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Abstract Among the semi-enclosed basins of the world ocean, the South China Sea (SCS)

is unique in its configuration as it lies under the main southwest-northeast pathway of the

seasonal monsoons. The northeast (NE) monsoon (November–February) and southwest

(SW) monsoon (June–August) dominate the large-scale sea level dynamics of the SCS.

Sunda Shelf at the southwest part of SCS tends to amplify Sea Level Anomalies (SLAs)

generated by winds over the sea. The entire region, bounded by Gulf of Thailand on the

north, Karimata Strait on the south, east cost of Peninsular Malaysia on the west, and break

of Sunda Shelf on the east, could experience positive or negative SLAs depending on the

wind direction and speed. Strong sea level surges during NE monsoon, if coincide with

spring tide, usually lead to coastal floods in the region. To understand the phenomena, we

analyzed the wind-driven sea level anomalies focusing on Singapore Strait (SS), laying at

the most southwest point of the region. An analysis of Tanjong Pagar tide gauge data in the

SS, as well as satellite altimetry and reanalyzed wind in the region, reveals that the wind over

central part of SCS is arguably the most important factor determining the observed vari-

ability of SLAs at hourly to monthly scales. Climatological SLAs in SS are found to be

positive, and of the order of 30 cm during NE monsoon, but negative, and of the order of

20 cm during SW monsoon. The largest anomalies are associated with intensified winds

during NE monsoon, with historical highs exceeding 50 cm. At the hourly and daily time-

scales, SLA magnitude is correlated with the NE wind speed over central part of SCS with an

average time lag of 36–42 h. An exact solution is derived by approximating the elongated

SCS shape with one-dimensional two-step channel. The solution is utilized to derive simple

model connecting SLAs in SS with the wind speeds over central part of SCS. Due to delay of
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sea level anomaly in SS with respect to the remote source at SCS, the simplified solutions

could be used for storm surge forecast, with a lead time exceeding 1 day.

Keywords Storm surges � Monsoon � Singapore Strait � Sea level anomaly �
South China Sea � Sunda Shelf

Abbreviations
SCS South China Sea

NE Northeast monsoon

SW Southwest monsoon

TG Tanjong Pagar tide gauge

SLA Sea level anomaly

SS Singapore Strait

1 Introduction

Storm surges have been an important subject for intensive studies worldwide. Nicholls

(2002, 2003) estimated that in the past 200 years, 2.6 million people have drowned during

surge events, and taking into consideration the full range of climate change scenarios up to

2100, the death toll could be from 0.4 to 39 million/year. Von Storch and Woth (2008)

generalized that in spite of the global scale threat, due to relatively small lateral extent of

storm surges, the problem is considered to be a regional, and scientific insights and

methods developed for one part of the world do not necessarily find their way into other

parts. In particular, they gave an overview of storm surge phenomenon of the North Sea.

Low-laying coastal areas in the South East Asia (SEA) experience disastrous storm

surges. According to Dasgupta et al. (2009), out of ten cities that are vulnerable to storm

surges, almost half of them are situated in the SEA countries, such as (alphabetically)

Bangladesh, China, India, Indonesia, Philippines, Sri Lanka and Vietnam. Along the

Bangladesh coast itself, tropical storms of 1876, 1891, 1970 and 1991, and the subsequent

surges taken a toll of 100,000 lives (Gönnert et al. 2001). It may also be noted that storm

surges in the Bay of Bengal attracted the largest number of publications such as Das

(1972), Flierl and Robinson (1972), Murty et al. (1986), Khalil (1992), Vatvani et al.

(2000), Rao et al. (2004), Kumar et al. (2008) and Dube et al. (2009).

Storm surges as a separate phenomenon are less studied in the South China Sea (SCS)

and Sunda Shelf in particular (Fig. 1a). Vatvani et al. (2000) developed an operational

storm surge model encompassing entire SCS with a focus on Vietnam coast. Several

studies have been conducted for validating storm surge models for the Gulf of Thailand

(Phaksopa and Sojisuporn 2006; Wannawong et al. 2010; Sirisup and Tomkratoke 2010).

