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Abstract

Many low level vision algorithms require only low to moderate precision (6 to 8 bits). For
these applications, a special purpose analog circuit is often a smaller, faster, and lower power
solution than a general purpose digital processor. However, because these analog chips are
only suitable for one very specific function, they are often expensive, low volume products.
This thesis presents a more general purpose programmable mixed-signal array processor,
ADAP, that combines the flexibility of a digital processor with the smali area and low power
of an analog circuit. It achieves a processing efficiency in terms of power and area superior
to that of a comparable digital processor. Each processor in the array has a digital control
unit, an analog switch fabric, an analog storage unit, and an analog arithmetic unit with
an accuracy of 7 bits. The analog arithmetic unit utilizes a unique circuit that combines
a cyclic switched capacitor A/D and D/A to perform addition, subtraction, multiplication,
and division. Each processor cell performs, in parallel with all of the other processor cells,
0.8 million operations per second, consumes 1.825mW of power, and uses 700uxm by 270um
of silicon area. The chip was fabricated in Hewlett Packard’s 0.8um triple metal CMOS
process. An array of these processors was used to successfully perform an edge detection
algorithm, and a sub-pixel resolution algcrithm executed on the array was able to increase
the resolution of the edge locations by a factor of four.
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Chapter 1

Introduction

As digital processors continue to increase in speed due to continuing advances in CMOS pro-
cessing and digital circuit design techniques, many electronic systems have become almost
entirely digital, having only an A/D and a D/A at the edges. For many applications, this
is the optimal approach since digital circuits offer programmability, high speeds, numerous
automated design methodologies, and the ability to easily scale with process advances. How-
ever, there are some applications for which an analog or mixed-signal system offers superior
performance and more efficient use of power and silicon area. One such application is early
vision processing; a number of analog vision chips which are faster, smaller, and lower in
power than digital image processors have been developed (1, 2, 3, 4, 5, 6]. The primary
limitation of these chips is that they are all specific to one application; a digital solution
might offer less performance, but it would be far more flexible and programmable. The goal
of this thesis is to design a mixed-signal processor that combines the high performance of
a special-purpose analog chip with some of the programmability and flexibility of a digital
system. The key idea is that although the mixed-signal processor will not be as flexible or
programmable as a digital processor, it will be flexible enough to perform any operation
necessary for a certain class of algorithms while at the same time preserving most of the low
area, low power, and high speed of a special purpose analog chip.

Vision processing provides an excellent example of a class of algorithms appropriate for
this sort of processor. Since most vision algorithms are parallel in nature, they are well suited
to parallel processor architectures. Therefore, a processor that uses silicon area and power
very efficiently is very important. In addition, many vision algorithms require a processor
with only 7 to 8 bits of accuracy, so the limited resolution of a mixed-signal processor is not
a problem. A test application requiring a processor with a high degree of parallelism but
only 7 to 8 bits of accuracy was chosen. This application is a stereo vision processor for
an intelligent cruise control (ICC) system. An ICC system detects the distance to the car
ahead and adjusts the motor speed to keep this distance constant, as shown in Figure 1.1.

The processor designed for this application is an array processor chip. It consists of a
rectangular array of processors, each of which stores and processes its data in analog form but
is controlled by digital signals. This will provide an opportunity to see how much generality

13



can be introduced into an analog system, to explore the performance tradeoffs involved, and
to compare the tradeoffs with those of a digital processor.

The ALU of the processor uses a special circuit that combines an A/D with a D/A. The
processor will therefore be called the ADAP (for A/D, D/A Processor) chip.

Car1 D l: Car2

Figure 1.1: Intelligent Cruise Control: Car2 adjusts its speed to keep D constant.

1.1 Past and Related Work

1.1.1 Vision for Automotive Control

There are numerous projects underway at major car companies to give an automobile the
ability to sense objects ahead and either respond to them automatically or notify the driver of
them. Some projects, such as PROMETHEUS, a European research project, have attempted
to totally automate the car so that the car can drive itself [7, 8] on public roads. These
vehicles include vision sensors and motion sensors along with numerous control units that
detect other vehicles, lane markings, and traffic signs. Other projects, such as the Canadian
FAGYV, are designed to operate in better defined industrial sites {9].

Some of these projects use radar to detect objects. Delco Electronics is working on a
system that uses radar to warn the driver of objects that are too close [10]. Raytheon
has developed a millimeter wave radar system for intelligent cruise control systems which
can track more than one object at a time [11]. Toyota is working on a radar collision
avoidance system [12]. Ford is also working on a radar system. The initial projects are
simply advanced collision detection systems, but eventually, they will evolve into intelligent
cruise control systems [13]. One problem with these methods is that they can only detect
objects. They are not able to detect line markings on the road. Also, radar equipment can
be very expensive [13]. An additional cost is that any system emitting radar signals will need
to be regulated by the government. This regulation will add another set of costs. On the
other hand, a vision based system will tend to have the same strengths and weaknesses as
human vision. The same environmental conditions which make it difficult for a human to see
the road ahead would be the same conditions that degrade the operation of a vision based
system. Thus, the average driver, who might not understand how radar systems operate,
will still have a good understanding of when a vision based system will be able to operate.
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For this reason, there are numerous projects aimed at using vision systems for automotive
applications.

Several systems which use lane markings as well as object detection to guide the vehicle
have been developed [14] [15]. One of these systems uses an algorithm that searches for
symmetric objects in order to find a car in a camera image [16).

Several systems have been developed that use stereo vision for detecting depth. Toyota
has developed an experimental system that uses 64 digital processors in parallel for a sterco
algorithm [17] subsystem. CLEOPATRA, a European consortium, has developed a vision
based ICC system that includes a stereo vision system intended primarily as a warning
system. The system uses several high speed DSP chips for processing [18]. One stereo
system has been developed that uses linear cameras (only one long row of pixels, not a
square matrix of pixels) to reduce the processing time. This system uses two high-speed
DSP chips for processing [19].

Finally, some experimental systems try to use several methods at the same time. Hyundai
has a system, PRV II, which uses GPS, dead reckoning, image processing, and several types
of processors to determine its location and to detect other cars [20].

Many of these vision-based systems use some variation of the standard stereo vision
algorithm when actually computing the distance to an object. Some work has been done
optimizing various stereo algorithms and camera calibration methods for this application [21].

All of these systems require large racks of electronic equipment including power supplies,
computers, and special I/O boards. Most of the research work has concentrated on the
initial steps of developing vision algorithms, sensors, calibration issues, and software, not on
developing actual low-cost, low-power systems.

GM has developed an experimental intelligent cruise control system which uses a simple
stereo algorithm to determine distance [22]. It used a large amount of expensive, power-
hungry electronic equipment. ADAP can implement a comparable system at a reasonable
cost in terms of power consumption and silicon area.

1.1.2 Array Processors

Most digital array processors are intended for specific purposes. These include neural net
chips [23], [24]; data compression chips [25)], [26]; and filters [27]. All of these are designed
to perform only one task, but perform it much faster and with less hardware than a general
purpose SIMD computer. There are a few digital arrays which can perforn more than one
task. One of these, IMAP [28], is a SIMD processor intended for, but not limited to, image
processing applications.

Most analog arrays are even more application-specific. A number of analog vision chips
have been designed which perform specific vision tasks such as motion detection [29], finding
the focus of expansion [30], and image smoothing [3]. Many slightly more general analog
neural nets have been designed in which the function of each synapse and the intercon-
nection between synapses cannot be changed (31, 32, 33]. Other analog neural nets have
been designed for which the connections between synapses is programmable [34, 35, 36, 37).
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One analog processor intended for vision applications, called APAP, has been designed in
which the connections between cells and certain multiplicative constants for the cells are
programmable, but each cell performs the same sum-of-weighted-inputs function [38]. None
of these analog arrays have programmable processors and connections.

Several analog chips have been developed that implement sterco algorithms. In [39], a
chip which performs the entire stereo algorithm on one chip is described. The system is
very compact (on only one chip) and low power, but many algorithmic details, such as the
maximum disparity and correlation metric, are fixed. In addition, it can only use 1-D edge
filters, not the more robust 2-D edge filters. Another chip designed for stereo applications is
described in [40]. This imager chip uses special filtering circuitry on the imager chip itself
to preprocess the image data for the rest of the stereo system. This saves power and cost by
eliminating processing overhead, but the filter functionality is fixed and cannot be modified.

1.2 Different Processor Designs

There are many ways in which to design the processor. It can be digital or analog, serial
or parallel, pipelined or not, and optimized for various performance characteristics. This
section will consider a few very broad categories of processor design.

1.2.1 Types of Processor Arrays

Three classes of processors are Single Instruction, Single Data (SISD), Single Instruction,
Multiple Data (SIMD), and Multiple Instruction, Multiple Data (MIMD). A SISD processor
can only perform one instruction on one piece of data at a time. It is usually too slow
for many vision algorithms because of the enormous input data rates. A SIMD processor
can perform the same instruction on many pieces of data at the same time; it can handle
the higher data rate but often cannot handle the large number of calculations (both integer
and floating point) required for vision processing. A MIMD processor can perform different
instructions on multiple pieces of data at the same time. Therefore, for vision applications,
a MIMD architecture provides the best performance to deal with the large number of inputs
and operations characteristic of vision processing.

1.2.2 Digital Computation

A digital processor has the advantage of having as much resolution as the user desires at a
cost in area, power, and speed. They can also be programmed to perform many different
tasks. Their disadvantage is that for some applications which do not need a high amount of
accuracy and do not need to be completely general purpose, the area, speed, and power of
a digital processor may be wasted.

Two digital SIMD designs described in [28] and [41] will be used for comparison pur-
poses. These processors are, like ADAP, arrays of processor cells that are intended for image
processing applications. They are described in detail in Section 8.2.
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1.2.3 Analog Computation

An analog processor has the disadvantage of having limited accuracy, more susceptibility to
noise, and, usually, far less programmability. However, for a limited number of functions, it
can perform these functions more quickly in far less area with less power. One advantage in
area is that it needs only one wire to carry an analog value whereas a digital system necds
N wires for N bits of accuracy. Thus, data channels and switch fabrics can be far smaller in
analog systems. Also, certain arithmetic operations can be performed, at a limited accuracy,
more efficiently in an analog processor.

1.3 Organization of the Thesis

This chapter has introduced the motivation behind ADAP and discussed previous work in
vision systems and processor design. Chapter 2 describes the stereo vision algorithm in
detail. Chapter 3 describes the high level ADAP architecture and suggests several system
configurations for ADAP. Chapter 4 describes the ADAP processor and its constituent cir-
cuits in detail. Chapter 5 describes the physical layout of the ADAP processor. Chapter 6
describes the test setup used to verify the performance of the ADAP processor. Chapter 7
presents the experimental results from testing the ADAP chip. Conclusions and suggestions
for future work are presented in Chapter 8.

Appendix A analyzes the error sources in the ADAP processor. Appendix B contains
detailed timing information. Appendix C provides examples of how to program the ADAP
array chip and corresponding C code. Appendix D provides pin and package information for
the ADAP array chip. Finally, Appendix E provides instructions for using the ADAP test
setup.
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Chapter 2

Stereo Vision Algorithm

Although ADAP is intended to be useful for many different types of vision processing tasks,
an automotive intelligent cruise control application was chosen for testing purposes. In this
system, there are two'! cameras located a certain distance apart in the horizontal plane. The
images from these cameras are passed to a vision system, which determines the distance to
the car ahead. The motor speed is then adjusted to keep this distance constant.

This chapter explains the formula used in stereo vision, explains the actual algorithm
implemented on the ADAP chip, and describes two techniques used to increase the system'’s
resolution and robustness.

2.1 The Distance from Disparity Formula

The human eye uses several methods to determine the distance of objects in a scene. One of
these methods is to use the difference between left and right images. This technique, called
binocular stereo, is based on a simple formula [42)].

In Figure 2.1, f is the focal length of the cameras, B is the distance between the centers
of the two cameras, and Z is the distance from the cameras to the object. X, and X,
represent the x-coordinate of an object’s image in the left and right cameras, respectively.
By matching similar triangles:

X, _ X+B/2

7= (2.1)

X, _ X-B/2

7 =5 (2.2)
(2.3)

Xy = -fz-(x+3/2) (2.4)

1The actual system will have 3 cameras. This is discussed in Section 2.4.
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Figure 2.1: Binocular Stereo Example, D = X, — X,

X, = -é-(x — B/2) (2.5)

The algorithm now defines a variable called the disparity(D). The disparity is equal to
the difference between the x-coordinate of the left image and the x-coordinate of the right
image.

D = X - X (2.6)
D = -é-(x +B/2- X + BJ2) (2.7)
D = fB/Z (2.8)

Finally, rearranging terms yields the equation:

Z=fB/D (2.9)

Given f and B, all that the stereo-based cruise control system needs to do is to match
corresponding points in the left and right images and calculate the disparity D. Putting the
disparity into Equation 2.9 provides the distance to the car.
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2.2 Edge Detection

The first step of the stereo algorithm is to generate an edge map. Since the cruise control
application only requires that the distance to the car be found, the image is converted to a
vertical edge map. This will eliminate all information in the image except that associated
with vertical edges, reducing the amount of processing that must be done on the image. It
is possible to use horizontal edges as well, but that would add processing time. Vertical
edges are used instead of horizontal edges because it is easier to eliminate other ohjects in
the scene using vertical edges. A car will usually have stronger vertical edges than any other
object in the image. On the other hand, the horizon will have stronger horizontal edges than
a car. Finally, the other objects of potential interest to an automotive vision system, such
as lane markings, are more easily detected with vertical edges.

In the actual algorithm, two edge maps are actually produced for each image. One
is for positive edges, in which the pixel values, or brightness, increase from left to right,
and one is for negative edges, in which the opposite occurs. The edge map is generated
by replacing the value of each pixel with a scalar number, Positive_Edge_ Strength or
Negative_Edge_Strength, representing how much the intensity changes in the neighbor-
hood of that pixel. An example of the way in which this is done is shown in Figure 2.2. This
edge detection algorithm is an example of a Sobel filter [43]. For each pixel P, the pixels
nearby are multiplied by a weight, K,,. The pixels on the right are then added and divided
by the sum of the left pixels using Equation 2.10:

S right_pizel, K,
Y left pizel, K,

Positive_Edge_Strength = (2.10)

Figure 2.2: Edge Detection Filter Example

The result of this operation is that most edge map values now have a value close to zero
except those near sharp edges, which have higher values at locations closest to the edge, as
shown in Figure 2.3. The exact values in the edge map will depend on the actual image and
the weights used in the edge detection algorithm. The constants K, to K¢ are dependent
upon the image light levels and algorithm requirements. They are chosen to the maximize
the contrast in the edge map between the values at edges and the values which are not at
edges. This is done by selecting weights which place the denominator of Equation 2.10 near
the value for which the division function’s derivative is highest.
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2.3 Finding the Disparity

Once the images are converted into edge maps, edges in the right image can be matched
with edges in the left image. This is done for each row (i.e., where the y-coordinate is
constant) independently. Each row for the left edge map is shifted and then compared to
the corresponding row for the right edge map. The number of pixels by which the left
row is shifted is the disparity; the comparison is repeated until all possible disparity values
are tried. The disparity value for which edge peak values in both edge maps match is the
correct disparity. It is of course possible for different edges in the same row to have different
disparities since they may correspond to different objects at different distances.

2.4 Trinocular Stereo

The actual algorithm for the ICC system will use trinocular stereo instead of binocular stereo.
Trinocular stereo uses a third camera at the midpoint of the baseline. This third camera
helps in resolving the correspondence problem. The correspondence problem refers to certain
situations in which there is more than one solution to the binocular stereo algorithm. In
large images with many edges, this situation almost always exists for some of the edges. An
example of this situation is shown in Figure 2.4. The third image is needed to determine
whether the objects in the left and right images are from P1 and P2 or P3 and P4. The
center image eliminates the P3,P4 solution [44].
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Figure 2.4: Example of Correspondence Problem
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2.5 Sub-Pixel Resolution Algorithm

One problem with any stereo algorithm is that the disparity resolution is limited since the
algorithm only finds the disparity to the nearest pixel. For an image size of NxN pixels,
the range of disparity values is at best 0 to N. This means that there are only N distinct
distances that the disparity algorithm can detect. In order to increase the resolution of the
algorithm, more pixels must be placed on the imaging chip, which can be expensive.

One way to increase the algorithm’s resolution without increasing the number of pixels is
to use a sub-pixel resolution algorithm [45]. This algorithm uses the edge values to determine
the disparity to a fraction of a pixel. There are a number of ways in which this can be done;
the most straightforward way is as follows: At an edge location in the right edge map, the
edge peak P, (which corresponds to a peak in the left edge map) and the two edge values
on either side (P, and P;) are assumed to be three points on a quadratic curve, as shown
in Figure 2.5. X4ctuat, Which is the x-coordinate of the curve’s peak, can be found from
the three peak values by fitting P;, P,, and P; to a quadratic formula and then finding the
x-coordinate of the maximum. This results in the formula:

¥ _ P,—.75P, - .25P;
Acuel = T p 5P, — 5P

(2.11)

MaxiMUMes e = = = P

w U

X-1 § X X1

Figure 2.5: Sub-Pixel Resolution Method

Once X gceuat is found, the edge location is known to a fraction of a pixel. The same calcu-
lation is run on the left edge map. The sub-pixel disparity is then calculated as the difference
of the sub-pixel values. Simulations indicate that this method increases the resolution by a
factor of at least 4.

There are other algorithms that can be used to perform the sub-pixel resolution calcula-
tion [46]. They all involve addition, subtraction, and division operations. In addition, some
of them require a logarithm operation.
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Chapter 3
ADAP Architecture

This chapter discusses how ADAP represents data, describes the ADAP processor and pro-
cessor array, explains how an ADAP array can be used, and describes different ways to use
an ADAP processor in a vision system.

3.1 Data Representation

The way in which a processor represents numerical information is crucial to its design. Digital
processors usually represent information with fixed length bit-strings arranged so that the
digital bits are the binary representation of the information. An analog processor such as
ADAP can represent information using analog voltages or analog currents.

