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ABSTRACT
We consider the problem of throughput-optimal broadcast-
ing in time-varying wireless networks, whose underlying topol-
ogy is restricted to Directed Acyclic Graphs (DAG). Previ-
ous broadcast algorithms route packets along spanning trees.
In large networks with time-varying connectivities, these
trees are difficult to compute and maintain. In this paper
we propose a new online throughput-optimal broadcast al-
gorithm which makes packet-by-packet scheduling and rout-
ing decisions, obviating the need for maintaining any global
topological structures, such as spanning-trees. Our algo-
rithm relies on system-state information for making trans-
mission decisions and hence, may be thought of as a gen-
eralization of the well-known back-pressure algorithm which
makes point-to-point unicast transmission decisions based
on queue-length information, without requiring knowledge
of end-to-end paths. Technically, the back-pressure algo-
rithm is derived by stochastically stabilizing the network-
queues. However, because of packet-duplications associated
with broadcast, the work-conservation principle is violated
and queuing processes are difficult to define in the broadcast
problem. To address this fundamental issue, we identify cer-
tain state-variables which behave like virtual queues in the
broadcast setting. By stochastically stabilizing these vir-
tual queues, we devise a throughput-optimal broadcast pol-
icy. We also derive new characterizations of the broadcast-
capacity of time-varying wireless DAGs and derive an effi-
cient algorithm to compute the capacity exactly under cer-
tain assumptions, and a poly-time approximation algorithm
for computing the capacity under less restrictive assump-
tions.

1. INTRODUCTION
The problem of efficiently disseminating packets, arriving

at a source node, to a subset of nodes in a network, is known
as the Multicast problem. In the special case when the pack-
ets are to be distributed among all nodes, the corresponding
problem is referred to as the Broadcast problem. Multicast-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

ing and broadcasting is considered to be a fundamental net-
work functionality, which enjoys numerous practical appli-
cations ranging from military communications [16], disaster
management using mobile adhoc networks (MANET) [9], to
streaming services for live web television [24] etc.
There exists a substantial body of literature addressing dif-
ferent aspects of this problem in various networking settings.
An extensive survey of various multicast routing protocols
for MANET is provided in [12]. The authors of [8] consider
the problem of minimum latency broadcast of a finite set of
messages in MANET. This problem is shown to be NP-hard.
To address this issue, several approximation algorithms are
proposed in [11], all of which rely on construction of cer-
tain network-wide broadcast-trees. Cross-layer solutions for
multi-hop multicasting in wireless network are given in [29]
and [10]. These algorithms involve network coding, which in-
troduces additional complexity and exacerbates end-to-end
delay. The authors of [21] propose a multicast scheduling
and routing protocol which balances load among a set of
pre-computed spanning trees, which are challenging to com-
pute and maintain in a scalable fashion. The authors of [26]
propose a local control algorithm for broadcasting in a wire-
less network for the so called scheduling-free model, in which
an oracle is assumed to make interference-free scheduling
decisions. This assumption, as noted by the authors them-
selves, is not practically viable.
In this paper we build upon the recent work of [23] and con-
sider the problem of throughput-optimal broadcasting in a
wireless network with time-varying connectivity. Through-
out the paper, the overall network-topology will be restricted
to a directed acyclic graph (DAG). We first characterize the
broadcast-capacity of time-varying wireless networks and
propose an exact and an approximation algorithm to com-
pute it efficiently. Then we propose a dynamic link-activation
and packet-scheduling algorithm that, unlike any previous
algorithms, obviates the need to maintain any global topo-
logical structures, such as spanning trees, yet achieves the
capacity. In addition to throughput-optimality, the pro-
posed algorithm enjoys the attractive property of in-order
packet-delivery, which makes it particularly useful in various
online applications, e.g. VoIP and live multimedia communi-
cation [4]. Our algorithm is model-oblivious in the sense that
its operation does not rely on detailed statistics of the ran-
dom arrival or network-connectivity processes. We also show
that the throughput-optimality of our algorithm is retained
when the control decisions are made using locally available
and possibly imperfect, state information.
Notwithstanding the vast literature on the general topic of
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broadcasting, to the best of our knowledge, this is the first
work addressing throughput-optimal broadcasting in time-
varying wireless networks with store and forward routing.
Our main technical contributions are the following:

• We define the broadcast-capacity for wireless networks
with time-varying connectivity and characterize it math-
ematically and algorithmically. We show that broadcast-
capacity of time-varying wireless directed acyclic net-
works can be computed efficiently under some assump-
tions. We also derive a tight-bound for the capacity
for a general setting and utilize it to derive an efficient
approximation algorithm to compute it.

• We propose a throughput-optimal dynamic routing and
scheduling algorithm for broadcasting in a wireless DAGs
with time-varying connectivity. This algorithm is of
Max-Weight type and uses the idea of in-order deliv-
ery to simplify its operation. To the best of our knowl-
edge, this is the first throughput-optimal dynamic al-
gorithm proposed for the broadcast problem in wireless
networks.

• We extend our algorithm to the setting when the nodes
have access to infrequent state updates. We show
that the throughput-optimality of our algorithm is pre-
served even when the rate of inter-node communication
is made arbitrarily small.

• We illustrate our theoretical findings through illustra-
tive numerical simulations.

The rest of the paper is organized as follows. Section 2
introduces the wireless network model. Section 3 defines
and characterizes the broadcast capacity of a wireless DAG.
It also provides an exact and an approximation algorithm
to compute the broadcast-capacity. Section 4 describes our
capacity-achieving broadcast algorithm for DAG networks.
Section 5 extends the algorithm to the setting of broadcast-
ing with imperfect state information. Section 6 provides nu-
merical simulation results to illustrate our theoretical find-
ings. Finally, in section 7 we summarize our results and
conclude the paper.

2. NETWORK MODEL
First we describe the basic wireless network model with-

out time-variation. Subsequently, we will incorporate time-
variation in the basic model. A static wireless network is
modeled by a directed graph G = (V,E, c,M), where V is
the set of nodes, E is the set of directed point-to-point links1,
the vector c = (cij) denotes capacities of the edges when

the corresponding links are activated and M ⊂ {0, 1}|E|

is the set of incidence-vectors corresponding to all feasible
link-activations complying with the interference-constraints.
The structure of the activation-setM depends on the inter-
ference model, e.g., under the primary or node-exclusive in-
terference model [14],M corresponds to the set of all match-
ings on the graph G. There are a total of |V | = n nodes and
|E| = m edges in the network. Time is slotted and at time-
slot t, any subset of links complying with the underlying
interference-constraint may be activated. At most cij pack-
ets can be transmitted in a slot from node i to node j, when

1We assume all transmit and receiving antennas to be di-
rected and hence all transmissions to be point-to-point [3].

link (i, j) is activated.
Let r ∈ V be the source node. At slot t, A(t) packets arrive
at the source. The arrivals, A(t), are i.i.d. over slots with
mean E(A(t)) = λ. Our problem is to efficiently disseminate
the packets to all nodes in the network.

2.1 Notations and Nomenclature:
All vectors in this paper are assumed to be column vectors.

For any set X ⊂ Rk, its convex-hull is denoted by conv(X ).
Let

(

U, V \ U
)

be a disjoint partition of the set of vertices
V of the graph G, such that the source r ∈ U and U ( V .
Such a partition is called a proper-partition. To each proper
partition corresponding to the set U , associate the proper-
cut vector u ∈ Rm, defined as follows:

ui,j = ci,j if i ∈ U, j ∈ V \ U (1)

= 0 otherwise

Denote the special, single-node proper-cuts by Uj ≡ V \{j},
and the corresponding cut-vectors by uj , ∀j ∈ V \ {r}. The
set of all proper-cut vectors in the graph G is denoted by U .
The in-neighbours of a node j is defined as the set of all
nodes i ∈ V such that there is a directed edge (i, j) ∈ E. It
is denoted by the set ∂in(j), i.e.,

∂in(j) = {i ∈ V : (i, j) ∈ E} (2)

Similarly, we define the out-neighbours of a node j as follows

∂out(j) =
{

i ∈ V : (j, i) ∈ E
}

(3)

For any two vectors x and y in Rm, define the component-
wise product z ≡ x ⊙ y to be a vector in Rm such that
zi = xiyi, 1 ≤ i ≤ m.