Sunda Shelf has a typical depth of 100 m, whereas depth at northeast part of SCS exceeds

3,000 m. The uniqueness of sea level anomalies and storm surges over Sunda Shelf is that

due to a broad lateral extent of the shallow water domain, the phenomenon could be

studied using satellite altimetry data (TOPEX/Poseidon, http://www.aviso.oceanobs.com/

duacs/) available daily. Even though satellite data are less accurate in the nearshore than

tide gauge records, they have unmatched coverage in the open sea where tide gauges

are not installed. Several studies on sea level anomalies have been carried out using

altimetry in the SCS in the context of regional scale oceanographic processes (Hwang and
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Chen 2000; Shaw et al. 1999; Ho et al. 2000; Liu et al. 2001a, b; Fang et al. 2006; Cheng

and Qi 2007; Rong et al. 2007).

The Singapore Strait (SS) is a shallow and narrow water body centrally located at the

Sunda Shelf and connected to SCS to the east and the Strait of Malacca to the west

(Fig. 1b). The bathymetry of SS is complicated with depth ranging from 20 to 200 m.

Several major tidal constituents propagate in the SCS through Luzon Strait, and some
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Fig. 1 Regional bathymetry: a South China Sea with 5�95�; b Singapore Strait with Tanjong Pagar tide
gauge

Nat Hazards (2013) 66:1345–1362 1347

123



shallow water components are generated at the adjacent continental shelves—all con-

tributing to a maximum tidal range of about 3 m in the SS. While currents in the SS are

predominantly tidal-driven, northeast (NE) winds over SCS enhance the flood (westward)

residual flow, and southwest (SW) winds enhance the ebb (eastward) residual flow (Pang

and Tkalich 2003; Chan et al. 2006). The wind is causing sea level anomalies, sometimes

exceeding 50 cm, positive during NE monsoon and negative during SW monsoon. While

these SLAs are not dangerous alone, when coincide with king tides, they can generate

widespread coastal floods in the region such as the one happened on 23 December 1999.

In the present study, we show the relation of satellite sea surface anomaly with the wind

at a daily to semiannual scale. In the SW monsoon (June–August), the wind is blowing

along the axis Singapore–Taiwan, resulting in sea level elevation off Luzon and depression

over Sunda Shelf, while during NE monsoon (November–February), the wind changes

direction to opposite, causing reversal of the SLA pattern. Even though earlier studies

presented correlation of SLA with wind speed at monthly scale, accurate description of

storm surge problem requires at least hourly records that could be provided by tide gauges

only. We use TOPEX/Poseidon (T/P) satellite altimetry data to understand the formation of

sea level anomaly in the SCS in general, and Tanjong Pagar (TG) tide gauge data to

quantify the extreme SLAs in the SS in particular. Extreme sea level anomalies ([30 cm)

are correlated to large-scale wind patterns over relevant zones of SCS. Simplified solutions

are derived to express sea surface height as a function of wind speed, fitted to the available

data. Due to delay of sea level anomaly in SS with respect to remote source in the SCS, the

expression could be used for forecasting purposes with a lead time of 1–2 days.

2 Data analysis

2.1 Sea level anomalies in the Singapore Strait

To retrieve non-tidal signal due to SLAs for the period 1984–2007, Tanjong Pagar hourly

tide gauge data have been subject to harmonic analysis, and 69 constituents have been

obtained. Among astronomic principal and major tidal harmonics with amplitudes

M2 = 75.80 cm, S2 = 30.02 cm, K1 = 29.19 cm, O1 = 28.97 cm, N2 = 14.69 cm,

K2 = 8.94 cm, P1 = 9.23 cm, Q1 = 6.00 cm, we noted a comparable amplitude of

annual SA = 13.37 cm and semiannual SSA = 2.97 cm constituents, which reflect sea-

sonal meteorological variations influencing the sea level. In our case, the annual and

semiannual periods are driven by monsoon cycling between NE and SW. To exclude major

influence of local features on TG records, we have compared it with neighboring tide

gauges data in SS to find similar patterns (not included in the paper). If we subtract the

harmonics from the original tide gauge data, we get residual values qualified as sea level

anomalies. We could remove SA and SSA harmonics from the residuals to highlight sea

level surges due to specific wind events in the SCS or retain the constituents to observe the

anomalies on a back of monsoon-driven surge.