3.1.1 Analog Current

If the information in an analog system is represented with a current, certain functions are
very easy to implement. Addition and subtraction can be implemented using simple current
mirrors. Multiplication and division can be implemented using various forms of Gilbert
multipliers [47]. Under certain conditions, they can operate at high speeds. However, there
are several disadvantages to such a system:

e The current must be constantly reflected through current mirrors to move it around the
circuit. To get an accuracy on the order of 1% without expensive laser trimming, they
must be very large and slow because of the transistors and cascode structure needed
for good matching [48]. Also, their accuracy is dependent upon having well matched
transistors, which is not a process characteristic pursued in the most advanced digital
processes. For some types of processors, current copiers might be a solution, but they
require extra clocking overhead and cannot distribute current to multiple locations.

e Another consideration is that good Gilbert multipliers require bipolar transistors while
accurate current mirrors require CMOS transistors. This means that a BICMOS pro-
cess, which is more expensive than a CMOS process, is required.
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e Finally, in order to be able to distribute information throughout the chip, the current
information must be transmitted as the gate voltage of a CMOS transistor in a current
mirror. This gate voltage would be routed using CMOS switches. When these switches
turn off, charge will be injected into a storage capacitor (either the gate capacitance of
a CMOS transistor or a separate capacitor). This charge injection AQ divided by the
storage capacitance C will produce a voltage error AV = AQ/C. This will produce an
error of order of AV/Vgange, Where Viange is the range of the transistor’s gate voltage.
To minimize the impact of this error, a large Vgange should be used. A system which
represents information using voltage can use a large percentage of the power supply
for Veange- ADAP uses 2V (40%) of its power supply range. A current representation
can only use the gate voltage range of the current mirror’s CMOS transistor. The
transistor might be sized to have a gate voltage range of 2V, but this would place the
highest gate voltage at about 3V (2V plus about 1V of threshold voltage). Since these
current mirrors would need cascode type structures, it would be difficult to place all 4
transistors (2 NMOS and 2 PMOS) with 2V of gate voltage in a 5V power supply.

3.1.2 Analog Voltage

If the information in an analog system is represented as an analog voltage, many of the prob-
lems associated with current computation are eliminated. The voltage can be distributed
directly throughout the system without any conversion. It can be sampled, held, and pro-
cessed by circuits whose accuracy can be improved not so much by having well matched
devices but by having access to small transistors and many layers of metal.! These are char-
acteristics which are often pursued in the most advanced CMOS processes. A larger part
of the power supply’s voltage range can be used for representing information. Finally, the
circuits do not need any bipolar devices; they can be fabricated entirely in a CMOS process.
For these reasons, an analog voltage representation method was chosen for ADAP.

3.2 Processor Architecture

3.2.1 ADAP Processor Design

The architecture of an ADAP processor is shown in Figure 3.1. The processor consists of a
control register, an analog storage unit, an ALU, and a switch fabric.

The ALU has two analog inputs and one analog output. It can perform addition, sub-
traction, division, or multiplication. Its functionality is set by the control register. The
analog storage unit can store one analog value. The switch fabric routes analog data among
the analog storage unit, the ALU, and the 4 I/O lines. The connectivity is determired by
the control register. The control unit is programmed by a digital bit-stream that enters at
D_N. This program is loaded once when the chip is powered up, the cell then executes the

1This depends on how the system is designed; it is true of the ADAP processor.
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same instruction over and over again. The program can be changed, but not continuously
on every instruction cycle. The processor design is described in more detail in Chapter 4.
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Figure 3.1: ADAP Processor Architecture

3.2.2 Processor Power and Area Efficiencies

The processor is a discrete-time circuit. The storage unit and the ALU sample their inputs at
the beginning of every instruction cycle and generate outputs at the the end of the instruction
cycle. The instruction cycle actually consists of several clock cycles. This is described in
more detail in Section 4.4.1.

Different operations require different sorts of speed, area, and power tradeoffs. There are
four main categories of operations to consider: Bit-oriented operations such as bit shifting,
AND’ing, and OR’ing; addition and subtraction operations; multiplication; and division.

o A digital processor can perform bit oriented operations. Since ADAP manipulates data
in analog form, it cannot perform these operations.

e The ALU in a digital processor can usually perform addition and subtraction as well as
bit shifting operations. It can perform these operations in one cycle or several cycles:
an N bit-oriented processor will require M cycles to perform an M N-bit addition. For
example, a byte-oriented processor will require 2 cycles to perform a 16 bit addition.
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Generally, if the bit size is small (smaller N), the area is smaller and the clock speed
higher. As N gets larger, the clock speed can be lowered while retaining the same
processing speed (i.e. as N goes up, M goes down, so the processing speed M N stays
the same), but the area goes up. The power is approximately linearly related to the
product of the area and the speed.

An analog processor such as ADAP performs addition in one cycle. Increasing the ac-
curacy of the circuit usually involves larger devices and capacitors to improve matching
and reduce charge injection errors; thus, the area of the circuit usually goes up with
greater accuracy. The speed is usually dependent upon the available current, so the
power goes up with higher speeds.

For a digital processor, N bit multiplication usually requires N additional cycles or a
dedicated multiplier circuit. A dedicated multiplier circuit can require up to N times
the area of an addition circuit. An analog processor such as ADAP requires extra cycles
to perform multiplication, the accuracy of the operation goes up with the number of
clock cycles. Extra accuracy therefore requires more clock cycles per operation. The
multiplier can use the adder circuit with some extra area. As with the adder, the
accuracy can also be increased by making devices larger, and the processing speed can
be increase by using more power. An analog current multiplier requires only one clock
cycle but a different circuit.

For a digital processor, N bit division usually requires either NV times more area or N
times more cycles to perform than multiplication. Good circuit and algorithm design
can usually reduce this to a factor of log, N rather than N. Most analog processors,
such as ADAP or a current-oriented circuit, can perform division using the multiplier
circuit with a fixed amount of extra area, but no extra power or time is needed.

Efficiency Metric Addition/Subtraction | Multiplication | Division
Digital (Speed/Power) 1 1/N 1/Nlog, N
Digital (Speed/Area) 1 1/N 1/Nlog, N
Analog (Speed/Power) 1 1/N 1/N
Analog (Speed/Area) 1 1/N 1/N

Table 3.1: Processing Efficiency Scaling for Digital and Analog, N is number of bits

One advantage that ADAP has over a digital processor is that the circuitry used for

multiplication at N bits of accuracy can be modified to perform division without N times
more area or N times more clock cycles. A digital processor’s cycle count, area, or both go
up more rapidly when a division function is added. This is summarized in Table 3.1. In this
table, the addition/subtraction function is considered the basic operation, and the way in
which the area and power efficiencies of the processors scale with bit size is shown [49].
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3.3 Array Architecture
3.3.1 ADAP Array Design

The ADAP chip level architecture is shown in Figure 3.2. The figure shows the structure
of a 5x5 array although any size that will fit into the available chip area is possible. It is a
rectangular array of ADAP processors; each processor can comrmunicate with its four nearest
neighbors via analog data lines. (These are the solid lines connecting each cell in the figure.)

The dotted line that begins with D, and snakes throughout the chip is the programming
bit-stream. This is how the array program is sent to each cell. This is described in more
detail in Section 4.5.

A parallel architecture was chosen for ADAP because of the parallel nature of many
vision algorithms. The calculations in these algorithms often involve several pixels in one
equation. Therefore, the processor performance is enhanced if it can hold several pixel values
and perform operations on all of them in one cycle.

Each cell is connected to its four nearest neighbors by an analog data line. These data
lines can be connecied to each other within the cell in any possible combination, and to the
inputs and outputs of the cell’s circuitry..

The NO — N4, S0 — S4, W0 — W4, and E0 — E4 signals are analog I/O lines that go
off-chip. They can be either inputs or outputs, depending on how the cells are programmed.

The 00— 04 signals are digital outputs. Since ADAP sends its output to a digital system,
ADAP provides the option of performing the A/D function on chip rather than requiring an
extra A/D circuit between ADAP and the digital system. It does this by using the output
of the A/D in the cell ALU. This is described in more detail in Section 4.4.2.

In addition to the data and control signals, various bias voltages, clock lines, and power
supplies are distributed to each cell in the array.

3.3.2 ADAP Array Operation

Although it may be possible in certain cases, it is usually not practical to store an entire
image in the ADAP array at once. Instead, the imager will send the pixel values to the
ADAP chip in a stream. The ADAP chip will hold a small part (a pixel and its nearest
neighbors) of the image at any one time. This will usually be between 9 and 25 pixel values.
As a result, ADAP can easily perform operations that require the value of a pixel and nearby
pixels, but not operations that require pixel values from widely spaced parts of the image.
Essentially, ADAP takes a series of analog inputs, performs a series of arithmetic operations
on them, and produces a digital resuit.
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Figure 3.2: ADAP Array Structure
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3.3.3 Array Efficiencies

ADAP is a MIMD parallel processor. This means that every processor in ADAP can perform
a different function, as opposed to a SIMD processor, in which each processor performs the
same function. Since it is possible to use all of the processors at once in a MIMD chip, the
silicon area is used very efficiently. Since each processor must perform the same operation
in a SIMD processor, some processors will not be used on every instruction cycle. Thus, its
area efficiency is lower. For many vision processing algorithms, the parallel nature of the
algorithms mean that most processors will be used most of the time. This means that the
MIMD/SIMD architectures have similar efficiencies for vision algorithms with high degrees
of parallelism. For algorithms without the high degree of parailelism, a MIMD processor
has a higher processor utilization, which, in effect, makes its MIPS/area ratio even higher in
comparison to a SIMD processor.

Another algorithmic characteristic that should be used in evaluating the efficiency of a
processor family is the repeatability of the algorithm. The process of loading instructions
into a MIMD processor and some SIMD processors is expensive in terms of area, processing
speed, or both since it must be done using either a special instruction bus, which consumes
area, or by using clock cycles which could have been used for processing. If the algorithm
performs the same group of instructions repeatedly, then these instructions need to be loaded
only once, and the time needed for loading the instructions does not hurt the performance.
But if the instruction stream is constantly changing, and especially if the instructions are
data-dependent, then the MIMD processor will spend a lot of time loading instructions,
causing its performance to suffer.

This is summarized in Table 3.2. This table shows the best processor design to use for
different classes of algorithms.

Repeatability Parallelism

Parallel Not Parallel
Repetitive MIMD,SIMD MIMD

Not Repetitive SIMD SISD

Table 3.2: Best Processor Design for Different Classes of Algorithms

3.4 ADAP System Configurations

There are a number of ways in which ADAP can be used in a vision system. If there is only
one imager (camera) in the system, then Figure 3.3 shows the most obvious configuration.
In this case, ADAP would perform various image preprocessing algorithms such as edge
detection or smoothing.

If there is more than one imager in the system, then ADAP can be used in several different
configurations. Some of these are shown in Figure 3.4. For the first configuration, ADAP
performs an image preprocessing function for each imager (such as edge detection), and the
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Imager |——=1 ADAP |- — -»{ Digital System

Figure 3.3: ADAP System Configuration: One Iinager

digital system performs operations that require data from both images (such as disparity
calculation). In the second configuration, ADAP not only performs image preprocessing
functions, but also performs functions using data from both images. The last configuration
is one where some of ADAP’s functions require data from both images.

Imager |——{ ADAP -9

> Digital System

imager ——1 ADAP }|-—

Imager ——>1 ADAP

—»1 ADAP |- -»1 Digital System

Imager ———=>{ ADAP

imager

—>»t ADAP |- — -»1 Digital System

Imager

Figure 3.4: ADAP System Configurations: Two Imagers

A possible configuration for a stereo system is shown in Figure 3.5. In this system, the
first set of ADAPs is used for edge detection, anri the second set of ADAP’s is used for
calculating the sub-pixel resolution values. The digital system performs the remaining part
of the stereo algorithm (disparity determination and distance from disparity calculation).

In all of the configurations described above, if the necessary ADAP array cannot fit
onto one chip, several ADAP chips can be connected together. However, for the maximum
processing speed, it is best to perform all of the ADAP functions on one chip.
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Figure 3.5: ADAP System Configuration: Stereo Vision System
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Chapter 4

Circuit Design

This chapter describes ADAP processor cell and its constituent circuits in detail. ADAP
was fabricated in HP’s 0.8um triple metal CMOS process. ADAP uses a single ended 5V
power supply for both the digital and analog circuits.

4.1 Cell Processor Design

A detailed block diagram of an ADAP processor is shown in Figure 4.1. The functionality
of the processor was described in Section 3.2. The control registers and their control logic
are described in Section 4.5. The control registers output bits control the operation of the
ALU, which consists of input and output sample and holds, an A/D, a D/A, a shift register,
and control logic. It is described in detail in Section 4.4. The analog storage unit is a simple
analog sample and hold, which is described in Section 4.3. The data from the cell's nearest
neighbors, the ALU’s inputs and outputs, and the sample and hold’s inputs and outputs are
all routed through the switch fabric. In addition, each row has an extra data line, called X,
which is routed through the switch fabric. This allows a constant to be distributed to every
cell in a row without using up the cells’ regular routing. This feature was added because
many vision algorithms involve sums of pixel values multiplied by constants. The ability to
distribute the constant without using extra area increases the overall area efficiency of the
processor. Also, the output of the ALU, AQ, is also routed directly to the southern cell
(where the incoming signal is named AI). The switch fabric is described in Section 4.2. The
cell timing is described briefly in Section 4.4.1 and in detail in Appendix B.

4.2 Switch Fabric

Table 4.1 shows all of the possible connections in the switch fabric. An X in a box shows
that the two signals can be connected, a 0 means that the connection cannot be made. Al
and A2 are the ALU inputs, AO is the ALU output. MI and MO are the storage unit’s input
and output, as shown in Figure 4.1. There are 37 possible connections, but some of them,
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Figure 4.1: ADAP Cell Block Diagram

such as N-S and S-N, are redundant, resulting in only 31 independent connections.

The switch fabric consists of 31 NMOS pass transistors. The gate of each transistor
is connected to an output of the control register. The source and drain of the transistor
are connected to the two signals which can be connected. Thus, a high output bit from
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the control register will cause the NMOS transistor to connect the source and drain of the
transistor, thus connecting the two signals. A low output bit will keep the two signals
disconnected.

Although it is possible to have every connection made by setting every bit in the control
register to 1, this would probably not make sense because this would connect several outputs
together. Care must be taken in programming the cell to make only the desired connections.
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Table 4.1: Switch Fabric Possible Connections

Each transistor in the switch fabric is 1.6um wide and 0.8um long, which is close to
the minimum size, in order to minimize the area. Since the transistor adds a resistance in
series with the capacitive load being driven, it creates an RC delay which places a limitation
on how fast a processor can communicate with its neighbors. If there are too many pass
gates in series between the signal source and its destination, the signal will not be able to
settle to its final value by the end of the clock cycle. Excessive parasitic capacitance and
resistance from the routing can have a similar effect on performance. This can be overcome
by making the pass transistors wider (unless it is the parasitic capacitance of the transistors
which dominates, in which case increasing the transistor’s size does not reduce the delay.),
by increasing the digital power supply voltage, or by increasing the current drive and speed
of the opamp driving the output signal. Simulations indicated that the cell output drivers
would be able to drive 3 inputs one cell away to within one LSB at a processor speed of 2
MIPS.

4.3 Analog Storage Unit

The analog storage unit is a sample and hold circuit (SH); its operation is shown in Figure
4.2. The capacitor for this circuit is 124fF. In the sample phase, the charge stored on the
capacitor is:

Q=Vin-V.)C (4.1)

In the hold phase, the top plate of the capacitor is then attached to the output of the
opamp. The voltage across the capacitor is still:
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Ve=Vin-V_ (4.2)
This voltage is then added to the voltage at the negative input, V_, giving:

Vour = Vin (4.3)

Thus, any opamp offset cancels out exactly, and there is no capacitor matching needed.
The only error comes from charge injection and the finite gain of the opamp. This is discussed
in detail in Appendix A.

C

Sample Hold

Figure 4.2: Sample and Hold Operation

One potential problein with the SH circuit is that when the circuit enters the hold phase,
the output cannot immediately swing to its final value. Instead, it starts out at its sample
mode value of V, . It then slews towards its final value. This means that if the voltage across
the capacitor is its maximum possible value (Vi n aazimum — V), the voltage at the negative
input node (V_) can be pushed down to V — (Vin mazimum —V-) = Vi — (Vin Mazimum —V4) =
2Vy — Vin Mazimum = —ViN Mazimum'. If this value falls far enough below the substrate
voltage, charge can leak into the node from the p-type substrate, which is at 0V. In addition,
if the V_ node falls more than a threshold voltage below 0V, the feedback switch around the
opamp, whose gate is at 0V, can turn back on and leak charge into V_ as well. This problem
did occur for ADAP; it was solved by connecting the bottom plate of the capacitor to V_
instead of the top plate. The bottom plate of the capacitor has a parasitic capacitance Cp
of about 82fF to the substrate, as shown in Figure 4.3. The parasitic capacitance is large
enough to absorb enough of the charge stored at V_ to prevent the voltage at V_ from falling
far enough to allow charge leakage from the substrate or the feedback switch.

One side affect of this strategy is to reduce the bandwidth of the circuit because of the
feedback factor, which causes the circuit to settle more slowly than if the capacitor was
reversed. Also, the circuit is more susceptible to noise coupling from the substrate.

The analog storage unit’s input and output are connected to the switch fabric, through
which they can be connected to any other signal connected to the switch fabric (the ALU

!Note that in Figure 4.2, V,. is 0; however, in the actual implementation, V. will be held at approximately
0.945V. This is explaired further in Section 4.4.7.
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Figure 4.3: Sample and Hold Parasitic Capacitance Method

inputs and outputs, and the signals from the four neighboring processors). All of the storage
units sample their inputs during the first phase of an instruction cycle. Some of these inputs
will be driven by the output of the storage unit on another processor. As a result, the storage
unit needs the ability to sample its inputs and drive its output at the same time. To do this,
it uses two SH circuits in series. While the first one is sampling a new input, the secend one
is driving its output. Then, during the clock cycles when the analog storage unit does not
need to drive its output, the second SH circuit samples the output of the first SH circuit.
This is described in detail in Appendix B.

When the second SH circuit is sampling, its output is disconnected (by turning off a
pass gate) from the processor cell’s outputs. The reason for this is that the large capacitive
load associated with the output reduces the slew rate of the opamp, making it difficult for
the opamp’s output to slew down to V, in one clock cycle. Disconnecting the output load
eliminates this problem. When driving the load, the SH circuit has two clock cycles for its
output to settle.

4.4 ALU

The ADAP ALU uses a new circuit for performing arithmetic. This circuit uses an A/D
followed by a D/A to perform a calculation, as shown in Figure 4.4. Assume that each
sub-circuit has N bits of resolution. The output of the A/D, Dy p, equals 7;":’;2” . The
output of the D/A, Voyr, is %D-Vggpg. When the two equations are combined, the 2V
factor drops out, and the result is:

VinVReF: (4.4)
VREF
Thus, the output is a function of a division and a multiplication. By modifying the input
of the A/D, the circuit can also perform an addition and a subtraction. Thus, with one
circuit, four arithmetic operations can be performed. Section 4.4.9 will describe in detail
how this is done.

