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Methodology for Path Planning with Dynamic

Data-Driven Flight Capability Estimation

Victor Singh∗ and Karen E. Willcox†

Massachusetts Institute of Technology, Cambridge, MA, 02139

This paper presents methodology to enable path planning for an unmanned aerial vehicle

that uses dynamic data-driven flight capability estimation. The main contribution of the

work is a general mathematical approach that leverages offline vehicle analysis and design

data together with onboard sensor measurements to achieve dynamic path planning. The

mathematical framework, expressed as a Constrained Partially Observable Markov Decision

Process, accounts for vehicle capability constraints and is robust to modeling error and

disturbances in both the vehicle process and measurement models. Vehicle capability

constraints are incorporated using Probabilistic Support Vector Machine surrogates of high-

fidelity physics-based models that adequately capture the richness of the vehicle dynamics.

Sensor measurements are treated in a general manner and can include combinations of

multiple modalities such as GPS/IMU data as well as structural strain data of the airframe.

Results are presented for a simulated 3-D environment and point-mass airplane model. The

vehicle can dynamically adjust its trajectory according to the observations it receives about

its current state of health, thereby retaining a high probability of survival and mission

success.

Nomenclature

C, c Constraint and marginalized con-

straint function

DKL Kullback-Leibler Divergence

Nr Number of response surface basis

functions

O Observation probability distribution

P Engine power

Q Observation model noise term covari-

ance matrix

R, r Reward and marginalized reward

function

Sv Support vector machine discriminant

T,D,L Thrust, drag, and lift force

Tavail Available engine thrust

Tr Transition probability distribution

V, ψ, γ Velocity, heading, and flight path an-

gle

V ∗ Optimal value function

Vπ Value function for control policy π

W Transition model noise term covari-

ance matrix

∆t Time step

α, φ Angle of attack and bank angle

α1, α2 Interpolation function tuning param-

eters

α
(n)
L , α

(n)
D nth response surface basis function co-

efficient for lift and drag, respectively

α
(n)
zs nth response surface basis function co-

efficient for measurement quantities zs
β1, β2 Probabilistic support vector machine

tuning parameters

εallow Allowable strain levels in structure

εpeak Peak strain levels in structure

η Appropriate normalizing term

λ Discount factor

E Expectation operator
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BG Discrete belief space

C Capability set

Dl Damage library

Mb′ M largest contributing b ∈ BG in

ϕ(b′, b)

V Capability volume

ν Observation model noise term

π Control policy

ψn nth response surface basis function

τ Bayes posterior

ϕ Interpolation function in Bellman

equation

b ∈ B Belief state and space

cs Damage severity parameter

d ∈ D Damage state and space

f Transition model

fX Kinematic state transition model

h Observation model

kloss Material moduli loss of damaged ele-

ments

lchord, wchord Chordwise location and width of dam-

age

lspan, wspan Spanwise location and width of dam-

age

lwing, cwing Length and chord of the wing

lc Airframe structure affected by dam-

age

m, g Mass and gravitational acceleration

nv, ns Number of quantities in zv and zs, re-

spectively

p(·) Probability measure

pthresh Constraint threshold

s ∈ S Total vehicle state and space

tdepth Damage depth into the skin

tskin Skin thickness of wing

u ∈ U Control input and space

w Transition model noise term

x ∈ X Kinematic state vector and space

xg, yg, zg Global x,y,z-coordinates

z ∈ Z Measurement vector and space

zs ∈ Zs Component of measurement vector re-

lating to vehicle structural state and

associated space

zv ∈ Zv Component of measurement vector re-

lating to vehicle kinematic state and

associated space

Subscripts

trim Designation of vehicle trim condition

variables

k Quantity at the kth time step

I. Introduction

A wealth of offline information is generated during the design and analysis of an unmanned aerospace

vehicle. This information spans multiple modeling sources of varying fidelity. These sources can include

global aerostructural analysis involving finite element codes modeling different vehicle scenarios and dam-

aged configurations, manufacturing design criteria, as well as detailed component analysis of the airframe

structure. However, such information is typically not used to inform decisions during online operation of

the vehicle. Recent advances in aerospace sensing technologies could potentially allow for online monitoring

of internal structural strains and sensing of aerodynamic shears, temperatures, and wind speeds across the

entire wing surface of an aerospace vehicle.1 There exists a significant opportunity to leverage a combination

of these offline and online information sources, together with machine learning and big data techniques, to

achieve gains in vehicle operation.

This paper focuses particularly on the setting of onboard measurements coupled with offline vehicle

analysis information for the next generation of self-aware unmanned aerospace vehicles (see Figure 1) that

can dynamically adapt mission strategy based on the observations they receive. Our data-driven planning

strategy applies the ideas of Dynamic Data-Driven Application Systems (DDDAS), where observational

data are used in a feedback loop with computation and simulation. Our approach has the potential to

improve vehicle reliability and survivability, and therefore fiscal risk, by allowing the vehicle to make use

of knowledge of its own design in conjunction with online sensors to estimate its current health beyond

its baseline performance and react accordingly. In this way, a vehicle mimics the behavior of a biological

organism, using and updating knowledge about itself with information it has collected over time to act

promptly in favorable conditions and conservatively otherwise.2
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Figure 1. Envisioned self-aware aerospace vehicle with sensors embedded across its airframe.

