Low Power Scalable Encryption For Wireless Systems

by
James R. Goodman

B. ASc. Electrical Engineering
University of Waterloo, Canada, 1994

Submitted to the Department of Electrical Engineering
and Computer Science in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August 28, 1996

© 1996 Massachusetts Institute of Technology
All rights reserved.

Department of Electrical Engfneering and Computer Science
August 28, 1996

Certified DY ..c.coviriiiiiecrcteeeeeee ettt

Anantha Chandrakasan
Analog Devices, Inc.Career Development Assistant Professor
Thesis Supervisor

Accepted by

ooooooooooooooooooo

E R. Morgenthaler
Chairman, Department Colntvittee on Graduate Students

SASSACHUSETTS INSTTUTY
OF TECHNOLODY

0CT 151996 ARCHIVES

LIBRARIES

Low Power Scalable Encryption For Wireless Systems

by
James R. Goodman

Submitted to the Department of Electrical Engineering and
Computer Science on August 28, 1996, in partial fulfillment of the
requirements for the degree of Master of Science in Electrical
Engineering.

Abstract

Secure transmission of information is critical for many wireless applications. Wireless
transmission imposes constraints not found in typical wired systems such as low power
consumption, tolerance to high bit error rates, and scalability. A variety of cryptographic
algorithms have been analyzed for their suitability to low-power wireless systems, and
low power techniques have been developed to reduce their power consumption. Several
test chips were designed, fabricated, and tested to verify the results proposed within this
work. in addition, a model for error propagation in block ciphers is proposed and verified
through experimentation.

Thesis Supervisor: Anantha Chandrakasan
Title: Analog Devices, Inc. Career Development Assistant Professor

Acknowledgements

First and foremost I'd like to say thank you to my advisor Anantha Chandrakasan who’s sense
of humour, patience, and constant drive (not to mention funding...) helped me finally get this

damn thing done!

Thanks also to the members of “ananthagroup” for all of their help over the last two years: to
Raj “Oh my god! You’re on fire!” Amirtharajah for reminding me that everyone suffers here in
Hell, to Vadim “Cadence is broken....” Gutnik for being a well of knowledge that I frequently
drank from, to Abram “Where does he find time to be a father?!” Dancy for suffering with me
through the TSMC experience, to Wendi “It’s only 5 flights of stairs...” Rabiner for being the only
one of us sane enough to stay away from chip design, to Duke “the XOR man” Xanthopolous for
catching my mistakes when I was too tired to notice them myself, and Tom “I’m off to make real

money.” Barber for his constant friendship and transport to and from Analog Devices.

I'd also like to thank my roommates Phillip “It only started 20 minutes ago.” Alvelda for the
bad movies and great friendship, and Misha “The Anti-christ of Driving.” Bolotski for being a
Cadence god, and all around great friend. And let us not forget Tony, the long-lost brother that I
never knew I had until I showed up for hockey that first month here at MIT. I owe you a lot my
friend, you kept me going through the rougher spots of my stay.

Lastly I’d like to thank my family whom I owe everything: my sister Lisa and her husband
Cory for pretending to recognize me when I came home every Christmas, my “Dad” Milt who is a
gentleman in every sense of the word and more of a father to me than anyone else in this world,
and my mother Cathy who I only wish were still here to share this with me. I miss you so very

much Kate, there isn’t a day that goes by that I don’t think about you -- I love you very much.

For Kate,

Table of Contents

1 Introduction 14
1.1 Low Power Design BasiCscc..cocueeiieriireiiiireieeeereeeeee et 15

1.2 Cryptography For Wireless Systems and Thesis Scopeccccocevrirceennennene 18

1.3 Driver APPliCAIONcccoveviviiiitrieiitecinieteet ettt ses e s esassas 19

2 Introduction to Basic Cryptography 22
2.1 General Classification of Algorithmscocceeverirvnvininienineeneecececeee 22
2.1.1 Asymmetric AIZOTIthINS........c..cveevverereerenereerereeereeereereereresrereeseree e 22

2.1.2 Symmetric AlZOrthmS.....cccccoiiiiiiiiriieitercrerrereeneer et 23

2.2 Block Cipher Algorithms.........cccccovueeiriininiieiiiienicrereeteceetecseeee e 23

2.3 Stream Cipher Algorithms ..o e 25
2.3.1 Design Criteria for Keystream Generatorsccecceeevveeveeveerceeeseeeenen. 26

2.3.2 Linear Feedback Shift Register Based Stream Ciphers..............c.cocu.... 27

2.4 Quadratic Residue GEnerator............cceocveereverecrreresreerssereerneesssnesessessesseessseens 29
2.5 Comparison of Algorithms (Block Ciphers vs. Stream Ciphers) 29
2.5.1 High Bit Error Rates and Error Propagation...........cccccceeeevecvreneenccennenne 29

2.5.2 Synchronization Effects...........cccceeveeeerievenennnecersinneenenneneeeneeneeneessenees 32

2.5.3 Buffering ReqUIrEmEnts..........ccccevvueevuerernerenirerrerereeetereeneeesessesenessenns 34

2.54 Decoupling the Encryption Function...........cccecoeiviiiniinninnincninenene. 34

2.6 Scalabilitycccoeeiriiieieeiee ettt sresnens 35

2.7 An Existing System - the Group Special Mobile (GSM) Standard.................. 37

3 LFSR-Based Stream Cipher Systems 40
3.1 Shrinking GenErator..........ccceeuireirierrerreenerreeeeenereneeseesseeseessesseeesseseessesssessaens 40

3.2 Self-Shrinking Generator............ccccoceeevirrinrimnreniicnenieieincsnesseseesassessessenees 42

3.3 Alternating-Stop-and-Go GENeratorccccevomeeerernercereuenresreneneeeesnesensenns 44

3.4 Proposed GSM Cipher (AS)......cceceeverreeenienrienienrienntnsresseessesresssesesesseessesssessenns 45

3.5 Estimating the Power COnSUmptionc.....c.cceceevirievrinreninninenenenreeressessessnnns 46

3.6 Reducing the Power CONSUMPLON..........ccceviecvenmieririerrienreneneessesseennessesseesnens 50
3.6.1 Conventional Supply Scaling.........c.coouerveereireerenerernnniissenseesensneenesrensens 50

3.6.2 Parallelizing the LESRSccucciviiiiiiiieeercercetcceeeees 50

3.7 Stream Cipher Test Chip Designcccoceermerecienrinereeceneceeeeeeeenenenes 52
3.8 Preliminary Test ReSults..........ccccooeeiiieiiirninirecrenenrctrereeeer e 57

4 QRG-Based Stream Cipher Systems 62
4.1 Some Basic Number Theory..........ccccouvvirvirveerreinieeeceerenressecieenesreereesseessenns 62
4.2 Security of the QRG........ooeeieirciririreinicrntcncne et sessesessesesresssssessenes 64

43 Period of the QRG ... e ae s e s e 65

4.4 Efficiency of the QRGcooiimiiiiie e 57

4.5 Modular Multiplication Algorithms............ccccueveeroiioiriceecieeccreneeeeee e 67
4.5.1 Chinese Remainder Theorem............ccccecervieveeireneecieereerereeeceeeeeeeee 69

4.5.2 Morita’s AlZOTithN.......coueviiiiiiimieeeieee et e e 69

4.5.3 Orup and Kornerup’s Algorithm..........cccoeovriimiciiniirerceeeeee, 70

4.54 Takagi’s AIOTIthIM.....ccccooiiiiiiiiriieeteee et 70

4.6 Reducing Power Consumptioncccvevieeereerieseenieeeeresseessesessesssessessensanas 72
4.6.1 Conventional Supply Scaling..........cccoveeverirnirniiiunscenieeeceeieeerenenes 74

4.6.2 Pipelining and Parallelizing the Computation reresnesenesnnanncnasnaes 74

4.6.3 Variable Supply Voltage.........cccecevecueruererecerervenennene reessessestasrasseesetaas 74

4.6.4 L0oAd AVETAZING ...ccoovveiirereieicrieieeeneeseeesseeeseessasessesessasesssssssssssesssseessees 77

4.7 SCAlAbIlItYcoueiiiieieiece ettt sttt 80

4.8 Test Chip DeSign......ccccveviriiiuiiriciiiiiiiireiciceccncstcnseeneaesie e sseaes 82
4.9 Preliminary Testing............. rereeeesaeesstessteeraeeraes s e e aeseaeesaaeeataee et eeraensaaeereaeanens 87

§ Conclusions and Future Work 9%
5.1 FUture WOrKcomiiiriiiriiiiiericcieneccessee et sressesssre e sstesan e sessnasaes 91
5.1.1 Low Power Hybrid SyStem.........cccceeuereuenrreriersenseeniernseenenseesseesssecsesssenne 91

5.1.2 Key Exchange and Authentication.............cccveeiirceninicnscnicnseesencnsennen. 92

5.1.3 Full-scale Modular Multiplier Chip........cccoeceeveemeeccrnencererersercvecneeneenes 93

5.1.4 Modular Multiplication Algorithm Development and Implementation..93
References 94
A Stream Cipher Schematics 98
B Modular Multiplier Schematics 106

List of Figures

Figure 1-1: Wireless Network Encryption/Decryption Example.............ccccveeevvevrnnennnne 15
Figure 1-2: Normalized Delay vs. Supply Voltage..........ccccooueeevieinvinnrnsnnircveiecienrennn, 16
Figure 1-3: Parallelization Example: an ALUc..ccoeciiiviiciinmiencncnnicnrcnnrenneeenenns 17
Figure 1-4: MIT Wireless Sensor Projectcccccoveevevnieveninreeneeseneceesteeseesneessensenenns 20
Figure 2-1: Product Cipher ConStruCHON..........cocceoteieerrieiereeeeee et 24
Figure 2-2: Block Cipher Operating Modescoceevurirvrecrenencniencenneeseenenreneneessensens 25
Figure 2-3: Stream Cipher - Keystream Generator Construction...........c..c.cecceveeeevennene. 26
" Figure 2-4: Output Feedback MOdE.............ooeueuevevererererereeeresssesesesesesesesessesesesssssssssens 26
Figure 2-5: An n-bit LESRoemiii ettt 28
Figure 2-6: Effects of Error Propagation on an Uncompressed Video Image................ 30
Figure 2-7: Theoretical BER for Block Size = 64 bitscccceecevveereeveevreneccrenennnenne. 31
Figure 2-8: Error Propagation Ratiocccoveveeieninernineeenece et 32
Figure 2-9: Effects of De-Synchronization on Block Ciphers.........ccccceeceevercenvvecinennee. 33
Figure 2-10: Effects of De-Synchronization on Stream Ciphers...........ccccceevrveeverrenenen. 33
Figure 2-11: Comparison of Decoupling in Block and Stream Ciphers......................... 35
Figure 2-12: Amount of Computation Required for Factoring Using the GNFS............ 37
Figure 2-13: Distribution of Security Features in a GSM Network..........ccccceecrecrrnenee 38
Figure 2-14: GSM Security Protocol...........cccccoeeiririeniesinninenretecreeercenreneeceesesseesseanes 38
Figure 3-1: Shrinking Generator...........c..ccoeeuevieveeeniescnrereeseneentrsenesressensestesssseseseseessesens 41
Figure 3-2: Time to Accumulate Keystream Bits for Linear Cryptanalysis of Shrinking
GENETALOTceeineiiieiceeciceiiser ettt s ettt s e e s st e et e e s 42
Figure 3-3: Seif-Shrinking Generatorceccveveeverveenrennienrresrenseesssennne esseesssesesssennes 43
Figure 3-4: Alternating Stop & GO GENerator............ccce.ccerveeererversereersersierseesrersessenaes 44
Figure 3-5: GSM Cipher (.., AS)...cccovviiiiriuiriincticininicicestsssetesisessaesesessens 46
Figure 3-6: Normalized Power Consumption as a Function of LFSR Length 49

Figure 3-7: Comparison of Power Consumption (Estimate vs. Powermill Simulations)50

Figure 3-8: 2-way Parallel Shift RegiSterccccvviivmniiniriiicrcencceneeieececee e 51

Figure 3-9: Degree of Parallelism vs. Normalized Power Consumption for Shift
REZISIETS ..ottt assn e 51

Figure 3-10: 2-way Parallelized LESRcococrviiiiiiccercee e 52

Figure 3-11: Variable Length LFSR Block Diagram...........cccoovvcinienivcniricceneiirenne. 53
Figure 3-12: Variable Length Shift Register Block Diagram...........c.cccceeevervecercvennnenne 53
Figure 3-13: Programmable Feedback Tree Block Diagram...........cccccccecceeevinercvncnnnnnns 54
Figure 3-14: Shrinking Generator Output Latching........cc.ccceeeevvenvviininenineniniesreene 54
Figure 3-15: ClOCK GatiNgcccceeereieirereereeeereneeereeesessnteesenssnessesssesssessesssesssssesssssaes 55
Figure 3-16: Self-Shrinking Generator Output Circuit..........ccccevveicrierveerensucscrcsrennenenas 55
Figure 3-17: A5 Clock Control CirCUit...........cocvueeeureerncrmnsenscsnnseenncininnneccsssscsesenones 56
Figure 3-18: Stream Cipher Test Chip Layoutccccoeiieeiieniinnininiceeenencereeeeenne 57
Figure 3-19: Measured Power Consumption of the 4 LFSR-based Stream Ciphers.......58
Figure 3-20: AS Stream Cipher Operation @Vdd = 1.5Vcccccorveverveerercecrereenenen. 59
Figure 3-21: ASG Stream Cipher Operation @Vdd = 1.5V........ccocevrirviirivreeeene, 59
Figure 3-22: SG Stream Cipher Operation @Vdd = 1.5V.......cccccvuriiivivrvnrnnecrerencnene 60
Figure 3-23: SSG Stream Cipher Operation @Vdd = 1.5Vc.cccciiiiviiiiene. 60
Figure 4-1: Parallelization of Chinese Remainder Algorithm..........cccccceeveeiirvircnnnnnnn. 69
Figure 4-2: Takagi’s AlOrithim..........cocoeevveeireeenieierecieee et 71
Figure 4-3: Architecture of Takagi’s Multiplier...........ccccceveeveevernirnvnrrercirneeeeeeen, 72
Figure 4-4: Critical Path of Takagi’s Multiplier..........ccccccrvviriniininsinncieninnrerrrecrceeene 73
Figure 4-5: Activity Factor per Frame..........ccccocooieiivniiniiiiiciciccecece e 75
Figure 4-6: Supply Voltage per Framecoocceeviiiiiricerinierseircieneeeeeneeseesesnaeenees 76
Figure 4-7: Normalized Energy Consumption per Framecccccceevevverveeverneecrenrennne 76
Figure 4-8: Activity Factor per Frame (bursty data).........ccccceccevvrverrerrereenerrernercnenne 77
Figure 4-9: Energy Consumption per Frame (bursty data)............ccceccevveeevervreniecrennenne. 78
Figure 4-10: Energy Consumption per Frame for Varying Sample Sizes...................... 78
Figure 4-11: Energy Reduction Factor for Varying Sample Sizes Relative to a Fixed Supply
SCREMIE ...ttt et ae s 79
Figure 4-12: Energy Consumption for Varying Multiplier Widths.............ccceeceeueene.... 81
Figure 4-13: Modular Multiplier Test Chip Top Level Block Diagram......................... 82
Figure 4-14: Bitslice Core Block Diagram...........cccccceceevercuervenverseccresvenseereessessersesnessenaes 83
Figure 4-15: Pipeline Flow of Y ReCOder ... 84
Figure 4-16: Cj Selector Block Diagramcccocevvvininininisnnnninscinscnnnssnecssssnienaes 85

Figure 4-17: Controller State Diagramcc.ccoeecereiiinviinieenienieeeieeneeersneesseesveeseeeennas 86

Figure 4-18: Modular Multiplier Test Chip Layout............c.cocovineninininiiniinininnicnnen. 87
Figure 4-19: Estimated Power Consumption of QRG Based on 8-bit Test Chip............ 88
Figure 5-1: Proposed Low Power Encryption System...........ccccocceveeiievencncenscineeneeiennne 92
Figure A-1: Alternating Stop & Go Generator Schematic...........cc.cceveervrcvecerieiencerennees 99
Figure A-2: Shrinking Generator SChematicccccoveeienenciiceiiienniencececcceeceeens 100
Figure A-3: Self-Shrinking Generator Schematic..........ccccovueeervircvinereenennensienenrenneens 101
Figure A-4: Proposed GSM Cipher (A5) Schematicccocoereveieeersenierieneeieenene 102
Figure A-5: 65-bit Variable Length Programmable LFSR Schematic 103
Figure A-6: 64-bit Variable Length Programmable LFSR Schematic 104
Figure A-7: 63-bit Variable Length Programmable LFSR Schematic 105
Figure B-1: Top Level Modular Multiplier Schematic..........c.ccoceeeeviciciniiniinnennencnne. 107
Figure B-2: Controller Logic Schematic............ccoccoeviivminrinenieceecccreecereeeeene 108
Figure B-3: Serial I/O Interface Schematiccccccovemeiiicininnicininniiceciiceeee 109
Figure B-4: Cj Selector SChematicc.coccoccvveeicinineninicicceeceeererceenestereneans 110
Figure B-5: Yj Recoder Schematic..........ccccovvereieeiiiniiniinieninieeeeceeeeecneentecneseennn 111
Figure B-6: Modular Multiplier Datapath Schematic...........cccccecovviivcricnneciicccrnnnnen. 112
Figure B-7: Low Bitslice Schematic..........ccccccceviiininiiiennnneieieiescceeceeeeeeeeeenee 113
Figure B-8: High Bitslice Schematicccccoeiveiiiinicvininininciiiiiiccncncniceeienne 114

10

11

Table 1-1:
Table 2-1:
Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:

Table 4-1:
Table 4-2:

Table 4-3:

Table 4-4:

Table 4-5:
Table 4-6:
Table 4-7:

List of Tables

Various sensor applications and their data characteristics.............cc.cccveunne... 21
Algorithm Parameters for Several Factoring Algorithmscccoceeunneee. 36
Clocking function for the GSM Cipher.........cccooeieeeicrereereerreeerererecneens 48
Power Consumption EStImates.............c..cocceenmimininiinnccieininnnccneeeereenee. 49
Layout Statistics for Stream Cipher Test Chip.........ccccecceveieinvrnirnneecienenns 56
Estimated and Measured Power Consumption of the 4 LFSR-based Stream

Ciphers at 1 MIDPSoomii e 58
Activity Factors and Power Reduction Factors for 3 Video Sequences......... 75
Power Reduction Factor Using a Variable Supply Relative to a Fixed

SUPPLY ..ttt s 76
Power Reduction Factors Using Averaging Relative to a Fixed Supply

SCREME ...ttt 79
Power Reduction of Complimentary Scheme Relative to a Fixed Supply

SCHEME ...ttt ettt 80
Priority assignment for scalability example..........ccceceevevirvenenenenneecee 81
Decoding of Carry-out Bits in Cj Selector.........cccoeevveirveiivveinnereieeeeee 85

Test Data for Maximum Clock Frequency Based on Measurements at

12

13

Chapter 1
Introduction

Two of the biggest trends in computing today are mobile computing and globa! network-
ing. The popularity of the Internet is an exampie of the drive towards a "wired world" in
which all computers exist within a global web that allows them to communicate and share
information with other systems located around the world. At the same time the current
trend in computing hardware is towards portable, battery-operated nomadic computing
systems. Thus the average power consumption of the system must be minimized in order
to maximize the battery lifetime and minimize the battery size/weight. The popularity of
wireless networks is a direct result of these two trends as people strive to remain con-
nected to the giobal web without having to be tied down to a wired link.