For any set S ⊂ Rm and any vector v ∈ Rm, v⊙S , denotes
the set of vectors obtained as the component-wise product
of the vector v and the elements of the set S , i.e.,

v ⊙ S =
{

y ∈ R
m : y = v ⊙ s, s ∈ S

}

(4)

Also, the usual dot product between two vectors x,y ∈
Rm is defined as,

x · y =

m
∑

i=1

xiyi

2.2 Model of Time-varying Wireless Connec-
tivity

Now we incorporate time-variation into our basic frame-
work described above. In a wireless network, the channel-
SINRs vary with time because of random fading, shadowing
and mobility [27]. To model this, we consider a simple ON-
OFF model where an individual link can be in one of the
two states, namely ON and OFF. In an OFF state, the ca-
pacity of a link is zero 2. Thus at a given time, the network
can be in any one configuration, out of the set of all possible
network configurations Ξ. Each element σ ∈ Ξ corresponds
to a sub-graph G(V,Eσ) ⊂ G(V,E), with Eσ ⊂ E, denoting
the set of links that are ON. At a given time-slot t, one of
the configuration σ(t) ∈ Ξ is realized. The configuration at

time t is represented by the vector σ(t) ∈ {0, 1}|E|, where

σ(e, t) =

{

1, if e ∈ Eσ(t)

0, otherwise.

2Generalization of the ON-OFF model, to multi-level dis-
cretization of link-capacity is straight-forward.



At a given time-slot t, the network controller may activate
a set of non-interfering links that are ON.
The network-configuration process {σ(t)}t≥1 evolves in discrete-
time according to a stationary ergodic process with the sta-
tionary distribution {p(σ)}σ∈Ξ [13], where

∑

σ∈Ξ

p(σ) = 1, p(σ) > 0, ∀σ ∈ Ξ (5)

Since the underlying physical processes responsible for
time-variation are often spatially-correlated [1], [19], the dis-
tribution of the link-states is assumed to follow an arbitrary
joint-distribution. The detailed parameters of this process
depend on the ambient physical environment, which is of-
ten difficult to measure. In particular, it is unrealistic to
assume that the broadcast-algorithm has knowledge of the
parameters of the process σ(t). Fortunately, our proposed
dynamic throughput-optimal broadcast algorithm does not
require the statistical characterization of the configuration-
process σ(t) or its stationary-distribution p(σ). This makes
our algorithm robust and suitable for use in time-varying
wireless networks.

3. DEFINITION AND CHARACTERIZATION
OF BROADCAST CAPACITY

Intuitively, a network supports a broadcast rate λ if there
exists a scheduling policy under which all network nodes
receive distinct packets at rate λ. The broadcast-capacity
of a network is the maximally supportable broadcast rate
by any policy. Formally, we consider a class Π of scheduling
policies where each policy π ∈ Π consists of a sequence of
actions {πt}t≥1, executed at every slot t. Each action πt

consists of two operations:

• The scheduler observes the current network-configuration
σ(t) and activates a subset of links by choosing a feasi-
ble activation vector s(t) ∈ Mσ(t). HereMσ denotes
the set of all feasible link-activation vectors in the sub-
graph G(V,Eσ), complying with the underlying inter-
ference constraints. As an example, under the primary
interference constraint, Mσ is given by the set of all
matchings [6] of the sub-graph G(V,Eσ).
Analytically, elements from the set Mσ will be de-
noted by their corresponding |E|-dimensional binary
incidence-vectors, whose component corresponding to
edge e is identically zero if e /∈ Eσ.

• Each node i forwards a subset of packets (possibly
empty) to node j over an activated link (i, j) ∈ σ(t),
subject to the link capacity constraint. The class Π
includes policies that may use all past and future in-
formation, and may forward any subset of packets over
a link, subject to the link-capacity constraint.

To formally introduce the notion of broadcast capacity,
we define the random variable Rπ

i (T ) to be the number of
distinct packets received by node i ∈ V up to time T , under
a policy π ∈ Π. The time average lim infT→∞ Rπ

i (T )/T is
the rate of packet-reception at node i.

Definition 1. A policy π ∈ Π is called a “broadcast pol-
icy of rate λ” if all nodes receive distinct packets at rate λ,
i.e.,

min
i∈V

lim inf
T→∞

1

T
Rπ

i (T ) = λ, w.p. 1 (6)

where λ is the packet arrival rate at the source node r.

Definition 2. The broadcast capacity λ∗ of a network is
defined to be the supremum of all arrival rates λ, for which
there exists a broadcast policy π ∈ Π of rate λ.

In the following subsection, we derive an upper-bound on
broadcast-capacity, which immediately follows from the pre-
vious definition.

3.1 An Upper-bound on Broadcast Capacity
Consider a policy π ∈ Π that achieves a broadcast rate of

at least λ∗ − ǫ, for an ǫ > 0. Such a policy π exists due to
the definition of the broadcast capacity λ∗ in Definition 2.

Now consider any proper-cut U of the network G. By
definition of a proper-cut, there exists a node i /∈ U . Let
sπ(t,σ(t)) = (sπe (t), e ∈ E) be the link-activation vector
chosen by policy π in slot t, upon observing the current-
configuration σ(t). The maximum number of packets that
can be transmitted across the cut U in slot t is upper-
bounded by the total capacity of all activated links across
the cut-set U , which is given by

∑

e∈EU
ces

π
e (t,σ(t)). Hence,

the number of distinct packets received by node i by time T
is upper-bounded by the total available capacity across the
cut U up to time T , subject to link-activation decisions of
the policy π. In other words, we have

Rπ
i (T ) ≤

T
∑

t=1

∑

e∈EU

ces
π
e (t,σ(t)) = u ·

T
∑

t=1

s
π(t,σ(t)) (7)

i.e.,

Rπ
i (T )

T
≤ u ·

(

1

T

T
∑

t=1

s
π(t,σ(t))

)

,

where the cut-vector u ∈ Rm, corresponds to the cut-set U ,
as in Eqn.(1). It follows that,

λ∗ − ǫ
(a)

≤ min
j∈V

lim inf
T→∞

Rπ
j (T )

T
≤ lim inf

T→∞

Rπ
i (T )

T

≤ lim inf
T→∞

u ·

(

1

T

T
∑

t=1

s
π(t,σ(t))

)

, (8)

where (a) follows from the fact that π is a broadcast policy
of rate at least λ∗ − ǫ. Since the above inequality holds for
all proper-cuts u, we have

λ∗ − ǫ ≤ min
u∈U

lim inf
T→∞

u ·

(

1

T

T
∑

t=1

s
π(t,σ(t))

)

(9)

The following technical lemma will prove to be useful for
deriving an upper-bound on the broadcast-capacity.

Lemma 1. For any policy π ∈ Π, and any proper-
cut vector u, there exists a collection of vectors

(

βπ
σ ∈

conv(Mσ)
)

σ∈Ξ
, such that, the following holds w.p. 1

min
u∈U

lim inf
T→∞

u ·

(

1

T

T
∑

t=1

s
π(t,σ(t))

)

= min
u∈U

u ·

(

∑

σ∈Ξ

p(σ)βπ
σ

)



The above lemma essentially replaces the minimum cut-
set bound of an arbitrary activations in (9), by the minimum
cut-set bound of a stationary randomized activation, which
is easier to handle. Combining Lemma 1 with Eqn. (9), we
conclude that for the policy π ∈ Π, there exists a collection
of vectors {βπ

σ ∈ conv(Mσ)}σ∈Ξ such that

λ∗ − ǫ ≤ min
u∈U

u ·

(

∑

σ∈Ξ

p(σ)βπ
σ

)

(10)

Maximizing the RHS of Eqn. (10) over all vectors
{

βσ ∈

conv(Mσ), σ ∈ Ξ
}

and letting ǫց 0, we have the following
universal upper-bound on the broadcast capacity λ∗

λ∗ ≤ max
βσ∈conv(Mσ)

min
u∈U

u ·

(

∑

σ∈Ξ

p(σ)βσ

)

(11)

Specializing the above bound for single-node cuts of the form
Uj = (V \ {j}) → {j}, ∀j ∈ V \ {r}, we have the following
upper-bound

λ∗ ≤ max
βσ∈conv(Mσ)

min
j∈V \{r}

uj ·

(

∑

σ∈Ξ

p(σ)βσ

)

(12)

It will be shown in Section 4 that in a DAG, our throughput-
optimal policy π∗ achieves a broadcast-rate equal to the RHS
of the bound (12). Thus we have the following theorem

Theorem 3.1. The broadcast-capacity λ∗
DAG of a

time-varying wireless DAG is given by:

λ∗
DAG = max

βσ∈conv(Mσ),σ∈Ξ
min

j∈V \{r}
uj ·

(

∑

σ∈Ξ

p(σ)βσ

)

(13)

The above theorem shows that for computing the broadcast-
capacity of a wireless DAG, taking minimum over the single-
node cut-sets {uj , j ∈ V \ {r}} suffice (c.f. Eqn. (11)).