Enabling a self-aware aerospace vehicle requires four key components:

1. Sensory output about the vehicle’s internal and external conditions as well as its position and orienta-

tion in its environment.

2. Conversion of sensory output of internal conditions to characterization of the vehicle’s current health.

3. Capability estimation that provides quantifiable metrics of the vehicle’s abilities based on its current

health.

4. A path planner that can respond accordingly to changes in the vehicle’s estimated capability.

In the paragraphs that follow, we briefly focus attention on items 2-4.

Conversion of sensory output to characterization of vehicle health can be associated with damage de-

tection, identification, and monitoring of the vehicle airframe structure. These are common tasks in the

structural health monitoring and operational loads monitoring community (see e.g., Refs. 3–6 and 7).

In the area of capability estimation, one approach is to construct libraries characterizing the flight en-

velope for a range of different damage events. The library can be represented and queried using techniques

such as least squares, filtering methods, or statistical inference for parameter estimation and determination

of the modified flight envelope.8 A data-driven approach leverages offline information about the design of

a vehicle, such as aerodynamic and structural limits, together with online sensor information to provide a

dynamic estimate of the vehicle capability.9 A large body of literature addresses changes in aircraft perfor-

mance parameters such as stability/control derivatives both with simulation and wind-tunnel experiments.10

Parameters such as lift, drag, stall, center-of-gravity, and inertia shifts are explored where wing structure

damage is modeled as a loss of stiffness in the underlying vortex lattice and lumped element models used to

represent the aircraft structure and aerodynamics.11,12

Work in path planning and control for damaged aircraft has commonly focused on settings where the

damage is known a priori. A common damage scenario includes an engine-out emergency where one engine is

failed or has reduced thrust and the planner must find a safe strategy to land.13,14 Other works investigate

the effects of softened panels or removal of entire airframe sections as in damage-tolerant control.15 A strong
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focus is placed on stability and tracking of the developed control laws which derive from adaptive control

schemes, model reference control, model predictive control, and neural networks.16–18 Path planners generally

account for degraded capability (structural/actuator, sensor, communication, and fuel) as an increased risk,

usually in a probabilistic sense, to find safe trajectories or to change mission strategies.19–21 In these works,

the emphasis is on the planning strategy and not so much on damage identification or capability estimation.

One work considers the process of flight envelope evaluation and path planning using trim motion primitives

in order to find safe landing trajectories.22

A fusion of capability estimation and path planning with large-scale sensory information from multiple

modalities remains sparse in the literature and is the focus of this paper. Our goal is to develop a data-driven

methodology that takes advantage of the wealth of offline vehicle design and analysis information coupled

with online sensor data in planning and executing missions with a high success rate. We propose a method-

ology that is flexible with respect to the physics-based models describing the aerostructural and dynamical

characteristics of the vehicle and measurement processes. The methodology incorporates vehicle damage,

uncertainty due to modeling and noise, and multiple sensor modalities. We demonstrate our methodology

on a 3-D path planning example, where an unmanned aerial vehicle (UAV) is instructed to reach a target

location while avoiding obstacles and not exceeding available capability as a result of damage.

An illustrative scenario of interest is depicted in Figure 2. Here a UAV is initially tasked to navigate

through a series of obstacles to the target location. However, it becomes damaged and must quickly learn

of its reduced maneuverability as a result of damage and re-plan its trajectory if necessary. Multiple routes

are possible that require different degrees of vehicle capability in order to perform successfully. If the vehicle

recognizes itself to be mildly damaged then the vehicle will take shorter and more aggressive routes, whereas

if the vehicle recognizes itself to be severely damaged it will take longer and more conservative routes. The

vehicle must ultimately decide which route to take after determining its health. This determination is based

on collected measurements as well as offline information embodied in scenario libraries.
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Figure 2. Illustration of scenario of interest.

The remainder of the paper is organized as follows. Section II presents the data-driven methodology.

Section III gives demonstration and implementation of the proposed approach on an example scenario.

Section IV provides results and discussion of the example scenario. Finally, Section V provides concluding

remarks.

II. Methodology

This section describes the mathematical aspects of our methodology. We begin by defining the notion

of a self-aware aerospace vehicle and an outline of the computational roadmap in Subsection II.A. We next

define the concepts of vehicle state, control, and measurements used throughout the paper in Subsection II.B.

Subsection II.C describes the models for state transitions and measurements while Subsection II.D describes

state estimation. Vehicle damage and capability representation is described Subsection II.E. Construction

of the damage library used in the approach is discussed in Subsection II.F. Finally, the path planning

formulation is described in Subsection II.G.

II.A. Path Planning for a Self-Aware Aerospace Vehicle

A self-aware aerospace vehicle is one that can collect information about its internal conditions and its sur-

roundings through measurements from onboard sensors, and then use this information in real-time dynamic

decision-making. In this work, the internal conditions considered are related to damage incurred to the

vehicle such that its flight envelope is reduced. The path-planning solution is then one that determines the

modified flight envelope through an inference problem and uses this knowledge to re-plan the trajectory in

flight if necessary.

