compiler
to perform this scheduling rather than analyzing access patterns at runtime,

The net effect of background loading is to reduce the loading time penalty, The effective
loading time is:
Tofr = max(0,1) - 1y) (6.16)
and the derating factor becomes
7,

——— 6.1
T+ Ty (619

l)back =

Figure 6-10: Performance improvement due to background loading, as given by the ratio of
Dto to l)buck-

The derating reduction improvement due t.o prefetching is shown in Figure 6-10. There are
several interesting aspects of this graph, First, at high miss rates (f,, = 0.1), prefetching
only helps by about 10%. The improvement is very rapid as hit rates increase, reaching the
50% “sweet spot” at f,, = 0.02. Second, the relative improvement begins to worsen again at
very low miss rates, when prefetching completely eliminates the load penalty and therefore
cannot improve performance further, while the non-prefetched design is still reaping the
benefits of less frequent accesses.
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Figure 6-11: Absolute performance, background loading,.

Interesting effects can also be seen in the absolute performance curves in Figure 6-11,

Prefetching is so effective that performance saturates at the memory bottleneck. A two-
dimensional version of this plot is shown in Figure 6-12.

Repeating the mathematical analysis of the previous section leads to very interesting results.
First, unless T > 0, the load penalty is zero, and Dyger = 1, 80 for Togp > 0,

_ s _la_ (6.18)

This equation says that prefetching makes performance independent of bit-slice width! As
long as a sequence of computations takes less time that the load delay, there is no benefit
to improving the datapath efficiency. There are several observations:

o Prefetching makes the I/O system behave in two qualitatively different modes. If the load
penalty is smaller than the sequence delay, the external memory seems to disappear, since
the PEs operate as if all data was in local registers. If the load penalty is greater than the
sequence delay, the external memory becomes the only factor controlling performance.

e For a memory-limited design, increases in computational efficiency are invisible. Even
if a clever data representation halves the computing time at no area penalty, the overall
performance will be completely unaffected. :

The advantage of reconfigurable systems now becomes clear. Whenever an algorithm en-

97



IO,BL-derated Quality Metrics m=64,256

Figure 6-12: Prefetching-derated quality metrics

ters a bandwidth-saturated phase, a reconfigurable system can configure itself as a wider
datapath with more local memory to reduce the miss frequency and therefore improve per-
formance. For purposes of illustration assume miss frequency is linear in memory size.
Using the data of Figure 6-12, a {k=4,m=64} system operating at fy;5s = 0.04 can become
{k=16,m=256} system at fn;5, = 0.02 and gain 30% improvement.

Less Predictable Access Patterns

We would like to determine the benefit of background loading compared to the worst-case
penalty of 40 cycles, The key parameters are the latency of a reference, and a distribution
probability on consecutive non-memory references. Our more pessimistic first order model
assumes a uniforin probability p of an off-chip memory reference. Thus, the probability of
a sequence of k on-chip references before an off-chip reference is:

P(N =k)=(1-p)*'p (6.19)
This distribution is shown in Figure 6-13. Notice that the probability of long sequences is
small if p is high. Therefore, background loading is expected to help only in the case of low

p or low latency. Since the loading time T" given a string of k available cycles is L — k, the
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Figure 6-13: Probability of an on-chip hit sequence of length k for different values of p, the
miss probability. Note that for high p almost all the area under the curve is near small
values of k, and therefore long load times.

expected value of T is:

(1-p)+pLl-1
p

E[T) = XLj ¢ 'o(L-k) = (6.20)
k=1

6.2.5 Conclusions

In the sense of raw performance, the design is optimal when the off-chip memory pathway
is constantly busy with a minimal number of PE stalls. At that design point, the internal
PE area has been pared down to provide as much on-chip processing power as possible.
However, this mode of operation is probably not optimal under the power consumption
metric, since large off-chip buffers are constantly active, This multivalued optimization
problem is an interesting avenue of future research.
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Iigure 6-14: Effective latency vs latency due to background loading as a function of £ and
p. The advantage of background loading occurs in a relatively narrow zone: where the
frequency of loads is very low to begin with, and where latency is low. For low values of L,
the ratio may not be really important, since it approaches internal access time.

6.3 Future Work

The work described so far leads to some interesting intuitions, but is not yet a useful design
tool for building SIMD systems. This section addresses the necessary model extensions,
from the most significant to the most straightforward,

Miss Frequency As A Function of Memory Size. If off-chip memory access is the
main performance bottleneck then the selection of the on-chip memory size Ny, e is a critical
parameter. Currently, the model treats the miss probability f,;ss and Ny, as two separate
parameters, where in fact the former is a [unction of the latter, This function should he
characterized for each important vision algorithm, once the algorithm has been rewritten
to operate cfficiently under a non-uniform memory access (NUMA) machine model.

Optimal Choice of Concatenation Factor. A similar characterization should be done
for the f4 parameter, the fraction of operations not affected by increased datapath width,
Once both functions are available, the optimal design-time memory size and datapath width,
and the optimal run-time concatenation factor can be determined.
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Pipelining Effects. The effect of pipelining on the area and time should be modeled, The
general trend is obvious by inspection: low k¥ ALUs will not benefit at all from pipelining as
the clock rate will be set by the slower memory cycle time, This effect should be investigated
quantitatively.

Non-Ripple Adders. The current model assumes linear ALU evaluation time and linear
area growth in k, Extensive comparisons of adder architectures have been done in the
literature, and the tabulated data should be easily transferable to the model.