Another source of SLA data are TOPEX/Poseidon sea surface altimetry data available

since 1992 (http://apdrc.soest.hawaii.edu) at weekly resolution initially, but refined to daily

snapshots eventually. The anomalies are calculated with respect to 7 year mean (January

1993 to December 1999) and mapped on a global irregular grid with 1/3 degree spacing.

To represent sea level in SS, the data over 5 degree box centered off Singapore are spatially

and weekly averaged and compared with the TG anomalies with SA and SSA included

(Fig. 2). Both data sets clearly show seasonal variability of sea level anomalies in the SS:
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positive during NE monsoon, and negative during SW monsoon. In spite of commonly

known poor performance of satellite altimetry in coastal regions, the match is surprisingly

good with a robust correlation coefficient 0.82. The successful comparison could be

possible due to an extensive sea level surges generated over Sunda Shelf by regional wind.

Still, as one can expect, the high-resolution tide gauge data show sharper peaks as one

sticking out on December 1999. The above analysis ensured cohesiveness of tide gauge

data and satellite altimetry, and therefore, we can use latter to track origin of sea level

surges over the entire SCS domain.

Fig. 2 Sea level anomalies: a, b derived from Tanjong Pagar tide gauge and satellite altimetry;
c correlation between tide gauge and satellite altimetry data
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2.2 Effect of monsoon on SLA

Detailed description of wind system over the SCS is not the primary goal of this work;

therefore, readers may refer to the reviews of Wang et al. (2005, 2009) and Chang et al.

(2011). It is important to note that monsoon wind is fairly uniform over the SCS, and

typhoons are common only at the NE corner of the sea, propagating generally toward

Taiwan, China and Vietnam. All major past sea level extremes in SS (partially illustrated

in Sect. 2.3) have been generated by monsoon surges, manifested as increase of monsoonal

wind above the usual range for a few consecutive days. The affected area usually spans

over significant part of the SCS; therefore, satellite altimetry and six-hourly NCEP wind

(Kalnay et al. 1996; http://www.esrl.noaa.gov/psd/) have sufficient resolution for

the studied phenomenon. For convenience of analysis, we averaged NCEP wind over

5 degree cells, assigned to their centers (as shown in Fig. 1a) and numbered in the text

from W1 to W24.

We compare climatologies of altimetry versus gridded NCEP winds for the period

1993–2008 in Fig. 3. The climatological NE and SW wind is aligned roughly along the

longest axis of SCS depicted by solid lines, or in more refined terms, along the streamlines

depicted by dashed curves having a sharp turn almost 90� at the southernmost tip of the

Malay Peninsula. Ends of the curves rest on the cell W9, representing area offshore of

Vietnam and Hainan Island from one side, and cell W18 corresponding to Karimata Strait

from another side. The climatological wind along the streamlines is the strongest off

Vietnam and the weakest over Karimata Strait. More information on wind speed and

direction could be obtained from wind-rose diagrams depicted in Fig. 4. While 6-hourly

wind off Vietnam may exceed 15 m/s quite frequently, wind over Karimata Strait does not

reach 8 m/s. Six-hourly wind speed at cell W9 may even exceed the threshold of 17.5 m/s,

established by NOAA for 1-min-average wind to be classified as a tropical storm.

Figure 5a, b shows wind and SLA climatologies for the period 1993–2008 along the cross-

section Taiwan–Singapore, while Fig. 5c depicts the bottom profile. Figure 5a illustrates

the climatological wind speeds for the NE and SW monsoons. The strongest NE wind is

measured at two areas, one off Taiwan and another off Vietnam shores (near geographical

center of SCS); strongest SW wind has one peak off Vietnam. The climatological wind at

the center of SCS seems to drive SLA toward Taiwan during SW monsoon, or toward

Sunda Shelf during NE monsoon. Figure 5b shows the corresponding climatological SLAs

exceeding 10 cm over the Sunda Shelf, positive during NE monsoon and negative during

SW monsoon. Interestingly, several nodal points of sea level are found to be aligned above

sharp gradients of the bottom profile, out of which we note the one at the center of the

cross-section corresponding to the bottom drop exceeding 2,000 m. The phenomenon will

be investigated in Sect. 3.1 using an analytical solution.