5 of 22

American Institute of Aeronautics and Astronautics



The proposed approach divides computational effort between offline and online phases, using the general

approach proposed in Ref. 9. In the offline phase, we compute probabilistic damage libraries characterizing

capability using high-fidelity physics-based models as well as determine allowable control actions for different

vehicle state distributions. In the online phase, we infer change in capability and the modified flight envelope

due to damage, using noisy sensor data and the precomputed library database in a Bayesian inference

problem. The updated capability estimate is then used to re-plan the vehicle’s trajectory if necessary.

Figure 3 shows the path-planning process for the offline/online approach.

Figure 3. Offline/online approach to proposed dynamic path planner.

II.B. Vehicle State, Control, and Measurement Definitions

The vehicle state represents both the vehicle kinematics and the vehicle’s current damage state. To that end,

we define the vehicle state by two components. The first component describes the kinematic quantities of

the the vehicle (global position, velocity, heading, flight path angle, etc.) and is given by a continuous vector

called the kinematic state x ∈ X ⊆ Rn, where X denotes the kinematic state space. The second component

represents a particular damage state (parametrized by depth, location, size, etc.) and is given by d ∈ D, where

D denotes the damage state space. The total vehicle state is given by the vector s = [x, d]T ∈ S ⊆ X × D,

where S denotes the total state space.

The vehicle is controlled through an input vector u ∈ U ⊆ Rm, where U denotes the space of control

inputs. These inputs can include deflections of the ailerons, elevators, rudder, or other control surface

components or signals.

The vehicle receives measurements in the form of a vector z = [zv, zs]
T ∈ Z where zv ∈ Zv ⊆ Rnv

contains nv quantities relating to the vehicle kinematic state and zs ∈ Zs ⊆ Rns contains ns quantities

relating to the vehicle structural state. The space of all measurements is denoted by the set Z ⊆ Zv × Zs,
where Zv is the space associated to zv and Zs is the space associated to zs. Examples of zv are Global

Positioning System readings, accelerometer readings, velocity, heading and other quantities related to the

kinematic state. Examples of zs are readings from sensor strain gauges located throughout the airframe

structure.

II.C. Transition and Observation Models

The vehicle system (“Vehicle System” block in Figure 3) is described using a transition model and an

observation model. The transition model, which governs the evolution of the vehicle state, is given by a

model of the form:

sk+1 = f(sk, uk, wk), (1)

where f : S ×U ×Rp → S, w ∈ Rp is the transition model noise term accounting for model uncertainty and

disturbances, and the subscript k ∈ N denotes the value of a quantity at the kth time step. The transition
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model encodes how the state of the vehicle transitions from one state to another given a particular control

input. The kinematic state will change through the vehicle dynamics while the damage state will change as

result of progressive damage induced by aggressive vehicle dynamics or by external events.

The observation model, which relates the vehicle state and control to a measurement, is given by the

following model:

zk = h(sk, uk−1, νk), (2)

where h : S ×U ×Rr → Z and ν ∈ Rr is the observation model noise term accounting for model uncertainty

and disturbances. Measurements considered here include combinations of different modalities ranging from

output about the vehicle kinematics to that of the internal structural state. This observation model allows

flexibility to what quantity can be considered a measurement. A measurement can come from output of an

arbitrary combination or arrangement of sensors but more importantly can come from quantities that may

be the result of a post-process (e.g., Fourier analysis, pattern recognition, statistical inference techniques,

etc.) provided a model is available that relates the vehicle state and control back to those quantities. The

latter becomes important where strain-only information is insufficient to detect and characterize damaged

structure, in which case some form of spectral analysis of structural response is required.

II.D. State Estimation and Hidden Markov Model Assumption

Due to partial observability, the true state of the vehicle is hidden and unavailable. Instead, we track a

quantity known as the belief state.23 Formally, the belief state is the probability distribution of the state

conditioned on the history of measurements and control:

bk(s) = p(s|z0:k, u0:k−1), (3)

where bk ∈ B is the belief state at time step k and lives in the belief space B, p is a probability distribution,

and the subscript 0 : k denotes quantities for each time step from 0 up to k. The belief state is the output

of the “Estimator” block in Figure 3. To simplify estimation, we assume the total vehicle state evolves

according to a hidden Markov model (see Figure 4). Under this model, the belief state updates according to

the definition of the Bayes filter:23

bk(s) = τ(bk−1, uk−1, zk)(s) = ηkp(zk|s, uk−1)

∫
s′∈S

p(s|s′, uk−1)bk−1(s′) ds′, (4)

where η−1k = p(zk|bk−1, uk−1) is the normalizing term and τ : B × U × Z → B, the Bayes posterior, can be

thought of as the transition model for the belief state. The control action is a function of the data, namely

the history of measurements and control. However, since the belief state is a sufficient statistic,24 the control

can be expressed as a function of the current belief state.

Figure 4. Hidden Markov model for state evolution. The vehicle states (blue) are hidden and so the control action is

a function of past measurements and control. It can be expressed as a function of the current belief state.
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II.E. Damage and Capability Representation

We treat damage as a reduction in capability where capability is defined as a set C ⊆ X × U such that the

pair [x, u] ∈ C is feasible, where [x, u] corresponds to a particular maneuver. Example maneuvers include

pull-up, pull-down, banked turn, or any other combination of vehicle state and control. The set C is the set

of maneuvers that will not lead to vehicle failure. The boundary of C is defined by the physics of the vehicle

and will include structural, engine, or aerodynamic limits such as stall, maximum velocity, and/or maximum

structural component strengths.