3.2 An Illustrative Example of Capacity Com-
putation

In this section, we work out a simple example to illustrate
the previous results.

Wireless network Configuration σ1

Configuration σ2 Configuration σ3

Consider the simple wireless network shown in Figure (1),
with node r being the source. The possible network config-
urations σi, i = 1, 2, 3, 4 are also shown. One packet can be

Configuration σ4

Figure 1: A Wireless Network and its four possible

configurations

transmitted over a link if it is ON. Moreover, since the links
are assumed to be point-to-point, even if both the links ra
and rb are ON at a slot t (i.e., σ(t) = σ3), a packet can be
transmitted over one of the links only. Hence, the sets of
feasible activations are given as follows:

Mσ1 = {

(

1
0

)

},Mσ2 = {

(

0
1

)

},

Mσ3 = {

(

1
0

)

,

(

0
1

)

},Mσ4 = φ.

Here the first coordinate corresponds to activating the edge
ra and the second coordinate corresponds to activating the
edge rb.
To illustrate the effect of link-correlations on broadcast-
capacity, we consider three different joint-distributions p(σ),
all of them having the following marginal

p(ra = ON) = p(ra = OFF) =
1

2

p(rb = ON) = p(rb = OFF) =
1

2

Case 1: Zero correlations.
In this case, the links ra and rb are ON w.p. 1

2
indepen-

dently at every slot, i.e.,

p(σi) = 1/4, i = 1, 2, 3, 4 (14)

It can be easily seen that the broadcast capacity, as given
in Eqn. (13), is achieved when in configurations σ1 and σ2,
the edges ra and rb are activated w.p. 1 respectively and in
the configuration σ3 the edges ra and rb are activated with
probability 1

2
and 1

2
. In other words, an optimal activation

schedule of a corresponding stationary randomized policy is
given as follows:

β
∗
σ1

=
(

1 0
)′
,β∗

σ2
=
(

0 1
)′
,β∗

σ3
=
(1

2

1

2

)′

The optimal broadcast capacity can be computed from Eqn.
(13) to be λ∗ = 1

4
+ 0 + 1

4
× 1

2
= 3

8
.

Case 2: Positive correlations.
In this case, assume that the edges ra and rb are positively

correlated, i.e., we have

p(σ1) = p(σ2) = 0; p(σ3) = p(σ4) =
1

2

Then it is clear that half of the slots are wasted when both
the links are OFF (i.e., in the configuration σ4). When
the network is in configuration σ3, an optimal randomized



activation is to choose one of the two links uniformly at
random and send packets over it. Thus

β
∗
σ3

=
(1

2

1

2

)′

The optimal broadcast-capacity, computed from Eqn. (13)
is λ∗ = 1

4
.

Case 3: Negative correlations.
In this case, we assume that the edges ra and rb are neg-

atively correlated, i.e., we have

p(σ1) = p(σ2) =
1

2
; p(σ3) = p(σ4) = 0

It is easy to see that in this case, a capacity-achieving ac-
tivation strategy is to send packets over the link whichever
is ON. The broadcast-capacity in this case is λ∗ = 1

2
, the

highest among the above three cases.
In this example, with an arbitrary joint distribution of network-
configurations {p(σi), i = 1, 2, 3, 4}, it is a matter of simple
calculation to obtain the optimal activations β∗

σi
in Eqn.

(13). However it is clear that for an arbitrary network with
arbitrary activations M and configuration sets Ξ, evaluat-
ing (13) is non-trivial. In the following section we study this
problem under some simplifying assumptions.

3.3 Efficient Computation of Broadcast Capac-
ity

In this section we study the problem of efficient computa-
tion of the Broadcast Capacity λ∗ of a wireless DAG, given
by Eqn. (13). In particular, we show that when the number
of possible network configurations |Ξ|(n) grows polynomially
with n (the number of nodes in the network), there exists
a strongly polynomial-time algorithm to compute λ∗ under
the primary-interference constraint. Polynomially-bounded
network-configurations arise, for example, when the set Ξ(n)
consists of all subgraphs of the graph G with at most d num-
ber of edges, for some fixed integer d. In this case |Ξ(n)| can
be bounded as follows

|Ξ|(n) ≤
d
∑

k=0

(

m

k

)

= O(n2d),

where m(= O(n2)) is the number of edges in the graph G.

Theorem 3.2 (Efficient Computation of λ∗).
Suppose that there exists a polynomial q(n) such that,
for a wireless DAG network G with n nodes, the number
of possible network configurations |Ξ|(n) is bounded
polynomially in n, i.e., |Ξ|(n) = O(q(n)). Then, there
exists a strongly poly − time algorithm to compute the
broadcast-capacity of the network under the primary
interference constraints.

Although only polynomially many network configurations
are allowed, we emphasize that Theorem (3.2) is highly non-
trivial. This is because, each network-configuration σ ∈ Ξ it-
self contains exponentially many possible activations (match-
ings). The key combinatorial result that leads to Theorem
(3.2) is the existence of an efficient separator oracle for the
matching-polytope for any arbitrary graph [22]. We first

reduce the problem of broadcast-capacity computation of a
DAG to an LP with exponentially many constraints. Then
invoking the above separator oracle, we show that this LP
can be solved in strongly polynomial-time.

Proof. See Appendix 9.1.

3.4 Simple Bounds onλ∗

Using Theorem (3.2) we can, in principle, compute the
broadcast-capacity λ∗ of a wireless DAG with polynomi-
ally many network configurations. However, the complex-
ity of the exact computation of λ∗ grows substantially with
the number of the possible configurations |Ξ|(n). Moreover,
Theorem (3.2) does not apply when |Ξ|(n) can no longer
be bounded by a polynomial in n. A simple example of
exponentially large |Ξ|(n) is when a link e is ON w.p. pe
independently at every slot, for all e ∈ E.
To address this issue, we obtain bounds on λ∗, whose compu-
tational complexity is independent of the size of |Ξ|. These
bounds are conveniently expressed in terms of the broadcast-
capacity of the static network G(V,E) without time-variation,
i.e. when |Ξ| = 1 and Eσ = E, σ ∈ Ξ. Let us denote the
broadcast-capacity of the static network by λ∗

stat. Specializ-
ing Eqn. (13) to this case, we obtain

λ∗
stat = max

β∈conv(M)
min

j∈V \{r}
uj · β. (15)

Using Theorem (3.2), λ∗
stat can be computed in poly-time

under the primary-interference constraint.
Now consider an arbitrary joint distribution p(σ) such that
each link is ON uniformly with probability p, i.e.,

∑

σ∈Ξ:σ(e)=1

p(σ) = p, ∀e ∈ E. (16)

We have the following bounds:

Lemma 2 (Bounds on Broadcast Capacity).

pλ∗
stat ≤ λ∗ ≤ λ∗

stat.

Proof. See Appendix 9.3.

Generalization of the above Lemma to the setting, where
the links are ON with non-uniform probabilities, may also
be obtained in a similar fashion.
Note that, in our example 3.2 the bounds in Lemma 2 are
tight. In particular, here the value of the parameter p = 1

2
,

the lower-bound is attained in case (2) and the upper-bound
is attained in case (3).
The above lemma immediately leads to the following corol-
lary:

Corollary 3.3. (Approximation-algorithm for
computing λ∗). Assume that, under the stationary
distribution p(σ), probability that any link is ON is p,
uniformly for all links. Then, there exists a poly-time
p-approximation algorithm to compute the broadcast-
capacity λ∗ of a DAG, under the primary-interference
constraints.



Proof. See Appendix 9.4.

In the following section, we are concerned with designing
a dynamic and throughput-optimal broadcast policy for a
time-varying wireless DAG network.

4. THROUGHPUT-OPTIMAL BROADCAST
POLICY FOR WIRELESS DAGS

The classical approach of solving the throughput-optimal
broadcast problem in the case of a static, wired network is
to compute a set of edge-disjoint spanning trees of maxi-
mum cardinality (by invoking Edmonds’ tree-packing theo-
rem [20]) and then routing the incoming packets to all nodes
via these pre-computed trees [21]. In the time-varying wire-
less setting that we consider here, because of frequent and
random changes in topology, routing packets over a fixed set
of spanning trees is no-longer optimal. In particular, part
of the network might become disconnected from time-to-
time, and it is not clear how to select an optimal set of trees
to disseminate packets. The problem becomes even more
complicated when the underlying statistical model of the
network-connectivity process (in particular, the stationary
distribution {p(σ),σ ∈ Ξ}) is unknown, which is often the
case in mobile adhoc networks. Furthermore, wireless inter-
ference constraints add another layer of complexity, render-
ing the optimal dynamic broadcasting problem in wireless
networks extremely challenging.
In this section we propose an online, dynamic, throughput-
optimal broadcast policy for time-varying wireless DAG net-
works, that does not need to compute or maintain any global
topological structures, such as spanning trees. Interestingly,
we show that the broadcast-algorithm that was proposed
in [23] for static wireless network, generalizes well to the
time-varying case. As in [23], our algorithm also enjoys the
attractive feature of in-order packet delivery. The key dif-
ference between the algorithm in [23] and our dynamic algo-
rithm is in link-scheduling. In particular, in our algorithm,
the activation sets are chosen based on current network-
configuration σ(t).