Overlapped I/0 and Computation. The current model assumes that the PE waits
until all data has been transferred from the off-chip memory before starting computation,
In a bit-slice orientation, many operations can be started as the least-significant bit groups
arrive,

AT? Circuits. The area and time growth equations model adders and not quadratically
growing circuits such as barrel shifters and multipliers,

Pad Ring Effects. Off-chip memory latency is largely governed by the number of pins
available on the particular pad frame. Analogously to the pad-limited area effect described
in Section 3.2,2, in some regimes the effective PE area js dominated by the total area of the
pad frame, and not by the size of the ALU or memory,

Minimum Latency Effects. If the chip is operating in the latency-limited and not
bandwidth-limited regime, adding more chip pins will not improve the effective latency.
This effect should be characterized for the various memory technologies,

Multiple Levels Of Memory Hierarchy. The current model assumes only two levels of
hierarchy: the fast on-chip register file and the slow off-chip dedicated memory chip. Recent
technology improvements have allowed processors and DRAM parts to be integrated into
a single chip. The model can easily be extended to account for this possibility, but the
difficult evaluation issue is that the PE density will decrease substantially, and the number
of chips in the system will increase. Some cost metric that models the integration benefit
will have to be developed,
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Chapter 7

Abacus 2: The Next Generation

After designing the Abacus-1 chip, a number of design flaws and potential improvements
became apparent, In a sense, this discussion belongs in a conclusions chapter, but it is a
prerequisite for the design of the next generation.

The goal of the design changed, from building a supercomputer-class machine to a co-
processor device for a workstation. Most significantly, having shown that high speed design
is possible, power dissipation emerged as the main bottleneck.

This chapter incorporates the lessons of Abacus-1 into the design of the next generation
machine, Abacus-2, Although presented in the context of a low-power, low-cost coprocessor,
the design can be converted back to a supercomputer-style system by returning to large,
fast chips housed in specialized packages and cooled by carefully designed fan systems.

The implications of a co-processor style design are:

e Low power.

¢ Low cost packaging.

¢ High virtualization factors.

e More off-chip memory per PE chip.
¢ No specialized 1/O boards.

The design retains constant performance, while reducing the chip area, power dissipation,
and packaging cost, The Abacus-2 chip fits 64 8-bit PEs on a single 8 x 8 mm die, and
operates at 66 MHz in a 3.3 V (or lower) environment,

A single Abacus-2 chip delivers 4.2 billion 16-bit additions per second and approximately 180
million 8-bit multiplies per second, in a non-aggressive 1 micron VLSI technology. Imple-
mentation in a current sub-micron technology would lead to higher performance numbers.

The new design is amenable to integration with a simple sequencer and I/O subsystem,
allowing scalability in system size from a 16-chip 64 GigaOps system that can be utilized
as a co-processor attached to a conventional RISC-chip based node of a MIMD system, to
a standalone 256-chip TeraOp SIMD machine. The Abacus-2 chip is designed to operate
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as smart memory, accessible by the controller with low latency, and without intervening
corner-turning circuitry.

7.1 Lessons of Abacus-1

This section presents some lessons learned from the process of implementing the Abacus-1
chip.

Reconfiguration overhead is excessive. The design of the on-chip interconnection
network requires a reconfiguration cycle whenever direction of data flow changes. This
occurs when, for example, an ASR (arithmetic shift right) instruction, in which bits flow
from left to right is followed by an ADD instruction, in which the carry bit flows from right
to left. Although the cost is only one cycle, many operations require only three or four
cycles, meaning reconfiguration costs approximately 20% of performance.

This problem was not obvious at first because initial program coding was done manually,
and an experienced programmer could reorganize the code to group together instructions
of a given orientation, reducing reconfiguration overhead by approximately factor of two.
Only when the compiler became operational and performance dropped unexpectedly, did
the flaw become obvious. Due to time constraints, there was no opportunity to investigate
compilation strategies for automatic reorganization. Instead, a peephole optimization step
was added that noted when two successive instructions required identical configuration,
and used a non-reconfiguring version of the microcode for the second instruction. Neither
software technique helps in the very common case of rapidly alternating mesh moves and
arithmetic operations.

Arbitrary data formats are expensive. The one-bit bit slice elements could be grouped
in almost arbitrary configurations, as long as each set of PEs responsible for a data word
formed a topological circle. This choice required the overhead of network and configuration
circuitry at every bit of a datapath. Additionally, on-chip data could not be accessed by the
sequencer without a complex corner-turning reformatting process that requires dedicated
hardware.

In retrospect, this flexibility is mostly useless. The constraints on cluster organization are
that they must be tile-able, which essentially means rectangular, and both dimensions must
be a factor of 32 to fit evenly onto a chip. These constraints allow a limited number of
configurations, so the bit slices may as well have been grouped as multi-bit units.

Rise/fall times are a substantial fraction of cycle time . When rise/fall times
approach 500 picoseconds, three or four non-overlapping control signal transitions consume
as much as 3 ns. When combined with safety margins for process variation uncertainties,
the actual active time shrinks further, For example, an address wire must transition four
times during a cycle: one each for the read and write phases, and once for the precharge
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phases between the read and write. The 1.6 ns of rise/fall time is fully 20% of the cycle
time. This penalty can be eliminated by reducing the number of timing signals, using only
the initial edge of a signal to initiate activity, or lengthening cycle time through the use of
pipelining.

