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Abstract Smoothed particle hydrodynamics (SPH) is a
Lagrangian method based on a meshless discretization of
partial differential equations. In this review, we present SPH
discretization of the Navier-Stokes and advection-diffusion-
reaction equations, implementation of various boundary
conditions, and time integration of the SPH equations, and
we discuss applications of the SPH method for modeling
pore-scale multiphase flows and reactive transport in porous
and fractured media.

Keywords Smoothed particle hydrodynamics · Multiphase
flow · Reactive transport · Pore-scale modeling

1 Introduction

In this review, we focus on applications of the smoothed
particle hydrodynamics (SPH) method for modeling mul-
tiphase flow and reactive transport in porous media at the
pore scale. In recent years, pore-scale modeling has become
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an important part of subsurface science. There is a grow-
ing body of evidence that, under certain conditions, existing
continuum (Darcy)-scale models do not accurately describe
many non-linear processes, including multiphase flows [1]
and reactive transport [2]. This realization has given rise
to multiscale modeling, which includes pore-scale model-
ing as an integral part [3, 4]. Pore-scale models also have
been used to develop novel effective models [5, 6] and to
determine parameters in the existing effective models [6,
7]. Recent advances in numerical methods and increased
speed of computers have made direct pore-scale simulations
of flow and transport in porous media both possible and
practical. A comparative review of numerical methods for
pore-scale simulations of flow and transport can be found
in [8].

In the SPH method, a computational domain is dis-
cretized with a set of points, and a meshless discretization
scheme is used to discretize scalar and/or vector fields
in terms of their values at these points. The meshless
discretization scheme makes it possible to move the dis-
cretization points with fluid velocity, even if the velocity
field is highly non-uniform. Because of this, SPH can be
easily used for solving partial differential equations in a
Lagrangian framework, which has a number of benefits
for solving the Navier-Stokes (NS) and advection-diffusion
equations. In the Lagrangian coordinate system, the absence
of the non-linear inertia term in the momentum conserva-
tion equation simplifies its solution. For a given velocity
field, advection is treated exactly, i.e., there is no numerical
dispersion due to discretization of the advective term in the
advection-diffusion equation. In SPH, each discretization
point has an associated mass and density and can be thought
of as the center of a fluid particle. The SPH discretization
scheme reduces the NS equations to a system of ordinary
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differential equations (ODEs) of Newtonian particle dynam-
ics. The total force acting on any SPH particle is expressed
as a sum of the forces acting between this particle and its
neighbors. Similar to molecular dynamics, complex fluid-
fluid and fluid-solid interactions can be modeled in SPH
with pairwise molecular-like interaction forces that are
added to the forces obtained from an SPH discretization of
the NS equations.

The SPH method was originally developed for modeling
highly compressible flows in the context of astrophysical
applications [9]. In the SPH model for compressible flows,
the particle density (number of discretization points per
unit area) changes automatically with fluid density. This
provides adaptive resolution as there are always more par-
ticles in denser fluid regions where a higher resolution is
desired. The SPH method is also well-suited for model-
ing flows of several fluids as the interface between fluids
moves with particles, and there is no need for using com-
plex front tracking schemes. For example, the SPH method
has been widely used for modeling breaking waves [10] and
ice sheets dynamics [11]. When applied to subsurface flow
and transport, the SPH method has been used for modeling
unsaturated and multiphase flows, reactive transport, min-
eral precipitation, and biomass growth. In SPH, incompress-
ible fluid flow can be modeled by solving the compressible
NS equations with an appropriate equation of state (the
weakly compressible approximation) or the incompressible
NS equations. An SPH discretization of the compressible
NS equations is straightforward to implement in a scal-
able parallel computer code, but the timestep for solving
the compressible NS equations is limited by the fluid com-
pressibility and is subject to a stiff stability constraint.
SPH incompressible flow equations can be integrated with
much larger time steps but require a more sophisticated
coding. A detailed review of the SPH method and vari-
ous applications can be found in [9, 12]. In this review, we
will focus on the theoretical aspects of SPH that are rele-
vant for hydrogeological modeling, including low-Reynolds
number, low-compressible, and incompressible multiphase
flows and reactive transport. We will introduce SPH dis-
cretization of the NS and advection-diffusion-reaction equa-
tions; implementation of Dirichlet, Neumann, and Robin
boundary conditions; time integration of the SPH equa-
tions; as well as describe various applications of the SPH
method for pore-scale modeling of flow and transport in
porous media.

2 Governing equations

We consider flow in a porous domain � with the sub-
domain �P occupied by pores and the sub-domain �S

occupied by the solid phase (e.g., soil grains). The flow of

the α fluid phase is governed by the NS equations, including
the continuity equation

Dρα

Dt
= −ρα (∇ · vα) x ∈ �p (2.1)

and momentum conservation equation

ρα

Dvα

Dt
= −∇Pα + ∇ · τα + ραg x ∈ �p, (2.2)

where vα is the velocity vector of the α phase; τα =[
μα

(∇vα + ∇vα
T
)]

is the viscous stress tensor; ρα is the
density; Pα is the pressure; μα is the dynamic viscosity; and
g is the gravitational acceleration. Here, D/Dt = ∂/∂t+v·∇
denotes the total derivative. The NS equations are closed
with an equation of state

Pα = f (ρα). (2.3)

At the fluid-fluid interface γ , pressure and velocities
satisfy the boundary condition

(Pβ − Pα)n = (τβ − τα) · n + κσn x ∈ γ, (2.4)

where n is the unit normal vector to the interface; subscripts
β and α denote the non-wetting and wetting phases, corre-
spondingly; κ is the curvature of the interface; and σ is the
constant (in space and time) surface tension. The normal
vector n is assumed to point outward from the non-wetting
phase.