To quantify capability at the kth time step, we assign a probability of whether a maneuver is feasible

given a particular damage state configuration by the following probability distribution:

p([x, u] ∈ C|dk). (5)

However, since the true damage state of the vehicle is unknown, we instead consider the probability of

whether a maneuver is feasible given the history of measurements and control:

p([x, u] ∈ C|z0:k, u0:k−1). (6)

Conditioning this expression on the damage state dk and applying the Markov model assumption, this

expression can be rewritten as

p([x, u] ∈ C|z0:k, u0:k−1) = E
[
p([x, u] ∈ C|dk)

]
, (7)

which is a weighted average of Eq. 5 with respect to the marginal posterior distribution of dk. Note that this

expectation changes in time based on the evolution of the marginal posterior distribution p(dk|z0:k, u0:k−1)

and hence encodes the notion of “dynamic capability” through a weighted average of this marginal posterior.

Another interpretation of the marginal posterior is that of a model selection problem, where the marginal

posterior is the probability that the vehicle damage state is described by the model given by dk conditioned

on the history of data. These probabilities or weights change as new information is made available, reflecting

the growing confidence of one model over another.

II.F. Damage Library Construction and Surrogate Modeling

The offline phase of the methodology shown in Figure 3 involves computation using high-fidelity physics-

based models of a damage library database to be used for inference online. This amounts to computing

p([x, u] ∈ C|d) and the observation model h for each damage state d of interest. Generation of vehicle

capability for a given damage state d is described as follows (the reader is referred to Ref. 9 for more details):

1. Run high-fidelity physics-based models at points that adequately sample the boundary between infea-

sible regions and feasible regions in the combined vehicle state-control space X × U for a particular

damage state d. An adaptive sampling algorithm can be used to pick points intelligently.25 For each

feasible maneuver point [x, u], assign the value +1 and for each infeasible maneuver point, assign the

value −1. In addition, for the measurement quantities of interest, record their values for each maneuver

point [x, u]. These recorded values will serve as the training data to build the observation model using

standard machine learning techniques such as response surface modeling or kriging.

2. Fit the feasible/infeasible points with a Support Vector Machine (SVM) or some other binary classifier.

3. Use the SVM discriminant in a Probabilistic Support Vector Machine (PSVM). The PSVM defines the

capability for a given damage state d as:

p([x, u] ∈ C|d) =
1

1 + eβ1(d)Sv(s,u)+β2(d)
, (8)

where Sv : S × U → R is the SVM discriminant and β1, β2 : D → R are tuning parameters.
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The use of a PSVM provides an inexpensive and data-source-flexible surrogate that captures the richness

of the vehicle constraints. Moreover, it allows for direct application of dynamic capability in the Bayesian

context as specified in Eq. 7. Figure 5 shows an example capability PSVM generated over the combined

vehicle-control space for one particular damage state using the above procedure. For this case, the combined

vehicle kinematic state and control space is parametrized in terms of velocity, bank angle, and angle of attack.

Here we see that with either a high velocity, bank angle, and/or angle of attack, there is low probability

given by the PSVM of being able to perform the corresponding maneuver due to reaching of aerodynamic

stall or exceeding structural limitations. Figure 6 illustrates how the PSVM contours change as a result

of increased damage to the vehicle. Here, PSVM contours for 5 example damage states are shown ranked

from lowest severity (pristine) to highest (worst case damage). The parametrization of the combined vehicle

kinematic state and control is again velocity and bank angle but the angle of attack is fixed. The immediate

observation is that the region underneath the SVM discriminant equal to 0 shrinks as damage is worsened.

This motivates the following definition of a damage severity parameter to characterize the extent of damage.

We define the damage severity parameter cs(d) ∈ [0, 1] by the following relation:

cs(d) =
Vpristine − V(d)

Vpristine
, (9)

where V ∈ R+ represents the volume underneath the associated capability boundary (SVM discriminant

equal to 0) for damage state d and the pristine structural state denoted by the subscript “pristine”. We use

the damage severity parameter to rank and downselect damage states for the library made available to the

path planner. This library, which we denote by Dl ⊂ D, serves as the limited set of damage states over which

we perform inference and take expectations. Note that this set is incomplete in that it does not contain

every conceivable damage state. However, the assumption is that the library contains enough damage states

to adequately account for the extent of damage in which the vehicle finds itself. New conditions that emerge

as a result of recurrent inspection and maintenance of the vehicle can be easily added to the library over

time, reflecting a growing and maturing knowledge database for that vehicle over its lifecycle.

Figure 5. Capability boundary and PSVM contour slice for a given vehicle damage state. Points underneath the

boundary lie in the feasible maneuver region while points above lie in the infeasible region of the combined vehicle

state-control space.
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Figure 6. Comparison of PSVM capability contours at a fixed angle of attack for different damage states. Damage

states are ordered based on increasing cs from left to right and top to bottom.

II.G. Path Planning

We formulate the path planning problem as a Constrained Partially Observable Markov Decision Process

(CPOMDP).23,26 Formally, a CPOMDP is a tuple 〈S,U ,Z, Tr, O,R,C〉 where:

� S,U ,Z is the vehicle state space, control input space, and measurement space as defined in Subsec-

tion II.B.

