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ABSTRACT

We discuss the convergence properties of asynchro- at each time instance, on the adjustments of his deci-

nous distributed iterative optimization algorithms, sions. So, in some sense, the synchronous model re-

tolerating communication delays. We focus on a gra- quires "a lot of communications."

dient-type algorithm for minimizing an additive cost (2) A second drawback of synchronous algorithms is that

function and present sufficient conditions for conver- communication delays can introduce bottlenecks and slow

gence. We view such an algorithm as a model of adjust- down the algorithm. In particular, the time between

ment of the decisions of decision makers in an organiza- two consecutive updates has to be at least as large

tion and we suggest that our results can be interpreted as the maximum communication delay between any pair of

as guidelines for designing the information flows in decision makers.

an organization. (3) Finally, complete synchronization is certainly an
unrealistic model of human organizations.

1. Introduction For the above reasons, we choose to study asynchro-
.nous distributed versions of iterative optimization

This paper concerns the convergence properties and algorithms, in which decision makers do not need to

communication requirements of asynchronous distributed communicate to every other decision maker at each time

optimization algorithms, tolerating communication instance. Such algorithms avoid communication over-

delays. The results being presented may be interpreted loads, they are not excessively slowed down by commu-

as pertaining to the performance of potential parallel nication delays and there is not even a requirement
computing machines. Alternatively, an approach which that each decision maker updates his decision at each

we pursue in this paper, our results may be viewed as time instance, which makes them even more realistic.

a description of the adjustment process in a distri-
buted organization, possibly involving human decision 2. General Properties and Convergence Conditions

makers. Moreover, it could be maintained that the of Asynchronous Distributed Algorithms

mathematical models discussed here, capture some as-
pects of the ever-present "bounded rationality" of We now discuss the main principle underlying the

human decision makers [Simon, 1980]. class of asynchronous algorithms which we consider: as

Our motivation is the following: A boundedly ratio- we mentioned, in Section 1, for a synchronous algorithm,

nal decision maker solving an optimization problem each decision maker needs to be informed of the most

(minimize J(x)), may be viewed as an iterative optimis- recent value of the decisions of all other decision

tion algorithm, whereby a tentative decision x(n) is makers. Suppose now that decision maker i, at time n,

made at time n, and then the decision is updated, in a needs for his computations the current value x.(n)

direction of improvement. For example, we may have but he does not know this
of the j-th component of x, but he does not know this

value. We then postulate that decision maker i will

x(n+l) = x(n) - a (x(n)), (1.1) carry out his computations as in the synchronous algo-
rithm, except that (not knowing x. (n)) he will use the

which corresponds to the well-known gradient algorithm. value of x. in the most recent melsage he has received

By extending the above analogy to more complex settings, from decision maker j. Due to asynchronism and commu-

an organization (or, at least, some aspects of it) nication delays, decision maker i will, in general,

consisting of cooperative, boundedly rational decision use out-dated values of xj to update his own decisions.

makers may be viewed as a distributed algorithm. For b
However, updates based on out-dated information may be

example, suppose that x is a decision vector and that substantially better than not updating at all. The

the i-th decision maker is in charge of the i-th com- substantially better than not updating at all. The
crucial questions which arise are: How much out-dated

ponent x. of x, which he updates according to
1ponent x of x, which he updates according to information may be tolerated? How frequent should

ax.(n+l) - x (n) communications be, so that the distributed algorithm
X.(n+l) = xi (n) -i (x(n)) . (1.2)
1i

1 ax. - operates in a desirable manner?
i Questions of this nature have been addressed by

If each decision maker was to update his part of the Questions of this nature have been addressed by
If each decisiown maker was to update his part of tihe Bertsekas [1982,1983] for the distributed version of
decision this own component), at each instance of time the successive approximations algorithm for dynamic

according to (1.2), we would effectively a synchronous programming and the distributed computation of fixed
distributed implementation of the centralized gradient points. we have obtained general convergence results

of a related nature for the asynchronous distributed
in a variety of contexts [Arrow and Hurwicz, 1960; versions of deterministic and stochastic iterative
Gallager, 1977] but they also have certain drawbacks: pseudo-gradient LPoljak and Tsypkin, 1973) (or "descent-
(1) Decision maker i, in order to update x'. (n) accord- type") algorithms. Some representative algorithms

in. type") algorithms. Some representative algorithms
ing to (1.2), he needs to know x(n), at time n. This covered by our general results are deterministic
requires that each decision maker informs all others,
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gradient-type algorithms, as well as stochastic ap- which are under the authority of other decision makers.
proximations algorithms. Due to space considerations, We may visualize the structure of the interactions
we only discuss here the nature of the results. Exact by means of a directed graph G

=
(V,E):

statements and the proofs may be found in [Tsitsiklis,
19831 and in forthcoming publications. Preliminary
versions of these results appear in [Tsitsiklis, (ii) The set of edges E of the graph is
Bertsekas and Athans, 1983].