Simple ALUs do insufficient work per cycle. The very simple ALU operates in
approximately 400 picoseconds, a tiny fraction of the overall cycle time. The common
battlecry of “keeping the silicon busy” does not completely apply when computation actually
occurs during 5% of the cycle time. This is a central weakness of conventional bit-serial
SIMD systems: they spend far more time fetching and storing data than actually operating
on it. The implication of this analysis is that the main constraint on ALU complexity is
area rather than computation time. This issue is discussed in greater depth in Chapter 6.

Pipelining is important. The Abacus-1 design could not be effectively pipelined since
much of its bit steering depended on network reconfiguration, which was manipulated by
writing control registers, Forwarding could not be used because the arriving bit was a
function of (as of yet unwritten) control registers in many other PEs. As a result, the very
common network operations would have introduced pipeline bubbles.

Without pipelining, a single cycle had to encompass the read, write, and execute phases.
Cycle times thus stretched considerably longer than necessary,

Long instruction words are expensive. Although the double-banked register files and
twin ALUs allow two result bits to be written per cycle, the cost of this flexibility is higher
than first expected. As discussed in Chapter 3, the PE area impact is not significant, How-
ever, the required board-level instruction bandwidth is almost doubled. An intermediate
possibility is to use double-banked register files but generate addresses from the instruction
code. For example, the carry and sum bits could be written to identical addresses in the
two banks.

ECL components lead to low integration. ECL signaling was chosen for instruction
distribution and I/O paths before the system design was complete. The high parts count
of SSI ECL components did not become apparent until after the chip was designed. So
although the interface to the external memory chips is glueless, each PE board has two SSI
chips per PE chip. In addition sheer number of chips, ECL designs are complicated because
they use different voltage levels, discrete terminators and bypass capacitors, and a more
complex circuit board structure,

As pointed out in Section 4.3, the discrete circuitry could be eliminated with two custom
ASICs. But the question arises: if a special chip is required, why not use CMOS signaling
to begin with? For example, at lower frequencies, low-swing CMOS signaling consumes
significantly less power than that dissipated in ECL terminators alone,
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Burst I/O is overconstraining, The Abacus chip allocates three pins for data I/O. A
single 1/0 instruction initiates a 32-bit burst at 125 MHz. This design choice was intended
to both increase the overlap of computation and I/O by requiring only a single instruction
per 32 bits, and to reduce the number of chip pins.

The design places heavy demands on system-level I/O reformatting circuitry. It must
capture 32 256-bit words arriving at 8 ns intervals. High performance parts are required to
handle this quantity of data, yet they sit idle almost all of the time, as I/O transfers are
very rare.

Network model must be maintained transparently between chips. Abacus-1 im-
plemented a reconfigurable mesh network. PEs could be linked together by almost arbitrary
topologies, and operate as a multiple-writer bus, This is a powerful machine model, and is
the subject of considerable algorithmic research. Unfortunately, the multiple-writer model
breaks across chip boundaries, and therefore cannot be used for system-wide algorithms.
Of course, reconfigurable mesh algorithms can be emulated on Abacus, but their theoretical
performance levels will not be achieved.

7.2 Abacus-2

In order Lo see how each of these lessons was applied to the Abacus-2 architecture, this
section gives a quick overview of the design. An Abacus-2 processing clement consists of
an 8-bit ALU, 512 bits of single-banked memory, a carry bit interconnection network and a
mesh interconnection network. The carry network provides two unidirectional links running
in opposite directions. The mesh interconnection network allows PEs to select data from
each of their four neighbors.

7.2.1 Pipelining Analysis

Processor performance is frequently improved through pipelining the various phases of the
clock cycle. Pipelining involves adding registers between circuit stages to allow parts of
different instructions to execute at the same time. As long as the pipeline is kept full, the
throughput rate of a pipelined processor increases by a factor equal to the number of stages.
Most modern microprocessors have between 5 and 15 pipeline stages.

Pipeline periormance degrades when data or control hazards occur. For example, if a
register is written in one instruction and referenced in the next, the computed data item
has not yet been written to the register file and therefore cannot be read. The pipeline must
be stalled until the data arrives. Alternatively, a forwarding path can be added between
the ALU input and the write stage pipeline register, so the data can be directly shunted
without a pipeline bubble. This forwarding circuitry and pipeline registers are the main area
costs of a pipelined implementation. In conventional processors, the arca cost is negligible
compared to the four-fold performance gain. This advantage is not quite as clear for SIMD
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Figure 7-1: Simplified view of the Abacus-2 carry interconnection. The wiring and switch
requirements are approximately four times that shown in the image: double to complete
the ring topology and double again for the MSB to LSB direction.

systems, whose entire datapath is no bigger than two or three registers,

SIMD systems encounter three other hazards that decrease the effectiveness and increase
the cost of pipelines. First, communications operations occur frequently in image processing
code. Every such operation introduces a stall in the pipeline, since network data, unlike
internal data, cannot be forwarded.

Second, the value of the active register that controls conditional execution must be forwarded
to the register file writeback controller, as well as the global bit that disables the writeback
control so that the active register may be written. An alternative to expending area on
forwarding circuitry is to stall the pipeline in software,

Third, unlike conventional pipelining, when the forwarding logic detects the read of a register
that is still being written, it cannot simply forward the write stage inputs to the ALU, The
problem is that the data on the write stage inputs may not be actually written to the
register file (based on the active bit), and it would therefore an error to forward that data.
The ALU actually needs the value stored in the register file. Thus, writing a value and
reading it out immediately causes a stall, unless the compiler is certain that the active bit
is off.