Unfortunately wireless networks are notorious for their susceptibility to tampering and
eavesdropping. In a wired network, information is transmitted within protected physical
links (wires), offering the user some measure of security. Wireless networks have no such
protection and it is a simple manner to eavesdrop or interfere with a transmission (e.g., the
top link from Figure 1-1). In the cellular phone network, for example, scanners can be pur-
chased that allow an attacker to steal cellular phone identification codes that are then used
to defraud the cellular service provider. Estimates place annual losses due to fraud for cel-
lular phone service providers and their customers at over $500 million ([1], [2]). The need
for secure wireless transmission becomes even more apparent when one considers the
gradual migration of conventional commerce, electronic banking, and other sensitive

applications to the Internet; a trend that will continue to wireless networks.

These wireless security schemes will require low power hardware encryption modules
as building blocks upon which to build safe and reliable protocols to provide end users

with a secure wireless link (e.g. the bottom link of Figure 1-1).

14

Yﬁy N

B Tx Y

Encryption { Decryption
? ?

. & &
Tx ? .!. « Eavesdropper Rx
?2°?

Figure 1-1: Wireless Network Encryption/Decryption Example

Eavesdropper

1.1 Low Power Design Basics

In modern integrated static CMOS circuits, the power consumption is dominated by the
dynamic switching component that results from the charging/discharging of parasitic load
capacitances. This power consumption can be modeled by the following expression:
switching = %" C~ Vddz -f (1-1)
where C is the physical capacitance, V4, is the supply voltage and fis the clock frequency.
o represents the activity factor of the circuit which is the probability that C will be chérged
on any given cycle. This models the fact that most capacitances are not being charged on
every given cycle.
To minimize the power consumption of the circuit, the designer should minimize the

variables of EQ 1-1. Techniques for minimizing the switched capacitance and supply volt-

age are described below.

Minimizing the Switched Capacitance
Minimization of the switched capacitance can b done at several levels of the design hier-

archy [3]. At the highest level, the designer can perform algorithmic optimizations that
minimize the number of operations, as weil as select a specific data 1cpresentation that
minimizes the bit switching activity (e.g., using sign-magnitude vs. 2’s complement

encoding of operands in a multiplier). At the circuit/logic level, the designer can optimize

15

the logic implementation and transistor sizing, as well as utilize power-down techniques to

minimize the switched capacitance within the circuit.

Minimizing the Supply Voltage -- Conventional Supply Scaling
The switching component of the power consumption of a digital CMOS circuit scales with

the square of the supply voltage. By minimizing V4, the designer can quadratically reduce
the power dissipation of the circuit. Unfortunately propagation delays in CMOS integrated

circuits increase as the supply voltage is reduced according to the first order model:

k' Vdd

— (1-2)
(Vdd - Vl)

Tdelay =

where k is a process dependent constant, V4, is the supply voltage, and V, is the MOSFET
threshold voltage. Figure 1-2 shows the normalized delay vs. supply voltage characteristic
for a 0.6 um process. This dependence limits the amount that the supply voltage can be
reduced as the circuit must satisfy its throughput requirements. Hence the supply voltage
is reduced until the critical path of the circuit is the same as the clock period required for

the given throughput and architecture.

40

30]
=z
A
E 20
G|
: J
Zz 101 delay =1 @ 5V

0y 2 3 4 5
Supply Voltage (V)

Figure 1-2: Normalized Delay vs. Supply Voltage

Minimizing the Supply Voltage -- Parallelizing and Pipelining the Computation
One technique for reducing the supply voltage involves parallelizing the computation to

increase the effective cycle time of the circuitry for a fixed throughput. By increasing the

16

effective cycle time, the circuit delays can be increased and hence the supply voltage can
be reduced. The cost of parallelizing the computation is the area overhead in creating par-
allel implementations of the circuitry and the increase in the switched capacitance due to
the additional multiplexing and routing required. However the additional reduction in sup-
ply voltage will result in lower overall power consumption. As an example, consider the
2-way parallelization of an ALU (Figure 1-3). The parallel implementation datapath fea-
tures twice the switched capacitance of the original, half the switching frequency and 0.58
times the supply voltage. The routing/muxing overhead is equivalent to 0.255 times the
original switched capacitance and operates at the original switching frequency and 0.58
times the supply voltage. The overall normalized power consumption of the parallel

implementation is thus:
P, = 2C 2.f 2 Vi =
) = - (0.58V) -§+0.255C- (0.58V)"-f = 0422.CV f = 0422P,

which consumes 2.37 times less power than the original implementation [3].

ALY

o @2 - Y
A q_L 1
Y ALU L]

B L
b ®/2
P=CV, f P, = (2C)(0.58V,1)(0.5) + C,operhead(0-58V0)>f = 0.422 P
(a) Original Circuit (b) 2-Way Parallelized Circuit

Figure 1-3: Parallelization Example: an ALU

In the general case, the power reduction factor for an n-way parallelization can be
approximated using the following model assuming that the total switched capacitance

scales with n plus some correction factor that is a function of the parallelism, y(n). If

17

delays scale according to EQ 1-2, then the supply voltage (V) can be calculated from the

delay (T,) using the expression:

{1 VT ViTa 1| &

Vdd(Td) = (§+'-—k—-+ T+-4-> ‘Fd (1-3)
If we ignore V, (i.e., V, = 0), the supply voltage scales inversely with the delay of the cir-
cuit. Thus for an n-way parallelized circuit, the supply voltage can be reduced by a factor
of n (as delays increase by a factor of n). Hence the power consurnption of the circuit is

reduced by a factor of:

p 2 2
reduction factor = }Tl = c¥ fv\z = l+"lY(n)
" nC(1+y(n) -(;) (ﬁ)

Pipelining can be utilized in a similar manner to reduce the supply voltage by parti-
tioning the calculation into n discrete steps, each of which needs to be completed in the
original clock period. Thus delays can be increased by a factor of n and hence the supply
voltage can be decreased by a factor of n. The cost of pipelining is the additional pipeline
registers that must be added to the circuit.

1.2 Cryptography For Wireless Systems and Thesis Scope

There are three basic research areas that need to be addressed in the design of a security
system for a wireless communications channel: authentication, key exchange, and encryp-
tion/decryption. In all of the explanations presented below it is assumed that two parties
(i.e., sender and receiver) wish to communicate in the presence of an external observer
(i.e., the attacker), who is attempting to eavesdrop, over an insecure channel using digital

transmission techniques.

Authentication
Authentication is the means by which the sender and receiver verify their identities to one

another at the beginning of a communication. This is particularly difficult in digital com-

munications systems as each party is only able to see easily-forged binary messages at the

18

output of the communication channel. The parties must therefore utilize some form of pro-
tocol which guarantees that a party can demonstrate irrefutable proof of identity even in
the presence of tampering. Typically this is done by requesting that the other party demon-
strate knowledge of a piece of information that only the intended recipient could know and

then verifying that their reply is valid.

Key Exchange
Usually the sender and receiver need to share a piece of secret information called the key

for the purposes of encrypting and decrypting the data traffic between them. In some of
these applications both parties are assumed to already have a copy of the key. In others the
key must be decided upon and then shared over an insecure link. Hence there must be
some means by which the sender and receiver can agree upon and exchange the key in the
absence of any shared information and a secure link. Algorithms and protocols exist by
which a key can be generated and exchanged. These are for the most part very computa-

tionally intensive and unsuitable for a low-power wireless application.

Encryption/Decryption

Once the keys have been established the sender and receiver now need to encode and
decode the data that is to be transmitted over the channel. The encryption algorithms must
be chosen such that the amount of work required for an attacker to decrypt the data is pro-
hibitively high. There is a wealth of good encryption/decryption algorithms available to
the wireless systems designer. However the complexity and security of these algorithms
vary widely. Care must be taken to select an algorithm that provides a satisfactory level of
security at an acceptable level of complexity. A trade-off that is made all the more critical

by the low-power requirements of a typical mobile wireless system.

While all three of the above areas are equally important, scope limitations allow only

the encryption/decryption aspect to be studied here. Authentication and key exchange will

be considered as future work.

1.3 Driver Application
The research described within this body of work is driven by the Ultra Low Power Wire-

less Sensor Project at MIT. The goal of this project is to design, fabricate, and characterize

19

a wireless image sensor (Figure 1-4) capable of operating over a wide range of data rates
(e.g., 1 bps - 1 Mbps). The sensor features an imager, reconfigurable A/D converter, DSP
core (which includes video compression and an encryption module) and a transmitter. The
sensor electronics are intended to be generic in the sense that the imager can be removed
and another form of sensor irput can then be utilized with the same programmable A/D /
DSP / RF transmitter core. The core must therefore be capable of operating at a variety of
data rates and resolutions, as outlined in Table 1-1. The system features a variable voltage
power supply for dynamic adjustment of the supply voltage. The sensor features a low
bandwidth return channel from the base station to the sensor for control information, such
as transmitter power control and Automatic Repeat Requests (ARQ) acknowledgments for
a low data rate sensor configuration (e.g., temperature sensing).

The design specifications of the sensor require its size to be no greater than 1 in®, with
a battery operated lifetime of 1000 hours of active operation and 10,000 hours of stand-by

operation. The power budget of the sensor system is approximately 50 mW.

GOAL: 1 cubic-inch
Battery 100hrs active operation
10000hrs standby

e]

Image Video | Data
Sensor/ [C . Encryption/ § RF . //
A/D ompression ECC Transmit —lj
i 1 V] |
Low Rate Control Receive

Figure 1-4: MIT Wireless Sensor Project

20

A/D Resolution

Sensor Type (bits/sample) Data Rate
Video 8 bits <1 Mbps
{compressed)
Audio 20 ~ 800 kbps
(uncompressed)
Temperature 20 20 bps

Table 1-1: Various sensor applications and their data characteristics

21

Chapter 2

Introduction to Basic
Cryptography

2.1 General Classification of Algorithms

Cryptographic algorithms involve performing various operations on a given input to pro-
duce an encoded output, based on the value of a secret control input called the key. The
security of a cryptographic algorithm is dictated by the difficulty of deducing the input
given the output and the encoding algorithm with the exception of the key. Thus the secu-
rity of the algorithm rests solely in the secrecy of the key and the computational complex-
ity of deducing its value. At the topmost level, cryptographic algorithms can be partitioned
into two classes depending on the symmetry of the encryption/decryption algorithms and

keys.

2.1.1 Asymmetric Algorithms
Asymmetric algorithms require no exchange of secret information between the sender and

the receiver, as they do not utilize the same keys for encryption and decryption (i.e., the
keys are asymmetric). The receiver generates the encryption and decryption keys and then
publicly distributes the encryption key. This allows anyone to encode a message so that
only the receiver can decode it. The idea of using an asymmetric algorithm was first pro-
posed by Whitfield and Diffie [4] and has since come to be known as Public Key Cryptog-
raphy.

The security of asymmetric algorithms relies on the difficulty of solving hard number-
theoretic problems, such as computing discrete logarithms over a field (e.g., E}Gamal [5]),
or factoring large composite numbers (e.g., RSA [6]). As an example of the difficulty of
such problems, consider that the estimated effort to factor a 512 bit composite number is
3x10* MIPS-yearsl [7]. Unfortunately, the complexity of these problems makes asymmet-

ric algorithms much too computationally demanding for wireless applications where

1. a MIPS-year is the number of calculations performed by a machine capable of performing 10%
instructions per second, running non-stop for a full year

22

power budgets are strictly limited. They do however find applications in wireless net-

works for such operations as authentication and key exchange (e.g., [8] and [9]).

2.1.2 Symmetric Algorithms
Symmetric algorithms differ from asymmetric algorithms in that the sender and receiver

must share a secret key that is used for both encryption and decryption. This implies that
the keys can be exchanged through some secure channel, or can be installed within the
encryption/decryption units during fabrication, thereby avoiding the whole key exchange
process.

The security of a symmetric algorithm is based on the amount of computaticn that is
required to determine the value of the secret key. This can be parameterized by defining an
equivalent keylength that represents the number of values that must be checked in order to
determine the secret key value. This set of possible key values is denoted as the keyspace
of the algorithm.

Symmetric algorithms are in general much more efficient than asymmetric systems as
the security of the algorithm is based on the secrecy of the key and not the computational
complexity of the algorithm. Hence they are the algorithm of choice for power-limited

wireless applications.

2.2 Block Cipher Algorithms
Block cipher algorithms are symmetric algorithms that operate on blocks of data, n bits at

a time, to generate an m bit output that forms the encrypted message. Obviously m must be
greater than n in order to have an invertible mapping that can be decrypted and, for the
purposes of wireless communication networks where bandwidth is very limited, typically
is restricted to m = n. As a result a block cipher can be thought of as a memoryless n bit
permutation of the inputs under the influence of the secret key.

Most practical block cipher implementations are constructed using a cascade of simple
bitwise permutations and substitutions under the influence of a function of the secret key
(Figure 2-1). Each stage contributes to the overall security of the cipher. This construction
is known as a product cipher and serves as the basic structure of most popular block
ciphers in use today (e.g., DES [10], IDEA [11], BLOWFISH [12], and RC5 [13]).

23

Permutation
and/or
Substitution

Permutation
and/or
Substitution

Permutation
and/or
Substitution

in out

j iterations in all
Figure 2-1: Product Cipher Construction

The idea can be extended to the cascading of multiple block ciphers to create a more
secure cipher. The security of the overall system is not guaranteed to be n times as difficult
to crack if 7 ciphers are cascaded together. The only guarantee is that the system will be at
least as difficult to crack as the weakest algorithm used in the cascade [14].

The lack of memory in the block cipher results in the weakness that given the same
input (x) and key (k), the block cipher will always output the same value, y = Fj(x). This
weakness can be overcome by utilizing the block cipher with external memory and feed-
back in one of the following operating modes (Figure 2-2):

* Cipher Feedback (CFB): data is XORed with the encryption of the previous block’s
output (i.e., ENC, = DATA, @ F, k(ENC,‘_]))
* Cipher Block Chaining (CBC): data is first XORed with the previous block’s out-
put and the result is then encrypted (i.e., ENC; = F(DATA; ©® ENC,.))).
CFB can use a varying amount of feedback by only using j bits of ENC; in the feedback
loop. The contents of the feedback register are shifted j bits to the left and the j bits of

ENC, are then loaded into the least significant j bits of the feedback register.

24

ENC; ,

Block
k —» Cipher
(Fyfx)) DATA,

DATA; ENC;

(a) Cipher Feedback Mode (b) Cipher Block Chaining
Figure 2-2: Block Cipher Operating Modes

ENC

By introducing feedback into the encryption/decryption process, the system designer
has also introduced error propagation. If so much as a single bit is in error at the decryp-
tion process input, it will decrypt to random values. These random values will then be
used in the decryption of subsequent blocks, causing numerous errors to propagate across
multiple blocks. In environments where bit errors are very likely (e.g., a wireless commu-
nications channel), this can lead to catastrophic error propagation. A detailed analysis of

this problem is given in Section 2.5.1.

2.3 Stream Cipher Algorithms

Stream ciphers differ from block ciphers as they contain internal state that makes their
output a time-dependent function, thereby avoiding the replay weakness that haunts block
ciphers. In addition, a stream cipher operates on a data stream, typically one bit wide,
rather than a block of data.

Stream ciphers are commonly modelled as a sequence generator that produces a time-
varying pseudo-random sequence (i.e., the keystream) that is then XORed with the data
stream to produce the encrypted data stream (Figure 2-3). Decryption is performed by
using an identical keystream generator which is synchronized to the data stream. Its output

is XORed with the encrypted data stream, removing the influence of the original key-

stream (i.e., (k; @ d;) D k; = d;).