4.1 Throughput-Optimal Broadcast Policyπ∗

All policies π ∈ Π, that we consider in this paper, comprise
of the following two sub-modules which are executed at every
time-slot t:

• π(A) (Activation-module): activates a subset of links,
subject to the interference constraint and the current
network-configuration σ(t).

• π(S) (Packet-Schedulingmodule): schedules a sub-
set of packets over the activated links.

Following the treatment in [23], we first restrict our attention
to a sub-space Πin−order, in which the broadcast-algorithm
is required to follow the so-called in-order delivery property,
defined as follows

Definition 3 (Policy-space Πin−order [23]). A policy
π belongs to the space Πin−order if all incoming packets are
serially indexed as {1, 2, 3, . . .} according to their order of ar-
rival at the source r and a node can receive a packet p at time
t, if and only if it has received the packets {1, 2, , . . . , p− 1}
by the time t.

As a consequence of the in-order delivery, the state of re-
ceived packets in the network at time-slot t may be suc-
cinctly represented by the n-dimensional vector R(t), where
Ri(t) denotes the index of the latest packet received by node
i by time t. We emphasize that this succinct network-state
representation by the vector R(t) is valid only under the ac-
tion of policies in the space Πin−order. This compact repre-
sentation of the packet-state results in substantial simplifica-
tion of the overall state-space description. This is because,
to completely specify the current packet-configurations in
the network in the general policy-space Π, we need to spec-
ify the identity of each individual packets that are received
by different nodes.
To exploit the special structure that a directed acyclic graph
offers, it would be useful to constrain the packet-scheduler
π(S) further to the following policy-space Π∗ ⊂ Πin−order.

Definition 4 (Policy-space Π∗ ⊂ Πin−order [23]). A
broadcast policy π belongs to the space Π∗ if π ∈ Πin−order

and π satisfies the additional constraint that a packet p can
be received by a node j at time t if all in-neighbours of the
node j have received the packet p by the time t.

The above definition is further illustrated in Figure 2. The
variables Xj(t) and i∗t (j) appearing in the Figure are defined
subsequently in Eqn. (19).
It is easy to see that for all policies π ∈ Π∗, the packet

Ra(t) = 18

Rb(t) = 15 Rc(t) = 14

Rj(t) = 10

Figure 2: Under a policy π ∈ Π∗, the set of packets avail-

able for transmission to node j at slot t is {11, 12, 13, 14},

which are available at all in-neighbors of node j. The

in-neighbor of j inducing the smallest packet deficit is

i∗t (j) = c, and Xj(t) = 4.

scheduler π(S) is completely specified. Hence, to specify a
policy in the space Π∗, we need to define the activation-
module π(A) only.
Towards this end, let µij(t) denote the rate (in packets per
slot) allocated to the edge (i, j) in the slot t by a policy
π ∈ Π∗, for all (i, j) ∈ E. Note that, the allocated rate µ(t)
is constrained by the current network configuration σ(t) at
slot t. In other words, we have

µ(t) ∈ c⊙Mσ(t), ∀t (17)

This implies that, under any randomized activation

Eµ(t) ∈ c⊙ conv(Mσ(t)), ∀t (18)

In the following lemma, we show that for all policies π ∈ Π∗,
certain state-variables X(t), derived from the state-vector
R(t), satisfy so-called Lindley recursion [15] of queuing the-
ory. Hence these variables may be thought of as virtual
queues. This technical result will play a central role in deriv-
ing aMax-Weight type throughput-optimal policy π∗, which
is obtained by stochastically stabilizing these virtual-queues.



For each j ∈ V \ {r}, define

Xj(t) = min
i∈∂in(j)

(

Ri(t)−Rj(t)
)

(19)

i∗t (j) = arg min
i∈∂in(j)

(

Ri(t)−Rj(t)
)

, (20)

where in Eqn. (20), ties are broken lexicographically. The
variable Xj(t) denotes the minimum packet deficit of node
j with respect to any of its in-neighbours. Hence, from the
definition of the policy-space Π∗, it is clear that Xj(t) is the
maximum number of packets that a node j can receive from
its in-neighbours at time t, under any policy in Π∗.
The following lemma proves a “queuing-dynamics” of the
variables Xj(t), under any policy π ∈ Π∗.

Lemma 3 ([23]). Under all policies in π ∈ Π∗, we
have

Xj(t+ 1) ≤

(

Xj(t)−
∑

k∈∂in(j)

µkj(t)

)+

+
∑

m∈∂in(i∗t (j))

µmi∗t (j)
(t) (21)

Lemma (3) shows that the variables
(

Xj(t), j ∈ V \ {r}
)

satisfy Lindley recursions in the policy-space Π∗. Interest-
ingly, unlike the corresponding unicast problem [25], there
is no “physical queue” in the system.
Continuing correspondence with the unicast problem, the
next lemma shows that any activation module π(A) that
“stabilizes” the virtual queues X(t) for all arrival rates λ <
λ∗, constitutes a throughput optimal broadcast-policy for a
wireless DAG network.

Lemma 4. Suppose that, the underlying topology of
the wireless network is a DAG. If under the action of
a broadcast policy π ∈ Π∗, for all arrival rates λ < λ∗,
the virtual queue process {X(t)}∞0 is rate-stable, i.e.,

lim sup
T→∞

1

T

∑

j 6=r

Xj(T ) = 0, w.p. 1,

then π is a throughput-optimal broadcast policy for the
DAG network.

Proof. See Appendix (9.5).

Equipped with Lemma (4), we now set out to derive a dy-
namic activation-module π∗(A) to stabilize the virtual-queue
process {X(t)}∞0 for all arrival rates λ < λ∗. Formally, the
structure of the module π∗(A) is given by a mapping of the
following form:

π∗(A) : (X(t),σ(t))→Mσ(t)

Thus, the module π∗(A) is stationary and dynamic as it
depends on the current value of the state-variables and the
network-configuration only. This activation-module is differ-
ent from the policy described in [23] as the latter is meant
for static wireless networks and hence, does not take into

account the time-variation of network configurations, which
is the focus of this paper.
To describe π∗(A), we first define the node-set

Kj(t) = {m ∈ ∂out(j) : j = i∗t (m)} (22)

where the variables i∗t (m) are defined earlier in Eqn. (20).
The activation-module π∗(A) is described in Algorithm 1.
The resulting policy in the space Π∗ with the activation-
module π∗(A) is called π∗.
Note that, in steps (1) and (2) above, the computation

Algorithm 1 A Throughput-optimal Activation Module
π∗(A)

1: To each link (i, j) ∈ E, assign a weight as follows:

Wij(t) =

{

Xj(t)−
∑

k∈Kj(t)
Xk(t), if σ(i,j)(t) = 1

0, o.w.
(23)

2: Select an activation s∗(t) ∈Mσ(t) as follows:

s∗(t) ∈ arg max
s∈M

σ(t)

s ·
(

c⊙W (t)
)

(24)

3: Allocate rates on the links as follows:

µ
∗(t) = c⊙ s

∗(t) (25)

of link-weights and link-activations depend explicitly on the
current network-configuration σ(t). As anticipated, in the
following lemma, we show that the activation-module π∗(A)
stochastically stabilizes the virtual-queue process {X(t)}∞0 .

Lemma 5. For all arrival rates λ < λ∗, under the ac-
tion of the policy π∗ in a DAG, the virtual-queue process
{X(t)}∞0 is rate-stable, i.e.,

lim sup
T→∞

1

T

∑

j 6=r

Xj(T ) = 0, w.p. 1

The proof of this lemma is centered around a Lyapunov-
drift argument [18]. Its complete proof is provided in Ap-
pendix (9.6).
Combining the lemmas (4) and (5), we immediately obtain
the main result of this section

Theorem 4.1. The policy π∗ is a throughput-optimal
broadcast policy in a time-varying wireless DAG net-
work.