The fluid-solid boundary 
 = �S ∩ �P is assumed
to be impermeable, resulting in the homogeneous Dirichlet
boundary condition for the normal velocity

v · n = 0 x ∈ 
. (2.5)

Here, n is the unit normal vector to the interface. For the
tangential velocity, a well-established boundary condition is
the no-slip condition

v · m1 = 0 and v · m2 = 0 x ∈ 
, (2.6)

where m1 and m2 are tangent and bi-tangent unit vectors,
correspondingly. At the fluid-fluid-solid contact line ξ =

 ∩ γ , a contact angle θ is imposed. Under static condition,
the static contact angle θ0 can be measured experimentally
or determined from the Young condition

Tαβ cos θ0 + Tsα = Tsβ. (2.7)

Here, Tij is the specific interfacial energy between i

and j phases, where subscript s denotes the solid phase
and α and β are the two fluid phases. Under dynamic
conditions, the contact angle changes depending on the
velocity and direction of flow (from the non-wetting to
wetting fluid or vice versa). A number of empirical rela-
tionships for the dynamic contact angle as a function of
the velocity of ξ and the flow direction have been pro-
posed [13, 14]. It should be noted that the no-slip boundary
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condition (2.6) at the contact line ξ cannot be satisfied. This,
in turn, leads to the well-known singularity in the stress τ at
ξ [15]. Approximate models (e.g., creeping flow and lubri-
cation flow [16]) have been proposed for eliminating this
singularity.

Solving the multiphase NS equations, especially in geo-
metrically complex domains, can be difficult. As a result,
very few grid-based models have been used to model
pore-scale multiphase flow in porous media, and they are
often limited to flow in small and geometrically simple
domains. The Lattice Boltzmann method is a mesoscale
method often used to model multiphase flow in porous
media and can provide an accurate approximation of the
NS equation. A more detailed review of numerical methods
for pore-scale multiphase flow and transport can be found
in [8].

3 SPH multiphase flow model

3.1 SPH interpolation scheme

In the multiphase SPH model [17], fluid and solid phases
are represented by separate sets of particles. These particles
serve as discretization points to solve the governing equa-
tions. The SPH method is based on a meshless interpolation
scheme that allows approximation of a vector or scalar
function Ã(r) ≈ A(r) (e.g., velocity, pressure, density) at
position r in terms of A

(
rj

)
, where rj (j = 1, ..., N ) are

the positions of the particles:

Ã(r) =
∫

A(r′)W
(|r − r′|, h)

dr′ (3.1)

and in the discrete form

˜̃
A(r) =

N∑

j=1

Aj

nj

W
(|r − rj |, h

)
, (3.2)

where Aj = A
(
rj

)
, N is the total number of SPH particles,

nj = ρj/mj is the particle number density associated with
point j , mj is the mass of particle j , and ρj = ρ

(
rj

)
is the

fluid density.
The function W is the SPH smoothing kernel with com-

pact support h (W(|r| > h) = 0). Due to the compactness
of W , the summation in Eq. 3.2 can be replaced with
the summation over particles within the distance h from
r, only. The kernel W must have, at least, a continu-
ous first derivative and satisfy the normalization condition∫

W(r − r′, h)dr′ = 1, where integration is performed over
the entire domain of A. In the h → 0 limit, W is required

to reduce to the Dirac delta function: lim
h→0

W(r − r′, h) =
δ(r − r′). The number density nj (the number of SPH parti-
cles within volume hd centered at rj , where d is the number
of spatial dimensions) and h define the resolution of the
SPH discretization scheme (3.2).

The total error introduced in Eq. 3.2 can be split between
contributions from the integral approximation and the
quadrature approximation of the integral with the discrete
sum [18],

e(r) =
∣∣∣
∣∣∣A(r) − ˜̃

A(r)
∣∣∣
∣∣∣ ≤ e(r)smoothing + e(r)quadrature.

(3.3)

The first term in Eq. 3.3, e(r)smoothing = ||A(r)−Ã(r)||,
corresponds to smoothing error and is second-order accu-
rate in h. The second term, e(r)quadrature = ||Ã(r) −
˜̃
A(r)||, scales as �

h
, where � corresponds to a length scale

characterizing the average particle separation. To maintain
consistency and second-order convergence, both h and �

h

should decrease simultaneously. This introduces prohibitive
computational cost, and, in practice, �

h
(or the number of

neighbors) is fixed. To maintain accuracy of the SPH dis-
cretization scheme up to practical resolutions, the number
of neighbors is commonly set to ≈ 50 for d = 2 and 80 for
d = 3.

3.2 SPH discretization of spatial derivatives

The first derivatives of Ã and ˜̃
A can be exactly computed

by taking derivatives of both sides of Eqs. 3.1 and 3.2,
respectively:

∇rÃ(r) =
∫

A(r′)∇rW
(|r − r′|, h)

dr′ (3.4)

and

∇r
˜̃
A(r)

∣
∣
r=ri

=
N∑

j=1

Aj

nj

∇ri W
(
rij , h

)
, (3.5)

where rij = ri − rj , rij = |rij |, and ∇rW
(|r − rj |, h

)
can

be found analytically. One of the disadvantages of this dis-
cretization scheme is that the derivative of a constant func-
tion does not vanish exactly. To ensure that the derivative of
a constant is exactly zero, the following renormalization can
be used:

∇A = 1

�
(∇(�A) − A∇�) , (3.6)

where � is any differentiable function. Applying the dis-
cretization (3.4) to both terms on the right-hand side of Eq.
3.6 yields:

∇rÃ(r) = 1

�(r)

∫ (
�(r′)A(r′) − A(r)�(r′)

) ∇rW
(|r − r′|, h)

dr′.