The benefit of pipelining in a system already operating at the top clock rate allowed by the
instruction delivery system is not expressed in performance gains. Instead, power can be
reduced by lowering the voltage and therefore slowing operation back to the unpipelined
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rate. Since power dissipation is the next barrier to high performance, this tradeoff appears
worthwhile.

A standard three-stage pipeline consists of read, execute, and write phases, Two pipeline
registers and a three-to-one multiplexer are required for each phase per data port. Assuming
dynamic circuits, the area cost is estimated as approximately 30 inverters per datapath bit,
This is approximately 50% of the existing non-memory circuitry.

A more significant area cost is the growth of the memory cell due to the addition of an
extra write port. A typical area ratio between a two and a three-port cell is approximately
1.5. The combined ALU and memory-caused area increase is thus also 1.5.

The increased throughput thus comes at an area cost of approximately 60%, and an addi-
tional latency of two gate delays in each cycle. Assuming the clock rate can be increased
(or voltage lowered), the overall performance improvement is a factor of approximately 1.8,

7.2.2 Improvements To Abacus-1

Reduced Reconfiguration. Reconfiguration overhead has been almost completely elim-
inated in this design by two major changes. First, reconfiguration within arithmetic opera-
tions has been reduced by providing two wires for bidirectional signaling between bit slices
so that computations flowing in opposing directions (such as an add followed by a shift
right) do not require reconfigurations.

Second, reconfiguration has been eliminated for inter-pixel operations by separating the
roles of the carry chain and the mesh communication, The design recognizes that for mesh
operations, all pixels usually communicate in SIMD mode, and do not use the “current
neighbor” facility of network configuration. Therefore, the direction of mesh inputs is
selected globally for all PEs,

This redesign allows reconfiguration to be eliminated completely except for changes in the
processing site (PS) size. As a result, the configuration register write time can be very slow,
The Abacus-2 design does not take advantage of this optimization opportunity.

Fixed Data Formats. The word format ordering has been fixed so that bits are ori-
ented horizontally, with the [LSB on the right side. This addresses the issues of constant
distribution and corner turning. The implementation allows siinple, efficient constant gen-
eration by the sequencer with only a few byte shift instructions. Similarly, the four typical
word formats (8, 16, and 32) can be easily manipulated even in a bit-serial stream, The
disadvantage of this organization is that bits are no longer configured in a nearest-neighbor
head-to-tail snake pattern, and therefore propagation times between slices are longer,

Rise/Fall Time Issues. These problems have decreased in importance with the length-
ening of the read and write times due to pipelining. The main effect is due to the reduced
number of clock signals relevant to each pipeline stage. Thus, the cycle time of the read
circuitry is not affected by how many control signals are required by the ALU,
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CMOS Replacement for ECL. The instruction delivery interface is redesigned to use
CMOS signalling. A custom CMOS chip provides instruction distribution to two Abacus
chip columns.

Wider 1/O Port. Burst I/O has been eliminated in favor of an 8-bit dedicated output
port. Each column of PE chips shares an I/O bus. Each chip is given a column position
identifier, and I/O requests specify that position. For example, an I/O instruction specifies
that byte 3 of chip 1 be placed on the output bus.

An idea to be explored is the use of the wide instruction word to transmit data back to
the instruction distribution chip (IDC). In this approach, an I/O instruction causes the
IDC to stop driving the instruction bus, and the processor chip in a particular column to
drive the contents of a PE row onto the instruction bus, while executing a NOP internally.
Although peak computing power is slightly reduced, the use of a wide, 32-bit bus increases
I/0 bandwidth to 1 transfer per 2 cycles per column, or 4 bits per chip.

Alternate Active Bit Abacus-1 supported the use of an arbitrary bit in memory as
a steering bit in a multiplexing operation. A useful application of this capability is to
conditionally update a value in memory by selecting between the old value and the new one.
This technique reduces operations on the active register and therefore memory traffic. Since
Abacus-2 does not have three read ports, the multiplexing trick cannot be used. Instead,
a temporary active register is conditionally ANDed with the primary active register based
on a global signal.

External Memory Interface The external memory interface is ideally suited to a high
throughput, block-transfer based memory technology such as Rambus, but that technology
is not yet easily available. The design therefore resorts to off-chip SRAM instead of DRAM,
This approach reduces the memory capacity but eliminates the need to send carefully-timed
DRAM control signals through the instruction stream and to design lockout circuitry to
handle refresh timing,.

Several suitable memory chips are available, including the 32K x 32 Micron 10 ns syn-
chronous SRAM. With this IC, memory capacity can be expanded at the finer granularity
of 1 Kword per processing site, More address pins are required than for the DRAM, since
the row and column addresses are no longer multiplexed. External chip select pins provide
for future memory expansion.

Network Model One of the main drawbacks of the reconfigurable mesh model supported
by the Abacus-1 design is its inefficient support of images larger than the physical array.
Although signals propagate at electrical speeds, they must be re-registered and digitally
updated at each iteration. The problem is that signals may propagate in arbitrary directions,
so that virtualization reduces to cycling through all array tiles at every iteration,
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Abacus-2 uses the theoretically weaker but practically more efficient model of a reconfig-
urable bus. In this model, each PE can select whether to output its own value or that of
its downstream neighbor onto the bus, as shown in Figure 7-2,

l ?
s

| PE

T

Figure 7-2: Abacus-2 Mesh Network

Speed estimation is straightforward. If bypass is implemented with a buffered multiplexer,
propagation past one PE requires approximately 0.6 ns. An 8-PE row presents a delay of
only 4.8 ns. [/O pad delay is estimated at 3 ns, for a total chip delay of approximately 8 ns,
The time-multiplexed mesh pins are clocked so that propagation cannot be flowthrough,
and therefore incurs quantization delays, On the other hand, the clocking allows signals to
be pipelined.