5. THROUGHPUT-OPTIMAL BROADCAST-
ING WITH INFREQUENT INTER-NODE
COMMUNICATION

In practical mobile wireless networks, it is unrealistic to
assume knowledge of network-wide packet-state information
by every node at every slot. This is especially true in the case
of time-varying wireless networks, where network-connectivity



changes frequently. In this section we extend the main re-
sults of section 4 by considering the setting where the nodes
make control decisions with imperfect packet-state informa-
tion that they currently possess. We will show that the dy-
namic broadcast-policy π∗ retains its throughput-optimality
even in this challenging scenario.

State-Update Model.
We assume that two nodes i and j can mutually update

their knowledge of the set of packets received by the other
node, only at those slots with positive probability, when
the corresponding wireless-link (i, j) is in ON state. Other-
wise, it continues working with the outdated packet state-
information. Throughout this section, we assume that the
nodes have perfect information about the current network-
configuration σ(t).
Suppose that, the latest time prior to time t when packet-
state update was made across the link (i, j) is t − T(i,j)(t).
Here T(i,j)(t) is a random variable, supported on the set
of non-negative integers. Assume for simplicity, that the
network configuration process {σ(t)}∞0 evolves according to
a finite-state, positive recurrent Markov-Chain, with the
stationary distribution {p(σ) > 0,σ ∈ Ξ}. With this as-
sumption, T(i,j)(t) is related to the first-passage time in the
finite-state positive recurrent chain {σ(t)}∞0 . Using stan-
dard theory [7], it can be shown that the random variable
T (t) ≡

∑

(i,j)∈E
T(i,j)(t) has bounded expectation for all

time t .

Analysis of π∗ with Imperfect Packet-State Information.

Consider running the policy π∗, where each node j now
computes the weights W ′

ij(t), given by Eqn.(23), of the in-
coming links (i, j) ∈ E, based on the latest packet-state
information available to it. In particular, for each of its
in-neighbour i ∈ ∂in(j), the node j possess the following
information of the number of packets received by node i:

R′
i(t) = Ri(t− T(ij)(t)) (26)

Now, if the packet-scheduler module π′(S) of a broadcast-
policy π′ takes scheduling decision based on the imperfect
state-information R′(t) (instead of the true state R(t)), it
still retains the following useful property:

Lemma 6. π′ ∈ Π∗.

Proof. See Appendix (9.7).

The above lemma states that the policy π′ inherits the in-
order delivery property and the in-neighbour packet delivery
constraint of the policy-space Π∗.

From Eqn. (23) it follows that, computation of link-
weights {Wij(t), i ∈ ∂in(j)} by node j requires packet-state
information of the nodes that are located within 2-hops from
the node j. Thus, it is natural to expect that with an er-
godic state-update process, the weights W ′

ij(t), computed
from the imperfect packet-state information, will not differ
too much from the true weights Wij(t), on the average. In-
deed, we can bound the difference between the link-weights

Figure 3: A 3× 3 grid network.

W ′
ij(t), used by policy π′ and the true link-weights Wij(t),

as follows

Lemma 7. There exists a finite constant C such that,
the expected weight W ′

ij(t) of the link (ij), locally com-
puted by the node j using the random update process,
differs from the true link-weight Wij(t) by at most C,
i.e.

|EW ′
ij(t)−Wij(t)| ≤ C (27)

The expectation above is taken with respect to the ran-
dom packet-state update process.

Proof. See Appendix (9.8)

From lemma (7) it follows that the policy π′, in which
link-weights are computed using imperfect packet-state in-
formation is also a throughput-optimal broadcast policy for
a wireless DAG. Its proof is very similar to the proof of The-
orem (4.1). However, since the policy π′ makes scheduling
decision using W ′(t), instead of W (t), we need to appro-
priately bound the differences in drift using the Lemma (7).
The technical details are provided in Appendix (9.9).

Theorem 5.1. The policy π′ is a throughput-optimal
broadcast algorithm in a time-varying wireless DAG.

6. NUMERICAL SIMULATION
We numerically simulate the performance of the proposed

dynamic broadcast-policy on the 3× 3 grid network, shown
in Figure 3. All links are assumed to be of unit capacity.
Wireless link activations are subject to primary interference
constraints, i.e., at every slot, we may activate a subset of
links which form a Matching [28] of the underlying topology.
External packets arrive at the source node r according to a
Poisson process of rate λ packets per slot. The following
proposition shows that, the broadcast capacity λ∗

stat of the
static 3 × 3 wireless grid (i.e., when all links are ON with
probability 1 at every slot) is 2

5
.



Proposition 6.1. The broadcast-capacity λ∗
stat of

the static 3× 3 wireless grid-network in Figure 3 is 2
5
.

See Appendix (9.10) for the proof.
In our numerical simulation, the time-variation of the net-
work is modeled as follows: link-states are assumed to evolv-
ing in an i.i.d. fashion; each link is ON with probability p at
every slot, independent of everything else. Here 0 < p ≤ 1 is
the connectivity-parameter of the network. Thus, for p = 1
we recover the static network model of [23]. We also assume
that the nodes have imperfect packet-state information as in
Section 5. Hence, two nodes i and j can directly exchange
packet state-information, only when the link (i, j) (if any)
is ON.
The average broadcast-delay Dπ′

p (λ) is plotted in Figure 4
as a function of the packet arrival rate λ. The broadcast-
delay of a packet is defined as the number of slots the packet
takes to reach all nodes in the network after its arrival. Be-
cause of the throughput-optimality of the policy π′ (Theo-
rem (5.1)), the broadcast-capacity λ∗(p) of the network, for
a given value of p, may be empirically evaluated from the

λ-intercept of vertical asymptote of the Dπ′

p (λ)− λ curve.
As evident from the plot, for p = 1, the proposed dynamic

algorithm achieves all broadcast rates below λ∗
stat =

2
5
= 0.4.

This shows the throughput-optimality of the algorithm π′.
It is evident from the Figure 4 that the broadcast capac-
ity λ∗(p) is non-decreasing in the connectivity-parameter p,
i.e., λ∗(p1) ≥ λ∗(p2) for p1 ≥ p2. We observe that, with
i.i.d. connectivity, the capacity bounds given in Lemma (2)
are not tight, in general. Hence the lower-bound of pλ∗

stat

is a pessimistic estimate of the actual broadcast capacity

λ∗(p) of the DAG. The plot also reveals that, Dπ′

p (λ) is non-
decreasing in λ for a fixed p and non-increasing in p for a
fixed λ, as expected.

Packet Arrival Rate λ
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Figure 4: Plot of average broadcast-delay Dπ′

p (λ), as
a function of the packet arrival rates λ. The un-

derlying wireless network is the 3× 3 grid, shown in

Figure 3, with primary interference constraints.

7. CONCLUSION
In this paper we studied the problem of throughput-optimal

broadcasting in wireless directed acyclic networks with point-
to-point links and time-varying connectivity. We character-
ized the broadcast-capacity of such networks and derived ef-
ficient algorithms for computing it, both exactly and approx-
imately. Next, we proposed a throughput-optimal broadcast
policy for such networks. This algorithm does not require
any spanning tree to be maintained and operates based on
local information, which is updated sporadically. The algo-
rithm is robust and does not require statistics of the arrival
or the connectivity process, thus making it useful for mobile
wireless networks. The theoretical results are supplemented
with illustrative numerical simulations. Future work would
be to remove the restriction of the directed acyclic topology.
It would also be interesting design broadcast algorithms for
wireless networks with point-to-multi-point links.
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9. APPENDIX

9.1 Proof of Theorem 3.2

Under the primary interference constraint, the set of feasi-
ble activations of the graphs are matchings [28]. To solve for
the optimal broadcast capacity in a time-varying network,
first we recast Eqn. (13) as an LP. Although this LP has
exponentially many constraints, using a well-known separa-
tion oracle for matchings, we show how to solve this LP in
strongly-polynomial time via the ellipsoid algorithm [2].

For a subset of edges E′ ⊂ E, let χE′

be the incidence

vector, where χE′

(e) = 1 if e ∈ E′ and is zero otherwise.
Let

Pmatching(G(V,E)) =

convexhull({χM |M is a matching in G(V,E)})

We have the following classical result by Edmonds [22].