25

key —| Keystream
Generator

1
1 k;
DATA;—+(@®)——+— ENC;

N —

Figure 2-3: Stream Cipher - Keystream Generator Construction

Note that it is possible to construct a stream cipher using a block cipher by operating
the block cipher in an Output Feedback Mode (OFB) configuration (Figure 2-4). In this
configuration the block cipher is never used to directly encrypt the data, rather it is given
an initial starting vector that it then repeatedly encrypts. On any iteration m bits of OUT;
are shifted into the least significant m bits of the feedback register, whose contents are then

encrypted to generate OUT;, ;.

t OUT;,

Block iAm
k — Cipher
(Fi(x))

OUT;

DATA; ENC;

Figure 2-4: Output Feedtack Mode

A very thorough discussion concerning the construction and analysis of stream ciphers

is given by Rueppel in [15].

2.3.1 Design Criteria for Keystream Generators
Several stream cipher design criteria have been proposed that serve as necessary, but not

sufficient conditions for obtaining a secure keystream generator [15]). These criteria are:
sufficiently long period, sufficiently large linear complexity and uniformly distributed out-

put sequence statistics.

26

The period of a keystream must be greater than the length of the data being encrypted.
If not, the attacker can XOR two encrypted data bits to remove all influence of the key
(ie., (a; D k) ©® (a;,7 D kjyp) = a; © aj,.7 as k; = k;, 7). It is then a simple matter to
decrypt the resulting data stream using simple statistical techniquesz.

The linear complexity (LC) of a keystream is a measure of the length of an equivalent
LFSR that generates the keystream. The length of the equivalent LFSR and its feedback
polynomial can be determined from 2-LC keystream bits using the Berlekamp and Massey
algorithm [16]. Thus the linear complexity must be made sufficiently long that the attacker
never sees enough keystream bits to mount such an attack.

In addition to a long linear complexity and period, the keystream must also exhibit sig-
nal statistics that appear indistinguishable from a uniform distribution. Any deviations
could be utilized by an attacker to create a next bit predictor for the keystream that could
then be used to crack the system.

While satisfying all of the aforementioned design criteria is a necessary condition for a
secure keystream generator, it is by no means sufficient. In general, the designer must ana-
lyze any proposed algorithm to discover its weaknesses and quantify its strength to known
attacks.

2.3.2 Linear Feedback Shift Register Based Stream Ciphers
Linear feedback shift registers (LFSRs) consist of a shift register whose input is computed

using a linear recursion based on the current state of the shift register:

n

ﬂ“+”==2kfﬁ0) (2-1)

i=1

Alternatively, the feedback expression can be thought of as an nth degree feedback poly-

nomial given by the expression:

fx) =cx+c,_ X T Htex+1=0 2-2)

2. For detailed examples of statistical cryptanalysis based on the statistics of English see Section
1.2 of [36].

27

where both c; and x are binary values. The above summations are performed modulo-2

and can be implemented using simple XORs, thus resulting in a very simple and efficient

circuit (Figure 2-5).

Ll X X3 . Xn. | Xn X

Figure 2-5: An n-bit LFSR

An n bit LFSR can be in any of 2" states and can cycle through any of 2"-1 states (the
all O state will cause the LFSR to become stuck). Any LFSR that cycles through all 2"-1
non-zero states is said to be a maximal length LFSR and its output is called an m-
sequence. The LFSR’s feedback polynomial must be irreducible (i.e., there is no polyno-
mial of degree 0 < k < n that divides f{x)) in order to generate an m-sequence. There are a
total of ¢(2"-1)/n (see Section 4.1 for a definition of ¢) primitive polynomials for an r bit
LFSR. For large values of n, the number of primitive polynomials approaches 2”.

One interesting property of a maximal length LFSR is that its output exhibits a uni-
form distribution in terms of the number of 1’s and 0’s, making it appear to be an excellent
candidate for use as a stream cipher keystream generator. Unfortunately LFSRs are com-
pletely insecure as any n-bit LFSR can be cracked after observing 2n output bits using the
Berlekamp and Massey Algorithm. However, due to their simplicity and excellent output
statistics, LFSRs are typically used as building blocks in more complicated stream cipher
systems. Such systems utilize multiple LFSRs, that are clocked irregularly and whose out-
puts are combined using non-linear functions, to yield more cryptographically secure out-

puts.

28

2.4 Quadratic Residue Generator
The Quadratic Residue Generator (QRG) is a cryptographically-secure pseudo-random bit

generator based on the difficulty of determining quadratic residues modulo a large com-
posite modulus. The QRG was originally proposed by Blum, Blum, and Shub [17].

The QRG operates by performing repeated modular squarings: x; = x;. ,2 mod N and
extracting the least significant log,(log,(x;)) bits from each result to generate the key-
stream sequence. The modulus N must be the product of two large prime numbers P and
Q, where P and Q are both congruent to 3 modulo 4. The initial seed (xp) must be a qua-

dratic residue modulo N.

2.5 Comparison of Algorithms (Block Ciphers vs. Stream Ciphers)

Given that both stream ciphers and block ciphers are computationally efficient enough to
be utilized in a low-power wireless application, it remains to be seen which is ultimately
the most suitable. There are many considerations that must be studied, as outlined in the

following sections.

2.5.1 High Bit Error Rates and Error Propagation
Block ciphers are designed so that inputs differing by so much as a single bit generate

widely varying outputs. This property, while being highly desirable for security reasons,
leads to the phenomenon of error propagation in block ciphers. Error propagation is the
generation of multiple errors from a single error due to inter-bit dependencies and correla-
tions in the data path. For wireless communication channels, one must be especially con-
cerned with error propagation as BERs can be on the order of 10"2. When these large
BERs are combined with signal processing algorithms, which are typically intolerart to
even single bit errors (e.g., video compressicn algorithms), the need for forward Error
Correction Coding (ECC) becomes obvious. However, ECC requires the introduction of
redundancy into the data stream which consumes part of the transmission bandwidth.
Thus it is desirable to minimize the amount of ECC that is required.

If raw pixel values are transmitted or the video compression algorithm is able to toler-
ate errors (e.g., pyramid vector quantization [18]), then error propagation analysis is
extremely important as the increased BER translates into image degradation. Figure 2-6

shows the effects of error propagation for a stream cipher and 64-bit block cipher. As seen

29

from the figure, a single bit error will become a large burst of errors for the block cipher
due to error propagation. Note that if the compression algorithm is intolerant to even sin-
gle bit errors (e.g., huffman encoding [19]), error propagation is not an issue as it only
involves the propagation of existing errors. Since an error has already occurred, the frame

will be lost regardless of how many other errors are generated due to error propagation.

1072

BER

103

BER

Stream Cipher Block Cipher
(no error propagation) (w/error propagation)

Figure 2-6: Effects of Error Propagation on an Uncompressed Video Image

Assuming that channel bit errors can be modeled as independent, identically distrib-
uted events with some probability P, then the channel BER for a block of length B bits

can be expressed as:
1 - ' B-i(B
et -1
BER = % Z(IPe(l-Pe) (:)) = P, (2-3)
i=1

Now assume that a block cipher is used to encrypt the data before it is transmitted over
the channel. The block cipher operates on blocks of length B, and exhibits excellent diffu-

sion characteristics such that even a single bit error will affect all other bits within the

30

block with probability 1/2. Hence a single bit error in the encrypted block will decrypt to a
block with on average B/2 bit errors. Under these assumptions, the BER for a block of
length B bits that is encrypted before being transmitted and then decrypted at the output of
the channel (i.e., BERg;cryp) can be expressed as:

- S (D D) o

Figure 2-7 shows the resulting BER ¢y, assuming a typical block length of 64 (e.g.,
IDEA and DES algorithms) for channel BER values ranging from 107! to 107,

100

0.5

- weewede= - -

a

; T k] SEEECEEEEE PRy E e P ;

m } . .
el SSSRSORN SR RO

] : ' .

.4 ‘: .I :

107505 107 103 102 10"
Channel BER

Figure 2-7: Theoretical BER for Block Size = 64 bits
Experiments were conducted using a 100-frame video sequence. The channel BER
was varied from 10" to 10 and the 64-bit IDEA block cipher was used for encryption/
decryption. Figure 2-8 shows the multiplicative effects of error propagation for both the
simulation and that predicted by EQ 2-4.

31

BER cperyp/BER

10”

Channel BER

Figure 2-8: Error Propagation Ratio

2.5.2 Synchronization Effects
Wireless systems can experience deep fades due to obstructions in the communication

channel. The result of these deep fades can be a loss in synchronization between the
sender and receiver. In such cases the receiver will detect erasures in the transmitted data

stream.

Both block and stream ciphers require constant synchronization between sender and
receiver. When synchronization is lost in a block cipher system, the decryption block
becomes unaligned resulting in random data (Figure 2-9). Similarly, when stream cipher
keystream generators become unsynchronized the results are fatal as well. Recall that the
data stream is XORed with the pseudo-random keystream to generate the encrypted data
stream. Decryption requires that the encrypted data stream be XORed again with the syn-
chronized keystream in order to remove the effects of the key (i.e., A © B @ A =B). If the
two generators ever become unsynchronized, the second XORing will not decrypt the
data, rather it will re-encrypt it with the offset keystream (Figure 2-10).

32

unalignment

»
Cj = [cjl -Cjk-1)Cj(k+1 ,---Cjnc(jq-l)l]

K . e * K .
(Cl,. ..y CJ'I’CJ 9 o -)Cn } Rj = FK(C])

Block noisy channel \
erases bit cj @ ' {Blw’Bj-l’w

(B;= b)) {Gi=Fx(B) '32?&'?

Figure 2-9: Effects of De-Synchronization on Block Ciphers

still encrypted

{dl" .oy dj,], c£+l@kj+|®k-, . .,Cn®kn®kn-1}

noisy channel
erases bit ¢ |

{€s - 1 €j1sCja1s - Cn)

{ki} {k;}
Figure 2-10: Effects of De-Synchronization on Stream Ciphers

{c; = d;Bk;}

{d;}

One way to reduce the effects of synchronization loss is to force a periodic re-synchro-

nization of the keystream generator with new seeds and feedback polynomials. If a suffi-

ciently secure pseudo-random generator is used to generate the new seeds/polynomials,

the attacker must start all over again in their attempt to crack the system. This makes the

system very computationally expensive to crack and reduces the amount of information

leaked for any given successful attack.

Another way to combat the effects of synchronization loss is to use a self-synchroniz-

ing cipher. A cipher is said to be self-synchronizing if the output depends on previous out-

put values. Given a self-synchronizing system whose output is a function of the previous n

33

outputs, a missing output value will only affect the next n output values. Hence, any cor-
rect continuous sequence of n output values is sufficient to resynchronize the system.
Compare this to a non-self-synchronizing system in which any one missing output value
will cause all subsequent values to be incorrect until the system is re-initialized. The cost
of using such a system is error propagation, as any incorrect output will affect n other val-
ues. Given the high bit error rates of wireless systems (e.g., 10°2), this can prove to be pro-

hibitively expensive in terms of the overhead of additional error correction coding.

In summary, both block ciphers and stream ciphers suffer from catastrophic error

propagation in the presence of synchronization loss.

2.5.3 Buffering Requirements
Block ciphers require that their inputs be fixed-size n-bit blocks of data. If less than n bits

need to be encrypted then either the data can be buffered up until a full block is ready to be
encrypted or the incomplete data block can be padded to create a full block. In applica-
tions where latency requirements don’t allow for indefinite buffering delays, padding is
the only opticn. However, padding reduces the efficiency of the algorithm, as the same
amount of work is being performed to encrypt fewer bits. In an application where the data
rate is widely varying, this inefficiency can result in significant additional power con-

sumption.
On the other hand, stream ciphers require a minimal amount of buffering as they have

an effective block size of a single bit. Hence, they are perfectly efficient in that no addi-

tional work needs to be performed.

2.5.4 Decoupling the Encryption Function
Block ciphers cannot be decoupled from the data stream as the outputs on any given cycle

must be generated directly from the inputs (Figure 2-11). Stream ciphers, however, can be
decoupled from the data stream since the encryption function involves XORing the data
stream with the keystream, which can be precomputed and stored until it is required. This
decoupling property allows stream ciphers to utilize additional power reduction tech-

niques that are not possible with block cipher systems.

34

| Block
oc
Data —> Cipher {— Output
Data
Keystream | Buff 65
Generator 1 Bufter
Keystream decoupled

from data via buffer Output
Figure 2-11: Comparison of Decoupling in Block and Stream Ciphers

2.6 Scalability
The scalability of a cryptographic algorithm can be defined as the measure of how the

security of the cipher scales with some fundamental parameter associated with the algo-
rithm. For LFSR-based ciphers, this parameter is typicaily the register lengths; while for
the QRG it is the size of the modulus.

An LFSR-based stream cipher is cracked by reconstructing the contents and feedback
polynomial of its constituent LFSRs. Knowing this information, an attacker can fully
reconstruct the ertire keystream and hence decrypt the data. As previously stated, an n-bit
maximal-length LFSR can be in any of 2"-1 states and has any of ¢(2"-1)/n possible feed-
back polynomials, for a total of (2"-1)¢(2"-1)/n possible key values. However, not every
key value needs to be tried as weaknesses in the algorithm allow the attacker to reduce the
size of the keyspace to something significantly smaller. The size of this reduced keyspace
determines the effective key length of the algorithm, which is the measure of the true diffi-
culty to crack an LFSR-based stream cipher. Hence, the security of an LFSR-based stream
cipher scales exponentially with the effective key size (i.e., security is 0(2") where n ¢
is the effective key length of the algorithm). The relationship between the actual key size
and the effective key size of an LFSR-based stream cipher varies from algorithm to algo-

rithm and must be evaluated on a case-by-case basis.

The security of the QRG is based on the difficulty of factoring large integers and as

such, its security varies with the difficulty of factoring its modulus. This in turn scales

35

with the size of the modulus. There are numerous algorithms for factoring large integers
(e.g., the Number Field Sieve [20] and Quadratic Sieve [21]), the running time of which
all have the general form L(N,v,a+0(1)) = exp((a+o(1))-(In N)*-(In In \)!"*)), where a and
v are algorithm-specific constants (e.g., Table 2-1) and N is the n-bit integer to be factored.
The o(1) term is difficult 10 calculate and is eliminated from the analysis by approximating

the time to factor N given the known time to factor some integer M using the expression:

TN =T L(N,v,a)

M 1(M,v,a) (2-3)

Practice has shown this to be a reasonable approximation [7]. The current best known
algorithm for factoring large integers is the General Number Field Sieve (GNFS). A vari-
ant of the GNFS is the Special Number Field Sieve (SNFS) that can be used with integers
of the form (a" + b) where a and b are small (typically a = 2, b = 1). Using the current ver-
sion of the GNFS it is predicted that it will require 3x10* MIPS-years to factor a 512 bit
number. In general the difficulty of factoring is exponentially related to the length of the
number being factored and hence the security of the QRG scales exponentially with the

n’ (In (In2) +ln2-log2n)"v(ln2)v .
where n is

size of the modulus used (i.e., security is O(e
the length of the modulus). Figure 2-12 shows how the amount of computation scales with

modulus length for the GNFS algorithm.

Algorithm a v
General Number Field Sieve (64/9)13 13
Special Number Ficld Sieve (32/9)13 1/3
Quadratic Sieve 1 172

Table 2-1: Algorithm Parameters for Several Factoring Algorithms

36

MIPS Years
-—h -t -—b -—h 3
% 2L << S

-t
)

.2 4 L r's IS iy
10556 384 512 640 768 89 1024
Modulus Length (bits)

Figure 2-12: Amount of Computation Required for Factoring Using the GNFS

2.7 An Existing System - the Group Special Mobile (GSM) Standard
GSM is the third-generation cellular telecommunications standard currently being intro-
duced in Europe and represents the most secure cellular telecommunications standard in
existence today. The provision for radio link encryption/decryption is defined in the stan-
dard itself [22] and goes far beyond the primitive security standards of the Advanced
Mobile Phone Standard (AMPS) system that is currently in place in North America. GSM
utilizes three separate algorithms for performing authentication, temporary key generation
and actual data encryption/decryption:

» A3: a 128-bit to 64-bit one-way hash function used for performing user authentica-
tion
* AS5: a symmetric 64-bit key stream cipher used for data encryption/decryption
» AS8: a 128-bit to 64-bit one-way hash function used for generating temporary session
keys
The protocol relies on the existence of a unique secret subscriber ID key (K)p) that is
stored within a Subscriber Identification Module (SIM) [23] carried by the user and within
the Authentication Center (AUC) [24] of the GSM network (Figure 2-13). Encryption is
performed only over the wireless link. Once inside of the wired portion of the network it is

transmitted in an unencrypted format.

37

User
SIM
A3,A8

Handset
AS

Radio Link
(Encrypted)

Sy 1)

GSM Network

AUC

A3

A8
Kip

Wired Link
(Unencrypted)

Figure 2-13: Distribution of Security Features in a GSM Network

At the start of a call, the network sends a 128 bit random value (RAND) to the user

who in turn hashes this value under the influence of K, to generate a 64 bit response (RES

= A3[RAND,K;p]) which it returns to the network. The network compares this value with

the expected value (determined by applying A3 to its copy of RAND and K)p) and if the

two match, it concludes that the user is in fact who they claim to be (as only they would

know the value of K;p) and allows the call to continue. If encryption is required, the user

generates a temporary session key (K) by applying A8 to RAND under the influence of

K,p. All data transfers are then encrypted/decrypted using A5 keyed with K. This proto-

col is shown in Figure 2-14.