Vour =
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Although Equation 4.4 is continuous, the circuit actually quantizes the information. This
is discussed in Appendix A.2.

N
V| r‘* AI D -7L—*D l D/ A - VOUT

{ ¢

REF1 REF2

Figure 4.4: A/D - D/A Processor Concept

4.4.1 ALU Timing

ADAP is clocked by the two phase non-overlapping clocks ¢, and ¢,. These are produced
by a system clock, as shown in Figure 4.5. Each cycle of the system clock has two phases,
one where ¢, is high, and one where ¢, is high. The ADAP circuits perform different actions
on different phases. Thus, in one cycle of the system clock, the ADAP circuits will have
performed two actions, one while ¢, was high, and one while ¢, was high. Since each ADAP
instruction cycle consists of 10 different actions, it uses 10 phases, or 5 system clock cycles.
Since ADAP’s instruction cycle uses 5 cycles of the master clock, its processing speed is
one fifth of the system clock speed. For example, if ADAP is clocked at 5SMHz, ADAP will
process data at 1.0 MIPS. For the rest of this chapter, unless otherwise stated, a cycle will
refer to a phase-cycle, i.e., either ¢, or ¢, being high. More timing details are given in
Appendix B.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

- PO P P po P

ol
. B

A Affr— Af—  a—— A —— f— -~ B

Phase1 Phase2 Phased Phased PhaseS Phase6 Phase7 Phase8 Phase9 Phase 10

Figure 4.5: One ALU Instruction Cycle = Five Clock Cycles = Ten Phases
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4.4.2 Design of the A/D

A cyclic A/D was selected for the ADAP ALU because it used the smallest arca for the
necessary speed, power, and accuracy requirements.

The A/D algorithm is shown in Figure 4.6 [50. Its digital output is serial, starting with
the MSB. [t has a small area requirement since it uses the same circuit for each bit.

The A/D samples its input and compares it against a voltage reference Vggp. This
voltage is half of the full scale voltage (Vrer = VruLL scarLe/2). If the input is greater than
Vrer, the MSB is set to one and Vggr is subtracted from Vyow; otherwise, the MSB is set
to zero and Vyow is not modified. Vsyas is then multiplied by 2 to get Vygxr. At the end
of the first cycle:

Vvext = 2(Vin — VRrer) (4.5)

if VIN > VREFa or:
Vvexr = Vin (4.6)

if Vin < Vger.
The cvcle is repeated with Vygxr replacing V;y on the subsequent cycles:

VNow, cycte N+1 = VNEXT, cycle N (4.7)

On each cycle, the A/D determines the MSB of its input, removes that information
from its input, and then re-scales the input. The A/D generates one bit for every cycle.
For 8 bits of resolution, the A/D must be clocked for 8 cycles. The other 2 cycles of the
ADAP instruction cycle are used for setting up the arithmetic functions, as explained in
Section 4.4.9.

vNEXT

v, —o’> S/H

ouT

Figure 4.6: A/D Algorithm

The A/D schematic is shown in Figure 4.7; it is implemented with two opamps, four
capacitors, NMOS switches, and a comparator. Each capacitor is 53fF; this value was chosen
to provide a simulated accuracy of 8 bits. In this circuit schematic, Vg is an offset voltage
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Figure 4.7: A/D Schematic

used to place the analog signal in the correct voltage range. When ¢, is high, C; and C;
sample the output of opamp A2 (or Vju if this is the first cycle) while opamp A2 performs
the multiply-by-2 and reference subtraction of Equations 4.5 and 4.6. When ¢, goes high,
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C; and C; sample the output of opamp A1l while opamp A1l performs the multiply-by-2 and
reference subtraction function.

For simplicity, the operation of the comparator is not shown in this diagram. The oper-
ation of the comparator is described in Seciion 1.4.3.

The multiplication and subtraction occur as follows. When ¢, is high, charge is collected
on C) and C,. This charge is:

Q = (V()z —_ V+)(C| + Cg) = Vog(Cl + Cg) (48)

When ¢, goes high, the top plate of C; is attached to the output of opamp Al, and the
top plate of C, is attached to either Vg or to Vi + 2Vggr depending upon the output of the
comparator. Thus the charge across C; is either:

Q = Voa(Cy + C2) — (Ve - 0)Cy (4.9)
or
Q = Voo C1 + C2) — [(Vi + 2Vrer) — 0]Cy (4.10)
Simplifying terms, and dividing the charge by C, to get the voltage across (5, yields:
Vo2 = 2Voa — 2V + Vi (4.11)
or
Vez = 2V — 2V + Vg — 2VRer (4.12)

Rearranging terms and adding this to the voltage at the negative input of cpamp Al,
V_ = V+ = 0, giveS:

Vor =2(Vor — Vg) + Ve (4.13)

or

Vo1 = 2((Vo2 — Vi) — Vaer) + Ve (4.14)

The circuit thus performs the desired function. It takes Vp,, subtracts the offset V;,
subtracts either Vrgr or nothing, multiplies by 2, and then adds the offset Vi back on.
The same process is performed by opamp A2 in its multiply/subtract phase. The effects of
charge injection, opamp offset, capacitor mismatch, and finite opamp gain are discussed in
Appendix A.

4.4.3 Comparator Operation

The comparison phase of the A/D cycle is shown in Figure 4.8. During the time period
when both ¢, and ¢, are low, the top plates of C; and C; are connected to Vg + Vger.
If the voltage across the capacitors was greater than Vggr, then the negative node of the
opamp will be pushed below V., the output of the opamp will go up towards 5V, and the
comparator output will go up. The opposite happens if the voltage across the capacitors is
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Figure 4.8: Comnparator Operation

less than Vgper. The comparator output is valid when ¢, goes high. The comparator input
is connected to the output of the opamps through two NMOS switches which alternate
connecting the output of Al (at the end of ¢, clock phases) or A2 (at the end of ¢, clock
phases) to the comparator input. The opamps are thus used as preamps for the comparator.
The comparison is done in this way to simplify the timing of the A/D circuit; it also saves
area by eliminating the need for a separate preamp for the comparator.

One potential problem with this circuit is that the output voltage of the opamp might
need to start out at V., and slew up past Vg + Vger in the very short non-averlapping period.
To eliminate this problem, the output of the opamp is cennected through an NMOS pass
transistor to a bias voltage at Vi; + Vger for about 0.5ns. This pulls the output to Vg + Vi
The opamp then has the entire non-overlapping period to slew above or below this voltage.
The gate of the NMOS pass transistor is the output of a digital circuit which always has a
low output but has a mormentary glitch to a high value when ¢, or ¢, go low. Note that the
timing of this glitch will vary slightly with process variations; the non-overlapping period
must be long enough to handle the longest expected glitch time.

4.4.4 Design of the D/A

A cyclic D/A was selected for the ALU because it used the smallest amount of area for the
necessary speed, power, and accuracy requirements.

The D/A algorithm is shown in Figure 4.9. Its digital input is serial, starting with the
LSB. It has a small area requirement since it uses the same circuit for each bit. The D/A
starts with a state voltage (Vsrarg) of zero. On each cycle, the D/A divides Vsrarg by
two. Before dividing by two, if the digital input bit is one, it adds the reference voltage
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VruLL scaLe to Vsrare:
Vour = Vsrare/2 (4.15)
if D;n = 0, or else:
Vour = (Vstare + VruLt scaie)/2 (4.16)
if Dy = 1.
Vour becomes Vsrare on the next cycle. Thus after N cycles, VryLr scare has been
divided by 2N for Dy (which is the LSB), 2¥=! for the next bit, and so on. The final result

is:
Vour = Vrutr scace(Dn/2Y + Dy_y/2V 7' + -+ Dy /2) (4.17)

out

DN =—=———~ "?

VEuLL SCALE

Figure 4.9: D/A Algorithm

For 8 bits of resolution, the D/A must be clocked for 8 cycles The other 2 cycles of the
ADAP instruction cycle are used for setting up the arithmetic functions, as explained in
Section 4.4.9.

The D/A schematic is shown in Figure 4.10; it is implemented with two opamps, four
capacitors, and NMOS switches. Each capacitor is 53fF; this value was chosen to provide a
simulated accuracy of 8 bits. In this circuit diagram, Vi is an offset voltage used to place
the analog signal in the opamps’ high gain output range. When ¢, is high, C, samples the
output of opamp A2 (or Vg if it is the first cycle) while C; samples either Vg or Vi + 2Vger.
Opamp A2 performs a divide-by- two and sum operation. When ¢, is high, opamp Al
performs a divide-by-two and sum operation while C; and Cj are in sample mode.

The adding and divide by two operations work as follows. When ¢, is high, the charge
on C, is (Vo2 — V;)C) = Vp2C. The charge on C, is, depending on the bit value, either:

Q = (Vo - V4)C2 = V(o (4.18)

or
Q = [(Ve + 2Vger) — V4|Ca = (VG + 2VRer)C: (4.19)
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Figure 4.10: D/A Schematic

When ¢, goes high, the top plates of C} and C, are connected to the output of opamp Al.
The total charge on them is now:

Q = VCz + Vo€ (4.20)

or
Q = (Vo + 2Vrer)C: + Vo2C) (4.21)
Simplifying terms and dividing by (C, + C>) to get the voltage across the capacitors gives:
Ve, = (Vo = Vg)/2+ Vg (4.22)

or
Ve, = (Vo2 — Vo) +2Veer)/2+ Ve (4.23)
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Adding this to the voltage at the negative input of opamp Al, V_ =V, =0, gives:
Vor = (Vo2 = Ve)/2+ Ve (4.24)

or
Vo1 = ((Voz - VG) + QVREF)/Z + Vg (4.25)

The circuit thus performs the desired function. It takes the state voltage, subtracts the
offset voltage Vi, adds either the full scale voltage (2Vggr) or nothing, divides by 2, and
adds the offset V; back. The effects of charge injection, opamp offset, capacitor mismatch,
and finite opamp gain are discussed in Appendix A.

The ADAP processor would be simpler and smaller if the D/A could begin its operation
with the MSB rather than the LSB. However, this would require a circuit which constantly
multiplied, rather than divided, a voltage by two. This would increase the error by approxi-
mately 2V~! because the charge injection error would be multiplied by two every cycle rather
than divided by two.

4.4.5 Digital Buffer Design

Because the A/D’s output stream is MSB-first while the D/A needs its data LSB-first, there
is a bidirectional 8 bit buffer between the two circuits to hold the A/D output and feed it to
the D/A. The cell operations are pipelined so that both the A/D and D/A operate during
every instruction cycle. This buffer is an 8 bit bidirectional shift register. Since this register
must shift data for both the ¢, and ¢, cycles, it uses a single-phase clock register design as
presented in [51]. The clock signal used to clock the shift register is @;2, which is equal to

&1 + ¢2.

vDD

‘$1-2 L L 4
I—‘E‘M - 113 ¢ :;In + ‘310 —-“jm
V————8— _1'41 —qs —'-_$ —-|El,111

Figure 4.11: Shift Register Schematic
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[ Name [ Size (um/pm) | Name | Size (um/pm) || Name | Size(um/pm)
M1 1.2/3.2 M5 1.6/0.8 M9 1.6/0.8
M2 16/08 M6 16/08 M10 370.8
M3 1.6/0.8 M7 12/16 Ml | 1.6/0.8
M4 12/2 M8 1.6/08 MiZ | 1.6/08

Table 4.2: Shift Register Transistor Sizes

The circuit schematic is shown in Figure 4.11. The purpose of M4 is to act as a pull-up
device for V;u, which is the output of an NMOS pass gate. The transistor sizes are shown
in Table 4.2. The timing of the register is detailed in Appendix B.4.

The shift register is used as shown in Figure 4.12. Depending on the value of DIR, data
is fed into either IF or IB and taken out of either OF or OB. A bidirectional shift register
is formed by chaining 8 of them together. The DIR signal flips at the beginning of every
instruction cycle. The DIR signal is a function of Vi as shown in Figure 4.13.

DIR —]_
F— | ¢— oF

In Out
OB—I - Register B

Figure 4.12: Shift Register Configuration

(D‘“KZTD‘*

Figure 4.13: DIR Circuit

4.4.6 ALU Sample and Holds

The analog storage unit stores analog data for the processor. The ALU requires additional
SH circuits to hold temporary values during its operation.The ALU sample and hold circuits
use the same design as the analog storage unit described in Section 4.3 except their storage

46



capacitor is only 93fF since their accuracy requirement is not quite as high. Also, they need
only one SH stage since they do not need the ability to sample and hold at the same time.
There are three input SH circuits used by the A/D. One holds V; for all of the arithmetic
operations except addition?. The other two hold the A/D’s Vper and Vgygpy during the
division operation. There are two output SH circuits for the D/A. One holds V, for the
multiplication and division operations while the other is used to drive the ALU’s output.

4.4.7 Opamp Design

The opamp design is shown in Figure 4.14. The architecture was chosen for its simplicity
and low area. 1t has a 5V power supply and Vp;,s is 2.47V. Note that in the previous circuit
diagrams, V, was shown connected to ground for simplicity; however, V, is actually always
connected to 0.945V. This opamp has very large offset and a very small common mode range;
however, the circuits in which the opamp operates cancel out the offset, and the common
mode never changes. To save area, a second opamp shares M1, M3, M5, and M7 with the
first opamp, so that only 12 transistors are needed for two opamps. The transistor sizes are
shown in Table 4.3.

Vbp
—EF
[, <

M7 M8
M5 M6
VBias }Ovom
w1 i
vb_{ M1 M2 |-ov-
JU

Figure 4.14: Opamp Schematic

The transistor sizes were picked in the following manner. First, the opamp was simulated
using minimum size transistors. M1 and M2 were then widened, and the lengths of all
transistors increased, to get a gain of about 3,000 and a unity gain frequency of about

2V, is described in Table 4.6.
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| Name | Size (um/pm) || Name | Size (um/pm)
M1 9.6/1.2 M5 10/1.6
M2 9.6/1.2 M6 10/1.6
M3 2/1.8 M7 10/1.6
M4 5/1.8 M8 10/1.6

Table 4.3: Opamp Transistor Sizes

40MHz. The load capacitance, including parasitics, of about 700fF was included in this
calculation. The ratios of of M3, M4, M5, M6, M7, and M8 were then increased to get the
necessary output swing. This process was iterated several times to get the simulated opamp
specifications shown in Table 4.4.

Name Value |
Output Swing 0.35 to 5V
DC Gain 3.000

Unity Gain Bandwidth 42MHz
Slew Rate 53V /us
7-Bit Settling Time 45ns
Phase Margin 86°
PSRR+ 65dB at 1MHz
PSRR- 32dB at IMHZ
Power 200puW
Area 800 (um)?

Table 4.4: Opamp Specifications

Although the output can swing between 0.35V and 5V, only the high gain region of
approximately 1.5V to 3.5V is used for the signal range. The power and area specifications
are for the largest, highest power opamp in the processor. The other opamps were slightly
smaller and used slightly less power because they had smaller capacitive loads.

4.4.8 Comparator Design

The comparator schematic is shown in Figure 4.15. The transistor sizes are listed in Table
4.5.

The strobe signal S goes high at the beginning of a comparison cycle. Transistors M12
and M18 place both output stages of the comparator into the same state so that the parasitic
capacitors on both sides of the latch circuit will see the same voltage. Transistor M21 turns
on and resets the latch by making its outputs equal. The latch consists of transistors M1,
M2, M3, and M4, which together form 2 cross-coupled inverters. While S is high, the current
source for this latch, transistor M7, is turned off. The comparator inputs are applied to the
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gates of transistors M5 and M6. If the inputs are different, M5 and M6 will have different
currents.

When S goes low, M21 turns off, and the differential current in M5 and M6 causes one of
the latch outputs to go high, and the other to go low. (For example, if V;5 was higher than
Vrer, then V] goes down while V, will go up.) At the same time, M7 turns on and supplies
current to M3 and M4. This provides positive feedi..ack which helps push the latch outputs
apart. Finally, M12 and M18 turn off while M11 and M17 turn on. The latch outputs
are now connected to the comparator outputs through two inverters, which ensure that the
comparator outputs swing rail to rail.

Because of the positive feedback introduced by M3 and M4, once the comparator’s output
is valid, it will not change even if the comparator inputs change. The strobe S must be
brought high again in order to perform a new comparison cycle.

When the latch settles to its final value, the node (V; or V,) that goes high may actually
reach a higher voltage than the drain of M8. As a result, the current through the input
transistor (M5 or M6) reverses direction. For example, if V;y is high then V, will go up and
reach a voltage that is actually above that of the voltage at the source of M6. At this point,
M3 is turned off. So current flows through M7, through M4, then back through M6 to join
the current coming from M8. All of this current then flows through M5 and into M1. It is
therefore important that the n-well containing M5 and M6 be tied to Vpp, not the sources
of M5 and M6. Otherwise, the PN diode between M6’s drain and its n-well can be forward
biased.

Name | Size (pm/um) u Name | Size (um/pm) || Name | Size(sm/um)
M1 6.4/0.8 [ M8 1.6/4 M15 2/0.8
M2 6.4/0.8 M9 2/0.8 M16 1.2/0.8
M3 6.4/0.8 M10 1.2/0.8 M17 1.2/0.8
M4 6.4/0.8 M11 1.2/0.8 M18 1.6/0.8
M5 1872 M12 1.6/0.8 M19 1.6/0.8
M6 18/2 M13 1.6/0.8 M20 2.8/0.8
M7 1.6/8 M14 2.8/0.8 M21 3.2/0.8

Table 4.5: Comparator Transistor Sizes

Transistors M7 and M8 are sized to supply currents of 4uA and 7.54A. When used in the
A/D with an opamp as the preamp, a 1LSB differential in the input gives a S falling edge
to OUT valid time of about 6ns (in simulation). Sizing of the other transistors is discussed
in Section 5.3.
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Figure 4.15: Comparator Schematic
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4.4.9 ALU Operation

This section describes how the A/D- D/A combination is used to perform the four basic
arithmetic operations. It is important to distinguish between voltages and the numerical
values which they represent. The signal naming conventions used in this section are shown
in Table 4.6.

| Name Description | Range or Value |
Xy Input 1 0 to 256
Xy Input 2 0 to 256
ourT Output 0 to 256
Wi Voltage representing X, 1.435V to 3.483V
Va Voltage representing X, 1.435V to 3.483V
Vour Voltage representing QUT 1.435V to 3.483V |
Ve Voltage representing zero 1.435V
Ve+k Voltage representing K 1.435+K(8mV)
'REF Voltage representing 128 2.459V
VerEF2 Voltage representing 256 3.483V
D, Intermediate digital value passed from A/D to D/A 0 to 255
Va/p | Voltage that serves as the full scale voltage for the A /D | 1.435V to 3.485V
Vpsa | Voltage that serves as the full scale voltage for the D/A | 1.435V to 3.485V

Table 4.6: Signal Naming Conventions

For this circuit, one LSB is 8mV. The zero value is taken to be 1.435V instead of OV in
order to place the input range in the same voltage range for which the opamp has the highest
gain. As a result, the midscale is set around 2.5V, and the voltages representing arithmetic
values have an offset of 1.435V. Thus, 1.435V represents zero, 1.443V represents one, 1.451V
represents two, and so on.