Virtualization is easily handled by using a tile strategy instead of a neighborhood strategy,
as described earlier. Propagation occurs at electrical speeds across a tile. The data is then
registered under software control, and the physical array simulates the next tile. Since
reconfigurable busses operate in one dimension at a time, and in one direction at a time,
this approach is very efficient.

Multiplies The Abacus-2 design can perform multiplications at the rate of three cycles
per multiply step. Thus, an 8-bit multiply requires 24 cycles and produces a 16-bit result,
The chip-wide computing rate is 64 multiplies every 24 cycles, or 2,75 multiplies per cycle.
At a 66 MHz clock rate, this translates into 183 MOPS.

If multiplies become more important in applications, multiplication can be substantially
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improved with dedicated hardware. All of these approaches are more effective with a wider
slice. Approaches include:

o A dedicated shift register and Booth recoder to halve the number of iterations, and re-
duce the iteration time from 3 cycles to two. Estimated computation time is 4 iterations
of 2 cycles each, for 8 cycles plus 2 overhead cycles. Estimated performance is therefore
10 cycles, or 6.4 multiplies per cycle, leading to 422 MOPS at 66 MHz.

o A self-timed iterative multiplier with a Booth recoder. Estimated performance is de-
pendent on cycle time, but a single iteration of a 16-bit add should take about five
nanoseconds. This requires four iterations, or two 15 ns cycles plus a carry computing
cycle at the end. At 21 multiplies per cycle, the aggregate performance is 1.4 GOPS,

The dedicated circuitry will cost chip area, but the additional circuitry is at most four times
larger than the simple 8-bit. ALU, which is itself only approximately 20% of the PE area.
Thus, the core area will approximately double, increasing the chip area by 50%.

Pass Gate Accelerators Like the Abacus-1 design, Abacus-2 incorporates accelerators
to reduce the quadratic delay growth with the number of pass switches. Unlike the noise-
intolerant NORA-based accelerator described in Chapter 3, the new design uses a slightly
slower but more robust static circuit (Dobbelaere, Horowitz & Gamal 1995).

Global OR Unlike the Abacus-1 design, PEs can no longer be joined into one large electri-
cally connected net. Specialized global OR circuitry is therefore provided. The precharged
carry circuitry is optionally connected to a dedicated column wire. The eight columns are
reduced to a single bit by a wide conditional pseudo-NMOS NOR gate.

Memory Organization The Abacus-2 memory is organized as 32 rows by 16 columns,
This organization requires only four column decoder wires, for a total of 20. Since the
memory organization dictates PE organization, the PE aspect ratio will be much more
square than the Abacus-1. Simulations show that the bitline discharge time is approximately
60% longer for the 16-cell bitline than for the 8-cell bitline, but this interval is a small fractjon
of the overall read cycle.

7.2.3 Physical Characteristics

Pin Budget. The chip package is an important aspect of overall design performance. To
maintain low cost, the Abacus-2 is housed in a 240-pin plastic quad flat pack (PQFP).
The chip contains 64 8-bit PEs in an 8x8 arrangement. Each side has 16 pins for mesh
communication, sending data on both clock edges, or 32 bits per cycle.

Abacus-2 PE Area Estimation Sixty-four of these processors occupy approximately
30 mm?, or about 75% of the area of the Abacus-1 array.
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Type Quantity
Instruction 20
Mesh 76
External memory address 15
External memory data 32
External memory control 4
I/0 8
TAP 5
Misc 5
Signal total 165
Power/ground 75

Table 7.1: Abacus 2 Pin Budget

Circuit Area (pu?) | Qty | Total (Ku?)
SRAM Cell 400 | 512 205
PG, sum, mux 6400 8 50
Pipeline 4000 8 32
Mesh Network 4300 8 35
Carry net,mux 3000 8 24
Aux Logic 10000 8 80
Total 425

Table 7.2: Abacus-2 PE Area

Cycle Time Estimation The limiting factor on the Abacus-2 ALU cycle is the propa-
gation path of the Manchester carry chain across 12 internal switches, 2 inter-slice switches,
and 2 multiplexers (for a 16-bit add), followed by the sum calculation. This should take
approximately 8 ns.

Power Estimation Current power consumption at 100 MHz is 3 A at 5 V, or 15 W,
Halving the amount of circuitry on chip reduces the current draw to 1.5 amps. Pipelining
while halving the cycle time leads to a voltage reduction of a factor of almost four, down to
1.5 V. The new estimated power cost is 3.5 W. With lower voltage swings on the external
memory drivers, the power can be reduced to 2.5 W.