User (SIM/Handset)

Generate:
RES = A3[RAND,Kp)

Generate session key (K):
Kg= A8[RAND .Kp]

DATA,, = AS[Data,K)
DATA,, = AS[Data,K]

Radio Link

<§¢—— RAND -

<———— DATAj

RES ———»

Base Station (AUC)

Gernerate:
RAND = 128b random value

Verify:
REE = A3[RAND.Kp]

If RES invalid terminate call
otherwise generate session

key (K):
Y K52 ASIRAND K p]

DATA 4 = A5[Data,K]
DATA.,,,. = AS[Data,K]

Figure 2-14: GSM Security Protocol

38

The GSM protocol demonstrates several features that are essential to a usable wi ‘eless
communication system and which should be considered by a wireless security systems
designer:

* No secret information is ever allowed onto the unsecure radio link, it is always
stored away inside of the SIM or AUC, both of which are assumed to be secure from
tampering by an attacker.

« Data encryption keys are generated for each session, thereby forcing an attacker to
start each attack from scratch.

» Users must authenticate themselves via a challenge-response protocol in which the
network forces the user to generate a value that can only be calculated with knowl-
edge of some secret information that is assumed to be known only by the intended
receiver.

 There is no need for a complicated key exchange protocol as both the user and the
network have copies of the secret key (K;p) that is distributed with the SIM given to
the user when they register with the network.

39

Chapter 3

LFSR-Based Stream
Cipher Systems

The simplicity of LFSRs make LFSR-based stream ciphers a very attractive alternative for
hardware implementations. Numerous LFSR-based stream cipher designs have been pro-
posed and subsequently broken due to weaknesses in their construction (e.g., the Stop and
Go Generator [25], the Geffe Generator [26], and the Jennings Generator [27]). Here sev-
eral LFSR-based stream ciphers that appear to be secure, to the limits discussed within
each description, are discussed. The power consumption of each algorithm is then esti-
mated and various techniques for reducing the power consumption are described. Finally a

test chip implementation of the algorithms is described and the test results are presented.

3.1 Shrinking Generator

The Shrinking Generator was first proposed by Coppersmith et. al. [28] as an efficient and
reasonably secure (i.e., no obvious weaknesses) pseudorandom bit generator for use in
stream cipher systems. The generator is based on the idea of a variable decimation of a
pseudorandom sequence.

The Shrinking Generator utilizes a selection LFSR (LFSR¢,) to determine whether the
output of the generating LFSR (LFSR,) is to be used within the keystream (Figure 3-1).
If the output of LFSRg, is a “1” then the output of LFSR., is added to the keystream, if
not, then the output of LFSR,, is discarded. The output of the generator represents a

varying decimation of LFSRy, as governed by LFSR ;.

1\
1, . FIFO 71‘—@
7 ”| FI
1
//
LFSRsq load_buffer
1~
Encrypted Data

Figure 3-1: Shrinking Generator

Assuming that both LFSR) and LFSR,,, are maximal length and their periods are
relatively prime (i.e., gcd(T,T,.,) = 1), then the linear complexity and period of the
Shrinking Generator are given by the expressions:

LCc>|G|- 292

T = (2IGI_ l)_zlsl—l

where |G] and IS] are the lengths of LFSR,., and LFSR, respectively. Assuming a data
rate of 1 Mbps and choosing ISl = 44 and |Gl = 41, the attacker will have to wait at least 10
years to obtain enough output values to mount an attack based on the linear complexity or
period. The exponential dependance of both the linear complexity and period on the
length of the selection register implies that LFSR,.; should be as long as possible.

One obvious shortcoming of the Shrinking Generator is that it does not guarantee a
keystream bit will be output on any given clock cycle. Hence the generator must utilize a
higher clock frequency and an output buffer to ensure that there is always a keystream bit
available. Kessler and Krawczyk proposed a model [29] for determining the required
clock rate and buffer length in order to guarantee a certain miss probability and also pro-
posed an empirical expression for estimating the miss probability given a certain buffer
length (B) and clock rate multiplier (at):

41

2
M(wB) = 6.779 - 1.335a8 + 1.731a" + 2.554B 3-1)
For large buffer sizes (e.g., 1024 bits) and modest clock rate increases (e.g., 2x), the miss
probability can be effectively forced to zero (M(2,1024) = 3x1072).

Currently the best known attack on the Shrinking Generator reduces its effective key
length to IS1 or 2IS! if the feedback polynomials are programmable. Another attack, based
on Linear Cryptanalysis, was inferred by Golic [30]. Such an attack would require approx-
imately 40(6.28-r/w)" keystream bits to detect a weakness that could then be exploited,
where r is the length of LFSRg,, and w is one less than the number of non-zero feedback
polynomial coefficients of LFSR,. Figure 3-2 show the infeasibility of such an attack
assuming a keystream generator output rate of 1 Mbps. For a modestly sized LFSRg, (r =
32 bits) with cnly 10 non-zero feedback polynomial coefficients, it would require approx-

imately 13.6 years to observe a sufficient amount of keystream bits to mount an attack.

10. d —rre 18
" - -r=32 ’ ”’
100 oo e - -
-
. .
10* = : et R
- "‘
W P
.

of years to obtain sufficient
keystream bits @ 1Mbps

of Feedback Coefficients (w)

Figure 3-2: Time to Accumulate Keystream Bits for L.near Cryptanalysis of
Shrinking Generator

3.2 Self-Shrinking Generator

The Self-Shrinking Generator [311 is a modification of the Shrinking Generator to reduce
the hardware requirements by incorporating both LFSR, and LFSRg, into one LFSR
(Figure 3-3). On each clock cycle, the most significant bit of the LFSR is examined and if
itis a “1” the second most significant bit of the LFSR is added to the keystream. The shift

42

register is then clocked twice and the whole process is repeated with the two new most

significant bits.

Data

1w

1 1
—7*| FIFO @
. . 1
n-bit LFSR :[n-1]: [n]
Clock ——» : . load_buffer
1\
v
Encrypted Data

Figure 3-3: Self-Shrinking Generator

If the LFSR is a maximal length LFSR, the linear complexity and period of the Self-

Shrinking Generator are given by the expressions:

7322

LC>2tv3-!

where n is the length of the LFSR. Meier and Staffelbach have conducted experiments
[31] where they have discovered that for all n such that 3 < n < 20 the period is always
maximal (i.e., 2" - 1) given a maximal length LFSR. In addition, the linear complexity was
found to be very close to maximal (i.e., 2" ! - 1) for n < 16. Continuing the assumption of
a data rate of 1 Mbps and choosing n = 101 bits, an attacker will require approximately 32
years to obtain enough output values to mount an attack using either the linear complexity
or period of the Self-Shrinking Generator.

Early cryptanalytic results provided in [31] demonstrate that the Self-Shrinking Gen-
erator has an effective key length of 203758 with a fixed feedback polynomial and 20.875n
with a variable feedback polynomial. This compares favourably with the effective key

43

length of the Shrinking Generator which is approximately 20-3(1sel + ngem) However, it
must be emphasized that these are preliminary results -- the algorithm is still too new to
have had a thorough cryptanalytic analysis. Only time and scrutiny will tell just how
secure the Self-Shrinking Generator really is.

One obvious drawback of the Self-Shrinking Generator is that the LFSR must be
clocked at twice the rate of the Shrinking Generator, which in turn is operating at some
multiple of the data rate. This higher clock rate will directly affect the power consumption

of the algorithm.

3.3 Alternating-Stop-and-Go Generator
The Alternating Stop and Go Generator [32] utilizes two clock-controlled LFSRs whose

outputs are XORed together to produce the keystream. The clock control is performed
using a third LFSR whose output determines which of the two LFSRs is to be clocked on
any given cycle (Figure 3-4).

Data

{

> SRS LFSR-1
" @D
LFSR-2
Clock
1~
v
Encrypted Data

Figure 3-4: Alternating Stop & Go Generator

Assume that the LFSR, LFSR,, and LFSR; are maximal length LFSRs of lengths n,,
ny, and n; respectively and the periods of LFSR; and LFSR, are relatively prime. The

period and linear complexity of the generator are then given by the expressions:

nl + nz + n3
Tys6 = Trpsrs Trrsra Tirsm =

LC> (n,+ny) -(2"’-1)

With a 1 Mbps data rate and LFSRs of length 29, 31, and 47 bits respectively an attacker
will require over 7 years to obtain enough output values to attack using either the linear
complexity or period.

The best known attack on the Alternating Stop & Go Generator is a correlation attack
on LFSRj [32] that effectively reduces the number of keys that must be searched to its
third root (i.e., the length of LFSR;), assuming that all LFSRs are of similar length. This

attack can be overcome by choosing a sufficiently large value for n;.

3.4 Proposed GSM Cipher (AS)
The proposed stream cipher algorithm (AS) used in the GSM cellular network standard is

somewhat of a mystery and still officially remains a secret. However, several noted cryp-
tographers have speculated as to its design and have proposed the construction described
below ([33], [34]) based on information that they have gleaned from various sources. AS
utilizes three fixed-length LFSRs (LFSR;, LFSR,, and ILFSR;) with fixed feedback poly-
nomial connections (Figure 3-5). The clock control fun:tion of the registers is derived by
XORing the inverted carry-out bit from the summation of the three LFSRs’ middle bits
with that register’s middle bit. This ensures that at least two of the three registers are

clocked on any given cycle.

Since A5 is not yet officially released, the linear complexity and period of the cipher
have yet to been quantified. However, some analysis of the security of the cipher has led to
the conclusion that it is far from secure due to its relatively short LFSRs and the fact that
the feedback connections are fixed. A simple attack was proposed by Dr. Ross Anderson
[34] that reduces the effective key length to just 41 bits by guessing the contents of LFSR;
and LFSR,, determining the contents of LFSR; from examination of the keystream and
then continuing on to determine if the guesses were in fact correct. Other attacks are said

to exist but they are still awaiting publication.

45

1Y le— LFSR,(12] Data

LFSR [12] N

| 19-bit LFSR,
LFSR [10] tij l:
4

carry-out z

22-bit LFSR, _.:j 1 @

23-bit LFSR, |-

LFSR [12]
2

LFSR (12] T3

Clock "~

Encryptec; 'Data
Figure 3-5: GSM Cipher (i.e., AS)

According to Schneier, the basic structure and underlying construction of A5 look
very promising [33]. However, to be truly effective, the LFSRs must be made longer and
the feedback polynomials must be made programmable. In its current form AS provides

only a marginal level of security.

3.5 Estimating the Power Consumption
The various LFSR-based ciphers differ in terms of their power consumption as dictated by

their clock-control schemes and non-linear combining functions. The basic hardware cir-
cuit in all of the aforementioned ciphers is the LFSR, whose power consumption is repre-
sented as a function of their length (i.e., P(n)) and the probability that they will be clocked
on any given cycle (i.e., a). A first order approximation of the power consumption of each
scheme can be estimated and compared using these building blocks. Note that the ciphers
must be normalized in terms of their security to provide a meaningful comparison.

The Alternating Stop and Go (ASG) Generator utilizes LFSR; to control the clocking
of LFSR, and LFSR,, whose outputs are then XORed to produce the keystream. On any
given cycle, the probability of clocking LFSR; is 1/2 and the probability of clocking

LFSR, is 1/2 as well. However, only one of the two can ever be clocked on any given

46

cycle, hence o = op = 1/2, and 03 = 1. The combining function is the XOR of the outputs
of LFSR; and LFSR,, both of which are assumed to be equally likely a 1 or 0, therefore
Oy = 1/2. Combining these results, a preliminary power estimate for the ASG is given by

the expression:

Pysg = 0y P(ly) +0y - P(L)) +04-P(ly) +a,,, - P(xor)

- %(P (1) +P(L,)) +P(l;) + %P (xor)

where {;, [, and /3 are the lengths of LFSR;, LFSR,, and LFSR; respectively.

The Shrinking Generator utilizes LFSR¢,; to determine whether or not the output of
LFSRgey, is to be used in the cutput keystream. Since there is no guarantee that a valid out-
put will occur on any given cycle, the clock rate of the generator must be increased and an
output buffer utilized to ensure that the probability of not having a valid output bit being
output on any given cycle is sufficiently low. This increased clock rate is indicated by the
multiplication factor k. Note that the power consumption of the output buffers are not
accounted for in this analysis as all of the generators will implicitly require output buffer-
ing in order to decouple them from the data stream. The estimated power consumption of
the Shrinking Generator is given by the expression:

Pgo=k-o

sel

= k(P(l,,) +P(,,))

gen

Pl,) +k-o,, P(L,,)

gen

where [, and l,,, are the lengths of LFSR,; and LFSRg,,, respectively.
The Sclf-Shrinking Generator requires only a single LFSR whose clock rate must be
double that of the Shrinking Generator. The power consumption of the output buffers is

once again ignored. The estimated power consumption of the Self-Shrinking Generator is:

Pgoo = 2-k-0.- P ()
=2-k-P(l)

where [is the length of the LFSR.

47

The GSM Cipher uses 3 LFSRs (LFSR;9, LFSR;,, and LFSR,3) whose clock control
is derived from the summation of the middle bits of the LFSRs. The clocking probabilities
of all 3 LFSRs is o0 = 3/4, as derived using Table 3-1 and the output is the XOR of the
three LFSRs’ outputs. Using these results the power consumption of the GSM Cipher can
be estimated to be:

Pgs = a,9- P(19) 40,y - P(22) + 0y, - P(23) + 0., - P(x0r3)

- %(P(19) +P(22) +P(23)) +%P (xor3)

Middle Bits Clock Enable
LFSR;g9 | LFSRy; | LFSRy3 || LFSR;g | LFSR,, | LFSRy3

0 0 0 1 1

0 0 1 1 1 0
0 1 0 1 0 1
0 1 1 0 1 1
1 0 0 0 1 1
1 0 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

Table 3-1: Clocking function for the GSM Cipher

Experimentation using EPIC’s Powermill power estimation tool has shown (Figure 3-
6) that to a first order approximation, the power consumption for an LFSR is a linear func-
tion that scales directly with its length (i.e., z(P(x) + P(y)) = P(z(x + y))). Hence, the afore-
mentioned power estimates can be directly compared to determine which is the most
efficient algorithm. For the comparison, the effective key length was chosen to be 40 bits
as it is the effective key length of AS. Since the effective key length of AS is fixed and
cannot be changed, all other algorithms were scaled accordingly.

48

Normalized Power Consumption

10

08

06}

047

02t

05 32 84

96
LFSR Length (bits)

128

Figure 3-6: Normalized Power Consumption as a Function of LFSR Length

Table 3-2 summarizes the results of this comparison and shows that A5 provides the
most efficient implementation in terms of power consumption. Note that the power con-
sumption of any output combining function XORs is minimal in comparison to the power

consumption of the shift registers and hence it has been ignored.

Algorithm Parameters Estimated Power
Alternating Stop & Go l;=31,1,=32,13=41) P(72)
Shrinking Generator loen =37, leey=41,k=25 P(195)
Self-Shrinking Generator 1=50,k=2.5 P(250)
A5 P(48)

Table 3-2: Power Consumption Estimates

Simulations on the fully extracted layouts of the 4 stream ciphers were performed
using Powermill. They show that the above estimates are quite accurate (Figure 3-7), dif-

fering by at most 16%.

49

Estimated

3| Simulated (V44 =1.5V)

Simulated (Vgg=5V) |

Power Consumption
(normalized to ASG)

;

G5 ASG S5G SG
Stream Cipher Algorithm

Figure 3-7: Comparison of Power Consumption (Estimate vs. Powermill Simulations)

3.6 Reducing the Power Consumption
3.6.1 Conventional Supply Scaling

Analysis of the various LFSR-based stream ciphers leads to the conclusion that their
critical path is short enough that they can satisfy the 1 Mbps data throughput requirement
while operating at the minimum allowable supply voltage of 1.5V.

3.6.2 Parallelizing the LFSRs
With the supply voltage minimized, the power consumption can be reduced further still by

reducing the clock frequency of the LFSRs by parallelizing the shift registers used to con-
struct them. An example of a 2-way parallel shift register implementation is shown in Fig-
ure 3-8. The parallel shift register utilizes a half rate clock but requires additional
multiplexing and routing. Higher degrees of parallelism will also require control circuitry
to generate multiple clock phases for each of the parallel registers. The multiplexor, rout-
ing and clock generation circuitry overhead is ultimately what determines the optimal

degree of parallelization (Figure 3-9 [35)).

50

in
o w2 bit LFSR [™

c
out
) 1
n/2bit LFSR | |
L)
Figure 3-8: 2-way Parallel Shift Register
1.0
8
s 08F]
& ' 32-bit__—
B 0-6 i //
ES L !
(=}
% 041 1
L | 6a-bit |
<
E o2} 128-bit -
Z
256-bit
0.0 . A .
0 8 16 24 32

Degree of Parallelism

Figure 3-9: Degree of Paralielism vs. Normalized Power Consumption for Shift
Registers

Parallelizing LFSRs is not quite so straightforward. The feedback tap positions must
change their relative positions with time as the location of bit i within the LFSR changes
from cycle to cycle. In general, for an ri-way parallelized LFSR, the location of bit i can be
any of n positions. The additional multiplexing required for the feedback taps increases
the overhead dramatically (Figure 3-10), making the optimum parallelization quite differ-
ent from that of the simple shift register. Analysis using 520-bit matched filters with 32
feedback taps showed that the optimal amount degree of parallelism is only 2 [35].