The next four sections describe how the A/D and D/A are configured to implement the
various arithmetic operations. In each case, the circuit is configured using NMOS transistors
as switches to route the proper signals to the proper inputs. The gates of these NMOS
transistors are controlled by the clocks and by 4 bits of the control register.

Addition

The addition operation is implemented in the two extra cycles prior to the 8 cycles of the
A/D operation. This is shown in Figure 4.16. Instead of charging C, and C; to an input
Vin during ¢y, C, is connected to Vj, and C; is connected to V,. Thus, at the end of ¢,, the
output of the opamp is equal to (V; — Vi) + (V2 — Vi) + Viz. This is then passed through
the rest of the A/D and D/A operations using Vrgr2 as the reference voltage for boih the
A/D and the D/A. This gives the result:
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Figure 4.16: Addition Operation

%
Vour = (i—=Ve)+(V2— VG))Vﬁzi Z + Vg (4.26)

OUT = MIN(X, + X»,255) (4.27)

This performs the addition. Since the output of the A/D and the D/A can never go
above 255, OUT will never go above 255.

Subtraction
C,
VG°
c1
i1
Vie V,° |

¢, High

Figure 4.17: Subtraction

The subtraction operaticn is implemented in the two extra cycles prior to the 8 cycles of the
A/D operation. This is shown in Figure 4.17. Instead of charging C; and C;, to an input
voltage of V;y during ¢,, C; is connected to V}, and C, is connected to V. Then, during
@2, C, is connected to V5 instead of to V. At the end of ¢, the output of the opamp is
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equal to V; — V, + V. This is then passed through the rest of the A/D and D/A operations
using Vrero as the reference voltage for both the A/D and the D/A. This gives the result:

V

Vour = (Vl - Vg) VREF2 + Ve (4.28)
REF?2
OUT = MAX(X,— Xa,0) (4.29)

This performs the subtraction. Since the output of the A/D and the D/A can never go
below zero, OUT can never be less than zero.

Multiplication

Multiplication is implemented as shown in Figure 4.18. The input of the A/D is V, the
reference voltage for the A/D is Vgrgr2 and the reference voltage for the D/A is V5. Thus,
using Equation 4.4:

Vo — V,
Vour = (M—Va);,—-z———%wc (4.30)
REF2 — VG
..
OUT = == (4.31)

The input V; is held by one of the input SH circuits during the A/D operation. It is then
transferred to one of the output SH circuits for use during the D/A operation.
Due to the division by 256 in Equation 4.31, the ontput of the multiplication operation
will never exceed its allowed maximum of 256. Also, multiplying any number by zero will
v—| AD [—
"D

result in the correct output of zero.
1 D,A | vOUT

vV v

REF2 2

MID

Figure 4.18: Multiplication

Division
Division is implemented as shown in Figure 4.19. The input of the A/D is Vgik, the
reference voltage for the A/D is V; and the reference voltage for the D/A is V5. Thus, using
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Equation 4.4:

Vour = Va- VGSKmV + Vg (4.32)
Wi = Ve
X2

OUT = MIN(K—,
X

X5) (4.33)
N ,
VG? AD I 7 D DIA I-‘ VOUT
} }

) v

1 2

Figure 4.19: Division

Due to the fact that the output of the D/A, Voyr, can never be greater than V4, the
output OUT can never exceed X;. The factor of K can easily be changed on a chip-wide
basis by changing the bias voltage Vi, k. Different algorithms will need different values of
K.

Examination of the A/D circuit reveals the fact that both V) (used as Vggr,) and V,/2
(used as Vggr) are needed for the A/D’s operation. V;/2 is produced during the first two
clock phases as shown in Figure 4.20. When ¢, is high, C; is connected to Vj, and C, is
connected to V. Then, when ¢, is high, C; and C, are connected to the output of Al. At
the end of ¢,, the output of the opamp is equal to V; /2.

C,

Ve

V,o

¢, High

Figure 4.20: Producing V,/2
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4.5 Control Register Design

The cell control register is a 35 bit shift register. Its output bits control the 31 pass transistors
of the switch fabric and the 4 control bits of the ALU. The control registers of the various
processors are connected together in one long line, so that it is essentially a 35P bit shift
register, where P is the number of ADAP processors on the chip. The input of the control
register is connected to the output of the control register of the previous cell, and the output
of the control register is connected to the input of the control register of the next cell. The
schematic of one control register is shown in Figure 4.21. The transistor sizes for the control
register are shown in Table 4.7.

) %

DD

i

g

Figure 4.21: Schematic of Control Register

I -

%, L2

Name | Size (um/um) | Name | Size (um/pm) |
M1 16/0.8 [ M6 1.6/0.8
M2 16/0.8 M7 12/4.6
M3 1.6/0.8 M8 1.2/4.6
M4 2.8/08 M9 16/08
M5 1.6/0.8 M10 1.6/0.8

Table 4.7: Control Register Transistor Sizes

The clocks for the control register are not the system ¢, and ¢,. Instead, each cell has
clock control logic which creates the clock signals for the control register using the formulas:



b1 cr = LOAD®, (4.34)

#2cr = LOAD¢, (4.35)

This causes the control registers to shift data when the LOAD signal is high, and to
hold the data when the LOAD signal is low. This method saves power because the control

registers are only clocked when necessary, and it saves area because the control registers do
not need a special load/noload circuit.
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Chapter 5

Circuit Layout

5.1 Overall Layout Strategy

An important goal of ADAP’s design is to minimize area. This is the driving force behind
much of the circuit design and layout. The circuits were squeezed together by hand as much
as possible, and minimum size transistors and minimum wire widths were used whenever
possible. In addition, care was taken during the circuit layout to separate the digital and
analog circuitry as much as possible. This is done to minimize noise in the analog data from
the noisy digital circuits.

The layout of the ADAP chip was performed using Cadence CAD tools, including DIVA
for design rule checking, Virtuoso for layout, and Composer for schematic entry.

5.2 Capacitors

The digital CMOS process used for ADAP does not have two layers of polysilicon, so capac-
itors for the sample and hold circuits are formed using a four layer sandwich of polysilicon
(Poly), metal one (M1), metal two (M2), and metal three (M3), as shown in Figure 5.1. Us-
ing these four layers increases the capacitance per area and thus decreases the total capacitor
area.

M3
C,
M1 Bottom Plate

Poly

Figure 5.1: Capacitor Structure, Croa = C) + C2 + C;
For the capacitors for the A/D and D/A, it is also important for the capacitors to match
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each other. Any capacitor mismatch degrades the resolution of the A/D or D/A. Capacitor
matching is improved in several ways. First, the capacitors are placed next to each other
to minimize variations in the dielectric (silicon oxide) thickness. Next, the four corners are
made with two 45 degree cuts instead of 90 degree angles.! Also, the capacitors have power
or ground rails on all sides so that both of the capacitors have the same fringing fields.
Finally, the M3 layer is not used for the capacitors requiring matching. This means that
the capacitance is defined entirely by the area of the M1 plate. The M2 and Poly plates
are extended about 2um beyond the M1 plate so thai any normal alignment error of Ml
does not affect the capacitance. This has two additional benefits. First, the M3 plate has a
capacitance to the outside of the chip and thus can couple noise into the inverting input of
the opamp, which is very undesirable. Second, the capacitors are sufficiently small (about
53fF), that the area used to connect the M3 and M1 plates in a symmetric manner uses more
area than is saved by using the M2 to M3 capacitance.

5.3 Comparator

The important feature of the comparator’s layout is that everything must be symmetric. Any
mismatch in the two sides of the comparator introduces comparator offset, which degrades
the A/D’s resolution. The comparator layout is shown in Figure 5.2.

Several layout techniques are utilized to reduce the comparator offset. First, the transistor
pairs which need to match are constructed with 8 separate transistors in a common-centroid
pattern so that threshold voltage mismatches are canceled [52). Using large transistors
would improve the matching, but it wis important to minimize the area, so minimum size
transistors are used. In addition, all of the wiring for the comparator is done symmetrically
so that the parasitic capacitances on both sides of the comnparator match. This is important
since the comparator is a dynamic circuit, arnd any mismatch in parasitics introduces a bias
in favor of vne output over another.

Tests of comparators on ten different chips give a maximum offset of 31mV. This is
acceptable since the opamp used as a preamp for the comparator has a gain of about 3,000.
Therefore, the input referred offset is only 10uV, and it should be able to resolve a 16mV
LSB easily.

5.4 Analog and Digital Sections

The layout of the ADAP cell is shown i Figure 5.3. The analog power and biases run along
the right side of the cell while the digital power and clocks run along the left side of the cell.
The opamps and capacitors are placed along the bottom and right sides of the cell while the

1The reason why this is done is to increase the area to perimeter ratio. Since most of the matching errors
occur at the perimeter, it is desirable to minimize the perimeter for a given capacitor area. However, care
needs to be taken that the mask production step can handle the 45 degree angle correctly. Some methods
will produce jagged edges which will have worse matching than a simple 90 degree angle.
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Figure 5.2: Comparator Layout
sections. In these sections, overlap of the digital clock lines and analog data lines is avoided
There is one digital clock signal which extends into the opamps near their inverting node.
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gates which are used to route the analog signals are placed between the digital and analog
whenever possible.

digital gates and registers are placed along the top and left sides of the cell. The NMOS pass
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Figure 5.3: ADAP Cell Layout

This clock signal is surrounded by metal tied to the power or ground lines in order to shield
the inverting node from the clock signal.

The p-type substrate is tied to the analog ground in a ring around the analog circuits
in order to minimize any digital signal passing through the substrate to the analog circuits.
The substrate is also tied to analog ground in a ring around all of the capacitors to minimize
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keep the substrate quiet. Also, when an analog data line crosses the digital clock lines, the
data line, which is constructed with M1, is shielded from the clock line, which is carried by
M3, by a M2 shield tied to analog ground.

5.5 Bonding Pads

All of the digital pins were placed on one side of the chip, and the analog pins were placed
on the other side of the chip. The pin locations are given in Appendix D.

To ensure clean edges, all of the digital inputs (both clocks and data) to the chip are
buffered by two inverters in the pad before the signals reach the array. The digital outputs
from the array are buffered by 3 graded inverters in the pad before going outside of the chip.

The chip was fabricated without ESD protection in the pads in order to remove any
restriction on the possible input voltage range for the pads. Extra power and ground pins
were used to reduce resistance and inductance in the power leads.

5.6 Layout Verification

The layout was verified using Cadence’s Layout Versus Schematic (LVS) program. This
ensured that the layout matched the schematic. In addition, a schematic was extracted from
the final chip layout and simulated. Due to the size of the circuit, the simulation was very
slow, and only the power-up simulation was able to be performed for the entire array chip.
However, since the entire chip was simply an array of cells, extensive sirnulation of one cell
by itself provided a high confidence level for the chip as a whole.

Circuit Area (um?)

ADAP Processor Cell | 189k (270um x 700xm)

A/D 24k

D/A 14k

Input S&H Circuits 20k

Output S&H Circuits 8k

Storage Unit S&H 8k

Digital Buffer 9k

Instruction Register 30k

Switch Fabric 20k

Power Buses, Wiring 96k

Table 5.1: ADAP Circuit Area

5.7 Die Photos
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Chapter 6

Test Setup

6.1 Overall Test Strategy

Two different chips were fabricated to test the ADAP processor: a processor cell test chip
and an array test chip. The cell test chip has copies of one complete processor cell, an ALU,
a sample and hold, and the A/D on it. This allows the performance of the various ADAP
cell components to be tested directly. The array test chip has a five by five array of cells.
This allows the array to be tested with actual vision algorithms. The pinouts for the array
chip can be found in Appendix D.

6.2 Test System

A photograph of the test system is shown in Figure 6.1, and a block diagram is shown in
Figure 6.2. A Printed Circuit Board (PCB) holds the test chip and interface circuits. A
Clock Generator Board generates the digital clock signals and sends them to the PCB via a
ribbon cable. The test setup is controlled by a PC. This is connected to a PXB-721 I/O card
which is connected to the PCB through a Digital Acquisition Board. Analog inputs from
a Data Precision 8200 or an Audio Precision One can be connected tc the PCB. The PC
sends its data via an Ethernet connection to UNIX workstations for processing and analysis.
There are two PCBs. One is used for the cell test chip, the other for the array test chip.
Many aspects of the test setup, both software and hardware, are based on the test setup
described in [53].

6.3 PCB

The PCB design is shown in Figure 6.3. A five layer board design was used. The three
internal layers are used for ground and power planes while the upper and lower layers are
used for signal routing. This allows easy modification of the board (by scraping away a signal
line) if any design errors are found after fabrication. All signal routes are 30 mil wide lines.

64



Figure 6.1: Picture of ADAP Test Setup
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Figure 6.2: Diagram of ADAP Test Setup

The board is designed into four sections: the analog inputs and bias voltages, the internal
digital signals, the external digital signals, and the test chip. These are described in detail
in the following sections.

6.3.1 Test Chip

The test chip sits in a 65 pin LIF socket soldered directly into the board. This allowed test
chips to be inserted and removed without excessive force. 10pF tantalum and .33uF surface
mount ceramic capacitors are placed next to the test chip power pins.

6.3.2 Digital Signals

The digital signals were brought on and off the PCB using Burr-Brown ISO150 capacitive
digital isolator chips. The ISO150 has two separate power supplies; one for its inputs and
one for its outputs. These chips were the only digital chips on the PCB. For the test chip’s
digital inputs, the ISO150 inputs were connected to the outputs of the clock generator board,
and the ISO150 outputs were connected to the digital inputs of the test chip. For the test
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Figure 6.3: Layout of PCB for the

chip’s digital outputs, the ISO150 inputs were connected to the test chip outputs, and the

ISO150 outputs were connected to the digital acquisition board. This allowed the digital

signals to be generated and processed on other boards without injecting digital transients
into the analog power supply and bias voltages. The ISO150 chips also provided TTL to
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CMOS and CMOS to TTL level shifting. The ISO150 chips were bypassed with ceramic
capacitors.

6.3.3 Analog Bias Voltages

The analog bias voltages and inputs are generated using an AD780 voltage reference. This
chip produces a low noise voltage Vrgr that is distributed around the analog section of
the PCB. Resistive dividers are used to generate the exact voltage needed. This voltage
is then buffered by a low-noise voltage buffer. The resistive divider and buffer circuit,
based on a design in [54, 55], is shown in Figure 6.4. Nominal values for this circuit are
Rl = 9kQ, R3 = 1kQ, R4 = 47kY, R5 = 22Q,C1 = 10uF,C2 = 10nF,C3 = 10uF. R2is a
10kS2 potentiometer. Each OP27 opamp has a +/- 15V power supply bypassed with 10pF
capacitors.

VREF v
— A\ + RS
c1 oP27 N ® Voias
R2 -1 —_—
c2 g — __c3
R3

Figure 6.4: Analog Bias Voltage Buffer Circuit

6.3.4 Analog Inputs

Although most analog inputs to the test chip are DC voltages which use the same circuit
as the bias voltages, two of the analog inputs can come from off the PCB board as well as
from a buffer circuit. The two additional sources used are an Audio Precision System One
to provide a sine wave input, and a Data Precision 8200 to provide a digitally controlled DC
analog input. The Data Precision is controlled by the PC through a GPIB bus. Both of
these inputs are BNC connectors so that shielded BNC cables can be used to connect the
signal. A balanced XLR cable is used for the Audio Precision signal to reduce the capacitive
load. A small R;,C;, low-pass filter is placed at the input to the PCB in order to reduce any
noise from the input source. C;i, has a nominal value of 560pF, and R;, is chosen to place
the filter cutoff frequency above that of the input.
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6.3.5 Ground Plane

The center layer of the PCB was used for the ground plane. This layer rcovided a very
low impedance path for ground currents. A star-ground approach was used, as shown in
Figure 6.5, in order to minimize the effect of digital transients on the analog signals. In the
figure, the black regions indicate a continuous ground plane while the white regions indicate
cuts in the ground plane. The ground plane for the ISO150 I/O chips that connect to the
digital boards (labeled “digital Circuits Connected to External Boards (CGB and DAB)")
is a separate ground plane.

6.3.6 Power Supplies

The test setup uses numerous power supplies. There is a +/-15V power supply for the analog
buffer circuits, a 5V power supply for the AD780, and a 5V supply for the test chip’s analog
power pins. There are two 5V power supplies for the test chip’s digital power pins. Finaliy,
there are two 5V power supplies for each side of the ISO150s. All power supplies except
the +/-15V supply are connected to the PCB using BNC cables to maximize shielding. All
power supplies are bypassed with electrolytic capacitors near the BNC connector and with
ceramic and tantalum capacitors near the chips they supply. All bypassing is done to the
ground plane since all of the signals in the system are referenced to ground.

6.4 Clock Generator Board

The Clock Generator Board (CGB) generates the clock signals ¢, ¢,, Vg, VL, and Veypr
using TTL logic on a breadboard. Crucial clock delays are trimmed by adding discrete
capacitive loads to inverter chains. The clock signals are connected via a ribbon cable to
the PCB board. The clock generator board is isolated electrically from the test chip by the
ISO150 chips, so the digital noise of the clock generator board does not affect the analog
signals on the PCB. The fundamental clock for the clock generator board is supplied by
an HP 8116A Pulse/Function Generator. Fcr the FFT test for the A/D, a crystal clock
generator chip is used as the fundamental clock source due to its low jitter.