Theorem 9.1. The set Pmatching(G(V,E)) is charac-

terized by the set of all β ∈ R|E| such that :

βe ≥ 0 ∀e ∈ E (28)
∑

e∈∂in(v)∪∂out(v)

βe ≤ 1 ∀v ∈ V

∑

e∈E[U ]

βe ≤
|U | − 1

2
; U ⊂ V, |U | odd

Here E[U ] is the set of edge with both end points in U.
Thus, following Eqn. (13), the broadcast capacity of a

DAG can be obtained by the following LP :

max λ (29)

Subject to,

λ ≤
∑

e∈∂in(v)

ce
(

∑

σ∈Ξ

p(σ)βσ,e

)

, ∀v ∈ V \ {r} (30)

βσ ∈ Pmatching(G(V,Eσ)), ∀σ ∈ Ξ (31)

The constraint corresponding to σ ∈ Ξ in (31) refers to the
set of linear constraints given in Eqn.(28) corresponding to
the graph G(V,Eσ), for each σ ∈ Ξ.
Invoking the equivalence of optimization and separation due
to the ellipsoid algorithm [2], it follows that the LP (29) is
solvable in poly-time, if there exists an efficient separator-
oracle for the set of constraints (30) and (31). With our
assumption of polynomially many network configurations
|Ξ|(n), there are only linearly many constraints (n−1, to be
precise) in (30) with polynomially many variables in each
constraint. Thus the set of constraints (30) can be sepa-
rated efficiently. Next we invoke a classic result from the
combinatorial-optimization literature which shows the exis-
tence of efficient separators for the matching polytopes.

Theorem 9.2. [22] There exists a strongly poly-time

algorithm, that given G = (V,E) and β : E → R|E|

determines if β satisfies (28) or outputs an inequality
from (9.1) that is violated by β.

Hence, there exists an efficient separator for each of the
constraints in (9.1). Since there are only polynomially many
network configurations, this directly leads to Theorem 3.2.



9.2 Proof of Lemma 1

Proof. Fix a time T . For each configuration σ ∈ Ξ, let
{tσ,i}

Tσ
i=1 be the index of the time-slots up to time T such

that σ(t) = σ. Clearly we have,

∑

σ∈Ξ

Tσ = T (32)

Hence, we can rewrite

1

T

T
∑

t=1

s
π(t,σ(t)) =

∑

σ∈Ξ

Tσ

T

1

Tσ

Tσ
∑

i=1

s
π(tσ,i,σ) (33)

Hence,

u ·

(

1

T

T
∑

t=1

s
π(t,σ(t))

)

=
∑

σ∈Ξ

Tσ

T
u ·

(

1

Tσ

Tσ
∑

i=1

s
π(tσ,i,σ)

)

(34)

Since the process σ(t) is stationary ergodic, we have

lim
T→∞

Tσ

T
= p(σ), w.p. 1 ∀σ ∈ Ξ (35)

Using countability of Ξ and invoking the union bound, we
can strengthen the above conclusion as follows

lim
T→∞

Tσ

T
= p(σ), ∀σ ∈ Ξ, w.p. 1 (36)

Hence from Eqn. (34) we have,

min
u∈U

lim inf
Tր∞

u ·

(

1

T

T
∑

t=1

s
π(t,σ(t))

)

= min
u∈U

∑

σ∈Ξ

p(σ) lim inf
T→∞

u ·

(

1

Tσ

Tσ
∑

i=1

s
π(tσ,i,σ)

)

, w.p. 1

Since p(σ) > 0, ∀σ ∈ Ξ, the above implies that Tσ ր
∞ as T ր ∞∀σ, w.p.1. In the rest of the proof we will
concentrate on a typical sample path {σ(t)}t≥1 having the
above property.
For each σ ∈ Ξ, define the sequence {ζπ

σ,Tσ
}Tσ≥1

ζ
π
σ,Tσ

=
1

Tσ

Tσ
∑

i=1

s
π(tσ,i,σ) (37)

Since sπ(tσ,i,σ) ∈Mσ for all i ≥ 1, convexity of the setMσ

implies that ζπ
σ,Tσ

∈ Mσ for all Tσ ≥ 1. Since the set Mσ

is closed and bounded (and hence, compact) any sequence
in Mσ has a converging sub-sequence. Consider any set of
converging sub-sequences {ζπ

σ,Tσk
}k≥1, σ ∈ Ξ such that, it

achieves the following

min
u∈U

∑

σ∈Ξ

p(σ) lim
k→∞

u · ζπ
σ,Tσk

= min
u∈U

∑

σ∈Ξ

p(σ) lim inf
Tσ→∞

u · ζπ
σ,Tσ

.

Let us denote

lim
k→∞

ζ
π
σ,Tσk

= β
π
σ , ∀σ ∈ Ξ (38)

Where βπ
σ ∈ Mσ, since Mσ is closed. Hence combining

Eqn. (37), (38) and Eqn. (38), we have

min
u∈U

lim inf
Tր∞

u ·

(

1

T

T
∑

t=1

s
π(t,σ(t))

)

= min
u∈U

∑

σ∈Ξ

p(σ)u · βπ
σ

= min
u∈U

u ·

(

∑

σ∈Ξ

p(σ)βπ
σ

)

w.p.1

9.3 Proof of Lemma 2

Proof. 9.3.1 Proof of the Upper-bound
Note that, for all σ ∈ Ξ, we have Eσ ⊂ E. Hence, it

follows that

Mσ ⊂M, ∀σ ∈ Ξ

This in turn implies that

βσ ∈ conv(Mσ) =⇒ βσ ∈ conv(M) (39)

Let an optimal solution to Eqn. (13) be obtained at
(

β∗
σ, σ ∈

Ξ
)

. Then from Eqn. (39), it follows that

∑

σ∈Ξ

p(σ)β∗
σ ∈ conv(M)

Hence we have,

max
βσ∈conv(Mσ)

min
j∈V \{r}

uj ·
(

∑

σ∈Ξ

p(σ)β∗
σ

)

≤ max
β∈conv(M)

min
j∈V \{r}

uj · β

Using Eqn. (15), this shows that

λ∗ ≤ λ∗
stat

This proves the upper-bound.

9.3.2 Proof of the Lower-bound
SinceMσ ⊂M, the expression for the broadcast-capacity

(13) may be re-written as follows:

λ∗ = max
βσ∈M

min
j∈V \{r}

∑

e∈∂in(j)

ce
(

∑

σ∈Ξ

p(σ)βσ(e)1(e ∈ σ)
)

Let β∗ ∈ M be the optimal activation, achieving the RHS
of (15). Hence we can lower-bound λ∗ as follows

λ∗ ≥ min
j∈V \{r}

∑

e∈∂in(j)

ceβ
∗(e)

(

∑

σ∈Ξ

p(σ)1(e ∈ σ)
)

(a)
= p min

j∈V \{r}

∑

e∈∂in(j)

ceβ
∗(e)

= p min
j∈V \{r}

uj · β
∗

(b)
= pλ∗

stat

Equality (a) follows from the assumption (16) and equality
(b) follows from the characterization (15). This proves the
lower-bound.



9.4 Proof of Corollary 3.3
Consider the optimal randomized-activation vector β∗ ∈
M, corresponding to the stationary graph G(V,E) (15). By
Theorem (3.2), β∗ can be computed in poly-time under the
primary interference constraint. Note that, by Caratheodory’s
theorem [17], the support of β∗ may be bounded by |E|.
Hence it follows that λ∗

stat (15) may also be computed in
poly-time.
From the proof of Lemma (2), it follows that by randomly ac-
tivating β∗ (i.e., βσ(e) = β∗(e)1(e ∈ σ),∀σ ∈ Ξ) we obtain
a broadcast-rate equal to pλ∗

stat where λ∗
stat is shown to be

an upper-bound to the broadcast capacity λ∗ in Lemma (2).
Hence it follows that pλ∗

stat constitutes a p-approximation
to the broadcast capacity λ∗, which can be computed in
poly-time.

9.5 Proof of Lemma(4)

Assume that under the policy π ∈ Π∗, the virtual queues
Xj(t) are rate stable i.e., limT→∞ Xj(T )/T = 0, a.s. for all
j. Applying union-bound, it follows that,

lim
T→∞

∑

j 6=r
Xj(T )

T
= 0, w.p. 1 (40)

Now consider any node j 6= r in the network. We can
construct a simple path p(r = uk → uk−1 . . . → u1 = j)
from the source node r to the node j by running the follow-
ing Path construction algorithm on the underlying graph
G(V,E).

Algorithm 2 r→ j Path Construction Algorithm

Require: DAG G(V,E), node j ∈ V
1: i← 1
2: ui ← j
3: while ui 6= r do

4: ui+1 ← i∗t (ui);
5: i← i+ 1
6: end while

At time t, the algorithm chooses the parent of a node ui in
the path p as the one that has the least relative packet deficit
as compared to ui (i.e. ui+1 = i∗t (ui)). Since the underlying
graph G(V,E) is a connected DAG (i.e., there is a path from
the source to every other node in the network), the above
path construction algorithm always terminates with a path
p(r→ j). Note that the output path of the algorithm varies
with time.
The number of distinct packets received by node j up to
time T can be written as a telescoping sum of relative packet
deficits along the path p, i.e.,

Rj(T ) = Ru1(T )

=
k−1
∑

i=1

(

Rui
(T )−Rui+1(T )

)

+Ruk
(T )

= −

k−1
∑

i=1

Xui
(T ) +Rr(T )

(a)
= −

k−1
∑

i=1

Xui
(T ) +

T−1
∑

t=0

A(t), (41)

where the equality (a) follows the observation that

Xui
(T ) = Qui+1ui

(T ) = Rui+1(T )−Rui
(T ).