51

LFSR[1] LFSR|[3]

b b
N ———g- -
/2 —4—71 r

.—
SZ out

—, .——’

r L]

o

LFSR|[2] LFSR[4]

Figure 3-10: 2-way Parallelized LFSR

Unfortunately, it was not possibie to implement parallel LFSRs during the layout of
the Stream Cipher Test Chip due to time restrictions. A second-generation stream cipher

test chip that will utilize the techniques described above is currently in development.

3.7 Stream Cipher Test Chip Design

The four aforementioned LFSR-based stream cipher designs are quite similar in design,
consisting of multiple linear feedback shift registers with algorithmic-specific output-
combiner and clock-control circuitry. The design details of the output combiner and clock-
control circuitry are described in this section, along with the design of the variable length
LFSRs with programmable feedback polynomials used in three of the four stream cipher
designs.

A full set of schematics for all four LFSR-based stream ciphers can be found in

Appendix A.

Variable Length LFSRs With Programmable Feedback
The basic building block of three of the four stream cipher designs is a variable length

LFSR with programmable feedback. These LFSRs were constructed using a variable

52

length shift register and programmable feedback tree (Figure 3-11).
1

Programmable
Feedback Tree

n ‘f\Out
Variable Length |
aravie Len

Input Shift Regisigr [~/ Output

Feedback Length %L}

Figure 3-11: Variable Length LFSR Block Diagram

The variable length shift registers were constructed by partitioning an n-bit shift regis-
ter into m-bit blocks, controlling the clock distribution to each of the m-bit blocks and
using an output multiplexor for output selection. m was chosen to be 8 for this design in
order to minimize the complexity of the clock decoder while still providing a reasonably
fine granularity in terms of the shift register length.

Three separate values of n were chosen (63,64, and 65) in order to provide a large
number of relatively prime register length combinations as required by the aforemen-
tioned LFSR algorithms. This variation in length is implemented using either a 7, 8 or 9
bit shift register as the first shift register in the chain. The clock decoder consists of a 3-to-
8 thermometer decoder whose outputs serve as clock gating signals for each 8-bit section
of the shift registers. The output of the shift register is selected using an 8-to-1 multiplexor
controlled by the same 3 control bits that are used by the clock decoder (Figure 3-12).

7/8/9-bit shift register 8-bit shift register
l outy out, out, outs out, l outs outtﬁ
m—>o~—Ll,—Lz—L3l4—L5—L6,7—>OM-]

— out; — {7~
e ¢6 outg —s6

3 —— & outs ——{5

length — b outy —=14 | o ocutput

- B, out; —»3
—» @, out; —»{2
—— (bl out; —a}
— (bo outy

[

length
Figure 3-12: Variable Length Shift Register Block Diagram

53

The programmable feedback tree consists of a polynomial register and XOR tree. Each
bit of the polynomial register is used to mask a bit in the variable length shift register such
that each input to the XOR tree is a bitwise-ANDing of the shift register bit and its corre-
sponding bit in the feedback polynomial register. The results of this ANDing are then
summed modulo-2 using a log, n depth XOR tree (Figure 3-13) and the resultant bit is fed
back to the shift register as its input when operating in LFSR mode (Figure 3-11).

—
ShiftReg(i] . XOR
ShiftRegli+1]) O———= XOR Lo feedback bit
—»

i | i+l

n-bit Polynomial Register

Figure 3-13: Programmable Feedback Tree Block Diagram

Shrinking Generator
The SG (Figure 3-1) was implemented using a 64 bit variable length LFSR for LFSR g,

and a 65-bit variable length LFSR,. The output consists of both a daia output and a data-
Valid output. The dataValid output is the output of the LFSR and is used to enable the
output latching of LFSR,’s output bit (Figure 3-14). dataValid is registered on the falling
edge of @ to ensure that the clock mask signal overlaps the high phase of ®. This ensures
that no glitching occurs on the gated clock (Figure 3-15).

LFSR gep[Rgen] »[D Ql—s output bit

LFSRging] ——D Q » dataValid
®—C

Figure 3-14: Shrinking Generator Output Latching

54

dataValid is guaranteed
® to overlap high phase of @

gated clock |/\|

I L

in —«D Q dataVvalid dataValid
a ,
(0] _‘O . Leix-out Lelk-out
Figure 3-15: Clock Gating
Self-Shrinking Generator

The SSG (Figure 3-3) utilizes a single 65-bit variable length LFSR whose two most signif-
icant bits are fed to an cutput selection circuit that operates at half of the clock rate of the
LFSR. The output selection circuit (Figure 3-16) generates a half frequency clock using a
resetable toggle flip-flop and then uses this clock to drive the output latch circuitry. Once
again, dataValid is registered on the falling edge of @ to ensure that no glitching occurs on

the gated clock.
LFSR[n-1] »|D Q}-»output bit
®/2
D Q @72
®—pClIr LFSR[n] —D Q dataValid
Reset o2 —C
(a) clock divider (b) output latch circuit

Figure 3-16: Self-Shrinking Generator Output Circuit

Alternating Stop and Go Generator
The ASG (Figure 3-4) was implemented using three variable length shift registers of

lengths 63, 64, and 65 bits for LFSR{, LFSR,. and LFSR; respectively. Clock control is
done using an active-high enable clock buffer for LFSR; and an active-low enable clock
buffer for LFSR,, where the enable signal is the output of LFSR3. The output is taken
from the XORing of the outputs of LFSR; and LFSR,.

55

AS Cipher
The A5 cipher (Figure 3-5) was implemented using three fixed-length LFSRs of length 19,

22, and 23 bits with variable feedback connections. The clock control function was imple-
mented using three XNOR gates and three OR gates to generate the three clock enable sig-
nals (Figure 3-17). The output is taken from the XORing of the three LFSRs’ output bits.

LESR,) ﬂD)*@—v Clock Enable,

LFSR,[10] —¢ @D)—‘ D—» Clock Enable,
\ ‘ -

LFSR;[11] __.__j ' Clock Enable;

Figure 3-17: AS Clock Control Circuit

Layout
The final stream cipher test chip design is shown in Figure 3-18. The entire test chip con-

tained a total of 27,910 devices and consumed a total area of 18.38mm? (4.29mm x
4.29mm). The design is severely pad-limited, the core logic that makes up the 4 stream
ciphers consumes only 19% of the total chip area due to the large number of pads required
to test each stream cipher as an individual unit. The physical statistics of the individual

ciphers are given in Table 3-3

Design Device Count Area
"~ Shrinking Generator | | 7.998 | 9m.1ddpm® |
Self-Shrinking Generator 4,167 518,910 pm?
Alternating Stop & Go Generator 11,923 1,477,039 pm?
GSM Cipher (A5) 3,822 495,040 pm?

Table 3-3: Layout Statistics for Stream Cipher Test Chip

56

2338350533030,

Figure 3-18: Stream Cipher Test Chip Layout

3.8 Preliminary Test Results
Initial testing has verified that the Stream Cipher Test Chip is fully functional. The testing

was performed over a range of supply voltages from 5V down to a minimum of 1L.1V3ata
data rate of 1 Mbps. For supply voltages below 1.1V, all of the circuits ceased to function.

Preliminary power consumption estimates were obtained by using EPIC’s Powermill
power estimation tool with the extracted physical layout of the test chip (Table 3-4).
Actual power consumption measurements were then performed with the Stream Cipher
Test Chip (Table 3-4 and Figure 3-19) and they match quite favourably with the Powermill
results at a supply voltage of 5V. At low supply voltages (i.e., 1.5V) the measured and esti-
mated power begin to deviate, due, most likely, to the inability of Powermill and the

underlying hspice models to accurately simulate subthreshold device operation.

3. only the ASG and A5 operated @1 Mbps at Vg4 = 1.1V, the SSG operated @1 Mbps down to
1.2V, and the SG operated @1 Mbps down to 1.15V

57

Estimated Power

Measured Power

Consumption Consumption
f (W) (uW)
Algorithm V3a=5V | Vgg= 15V || V4g=5V | Vg4=1.5V
Alternating Stop &mi 395.6 274 395 33
Shrinking Generator 920.3 65.0 925 65
Self-Shrinking Generator H 1333.2 85.0 ﬂ_ 1335 108
AS 232.0 16.4 215 17

Table 3-4: Estimated and Measured Power Consumption of the 4 LFSR-based Stream
Ciphers at 1 Mbps

1400 v T

1200 |

1000

800

W)

600

Power Consumption

-
-
()
-
i

3

Supply Voltage (V)

Figure 3-19: Measured Power Consumption of the 4 LFSR-based Stream Ciphers

58

Chl: Clock

Ch2: Output

Chl: Clock

Ch2: Output

Tekmzs.OMS/'sT '
v 3
AR A R
grtutututrriiiiiiiiug
:iéﬁigi‘r}‘wg'r%i'xgi;'ig:.ii::;}é%g#i::g:'-.i.J;.{.-..-
sl T

Figure 3-20: A5 Stream Cipher Operation @V g4 = 1.5V

Tek 25.0MS/[s
[4

s of

105 Acqs

T T T T T ™

1+ 1

4)
1
1 Lz
s)
l-i-H>-~p--»-»-»—L =
PPN BT TP I BT
e
o o r—
1
........................... =
]
1

1.00028

C1 Fre
Hz

L

T

V' 26 Aug 1996

00:03:18

C1 Fre
999.76kH2

C1 High
1.49

C2 High
1.47

~— W3 00Rs ChT 7100V 26 Aug 1996

00:26:05

Figure 3-21: ASG Stream Cipher Operation @V 4y = 1.5V

59

Chl: Clock

Ch2: Valid?

Ch3: Output

Chl: Clock

Ch2: Valid?

Ch3: Output

I
-

l'q.

T

4
4
4
Y b

N

1.00V

1S

Figure 3-22: SG Stream Cipher Operation @V g4 = 1.5V

Tek 50.0MS/s
T h |
13 v 3
| i
| . I
t |
| \
'l A |
| i \
1 dh
.....
i : : 1 :]
o ; r 1 [
+ j— P | i b 4 + o] + i
o I I‘J:
Dt S L. bod ... -
] : :]
* ~

1.00V

Ct Fre
2.50474MH2
Low signal
ampiitude

C1 High
1.50

2

C3 High
1.50

26 Aug 1996

00:48:04

C1 Fre
4.99934MH2
Low
resolution

L4
FuY

ol

7 26 Aug 1996

01:00:46

Figure 3-23: SSG Stream Cipher Operation @V 44 = 1.5V

61

Chapter 4

QRG-Based Stream
Cipher Systems

The QRG-based stream cipher utilizes a QRG to generate a provably secure pseudo-ran-
dom sequence that is used as the keystream which is then XORed with the data stream to
form the encrypted data stream. The fact that the QRG-based stream cipher is provable
secure makes it a very attractive algorithm. Unfortunately, it is quite complex and can be
too computationally intensive for an ultra low power application. Care must be taken in
selecting an efficient algorithm for the implementation of the modular squaring operation

at the heart of the QRG in order to minimize the power consumption.

In this section some basic properties of the QRG are first discussed and then various
algorithms for implementing the QRG are compared to determine their suitability to a
low-power implementation. Various power reduction techniques are then applied to
reduce the power consumption even further. Finally, a hardware implementation that was

fabricated is described and test results are presented.

4.1 Some Basic Number Theory

Understanding the subsequent discussions on the QRG requires knowing some basic
results from number theory. These results are presented here without proof as reference.
Note that it is assumed that the reader is familiar with basic concepts such as finite fields

and the basic properties of modular arithmetic.

Group Order

Given a finite field Zp = {0,1,...,p-1}, the order of an element (o) of the field is defined as
the smallest non-negative integer ¢ 2 1, such that o = 1 mod p, and is commonly

expressed as ORD, o = 1.

Multiplicative G Modul

A multiplicative group modulo n, Z,,", is the subgroup of Z, containing all a € Z, such

62

that gcd(a,n) = 1. I'he number of elements in Z,,* is given by Euler’s totient function:

o = oqJ(1-)

pin
Quadratic Resid
Given an odd prime integer p and an integer 0 < x < p, x is a quadratic residue modulo p if
there exists some y € Z,, such that y2 = x mod p. The set of quadratic residues modulo p is
often denoted as QR,,. Euler showed that x is a quadratic residue if and only if:

P72 mod p

This is known as Euler’s Criterion.

Legendre Symbols
Given an odd prime integer p and an integer a 2 0, the Legendre symbol (;) is defined

as:
a 0,ifa=0mod p.
(‘) = 1, if a is a quadratic residue modulo p.
-1, if a is a quadratic non-residue modulo p.

from which it follows that:

(;)Ea(p-l)/z mod p

Jacobi Symbols

Jacobi symbols are a generalization of Legendre symbols for the case where p is positive
e

odd integer whose factorization is p = pj' . p22 .

the Jacobi symbol (g) is defined to be:

(&)- T2

i=

e
.- pk*. Given p and an integer a 2 0,

Despite the above definition, techniques do exist to compute (;—;) without knowing the

factorization of p (e.g. [36])).

63

Carmichael Numbers
Given an integer N 2 1 whose factorization is N = 2°.P

number A(N) is defined to be:

€1 x .
1 ... P, , the Carmichael

M = ""”("(f)’ (Pr=1) Py s (P=1) .P:*_i)

where:
x(z‘) _ { 2°" ! ife=1or2.
2°72 ife>2.
Carmichael’s Extension to Euler’s Tl

Euler originally proved that for any integern 2 1,and alla € Z,,*:

a¢(") =lmodn

Carmichael extended this result by proving that given any a € Z,,* such that gcd(a,n) = 1,
then:

a}'(") =lmodn

4.2 Security of the QRG

Unlike the aforementioned LFSR-based Siream Ciphers the QRG is a provably secure
generator in the sense that even given all previous output bits, an attacker has no better
than a 50% chance of predicting the next output bit assuming that they don’t know how to
factor the modulus N.

In their original work, Blum, Blum, and Shub stated that the BBS Generator, upon
which the QRG is based, was cryptographically secure modulo the Quadratic Residue
Assumption which states that any efficient procedure that guesses whether or not a num-
ber is a quadratic residue will be incorrect some fraction of the time [17). Vazirani and
Vazirani extended the work to show that breaking the BBS Generator is as difficult as fac-
toring its modulus N [37]. Given the factorization of N, an attacker could quickly and effi-
ciently compute the Legendre Symbols of any given x; (i.e., (%) and (i;-') , where N =

p-q) to determine if x; were in fact a Quadratic Residue.

For moduli whose length are on the order of 512 bits or more this is believed to be a
computationally difficult problem (in Section 2.6 we quantified just how difficult this
problem is to solve).

In [36], Stinson takes another approach and proves that cracking the BBS Generator is
computationally equivalent to an unbiased, polynomial-time Monte Carlo algorithm for
Quadratic Residues having error probability at most 8, for any 8 > 0, a problem that is

believed to be intractable.

4.3 Period of the QRG
Calculating the period of the QRG requires that both the modulus, N, and the initial value,

xp, be chosen in a specific way. The period of the QRG can be calculated using the follow-
ing two properties [17], which will be subsequently derived:

1. if N = P-Q, where P = Q = 3 mod 4, and x a quadratic residuc modulo N then
Tt (xg) | A (A (N)) , where A(y) is the Carmichael number of y.

2. if x is chosen such that ORDy(xp) = MN)/2, then A (A (N)) I Tt (x,,) .

The first property can be derived by first applying Carmichael’s extension of Euler’s

. A (ORD Nxo) . R .
theorem to determine that 2 = 1 mod (ORDx,) . Since ®(xp) is the period of

the QRG it follows that x, = x. mod N, and thus x, ' = 1 mod N. Hence
2"~ 1 = ORDyx, which implies that 2" = 1 mod (ORD,x,) and it follows that:

7 | A(ORDx,) @4-1)

(ORD,x,)
Using Carmichael’s extension again we see that x(’;(N) = 1mod N = x, w'o

thus:
ORDx, | A (N) 4-2)

Combining EQ 4-1 and EQ 4-2 yields the expression:

L (xp) 1A (A(N)) 4-3)

If x, is chosen such that ORDy (xg) = A(N)/2 then xOMN) 2. 1 mod N. As previ-

.1

ously stated, xg -l 1 mod N, hence "1 = A (N)/2 and:

65

2" = 1 mod (A (N)/2) (4-4)

If N is chosen such that N = PQ = (2p+1)(2q;+1) = 2(2p, + 1) + 1)(2(2g,+1)+1) =
(4p7 + 3)(4g,+3) (which guarantees that P = Q = 3 mod 4 as required) where P, Q, p;, q,,
P> and g, are all odd primes then it can be shown that ORDA(N)/z (2) = A(AN)) [17].
Thus A(A(N)) is the least positive integer such that:

M) | mod (A (N)12) 4-5)

Combining EQ 4-4 and EQ 4-5 yields the expression:
AL (NY) 1T (xp) (4-6)
Combining EQ 4-3 and EQ 4-6 leads to the desired expression for the period of the QRG:

T (xy) = A(A(N)) 47

Given an n-bit modulus of the prescribed form, a rough estimate of the period of the
QRG can be calculated using EQ 4-7. Recall that N= PQ, where P=2p; + 1,0 =2q; + 1,
p;=2py+ 1 and q; = 2g, + 1. Thus the period of the QRG is:

T (x)) = A(A(N))
AN) =lem{(P-1),(@-1)} =lem{2p,2q,} =2pq, = M
A(M) = lem{A(2),p).q,} = lem{1,2p, 24,} = 2p,q,

~T(Xg) = 2py4q, (4-8)

For an n-bit modulus, N, with factors P and Q that are roughly the same size (i.e., n/2 bits)
the size of p, and g, will be roughly (n/2 - 2) bits. For n = 512 bits, the corresponding
period is on the order of 2% which will be more than sufficient for any practical imple-
mentation.