6.5 Digital Acquisition Board

The Digital Acquisition Board (DAB) provides an interface between the PCB and the PC.
The DAB is constructed with TTL logic on a breadboard. It performs serial-to-parallel
conversion and resynchronizes the digital data for the PC. The DAB is connected to the
PCB via two ribbon cables, and the DAB is isolated electrically from the test chip by the
ISO150 chips, so the digital noise of the DAB and the PC does not affect the analog signals
on the PCB.
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Chapter 7

Experimental Results

Two test chips were fabricated and tested. The first was a cell test chip, which contained
a processor cell and several stripped down versions of a processor cell. This allowed for
independent testing of the A/D, D/A, sample and hold, shift register, control register, and
the four arithmetic functions. The array chip contained a 5x5 array which allowed various
vision algorithms to be run in order to test the system'’s functionality.

71 A/D

7.1.1 Harmonic Distortion

To measure the harmonic distortion of the A/D, a sine-wave from the Audio Precision System
One is fed to the A/D. The digital output of the A/D is then collected. This data is windowed
by a Blackman window to reduce the effects of truncating the sine-wave [56]. An FFT is then
performed on the data. The signal to noise and distortion ratio (SNDR) is then determined
by dividing the power at the input frequency by the power at the other frequencies between
DC and the Nyquist frequency. Note that the noise and distortion includes electrical noise
from the A/D converter, electrical noise from the test setup, the quantization noise of the
A/D converter, and any distortion introduced by the A/D converter. It is possible for the
sine-wave generator to introduce distortion, but the Audio Precision’s output has distortion
of about -100dB, far less than anything measured in these tests [53].

The A/D was measured at a clock rate of 3.33MHz (a conversion rate of 666kS/s). 2,048
points of data were taken at a sampling rate of 41.625kHZ. The sine-wave input frequency
was 12.345kHz at an amplitude of .99Veu scate- The SNDR is 42.4dB, giving an effective
resolution of about 7 bits. The FFT is shown in Figure 7.1.

The A/D was also clocked at 5MHz (a conversion rate of 1MS/s), and 16,384 points of
data were taken at a sampling rate of 125kHZ. The sine-wave input frequency was 59.875kHz
at an amplitude of .99Vey scate- The SNDR is 40.2dB. The FFT is shown in Figure 7.2.
Note that, as more datapoints are taken, the quantization noise floor goes down correspond-
ingly [57).
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In both FFT plots, the harmonics of the input frequency are above the sampling fre-
quency, but they appear in the plots due to aliasing. In Figure 7.1, the 3rd harmonic is
aliased to 4.5kHz, and the 5th harmonic is aliased to 20.1kHz. [n Figure 7.2, the 2nd har-
monic is aliased to 5.25kHz, the 3rd harmonic is aliased to 54.625kHz, the 5th harmonic is
aliased to 49.375kHz, and the 7th harmonic is aliased to 46.74kHz.

7.1.2 INL and DNL

The DNL and INL of the A/D were measured using a sine-wave code density test [56] with
a sine-wave input at 12.345kHZ. The input was generated using the Audio Precision System
One. The test was run for approximately 2 minutes, and 1 million samples were taken. The
A/D was clocked at 5.5MHz (a conversion rate of 1.1MS/s). The A/D was measured at the
7 kit level, where each LSB represents 16mV. Figure 7.4 shows the DNL plot. The peak
DNL is -.55LSB. The INL plot is shown in Figure 7.3. The peak INL is -1.16LSB.

0.6

0.4

w02}
(7]
-
2 04}

0 20 40 60 80 100 120
OUTPUT CODE

Figure 7.3: A/D INL Plot, F=5.5MHz, LSB is for 7 bits of resolution

One unusual characteristic of the A/D DNL plot in Figure 7.4 is that the peak DNL
occurs at the bit 6 (second MSB) transition points, not t e bit 7 (MSB) transition point.
When the A/D is clocked very slowly, at 500kHz, the peak DNL occurs at the bit 7 transition
point. This is shown in Figure 7.5. At this siow speed, the main source of error is charge
injection and capacitor mismatch, which cause a peak DNL at the bit 7 transition point.
When the clock is speeded up, there are additional errors from the opamp settling time as
well as possible contamination of the reference voltages, the power supnly, and the analog
input by the clock. It is difficult to simulate the clock contamination, but the effects of
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Figure 7.4: A/D DNL Plot, F=5.5MHz, LSB is for 7 bits of resolution

opamp settling time were investigated through simulation. At the bit 7 transition point, the
capacitor mismatch and opamp settling time errors partially cancel each other out because
the capacitor mismatch produces intermediate voltages that are too high while the opamp’s
long settling time produces intermediate voltages which are too low. The two effects are not
as equal and opposite for the bit 6 transition points, so the cancelation effect is smaller. As
a result, the DNL for high clock rates is actually higher at the bit 6 transition points.

0.2

0.1

0
-0.1

DNL LSB

0 20 40 60 80 100 120
OUTPUT CODE

Figure 7.5: A/D DNL Plot, F=500kHz, LSB is for 7 bits of resolution
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The A/D was designed to be able to operate at 10MHz. However, its maximum opera-
tional speed was about 5.5MHz. One important reason for this involves the clock signals.
The actual clock signals that control the switches in the A/D (and the rest of the cell) are
not ¢, and ¢, but ¢,p and ¢,p. These are delayed versions of the clock signals, as explained
in Appendix B.2. The circuit which .produces ¢,p and ¢,p has a longer delay than simula-
tions indicated. This means that about 25ns of each half cycle is spent just waiting for the
clock signal to go high. The reason for the longer-than-simulated delay is that the very large
parasitic capacitance between ¢,p and ¢, is not extracted from the layout and is thus not
accounted for in simulation. This happens because the Cadence program does not extract
parasitic capacitances between two mecial lines that are next to each other, only parasitic
capacitances between lines that are on top of each other. Figure 7.6 shows how the delay
circuit is implemented. Not only is Co4p not known, but the delay of the circuit is too de-
pendent upon the value of Cp4p. Figure 7.7 shows how the circuit should be implemented.
The last inverter should obviously be sized to drive the actual Cyp,p, but in this case, the
delay is less dependent upon the value of Crpap. Thus, this circuit has a more predictable
delay and the output waveform has sharper edges. In addition to this effect, the various
other interline parasitic capacitances probably added to the opamps’ total capacitive load,
thereby slowing them down even further.
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Figure 7.6: Actual Implementation of Delay Circuit (W=weak)
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Figure 7.7: Correct Implementation of Delay Circuit(W=Weak, S=Strong)

If the A/D (and D/A) were used as stand-alone circuits, they would not need the extra
clock cycle used for the arithmetic functions. Thus, the conversion speed would be 1.375MS/s
rather than 1.1MS/s.



7.2 D/A

7.2.1 Harmonic Distortion

The D/A’s harmonic distortion was measured at a 5MHz clock speed. A digital 1.000kHz
sine wave was sent into the D/A, and the D/A’s output was then measured by the Audio
Precision’s distortion analyzer. This yielded an SNDR of 42.6dB. The actual SNDR may be
even better since the D/A output is passed through an output driver, which may introduce
a certain amount of distortion. Also, this output driver is disconnected from the chip output
for one tenth of the time (during the cycle when it is sampling the D/A’s output).

7.2.2 DNL and INL

The DNL and INL of the D/A were also measured. All possible digital inputs were fed into
the D/A, and the analog output was measured with a PM2525 multimeter. The D/A was
clocked at 5.5MHz (a conversion rate of 1.1MS/s), and it was measured at the 7 bit level.
Figure 7.8 shows the DNL plot. The peak DNL is —.77LSB. The INL is shown in Figure
7.9. The peak INL is 1.08LSB.

Since the D/A was not designed to drive analog signals off-chip, it was difficult to measure
the analog output with great accuracy. Since the D/A’s output is driven off-chip by a sample
and hold circuit, the input-output characteristic of the SH circuit was first measured. By
inverting this plot, the D/A output prior to being driven off-chip by the SH circuit could be
determined.
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Figure 7.8: D/A DNL Plot, F=5.5MHz, LSB is for 7 bits of resolution
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Figure 7.9: D/A INL Plot, F=5.5MHz, LSB is for 7 bits of resolution

Parameter A/D Measured Value | D/A Measured Value |
Resolution 7-bits 7-bits
Conversion Rate 1.1MS/s 1.1MS/s
SNDR 40.2dB 42.6dB
DNL < +.55 LSB < £.77 LSB
INL < +1.16 LSB < +1.08 LSB
Analog I/O Range 2V
Power Supply 0-5V

Table 7.1: Summary of the A/D and D/A Performance

7.3 Analog Storage Unit

The Analog Storage Unit’s samplz and hold circuit was tested by simply providing it with
an input voltage and then reading the output voltage with a PM2525 multimeter. The I/O
plot is shown in Figure 7.10. The input voltage versus error is shown in Figure 7.11. The
error is given in LSB at the 7 bit level. (One LSB = 16mV). The peak error is 1LSB at an
input voltage of 3.5V.

The circuit’s hold time was also measured. The circuit’s output degrades with time due
to charge leaking off the storage capacitor. It was found that the hold times for 8 bit accuracy
(8mV) varied from 4 minutes to 20 seconds in the worst case. Since the maximum hold time
needed for most vision applications is 1/30th of a second, the circuit’s actual hold time is
more than adequate.

77



OUTPUT VOLTAGE
) ©
N & o -] w N

N
T

1.8f

1.6} 1

14

NP
w

15 25 35
INPUT VOLTAGE

Figure 7.10: S/H Data Plot, Input Versus Output
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Figure 7.11: SH Data Plot, Input Versus Error, LSB is for 7 bits of resolution
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If the sample and hold drives an output pad, it’s slew rate goes down due to the increased
capacitive load of the pad, PCB traces, and capacitive load of the device connected to the
output pin. For the current test setup’s parasitic capacitances and a scope probe with a load
capacitance of 10pF, the worst case slew rate is .25V /us.

Finally, the signal degradation as data is passed from one cell to another was measured.
This was done using the array chip. An analog voltage was presented to the input of one
cell. The signal was then passed through all 25 cells and measured at the output. This test
takes into account not just the error of the sample and hold circuit itself but also any settling
time errors. As the clock speed is increased, the circuit has less time for its output to settle
to its final value. At 5MHz, the worst case error was +8.7mV, or akout 1 LSB at the 8 bit
level, per cell. The best case error was 4.1mV, or about 1/2 LSB, per cell.

7.4 Arithmetic Functions

The four arithmetic functions were also tested. Each function has two inputs, V; and V),
which can vary from 1.435V to 3.483V, representing 8-bit values from 0 to 256, with 8mV
per LSB. Note that the A/D, D/A, and SH data were shown for 7 bits of resolution, but the
arithmetic data will be shown for 8 bits of resolution. n each case, V| was held constant
while V, was ramped through all possible values. Then V, was held constant while V| was
ramped.

In addition to Vjy versus Voyr data, the accuracy of the arithmetic functions was mea-
sured by plotting the difference between the ideal output and the actual output. This is
similar to the INL measurement of an A/D; it will be called the absolute error. Also, the
average offset between the actual output and the ideal output can be calculated. If this
offset is then subtracted from the absolute error, a differential error can be found. This is
similar (but not the same) as the DNL of an A/D. This will be called the differential error.

'The arithmetic functions were tested at 4MHz. Addition, subtraction, and multiplication
worked at a clock speed of 5MHz, but the division operation required a lower clock speed.
This is discussed in Section 7.4.4. Since the array can only have one clock, the slowest
operation determines the overall clock speed. The results are summarized in Table 7.2.

7.4.1 Addition

The addition I/O plots are shown in Figure 7.12. When the sum of the two inputs exceeds
255, the output saturates at 255 because the D/A cannot produce an output above 255. The
I/O plot is not smooth because the A/D quantizes the input. The peak absolute error of the
addition function, shown in Figure 7.13, is 2.9LSB. The peak differential error is +1.8LSB.

7.4.2 Subtraction

The subtraction I/O plots are shown in Figure 7.14. When the output goes below 0, the
output saturates at 0 because the D/A cannot produce an output below 0. The I/O plot is
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not smooth because the A/D quantizes the input. The peak absolute error of the subtraction
function, shown in Figure 7.15, is 3.1LSB. The peak differential error is £2.3LSB.

7.4.3 Multiplication

The multiplication I/O plots are shown in Figure 7.16. The I/O plot for a V| ramp input is
not smooth because the A/D quantizes the input. However, when the V, input is ramped,
the output is smooth because it is the D/A reference, which is not quantized, being varied.

The peak absolute error of the multiplication function, shown in Figure 7.17, is 3.5LSB.
The peak differential error is £1.95LSB. The change in the magnitude of the quantization
in the plot of the error for a V, ramp is due to the fact that the multimeter changes its
resolution at that voltage. This can be seen in Figure 7.11 as well.

7.4.4 Division

The division I/O plots are shown in Figure 7.18. Vg, was set to 1.507V, which gives a K
of 9. The output for ramping the V5 input is similar to that of the multiplication function,
which is to be expected. The plot for a V| ramp input shows that the output saturates at V),
because the D/A output cannot be higher than its reference, which in the division operation
is V5.

The error for the division operation is much higher than for the other operations at
low values of V. This is due to the fact that V; is used as the reference for the A/D.
When V; is low, the voltage range of the A/D is reduced, but the charge injection is not
reduced. As a result, the resolution of the A/D goes down. Thus, the peak absolute error
is —16LSB. However, for values of V| above 45, the peak absolute error is 3.4LSB, and the
peak differential error is £1.65LSB.

Another cause for the extra error for the division operation is that in order for the A/D
to use V) as a reference, the A/D circuit also needs the voltage V,/2. This is produced
using the circuit in Figure 4.20. This division operation is not perfect; in simulation, it was
accurate to about 9 bits of resolution.

The 1/0 plot for values of K less than 9 shows a more dramatic error for the low denom-
inator region. Values of K greater than 9 have less error, but they sacrifice output range
since the output cannot go below K (for high values of the denominator) or above 255 for
numerator values below K.

The division operation is slower than the other operations because it requires a longer
non-overlapping period. The other operations can run at 1.0 MIPS (a clock speed of 5MHz),
whereas the division operation can only run at 0.8MIPS ( a clock speed of 4MHz). The
reason why this is so can be seen by examining Table B.1. During the first cycle of a division
operation, when ¢, is high for the first time, V] is sampled. During the next cycle, when ¢,
is high for the first time, Vj is divided by two. When ¢, goes low, the output of ISH1, which
has been sampling V; /2, must settle out to V;/2. It must do this at the same time that its
output is driving the bottom plates of two capacitors. After its output settles out, the opamp
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output must slew up or down enough to overcome any comparator offset. All of this must
be done by the end of the non-overlapping period. As a result, all of the non-overlapping
periods must be long enough for this to happen. One way to speed up the operation is to
use a clock signal in which only the second non-overlapping period is long. Producing such
a clock signal can be very difficult.

Maximum Differential Error
Function Absolute Error Range
LSB % | LSB | %

Addition 2.9 1.1 + 1.8 + .7
Subtraction 3.1 1.2 +23 +.9
Multiplication 3.5 1.3 + 1.95 + .8
Division, all V} | —16 -6.2 + 15 + 5.8
Division, V; > 45| 3.4 1.3 + 1.65 + .6

Table 7.2: Summary of Arithmetic Functions, Processing Speed=0.8 MIPS, LSB is for 8 bits
of resolution
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7.5 Edge Detection Algorithm

To test the ADAP array chip, an edge detection algorithm was performed. The resulting
edge map was then compared to an edge map generated by running the same algorithm on
a computer. The edge detection algorithm is:

K,Pixel(z + 1,y) + 1\'21)1':1:5:_[(;1: +2,y)
K\ Pizel(x — 1,y) + K, Pizel(z — 2,y)

This algorithm will find positive edges, in which pixel values increase from left to right.
Negative edges can be found by using the multiplicative inverse of the equation. Often, the
pixel values in rows y — 1 and y + 1 are also used to calculate Edge(z,y). However, the
5xd array chip was too small to perform the extra calculations. The values of Ay and K,
are chosen according to the light levels present in the image. For the image used in this
test, K,=31, and K, = 154. Vg, was set to 1.507V, giving a K of 9. These constants are
not syminetric around the pixel; they are used to scale the pixel values so that the division
operation will take place ‘n the most nonlinear region of operation, as described in Section
2.2. The array was clocked at 4MHz, the same speed at which the arithmetic operations
were tested. The computer program and array programming are described in Appendix C.

(7.1)

Edge(z,y) =

Figure 7.20: Input Image for Edge Map Algorithm, Courtesy of CMU’s Calibrated Inaging
Laboratory

The image used for the test is shown in Figure 7.20. The edge map (of positive edges in
this case) generated by running the algorithm in software is shown in Figure 7.22. The image
was sent into the ADAP array chip using a Data Precision 8200 as described in Section 6.3..1.

The resulting edge map is shown in Figure 7.23. There are two properties of the edges in
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the two edgc maps that can be compared: their location within the edge map and the actual
edge valu:. To determine edge locations, it is assumed that an edge exists wherever the edge
value exceeds a certain thieshold. Assuming a threshold of 128 (half of the 0-255 range of
edge values), both the software edge map and the ADAP edge map have edges in the same
locations. The actual edge values at these locations were not exactly the same. On average,
the edge values in the software generated edge map were about 5% higher than those in the
ADAP edge map. This is probably due to the fact that the edge value is the result of the
division operation in Equation 7.1. One limitation of ADAP’s division operation is that its
output can never be higher than the numerator. As a result, there is a set of input values
for which the correct edge value is higher than the numerator in Equation 7.1.

The edge detection algorithm was also run with a picture of a car. The original picture
is shown in Figure 7.21, the edge map produced in software is shown in Figure 7.24, and the
edge map produced by ADAP is shown in Figure 7.25. These edge maps are sharper than
those of the previous image because the image was sharper, with better defined black and
white regions. One limitation of ADAP can be seen in its edge map. Because of offsets in
the ADAP ALU and electrical noise, the edge values which should be zero are actually often
non-zero, ranging from zero to ten. This shows up in the edge map in Figure 7.25 as light
grey.

Figure 7.21: Car Image for Edge Map Algorithm, Courtesy of Dodge
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Figure 7.23: Edge Map Generated by ADAP Array Chip
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Figure 7.24: Edge Map Generated in Software
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Figure 7.25: Edge Map Generated by ADAP Array Chip
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7.6 Sub-Pixel Resolution Algorithm

The sub-pixel resolution algorithm was also tested on the ADAP array. The algorithin deter-
mines the edge location with sub-pixel resolution using an edge value and the two neighboring
edge values, as described in Section 2.5. The equation for this algorithin, Equation 2.11, is:

Y Py = T5P - .25,
SAdul = TP 5P - 5Py
The edge maps for the image in Figure 7.20 were used as the input for this algorithm
because the physical location of several objects in the scene had been measured with great
accuracy when the image was created. These are the points labeied ~13" and “14" in
Figure 7.26. For point 13, the right and left edge locations should be 62.22 and 315.22; the
sub-pixel resolution algorithm gave edge locations of 62.55 and 315.22. For point 14, the right
and left edge locations should be 167.47 and 419.60; the sub-pixel resolution algorithm gave
edge locations of 167.44 and 419.53. Thus, for three of the points, the algorithin increased
the resolution by a factor of about 9 (to the closest .11). For the fourth point, the resolution
was increased by a factor of about 3 (the error went to .33 from 1). Other points in the
picture were examined, and the average improvement in resolution was a factor of 4 to 5
(closest .22).