7.3 Beyond SIMD: A Family of Abaci

Once a high performance SIMD core is developed, a number of interesting architectural
ideas present themselves.
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Dimensions 8 mm X 7 mm
PEs 64
Memory 32 Kb (512 bits/PE)
Pins 240
Technology 1 um CMOS
Voltage 25V
Clock Rate 66 MHz
8-bit GOPS 4.2
16-bit GOPS 2.1

Table 7.3: Abacus-2 Chip Spec

Abacus-M: Multi-SIMD Operation. One way of viewing the Abacus-2 chip is as the
integration of a large number of traditional discrete bit-slices (such as the AMD2903) and
a flexible interconnection network on a single chip. If a bitslice family sequencer was also
integrated, the chip could operate independently as a uni-processor, ignoring the broadcast
SIMD instruction and treating the on-chip memory as registers and the off-chip memory
as instruction and data store. This is essentially a superset of the recently common idea of
integrating a RISC-style controller and with a SIMD array on chip.

The key difference is that several Abacus-M chips can work together as a larger SIMD
system. This mode of operation entails dynamically selecting one of the chips as a master
and then having all slaves listen on the instruction bus while the master drives the bus. The
collection of Abacus-M chips could now operate in a mixed MIMD/SIMD mode, as required
by the algorithm. This mode would not be as efficient as pure SIMD, but algorithms more
suitable to MIMD operation could be implemented efficiently.

Abacus-S: Systolic Operation. A small augmentation of the Abacus-2 PE would allow
operation in a systolic mode, where each PE executes a different instruction. The only
required hardware is a locally controlled latch on every control line. Every PE could be
now programmed to perform a different operation. For example, directing some PEs to
multiply their network input by an internal constant and place the result on the network
output, while others summed their network inputs, results in a pipelined FIR filter. A more
powerful interconnection network is also necessary for effective operation in this mode.

Abacus-F: FPGA Emulation. The addition of local address decoding to an Abacus-
S PE allows emulation of an SRAM-based FPGA cell. A richer interconnection network
would again be required, but much of the network traffic could be time-multiplexed by a
soltware-based routing scheme.

Abacus-U: Universal Computing Element. The combination of all three features
described above leads to an almost universal computing element, able to operate as a SIMD
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node, as a uniprocessor with a set of very wide vector registers, a collection of systolic
computing elements, or as programmable logic. Furthermore, different parts of the chip
could be operating in different modes. For instance, some PEs could be serving as logic
gates configured as specialized find-first-one hardware co-processors for other SIMD-mode
elements.
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Chapter 8

Discussion

The main goal of the Abacus project was to return SIMD computing to the mainstream
of parallel computer architecture by demonstrating that for important problem domains,
parallel computers based on a SIMD reconfigurable bit-slice architecture can outperform
those based on conventional processors by over an order of magnitude using the same
silicon resources. This demonstration was based on a four-part approach: implement a
high-speed high-performance SIMD processor chip; design a complete system to identify
possible bottlenecks; develop an analytical performance model to allow fast redesign in the
face of technology changes; and propagate details of high-performance design to the SIMD
architecture community.

High-Speed Chip Implementation. The process of fabricating an artifact and mea-
suring consumed area and execution speed produced a number of important lessons, as
cataloged in Section 7.1. In addition, it has forced the development of circuit and layout
techniques necessary for high-speed SIMD processing, identification of the true area and
time costs for various system components, and a methodology for effective design of new
chips.

Aside from the off-chip interfaces discussed in the next section, standard building blocks for
future SIMD chips include the timing signal generator, the instruction distribution network,
the test access port controller, and the prefetching controller.

The instruction distribution network has been identified an unexpected but important area
consumer, as has the effect of treating control logic layout as an afterthought. In the Abacus
chip, only 40% of the chip area is consumed by the PEs; the rest is allocated to off-chip
pads, control circuitry, and instruction distribution. Any research that predicts chip-level
performance by designing only a single PE will overestimate performance by a factor of
2.5, Similarly, the fundamental limjtation on edge rates in large SIMD systems has been
identified as an important time consumer,

The Abacus chip design process can serve as a framework and methodology for future
designs. Specifically, the experience gained through the Abacus effort suggests that once
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a preliminary design of a PE is complete, the instruction and data distribution networks
should be designed before performing circuit optimizations, since the global structure will
affect the PE in potentially unanticipated ways. Identification of possible optimizations
using software compensation of layout quirks and removal of abstraction boundaries for
layout improvement are also possible only when the global PE structure is well defined.

The aggressive (in terms of speed and integration) nature of the design explores physical
limitations on architecture and machine models that become more significant at high-speeds.
For example, it is becoming obvious that chip boundaries cannot be abstracted away in the
interests of soltware regularity.

The Abacus project tested the limits of the premise that simple one-bit PEs allow a faster
overall clock rate. Although this is a common argument in research papers, other MPP
SIMD systems use a clock rate substantially slower than that of commercial bit-parallel
microprocessors. The 125 MHz Abacus chip clock is the highest of any of the massively
parallel SIMD systems in the literature. Further increases in clock speed are limited by
instruction bandwidth rather than PE complexity, and therefore transfer the difficulty to
off-chip interfaces and printed circuit board design. Maintaining clock speed while increasing
the work done per cycle holds more promise as the approach for incorporating smaller and
faster VLSI technology.

System Design. Completion of an entire system has brought to light the unexpected
bottlenecks and performance hits in high-speed SIMD designs. Consideration of hoard-
level issues led to the development of instruction retiming logic, high-speed mesh signaling,
low pin-count data I/0O, and software control over DRAM timing. Abacus now has a system
framework that allows modification of the PE core while retaining plug compatibility with
the rest of the machine. Since the clock rate is already aggressive and increases system cost,
it may be held constant while developing techniques for obtaining more work per cycle or
for reducing power dissipation.