In terms of practical tests, the parameters of the QRG can be chosen using the follow-

ing algorithms:

Generating N, B Q‘ 2[-‘-41.-‘ 22, and gz;
* Select odd integers p,, g, of length (n/2 - 2) and test for primality. If both pass then
proceed, otherwise continue choosing values of p, and g, until both pass

* Generate p; and q; from p, and g, and test for primality. If both pass then proceed. If
any fail then repeat the previous step for that value until it satisfies both the previous
and the current tests.

« Generate P and Q from p; and g, and test for primality. If both pass then save the val-
ues as a valid key pair. If either fails go back to the first step and repeat the entire
process again until a valid value is generated.

Generating xj:
* Select a random value for xy and then test that ORDx, = A (N)/2 by checking if

% = 1 mod N.

4.4 Efficiency of the QRG
In the original definition of the QRG, it was shown that the least significant bit of the out-

put was unpredictable [17]. However, it has since been shown that the m = log,(log,(x;))
least significant bits of the generator’s output are in fact unpredictable [37]. This improves
the efficiency of the QRG by a factor m. The practical implications of this result are that
for a 512 bit modulus, a maximum of 9 bits and an average of 8 bits can be extracted per
iteration.

By way of comparison, a simple RSA encryption system, that utilizes a repeated
squaring and multiplication implementation for performing modular exponentiation,
requires on average 3n/2 modular multiplications plus n modular additions to generate n
bits of ciphertext. Thus each bit of ciphertext requires 3/2 modular multiplications and one
modular addition, whereas each bit of ciphertext generated using the QRG requires at
most one modular multiplication and typically 1/log,(log,(n)). Hence the QRG is much

more computationally efficient than the RSA encryption scheme.

4.5 Moduiar Multiplication Algerithms
The performance of the QRG depends almost entirely on the ability to quickly, and effi-

ciently compute the square of an integer modulo some number. High speed multiplication
is for the most part a simple task -- there are many very efficient algorithms available to a
hardware designer (e.g., [38], [39], and [40]). However, modular multiplication is consid-

erably more difficult and as a result, care must be taken to select and/or develop an effi-

67

cient algorithm that best suits the design requirements.

There are two basic approaches to performing modular multiplication: multiply then
reduce and multiply with repeated partial reductions.

The first method partitions the modular multiplication into an nxn bit multiplication
followed by a 2n bit division. The belief is that by separating the two operations they can
be optimized independently of one another, yielding a very efficient implementation.
Unfortunately, this scheme has numerous inefficiencies: the intermediate result requires a
2n bit register, the nxn bit multiplication will require a time consuming 2n bit carry propa-
gate addition and the division circuit must be capable of handling a 2n bit operand. Since
the latency of most arithmetic algorithms depends on the width of the operands, this
results in a very slow and inefficient modular multiplication technique.

The second method utilizes approximate reductions during the accumulation of the
multiplication algorithm’s partial products to reduce the size of the intermediate result and
the overall latency of the operation. The size of the intermediate result depends on the
accuracy of the modular reduction whose latency in turn depends on the number of bits
used to form the approximation. Hence, there is a trade-off to be made between latency
and accuracy. Fortunately, only a moderate reduction in accuracy will yield a significant
gain in latency (e.g., Takagi’s algorithm [41] requires only 2 additional digits be stored,
and uses only 8 digits to form the approximation). Multiplying with partial reductions is
currently the algorithm of choice for implementing modular multiplication. There are
many existing algorithms in the literature (e.g., [41], [42], and [43]) that utilize this
approach to create very efficient implementations.

Both of the above methods typically utilize redundant number representations inter-
nally to eliminate time-consuming carry-propagation chains within the algorithm. This in
turn minimizes the glitching effects that occur when a carry pulse is propagated through a
long addition chain. Glitching causes energy-consuming transitions that can then propa-
gate throughout the circuit, possibly causing a significant increase in the power consump-
tion.

This section compares several existing algorithms in terms of their efficiency and suit-

ability to the Quadratic Residue Generator.

68

4.5.1 Chinese Remainder Theorem
The Chinese Remainder Theorem provides a means of decomposing an operation modulo

N, where N is a composite number whose prime factorization is N = m;-my-...-my, into
operations modulo m; (1 < i < k). Since most arithmetic operations’ latency is proportional
to the size of the operands, the latency of the overall operation can be reduced by breaking
it into smaller and simpler operations.

For the modular squaring operation utilized in the QRG the n-bit modular multiplica-
tion can be decomposed into two n bit modular reductions, two /2 bit modular multiplica-
tions, two n/2 bit multiplications and a n bit modular addition. These operations can be
accelerated further due to the fact that they can be parallelized as shown in Figure 4-1. As
we will soon see, the latency of a modular multiplication is directly proportional to the
length of its modulus. Therefore, the Chinese Remainder Algorithm allows a speedup fac-
tor of 2 for the modular multiplication. However, the additional multiplication, modular
reduction and modular addition, in addition to the area overhead of the parallelization

make the Chinese Remainder algorithm unattractive for our application.

Xit]

Figure 4-1: Parallelization of Chinese Remainder Algorithm

4.5.2 Morita’s Algorithm
Morita proposed a high radix (r > 2) modular multiplication algorithm [42] that operates

on two binary operands, A and B, to produce AxB modulo N, where N is an n-bit modu-
lus. The algorithm requires approximately | n/ (log,r) |+ 1 iterations to generate a

69

result.

The primary drawback of the Morita’s Algorithm is that it requires binary inputs in
non-redundant form, but it generates a result that is in a redundant form that cannot be
directly fed back into the multiplier for repeated squaring. Thus the output must undergo a
time-consuming carry propagate addition to convert it into a non-redundant binary repre-
sentation. This significantly slows down the operating speed of the algorithm, making it

unusable for our application where we require very fast, repeated modular squarings.

4.5.3 Orup and Kornerup’s Algorithm
Orup & Kornerup’s Algorithm [43] utilizes a higher radix and pipelined structure to create

a fast algorithm that requires l' (n+1)/ (log,r)]+2 iterations, where r is the radix of
the multiplier, and n is the length of the modulus. Each iteration requires 3 clock cycles
whose length is dictated by the latency of the quotient estimation unit (QEU). The QEU
computes the multiple of the modulus that is to be subtracted from the intermediate result
during each iteration. Orup and Komerup propose a fully parallelized QEU that computes
all possible estimates and then selects the smallest non-negative result. For a radix-32
implementation this will requirz 42 separate estimates and hence 42 copies of the quotient
estimation circuitry, each of which consumes valuable area and power. Any attempts to
reduce the size of the QEU by reducing the number of parallel branches will result in a
direct increase in the execution time of the algorithm (i.e., Teycle = Tqeu so halving the
number of parallel branches doubles the cycle time). These shortcomings make Orup and

Komerup’s Algorithm unattractive for our application.

4.5.4 Takagi’s Algorithm
Takagi proposed a radix-4 modular multiplication algorithm that multiplies two redundant

form numbers to generate a result that is of the same form [41]. Hence the outputs of his
algorithm can be fed directly back in for repeated squarings, yielding a very efficient algo-
rithm for implementing the QRG. In addition, the hardware requirements of Takagi’s algo-
rithm are minimal enough that it was ultimately chosen as the algorithm to be used for
implementing the QRG.

A detailed description of both the algoritkm and the architecture for a VLSI imple-

mentation are given below.

70

The Algorithm '
Regular higher-radix multiplicaiion algorithms typically scan their operands from LSB to

MSB, forming partial products on each iteration that are then summed to generate the final
result. On each iteration, log,(radix) bits of the result are generated, beginning with the
LSB of the result and proceeding to the MSB. This method requires a total of n/log,(radix)
iterations to form the final result of an n x n bit multiplication. High-radix division algo-
rithms, on the other hand, scan the operands from MSB to LSB and generate their results
beginning vsith the MSB and proceeding to the LSB. Takagi’s algorithm utilizes the divi-
sion approach of scanning from MSB to LSB to perform both an n-bit multiplication and
modular reduction (i.e., n-bit division) concurrently. On each iteration, the operands are
scanned from MSB to LSB to form an intermediate result whose most significant digits
are then scanned to form a quotient estimate that is used to partially reduce the intermedi-
ate result. The use of a quotient estimate requires that the final result undergo one addi-
tional iteration to account for any errors introduced by the approximations in the
estimation process. The algorithm requires approximately Ln/ (log,r) _| + 1 iterations,
each of which is performed within a single clock cycle. The formal description of Takagi’s
algorithm is given in Figure 4-2.

INPUTS:
* Q: an n-bit binary modulus
* X: an n-digit redundant binary multiplicand
* Y: an n-digit redundant binary multiplier

OUTPUTS:
* P: an n- digit redundant binary product (i.e., P = X-Y mod Q)

ALGORITHM:
1. Papyy =0
2. for j = floor(n/2) downto -1 do

* calculate Y; using bits 2j and (2j-1) of input Y
L4 R.l = 4'Pj+| + YJ-X
* calculate C; using the most significant digits of R; and Q
. Pj = Rj - 4'CJ'Q
3.P=P,/4

Figure 4-2: Takagi’s Algorithm

7

The Architecture
Takagi’s algorithm is ideally suited to a VLSI implementation due to its regular cellular

array structure, which can be implemented in a bitslice structure (Figure 4-3). One partic-
ularly nice feature of the architecture is that the logic depth and hence the cycle time, of
the multiplier is independent of the length of thc modulus due to the use of redundant
number representations that eliminate long carry chains. The use of redundant number
representations requires that all interconnections between the bitslices be local (i.e., very
short) which eliminates the need for large global busses and their accompanying drivers.
The elimination of long carry chains and global bussing allows for very short cycle times
(on the order of 20-30 ns) and hence very fast modular multiplications, which is exactly

what we require for implementing the QRG.

Y; Recoder | Y Register
X Register . '
P Register . et "
— X Selector ¢ : :
Yy : : ; #1 ;
Redundant Adder #:l E . — l R; :
v ‘ .o X Redundant :
et ¢ Puj, | o— Adder e— Pu;
C; Selector Redundant Adder #2 : : #2 :
f E : G t «Q_,
‘ ’ Q Selector E E E -L Q Selector :
Q Register . T t .. t :
£ ' Q7 Qs-.. :
(a) Top Level Architecture (b) Bitslice i

Figure 4-3: Architecture of Takagi’s Multiplier
4.6 Reducing Power Consumption

The power consumption of the QRG-based cipher is prohibitively high due to the large

word widths (~ 512 bits). The use of redundant number representations amplifies this

12

problem by requiring multiple bits to represent each digit of the operands (e.g., the digit
set {-1,0,1} requires 2 bits per digit), all of which must be registered on the chip. The
algorithms used require numerous iterations as well. All of these factors add up to give a
very large power dissipation, estimated using Powermill to be on the order of 938 mW at a
supply voltage of 5V and a data rate of 1 Mbps. The following techniques can be utilized

to minimize the power consumption of the QRG, in an effort to make it a feasible part of

the low power encryption system.

Pjetis1
Pji3

X Selector
Yi
' 3
Adder #1 <t Adder #1 : Adder #1
Rui
Rjit1 l l
‘ Y
< = Adder #2 | Adder#2 |4 | Adder#2
Cj Selector Py;
A A
cq,
Y

l—> Q Selector I" Q Selector L’ Q Selector
Qt, th Qtz Qta * *

Qs Qs

(a) Schematic View

(b) Dependency Graph emam Critical Path
Figure 4-4: Critical Path of Takagi’s Multiplier

13

4.6.1 Conventional Supply Scaling
Analysis of the critical path of the QRG (Figure 4-4) revealed that the supply voltage must

be kept at its maximum value of 5V in order to operate at the required clock rate of

approximately 32 MHz that is required to meet the 1 Mbps throughput requirement.

4.6.2 Pipelining and Parallelizing the Computation
Unfortunately, the iterative nature of Takagi’s algorithm, coupled with the dependency of

each iteration on the results of the one before it, precludes the use of pipelining as a power
reduction technique. Investigation of the algorithm also revealed that only the computa-
tion of the next Y; value could be performed in parallel with each iteration of the loop,
resulting in a slight reduction in the critical path.

It should be noted that these deficiencies are not just a characteristic of Takagi’s Algo-
rithm. They are in fact a by-product of the basic approach utilized by these high-perfor-

mance algorithms to perform fast modular multiplications.

4.6.3 Variable Supply Voltage
In many applications, the data rate is a time-varying function that is often less than the

peak value (i.e., o = 1). For example, in a video compression stream a majority of the time
the throughput is much less than peak (Figure 4-5) due to the high correlation between
video frames and the differential encoding algorithm used to compress the stream. In a
conventional supply voltage scaling scheme the circuitry can be turned off using a gated
clock once it has finished its computations. Thus the circuitry only operates a fraction of

the time and hence the average power dissipation is given by the expression:
P,y = OCV,f (4-9)

where o is the average activity factor of the circuit. Table 4-1 shows the average activity
factors and corresponding power reduction factors of three scparate 400-frame com-

pressed video sequences.

74

1
33 kbits @ Frame 1 (i.e., full frame)
osr
= Differential Frame
5 o6f
(33
i
£ o4
3 A
< i L LY | . !
% 100 200 300 400
Frame #
Figure 4-5: Activity Factor per Frame
Average o Pmax/Pavg
Sequence # (=0) (= 1/00)
1 0.2400 4.17
2 0.1838 544
3 0.2529 3.95

Table 4-1: Activity Factors and Power Reduction Factors for 3 Video Sequences

The above linear reduction in power consumption can be improved upon by utilizing a
variable supply voltage to reduce the supply voltage to the minimum required value, as
determined by the activity factor, on a frame by frame basis. The basic idea is to lower the
voltage when the activity is less than peak rather than working at a fixed supply and idling.
By reducing the supply voltage, the power consumption can be reduced greater than qua-
dratically (quadratically due to the reduction in V4, and linearly due to o) as opposed to

linearly when the circuit is allowed to idle.

The above technique was applied to the three compressed video streams. Figure 4-6
shows the resulting supply voltage for Sequence #1. Figure 4-7 shows the resulting power
consumption for Sequence #1 utilizing a variable supply scheme, the power consumption

of the fixed supply scheme is shown for reference. Table 4-2 shows the results of utilizing

this method for all three video streams.

75

sl
3
Q ||
5
= 3 voltage =5V @ Frame 1
>
2
&
“ 2
o 100 200 300 400
Frame #
Figure 4-6: Supply Voltage per Frame
1 Y
0s8r

&

5 06l Fixed Supply Variable Supply

S 04

E

o

Z

0.2

0 AL l.hAA‘-_..n‘. ‘_L A
0 100 200 300 400

Frame #

Figure 4-7: Normalized Energy Consumption per Frame

Sequence # P ariable-supply/Pfixed-supply
1 7.14
2 9.04
3 7.00

Table 4-2: Power Reduction Factor Using a Variable Supply Relative to a Fixed Supply

76

When the supply voltage is reduced the circuit delays increase (EQ 1-2), so the clock
frequency must be reduced as well. One way to scale the clock proportionally with the
voltage supply is to use a ring-oscillator connected to the varying supply voltage as the
clock. The clock period will then track the supply voltage as the delays of the inverters in
the ring oscillator will vary with the supply voltage. An initial implementation of this vari-

able power supply and clock generator is described in [44].

4.6.4 Load Averaging

Further power reduction can be achieved by introducing buffering at the input of the
encryption module and averaging the workload over multiple frames. It can be shown that
by averaging the workload, the average power consumption is reduced based on the argu-
ment that the power consumption vs. throughput curve is convex and hence satisfies
Jensen’s Inequality (i.e., E[f(x)] 2 f(E[x])).

Averaging over multiple frames will increase the latency, but for bursty data patterns,
such as differentially encoded video signals with frequent initialization frames (e.g., Fig-
ure 4-8), it will result in lower average power consumption. Figure 4-9 shows the normal-
ized power consumption for a bursty 128 frame compressed video sequence utilizing the
aforementioned variable voltage supply technique. Figure 4-10 shows the normalized
amount of energy consumed per frame for varying averaging intervals. Figure 4-11 shows

the normalized energy consumption as a function of the number of samples that are aver-

aged for this video stream.

1
0.8

s

5 06

[3)

&

)

Z 04]

) ” Wl
o2r V\I\.\Ar v
09 32 64 96 128

Frame #

Figure 4-8: Activity Factor per Frame (bursty data)

77

o
©
'

Normalized Energy
=)
o

0.4 1
0.2 1
0 AOAYY. A AJ\J A A LJ\A.M LN\AAAA h
0 32 64 96 128
Frame #

Figure 4-9: Energy Consumption per Frame (bursty data)

1 T v v T
08 no averaging
(i.e., 1 sample) T
T~
8 oaf .
5 06
i3
=] 2 samples
s
a3
E 047 T
2 4 samples
8 samples
0.2 i
0 A L
0 6 24

Frame #

Figure 4-10: Energy Consumption per Frame for Varying Sample Sizes

78

-
o

9 -
§ st
‘3
3 7}
38
o4 g 6
>
S
‘s 5
4r
3t 1
24 2 4 8 16 32
of Samples Averaged Over

Figure 4-11: Energy Reduction Factor for Varying Sample Sizes Relative to a Fixed
Supply Scheme

There is an inherent trade off between the variable voltage supply and averaging tech-
niques. Variable voltage supply techniques favour data streams that are highly correlated
(i.e., when the data rate is low with infrequent peaks such as in Figure 4-5), whereas aver-
aging techniques favour bursty data streams (i.e., data rate has frequent peaks such as in
Figure 4-8). Averaging techniques don’t provide a significant amount of power reduction
for non-bursty data streams (Table 4-3), while variable supply voltage techniques don’t
provide as noticeable an effect for bursty data streams (e.g., a reduction of 3.36 for the
bursty data stream given in this section). However, when the two techniques are combined
the power reduction factor approaches an order of magnitude for both types of data
streams (Table 4-4). Hence the two techniques can be used in a complimentary fashion to

provide significant power reduction across a wider range of data stream patterns.