(7.2)

Figure 7.26: Location of Points for Sub-Pixel Algorithm

7.7 Power

The power used by ADAP depends upon the clock frequency. At 1MHz, a processor cell uses
1.6mW. At 5MHz, the processor cell uses 1.9mW. Assuming a linear dependence of power
upon frequency, P = 0.075F + 1.523, where P is the power in mW, and F is the frequency
in MHz.

The frequency-dependent power is used in the digital circuitry. In the analog portion of
the circuitry, the power is distributed as shown in Table 7.3.
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Circuit [ Power |

All Analog Circuits 1500 W

A/D 395, W
D/A 2005 W
ALU S&H's 6450 W

Analog Storage Unit S&H | 260u.W

Table 7.3: ADAP Analog Power Use
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Chapter 8

Conclusions

This chapter summarizes ADAP’s performance, compares it to comparable digital processors
at both the chip and system levels, and suggests future improvements. It ends with a
summary of the primary results.

8.1 Performance Summary

This thesis has demonstrated an analog arriy processor architecture. The processor was
fabricated in the HP 0.8um triple metal CMOS process. The processor has a data storage
unit which can store data to 8 bits of accuracy, a switch fabric, and an ALU which can
perform addition, subtraction, multiplication, and division to 7 bits of accuracy at a speed
of 0.8 MIPS. The processor consumes 1.825mW of power at this speed and uses 270um by
700um of silicon area. The number of processors which can be combined on a single chip is
limited only by the chip area. An array of these processors was used (o successfully perform
an edge detection algorithm, and a sub-pixel resolution algorithm executed on the array was
able to increase the resolution of the edge locations by a factor of four.

8.2 ADAP-IMAP-HDPP Comparison: Processor Level

The digital processors chosen for comparison with ADAP are IMAP and HDPP. IMAP,
described in [28], is a SIMD processor intended for vision processing applications; it is
designed in a .55um double metal layer BiCMOS process. IMAP consists of a linear array
of 64 processor cells, each of which also has 8kbytes of SRAM memory. The array has one
instruction port, one input port, and one output port. The entire array consumes 14.2min by
13.6mm of silicon area and consumes 3.4W of power. The processors are clocked at 40MHz
and require 11 cycles to perform a multiplication operation. Thus, each processor cell has an
area of 3mm?, consumes 53mW of power, and can process data at 3.63 MIPS. All arithmetic
operations are performed with an 8-bit ALU.

Another digital processor designed for vision processing, HDPP, is presented in [41]. It
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has a similar SIMD architecture to IMAP, but employs 128 bits of DRAM memory instead
of the SRAM used in IMAP and uses a 64 by 64 rectangular array of bit-oriented processors
rather than 64 byte-oriented processors. HDPP can store an entire 64x64 image (or a 64x64
part of an image) in the array, storing one pixel in the memory of each processor. HDPP
has not yet been fabricated, so there are no measured performance numbers. However,
simulations predict a processor area of .015mm? (including wiring), power consumption of
.06mW, and a processing speed of .052 MIPS for 8 bit multiplication (192 cycles at 10MHz).
It has been designed in a .75um triple metal CMOS process.

Both digital processors latch in a new instruction for every instruction cycle using a
special instruction data-bus for this purpose. This is different from ADAP, which loads in a
st of instructions, each of which is stored in a different processor, when it is initialized and
then processes this set of instructions repeatedly.

To compare IMAP, HDFP, and ADAP, the power ~onsumption and MIPS of an individual
processor cell were divided by the processor cell area to get a measure of how efficiently they
use power and area. For this comparison MIPS measures how many million arithmetic
instructions can be performed in a second by one processor. ADAP is a MIMD processor
while HDPP and IMAP are SIMD processors. Since the algorithms which they implement
are vision algorithms with a high degree of parallelism, they are expected to have similar
array efficiencies, as explained in Section 3.3.3. The results are shown in Table & 1.

[ Metric | ADAP | IMAP | HDPP |
MIPS/cell | 0.8 363 | 052
Power/cell | 1.825mW | 53mW | 0.06mW
Cell Area | 0.19 mm? | 3mm? | 0.015mm?
MIPS/mm? 4.2 1.2 3.5
MIPS/mW 0.43 0.068 0.86

Table 8.1: Comparison of IMAP, HDPP, and ADAP Performance per Cell

ADAP is more than 6 times more efficient than IMAP in its use of power, and ADAP gets
more than 3 times more performance from a given area of silicon. ADAP’s advantage comes
from the fact that it’s ALU uses area and power more efficiently than IMAP; it uses the
same circuit to perform all four arithmetic functions. ADAP and HDPP are more closely
matched. ADAP gets about 20% more performance from the silicon area as HDPP, but
HDPP uses half as much power for its processing.

IMAP and HDPP do have some advantages. They have far more memory available for
each processor and can perform binary operations, such as AND, OR, and bit shifting, on
the data. One limitation shared by all processors is the inability to perform IF/THEN
instructions.

Although IMAP and HDPP are clocked at a higher speed than ADAP, they use more
cycles (IMAP uses 11 for multiplication) to perform arithmetic operations. IMAP’s and
HDPP’s designers did not specify how many cycles a division operation would require; it is
safe to assume that such an operation would require at least as many cycles as a multiplication
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operation. IMAP, HDPP, and ADAP can process data at higher speeds if they only need
to perform addition and subtraction. Both digital and analog systems take a performance
hit in terms of speed, area, or power as more complex functionality is added. Although the
performance degradation cannot be rigorously quantified for every case, for IMAP, HDPP,
and ADAP the division/multiplication functionality cuts the processing speed by about an
order of magnitude.

IMAP and HDPP use higher performance processes, having a gate length of 0.55um or
0.75um compared to ADAP’s 0.8um process. It is hard to quantitatively scale the perfor-
mance figures for this process difference, but it is safe to assume that ADAP could achieve
a higher performance if it was designed in INMAP’s or HDPP’s process.

8.3 ADAP-IMAP Comparison: System Level

At the system level, INAP has several advantages over ADAP. These advantages are pri-
marily the result of the flexibility and robustness inherent to digital systems.

e Since IMAP is clocked at a higher rate, it can handle higher video rates than ADAP.

e High temperatures will degrade the performance of both INAP and ADAP. However, a
digital circuit such as IMAP will usually degrade more gracefully (primarily by slowing
down) than an analog circuit such as ADAP, which will also lose accuracy as well as
speed with temperature.

e Because it uses image data in a digital format, IMAP can perform several operations
on the same image data and even store the image for later use. Once ADAP processes
an image, the image is lost; only the results of the operation are left.

o ADAP expects its analog inputs to be within a certain veltage range. If the video
outputs are not within this range, then some sort of conversion circuit (an A/A chip)
must be placed between the imager and ADAP.

One goal of this thesis was to study the role of analog processing in vision systems in
order to determine where in the datapath the A/D operation should take place. There are
some functions which digital systems can perform very well at high speeds. These functions
include bit shifting, simple logical functions, sorting data, and moving data between memory
locations. Digital systems can also perform floating point arithmetic, but at a high cost in
silicon area and power. Analog circuits are very bad at logical operations and moving data
around, but they can perform floating point operations very quickly with small amounts of
power and area if only 7 to 8 bits of accuracy are required. Thus, a good design technique
for vision systems is to perform any low precision, floating point operations with analog
circuits on the image data before performing the A/D conversici. The remaining functions
wil e those that are best suited for a digital processor.
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8.4 Future Work

There are a number of improvements which can be made to the ADAP processor.

e The improved clock delay circuit mentioned in Section 7.1.2 should be implemented in
order to improve ADAP’s speed.

e Currently, the ability to shift or hold data in the cell analog storage units can only be
controlled on a row by row basis. Some algorithms would benefit from the ability to
control this function on a cell by cell basis. A way to do this is described in Appendix
B.3.

e Although it is easier to generate and collect output from ADAP in digital form, ADAP
also generates analog outputs so that several chips can be interconnected. These have
a problem driving the pad and PCB trace capacitance fast enough to transfer data at 1
MIPS. One solution which increases the data rate is to modify the timing as susgested
in Appendix B.1 so that 9 clock phases rather than 2 are used for the sample and hold
output to settle to its final value.

e The question of processor utilization in MIMD and SIMD array processors deserves
further investigation. One way to do this is to implement several vision algorithins on
both ADAP and HDPP and compare their processor utilizations.

e To use ADAP or any image processor in an actual system, it is necessary to convert the
imager output format to the processor’s input format. For research-oriented systems,
this converter can be a complicated system in itself [38]. For a commercial system
employing ADAP, an NTSC—ADAP chip or chipset would be necessary.

e One problem with any special image processor, analog or digital, is that most com-
mercial imagers send out data a row at a time. However, most robust edge detection
algorithms require pixel values from several different rows to calculate an edge value for
one pixel. This means that pixel values must be temporarily stored in a shift register.
There are several ways to solve this problem. One approach is to build vision processors
with special shift registers. This has the disadvantage of requiring the shift register
size, and thus the maximum image size, to be determined ahead of time. The solution
employed by the HDPP processor is to store the entire image in the processor, using
one processor per pixel. Although this does solve the problem of accessing a pixel’s
nearest neighbors, it does so at the cost of storing the entire image in the processor.
Another solution is to build special imagers with parallel outputs. A third solution
would be a non-destructive addressable imager, one in which certain columns or rows
could be read out several times before the pixel values changed. This would be similar
to a ROM in which the memory locations would be written, only at user-determined
times, by the light hitting the chip. Finally, a special interface chip could be developed
that would have a very flexible set of shift registers that would hold pixel values and
present them to the processor in the proper order.
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Finally, it would also be helpful to add the ability to perform an IF/THEN instruction.
However, it could be very costly in terms of area, power, speed, and complexity. ADAP’s
current design essentially takes an analog circuit and makes its inputs, outputs, and refer-
ences programmable. Adding the ability to perform [F instructions would add an entire new
level of functionality and complexity, which would have a significant cost in area, power,
or speed. A better tradeoff might be to simply enhance ADAP's current performance and
let the digital system controlling ADAP perform the logical operations. An obvious way to
explore this issue is to build a complete stereo vision system incorporating ADAP to test it
under real-world conditions.

8.5 Thesis Summary
This thesis has demonstrated:

e An analog array processor, ADAP, can perform several ecarly vision tasks such as edge
detection and sub-pixel edge resolution determination. It does this with a new type of
analog ALU accurate to between 7 and 8 bits which combines an A/D and a D/A to
perform addition, subtraction, multiplication, and division.

e ADAP performs these functions with greater power and area efficiency than comparable
digital image processors.

e The performance of both analog and digital systems can decline by an order of mag-
nitude when a new level of functionality is added.

e The proper role of analog processing in vision systems is to perform the low resolution
floating point arithmetic on the image data before performing the A/D operation.

e A key area for further study in the design of vision systems is the interface between
the imager and the processor.
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Appendix A

Error Analysis

This appendix analyzes the A/D error sources. The analysis can be used, with a few changes,
to the D/A and sample and hold circuits as well.

A1 A/D

During each cycle of the A/D, several sources produce errors. These errors can be shown
by plotting the output of the A/D circuit versus its input for one ‘vcle. Figure A.1 shows
this plot for a circuit with no errors. The A/D circuit subtracts the offset V¢ from its
input, multiplies that by 2, subtracts either nothing or 2Vigr, and re-adds the offset V¢,. It
subtracts nothing for inputs below Vi and 2V for inputs above Vg p. Vasip is equal
to Vo + Veer. To see how this graph can be altered by errors, the operation of the A/D will
be examined.

In Figure A.2, when C) and C, are sampling V;y while ¢, is high, the charge stored on
the top plates of the capacitors is:

Qcive: = (Vin = VO)(Cy + Cy) (A.1)
V_ = V+ + ‘/offgel (.‘\.2)
Qcivcz = (Viv — (Vi + Vospser) ) (Cr1 + Ca) (A.3)

The voltage Vs, is defined to be the opamp offset when it is in unity gain configuration
and V, = 0.945V. When ¢, goes low, the switch (an NMOS transistor) that connects the
output of the opamp to its negative input injects a charge —AQ into the bottom plates uf
the two capacitors. The magnitude of AQ is dependent upon V;y, but this dependence is
not easily quantified. From now on, AQ will be assumed to represent AQxra4x. Once this
switch opens, no more charge can flow to the node at the negative input of the opamp.
Therefore, the only ecror due to switch charge injection is from the opening of the feedback
switch. The charge on the capaci‘ors is now:

Qci+c2 = (Vin = (Vi + Vosrae))(Cr 4+ Co) + AQ (A.4)
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Figure A.1: A/D Residue Plot: No Errors

While both ¢, and ¢, are low, the top plates of C; and C; are tied to Vz + VREF. As
a result, the voltage at the negative input is:

V. = (Vo + Vrer) — AVeic2 (A.5)
AVeic2 = Qeirc2/(Cr+ Cy) (A.6)
Vo = (Vo + Veer) — (VIn = (Vi + Vosseet) )(C1 + C2) + AQ)/(Cy + C2) (A7)
Vo = Veer = Vin + Vo + Vi + Voppsee — AQ/(C1 + C3) (A.8)

Equation A.8 gives us the new voltage at V_. If this is below the opamp trip point, the
opamp’s output will slew up. If it is above the trip point, the opamp’s output will slew
down. The opamp’s trip point at V_ is:

Vtrip point — V+ + Vo[]aet + (""VE) (AQ)
(A.10)

The voltage —Vg is the voltage difference needed at the negative input to move the
opamp output from its unity gain feedback output (= V,) to its halfway point (= Vjsp).
It is expected to be about 0.5mV.
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Figure A.2: A/D Schematic




The trip point voltage is then subtracted from Equation A.8:

Viifg = V- New = Virip point (A.11)

Vai;g = (Veer + Vo + Vi = Vin + Vopreee = AQ/(Cr + C2)) = (Vi + Visraer = Vi)

Vaigg = (Veer + Vi) = Vin = AQ/(Cy + C2) + Vi (A.12)

Vai;g = (Vaup = Vin) = AQ/(Cr + Cy) + Vi (A.13)

Thus, there is an error of —AQ/(C, + C;) + Vg in detecting the midpoint of the input
range.

When ¢, goes high, for input voltages below Vjy/p, the top plate of C, is connected to
V. The charge on the top plate of C, is then:

Qc2 = Qcivc2 — Qe (A.14)
Qc1 = (Vg —-V.)C, (A.15)

Vo = Vit Vopgsee — Ve (A.16)
Qe = (VC-' - (v+ + Vo]fse! - Ve))Cl (Al?)
Qer = VgCi = ViCi = VigpeeCr + VeC) (A.18)

Qc2 = (Vin = (Vi + Vopgser))(Cr + Ca) + AQ — VCy + V. Cy + VossserCr = VeCy

The variable V. is used instead of Vg since it is now not a constant, but rather function
of Vour. Its dependence on Vpyr will be taken into account later.

There is an additional charge error that results from the parasitic capacitance Cp at
V_. This includes both the gate capacitance of the opamp’s input transistor as well as any
parasitic capacitance between metal lines. Since the voltage at this node changes by V,, the
charge on it changes by V,Cp. Subtracting this from Q¢ yields:

Qez = (Vinv = (Vi + Vosree))(Cr + C2) + AQ — VGC) + ViCy + VogpeeCr — VeCy = V.Cp
Qcz = (Vin = (Vi + Vospeer))(Cr + C2) + AQ — VCy + ViCy + Vosg3Cy — Vo(C) + Cp)

To get the voltage across C;, Q¢ is divided by C,. After simplifying terms, this yields:

C+C,

, C,+Cp
Vacross c2 = C, (V”V - VG) + AQ/C2 - "offaet +Ve -V, - l !

C,
This is added to the voltage at V__, Equation A.17, to get the voltage at the output of
the opamp:

Ve (A19)

C,+C C+C
Vo = Z5=2(Vin = Vo) + AQ/Cy = Vosgae + Vo = Vi = —-‘a—fve + (Vi + Voggaer = Ve)
Vit = &b 2,' %2 (Viw = Vi) + Vi + AQ/C, - &1 g Cry, v, (A.20)
2 2
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Letting C = Cy, and C,/C, = 1 + ¢, where ¢ is the capacitor mismatch:
Vour=2+e)(Vin = V) + Ve + AQ/C — (2+ ¢ + Cp/C,)V, (A.21)
However, V. is not a constant; it is actually a function of Vpyr:

Ve = (1/4.)(Vour — Vi) (A.22)
Using f=(2+¢+ CP/CQ)(]./AV):

Vo = {2+ = V) + Vo + AQ/C = (Vo = Vo (A.23)
Vout fj;(vm - Vo) + Vo + 17AQ/C (A.24)

For the case of input voltages above the midpoint, the output is:

2+¢ 1+e

Vour = T f( IN — VG) 2Verer + Vo + ————AQ/C (A.25)

+f 1+ f

This is shown in Figure A.3!. With the current circuit configuration, f is expected to be
about 1073,

The vertical distance between the endpoints of the plot at Vyp — (—AQ/2C + Vi)
should be 2Vggr. Any deviation from this value contributes towards DNL. In this case, they
are off by a factor of @J"w. Thus, the main factors leading to DNL in the A/D would
appear to be capacitor mismatch and the finite gain of the opamp, not charge injection.
However, the charge injection is actually signal-dependent although it is modeled here as
signal-independent. So, in reality, it would contribute to the DNL as well. Charge injection
also contributes to the A/D’s INL, of course.

The offset of the opamp cancels out and does not affect the accuracy of the A/D operation.

The charge injection from the feedback switch was minimized by using a minimum size
device (1.2um/.8um) and by using an ON voltage of about 2.5V instead of 5V. This reduced
the amount of charge stored in the transistor’s parasitic capacitances and channel.

This analysis also applies to the D/A. Its errors also arise from capacitor mismatch,
charge injection from the feedback switch, parasitic capacitance, and the finite gain of the
opamp.