Some of the lessons learned are apparently the same as those discovered by the mainstream
microprocessor architecture community. The instruction distribution and sequencer limita-
tions are similar to the microcoded CISC processors’ speed limitations. The current Abacus
design is comparable to a first or second generation RISC design. As clock speeds rise due
to architectural innovation and improvements in circuit design, power dissipation becomes
a significant issue. The transition to this power-sensitive regime occurs more quickly for a
SIMD machine since unlike a uniprocessor, many power-hungry ICs share a board and must
be cooled. Fortunately, much of the power in a SIMD system such as Abacus is dissipated
in very regular, highly capacitive structures such as instruction wires. These structures are
suitable for novel power saving techniques such as partial energy recovery,

Analytical Modeling. The analysis of memory size and ALU complexity provides de-
signers with a design tool more quantitative than experience and intuition for architecture
development. So far, this tool has disproved a number of preconceptions common in the
SIMD community, such as the use of small, simple ALUs. Additionally, the model has al-
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ready lead to some immediately applicable observations about other ongoing SIMD research
projects.

For example, there has been considerable recent interest in so-called processor-in-memory
(PIM) or intelligent RAM (IRAM) architectures (Gealow, Herrmann, Hsu & Sodini 1996).
Surprisingly, some of these designs still use bit-serial processors. As Section 7.1 has already
pointed out the disparity between memory access time and the amount of time spent com-
puting by a one-bit adder. The disparity is worse by an order of magnitude when DRAM
access times reach 50 ns. Having paid an extraordinary amount of time for the access, the
ALU should extract as much computation as possible from the data before writing it back,
In general, a good rule of thumb is that the slower the memory, the more complex the ALU.

The inverse effect can be seen if the on-chip memory is built from fast, dense DRAM cells,
as was the case in an early Abacus design proposal. The model allows a quick evaluation
of this approach; since the ALU area is increased relative to the memory, the area penalty
for wider datapaths will be more severe than in an SRAM-based PE. Since the speed is
expected to remain comparable to the SRAM, the effect is to lower the optimal datapath
width,

In another case study, the SRAM-based MGAP-2 design (Gayles, Owens & Irwin 1995)
relies on a redundant representation to avoid carries. Yet at the targeted clock rate of
50 MHz in a 1 micron VLSI technology, the carry can easily ripple through 16 bits,

Analysis of the Abacus architecture has led to the insight that area-efficient memory systems
require at least four edge times to execute a memory access, ALU delays must be at least
as long as that time interval. Since this time is already greater than that required for a
four-bit ripple carry adder, and edge times will increase with improved VLSI technology
(and therefore smaller feature sizes), bit-serial designs should be considered obsolete, at
least for memory-based PEs.

The passing of bit-serial processors appears even more inevitable when pipelined processing
is considered. Since pipeline stage delays are (ideally) equal, the execute part of the cycle
does almost no work for the same reason as in the unpipelined case. Even worse, the
overhead of pipelining registers and forwarding logic comes with no performance gain and
therefore decreases performance for narrow-width datapaths.

Another obvious observation from the first-order model is that low-memory PEs deliver
higher performance (for applications that fit in memory). In the limit, processors with no
memory offer the very highest performance, which explains why FPGA-based computing
systems perform so well: if the algorithm can be converted into a systolic form with little
storage per processing node, then all of the silicon is busy computing. If the algorithm
run on a low-memory chip requires many off-chip memory references, system performance
becomes equal to memory access speed.

The analysis has underscored the need for understanding memory requirements as well as
time requirements of algorithms. Given the enormous difference in access times between on-
chip and off-chip memory, algorithms with theoretically poorer performance but a smaller
working set can outperform supposedly efficient but memory-intensive algorithms. A true
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algorithmic figure of merit must include assumptions about the underlying machine model,

Cultural Effects. The cultural effects on the research field are expected to be twofold,
First, Abacus has demonstrated that high clock rates are achievable with simple circuits,
even in a slow process technology. This demonstration should not be surprising, since
GHz-level bit-serial adders have been fabricated in comparable technologies, yet the SIMD
architecture community has not internalized the fact that high-speed SIMD design can and
indeed must be done in an academic setting. After the circuit techniques and architectural
issues are made publicly available, there will be no excuse for future designs to deliver less
performance (accounting for cost). The availability of these techniques raises the bar for
future architectural development,

The second effect will hopefully be due to the compelling promise of a cheap (under $5000)
co-processor board capable of 500 GOPS. The Abacus-2 design is complete at the block-
diagram level, and its potential is backed by an existing, operating Abacus-1 chip. This
combination of factors should motivate researchers to construct a system based on the ideas
in Abacus-2,

Summary. The Abacus project, through this dissertation, has shown that for the prob-
lem domain of early vision, parallel computers based on a SIMD reconfigurable bit-slice
architecture can outperform those based on conventional processors by over an order of
magnitude using the same silicon resources.
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Appendix A

Abacus-1 Instruction Format

A 61-bit microcode word is used to transfer instructions into the PEs. The instruction
pins are double cycled, so there are 31 pins, There are two types of instructions: regular
and special. A special instruction is used to load control registers, generate load/store
commands to the I/O port, load an immediate constant, etc. A regular instruction consists
of explicit ALU operations and addresses.