(3.7)
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Setting �(r) = 1, we obtain a form of the derivatives,
which vanishes exactly for a constant A,

∇rÃ(r) =
∫ (

A(r′) − A(r)
) ∇rW

(|r − r′|, h)
dr′, (3.8)

or, in discrete form,

∇r
˜̃
A(r)

∣∣
r=ri

=
N∑

j

1

nj

(
Aj − Ai

) ∇ri W
(
rij , h

)
. (3.9)

Alternatively, if we set �(r) = 1
n(r) , we obtain an anti-

symmetric approximation for the spatial derivative:

1

n(r)
∇rÃ(r) =

∫ (
A(r′)
n(r′)

+ A(r)
n(r)2

n(r′)
)

∇rW
(|r − r′|, h)

dr′,

(3.10)

and in discrete form,

1

ni

∇r
˜̃
A(r)

∣∣
r=ri

=
N∑

j

(
Aj

n2
j

+ Ai

n2
i

)

∇ri W
(
rij , h

)
. (3.11)

Various forms of SPH discretizations of second deriva-
tives are discussed in [9]. Here, we present an SPH dis-
cretization of the divergence of the gradient of a scalar
function (or scalar components of a vector or tensor), ∇ ·
(k(r)∇A(r)), as such terms are present in the momentum
and advection-diffusion equations. For a scalar function k,
the term ∇ ·(k(r)∇A(r)) can be approximated to the second
order (in h) in the integral form as

∇ · (k(r)∇Ã(r)) =
∫

(k(r) + k(r′))(A(r) − A(r′))

r − r′

|r − r′|2 · ∇rW
(|r − r′|, h)

dr′,(3.12)

and in the discrete form as

∇ ·
(
k(r)∇ ˜̃

A(r)
) ∣∣

r=ri
=

N∑

j

ki + kj

nj

(
Ai − Aj

) rij

r2
ij

· ∇ri W
(
rij , h

)
.

(3.13)

3.3 SPH discretization of Navier-Stokes equations for a
single-phase flow

Using the preceding SPH discretization schemes, the
momentum conservation Eq. 2.2 can be discretized as:

Dri

Dt
= vi ,

D (mivi )

Dt
=

N∑

j=1

fij + g (3.14)

fij = −
(

Pj

n2
j

+ Pi

n2
i

)
rij

rij

dW
(
rij , h

)

drij
+ 4μiμj

μi + μj

vij

ninj rij

dW
(
rij , h

)

drij
, (3.15)

where vij = vi − vj and, for compactness, we omit the
subscript α. In writing Eq. 3.15, we use the equality

∇rW(rij , h) = rij

rij

dW
(
rij , h

)

drij
. (3.16)

The particle density ni is related to the mass density ρi

via the expression

ni = ρi

mi

(3.17)

and is found from the SPH discretization of the continuity
equation

Dni

Dt
= ni

N∑

j

1

nj

vij · ∇iW(rij , h). (3.18)

This expression conserves mass only approximately , i.e.,
the error in mass conservation is on the order of h2. An alter-
native approach is to calculate particle density directly from
the SPH discretization scheme (3.1) with Ai = ni ,

ni =
N∑

j=1

W(rij , h). (3.19)

There are two main approaches for incorporating the
boundary conditions (2.4) and (2.7): (1) the pair-wise force
SPH (PF-SPH) model, which models the surface tension
and contact angle using molecular-like pair-wise forces
added into the SPH NS equations, and (2) methods based on
the continuum surface force (CSF) method [19], where the
sharp boundary 
 and contact line γ are approximated with
diffused regions and the boundary conditions are replaced
with forces acting in these diffused regions. These two
methods are described in the following section.

3.4 SPH pair-wise force model for multiphase flows

The boundary conditions (2.4) and (2.7) are the physical
consequence of interactions between molecules of differ-
ent fluid and solid phases. In the PF-SPH model, these
boundary conditions are modeled by molecular-like pair-
wise interaction forces, Fint

ij = F(rij )
rij
rij

, added in the SPH
form of the momentum conservation Eqs. 3.14 and 3.15,

fij = −
(

Pj

n2
j

+ Pi

n2
i

)
rij

rij

dW
(
rij , h

)

drij

+ 4μiμj

μi + μj

vij

ninj rij

dW
(
rij , h

)

drij
− Fint

ij . (3.20)

As any pair-wise molecular force, the interaction forces
Fint

ij should be short-range repulsive and long-range attrac-
tive. For computational efficiency, the interaction force
between two particles is set to zero if the distance between
the particles is greater than h. To prevent fluids from mix-
ing and to generate surface tension, the attraction between
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particles of the same fluid should be stronger than the
attraction between particles of different fluids. Wetting
conditions are prescribed by making attraction between par-
ticles of the wetting fluid and solid particles stronger than
the attraction between particles of nonwetting fluid and
solid particles.

The PF-SPH model in the form of Eq. 3.20 was first
proposed in [17] with Fint

ij given by:

Fint
ij =

{
−sαβcos

(
3π
2h

rij

)
rij
rij

rij ≤ h

0 rij > h,
(3.21)

where sαβ is the strength of the interaction force acting
between particle i of phase α and particle j of phase β. With
such pair-wise forces, the immiscible behavior of the α and
β phases is achieved by setting sαα > sαβ and sββ > sαβ .