The sample and hold circuits have similar sources of errors, except that there is no
capacitor mismatch since there is only one capacitor. The charge injection shows up as a
positive offset.

1 All errors are shown to be positive. However, depending upon the magnitude and sign of ¢, Vg, f, and
AQ, some of them might be negative.
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Figure A.3: A/D Residue Plot: Charge Injection, Capacitor Mismatch, and Opamp Gain
Errors
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A.2 ALU Quantization Error

Since the output of the ALU’s D/A can only have 2V discrete output values, the ALU has
only 2V possible output values. This will limit the performance of some algorithms. The
same sort of restriction exists in a digital integer arithmetic circuit.

To quantify the quantization error. The output of the A/D, Dysp, is:

Vi
Dyip = |—2—2N| (A.26)
VerEF,A/D
Dyip = _Viv 2V —¢ (A.27)
VREF,A/D

where | | indicates floor (nearest lower integer). € is the difference between the real number

722N and the integral output of the A/D |——2V | Then, using this as the input
VREF,A/D VREF,A/D

to the D/A, the output of the D/A is:

Dumip

Vour = "2—N‘VREF,D/A (A.28)
VIN N 1
Vi = (—2" —¢e)==V, A.29
ourt (VREF,A/D E)2N REF,D/A ( )
VinV, Vi
Vour INVREF.D/A _ REI;,ID/A (A.30)
VreF,A/D 2

(A.31)

So, the quantization error A is sv“—?ﬁ%. Since the maximum value of ¢ is one LSB of the
A/D:

%
Apax = EMAX—%% (A.32)
EMAX = 1 (A.33)
| %
Amax = —’%}p—/—d (A.34)

So, Apax is simply one D/A LSB.
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Appendix B

Timing Information

B.1 Cell Timing

The primary system clock for ADAP consists of two non-overlapping clock signals ¢, and
¢2. Each clock cycle has ¢, high and then ¢, high for equal periods of time. Since the
ADAP instruction cycle consists of 5 clock cycles, there are thus a total of 10 different clock
phases. The signal Vi is high for the first two phases, and the signal V}, is n high for the
last two phases. When Vs pr is asserted for an instruction cycle, it has the same timing
as Vr; otherwise, it is low for the entire cycle. The clock timing is shown ia Table B.1, as
are the functions performed by each circuit. In the table, SHI is the input sample and hold
(SH) for the analog data storage unit, and SHO is the output SH. AD1 and AD2 are the
first and second opamps of the A/D. COMP shows what bit is currently the output of the
comparator. BUFFI shows what bit is present at the input to the digital buffer. This value
is latched at the transition between phases. BUFFO shows what bit is present at the output
of the digital buffer. DA1 and DA2 are the first and second opamps of the D/A. ISH1 is the
SH which holds V; for the A/D; ISH2 is the SH which holds Vggr for the A/D; and ISH3 is
the SH which holds Vggr, for the A/D. OSH1 is the SH which holds V;, for the D/A; OSH2
is the SH which drives the ALU’s output. This i5 also suminarized in Table B.2.

When a SH circuit is holding a value but not driving any other circuits, its function is
listed as “Hold”. When it is driving the input of another circuit, it is listed as “HOLD”.

The one exception to the timing shown in Table B.1 occurs during a division operation.
During the second sub-cycle of a division operation, AD2 samples V9 instead of the output
of AD1. Meanwhile, the output of AD1, which is V;/2, is sampled by ISH2.

In order for the sample and hold circuits to work correctly, it is necessary for the V;, and
Vr edges to take place entirely during the non-overlapping period between ¢, and ¢,.

One improvement that can be made for future versions of ADAP is to change the sample
sub-cycle for SHO from CLK9 to CLK2. This will give it 9 sub-cycles instead of 2 sub-cycles
to drive its output. This could be irnportant when driving a signal off-chip.
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d10H | °1dwes | PI°H | PI°H | PI°H | PI°H | PI°H | PI°H | PI°H | TOH | ZHSO
PloH | °idwes | q70H | QTOH | ATOH | ATOH | AT0H | ATOH | A'TOH | ATOH | THSO
gsiv | x(@/1) | eng | x(@/1) | eng | x@/1)| 1nd
X | X(@/1)'+ [odureg | ‘+ |odweg| ‘+ |adureg| ‘+ |odueg| ¥ Zvda
X@/D | ong | x@/1)]| rva [ x@/1)| eng | x@/1)| 4dS1
X X 4 a[dureg ‘4 adureg 4+ adureg ‘4 adureg 1va
X X gSIN | owe | cug | pud | end | gug | 1ud | dST | oddnd
ds1 1 g zyg | evd | vudg | eug | 9nd | dSKW X X 144ngd
gs1 g cyd | eng | vyvd | snd | 9ng | dSK X X dIN0D
1avy 1 g Iav | eng | 1av | svg | 1dv | dSK NIA
oidwres | Xz'+ |9dweg| xg'+ |ojdweg! xz'+ |oidweg | xg'+ |adweg| Y zayv
s eayv gnd | ¢av | vnd | zdv | 9¥d | zav NIA | sindug
Xg '+ | °dweg | xg'+ |odureg | xg'+ |oidweg | xz'+ |oidweg| pioy |eodweg| 1qv
d10H | dIOH | dTOH | ATOH | dTOH | AI0OH | ATOH | ATOH | ATOH | 3dwreg |  ¢HSI
d10H | dTOH | dTOH | ATOH | ATOH | A10H | ATO0H | ATOH |3dweg | X CHSI
POH | dTOH | PIOH | PI°H | PI°H | PI°H | PI°H | PI°H | GTOH | aidureg | [HSI
TOH | @dwegs | ploH | PIOH | PI°H | PI°H | PI°H | PI°H | PI°H | ATOH | OHS
POH | dTOH | PIOH | PI°H | PI°H | PI°H | PI°H | PI°H | PioH |°[dureg | [HS
MO MO MO MO MO MO Mo MO Y31y YStyH | LdIHS)
ysiy ySty MO MO I\ Xelg | MO .\ Xelg MO MO MO TA
MO MO Mo MO I \Xelg Mo MO mor] ySyg VLS 97
Y M0] Y3t | o7 | Y3ty | moq | ySig | Mo | Yyt | moO7] P
Mo ySig Mo | Y3ty | moq | ydiy | mo | ySty | mog | ySiy '¢
Lot10 | 610 | 83110 | 2310 | 9310 | 10 [ w110 | 110 | 210 [ 110 [ smon) |

Table B.1: ADAP Cell Timing
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| Circuit |

Function

Clock Signals

|

SHI Input Sample and Hold for the Analog Data Storage Unit | Veois,Vidip, Viedn
SHO | Output Sample and Hold for the Analog Data Storage Unit | V3.¢16,V0.01p0,Vi.din
ISHI1 Sample and Hold to hold V; for the A/D Vieors,Viedrp, Viedin
ISHI2 Sample and Hold to hold Vzgr for the A/D Viedas, Viedap, Viedan
ISHI3 Sample and Hold to hold Vzgp, for the A/D Viedis Vedin, Vedin |
OSHI1 Sample and Hold to hold V; for the D/A Vi, Vidip Vion
OSHI2 Sample and Hold to hold D/A’s output Vs, Viop Vidin
AD1 First opamp for the A/D dr15,P20
AD2 Second opamp for the A/D drs,01D

COMP Comparator for A/D D12
BUFFI Input at first register of digital buffer o112
BUFFO Output of last register of digital buffer 12

DAl First opamp for the D/A drs,D2n

DA2 Second opamp for the D/A Pas, D10

Table B.2: ADAP Subcircuit Summary

B.2 C(lock Control Logic

Each of the SH circuits, the A/D, and the D/A use special clock signals that are delayed
versions of the system ciocks ¢, and ¢,. These clocks are:

o ¢12: This is equal to @, + @,. It is used as the strobe for the comparator and the clock
signal for the digital buffer.

e ¢15: This is a delayed version of ¢, whose high value is Vggr (about 2.45V). This

reduced voltage range cuts down on the resulting charge injection. It is the first clock

signal to change at the end of a ¢, cycle. It is used as the gate voltage of the feedback
switch around AD1 in the A/D and DA1 in the D/A.

¢1p: This is a delayed version of ¢,. Its delay is set so that it go low after ¢,5 goes
low, and so that it will go high after the comparator’s output is valid. It is used for all
of the other ¢, switches in both the A/D and D/A.

¢2s: This is a delayed version of ¢, whose high value is Vger (about 2.45V). This
reduced voltage range cuts down on the resulting charge injection. It is the first clock
signal to change at the end of a ¢, cycle. It is used as the gate voltage of the feedback
switch around AD2 in the A/D and DA2 in the D/A.

¢2p: This is a delayed version of ¢,. Its delay is set so that it go low after ¢,5 goes
low, and so that it will go high after the comparator’s output is valid. It is used for all
of the other ¢, switches in both the A/D and D/A.
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o Vrdis: This is equal to Ve AND’d with ¢s. It is used as the gate voltage of the
feedback switch around the opamp in ISH1, ISH3, and SHI.

¢ Vrd,p: This is equal to Vg AND’d with ¢,p. It is used for all of the other sample
phase switches in ISH1, ISH3, and SHI.

e Vrgn: This is equal to Ve, p. It is used for all of the hold phase switches in ISHI,
ISH3, and SHI.

o Vrgos: This is equal to Vg AND'd with ¢,5. It is used as the gate voltage of the
feedback switch around the opamp in ISH2.

o Vrgap: This is equal to Vg AND’d with ¢yp. It is used for all of the other sample
phase switches in ISH2

e Vrgon: This is equal to Vrgsep. It is used for all of the hold phase switches in ISH2.

o Vid1s: This is equal to Vp, AND’d with ¢,s. It is used as the gate voltage of the
feedback switch around the opamp in OSH1, OSH2, and SHO.

o Vi¢1p: This is equal to V;, AND'd with ¢,p. It is used for all of the other sample
phase switches in OSH1, OSH2, and SHO.

o Vi é1n: This is equal to Vy¢,p. It is used for all of the hold phase swiiches in OSH1,
OSH2, and SHO.

B.3 Analog Storage Unit Timing

Quite often, the analog storage unit will be used as a shift register. However, many algorithms
require a shift register that can either hold or shift. Since a cell can only perform one
instruction (hold or shift), it will not be able to perform both functions. To address this
problem, ADAP has an additional input Vsgpr.

Whenever Vsypr is asserted for an instruction cycle, the analog storage unit loads a new
piece of data from its input. If Vsy;pr is not asserted, then the analog storage unit holds
its current data. To assert Vsy pr, it should be high at the same part of the cycle that Vg
is high. This signal is intended to work on a row by row basis, i.e., each cell in a row will
either hold or shift. This is shown in Figure B.1.

If there are not enough pins for every row to have a shift control signal, another way to
address the problem is to add ar extra bit to the cell control register. If this bit is high, the
analog storage unit always loads a new value. If the bit is low, the analog storage unit only
loads a new value if Vs pr was high (Vsuirtiocat = VsHipT globat + Controlgit). This would
add extra area to the cell register, but add flexibility and cut down on the pin count.
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Figure B.1: Current Vsy,pr Circuit
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B.4 Digital Buffer Timing

The timing of the shift register used in the digital buffer is shown in Figure B.2. When ¢,
goes high, the bit Vjy is loaded into the register and appears at the output Vpyp after a
delay. The output of the register is then valid while ¢,, is low.

When @, is low, the data is stored on the gate capacitance of M11 and M12. This is
sufficient for the speed at which the shift register is clocked, but it would not be suitable for
long term storage of the information.

~ .-Loading Data ---—- - DataValid -~~~ - LoadingData = —  Data Valid -

5 \ /; \

Figure B.2: Shift Register Timing

There are two potential timing problems with the register circuit shown in Figure B.3
which are avoided by proper transistor sizing. The first timing problem occurs when ¢,y
goes low. When this happens, V; goes high. It is important that M9 turn off before V; goes
high, otherwise V3 may change its value. To ensure this, M7 is made weak so that it charges
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Figure B.3: Shift Register Schematic

up V, slowly. The second potential problem occurs if V;y goes from low to high while ¢, is
high. This will cause V; to go low. It is important that this happen after V; has caused V,
to go low, otherwise V, will stay high, which will be incorrect. To ensure this, M1 is made
weak so that it discharges V] slowly.

B.5 Clock Generation

The schematic of the Clock Generator Board is shown in Figure B.4. The inverters used
to generate ¢, and ¢, can have capacitors added to their outputs to adjust the size of the
non-overlapping period. Larger capacitors create larger non-overlapping periods. 74LS163
chips were used to generate Vr and V., but any sort of counter circuit, appropriately wired,
can be used.
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Figure B.4: Schematic of Clock Generator Circuit
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Appendix C

Array Programming

The array picture in Figure C.1 shows in graphical form how the array was programmed to
perform the edge detection function. K2 was set using the S input, K1 was set using the
X input, and Dy_3 was set using the E2 input. The output was accessed by adding the
calculation result to zero and taking the digital output of the middle A/D. The C program
used to calculate the edge map on a workstation is:

#include <stdio.h>
#include <math.h>

main(argc,argv)
int argc;
char *argv(];
{
FILE *input_file, *output_file;
char filename [256];
double edgel, edge2, edge3;
int x1,x2,x3,x4,x5;

strcpy(filename, "pic");

strcat(filename, argv[1]);

strcat(filename, ".dat");

input_file = (FILE *) fopen(filename, "r");

strcpy(filename, "pic");

strcat(filename, argv(1]);

strcat(filename, ".edg");

output_file = (FILE *) fopen(filename, "w");

while (fscanf(input_file, "%d %d %d %d %d", &x5,&x4,&x3,&x2,&x1) != EOF) {
edge2 = ((double) x5) * .6 + ((double) x4) * .6;
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edgel = ((double) x1) * .12 + ((double) x2) =* .12;
if (edge2 > 255) edge2 = 255;

if (edgel > 255) edgel = 255;

if (edgel < 1) edgel = 1;

edge3 = 2304/edgel; /* 2304 = 256%9 x/
if (edge3 > 255) edge3 = 255;

edge3 = edge2 * edge3/256;

edge3 = floor(edge3);

if (edge3 > 255) edge3 = 255;

fprintf (output_file, "%d\n", (int) edge3);

The array picture in Figure C.2 shows in graphical form how the array was programmed
to perform the sub pixel resolution function. 64 was set using the W input, 128 was set using
the X input, 192 was set using the E3 input, and Dy_, was set using the E4 input. The
output was accessed by adding the calculation result to zero and taking the digital output of

the second A/D. The C program used to calculate the sub pixel resolution on a workstation
is:

#include <stdio.h>
#include <math.h>

main(argc,argv)
int argc;

char *argv(];

{

FILE *input_file, *output_file;
char filename[256];

double edgel, edge2, edge3;

int x1,x2,x3;

strcpy(filename, "cpic");

strcat(filename, argv([1]);

strcat(filename, ".tad");

input_file = (FILE *) fopen(filename, "r");

strcpy(filename, "cpic");

strcat(filename, argv(i]);
strcat(filename, ".spx");
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output_file = (FILE *) fopen(filename, "w");

while (fscanf(input_file, "%d %d %d", &x1,&x2,&x3) != EOF) {
edge2 = -((double) x1) * .75 - ((double) x3) * .25 + ((double) x2);
if (edge2 < 0) edge2 = 0;
edgel = -((double) x1) * .5 - ((double) x3) * .5 + ((double) x2);
if (edgel < 1) edgel = 1;
if (edge2 > 255) edge2 = 255;
if (edgel > 255) edgel = 255;
edge3 = 2304/edgel; /* 2304 = 256%9 */
if (edge3 > 255) edge3 = 255;
edge3 = edge2 * edge3/256;
if (edge3 > 255) edge3 = 255;
edge3 = floor(edge3);
fprintf (output_file, "%f\n", edge3/9);
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Figure C.1: Array Program for Edge Detection
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Figure C.2: Array Program for Sub Pixel Resolution
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To program the array, a file is created for each processor. This file contains the values
for every bit in the control register. An example is shown below:

filename: cil32.dat

:W-A3: 0
:MI-A3: O
:MI-W:
:MO-W:
:MO-N:
:M0O-S:
:MO-E:
:MI-E:
:MI-N:
10:MI-S:
11:N-A3:
12:S-A3:
13:E-A3:
14:%: 1
16:+: 0
16:-: 0
0

O 00 N O W WK =
O = OO O = O

© © = O

18:N-E: 0
19:A2-W:
20:A2-N:
21:A1-S:
22:A1-E:
23:A1-W:
24:A1-X:
25:A1-M0: O
26:A2-M0: 1
27:A1-N: O
28:A2-S: 0
29:A2-E: 0O
30:A1-AI: O
31:E-W:
32:5-W:
33:N-S:
34:N-W:
36:S-E:

O OO OOo

©O O O0OOOo

The filename cil32.dat means that it is program number 1, processor cell(3,2). The line
number corresponds to the number of the bit in the control register, the text corresponds
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to th econnection of arithmetic function being set, and the 0 or 1 determines which con-
nection/function is activated. A 0 corresponds to OFF, a 1 corresponds to ON. So, in this
example, the analog storage unit is reading data from the east port (8:MI-E:1) and writing
data to the west port (4:MO-W:1). The ALU is performing multiplication (14:*:1); its inputs
are X (24:A1-X:1) and the output of the analog storage unit(26:A2-MO:1); its output goes
to the north port(11:N-A3:1).It is the programmer’s responsibility to make sure that
the program makes sense, e.g., only one arithmetic function should be turned
on.