To discuss the nature of the convergence conditions, E= {(i,j): ) depends on x (3.2)
we distinguish two cases:

Since we are interested in the fine structure of the
A. Constant Step-Size Algorithms (e.g. gradient optimization problem, we quantify the interactions

algorithm) between subproblems by assuming that the following

bounds are available:For such algorithms it has been shown that conver- bounds are available:
gince to the centralized optimum is obtained, pro'vided
that the time between consecutive communications a K <Kk CR (3.3)aJ
between pairs of decision makers, plus the communica- ax.x. - i axax.a. xC R 3
tion delay, is bounded by an appropriate constant. 
Moreover, the larger the step-size (i.e. the constant
6 in equation (1.2)), the smaller the above mentioned where (without loss of generality)
constant. The latter statement admits the appealing M
interpretation that the larger the updates by each K. < I . . (3.4)
decision maker, the more frequent communications are k=l
required.

A synchronous distributed gradient-type algorithm for
B. Decreasing Step-Size Algorithms (e.g. stochastic this problem could be:

approximation algorithms)
approximation algorithms) 1. For each (i,j)e E, decision maker j evaluates

In this case, the algorithm becomes slower and
slower as the time index increases. This allows the (j n J
process of communications to become progressively (n) = (x(n)) (3.5)
slower, as well. In particular, it has been shown that
convergence to the centralized optim/m is obtained 2. For each (i,j)e E, decision maker j transmits Aj

(n)
even if the time between consecutive communications F
between pairs of decision makers, plus communication to decision maker i.
delays, increase without bound, as the algorithm 3. Each decision maker i updates x according to
proceeds, provided that the rate of increase is not M
too fast. x.(n+l) = xi (n) - ai ~X

j
(n) (3.6)

3. A Distributed Gradient Algorithm
4. For each (i,j)e E, decision maker i transmits

In this section we consider a rather simple distri- xi(n+l) to decision maker j.
buted algorithm for minimizing an additive cost func- We now consider the asynchronous version of the
tion. Due to the simplicity of the algorithm, we are i
able to derive convergence conditions which are gen- above algorithm. Let x (n)=(x (n).....x(n)) denote a

erally tighter than the general conditions discussed decision vector (element of R ) stored in the memory
in the previous sections. It will be seen shortly, of decision maker i at time n. We also assume that
that these conditions admit appealing organizational each decision maker i stores in his memory another vec-
interpretations. 1 M

The conceptual motivation behind our approach is tor (Ai(n) . .. (n)) with his estimates of
based on the following statement:

If an optimization problem consists of sub- ax . ax . Unlike the synchronous algorithm, we
problems, each subproblem being assigned to 1 i
a different decision maker, then the frequency do not require that a message be transmitted at each
of communications between a pair of decision time stage and we allow communication delays. So let:

makers should reflect the degree by which their pki (n) the time that a message with a value
subproblems are coupled. of Xk was sent from processor k to

The above statement is fairly hard to capture math- processor i, and this was the last
ematically. This is accomplished, however, to some such message received no later than
extent, by the model and the results of this section. time n.

Let J: RM-ER be a cost function to be minimizedm qki(n) = the time that a message with a value of
with a special structure: k

M was sent from processor k to processor

J(x) - J(x ..., ,x) = IJ (xl, ... x) (3.1) 1
i=l 1 ( i, and this was the last such message

received no later than time n.
where J i: R + R. So far, equation (3.1) does not im-
pose any restriction on J; we will be interested, how- For consistency of notation we let
ever, in the case where, for each i, ji depends on xii ii

1 p (n) =q (n)=--n, Vi' (3.7)
and only a few more components of x; conse'quently, the

With the above definitions, we have:
Hessian matrix of each Ji is sparse.

We view Ji as a cost directly faced by the i-th ik X
decision maker. This decision maker is free to fix (n) xk n Vkie E 3.8
or update the component x , but his cost also depends k (n) k ki(,Vi, E. (3.9)

on a few interaction variables (other components of x) = (x ( ))) (ik) E.i~~- ---1 n



Equations (3.8), (3.9) together with operation. But this is precisely the issue addressed
by Theorem 3.1: the bounds Kkj may be thought as cuan-

x
i
(n+

l
) xl(n) - x A)(n) (3.10) tifying the degree of coupling between divisions; the

i (3+l) ·x (n) 3 1
1 1 1 1 bouns Pl, Q describe the frequency of communications

specify completely the asynchronous distributed algo- and Hi represents the speed of adjustment. Theorem
rithm of interest. 3.1 links all these quantities together and provides