SLA variability with respect to the driving wind is analyzed further. The frequency

distribution of hourly SLA time series at different months throughout a year is presented in

Fig. 6. It is somewhat positively skewed during the NE monsoon, and to a lesser degree

negatively skewed during the SW monsoon, but otherwise near symmetrical around

floating mean value, positive during NE and negative during SW monsoon. While

December and March see wider variability of anomalies, the frequency distribution during

other periods is fairly centralized with the dispersion of about 20 cm. Figure 7 shows

annual distribution of SLAs in SS reflecting regional climate signals, such as ENSO. In

particular, stronger positive skewness is observed during El Niño and La Niña episodes,

with the mean sea level dipping during El Niño episodes of 1987–1988 and 1991–1992, but

elevated above average during La Niña episodes of 1988–1989 and 1999–2000. In other
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Fig. 3 Climatological seasonal 6-hourly wind and satellite altimetry averaged over 1993–2008 years: a NE
Monsoon (November–February), b SW Monsoon (June–August). Solid line is the longest axis of Taiwan–
Singapore, and dash-lines are the wind speed streamlines
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years, the annual frequency distribution may show two peaks corresponding to NE and SW

monsoons.

2.3 Correlation of SLA with gridded regional wind

In the original TG data (even before detiding), some extremes are sticking out when high

sea level cases coincide with the spring tide, usually during NE monsoon. For illustrative

purpose, we have selected several cases exceeding a threshold value 3.3 m above Chart

Fig. 4 Climatological wind-rose diagrams for the period 1984–2007 at wind cells (Fig. 1a): a wind cell W9
(off Vietnam), b wind cell W18 (Karimata Strait). NE monsoon wind is depicted by red circles, while SW
monsoon wind is shown by blue crosses

Fig. 5 Cross-section of the South China Sea from Taiwan to Singapore Strait as shown by solid lines in
Fig. 3: a, b climatological wind and sea level anomalies for the period 1993–2008; c bottom profile. A nodal
point at seasonal sea level is shown by a circle
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Datum (corresponding to Highest Astronomic Tide) and drawn up maps of satellite

anomalies overlapped with NCEP wind (Fig. 8). We could observe qualitatively similar

phenomenon for all the cases, where strong wind blows along the axis of Taiwan–

Singapore, rising sea level over the entire Sunda Shelf. One of the most extreme events in

the recent history (22–23 December 1999) caused widespread floods in the region.

From the above analysis, we noted that extreme SLAs derived from tide gauge data in

the SS are lagging by about 1 day behind the strong wind over central part of SCS and

massive surge at Sunda Shelf. In order to enumerate the dependence, we correlated

extreme SLAs with gridded NCEP wind (Fig. 1a). For correlation analysis, only one

maximum SLA of a year that exceeds the threshold value of 30 cm (if any) is selected. As

we are dealing with a daily-scale surge phenomenon, we have removed the annual (SA)

and semi-annual (SSA) ‘‘monsoon’’ components from the tide record. Statistical analysis

(Table 1) shows correlation of surges in the SS with wind speeds at the 5 degree grid with a

time lag indicated in brackets by number of 6-hourly intervals. We could observe clearly

that for the NE monsoon, the time lag is approximately proportional to the distance

between the specific wind cell and SS. The time lag also depends on the cell position, that

is whether it is embedded in or nearby coastal features (as cell W8) or it is located in the

open sea along the longest axis (similar to cells W4–W7, W9–W10). The lags during the

SW monsoon are rather irregular, due to the fact that SS is situated at the rear (weak) part

Fig. 6 Monthly frequency distribution of SLAs for the period 1984–2007

Fig. 7 Annual frequency distribution of SLAs
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of wind system during this period. The most prominent result emerging from the corre-

lation analysis is that the surges in SS are all positively correlated with the wind during NE

monsoon and negatively correlated with the one during SW monsoon.

It is clear from Table 1 that SLAs in SS and wind cells W6, W9 and W10 have highest

correlations, varying from 0.514 to 0. 541 with an average time lag of about 36–42 h. In

absolute terms, the correlation does not look particularly high, possibly due to the fol-

lowing reasons: (1) correlation coefficient is a measure of the strength of the linear rela-

tionship between two variables, which is less accurate for a nonlinear relationship between

wind speed and surge height (as will be found in Sect. 3); and (2) atmospheric force is

applied over a large area of SCS and distributed at a distance over 1,000 km from SS;

therefore, no particular small area is directly responsible for remote surges. The depen-

dence and time delay could be illustrated using time series of wind speed and direction off

Vietnam (W9) and daily averaged SLA for extreme cases on 25 November 1995 and 23

December 1999 (Figs. 9, 10, respectively). In both the cases, the peaks of SLAs are

following the wind speed peaks with a time lag about 1 day.