The data from each of these files is then combined into one file which contains the numbers
that are loaded into the array. This program wiil depend on the array structure, the one I
used places the data into a file called aiN.dat, where N is the number of the program:

/homes/damartin/phd/data/array_alg/array_data.c

/* Program for making datafile for programming the array */
/* David Martin */
/* Microsystems Technology Laboratory */
/* 04-01-96 */

#include <stdio.h>
#include <malloc.h>
#include <math.h>

#define NUM_OF_BYTES 35 * 5
#define NUM_OF_BITS 35

main(argc, argv)
int argc;
char *argv(];

{

FILE *file;

int i,x,y;

int *data;

int bi‘,

char filename[256];

char pointer1[256], pointer2[256];

data = (int *) calloc(NUM_OF_BYTES, sizeof(int));
for (i = 0; i < NUM_OF_BYTES; ++i) {

datal[i] = 32;
}
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for (y = C; y <= 4; ++y) {
for (x = 0; x <= 4; ++x) {
strcpy(filename, "ci");
strcat(filename, argv([1]);
strncat (filename, lltostr( (long long) x, pointerl), 1);
strncat(filename, 1lltostr( (long long) y, pointer2), 1);
strcat(filename, ".dat");
printf ("Reading data file %s\n", filename);
file = fopen(filename, "r");
for (i = 0; i < NUM_OF_BITS; ++i) {
fscanf(file,"%s %d", pointeri, &bit);
if (1 ((bit == 0) || (bit == 1))) {
printf("Illegal data in %s at line /d.\n", filename,i);
}
if (bit == 1) {
data[x*NUM_OF_BITS + i] = data[x*NUM_OF_BITS + i] | (1 << y);
}
}
fclose(file);
}
}

strcpy (filename, "ai");

strcat (filename, argv[1]);

strcat(filename, ".dat");

printf("Writing to file %s\n", filename);

file = fopen(filename, "w");

for(i = 0; i < NUM_OF_BYTES; ++i) {
fprintf(file, "%d\n", datali]);

}

fclose(file);
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Appendix D

Array Chip

A 5 by 5 ADAP array chip was fabricated. Figure D.1 is a block diagram of the chip. Bias
voltages, clocks, and power signals have been left out of the diagram for clarity. Table D.1
and D.2 provide the pin information for the chip. The chip was packaged in a 65 pin PGA.
This is a 1.000” square package with a 0.400” square cavity. The pad to pin mapping is:

10

K J H G F E D C€C B A
+ _—— -—+
| I
17 15 13 11 9 7 6 4 3 1|
| |
|19 16 14 12 10 8 5 2 64 63 |
| I
| 20 18 65 62 61 |
I I
|1 22 21 60 59 |
| |
| 23 24 58 57 |
| |
| 26 26 56 55 |
| |
| 27 28 53 54 |
| |
1 29 30 50 52 |
I I
| 31 32 34 37 40 42 44 46 48 51 |
I I
| 33 35 36 38 39 41 43 45 47 49 |
| |
K J H G F E D C B A
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| Number | Name | Description Digital or Analog |
1 Al Al Input Analog
2 N North Input/Output Analog
3 NC Not Connected Either
4 VDD Internal Digital VDD Digital
5 GND1 Internal Digital GND Digital
6 GNDI Internal Digital GND Digital
7 VDD Internal Digital VDD Digital
8 GND_O | GND for Output Drivers Digital
9 D_OUT4 Output of Cell(4,0) Digital
10 D_OUT3 Output of Cell(3,0) Digital
11 D_.OUT2 Output of Cell(2,0) Digital
12 VDD_O | VDD for Output Drivers Digital
13 D_OUT1 Output of Cell(1,0) Digital
14 VDD_O | VDD for Output Drivers Digital
15 D_.OUTO Output of Cell(0,0) Digital
16 GND_O | GND for Output Drivers Digital
17 GNDB | GND for Input Drivers Digital
18 VSHIFT Timing Signal Digital
19 VF Timing Signal (First) Digital
20 VL Timing Signal (Last) Digital
21 D_INO DN for Row 0 Digital
22 D_N1 D_IN for Row 1 Digital
23 VDD.B | VDD for Input Drivers Digital
24 D_IN2 D_IN for Row 2 Digital
25 D_IN3 D_IN for Row 3 Digital
26 VDD.B | VDD for Input Drivers Digital
27 D_IN4 D_IN for Row 4 Digital
28 PHI1 PHI1 Digital
29 PHI2 PHI2 Digital
30 LOAD LOAD Program Signal Digital
31 GNDB | GND for Input Drivers Digital
32 VDD Internal Digital VDD Digital
33 GND1 Internal Digital GND Digital

Table D.1: Array Test Chip Pins
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Number | Name Description Digital or Analog
34 VDD_A Internal Analog VDD Analog
35 GND_A Internal Analog GND Analog
36 A West Input/Output Analog

37 -45 NC Not Connected Either
46 \'8 VJ Bias Voltage Analog
47 GND.A Internal Analog GND Analog
48 S South Input/Output Analog
49 VREF2 VREF?2 Bias Voltage Analog
50 VDD_A Internal Analog VDD Analog
51 GND A Internal Analog GND Analog
52 VREF VREF Bias Voltage Analog
53 \"2] VJ Bias Voltage Analog
54 E4 East Input/Output for Cell(4,4) Analog
55 VGPLUS VGPLUS Bias Voltage Analog
56 E3 East Input/Output for Cell(4,3) Analog
57 E2 East Input/Output for Cell(4,2) Analog
58 X X Input Analog
59 El East Input/Output for Cell(4,1) Analog
60 EO East Input/Output for Cell(4,0) Analog
61 VG VG Bias Voltage Analog
62 VPLUS VPLUS Voltage Analog
63 VDD_A Internal Analog VDD Analog
64 GND.A Internal Analog GND Analog

Table D.2: Array Test Chip Pins
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Figure D.1: Array Test Chip Block Diagram
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Appendix E

Test Setup Instructions

E.1 Running the Test

The array can be tested by following these instructions:

E.1.1 Convert the data
e Goto the relevant directory on the workstation. For my directory, this is /homes/damartin/phd/d:

e Type “convert_picture N”, where N is the number of the dataset. This will convert
the image “picN.pgm” into the right format for ADAP and put it into a file called
“picN.dat”. I suggest using N = 3 for a slice of the tower picture, or N = 8 for the
small car picture.

E.1.2 FTP data from the workstation to the PC

The FTP program on the PC does not work very well. It will only work if you follow these
instructions exactly.

e Goto to the /clarkson directory on the PC.

e Type “termin 0x6a”. Ignore any response from the PC.
e Type “3¢509 0x6a”

o Type “ftpbin mtl.mit.edu”

e Enter username and password.

e Type “lcd ..
usr
david”
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e Then cd to the relevant directory on the workstation.

e FTP the data (“picN.dat”) from the relevant workstation/directory, where N is the
number of the dataset.

E.1.3 Ground Youreslf
E.1.4 Power up Test Setup

Next the chip power supplies are ramped up, and the test board power supplies are turned
on.

e Ramp up analog chip supply to 5.1V. This is labeled AVDD. Use the power supply
current monitor to monitor the current, and the multimeter to monitor the voltage.

e Ramp up digital chip supply to 5.1V. This is labeled CDVDD. Use the power supply
current monitor to monitor the current, and the multimeter to monitor the voltage.

e Turn on Analog Reference Power Supply (+/- 15V, 5V) This is labeled BA5VDD,
BAVDD, and BAVSS.

e Turn on Board Digital Power supply (5V). This is labeled ODVDD and BDVDD.
e Turn on the interface board power supply. This is labeled IDVDD.
e Check that the frequency generator output is not disabled.

e Check with the oscilloscope V¢ on the Digital Acquisition Board.

E.1.5 Program Array

e Lower the frequency on the frequency generator to 5kHz. This is done not because the
array can’t be programmed quickly, but because it made the digital interface easy to
design. It allows the computer to assume that it is much faster than the array.

e Goto the /usr/david directory on the PC.
e Type “putpro 0” on the PC. This will load program 0 into the array.
e Put the frequency back up to full speed (1MHz or 4MHz, usually).

E.1.6 Check Voltages
e Make sure that the voltage S on the PCB is at 2.667V.
e Make sure that the voltage E3 on the PCB is at 1.683V.

e Make sure that S and E3 are connected to the ADAP chip with jumpers.
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E.1.7 Initialize Data Precision 8100

e Make sure the E3 input is disconnected from the Data Precision.

e type “start N” on the PC, where N is the number of the dataset. This will initialize
the Data Precision output to the first voltage value. Otherwise, if this was done when
it was connected to the chip, it will produce a voltage spike which will damage the
chip.

e Verify that the Data Precision is initialized by checking that the word “rem” is lit up
on the Data Precision console.

e Connect input E3 to the Data Precision

E.1.8 Run Test

Type “acqedg N”, where N is the number of the dataset. This runs the test. The computer
sends the data to the Data Precision, waits for the Data Precision output to scttle, asserts
VF for one instruction cycle to clock the data into the array, and then reads the array output.
When the numbers on the Data Precision stop flashing, the test is done.

E.1.9 FTP Data to Workstations
e Goto to the /clarkson directory on the PC.

e Type “termin 0x6a”. Ignore any response from the PC.
e Type “3c509 0x6a”

e Type “ftpbin mtl.mit.edu”

e Enter username and password.

e Type “led ..
usr
david”

e Then cd to the relevant directory on the workstation.

e FTP the data (“picN.edg”) to the relevant workstation/directery.
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E.1.10 Reconverting the data

e Goto the relevant directory on the workstation.
e Type “reconvert_picture N", where N is the number of the dataset.

e The edge map will be converted to a file named “newpic/N.pgm”, which you can view
with xv.

E.2 Files
E.2.1 putpro.c

puij ro.c is the program that loads the array program in ai/V.dat intc the array.The code for
putpro.c is:

#include <stdio.h>
#include <conio.h>
#include <malloc.h>
#include <dos.h>
#include <stdlib.h>
#include "ieee-c.h"
#include <string.h>
#include <math.h>

/* base address for PXB-721 is 0x300 */
/* 8255A_3 is presently used »/
/* PORT_D3 is control register */

#define OUTPUT_PORT 0x308
#define INPUT_PORT 0x309
#define BYT_CLOCK 0x30A
#define CONFIGURE_PORT 0x30B

/* mode 0x8A configures PORT_A3 as output, PORT_B3 as input */
/* and PORT_C3 as input */

#define MODE 0x8B

#define NUMBER_OF_BYTES 35%5

#define PHI1 2

#define PHI2 4

main(argc, argv)
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int argc;

char #argv(];

{
FILE *file;
int i, tmp, data[NUMBER_OF_BYTES];
char filename[256] ;

strcpy(filename, "ai");
strcat(filename, argv[1]l);
strcat(filename, “.dat");
file = fopen(filename, "r");
for (i = 0; i < NUMBER_OF_BYTES; ++i) {
fscanf(file,"%d", &tmp);
tmp = tmp | 32;
data[NUMBER_OF_BYTES -1 - i] = tmp;
}
fclose(file);

/* Set up PXB-721 x/
outp (CONFIGURE_PORT, MODE);

/*
* Send Data to Acquisition Board
*/

outp(OUTPUT_PORT, data(0]); /* Load signal up */

while ((inp(BYT_CLOCK) & PHI2) 0 ; /* Get synchronized #/

while ((inp(BYT_CLOCK) & PHI2) != 0) ;
while ((inp(BYT_CLOCK) & PHI2) == 0) ;
while ((inp(BYT_CLOCK) & PHI2) != 0) ;
wvhile ((inp(BYT_CLOCK) & PHI2) == 0) ;

for (i = 0; i < NUMBER_OF_BYTES; ++i) {
while((inp(BYT_CLOCK) & PHI2) != 0);
outp(OUTPUT_PORT, datalil);
/* printf("%d\n", data[il); getchar(); =*/
while((inp(BYT_CLOCK) & PHI2) == 0) ;
}
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while((inp(BYT_CLOCK) & PHI2) != 0); /+* Data latched onto board */
while ((inp(BYT_CLOCK) & PHI2) == 0) ; /* Data latched into register #*/
while((inp(BYT_CLOCK) & PHI2) != 0); /* Data held in register #/
outp (OUTPUT_PORT, 0); /* Load signal down */

E.2.2 convert_picture.c

convert_picture.c converts the image in pgm format into the format chat can « ent to the
Data Precision. The code for convert_picture.c is:

#include <stdio.h>
#include <math.h>

main(argc,argv)
int argc;

char *argv(];

{

FILE *input_file, *output_file;

char filename[256];

char tmp_string[266];

char *middle_string, voltage_string[256];
int width, height, tmp;

int pointeri, pointer2;

int x,y,i;

int *image;

double voltage, max_voltage, min_voltage;
max_voltage = 3.483;

min_voltage = 1.435;

strcpy(filename, "pic");

strcat(filename, argv[i]);

strcat(filename, ".pgm");

input_file = (FILE ») fopen(filename, "r");

printf("Reading file %s\n", filename);
fscanf (input_file, "Ys %d %d %d", &tmp_string, &width, &height, &tmp);
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image = (int *)} calloc(width*height, sizeof(int));
for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
fscanf (input_file, "%d", &tmp);
if (tmp > 255) tmp = 255;
if (tmp < 0) tmp =0;
image[y*width+x] = tmp;
}

}
fclose(input_file);

strcpy(filename, “pic");

strcat(filename, argv([1j);

strcat(filiename, ".dat");

output_file = (FILE *) fopen(filename, "w");
printf("Writing to file %s\n", filename);

for (y = 0; y < height; ++y) {
for (x = 2; x < width-2; ++x) {
for(i =2; i >=-2; --i) {
voltage = (double) image([y*width + x + i1/256.0;
voltage = voltage*(max_voltage - min_voltage) + min_voltage;
voltage = voltage * 10000;
voltage = floor(voltage);

strcpy(voltage_string, "V1i+0");

middle_string = (char *) ecvt(voltage, 5, &pointerl, &pointer2);
strcat(voltage_string, middle_string);

strcat(voltage_string, "0");

fprintf (output_file, "%s ", voltage_string);
/* fprintf(output_file, "%d ",imagel[y*width + x + i]); */
}
fprintf (output_file, "\n");
}
}

fclose(output_file);
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free(image) ;

strcpy(filename, "pic");

strcat(filename, argv(1]);

strcat(filename, ".inf");

output_file = (FILE *) fopen(filename, "w");
fprintf (output_file,")d %d", width-4, height);
fclose(output_file);

E.2.3 reconvert_picture.c

reconvert_picture.c takes the edge valuse and converts them into an image in pgm format.
The code for reconvert_picture.c is:

#include <stdio.h>
#include <math.h>

main(argc,argv)
int argc;

char *argv(];

{

-

FILE *input_file, *output_file;
char filename[256];

char tmp_string[256] ;

int width, height, tmp;

int x,y,i;

int *image;

strcpy(filename, “cpic");
strcat(filename, argv(1]);
strcat(filename, ".inf");
input_file = (FILE *) fopen(filename, "r");

printf("Reading file %s\n", filename);
fscanf (input_file, "%d %d", &width, Zheight);
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strcpy(filename, "cpic");
strcat(filename, argv(1]);
strcat(filename, ".edg");
input_file = (FILE *) fopen(filename, "r");
printf("Reading file %s\n", filename);
image = (int *) calloc(width*height, sizeof(int));
for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
fscanf (input_file, "%d", &tmp);
tmp = 255 -tmp;
image[y*width+x] = tmp;
}

}
fclose(input_file);

strcpy(filename, "newcpic");
strcat(filename, argv([1]);

strcat(filename, ".pgm");

output_file = (FILE *) fopen(filename, "w");
printf("Writing to file %s\n", filename);

fprintf(output_file, "P2 d %d 255\n", width, height);

for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {

fprintf (output_file, "%d ", image[y*width + x]);

}
fprintf (output_file, "\n");
}
fclose(output_file);
free(image) ;

E.2.4 acqedg.c

acqedg.c takes the image data from picN.dat and sends it to the Data Precision. At the
same time, it reads the output of the array (the edge values) and stores them in picN.edg.

The code for acqedg.c is:

#include <stdio.h>
#include <conio.h>
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#include <malloc.h>
#include <dos.h>
#include <stdlib.h>
#include "iece-c.h"
#include <string.h>
#include <math.h>

/* base address for PXB-721 is 0x300
/* 8255A_3 is presently used
/* PORT_D3 is control register

#define OUTPUT_PORT 0x308
#define INPUT_PORT 0x309
#define BYT_CLOCK 0x30A
#define CONFIGURE_PORT 0x30B

/* mode 0x8A configures PORT_A3 as output, PORT_B3 as input

/* and PORT_C3 as input */
#define MODE 0x8B
#define NUMBER_OF_CODES 512

#define PM2525 22 /* or 11 */
#define DP8200 6
double read_voltage(void);

main(argc, argv)

int argc;

char *argv([];

{
FILE *input_file, *output_file;
int raw_data, final_data;
int status, i,

char filename[266], v1[100], v2[100],v3[100],v4[100],v5[100];

/*
* Get file pointers

*/

strcpy(filename, "pic");
strcat(filename, argv[1]);
strcat(filename, ".edg");
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output_file = fopen(filename, "w");

strcpy(filename, "pic");

strcat (filename, argv(1]);
strcat(filename, ".dat");
input_file = fopen(filename, r");

/* 5
* make PC a controller at address 21
*/
/*
initialize (21,0);
getchar(); =*/

/*
* Set up PXB-721
x/

outp (CONFIGURE_PORT, MODE) ;
while (fscanf(input_file, "%s %s %s %s %s", vi, v2, v3, v4, v5) != EOF) {

/*

* Send voltages to Data Precision.

*/
send (DP8200, v1, &status); /* send voltgae to dp8200 */
delay(3);
outp(OUTPUT_PORT, 1); /* shift it in */
outp(OUTPUT_PORT, 0);

send (DP8200, v2, &status); /* send voltgae to dp8200 */

delay(3);

outp(OUTPUT_PORT, 1); /* shift it in */

outp (OUTPUT _PORT, 0);

send (DP8200, v3, kstatus); /* send voltgae to dp8200 =/
delay(3);

outp(OUTPUT_PORT, 1); /* shift it in */

outp (OUTPUT_PORT, 0);

send (DP8200, v4, &status); /* send voltgae to dp8200 */
delay(3);
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outp (OUTPUT_PORT, 1); /* shift it in */
outp(OUTPUT_PORT, 0);

send (DP8200, v5, &status); /* send voltgae to dp8200 */
delay(3);

outp{(QUTPUT_PORT, 1); /* shift it in */
outp(OUTPUT_PORT, 0);

/*
* Get the input.
*/

delay(2);

while((inp(BYT_CLOCK) & 1) == 0) ;

while ((inp(BYT_CLOCK) & 1) == 1) ;
raw_data = (int) inp(INPUT_PORT);

final_data = 0;
if ((raw_data & 1) !'= 0) final_data = final_data + 128;
if ((raw_data & 2) != 0) final_data = final_data + 64;
if ((raw_data & 4) !'= 0) final_data = final_data + 32;
if ((raw_data & 8) '= 0) final_data = final_data + 16;
if ((raw_data & 16) !'= 0) final_data = final_data + 8;
if ((raw_data & 32) != 0) final_data = final_data + 4;
&
&

if ((raw_data & 64) != 0) final_data = final_data + 2;
if ((raw_data & 128) != 0) final_data = final_data + 1;

/*
* Put data in a file
*/

fprintf (output_file, "%d\n", final_data);
}
fclose(input_file);
fclose(output_file);

}
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