Since the variablesXi(t)’s are non-negative, we have
∑k−1

i=1 Xui
(t) ≤

∑

j 6=r Xj(t). Thus, for each node j

1

T

T−1
∑

t=0

A(t)−
1

T

∑

j 6=r

Xj(T ) ≤
1

T
Rj(T ) ≤

1

T

T−1
∑

t=0

A(t).

Taking limit as T → ∞ and using the strong law of large
numbers for the arrival process and Eqn. (40), we have

lim
T→∞

Rj(T )

T
= λ, ∀j. w.p. 1

This concludes the proof.

9.6 Proof of Lemma(5)

We begin with a preliminary lemma.

Lemma 8. If we have

Q(t+ 1) ≤ (Q(t)− µ(t))+ + A(t) (42)

where all the variables are non-negative and (x)+ = max{x, 0},
then

Q2(t+ 1) −Q2(t) ≤ µ2(t) + A2(t) + 2Q(t)(A(t)− µ(t)).

Proof. Squaring both sides of Eqn. (42) yields,

Q2(t+ 1)

≤
(

(Q(t)− µ(t))+
)2

+ A2(t) + 2A(t)(Q(t)− µ(t))+

≤ (Q(t)− µ(t))2 +A2(t) + 2A(t)Q(t),

where we use the fact that x2 ≥ (x+)
2
, Q(t) ≥ 0, and µ(t) ≥

0. Rearranging the above inequality finishes the proof.

Applying Lemma 8 to the dynamics (21) of Xj(t) yields, for
each node j 6= r,

X2
j (t+ 1) −X2

j (t) ≤ B(t) + (43)

2Xj(t)
(

∑

m∈V

µmi∗t
(t)−

∑

k∈V

µkj(t)
)

, (44)

where B(t) ≤ c2max + max{a2(t), c2max} ≤ (a2(t) + 2c2max),
a(t) is the number of exogenous packet arrivals in a slot,

and cmax , maxe∈E ce is the maximum capacity of the links.
We assume the arrival process a(t) has bounded second mo-
ments; thus, there exists a finite constant B > 0 such that
E[B(t)] ≤ E

(

a2(t)
)

+ 2c2max < B.
We define the quadratic Lyapunov function L(X(t)) =

∑

j 6=r
X2

j (t). From (43), the one-slot Lyapunov drift ∆(X(t)),

conditioned on the current network-configuration σ(t) yields

∆(X(t)|σ(t)) , E[L(X(t+ 1)− L(X(t)) |X(t),σ(t)]

= E
[

∑

j 6=r

(

X2
j (t+ 1)−X2

j (t)
)

|X(t),σ(t)
]

≤ B|V |+ 2
∑

j 6=r

Xj(t)E
[

∑

m∈V

µmi∗t
(t) (45)

−
∑

k∈V

µkj(t) |X(t),σ(t)
]

= B|V | − 2
∑

(i,j)∈E

E[µij(t) |X(t),σ(t)]
(

Xj(t) (46)

−
∑

k∈Kj(t)

Xk(t)
)

= B|V | − 2
∑

(i,j)∈E

Wij(t)E[µij(t) |X(t),σ(t)] (47)



The broadcast-policy π∗ is chosen to minimize the upper-
bound of conditional-drift, given on the right-hand side of
(47) among all policies in Π∗.

Next, we construct a randomized scheduling policy πRAND ∈
Π∗. Let β∗

σ ∈ conv(Mσ) be the part of an optimal solu-
tion corresponding to σ(t) ≡ σ given by Eqn. 11. From
Caratheodory’s theorem [17], there exist at most (|E| + 1)
link-activation vectors sk ∈ Mσ and the associated non-
negative scalars {ασ

k} with
∑|E|+1

k=1 ασ
k = 1, such that

β
∗
σ =

|E|+1
∑

k=1

ασ
ks

σ
k . (48)

Define the average (unconditional) activation vector

β
∗ =

∑

σ∈Ξ

p(σ)β∗
σ (49)

Hence, from Eqn. (11) we have,

λ∗ ≤ min
U : a proper cut

∑

e∈EU

ceβ
∗
e . (50)

Suppose that the exogenous packet arrival rate λ is strictly
less than the broadcast capacity λ∗. There exists an ǫ > 0
such that λ+ ǫ ≤ λ∗. From (50), we have

λ+ ǫ ≤ min
U : a proper cut

∑

e∈EU

ceβ
∗
e . (51)

For any network node v 6= r, consider the proper cuts Uv =
V \ {v}. Specializing the bound in (51) to these cuts, we
have

λ+ ǫ ≤
∑

e∈EUv

ceβ
∗
e , ∀v 6= r. (52)

Since the underlying network topology G = (V,E) is a DAG,
there exists a topological ordering of the network nodes so
that: (i) the nodes can be labelled serially as {v1, . . . , v|V |},
where v1 = r is the source node with no in-neighbours and
v|V | has no outgoing neighbours and (ii) all edges in E are
directed from vi → vj , i < j [5]; From (52), we define
ql ∈ [0, 1] for each node vl such that

ql
∑

e∈EUvl

ceβ
∗
e = λ+ ǫ

l

|V |
, l = 2, . . . , |V |. (53)

Consider the randomized broadcast policy πRAND ∈ Π∗

working as follows:

Stationary Randomized Policy πRAND:

(i) If the observed network-configuration at slot t is
σ(t) = σ, the policy πRAND selects 3 the feasible acti-
vation set sσ

k with probability ασ
k ;

(ii) For each incoming selected link e = (·, vl) to node
vl such that se(t) = 1, the link e is activated indepen-
dently with probability ql;
(iii) Activated links (note, not necessarily all the se-
lected links) are used to forward packets, subject to the
constraints that define the policy class Π∗ (i.e., in-order
packet delivery and that a network node is only allowed
to receive packets that have been received by all of its
in-neighbors).

Note that this stationary randomized policy πRAND oper-
ates independently of the state of received packets in the
network, i.e., X(t). However it depends on the current
network-configuration σ(t). Since each network node j is
relabelled as vl for some l, from (53) we have, for each node
j 6= r, the total expected incoming transmission rate to the
node j under the policy πRAND, averaged over all network
states σ satisfies

∑

i:(i,j)∈E

E[µπRAND

ij (t) |X(t)] =
∑

i:(i,j)∈E

E[µπRAND

ij (t)]

= ql
∑

e∈EUvl

ceβ
∗
e

= λ+ ǫ
l

|V |
. (54)

Equation (54) shows that the randomized policy πRAND pro-
vides each network node j 6= r with the total expected in-
coming rate strictly larger than the packet arrival rate λ via
proper random link activations conditioned on the current
network configuration. According to our notational conven-
tion, we have

∑

i:(i,r)∈E

E[µπRAND

ir (t) |X(t)] = E[
∑

i:(i,r)∈E

µπRAND

ir (t)] = λ.

(55)
From (54) and (55), if node i appears before node j in the
aforementioned topological ordering, i.e., i = vli < vlj = j
for some li < lj , then

∑

k:(k,i)∈E

E[µπRAND

ki (t)]−
∑

k:(k,j)∈E

E[µπRAND

kj (t)]

≤ −
ǫ

|V |
. (56)

The above inequality will be used to show the throughput
optimality of the policy π∗.
The drift inequality (45) holds for any policy π ∈ Π∗. The
broadcast policy π∗ observes the states (X(t),σ(t)) and and
seek to greedily minimize the upper-bound of drift (47) at
every slot. Comparing the actions taken by the policy π∗

with those by the randomized policy πRAND in slot t in (45),
we have

∆π∗

(X(t)|σ(t)) (57)

≤ B|V | − 2
∑

(i,j)∈E

E
[

µπ∗

ij (t) |X(t),σ(t)]Wij(t)

≤ B|V | − 2
∑

(i,j)∈E

E
[

µπRAND

ij (t) |X(t),σ(t)]Wij(t)

(∗)
= B|V | − 2

∑

(i,j)∈E

E
[

µπRAND

ij (t) | σ(t)]Wij(t)

(58)

Taking Expectation of both sides w.r.t. the stationary-



process σ(t) and rearranging, we have

∆π∗

(X(t)) (59)

≤ B|V | − 2
∑

(i,j)∈E

E
[

µπRAND

ij (t)]Wij(t)

≤ B|V |+ 2
∑

j 6=r

Xj(t)

(

∑

m∈V

E
[

µπRAND

mi∗t
(t)
]

−
∑

k∈V

E
[

µπRAND

kj (t)
]

)

≤ B|V | −
2ǫ

|V |

∑

j 6=r

Xj(t). (60)

Note that i∗t = argmini∈In(j) Qij(t) for a given node j. Since
node i∗t is an in-neighbour of node j, i∗t must lie before j in
any topological ordering of the DAG. Hence, the last in-
equality of (60) follows directly from (56). Taking expecta-
tion in (60) with respect to X(t), we have

E
[

L(X(t+ 1))
]

− E
[

L(X(t))
]

≤ B|V | −
2ǫ

|V |
E||X(t)||1,

where || · ||1 is the ℓ1-norm of a vector. Summing the above
inequality over t = 0, 1, 2, . . . T − 1 yields

E
[

L(X(T ))
]

− E
[

L(X(0))
]

≤ B|V |T −
2ǫ

|V |

T−1
∑

t=0

E||X(t)||1.