Among wind cells south of Singapore, as one might expect, only the wind over

Karimata Strait (W18) has some noticeable correlation and a short time lag. Analysis of

wind streamlines sketched in Fig. 3a, b offers explanation to these phenomena as the SS

(d)

(b)(a)

(c)

Fig. 8 Selected extremes of sea level anomalies overlapped with corresponding wind. a February 1, 1995,
b November 24, 1995, c December 22, 1999, d March 8, 2004
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being ‘‘sandwiched’’ between winds at cells W9 and W18, with W9 dominating due to a

stronger intensity and longer fetch. All other wind cells are obstructed by land masses,

fully or partially; therefore, the influence of the wind on SS surges is smaller.

3 Simplified solutions for storm surges in SCS

The above analysis has shown that seasonal and extreme winds, their persistence, intensity

and direction play a primary role in forcing sea level surges in the Sunda Shelf, in general,

and SS, in particular. The finding encouraged us to seek a simplified solution relating

height of sea level surges in SS with the wind speed in SCS. If successful, such relationship

could serve as a simple and quick forecasting tool of sea level extremes in SS.

3.1 1-D Analytical model for SCS

It has been identified that the NE (SW) monsoon climatological and extreme wind, when

aligned along the longest axis of SCS Taiwan–Singapore, produces the strongest positive

(negative) sea level surges in SS. According to the phenomenological description, one can

simplify the sea level surge generation problem in SCS using a rectangular domain, with

the longest axis parallel to the direction of the NE/SW monsoon (Fig. 11a). In Malanotte-

Rizzoli (2011), a rather complex analytical treatment was developed to elucidate the

dynamics of the steady-state set-up under the forcing wind, and the free oscillations of the

Table 1 Cross correlation between wind speed and SLA at 18 selected NCEP wind areas in the SCS,
Singapore Strait and Bay of Bengal, during the NE monsoon period (November–February) and SW mon-
soon period (June–August)

NCEP wind grid location
Latitude (N): longitude (E)

Cross correlation and (lag in 6 h intervals)

Wind speed versus SLA
(November–February)

Wind speed versus
SLA (June–August)

W1 00–05N:105–110E 0.361 (0) -0.31 (0)

W2 00–05N:110–115E 0.218 (6) -0.15 (7)

W3 05–10N:100–105E 0.494 (5) -0.10 (5)

W4 05–10N:105–110E 0.373 (5) -0.24 (5)

W5 05–10N:110–115E 0.371 (5) -0.22 (7)

W6 10–15N:110–115E 0.514 (6) -0.25 (4)

W7 10–15N:115–120E 0.416 (5) -0.19 (5)

W8 15–20N:105–110E 0.441 (9) -0.09 (1)

W9 15–20N:110–115E 0.541 (6) 0.09 (-1)

W10 15–20N:115–120E 0.523 (7) -0.15 (4)

W11 15–20N:120–125E 0.459 (5) -0.08 (7)

W12 20–25N:115–120E 0.428 (9) -0.10 (5)

W13 20–25N:120–125E 0.337 (7) -0.07 (7)

W14 05S–0N:090–095E 0.04 (4) -0.15 (2)

W15 05S–0N:095–100E 0.01 (-1) -0.12 (-4)

W16 10S–05S:090–95E 0.13 (-25) -0.12 (-17)

W17 10S–05S:095–100E 0.11 (-23) -0.11 (-8)

W18 05S–0N:105–110E 0.20 (-4) -0.19 (-4)

Nat Hazards (2013) 66:1345–1362 1355

123



speed [m/s]

dir [deg]

00:00
1995-11-12

00:00
11-17

00:00
11-22

00:00
11-27

00:00
12-02

  0

  5

 10

 15

W
in

d 
sp

ee
d 

(m
/s

)

daily mean [-]
6h mean [-]

00:00
1995-11-12

00:00
11-17

00:00
11-22

00:00
11-27

00:00
12-02

-0.20

0.00

0.20

0.40

S
LA

 (
m

)