Various forms of Fint
ij have been suggested in the lit-

erature, including a combination of two SPH weighting
functions with different supports h and h0 (h > h0), Fint

ij =
[−AW(rij , h0) + W(rij , h)

] rij
rij

, [20] and Fint
ij in the from

of the Lennard-Jones force [21]. Prior to the work of [17],
Nugent and Posch [22] and Meleán et al. [23, 24] suggested
using the van der Waals equation of state (EOS) PvdW =
kBT n
1−an

− bn2 (kB , T , and n are the Boltzmann constant, ref-
erence temperature, and number density, respectively, and a

and b are the van der Waals parameters) to impose surface
tension in free-surface problems and problems concerning
liquids in equilibrium with their vapor phases. They demon-
strated that the van der Waals EOS in combination with the
standard SPH discretization of the pressure gradient term in
the momentum conservation equations leads to an equation
similar to Eq. 3.20 with Pi = kBT ni

1−ani
and purely attrac-

tive pair-wise force in the form Fint
ij = −b

rij
rij

dW(rij ,h∗)
drij

.
Nugent and Posch reported that to generate a stable inter-
face between liquid and vapor phases, the support h∗ of
the attractive force should be two times larger than the sup-
port h of the viscous and “pressure gradient” forces. One
advantage of the PF-SPH formulation (3.20) with a short-
range repulsive and long-range attractive force Fint

ij is that
all forces in the SPH momentum equation can have the
same support, which significantly increases the computa-
tional efficiency of the method. Another advantage is that
this formulation allows a simple treatment of the interfaces
between different fluids and different wetting behaviors at
the fluid-fluid-solid interfaces.

The interactions between solid-wetting and solid-non-
wetting phases are represented by the interaction forces
(3.21) with the interaction strengths ssα and ssβ , respec-
tively. The static contact angle is determined by the relative
values of sαα , sββ , sαβ , ssα , and ssβ . For example, for the
static contact angle to be less than 90◦ (the α fluid is a

wetting fluid and the β fluid is a non-wetting fluid), the
coefficients should satisfy the conditions,

ssα/sαα > 1, ssβ/sββ < 1. (3.22)

To reduce the number of parameters, it is common to set
sαα = sββ .

The main advantage of the PF-SPH model is that there
is no need to prescribe the dynamic contact angle. Hence,
there is no need to rely on approximate or phenomenologi-
cal models for the dynamic contact angle.

Recently, Bandara et al. [25] demonstrated that the
parameters sαα , sββ , sαβ , ssα , and ssβ can be related to σ

and θ0 via closed-form analytical expressions based on the
theory of surface tension proposed by Young [26], Maxwell
[27], and Rayleigh [28].

According to Rayleigh, at equilibrium the surface tension
σ between fluids α and β can be found as follows:

σ = Tαα + Tββ − 2Tαβ, (3.23)

and the static contact angle between the α and β fluids and
the solid phase s is given by Young’s Eq. 2.7. In three spa-
tial dimensions, the specific interfacial energy Tαβ can be
expressed in terms of the magnitude of the pair-wise forces
mαmβφαβ(z) acting between particles i and j of α and β

phases, respectively, and separated by distance z as [27, 28]:

Tαβ = 1

8
πραρβ

∞∫

0

z4φαβ(z)dz, (3.24)

where thickness of each phase (the dimension in the direc-
tion normal to the interface) is larger than the range of inter-
action of the pair-wise forces. In two spatial dimensions,
Tαβ is given by:

Tαβ = 1

3
ραρβ

∞∫

0

z3φαβ(z)dz. (3.25)

In the following, we present parameterization of the
three-dimensional SPH model. The two-dimensional model
can be parameterized in a similar way. Under static con-
ditions, the force (3.20) acting between a pair of particles
becomes:

fij = −mimjφ
(
rij

) rij

rij
, (3.26)

where

φ(z) = 1

mimj

(
pi

n2
i

+ pj

n2
j

)
dW(z)

dz
+ 1

mimj

F (z). (3.27)

To simplify analytical derivations of the coefficient of
surface tension, we set W to be the Gaussian function,

W(z) = 1
(√

2πε
)d

e
− z2

2ε2 , (3.28)
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where ε = h/3 and d is the number of spatial dimen-
sions. Following Maxwell’s assumption of constant mass
and number densities within each phase and substituting
Eq. 3.27 into Eq. 3.24, we obtain, after integration:

Tαβ = −2− d
2 ε4−dπ1− d

2 nαnβ

(
pα

n2
α

+ pβ

n2
β

)

+ λε5nαnβsαβ,

(3.29)

where

λ = 3

4π4

[
27 − 32 × 24π2 + 33π4

]
(3.30)

and nα and nβ are the number densities in the corresponding
fluid phases. Assuming that nα = nβ (i.e., the same reso-
lution is used to discretize both phases), the surface tension
between fluids α and β is obtained by combining Eqs. 3.29
and 3.23:

σ = λε5 (
sαα + sββ − 2sαβ

)
, (3.31)

where

sαβ = ραρβ

sαβ

mαmβ

= nαnβsαβ. (3.32)

The static contact angle between fluids α and β and the
solid phase s is found by combining Eqs. 3.29 and 2.7:

θ = Arccos

[
sαα − sββ + 2ssα − 2ssβ

sαα + sββ − 2sαβ

]
. (3.33)

In the PF-SPH model, three parameters (sαα , sββ , and
sαβ ) define the surface tension between fluids α and β and
two additional parameters (ssα and ssβ ) define the static
contact angle between fluids α and β and the solid phase
s. According to Eqs. 3.31–3.33, an infinite number of com-
binations of these parameters can result in the same values
of the static contact angle and surface tension. To reduce
the number of parameters, we set sαα = sββ = 10κsαβ .
In immiscible flows, the attraction between particles of
the same fluid phase is much stronger than the attraction
between particles of different phases, which requires κ > 1.
Then, from Eq. 3.31:

sαα = sββ = 1

2(1 − 10−κ)
ε−5 σ

λ
(3.34)

and from Eq. 3.33:

ssα − ssβ = 1

2
ε−5 σ

λ
cos(θ). (3.35)