Let us now assume that the time between consecutive some conditions for smooth operation, whereby con-
communications and the communication delays are bounded. munication rates are prescribed in terms of the degree
We allow, however, these bounds to be different for of coupling.
each pair of processors and each type of message: We may conclude that the approach of Section 3 may

ik ik form the basis of a procedure for designing an organiza-
Assumption: For some constant P ,Q , tional structure, or -more precisely- the information

flows within an organization. Of course, Theorem 3.1
n-P
ik

< pik(n)< n, ¥(ik)~ E ' does not exhaust the subject. In particular, Theoremn-P < _ (n)< n, V~i~k~e E, y , (3.11)
-< p (n)< n, (ik)e E, (3.11) 3.1 suggests a set of feasible organizational struc-

ixn-Q ik < n, V(k,i)e E, y . (3.12) tures, with generally different convergence rates.
n-Q

i
< -(n)< n, V(ki)e E, yn (3.12) There remains the problem of choosing a "best" such

ii iistructure.
Note that we may let pii = Q = 0. structure.It is also conceivable that the structure of the

The following result states that the algorithm con- u nderlying optimiz ation problem slowly changes with~~~ik ik x~~~~~underlying optimization problem slowly changes withverges if Pik and Qik are not too large compared to the time, and so do the bounds Kk. but in a time scale
degree of coupling between different subproblems. 1 time scale
[Tsitsiklis, 19831. slower than the time scale of the adjustment process.

In such a case, the bounds P 
3
, Q

1 3
should also change.

Theorem 3.1: Suppose that for each i This leads to a natural two-level organizational struc-
ture: At the lower level, we have a set of decision

M M M ik k k makers continuously adjusting their decisions and
> I K. + I I (p k+QjP +P ) . (3.13) exchanging messages. At a higher level, we have a

i jl1 k=l j=l supervisor who monitors changes in Kj and accordingly

1 2 M instructs the low-level decision makers to adjust their
Let z(n)(x (n),x2(n)... (n) Then, communication rates. Note that the supervisor does not

Ba need to know the details of the cost function; he only
li (z(n))=0, . (3.14) needs to know the degree of coupling between divisions.
nr ai EThis seems to reflect the actual structure of existing

We close this section with a few remarks: organizations. Low level decision makers are "experts"
on the problems facing them, while higher level decision

1. The bounds provided by (3.13) are sufficient for makers only know certain structural properties of the
convergence but not necessary. It is known [Bertsekas, overall problem and make certain global decision, e.g.
1982b] that a decentralized algorithm of a similar type setting the communication rates.
may converge in certain special cases, even if the a '

ik ik Event-Driven Communications
are held fixed, while the bounds P , Q are allowed
to be arbitrarily large. So, the gap between the suf- We now discuss a slightly different "mode of opera-
ficient conditions (3.13) and the necessary conditions tion" for the asynchronous algorithm, which has also
may be substantial. Further research should narrow this clear organizational implications. It should be clear
gap- that communications are required by the distributed
2. The convergence rate of the distributed algorihm algorithm so that decision makers are informed of
should be expected to deteriorate as the bounds P , changes occuring elsewhere in the system. Moreover,

ik ik ik
Q increase. A characterization of the convergence the bounds ik, Q of Section 3 effectively guarantee
rate, however, seems to be a fairly hard problem. that a message is being sent whenever a substantial

change occurs. The same effect, however, could be ac-
4. Towards Organizational Design complished without imposing bounds on the time between

consecutive message transmissions: each decision maker
Suppose that we have a divisionalized organization could just monitor his decisions and inform the others

and that the objective of the organization is to mini- whenever a substantial change occurs. It seems that
mize a cost J which is the sum of the costs Ji faced by the latter approach could result to significant savings
each division. To each division, these corresponds a in the number of messages being exchanged, but further
decision maker which is knowledgeable enough about the research is needed on this topic.
structure of the problem he is facing, to the extent
that given a tentative decision he is able to change his 5. Conclusions
decision in a direction of improvement. Moreover, sup-
pose that the divisionsare interacting in some way; that A large class of deterministic and stochastic iter-
is, the decision of one decision maker may affect the ative optimization algorithms admit natural distributed
costs of another division. Suppose, finally, that de- asynchronous implementations. Such implementations
cision makers regularly update their decisions taking (when compared to their synchronous counterparts) may
into account the decisionsof other decision makers and retain the desired convergence properties, while reduc-
the effects of their own decisions on other divisions. ing communication requirements and removing bottlenecks
Messages are being exchanged from time to time carrying caused by communication delays.
the required information. Clearly, the mathematical we have focused on a deterministic gradient-type
model of Section 3 may be viewed as a model of the algorithm for an additive cost function and we have
above situation. shown that the communication requirements depend in a

A natural question raised by the above described natural way on the degree of coupling between different
situation concerns the design of the information flows components of the cost function. This approach addresses
within the organization, so as to guarantee smooth the basic problem of designing the information flows



in a distributed organization and may form the basis
for a systematic approach to organizational design.
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