(a) 

(b) 

Fig. 9 a NCEP wind speed and direction at 12.5�N and 112.5�E, b sea level anomaly at Tanjong Pagar
during the highest spring tide of November 25, 1995
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Fig. 10 a NCEP wind speed and direction at 15�N and 110�E, b extreme sea level anomaly (without annual
and semi-annual components) at Tanjong Pagar during the highest spring tide of December 23, 1999
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basin superimposed to the steady solution. Because of the width of the SCS, rotation

cannot be assumed a priori negligible. Hence, the two-dimensional linear shallow water

equations with constant rotation in a closed rectangular basin with constant depth are

considered under wind stress forcing. One-dimensional analysis is carried out following

Pedlosky (2003, Chap. 14). In a suitable parameter range, the resulting equation for sea

level is the wind stress forced equivalent of Pedlosky’s Eq. (14.24). This equation can be

further simplified by assuming uniformity of sea level and wind stress in cross-basin

(y) direction, idealizing the sea level response under the monsoon system. The resulting

analytical solution consists of opposite steady-state set-up at the two ends of the basin

Fig. 11 Conceptual model of storm surges in a channel: a 2-D case, b 1-D model of the steady-state set-up
(solid red line) and free oscillations (dashes gray lines) along the main axis of the SCS shown in Fig. 5
during the northeast monsoon. Nodal point over shelf break is shown by a circle
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under the wind blowing along the main axis, with superimposed two oppositely traveling

waves. The boundary conditions at the two-end side walls give rise to a standing wave, the

seiche. The solution, even though approximate, elucidates the role of rotation, which

produces a rotation-dependent modulation of both the steady and wave components. Then,

the further approximation can be made considering a one-dimensional configuration

without rotation.

The one-dimensional channel configuration is depicted in Fig. 11b with the Sunda Shelf

extending from x = -L (Singapore) to the center of the basin x = 0 and depth h1; the deep

interior extending from x = 0 to x = ?L (Taiwan) and depth h2; and a step-like conti-

nental slope separating them. We do not solve the transient problem of a sudden wind onset

and relaxation with consequent excitation of the seiche. Rather, we solve for the back-

ground, steady set-up on which free oscillations are superimposed whose wavelengths are

discretized by the side walls boundary conditions.

The one-dimensional shallow water equations for the depth-independent along channel

velocity u and the sea level g are:

ou

ot
¼ �g

og
ox
þ s

q0h

og
ot
þ h

ou

ox
¼ 0

ð1Þ

where, q0 is the water density. Equation (1) could be rewritten as

o2u

ot2
� gh

o2u

ox2
¼ o

ot

s
q0h

� �

o2g
ot2
� gh

o2g
ox2
¼ �h

o

ox

s
q0h

� � ð2Þ

having steady-state solution (apart from an arbitrary time-dependent integration function

for g):

gs ¼
1

q0gh

Z
sdx

us ¼ �
1

2q0gh2

os
ot

x2 þ Axþ B

ð3Þ

Existence of sea level node over the edge of the shelf break is supported by observations in

Fig. 5b; therefore, in the simplified case depicted in Fig. 11b, we specialize to regions (1) and

(2) with depths (h1, h2) respectively and require that the origin be a sea level node, i.e.

g1 ¼ g2 ¼ 0 at x ¼ 0:

If the wind stress is constant in x, the solutions for the steady-state set-up can be written

as, apart again from an arbitrary time-dependent integration function:

gs1 ¼
1

q0gh1

sx

gs2 ¼
1

q0gh2

sx

ð4Þ

showing that the sea level response under a wind blowing in the (-x) direction (NE

monsoon) is higher on the shelf (at x = -L, Singapore) because of the shallow depth, and
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the corresponding depression at x = ?L (Taiwan) is smaller because of the deep basin.

Notice that while the steady-state sea level is continuous at x = 0, its slope is not.

Further requiring that g = 0 at initial time t = 0, the wave solution to the homogeneous

Eq. (2) for the sea level at the two basins is:

gw1 ¼ a sinðk1

ffiffiffiffiffiffiffi
gh1

p
tÞ

gw2 ¼ a sinðk2

ffiffiffiffiffiffiffi
gh2

p
tÞ

ð5Þ

This wave solution satisfies the two conditions of being zero at x = 0 and at initial time

t = 0.