� Tr(s, u, s
′) : S × U × S → R+ is the transition probability distribution associated with the vehicle

transition model and gives the probability of transitioning to state s′ from the initial state s after

applying control input u. It is defined as Tr(s, u, s
′) ≡ p(s′|s, u) and describes the statistics of the

transition model f .

� O(s, u, z) : Z ×U ×S → R+ is the observation probability distribution associated with the observation

model and gives the probability of observing z after applying control input u when the vehicle is in

state s. It is defined as O(s, u, z) ≡ p(z|s, u) and describes the statistics of the observation model h.

� R(s, u, s′) : S ×U ×S → R is the one-step reward function for the vehicle being in state s and applying

control action u, as well as the reward for the transitioned state s′. The reward function encodes

penalties for obstacles in the environment, rewards for reaching the goal location, and penalties/rewards

for other states.

� C(s, u, s′) : S × U × S → R is the constraint function. For our purposes, C(s, u, s′) = p([x′, u] ∈ C|d′).
Note that the constraint function here considers the control action u and the transitioned state s′.
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The objective of a CPOMDP is to find a feedback control policy π : B → U that maximizes the total expected

discounted reward subject to the requirement that the expectation of the constraint function be above some

threshold. That is:

maximize Vπ(b) =E
[ ∞∑
k=0

λkr(sk, uk)|π, b0 = b

]
s.t. E[c(sk, uk)] ≥ pthresh ∀k,

(10)

where

r(s, u) =

∫
s′∈S

R(s, u, s′)p(s′|s, u) ds′

c(s, u) =

∫
s′∈S

C(s, u, s′)p(s′|s, u) ds′.

(11)

The threshold pthresh ∈ [0, 1] tunes how aggressive or cautious is the resulting control policy and how much

on average the constraints are satisfied. A high value (pthresh → 1) corresponds to a conservative policy,

a medium value (pthresh → 0.5) corresponds to a more aggressive policy, while a low value (pthresh → 0)

corresponds to an aggressive policy that will lead to a high likelihood of vehicle failure. The expectation of

the discounted reward is conditioned on the policy π and the initial belief state b0 being equal to b.

Solving Eq. 10 exactly is intractable and approximate solution techniques remain an active area of re-

search. However, there exist numerous techniques for stochastic path planning or planning in belief space that

one can employ to solve the above optimization statement. These techniques include dynamic programming,

sampling-based algorithms,27,28 and search-based algorithms29–32 .

III. Example Problem

This section applies our approach to an example scenario where a damaged aircraft must navigate its way

through a series of obstacles to a target location while using dynamic capability estimation. Section III.A

describes the problem setup and the parametrization of damage. Section III.B describes the damage states

assessed. Section III.C details the physics-based models as well as process and measurement models used.

Section III.D discusses the solution to the path planning formulation.

III.A. Problem Setup

The problem scenario involves a UAV that is tasked to reach a goal location in minimum time while avoiding

obstacles, as depicted in Figure 7. However, the UAV encounters damage and must quickly react and re-

plan its trajectory. The path planner is tested for a range of different damage states, some that are in the

library and some that are not. The vehicle starts at a lower elevation than the target location and must

simultaneously climb and maneuver around obstacles as it makes its way to the target location.
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Figure 7. 3-D environment for example problem.

We parametrize a damage state d by the tuple 〈lc, lspan, wspan, lchord, wchord, tdepth, kcenter, kedge〉. Here, lc
is a categorical variable that indicates the affected airframe structure (wing, horizontal stabilizer, etc.), lspan
is the spanwise location of damage, wspan is the spanwise width of damage, lchord is the chordwise location

of damage, wchord is the chordwise width of damage, tdepth is the damage depth into the skin, and kloss is

the material moduli (elastic and shear) loss of affected elements. An example parametrization for a damage

state d is given by

〈Upper Right Wing Surface, 0.1lwing, 0.05lwing, 0.3cwing, 0.1cwing, 0.7tskin, 0.99〉,

which corresponds to damage of the upper right wing surface at spanwise location 0.1 times the length of

the wing, chordwise location 0.3 times the chord of the wing, spanwise width of 0.05 times the length of the

wing, chordwise width of 0.1 times the chord of the wing, depth of 0.7 times the skin thickness of the wing,

and 99% material moduli loss of affected elements. Other damage states are defined similarly.

III.B. Damage State Selection and Methodology Assessment

We test our methodology by providing the path planner a limited damage library (as mentioned in Subsec-

tion II.F) and running the path planner on the vehicle for different damage states. Some of these damage

states will be in the library while others will not. Our objective is to characterize how the path planner

performs when 1) the vehicle has undergone damage that is in the library and 2) the vehicle has undergone

damage that is not contained in the library.

To begin, we restrict ourselves to damage of the upper right wing surface of the vehicle, as shown in

Figure 8. We then generate 73 damage states by performing a full factorial exploration of the parameters

listed in Table 1. Ten of these states populate the damage library. These 10 states are used to build the

PSVM surrogates, observation models, and also to do the dynamic inference. The 10 states for the library

are determined by ranking all 73 damage states by increasing values of cs and selecting states at uniform

increments from lowest severity (pristine) to highest (worst case damage), as shown in Figure 9. Damage

parametrization of the 10 states in the library are summarized in Table 2.
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Table 1. Damage state parametrization. A full factorial exploration is performed with the indicated parameters.