According to Eq. 3.35, θ depends on the difference of ssα

and ssβ . To define ssα and ssβ uniquely, we set ssα = sαα−ζ

and ssβ = sαα + ζ . Substituting this into Eq. 3.35 yields the
final expression for ssα and ssβ :

ssα = 1

2
ε−5 σ

λ

(
1

1 − 10−κ
+ 1

2
cos θ

)
and

ssβ = 1

2
ε−5 σ

λ

(
1

1 − 10−κ
− 1

2
cos θ

)
. (3.36)

For sufficiently large κ (in SPH simulations κ = 4 is
usually used), Eqs. 3.34 and 3.36 are reduced to

sαα = sββ = 1

2
n−2

(
h

3

)−5
σ

λ
(3.37)

and

ssα = 1

2
n−2

(
h

3

)−5
σ

λ

(
1 + 1

2
cos θ

)
and

ssβ = 1

2
n−2

(
h

3

)−5
σ

λ

(
1 − 1

2
cos θ

)
, (3.38)

where n = nα = nβ is the average particle number den-
sity. Equations 3.37 and 3.38 express the parameters sαβ in
the PF-SPH model as functions of the surface tension, static
contact angle, and the SPH discretization parameters n and
h. The preceding analysis can be easily extended for other
forms of Fint

ij .

3.5 SPH multiphase models based on the continuum
surface force model

Another approach to modeling surface tension is based on
the continuum surface force model (CSF) [19]. According
to the CSF model, the momentum conservation Eq. 2.2 sub-
ject to the boundary condition (2.4) can be rewritten as:

ρ
Dv
Dt

= −∇P + ∇ · τ + ρg + F x ∈ �. (3.39)

Assuming that the fluid is inviscid, the surface force F
can be expressed in terms of the surface tension as:

F = σκ∇ψ, (3.40)

where ψ is the color function

ψ(x) =
{

1, x ∈ �β,

0, x ∈ �α,
(3.41)

where �β and �α are the domains occupied by β and α

fluid phases, respectively.
The curvature κ can be found as:

κ = ∇ · n (3.42)

and the normal unit vector can be calculated using ψ as:

n(x) = ∇ψ̃(x)

|∇ψ̃(x)| , x ∈ �. (3.43)
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The gradient of ψ is defined according to the SPH
integral approximation of derivatives (3.8),

∇rψ̃(r) =
∫ (

ψ(r′) − ψ(r)
) ∇rW

(|r − r′|, h)
dr′. (3.44)

The direct SPH discretization of the Eqs. 3.39–3.43 was
found to produce noisy estimates of κ and non-physical
negative pressures [29]. In [30], it was shown that the CSF-
SPH model can be improved by computing ∇ψ̃ in Eq. 3.44
using the SPH expression (3.11). In [30], the SPH-CSF
model was also extended for modeling three-phase flow and
fluid-fluid-solid contact line dynamics. A number of other
modifications to CSF-based SPH models have been recently
proposed. One of the challenges in CSF-based SPH models
is that they require a relatively high numerical resolution to
obtain noise-free estimations of the normal and/or curvature
in the force F. Because of this, to date, these SPH models
have been mostly used for flow simulations in domains such
as a single channel or pore with a simple geometry, i.e., in
simulations that can afford sufficient numerical resolution.

3.6 Error analysis of SPH derivative operators and operator
corrections

The truncation errors of the SPH discretization of spatial
derivatives have been studied numerically in [31, 32] and
analytically in [18, 33]. In SPH, particles move with the
fluid velocity and become disordered in the nonuniform
velocity field. In addition to the errors defined in Eq. 3.3,
the differential SPH operators are sensitive to an error
||eanisotropy || due to the irregularity of the particle config-
uration. Hence, the total error in the SPH discretization of
spatial derivatives is:

||e|| ≤ ||esmoothing||+||equadrature||+||eanisotropy ||. (3.45)

The scaling of the first two error terms with h and �x

is discussed in Section 3.1. The anisotropy error is zero
for a Cartesian grid of particles. For irregularly distributed
particles, it scales as:

||eanisotropy || ≤ C
χ

hp

(
�x

h

)β

, (3.46)

where χ is a length scale characterizing the magnitude of
perturbation of the particle arrangement from a Cartesian
grid, p denotes the order of the differential operator, and β

is an integer corresponding to the order of kernel used in
the approximation. A detailed error analysis of the different
differential operators can be found in the recent work by
Fatehi and Manzari [33].

To demonstrate the effect of irregular particle distri-
bution on the accuracy of SPH discretization of spatial

derivatives, we compute the gradient and Laplacian of
the function u(x, y) = sin(x)sin(y) in a periodic two-
dimensional domain discretized with randomly distributed
SPH particles. The particle positions are obtained by plac-
ing the particles on a Cartesian grid with grid spacing �x

and perturbing the positions of particles by a uniformly
distributed variable scaled by χ . Figure 1 demonstrates
the behavior of the error in approximating the gradient
and Laplacian of u(x, y) for increasing values of χ and
fixed h

3�x
= 1.5 using the SPH discretizations (3.11)

and (3.13). For moderately perturbed particle arrangements
typical of those found in SPH low-Reynolds-number flow
simulations, it is possible to achieve 1 % error in the
approximation of the gradient. However, for the Lapla-
cian operator, after reaching a value of O(1 %), the error
diverges with increasing resolution as the eanisotropy error
dominates. It is possible to control eanisotropy by increas-
ing the number of neighbors per particle, i.e., decreasing �x

h

at the cost of a significant increase in the total number of
SPH particles.