Both instruction types contain a field of timing information for the DRAM interface. The

upper 15 bits of each instruction contain this information and additional control information.
1

Special instructions are encoded by specifying an ALU operation of Clear for the left ALU
(bits 8-10 of the instruction word). In this case, the read addresses are irrelevant. The
compiler enforces the convention that unused addresses for Clear instructions are set to
0. The decoder detects the case of a Clear ALU operation with a non-zero read address,
and uses the lower four bits of the read address as the instruction type. Three bits are
currently needed; the fourth is reserved for future expansion. During the execution of a
special command, the PE array executes a NOP instruction (actually, the PE write clock
is suppressed).

The instruction format descriptions below do not include the DRAM timing field (bits
46-60).

A.1 Regular Instructions

A regular instruction consists of 6 addresses (4 read, 2 write), and 2 8-bit op-codes.

[Pad direction | RW | RRB | RRA | RALU | LW | LRB | LRA | LALU |
46 41 36 31 23 18 13 8 0

'Some of these bits may be eventually replaced by configuration registers,
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Op Code | Name Operation

0000 Regular instruction

XX01 LI Load immediate constant

1100 LCR Load control registers

0010 SARI | Set DRAM address register, Inst
0110 SARD | Set DRAM address register, DP
1010 LIO Load from 1/O port

1110 SI10 Store to I/0O port

Table A.1: Microinstruction Types

The ALU fields are the 8-bit ALU opcode specifications; RA and RB are the two read
addresses, and W are the write addresses,

The PadDir bit indicates which chip edges are transmitting and which are receiving during
this cycle. A value of 1 means that the North and West directions are driving; 0 means
that South and East are driving.

A.2 Special Instructions

SARI: Set Address Register Immediate

Set the DRAM address register from the Block Address specified in the instruction, The
address register is 20 bits wide, allowing up to | Megawords (each of 32 bits) to be addressed.
Additional memory expansion is supported by use of the DRAM control lines as chip select.

| X | Block Address | 0010 | 00000000 |
46-32 12 8 0

SARD: Set Address Register

Set the DRAM address register from the low bits of the Data Plane.

X~ T 0110 [ 00000000 |
46-12 8 0

LCR: Load Control Regs

[ X | Control Bits [ Mode | 1100 [ 00000000 |
46-21 20-16 15-12 8 0

Load a set of control registers from the data word. The new setting takes effect at the start
of the next cycle. There needs to be an additional control register to individually select the
high or low DRAM bank.
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Bit Name Description
20 | DRAM Chip Select 1 | DRAM chip select
19 | DRAM Chip Select 0 | DRAM chip select

18 | DRAM Hold 1 DRAM holdstate, upper 32
17 | DRAM Hold 0 DRAM hold state, lower 32
16 | Grid Bypass Global OR pad latch enable

The two DRAM select registers are a power-saving mode which avoid toggling the buffers.
There are two registers in case only one SIMM was used.

The mode field controls how the control bit field affects the control register, With four
mode bits, all operations on the regs are possible. For example, four useful operations are
below.

Mask | Operation

1100 | Copy
1111 | Set
0000 | Clear

0101 | Toggle

LI: Load Immediate

[ Constant (31-8) | Dest Address | Constant (7-0) | 01 | 00000000 |
46-23 22-18 17-10 8 0

Write the specified constant into the specified register in the left memory bank. The constant
field is split up to simplify decoding (note that the write address is in the same location as
in the regular instruction).

To execute this instruction via the TAP interface, drive the literal bus values to the inverse
of the desired bit pattern, and execute a clear operation on the left ALU. All PE columns
receiving a literal 0 will produce a 1 on the ALU output; columns receiving a literal 1, will
pass the ALU output unchanged. Thus, a clear will store a 0 in columns with a literal I.

LIO: Load From I/O Port

[ X | Advance Plane | UpdateReg? | 1010 | 00000000 |
46-14 13 12 8 0

Load either the upper or lower 16 bits of the I/O plane input with the contents of the 1/0
port. The HalfWord bit specifies upper (set) or lower (clear) half. Optionally advance the
I/0 plane.

Another bit in this instruction disables this operation. The effect is to allow I/O plane
advancing without affecting the state of the latches.
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SIO: Store To I/O Port

[ X | Advance Plane | UpdateReg? [ 1110 [ 00000000 |
46- 14 13 12 8 0

Enable either the upper or lower 16 bits of the I/O plane output with the contents of the
I/O port. The HalfWord bit specifies upper (set) or lower (clear) half. Optionally advance
the I/O plane.

Another bit in this instruction disables this operation. The effect is to allow 1/O plane
advancing without affecting the state of the latches.

A.2.1 Timing Information

The timing bits for the DRAM interface are shown in Table A.2,

Bit Name Description

60 [ xWrite Write clock. Cleared for NOPs

59 | xNetPre NetPrecharge control

58 | Word Select | Determines whether upper or lower word latches are loaded
57 | REt Row enable

56 | CALt Column address latch

55 | W/Rt Write/Read

54 | Ft Refresh

53 | WE} Write Enable

52 | Gt Output Enable

51 | Row/Col Row/column address select

50 | Dload DRAM Load signal for DRAM latch

49 | Dstore DRAM Store signal for DRAM latch

48 | DPClk DP Clock: advance data plane

47 | Addrlnc Addr increment: advance address counter

Table A.2;: DRAM Timing Information

Instruction bits marked with a dagger (t) are destined for the DRAM control wires, Refer
to the Ramtron specification sheet for a description. Note that the S control line is driven
from a configuration register. Row/Col selects whether the 11-bit row address or the 9-bit
column address is enabled onto the address pins.

DPClk selects whether data plane advances.

Addrlnc selects whether the column address is incremented.
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