Parameter Value

lc Upper Right Wing Surface

lspan/lwing [0.1 0.2 0.3 0.4]

wspan/lwing [0.05]

lchord/cwing [0.3 0.5 0.7]

wchord/cwing [0.1 0.3 0.5]

tdepth/tskin [0.7 0.9]

kloss 0.99

Table 2. Parametrization for the 10 members in the damage library. URWS denotes Upper Right Wing Surface.

Parameter 1 2 3 4 5 6 7 8 9 10

lc URWS URWS URWS URWS URWS URWS URWS URWS URWS URWS

lspan/lwing 0 0.30 0.30 0.40 0.30 0.30 0.10 0.40 0.20 0.10

wspan/lwing 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

lchord/cwing 0 0.70 0.50 0.50 0.50 0.30 0.30 0.30 0.70 0.70

wchord/cwing 0 0.30 0.10 0.50 0.30 0.30 0.10 0.30 0.10 0.50

tdepth/tskin 0 0.90 0.70 0.90 0.90 0.70 0.70 0.90 0.70 0.70

kloss 0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Figure 8. Location of damage to the UAV and strain sensor placement.

Next, for each of the 73 damage states, we apply the corresponding damage to the vehicle and perform

the mission of moving the vehicle from the start location to the goal using the path planner with the

aforementioned damage library. We repeat this mission 50 times for each damage state for a total of

N = 73× 50 = 3650 missions. For each mission i, we store the following information: mission success (Si),

mission time (termination time) (ti), and peak strain levels across the airframe structure (εpeak,i) during the

mission. Mission success Si = 1 if the vehicle reaches the target location without collisions and structural

failure, and Si = 0 otherwise. Mission time is the time to reach the target objective or the time of termination

as a result of structural failure or collision with an obstacle. Structural failure occurs when the peak strain

level εpeak across the airframe structure exceeds allowable levels εallow at any time during the mission. Since

we are interested in survivability of the vehicle, we quantify survivability as the number of successful missions
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divided by the total number of missions:

P (S) =
1

N

N∑
i=1

Si. (12)

Thus, the goal of the path planner is to maximize P (S) across all missions.

Figure 9. Selection of library. Damage states used for the library are circled in red.

III.C. Vehicle Models

III.C.1. Aerostructural Model

The aerostructural model used to generate the PSVM library as well as the lift, drag, and strain quantities for

all damage states assessed, is a combination of ASWING33 and Variational Asymptotic Beam Cross-Sectional

Analysis (VABS).34 ASWING is a nonlinear aerostructural solver for flexible-body aircraft configurations

of high to moderate aspect ratio. We use ASWING to calculate internal wing loads and deflections as

functions of input vehicle state and control. We can obtain internal structural loads for both static and

dynamic flight conditions but restrict ourselves to quasi-static maneuvers. VABS is used primarily to resolve

local effects due to stiffness weakness of the aircraft wing for different damage states. Full implementation

details for this aerostructural model are given in Ref. 9. It is important to note that the extent of damage

modeling of this tool is reduction in the moduli of damaged elements in the 2D cross section of VABS via

the kloss parameter. More sophisticated damage models can be described with higher-fidelity modeling such

as isogeometric analysis of thin shell composites.35

III.C.2. Vehicle Transition Model

For the vehicle transition model, we restrict ourselves to static damage for the assessment, i.e., dk+1 = dk.

This model takes the form:

f(s, u, w) =

[
fX (s, u, w)

d

]
. (13)
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The function fX represents the transition model for the kinematic state which we take as the point-mass

zero-side slip airplane model with an additive noise term:36

fX (s, u, w) = x+



V cos γ cosψ

V cos γ sinψ

V sin γ
T cosα−D(s,u)

m − g sin γ
L(s,u)+T sinα

mV cosφ− g
V cos γ

L(s,u)+T sinα
mV cos γ sinφ


∆t+ w, (14)

where x = [xg, yg, zg, V, γ, ψ]T , u = [T, α, φ]T , and w ∼ N (0,W ). Here xg, yg, zg denote global x,y,z-

coordinates, V is the velocity, γ is the flight path angle, ψ is the heading angle, T is the thrust force, α

is the angle of attack, φ is bank angle, L is the lift force, D is the drag force, m is the mass, g is the

gravitational acceleration, ∆t is the timestep, and w is the transition model noise term with covariance

matrix W . Parameters lift L and drag D are calculated at sampled maneuver points [x, u] for a given

damage state d in the library using ASWING+VABS and fit with response surface models for use of the

form:

L(s, u) =

Nr∑
n=0

α
(n)
L (d)ψn(x, u)

D(s, u) =

Nr∑
n=0

α
(n)
D (d)ψn(x, u).

(15)

where α
(n)
L is the nth coefficient in the expansion for lift, α

(n)
D is the nth coefficient in the expansion for drag,

ψn is the nth response surface basis function, and Nr is the number of response surface basis functions in

the expansion.