The SPH method’s accuracy can be further improved by
using SPH discretizations of spatial derivatives that enforce
exact approximation of the first and second derivatives of a
linear function (i.e., the first derivative of a linear function is
a constant, and the second derivative of a linear function is
zero) [33]. This requires the construction of small correction
tensors for each SPH particle. While this increases the com-
putational complexity of the method and makes resulting
schemes non-conservative, it is possible to do this without
affecting the method’s scalability. Figure 2 demonstrates the
behavior of the truncation error and effect of particle dis-
order as a function of the number of particles when the
correction tensors are applied to compute first and second
derivatives of u. Comparing Figs. 1 and 2 shows that the
correction tensors can reduce the number of particles while
maintaining a relatively small total error.

While these corrected operators preserve convergence
rate and consistency, they sacrifice the method’s conserva-
tion properties. More research is needed to determine what
approach will be best for low Reynolds number multiphase
flows. Hashemi et al. [34] recently used the corrected oper-
ators to study the settling of rigid particles in a viscous fluid
with encouraging results.

4 Incompressible and low-compressible SPH
approximations

In most hydrogeological and petroleum applications, the
flow can be characterized by a very low Mach number (i.e.,
Ma = c

ṽ

 1). Under this condition, fluids are modeled

as incompressible with a corresponding solenoidal veloc-
ity field ∇ · ṽ = 0. In SPH, this divergence-free constraint
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Fig. 1 L2 norm of truncation
error for gradient (panel a) and
Laplacian (panel b) operators
applied to the function
u(x, y) = sin(x)sin(y) with
fixed h

3�x
= 1.5. While particles

on a Cartesian lattice give
second-order convergence due to
symmetry, as particle positions
are shifted by increasingly large
random perturbations, the
truncation error grows

is enforced either by applying a penalty term to den-
sity variations in the so-called “weakly compressible” SPH
formulation (WCSPH) or by using the incompressible SPH
(ISPH) method, which relies on a projection approach.

In the WCSPH formulation, an artificial EOS

P = f (ρ) (4.1)

is imposed with a sound speed c =
√

∂P
∂ρ

, selected large

enough to control density fluctuations but small enough to
avoid a stiff stability restriction on the timestep. A simi-
lar approach also has been used in grid-based methods for

incompressible flows [35, 36]. Various EOS have been pro-
posed in the SPH literature, including the ideal gas EOS [37]

P = P0

ρ0
ρ, (4.2)

and the non-linear EOS [38]

P = P0
[
(ρ/ρ0)

ζ − 1
]
. (4.3)

In these EOS, ρ0 and P0 are the reference density and
pressure, and the exponent ζ is commonly set to 7 for liq-
uids and 1 for gases. To limit the relative density fluctuation
to approximately 1 %, the speed of sound should be set to



Comput Geosci (2016) 20:807–834 815

Fig. 2 L2 norm of truncation
error for the renormalized
gradient (panel a) and Laplacian
(panel b) operators updated with
the correction tensors [33] and
applied to the function
u(x, y) = sin(x)sin(y) with
fixed h

3�x
= 1.5. Convergence

to the exact result is sustained
with increased resolution, and
increasing particle disorder
results in a transition from
second- to first-order
convergence at fine resolutions.
The renormalized gradient and
Laplacian operators are obtained
according to [33]

c = 10Vmax, where Vmax is the estimated maximum veloc-
ity in a given simulation. Under such conditions, a slightly
compressible fluid behaves like the incompressible fluid.
For many applications, modeling elliptic incompressible
equations with a hyperbolic compressible system requires
using either proper non-reflecting boundary conditions [39]
or numerical stabilization [10] to control the influence of the
corresponding numerical acoustic modes. It can be demon-
strated that applying the weakly compressible formulation
is equivalent to solving the alternative problem

dv
dt

= − 1

ρ
∇p + μ

ρ
∇2v, (4.4)

dp

dt
+ ρc2∇ · v = 0, (4.5)

which is consistent with the incompressible NS equations
only for steady flows or for large c2. Many authors neglect
to acknowledge the resulting consequence: when simulating
transient flows using the WCSPH formulation, the sensi-
tivity of the results to the artificial sound speed must be
investigated.

The EOS (4.3) with ζ = 7 produces small density
variations even for flows with high Reynolds numbers. Cov-
ersely, with this EOS, even small errors in density are
amplified into large errors in pressure and may result in
spurious pressure fluctuations. For low-Reynolds-number
flow SPH simulations, the EOS (4.3) with ζ = 1 has been
shown to produce both small density variations and smooth
density profiles [35–37]. The subtraction of 1 in the EOS
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(4.3) was originally proposed for SPH free-surface models
to avoid a pressure jump near the free surface. The main
disadvantage of this approach is that for ρi < ρ0, the result-
ing pressure gradient force in the SPH momentum equation
becomes purely attractive, which was shown to lead to
so-called “tensile instability” [40, 41]. For low-Reynolds-
number flows with SPH particles occupying the entire
computational domain, some authors reported that better
SPH results (in terms of the accuracy of pressure and den-
sity and the stability of the simulations) are obtained using
EOS (4.2) (e.g., [37, 42]), while others have successfully
used the P = P0[(ρ/ρ0) − 1] EOS (e.g., [43]).