The wave numbers k1 and k2 are found imposing the boundary conditions at the two

side walls x = -L and x = ?L. Imposing for instance maximum/minimum elevations:

sinðk1LÞ ¼ �1 at x ¼ �L
sinðk2LÞ ¼ �1 at x ¼ þL

gives k1 ¼ k2 ¼ ð3p=2þ 2pnÞ=L with n = 1, 2,…, as the two basins have equal widths.

Hence, for the free wave, also the slope is continuous at x = 0.

We do not present here the solutions for the velocities as in (Malanotte-Rizzoli 2011).

Again, the integration constants are found by imposing the boundary conditions at the two

side walls and the matching conditions at x = 0 where continuity of transport is required.

Velocities are discontinuous at x = 0. A continuous solution might have been found by

specifying an analytical shape for the continental slope. However, the analytical solution,

when obtainable, would be much more complex without adding anything to the dynamics.

3.2 Simplified model for storm surges in Singapore Strait

The basic result of the above analytical model (Eq. 4) is that the steady-state sea level set-

up is linearly dependent on the wind shear stress as

g ¼ 1

q0gh
sx ð6Þ

Here, the wind shear stress is given by

s ¼ CdqaW2 ð7Þ

where Cd is the drag coefficient, qa the density of air, and W is the wind speed at 10 m.

We want to explore how well the simple model, Eqs. (6)–(7), performs for storm surges

over Sunda Shelf including SS during NE monsoon. Typical values for Sunda Shelf could

be taken as follows: fetch x = 1,000 km, depth h = 100 m; and rest parameters are not site

specific, namely qa = 1.25 kg/m3, q0 = 1,025 kg/m3, and g = 9.81 m/s2. While the best

approximation for the drag coefficient is still discussed, for illustrative purpose, we use

simple and yet versatile expression by Wu (1982)

Cd ¼ 10�3ð0:8þ 0:065WÞ ð8Þ
In Fig. 12, we plot together SLAs in SS versus wind speed at cell W9 for all NE

monsoons during period 1984–2007, and the exact solution Eqs. (6)–(8) with the specified

parameters. There is a good agreement between the data and the model, indicating that

SLAs in SS are indeed driven by storm surges in SCS. There is also confidence that the

simple model, Eqs. (6)–(8), may serve as a quick assessment of storm surges in SS using

forecasted wind speed offshore of Vietnam.
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4 Conclusions

Among the semi-enclosed basins of the world ocean, the South China Sea is unique in its

configuration as it lies under the main southwest-northeast pathway of the seasonal

monsoons. The NE monsoon (November–February) and SW monsoon (June–August)

dominate the large-scale sea level dynamics of the SCS. Sunda Shelf at SW part of SCS

tends to amplify Sea Level Anomalies (SLAs) generated by wind over the sea. The entire

region, bounded by Gulf of Thailand on the north, Karimata Strait on the south, east cost of

Peninsular Malaysia on the west, and break of Sunda Shelf on the east, could experience

positive or negative SLAs depending on the wind direction and speed. Strong sea level

surges during NE monsoon, if coincide with spring tide, usually lead to coastal floods in

the region.

To understand the phenomena, we analyzed sea level anomalies focusing on SS, laying

at the most SW point of the region. An analysis of Tanjong Pagar tide gauge data in the SS,

as well as satellite altimetry and reanalyzed wind in the region, revealed that the wind over

central part of SCS is arguably the most important factor determining the observed vari-

ability of SLAs at hourly to monthly scales. Climatological SLAs at SS are found positive,

and of the order of 30 cm during NE monsoon, but negative, and of the order of 20 cm

during SW monsoon. The largest anomalies are associated with intensified winds during

NE monsoon, with historical highs exceeding 50 cm. At the hourly and daily time-scales,

SLA magnitude is correlated with the NE wind speed over central part of SCS with an

average time lag of 36–42 h.

An exact solution is derived by representing the elongated SCS shape with one-

dimensional two-step channel. The solution is utilized to derive a simple model connecting

SLA in SS with the wind speed over central part of SCS. Due to delay of sea level anomaly

in SS with respect to the remote source at SCS, the simplified solution could be used for

storm surge forecast with a lead time exceeding 1 day.
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