The control is expressed as u = utrim + ∆u, where the utrim term represents the control component that

ensures trim conditions of the aircraft (γ̇ = 0 and V̇ = 0), and ∆u represents the perturbations from these

conditions and is the component used for path planning. Trim conditions are found by solving the following

set of equations for αtrim at each timestep:

Ttrim cosαtrim −D(s, utrim)

m
− g sin γ = 0, Constant Velocity

L(s, utrim) + Ttrim sinαtrim

m
cosφ− g cos γ = 0, Constant Flight Path Angle

(16)

Note that changes in stability of the UAV as a result of damage (changes in lift and drag as a result of

damage) are handled by the trim component of the control. Time integration of Eq. 14 is approximately

computed using a fourth-order Runga-Kutta scheme and the trim condition equations in Eq. 16 are solved

using Newton-Raphson iteration.

The available thrust Tavail derives from a simple constant power (P ) engine model (Tavail = P/V ) where

the engines are modeled after two Austro Engine AE300 Series (168 hp peak).37,38 The total thrust is

bounded between zero thrust and the available thrust:

0 ≤ Ttrim + ∆T ≤ Tavail. (17)
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III.C.3. Vehicle Observation Model

For the vehicle observation model, we use direct measurements of all kinematic state variables and strain

sensor output from different locations on the vehicle wing. This model takes the form:

h(s, u, ν) =

[
x∑Nr

n=0 α
(n)
zs (d)ψn(x, u)

]
+ ν, (18)

where ν ∼ N (0, Q). Here α
(n)
zs is the nthcoefficient (a vector containing all strain sensor components and

locations) in the expansion of the strain quantities and ν is the observation model noise term with covariance

matrix Q. As is done for the parameters lift and drag, the strain sensor model is constructed for the damage

states in the library by evaluating strains using ASWING+VABS at sampled maneuver points [x, u] and

fitting with response surface models, per Step 1 in Subsection II.F. Strain sensors are placed at 0.1lwing

spanwise increments at chord-wise locations 0.2cwing and 0.7cwing from the side of body to the wing tip for

both the left and right wings, as shown in Figure 8.

III.D. Path Planning using Dynamic Programming

We solve Eq. 10 using dynamic programming. In particular, the optimal value function V ∗(b) can be rewritten

into the following Bellman equation:

V ∗(b) = max
u∈U

{
r(b, u) + λ

∫
z∈Z

V ∗(τ(b, u, z))p(z|b, u) dz

}
s.t. c(b, u) ≥ pthresh,

(19)

where

r(b, u) =

∫
s∈S

r(s, u)b(s) ds,

c(b, u) =

∫
s∈S

c(s, u)b(s) ds.

(20)

This equation can be solved approximately by using a grid-based approach and interpolation scheme39

as described in the following paragraphs. The grid-based approach is attractive in order to handle the

constraint in a simple and direct manner. Furthermore, it converts the continuous state CPOMDP to a

grid-based Markov Decision Process (MDP) over the belief states.

We begin by defining a finite set of belief states BG ⊂ B for which each element bi ∈ BG defines a single

belief distribution over the total vehicle state space. The Bellman equation over BG is then expressed as:

V ∗(bi) = max
u∈Ui

{
r(bi, u) + λ

∫
z∈Z

V ∗(τ(bi, u, z))p(z|bi, u) dz

}
(21)

where the constraint is now encoded in Ui.
In general, the Bayes posterior τ will not be a member of BG and therefore interpolation between belief

states in BG is done, as illustrated in Figure 10.
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Figure 10. Discretization of belief states of BG and interpolation of transitions.

The interpolation scheme we use is the following:

V ∗(τ) ≈ ητ
∑
j∈Mτ

ϕ(τ, bj)V ∗(bj) (22)

where ϕ is the interpolating function, η−1τ =
∑
j∈Mτ

ϕ(τ, bj), andMτ denotes the set of the M belief states

bj ∈ BG with the largest value of ϕ(τ, bj). The purpose of Mτ is to truncate the sum in Eq. 22 to those

belief states with the highest contribution rather than retaining all belief states in BG in the sum. For the

interpolating function, we use

ϕ(τ, bj) = exp

{
1

α1

[
DKL(τ ||bj) +DKL(bj ||τ)

]α2
}

(23)

Here DKL denotes the Kullback-Leibler Divergence, and the variables α1 and α2 are tuning parameters. With

the interpolation scheme defined in Eq. 22 and the associated interpolating function in Eq. 23 satisfying the

set of convex rules (0 ≤ ητϕ(τ, bj) ≤ 1 and
∑
j=Mτ

ητϕ(τ, bj) = 1),39 the resulting finite-state Bellman

equation is by design a contraction mapping, which yields a unique solution. Substituting the interpolation

scheme into the Bellman equation, we arrive at:

V ∗(bi) = max
u∈Ui

{
r(bi, u) + λ

∫
z∈Z

ητ
∑
j∈Mτ

ϕ(τ, bj)V ∗(bj)p(z|bi, u) dz

}
(24)

where the arguments of τ have been suppressed for brevity. To compute the expectation over the measure-

ments Monte Carlo simulations23 are performed. Eq. 24 is solved using value iteration.

Online, the control u for a given belief distribution b is determined by averaging using the same interpo-

lation scheme. That is,

u(b) = ηb
∑
i∈Mb

u(bi)ϕ(b, bi). (25)

IV. Results

This section provides the results of the example problem using the proposed methodology. Figure 11

shows realizations of the vehicle trajectory for the pristine case and a heavily damaged case for pthresh = 0.9.