Number of Frames per Sample
Sequence # 1 2 4 8 16
1=—l 7.14 7.65 7.86 8.06 8.36
2 9.05 9.88 10.09 10.17 10.38
3 7.00 7.39 7.53 7.66 1.75

Table 4-3: Power Reduction Factors Using Averaging Relative to a Fixed Supply Scheme

79

Sequence # (averiéﬁg‘sézgilggg:gples)
1 8.36
2 10.38
3 7.75
4 (bursty data) 7.91

Table 4-4: Power Reduction of Complimentary Scheme Relative to a Fixed Supply
Scheme

4.7 Scalability

Many video compression algorithms generate a structured output containing both high pri-
ority and low priority information. For example, consider a differential encoding scheme
in which the initial frame is transmitted uncompressed and then a sequence of difference
frames are transmitted. In this example the initial frame would be labeled with a higher
priority than the difference frames as without it the difference frames yield little useful
information, whereas the differential frames could be approximated using interpolation.
The system designer can utilize their knowledge of the video compression algorithm to
dynamically reconfigure ihe encryption module to provide varying levels of security for
the data stream based on the priorities of the data being transmitted. This is similar to the
idea of priorit encoding (e.g., [45]) that is used to allocate additional error recovery cod-
ing for portions of the data stream that are deemed important (i.e, high priority), and
reduced error correction coding for the lower priority portions of the data stream.

The security of the QRG scales with the size of the modulus and hence the width of the
modular multiplier, which can be can be dynamically scaled to meet the varying security
requirements of the data stream. The power consumption of the multiplier varies approxi-
mately inversely with the multiplier width (Figure 4-12), so relatively small reductions in

the modulus width correspond to large reductions in the power consumption.

80

08|

06

04F

Normalized Energy Consumption

0 64 128 192 256 320 384 448 512
Multiplier Width (bits)
Figure 4-12: Energy Consumption for Varying Multiplier Widths

The security of the LFSR-based stream ciphers scales with the lengths of the LFSRs
used. The register lengths can also be dynamically scaled to provide varying levels of
encryption. The power consumption of the cipher scales linearly with register length (Fig-
ure 3-6), hence the power consumption can be reduced by approximately a linear amount.

As an example, video sequence #1 from Section 4.6.3 was encrypted using the QRG
following the priority scheme given in Table 4-5. An average power reduction factor on
the order of 2.8 relative to a constant-priority scheme was obtained using the scalable
technique. Repeating the experiment using the Shrinking Generator as the stream cipher
yielded a power reduction on the order of 1.8.

QRG Shrinking Generator

Modulus | Normalized P LESK Normalized
Width Power Widths Power

Frame Type Priority (bits) | Consumption (bits) Consumption

Intra-frame HIGH 512 1.000 78 1.00
(single frame)
Inter-frame LOW 384 0.288 39 0.500
(differential frame)

Table 4-5: Priority assignment for scalability example

81

4.8 Test Chip Design

At the topmost level the modular multiplier test chip consists of five separate blocks (Fig-
ure 4-13). The Bitslice Core, C;-Selector and Y-Recoder form the datapath of the multi-
plier and operate under the control of the Controller block. The Serial I/O block serves as
a test port through which the multiplier can be initialized for testing purposes.

A full set of schematics of the Modular Multiplier Test Chip can be found in Appendix

Go —»{ Controller Serial /O [Serial In

l cee control signals Q. X, and Y values
Y
Y
_ 2MSBofY
Y Recoder [-
Y;
Bitslice Core Result
__ Top(Ry)
Cj Selector [—
Cj :
Datapath

Figure 4-13: Modular Multiplier Test Chip Top Level Block Diagram

Bitslice Core
The Bitslice Core implements two digit selections and two redundant binary additions

(Figure 4-14). The value of Yj is first used to select a multiple of X (X or £2X) as the
input to the first redundant adder where it is added to the previous intermediate result
(Pj+|). The result of this addition (Rj) is used to compute the quotient estimate (Cj) and
that value is used to select a multiple of Q (4Q or X8Q) that is then used to partially
reduce the intermediate result via the second redundant adder. The output of the second

redundant adder is then stored as the new intermediate result (Pj).

An n-bit implementation of Takagi’s Algorithm requires a total of n+3 bitslices in the
core, the most significant of which is a special case used to adjust the most significant two

digits of P; to ensure that the intermediate result can be stored in just n+2 digits. The

82

Bitslice Core represents the majority of the logic and device count within the multiplier
and thus the decision was made to do a full-custom layout of the bitslice to facilitate an
area-efficient layout of the multiplier. The final bitslice contained a total of 234 devices
and occupied an area of 19,427 pm?.

X——‘ ‘—ZX

Y; —

X Selector
B —— |
R Redundant
Ui — Adder — Ru;,
#1

Py — Redundant " Pu;,,

Adder
]
Cj — Q Selector

wo— 1 L g

Figure 4-14: Bitslice Core Block Dlagram

Y Recoder
The Y Recoder scans the Y operand of the multiplier two bits at a time from most signifi-

cant to least significant, recoding each pair into a single minimally-redundant radix-4
value (Y;) whose value can be any of {-2, -1, 0, 1, 2}. The calculation of the next Yj value
is pipelined so that it can be overlapped with the current iteration to reduce the cycle time

of the multiplier (Figure 4-15).

83 .

| |
' Calculate I l Calculate | | Calculate
| Y. I Y. | Y.
' J+l | |] | | j-1
- _—_—_ l.--———_ Lo —Z.
- — —— —— — 1 ' . 1 | b e — o — — 1
Calculate : : Calculate : : Calculate :
P> P P.
ol N " | ! |
Time === = — — A= = e = = b= e
t L1 tis2 i3

Figure 4-15: Pipeline Flow of Y Recoder

C; Selector
The C; Selector (Figure 4-16) is responsible for calculating the approximate quotient

digit on each iteration of the multiplier. The Selector operates according to the following

rule:

(
-2, if (top (Rj) <-top(6-Q))
-1,if (-top(6-Q)Stop(Rj) <-top(2-Q))
Ci =] 0,if (top(2-Q) Stop(R) <top(2-Q)) (4-10)
1,if (top(2-Q) Stop (Rj) <top(6-Q))
L 2, if (top(Rj) 2top(6-Q))

where top(R;) is the most significant 8 digits of R;, top(2Q) is the most significant 5 digits
of 2Q and rop(6Q) is calculated frcm the most significant 6 digits of Q.

The calculation of C; begins by converting fop(R;) to a two’s complement non-redun-
dant binary form using an addition. If the non-redundant form of top(R;) is positive, it is
inverted and then subtracted from 2Q); if it is negative, it is added. The result is then sub-
tracted from 4Q if it is positive, and added if it is negative. The final addition is actually a
carry-out computation as only the sign of the last addition is required to calculate C;. The

resulting sign bitc from each addition/subtraction are decoded to compute the value of C;

84

(Table 4-6). This method always attempts to minimize the absolute value of the sum at
each stage. This in turn minimizes the size of the additions and hence the delay of the C;

calculation.

Cout2

1 1 i -2
Table 4-6: Decoding of Carry-out Bits in C; Selector

Controller
The Controlier generates all of the control signals required for operating the multiplier.

The Controller was designed with the intention of being completely scalable to allow for
varying multiplier widths. This scalability is accomplished by partitioning the controller
state machine such that there is an initial setup phase, then an iterative phase which is per-

formed as many times as required by the width of the multiplier operands and finally a fin-

85

ishing phase that completes the multiplication (Figure 4-17). Both the initial setup and
finishing phases are generic and applicable to all operand sizes, whereas the iterative

phase need only be repeated n/2 times for n-bit operands

Done Mult
Setup Phase Iterative Phase ——~ Finish Phase
Clear Multiplier \ § Multiplier Multiplier Clear
Multiptier Start Iterate Finish Recoder
Done Muit Save
Result

Figure 4-17: Controller State Diagram

Design for Scalability
The modular multiplier architecture was designed to be fully scalable in a real implemen-

tation, hence the design choices made in the Controller logic. Takagi’s Algorithm is partic-
ularly well suited to a scalable implementation. Given an n-bit implementation, Takagi’s
Algorithm can be scaled to perform m < n modular multiplications with minimal modifi-
cations to the datapath and controller logic. The m-bit operands must be loaded into regis-
ters using the most significant m-bits of the register. The unused low order bits can be
turned off by disabling their clocks (this will effectively disable the least significant (n -
m) bit slices as well). The algorithm is then iterated a total of m/2 times to generate the m-
bit result. The controller can utilize a (log, n - 1) bit counter, (logy n - 1) bit comparator
and a size register to create the necessary control information that ensures the multiplier

iterates for the required number of cycles.

Layout
The Modular Multiplier Testchip was implemented in a 0.6 um process, requiring a total

of 5963 devices, and an area of 1,163,530 p.mz. Figure 4-18 shows the layout of the
testchip.

86

1 - ?
- = ,
$ N li
I} o
im []
T b d it
Y = i
K e b L
R
i]

i
? i
P A o e " s . oy - A B PA AN g 14
ia»'-eg.z e ; e 3 \ Hatdocd
= 7
:

‘ ‘ "~ .'_"'_'.'.'.'.'.'.'%!"_"!'iu}

gé‘r‘?[lﬂ.’ Yo o T '.i.'.- PP SRAAAAA SARARAY AR AL L7 ‘l’.‘

Figure 4-18: Modular Multiplier Test Chip Layout

4.9 Preliminary Testing

Preliminary power consumption estimates were determined from the extracted layout of
the testchip using Powermill. Powermill predicted that the power dissipation would be
4.58 mW at a supply voltage of 5V and a clock frequency of 10 MHz. Measurements from
the testchip showed this number to be pessimistic, the power consumption of the actual
chip using the same operating conditions and stimuli was just 4.16 mW. Estimates of the
power consumption for a full scale 512-bit multiplier are shown Figure 4-19. These esti-
mates were calculated by first determining the equivalent switched capacitance of the 8-bit
multiplier and then assumirg that a 5!2-bit implementation would require 64 copies of the
8-bit version. Given these assumptions, the power consumption of the 512-bit multiplier

can be calculated using the following expression:

641,
Py, = (m) V§12 Ss12 (4-11)

where Vg, Ig, are fg taken from the test measurement and setup, f5;, = 32 MHz, and V5,

87

= Vjg. Note that this calculated value will be pessimistic in the sense that it includes the
power consumption of the control logic, Y; recoder and C; selector in each 8-bit slice. In a
real implementation, the power consumption of these blocks will be amortized over many

more bitslices.

1000 T Y T

800

600

400

Power Consumption (mW)

200

Supply Voltage (V)
Figure 4-19: Estimated Power Consumption of QRG Based on 8-bit Test Chip

Measurements were performed to determine the maximum operating speed of test chip
over a range of supply voltages. The chip was stimulated with the maximum frequency
possible using the test setup (i.e., f,,; = 12.5 MHz) and the supply voltage was reduced
until the multiplier began to fail. The equivalent delay factor was then calculated for a
range of supply voltages from the process data used to construct Figure 1-2. From these
values an equivalent maximum clock frequency could be derived for each supply voltage,
along with the throughput (Table 4-7). Using this technique, the maximum operating fre-
quency of the test chip was found to be approximately 38 MHz, exceeding our require-
ment of 32 MHz by over 18%. This allows us to operate the modular multiplier at a
reduced supply voltage of approximately 4V and still satisfy the 1Mbps throughput

requirements of our application, yielding a power reduction of 36%.

88

\SIEII;EE; Delay Factor Eqmv;xl:gﬁglmum thrl\(;llll)i?)) ut Conl:(l:m‘:tion
V) (MHz) (mW)
50V T 0.330 37.93 MHz 1.18 1000.2
45V 0.351 35.58 MHz 1.11 733.7
40V 0.393 31.79 MHz 0.99 514.2
35V 0.455 27.48 MHz 0.85 3324
30V 0.531 23.55 MHz 0.73 209.8
25V 0.670 18.65 MHz 0.58 112.2
20V 1 12.5 MHz 0.39 48.0
1.5V 1.675 7.46 MHz 0.23 15.8

Table 4-7: Test Data for Maximum Clock Frequency Based on Measurements at V4 =2V

89

Chapter 5

Conclusions and
Future Work

The high BERs that are inherent in wireless communication channels, coupled with
widely varying data rates make stream ciphers the algorithm of choice for data encryption.

LFSR-based stream ciphers are a very attractive choice of encryption algorithm as
they feature very simple hardware requirements that are very efficient for providing high-
speed, low-power keystream generation. On the other hand, the QRG provides much more
security at the cost of a much more complex algorithm that consumes considerably more
power than the simpler, less secure LFSR-based stream cipher.

A dynamically scalable encryption scheme can be utilized to provide more secure
encryption for high priority data, and less encryption for low priority data in those applica-
tions where the data stream can be explicitly prioritized. By scaling the encryption the
power consumption of the system can be significantly reduced (e.g., 2 - 3 times less
power) over a non-prioritized implementation. All of the LFSR-based stream cipher
implementations and the QRG based on Takagi’s modular multiplying algorithm
described herein feature scalable architectures for implementing a scalable scheme.

The use of a dynamic voltage supply allows for significant power reduction in applica-
tions where the computational requirements vary over time. If additional latency can be
tolerated in the signal path then averaging techniques can be utilized (at the cost of addi-
tional buffering) to provide further reductions in power, especially for those applications
where the variance of the computational requirements is high. Averaging and variable sup-
ply techniques act in a complimentary manner to yield roughly an order of magnitude
reduction in power consumption in cases where either of the techniques by themselves
yields little improvement (i.e., more improvement over a wider range of data types).

While the power consumption of the QRG (843 mW) may be low enough for some

applications, it is prohibitively high for ultra low power applications where power budgets

90

are on the order of SOmW. Hence the QRG should not be used as a keystream generator.
However, its cryptographically secure output would serve as an excellent pseudo-random
key generator for a low power LFSR-based stream cipher. If used in such a role the gener-
ator could operate in the background at a much lower data rate and supply voltage, thereby
making it a feasible component for the low-power encryption module. Other benefits of
the hybrid system are that it helps minimize the effects of synchronization loss that
plagues both stream and block ciphers and it increases the amount of work that an attacker
must do to attack tie systern by forcing them to repeatedly crack the encrypticn every time
the key is regenerated.

As an example, consider a 1Mbps keystream that is reinitialized every 10 frames (i.e.,
300 ms), requiring approximately 100 bits per initialization. The key generator data rate is
100 bits / 300 ms = 333 bps, corresponding to an allowable delay increase by a factor of
1Mbps/333 bps = 3000. At a supply voltage of 1V circuit delays increase by a factor of 40
so the clock frequency can be brought down to 32MHz / 40 = 800 kHz. At a 300 kHz
clock frequency the QRG will output 800 kHz / 256 (cycles / multiply) X 8 (bits / muiti-
ply) = 25 kbps. Thus the generator need only operate 1/75 of the time and can either be
turned off the remainder of the time or the supply voltage can be lowered even further.
Assuming that the generator is turned off the power reduction factor of the hybrid imple-
mentation is 3000x, for an estimated power consumption 450.0 uW. When coupled with a
low power LFSR-based stream cipher, such as the ASG, the total power consumption of a

hybrid system will be less than 1/2 mW.

5.1 Future Work

The body of work described within this thesis is only the beginning in terms of what must
be done for developing a secure wireless communications link. The following are several
research projects that should be investigated as a continuation of the work previously

described herein.

5.1.1 Low Power Hybrid System
The speed and efficiency of the LFSR-based strearn cipher can be combined with the secu-

rity of QRG-based stream ciphers to yield a low power hybrid system (Figure 5-1). A sim-

ple, low-power LFSR-based stream cipher is used to generate the output keystream, which

91

is decoupled from the data stream through an output buffer and the more complex, and
power intensive, QRG is used as the seed generator. At the time of re-synchronization, the
LFSR-based cipher is re-initialized with the pseudo-random bits in the seed buffer and the
feedback polynomial registers are loaded with values from a low-power polynomial ROM

that are selected using several pseudo-random bits from the seed buffer.

Initial Seed Data Stream
| |
v v
Seed
Generator Polynomial Data
(QRG) ROM Buffer
l Seed l
Buffer LFSR
Stream »| Output
Cipher Buffer

v
Encrvpted Data

Figure 5-1: Proposed Low Power Encryption System

Further work needs to be done to develop both the major functional blocks (i.e., a
512+ bit QRG and programmable LFSR Stream Cipher) and support circuitry (i.e., low
power ROMs and FIFOs/buffers) of such a system if it is to be used in an ultra low power

application.

5.1.2 Key Exchange and Authentication
The initial seeds of the QRG can be hardwired into both the sensor unit and the base sta-

tion, much like the unique identification key of the GSM standard. Future work should be
done to determine the feasibility of low power key exchange and authentication protocols
for use in wireless networks. The work should occur at both a high-level transaction level
(e.g., minimizing the number of computations required while still ensuring a tamper-proof
transaction) and at the low-level implementation level (e.g., developing low-power imple-
mentations of the necessary protocol building blocks such as hash functions and compara-

tors).