In the alternative ISPH formulation, projection methods
are used to solve the incompressible NS equations [44–46].
Typically, a predictor velocity field v∗ is determined by
treating the viscous term explicitly:

v∗ − vn

�t
= μ

ρ
∇2vn (4.6)

or alternatively by treating the viscous term implicitly and
solving a Helmholtz problem:

v∗ − vn

�t
= μ

ρ
∇2v∗. (4.7)

The second approach is standard in mesh-based methods,
and has been discussed in the context of a variety of SPH
schemes [47, 48].

As Eq. 4.7 is implicit and requires the solution of a sys-
tem of linear equations, many authors opt to solve instead
Eq. 4.6, which treats the viscous term explicitly. However,
we note that in the matrix resulting from Eq. 4.7, the off-
diagonal terms are dominant as they are scaled by �tμ/ρ.
Therefore, this matrix is well-conditioned. Because of this,
iterative methods for solving the resulting system of linear
equations converge quickly, and there is little to be gained
by treating the viscous term explicitly, as this imposes a stiff
viscous timestep restriction. Following the predictor step, a
pressure gradient is imposed to ensure that the velocity at
the end of the timestep is divergence-free:

vn+1 − v∗

�t
= − 1

ρ
∇pn+1. (4.8)

Taking the divergence of this equation and requiring that
∇ · vn+1 = 0 yields a Poisson problem for the pressure:

∇2pn+1 = ∇ · ρv∗

�t
. (4.9)

Solving this Poisson problem for the pressure yields a
velocity at the end of the timestep that is divergence-free
up to the truncation error of the Laplacian operator. In Eqs.
4.8 and 4.9, the density is assumed constant within a given

phase, and appropriate Dirichlet and Neumann boundary
conditions must be applied for the velocity and pressure,
respectively. While the need to solve two linear systems in
this method imposes a substantial increase in computational
complexity, using implicit schemes allows the use of larger
timesteps, which can offset the additional computational
overhead. This is particularly relevant to low Reynolds num-
ber flows for which explicit schemes are restricted by a
viscous constraint on the timestep size of the form μ�t

ρh2 ≤ 1,
but the implicit projection methods are restricted only by
the Courant-Friedrichs-Lewy (CFL) condition Vmax�t

h
≤ 1.

Therefore, the number of timesteps required by an explicit
method NWCSPH compared to the implicit method NISPH

scales like NWCSPH

NISPH
∼ ν

Vmaxh
, or as the inverse of the particle

Reynolds number. Numerical experiments confirm that for
small Reynolds number flows, the total central processing
unit, or CPU, time for each method scales as TWCSPH

TISPH
∼ 1

h
,

resulting in a typical order of magnitude speedup in ISPH
relative to WCSPH [49].

At present, WCSPH is the most commonly used SPH
method in the literature. Due to the fully explicit nature
of the method, WCSPH is simple to code and easily par-
allelizable (simulations have been performed for systems
consisting of billions of particles [50]).

While projection methods have been standard in classical
Eulerian methods for some time, ISPH has only achieved
popularity recently in the SPH community since its initial
formulation in 1999 by Cummins and Rudman [44]. The
additional complexity of the linear solvers makes for a more
challenging framework to work with, and it is no longer
possible to use existing particle-particle libraries to imple-
ment the method. In comparison to grid-based methods,
the resulting linear systems found in ISPH are significantly
less sparse and, therefore, more challenging to solve using
iterative methods. Maintaining scalability while solving
these systems is a challenge and requires efficient pre-
conditioners, such as algebraic multigrid to simulate large
3D systems.

The advances of fast preconditioning libraries, however,
promise to resolve these issues, and it is anticipated that
ISPH methods will play a more dominant role in the future
due to their ability to simulate viscous dynamics efficiently
and without introducing artificial acoustic effects. Recently,
incompressible SPH simulations have been demonstrated
to scale for up to 100 million particles using algebraic
multigrid to handle the resulting linear systems [49].

5 Time integration

Due to the explicit form of the WCSPH discretization,
standard multistage (e.g., Runga-Kutta) or multilevel (e.g.,
Adams-Bashforth) explicit timestepping schemes may be
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used to simultaneously advance particle positions and
velocities forward in time. Alternatively, various simple-
to-implement second-order schemes, popular in Molecular
Dynamics, also can be used in SPH. The choice of time
integration algorithm also depends on which density com-
putation scheme, Eqs. 3.18 or 3.19, is used. For example,
Tartakovsky et al. [20, 51, 52] used the “velocity Verlet”
timestepping algorithm [53] to integrate the SPH momen-
tum equation with density found from Eq. 3.19:

ri (t + �t) = ri (t) + �tvi (t) + �t2

2mi

fi (t) (5.1)

vi (t + �t) = vi (t) + �t

2mi

[fi (t) + fi (t + �t)] . (5.2)

At each time step, the density is evaluated using Eq. 3.19,
the pressure is obtained from the EOS (4.2) or (4.3) (or any
other appropriate EOS), and the force is calculated from the
momentum conservation Eq. 3.14.