Dividing the above by 2Tǫ/|V | and using L(X(t)) ≥ 0, we
have

1

T

T−1
∑

t=0

E||X(t)||1 ≤
B|V |2

2ǫ
+
|V |E[L(X(0))]

2Tǫ

Taking a lim sup of both sides yields

lim sup
T→∞

1

T

T−1
∑

t=0

∑

j 6=r

E[Xj(t)] ≤
B|V |2

2ǫ
(61)

which implies that all virtual-queues Xj(t) are strongly sta-
ble [18]. Strong stability of Xj(t) implies that all virtual
queues Xj(t) are rate stable [18, Theorem 2.8].

9.7 Proof of Lemma(6)

Proof. Recall the definition of the policy-space Π∗. For
every node i, since Ri(t) is a non-decreasing function of t, if
a packet p is allowed to be transmitted to a node j at time
slot t, by the policy π′, it is certainly allowed to be trans-
mitted by the policy π. This is because R′

i(t) ≤ Ri(t),∀j ∈
∂out(i) and hence outdated state-information may only pre-
vent transmission of a packet p at a time t, which would
otherwise be allowed by the policy π∗. As a result, the pol-
icy π′ can never transmit a packet to node j which is not
present at all in-neighbours of the node j. This shows that
π′ ∈ Π∗.

9.8 Proof of Lemma(7)

Consider the packet-state update process at node j. Since
the capacity of the links are bounded by cmax, from Eqn.
(26) and the fact that Ri(t) is non-decreasing, we have

Ri(t)− Tcmax ≤ R′
i(t) ≤ Ri(t), ∀i ∈ ∂in(j) (62)

Hence, from Eq. (19), it follows that

Xj(t)− Tcmax ≤ X ′
j(t) ≤ Xj(t) (63)

i.e.,

Xj(t)− cmaxET ≤ EX ′
j(t) ≤ Xj(t) (64)

Where the expectation is with respect to the random update
process at the node j. In a similar fashion, since every in-
neighbour i of a node k ∈ ∂out(j), is at most 2-hop away
from the node j, we have

Ri(t)− Tcmax ≤ R′
i(t) ≤ Ri(t)

Also,

Rk(t)− Tcmax ≤ R′
k(t) ≤ Rk(t)

It follows that for all i ∈ ∂in(k)

(Ri(t)−Rk(t))− Tcmax ≤ R′
i(t)−R′

k(t)

≤ (Ri(t)−Rk(t)) + Tcmax

Hence,

Xk(t)− Tcmax ≤ X ′
k(t) ≤ Xk(t) + Tcmax

Again taking expectation w.r.t. the random packet-state
update process,

Xk(t)− cmaxET ≤ EX ′
k(t) ≤ Xk(t) + cmaxET (65)

Combining Eqns (64) and (65) using Linearity of expectation
and using Eqn. (23) we have

−ncmaxET +Wij(t) ≤ EW ′
ij(t) ≤Wij(t) + ncmaxET

Thus the lemma (7) follows with C ≡ ncmaxET <∞.

9.9 Proof of Theorem(5.1)

To prove throughput-optimality of Theorem (5.1), we work
with the same Lyapunov function L(X(t)) =

∑

j 6=r
X2

j (t) as

in Theorem (4.1) and follow the same steps until Eqn. (47)
to obtain the following upper-bound on conditional drift

∆π′

(X(t)|X(t),X ′(t),σ(t))

≤ B|V | − 2
∑

(i,j)∈E

Wij(t)E(µ
π′

ij (t)|X(t),X ′(t),σ(t))

(66)

Since the policy π′ makes scheduling decision based on the
locally computed weights W ′

ij(t), by the definition of the pol-
icy π′, we have for any policy π ∈ Π:

∑

(i,j)∈E

W ′
ij(t)E(µ

π′

ij (t)|X(t),X ′(t),σ(t))

≥
∑

(i,j)∈E

W ′
ij(t)E(µ

π
ij(t)|X(t),X ′(t),σ(t)) (67)

Taking expectation of both sides w.r.t. the random update
process X ′(t), conditioned on the true network state X(t)



and the network configuration σ(t), we have

Cn2cmax/2 +
∑

(i,j)∈E

Wij(t)E(µ
π′

ij (t)|X(t),σ(t))

(a)

≥
∑

(i,j)∈E

EW ′
ij(t)E(µ

π′

ij (t)|X(t),σ(t))

(b)

≥
∑

(i,j)∈E

EW ′
ij(t)E(µ

π
ij(t)|X(t),σ(t))

(c)

≥
∑

(i,j)∈E

Wij(t)E(µ
π
ij(t)|X(t),σ(t))−Cn2cmax/2

(68)

Here the inequality (a) and (c) follows from Lemma (7) and
the fact that |E| ≤ n2/2 and µij(t) ≤ cmax. Inequality (b)
follows from Eqn. (67). Thus from Eqn. (66) and (68), the
expected conditional drift of the Lyapunov function under
the policy π′, where the expectation is taken w.r.t. the ran-
dom update and arrival process is upper-bounded as follows:

∆π′

(X(t)|X(t),σ(t)) ≤ B′ − 2
∑

(i,j)∈E

Wij(t)E[µ
π
ij(t) |X(t),σ(t)]

with the constant B′ ≡ B|V | + 2Cn2cmax. Since the above
inequality holds for any policy π ∈ Π, we can follow the
exactly same steps in the proof of Theorem (4.1) by replacing
an arbitrary π by πRAND and showing that it has negative
drift.

9.10 Proof of Proposition 6.1
Like many proofs in this paper, this proof also has a con-

verse and an achievability part. In the converse part, we
obtain an upper bound of 2

5
for the broadcast capacity λ∗

stat

of the stationary grid network (i.e. when all links are ON
w.p. 1). In the achievability part, we show that this upper
bound is tight.

Part (a): Proof of the Converse: λ∗
stat ≤

2
5

We have shown earlier that for the purpose of achieving
capacity, it is sufficient to restrict our attention to stationary
randomized policies only. Suppose a stationary randomized
policy π achieves a broadcast rate λ and it activates edge
e ∈ E at every slot with probability fe. Then for the nodes
a and b to receive distinct packets at rate λ, one requires

fra ≥ λ, fab ≥ λ

Applying the primary interference constraint at node a, we
then obtain

fad ≤ 1− 2λ

Because of symmetry in the network topology, we also have

fcd ≤ 1− 2λ.

However, to achieve a broadcast capacity of λ, the total
allocated rate towards node d must be atleast λ. Hence we
have,

2(1− 2λ) ≥ λ

i.e.

λ ≤
2

5
.

Since the above holds for any stationary randomized policy
π, we conclude

λ∗
stat ≤

2

5
(69)
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Figure 5: Some feasible activations of the 3× 3 grid

network which are activated uniformly at random.

The components corresponding to each edge in the

resulting overall activation vector β is denoted by

the numbers alongside the edges.

Part (b): Proof of the Achievability: λ∗
stat ≥

2
5
:

As usual, the achievability proof will be constructive. Con-
sider the following five activations (matchings)M1,M2, . . . ,M5

of the underlying graph as shown in Figure 5. Now consider
a stationary policy π∗ ∈ Π∗ that activates the matchings
M1, . . . ,M5 at each slot uniformly at random with proba-
bility 1

5
for each matching. The resulting ‘time-averaged’

graph is also shown in Figure 5. Using Theorem 3.1, it is
clear that λ∗

stat ≥
2
5
. Combining the above with the converse

result in Eqn. (69), we conclude that,

λ∗
stat =

2

5

�
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