92

5.1.3 Full-scale Modular Multiplier Chip
Currently we are only able to estimate the power consumption of a full-scale 512-bit qua-

dratic residue generator, based on measurements obtained from an 8-bit implementation.
The next step is to build a full-scale modular multiplier chip which will be used to verify
these estimates and will serve as a piece of the proposed low-power hybrid encryption sys-

tem of Section 5.2.1.

5.14 Modular Multiplication Algorithm Development and Implementation
The performance of QRG depends almost completely on the ability to perform repeated

modular squarings quickly and efficiently. Hence work should be done to develop algo-
rithms for performing modular squarings quickly and efficiently. Perhaps the fact that we
are performing squarings rather than more general multiplication can be exploited to yield
significant gains in performance“. In addition, extending existing algorithms, such as Tak-
agi’s, to higher-radix implementations should be investigated as the running time of these
algorithms is directly proportional to log,(radix). So by extending the algorithm to radix 8,
16 or even 32, we can get improvements on the order of 1.5x, 2x, and 2.5x repsectively in
terms of performance. However, using a higher-radix will require additional overhead in
terms of additional recoding, more complex redundant addition, increased storage require-
ments and more complex quotient estimation. It remains to be seen at what point the bene-

fits of going to an even higher radix are outweighed by the costs.

4. Note that though we might make significant gains (e.g., 2x or 4x), both squaring and multiplica-
tion are algorithmically equivalent in terms of running time as XY = ((X + Y)2 -(X- Y)2) /4,
hence any algorithmic breakthrough that would allow us to perform modular squarings could be
exploited to perform modular multiplications as well.

93

References

[1] J. Eckhouse, “Hackers Hurt Cellular Industry,” San Francisco Chronicle, January 25,
1993, page C1.

[2] Cellular Telecommunications Industry Association, “National Phone Fraud Expert
Testifies In Favour of Maryland State Police Proposal,” CTIA Press Release, January
31, 1996

[31 A.P. Chandrakasan, Low Power Digital CMOS Design, Ph. D. Thesis, UC Berkeley,
1994.

[4] W. Diffie, M.E. Hellman, “New Directions in Cryptography,” IEEE Transactions on
Information Theory, vol. IT-22,mo. 6, November 1976, pp. 644-654

{5] T. ElGamal, “A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms,” Advances in Cryptology - CRYPTO ‘84 Proceedings, Springer-Verlag,
1985’ pp' 10'18.

6] R.L.Rivest, A. Shamir, L.M. Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems,” Communications of the ACM, vol. 21, no. 2, Febru-
ary 1978, pp. 120-126.

[7]1 AM. Odlyzko, “The Future of Integer Factorization,” CryptoBytes, RSA Laborato-
ries, vol. 1, no. 2, Summer, 1995, pp. 5-12.

[8] H. Lin, L. Harn, “Authentication in Wireless Communications,” GLOBECOM ‘93,
1993, pp. 550-554.

[9] A. Aziz, W. Diffie, “Privacy and Authentication for Wireless Local Area Networks,”
IEEE Personal Communications, vol. 1, no. 1, 1994, pp. 25-31.

[10] National Institute of Standards and Technology, “Data Encryption Standard,” NIST
FIPS PUB 46-2, U.S. Department of Commerce, December 1993.

[11] X. Lai, On the Design and Security of Block Ciphers, ETH Series in Information Pro-
cessing, vol. 1, Konstanz: Hartung-Gorre Verlag, 1992.

[12] B. Schneier, “The Blowfish Encryption Algorithm,” Dr. Dobb’s Journal, vol. 19, no.
4, April 1994, pp. 38-40.

[13] R.L. Rivest, “The RC5 Encryption Algorithm,” Dr. Dobb’s Journal, vol. 20, no. 1,
January 1995, pp. 146-148.

94

[14] L.R. Knudsen, Block Ciphers - Analysis, Design, Applications, Ph. D. dissertation,
Aarhus University, Novembecr, 1994.

[15] R.A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, 1986

[16] J.L. Massey, “Shift-Register Syntehsis and BCH Decoding,” IEEE Transactions on
Information Theory, vol. IT-15, no. 1, January 1969, pp. 122-127

[17] L. Blum, M. Blum, M. Shub, “A Simple Unpredictable Pseudo-Random Number
Generator,” SIAM Journal on Computing, vol. 15, no. 2, 1986, pp. 364-383.

[18] T. Meng, B.M. Gordon, E.K. Tsern, A.C. Hung, “Portable Video-on-Demand in
Wireless Communication,” Proceedings of the IEEE, vol. 83, no. 4, April 1995, pp.
659 - 680.

[19] D.A. Huffman, “A method for the construction of minimum-redundancy code,” Proc.
IRE, vol. 40, September 1952, pp. 1098-1101.

[20] A.K. Lensira, H.W. Lenstra, Jr., M.S. Manasse, J.M. Pollard, “The Number Field
Sieve,” Proceedings of the Twenty Second Annual ACM Symposium on Theory of
Computing, 1990, pp. 564-572.

[21] C. Pomerance, “The Quadratic Sieve Factoring Algorithm,” Advances in Cryptology
-- Proceedings of EUROCRYPT ‘84, Springer-Verlag, 1985, pp.169-182.

[22] European Telecommunications Standards Institute, “Security Aspects,” Recommen-
dation GSM 02.09.

[23] Evropean Telecommunications Standards Institute, “Subscriber Identity Module,”
Recommendation GSM 02.17.

[24] European Telecommunications Standards Institute, “Security Related Network Func-
tions,” Recommendation GSM 03.20.

[25] T. Beth, E.C. Piper, “The Stop-and-Go Generator,” Advances in Cryptology - EURO-
CRYPT ‘84 Proceedings, Springer-Verlag, 1984, pp. 88-92.

[26] P.R. Geffe, “How to Protect Data With Ciphers That are Really Hard to Break,” Elec-
tornics, vol. 46, no. 1, January 1973, pp. 99-101.

[27] S.M. Jennings, A Special Class of Binary Sequences, Ph.D. Dissertation, University
of London, 1980.

[28] D. Coppersmith, H. Krawczyk, Y. Masour, “The Shrinking Generator,” Advances in
Cryptology - CRYPTO ‘93 Proceedings, Springer-Verlag, 1995, pp. 22-39.

0§

[29] L. Kessler, H. Krawczyk, “Minimum Buffer Length and Clock Rate for the Shrinking
Generator Cryptosystem,” IBM Research Report RC 19938(88322), IBM Research
Division, February 17, 1995

[30] J.D. Golic, “Linear Cryptanalysis of Stream Ciphers,” Fast Software Encryption -
Second International Workshop Proceedings, Springer-Verlag, 1995, pp. 154-169.

[31] W. Meier, O. Staffelbach, “The Self-Shrinking Generator,” Advances in Cryptology -
EUROCRYPT ‘94 Proceedings, Springer-Verlag, 1995, pp. 205-214.

[32] C.G. Gunther, “Alternating Step Generators Controlled by de Bruijn Sequences,”
Advances in Cryptology -- EUROCRYPT ‘87 Proceedings, Springer-Verlag, 1988, pp.
5-14.

[33] B. Schneier, Applied Cryptography - Second Edition, New York: John Wilely & Sons
Inc., 1996, pp. 389, 662-667.

[34] R.J. Anderson, Posting to sci.crypt USENET newsgroup, June 17, 1994

[35] T. Barber, BodyLAN: A Low Power Communications System, M.S. Thesis, MIT,
1996, pp. x

{36] D. Stinson, Cryptography: Thecry and Practice, Boca Raton: CRC Press Inc., 1995.

[37] U.V. Vazirani, V.V. Vazirani, “Efficient and Secure Pseudo-Random Number Genera-
tion,” Advances in Cryptology - CRYPTO ‘84 Proceedings, Springer-Verlag, 1985, pp.
193-202.

[38] H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara, K. Mashiko, “An §.8-
ns 54*54-bit Multiplier With High Speed Redundant Binary Architecture,” IEEE
Journal of Solid-State Circuits, vol. 31, no. 6, June 1996, pp. 773-783.

[39] R.K. Yu, G.B. Zyner, “167 MHz Radix-4 Floating Point Multiplier,” Proceedings of
the 12th Symposium on Computer Arithmetic, 1995, pp. 149-154

[40] N. Ohkubo, M. Suzuki, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, Y. Nakag-
ome, “A 4.4-ns CMOS 54*54-b Multiplier Using Pass-Transistor Multiplexer,” Pro-
ceedings of IEEE Custom Integrated Circuits Conference - CICC ‘94, 1994, pp. 599-
602.

[41] N. Takagi, “A Radix-4 Modular Multiplication Hardware Algorithm for Modular
Exponentiation,” IEEE Transactions on Computers, vol. 41, no. 8., August 1992, pp.
949-956.

[42] H. Morita, “A Fast Modular-Multiplication Algorithm Based on a Higher Radix,”
Advances in Cryptology - CRYPTO ‘89 Proceedings, Springer-Verlag, 1990, pp. 387-
399.

{43] H. Orup, P. Komerup, “A High-Radix Hardware Algorithm for Calculating the Expo-
nential ME Modulo N,” 10th IEEE Symposium on Computer Arithmetic, 1991, pp. 51-
57.

[44] V. Gutnik, Variable Supply-Voltage for Low Power DSP. M.S. Thesis, MIT, 1996.

[45] A. Albanese, J. Blomer, J. Edmonds, M. Luby, M. Sudan, “Priority Encoding Trans-
mission,” Proceedings of 35th FOCS, 1994, pp. 604-612.

Appendix A

Stream Cipher Schematics

This section provides schematics for the major functional blocks of the Stream Cipher

Test Chip. A list of provided schematics is given below along vsith a brief description of
each.

¢ AltStopGceGeneratorl - alternating stop & go generator stream cipher

* ShrinkingGenerator1 - shrinking generator stream cipher

* SelfShrinkGenerator1 - self-shrinking generator stream cipher

» A5 - AS stream cipher

* LFSR8x8+1 - 65 bit variable length prcgrammable linear feedback shift register
» LFSR8x8 - 64 bit variable length programmable linear feecback shift register

* LFSR8x8-1 - 63 bit variable length programmable linear feedback shift register

98

Va0 . rmw aaen‘nﬂ.,o.é:

(%] 16 oxﬁuoo.s siv | dudusay

e] 1

193(04d OLJAYD 19M0d MOT

e
fnd
“i

Ll L 4 (veers

— =l

ooty I'ilin“ —_
~z = P

g *on

@ woweey
L taand
ey

g ll[ll"|l“ 1hegue
4o (L]

T e T e e

Figure A-1: Alternating Stop & Go Generator Schematic

oo’ |
{ 108Le0tunutag

I
va |

9€6. £ZCYSL . B

[

I

| cumnssy

~ _10afo1d QLJAYD Jamod moT

oo @

ro@-

(R pivy

@ son

a
L iaind
SRS §

Lok "1}

4 <

@ <=0

g
{ S [

Figure A-2: Shrinking Generator Schematic

100

1

§
5 L W 1
j L 4o “ ﬁoo.rul.»n.om.m. " Sv
[1 1010,8u9Bu:r U NS S 1—) ‘u—:n
) -

19af01d QLJAYD I3M0d wo]

Figure A-3: Self-Shrinking Generator Schematic
101

! I

‘,‘-,o;. rnw Sm.on;n,‘o,.?‘.
[[| sy
) LK) I

i

| 193{01d OLIAND famod Mo

¥

L) .
e T
o v

-2 B, S

Proposed GSM Cipher (AS) Schematic

Figure A-4

102

P 1 S T |

; L 4o ..mﬁ 9661 :5:80°C. vi by —

[— . BN — T B
Sl R | cunsay
nay e] 1 Lemn

| 103l01d QLJAYD 13m0 MOT

L 1)) - .
POt -]
P om st
L iiad >,
e SIS e R
aa&.%..a:
N " T P
a9 ‘aaro
<« Py
ﬂﬁ. fontetd

103

Figure A-5: 65-bit Variable Length Programmable LFSR Schematic

[S VR TN E N - S (S S
e ._Aww,..w..@‘_.,.?qm‘..wh,.ﬁ. R ‘

- _19aload 0LJAYND famod MO

v

P 7 1 -
o @i
¢ tﬂ <Lrseegre P Lo b
$E SIS i hagperiey
<& w———.. . ;l-wl.n.:v.l‘!.l.

:
Nl
.
*
}”[
—

i

104

Figure A-6: 64-bit Variable Length Programmable LFSR Schematic

i

1

iy
b

«-&:)
;«::)'
1>
Poly
1=y

19<38>
Jonsnacrdn<)> :» j 38>
i
we
.=
OutSons
Ouvtbey
oy
rsaze

<I>29<1>
-,
L -]

-

3 Sntncte>

e

Low Power CRYPTO Project

JED

| aug 14 12:85:22 1996

[2)] o

Figure A-7: 63-bit Variable Length Programmable LFSR Schematic

105

<

Appendix B

Modular Multiplier
Schematics

This section provides the schematics for the major functional blocks within the Modu-

lar Multiplier Test Chip, down to the individual logic blocks of the bitslices and recoders.
The internal schematics of the redundant adders, recoders and selectors are not provided
as they are transistor-level schematics whose layout represents the floorplan »f the physi-
cal layout for each cell. A list of provided schematics is given below along with a brief

description of each.

» TakagiTop - top level design schematic

« 8bitController - the control logic of the modular multiplier

* SeriallO - the serial test interface

* CjSelector - the quotient estimation unit

* YRecoder - Y operand recoder

» MultDatapath - all of the bitslices and interconnections of the Bitslice Core
» BitsliceLow_layout - bitslice used for all but the most significant digits

* BitsliceHigh_layout - bitslice used for only the most significant digits

106

! I

L Jo : : 9661 S¥'6L:aY

He | 1 bny _
-—) - Rl e X} Ca
[i dop-Bowoy _ diy0isay
L) 1 L T1) -]

103fodd OLJAYD I9M04d MOT

Figure B-1: Top Level Modular Multiplier Schematic
107

1 I
L 40 1 :m% 9661 LESTTL vt By ._\ :
= Rl Bl M

[- o

[131,05L01K8 Mla_..uu»np :
— _— S S s

103foxd QLJAYD Iamod moT |

Lono.auag joubig 0sluo) R Bupodag oIS

193Lno) doo~

arirgmea

,01243U39 9015 1XaN

Figure B-2: Controller Logic Schematic
108

T I 2] £ I

v 40t [wB] 966t ssiezms 1t by]

it Voons | oo | U Wy IR
Bunl oliayss [amoisey
%50 LT T Tmn |

193(0dd OLJAYD 1amod MoT]

@00 @—yt sV J‘ﬁg
« :n Mowrs s

Figure B-3: Serial I/O Interface Schematic

109

R T S

I

Twa 9661 €421 §. BNy

A S . K I
1012213519 [dumnsey

Lo X) 1]

d.ow._...o.mm

OLJA¥D famod moq

[Tt

{<aaverg

@Y o

¥ S-SR [b-pre-

Figure B-4: C; Selector Schematic

110

19alo1d OLJA¥D famod MO

m <ELI
Py S—
o <aimdt win Ty

pe [Ty ﬁ.v.Aﬂ» I
Som wnwil wou bt hikidial gEET T

Figure B-5: Y; Recoder Schematic
111

1

S

2

—r

T =

-

nﬂuv-
ﬁ. wen.rm

<0
OO hdian]

T

aw«m‘t‘ @ o —!5 ’R-m

e T o T
: :z:?::@
M unt«»l_'* ‘3
168

\ 24503
! [T owana «wn»'g‘:d priion 003
¢ b =T ovire
P et T s i itbiided arewcornul -T 1> 4 9 7=
; § };}5 ~ 3 I ’g;\ |
<y N ot #1300 Pi Ll g B
wnrq,.:ri,—' - & B om0 .' " (3 o M
i b i b1)
. @0 P20 con M eerw'cerma
«.wnm‘!—‘ <S130mg 31 BT <ro A Bl
0864 eow <o | v

0
=

= !
&
SEEIL R th "o Jﬂ"‘""“
L] g gt <rcered] > d o
x 3 Urwirw
e he WU rEUr P
{
e
<orox e
i:'«m’um .
T30 i<y |
1 W
1::
o
§

<o
a0

RO
<«

waon P

<D ‘
encrn>

e

L M—

I

ow Power CRYPTO Project

L~ —

TesiCNhp l

'0:1!'.!5 ‘996

1

B B

1

I =]
Figure B-6: Modular Multiplier Datapath Schematic

112

U D e] B 1 Y
L0 . ..u_ 9661 15°55:68 £Z by
- el v~ — g |
] wncko"moensug | dudisey
= L - .
_103(04d QLJAYD M0 MOT |
§ i
t i
el mpeegn <D — ——-f W
3
—————pw
2
~ Py~ [P— 1y g 180y
L
= 2 1
" ————a ¢FI>N I ”
ey] SM el (O] ‘s
i
I s BN
3
i ;
Voo mpoety I — s
H 3
: 8
' H R 1 4
3 % N
H 3)
§ Y
! | 2] € | v

Figure B-7: Low Bitslice Schematic

113

Sl L do . r.; naa;u::&?: ~ _
(] oo "ubemsIg ﬂ sy
ey o W9

193(01 QLJAND 13m0d MOT

oty -8 w0

[G

‘‘‘‘‘ . L]

- —4 g ...t...‘-'!.ln:vl
(i 1
1]
R | B csisese
- B v
»
i3 1
]
bl
I R A
N S S SRS (o S

114

Figure B-8: High Bitslice Schematic