Immediately apparent is that the vehicle selects a longer and less aggressive route to the goal in the heavily

damaged case. The realizations also show the stochastic nature of the problem where different routes can

be selected based on the belief distribution the vehicle sees, even if the vehicle is in the pristine structural

state.
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Figure 11. Realizations of vehicle trajectory for the cases where the vehicle is in the pristine state (left) and a heavily

damaged state (right).

Survivability of the UAV across all missions is summarized in Table 3. For comparison, we include a

baseline policy that makes no use of dynamic capability and performs maneuvers under the assumption that

the UAV is in the pristine state at all times. For the test cases run, we see that the path planner with

dynamic capability is able to increase total survivability by 15%. To examine further the performance of the

path planner, Figure 12 shows the peak strain level during the mission versus the obtained distance to the

goal. A successful mission is obtained if the vehicle is able to stay under the allowable strain level (here we

have a safety factor of 2 for a threshold ratio 2εpeak/εallow = 1) while reaching within 0.2 miles of the goal.

We see that a large fraction of missions under the baseline policy exceed the threshold peak strain, while the

policy using dynamic capability is able to stay below the threshold for nearly all missions. The location of

failures is visualized in Figure 14. The majority of failures under the baseline policy occur from exceeding

allowable strain levels upon the vehicle entering the first corner between the two large obstacles.

Table 3. Survivability comparison of the path planner under the baseline and dynamic capability policy.

Policy Survivability

Baseline 84%

Dynamic Capability 99%
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Figure 12. Peak strain during mission versus achieved distance to goal. “X” markers correspond to obstacle collisions.

We can understand how the policy under dynamic capability is performing for individual damage cases

by looking at Figure 13. Here, we see two clusters corresponding to the two trajectories plotted in Figure 11.

That is, the path planner selects different trajectories based on the particular damage state the vehicle is

in, taking longer paths when necessary and taking shorter paths otherwise. In contrast, the baseline policy

almost always attempts to take the fastest route and thus has a higher likelihood of exceeding allowable

strain values and failing the mission for more heavily damaged scenarios. We note that due to the stochastic

nature of the problem, even the baseline policy has a few cases where the path taken can vary, as can be

seen by the cluster of points between 45-50 seconds in Figure 13.

In numerical implementation, in certain instances where a damage test case is similar to two cases in

the library, the posterior damage state distribution can fluctuate rapidly without converging to a stable

distribution. In other cases, a damage test case not similar to any member in the library can result in a

posterior where the weights are more or less equal across all damage cases in the library. The first issue

can result in conflicting control policies leading to a higher likelihood of collisions (the reason for obstacle

collisions for the path planner with dynamic capability) as a result of these policies enforcing different

trajectories. Both issues indicate insufficient knowledge about what state the vehicle is in and presses upon

the assumption that the library contains sufficient depth and richness to adequately model the true vehicle

state. However, fluctuation of this distribution can serve as a useful diagnostic to determine whether the

vehicle has been damaged in a new way not captured in the library. This can then motivate further analysis,

inspection of the vehicle, and updates to the library for the new cases encountered.
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Figure 13. Time to goal vs peak strain during mission. “X” markers correspond to obstacle collisions.

Figure 14. Locations reached before success/failure. The baseline policy fails as the UAV makes its way around the first

corner and exceeding allowable strain levels as a result of the aggressive climb and tight turn.“X” markers correspond

to obstacle collisions.

V. Conclusions

This paper presented a data-driven methodology that leverages offline vehicle design information together

with onboard sensor information to achieve dynamic path planning. An illustrative example highlighted the

key properties of the approach where a vehicle is tasked to reach a target location while avoiding obstacles
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and staying within capability. The example showed the intricate nature of the problem where, based on

what the vehicle senses, different trajectories can be taken to the goal location. Heavily damaged cases

result in conservative control actions while less damaged cases yield more aggressive actions to the goal.

Results show that a policy that uses dynamic capability has a higher chance of survival when compared to

a baseline policy that only knows of the pristine structural state. We note that controlling a damaged UAV

also involves accommodation of changes in handling characteristics. Modeling such changes requires models

of sufficient fidelity. For our implementation, the extent of damage modeling is via stiffness weakness and

not drastic changes in the UAV aerodynamic profile (i.e., removal of airframe sections). As a result, lift and

drag profiles turn out to be very similar to the pristine case. This is not a limitation of the methodology

but of the limitation of the tools used for implementation.

In the example problem, we solved Eq. 10 approximately using dynamic programming and a grid-based

approach. Discretization of the vehicle state space comes with some nuisances. Too fine a discretization

suffers from the curse of dimensionality, while too coarse of a discretization results in poor quality of the

solution, spurious trajectories, and/or inadequate capturing of the corners of the reward and constraint

functions. We note that the literature on path planning and control is vast, however the path planning prob-

lem can be broken down into two main sub-problems: motion planning and trajectory tracking. For larger

and more sophisticated environments and state spaces, numerous algorithms exist for both and can be used

interchangeably to solve the motion planning and trajectory tracking problem inherent in the optimization

statement of Eq. 10.

Future work will address larger and more sophisticated environments, wind conditions, different sensor

types, and higher-fidelity damage models. Nevertheless, results show promise towards an aerospace vehicle

that can dynamically adapt its trajectory according to the observations it receives about its current state of

health, thereby retaining a high probability of mission success and survivability.
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