The advantage of using Eq. 3.19 for density eval-
uation is that in an infinite or periodic domain �,
this equation produces density approximations that con-
serve mass exactly. To see this, rewrite Eq. 3.19 as
ρ(x) = ∑

j mjW(x − xj ) and integrate over � to obtain∫
�

ρ(x)dx = ∫
�

∑
j mjW(x − xj )dx = ∑

j mj . How-
ever, for free-surface flow, Eq. 3.19 underestimates density
near the free surface due to an “incompleteness” of W near
the free-surface boundary, leading to the formation of an
artificial particle boundary layer. The SPH continuity Eq.
3.18 produces more accurate estimates of density near the
free surface as the (uniform initial) density evolves only in
response to relative particle motion and, therefore, is less
sensitive to the incompleteness of W . In addition, there is
a computational advantage in using Eq. 3.18 because all
rates of change can be calculated in one pass over the par-
ticles [54]. Whereas with Eq. 3.19, there is one pass to
calculate the density then another to calculate the velocity
gradient. Gomez-Gesteira et al. [55] used the velocity Verlet
integration scheme with the continuity density computation
approach. In their work, the SPH equations are integrated
according to:

vi (t + �t) = vi (t − �t) + 2�t

mi

fi (t) (5.3)

ri (t + �t) = ri (t) + �tvi (t) + �t2

2mi

fi (t) (5.4)

ni(t + �t) = ni(t − �t) + 2�tRi(t), (5.5)

where Ri(t) = dni (t)
dt

(t). Once every Ns time steps (Ns ≈
50), variables are calculated according to a simpler forward
Euler scheme (the Euler correction),

vi (t + �t) = vi (t) + �t

mi

fi (t)

ri (t + �t) = ri (t) + �tvi (t) + �t2

2mi

fi (t)

ni(t + �t) = ni(t) + �tRi(t)

where Ri(t) = dni (t)
dt

. Gomez-Gesteira et al. used the Euler
correction to prevent divergence of the time integration
scheme.

Liu et. at. [56] and Pan et al. [11] used the second-order
leapfrog scheme to integrate continuity and momentum
equations. In their approach, the position is computed at
the integral timestep, whereas the density and velocity are
computed at the half timestep. To keep the calculations con-
sistent at the beginning of an iteration, density and velocity
must be predicted at the integral timestep using

vi (t) = vi

(
t − 1

2
�t

)
+ �t

2mi

fi (t − �t)

ni(t) = ni

(
t − 1

2
�t

)
+ �t

2
Ri(t − �t).

Then, this information is used to compute the standard
leapfrog integration scheme as:

vi

(
t + 1

2
�t

)
= vi

(
t − 1

2
�t

)
+ �t

mi

fi (t)

ni

(
t + 1

2
�t

)
= ni

(
t − 1

2
�t

)
+ �tRi(t)

ri (t + �t) = ri (t) + �tvi

(
t + �t

2

)
.

For all explicit SPH methods, the solution stability is
governed by the following timestep constraints [37]:

�t ≤ 0.25 min
i

(
h

3|vi |
)

(5.6)

�t ≤ 0.25 min
i

(√
mih

3|fi |

)

(5.7)

�t ≤ min
i

(
ρih

2

9μ

)
, (5.8)

where | · | is the magnitude of a vector.
In the implicit ISPH formulation, the differential opera-

tors are implicitly non-linear functions of the particle posi-
tions, acting through the contribution of the gradient of the
smoothing kernel ∇rW

(|r − rj |, h
)
. To avoid a costly non-

linear solution of the iterative method, in standard ISPH,
the pressure is updated implicitly while fixing the particle
positions to their value at the previous timestep. According
to Eq. 4.7, the velocity also can be updated implicitly with
the previous timestep’s positions. The positions are usually
updated explicitly using the midpoint quadrature.

ri (t + �t) = ri (t) + �t

2
(vi (t) + vi (t + �t)) .

As mentioned previously, applying the implicit ISPH for-
mulation removes the viscous timestep constraint in Eq. 5.8.
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In some implementations of ISPH, the method is particu-
larly sensitive to the so-called “tensile instability” in SPH.
To prevent the associated clustering of particles, following
the positions update, the particles are shifted, and an inter-
polation correction is applied. It should be noted that tensile
instability can occur in both ISPH and WCSPH, and sev-
eral alternative approaches exist for dealing with it in the
ISPH [46] and WCSPH [57] methods. We also should note
that adding pair-wise forces in the PF-SPH method plays a
similar role as the repulsive forces in [57], and no tensile
instability is usually observed in PF-SPH simulations.

5.1 Time integration errors

To study the accuracy of explicit time integration schemes,
we consider SPH solutions of the coupled Euler and energy
conservation equations:

dv
dt

= −∇p

ρ
(5.9)

and

∂u

∂t
+ (v · ∇)u = −P

ρ
∇ · v, (5.10)

where u is the internal energy per unit mass. Similar to Eqs.
3.14, 3.18, and 3.20, the SPH discretization of Eqs. 5.9 and
5.10 is given by:

mi

dvi

dt
=

N∑

j

fij fij = −
(

Pj

n2
j

+ Pi

n2
i

)
rij

rij

dW
(
rij , h

)

drij

(5.11)

and

dui

dt
= Pi

ρ2
i

N∑

j=1

mj(vi − vj ) · ∇iW(rij , h). (5.12)

We note that the right-hand side of Eq. 5.11 is anti-
symmetric with respect to indices i and j , i.e., fij = −fji .
Therefore, the total momentum

∑
i mivi is explicitly con-

served. Conversely, the total energy
∑

i miei (where ei =
ui + 1

2vi · vi is the energy of particle i per unit mass) is
conserved only up to the SPH spatial discretization and time
integration errors.

In the following, we study errors resulting from differ-
ent explicit time integration schemes for a one-dimensional
closed system. The model configuration is illustrated in
Fig. 3. The SPH “fluid” particle is placed between the
boundary particles on a straight line with the particle spac-
ing �x = 0.05 m. The fluid density is set to 1000 kg/m3

(the density of water), which results in the particle mass
mi = 50 kg. In this study, we use the P = c2(ρ − ρ0) EOS
with the the speed of sound c = 0.2 m/s and the cubic kernel
function W [37] with the smoothing length h = 1.3�x.

Fig. 3 One-dimensional test configuration: red boundary particles
and blue SPH fluid particle

Initially, the SPH fluid particle velocity is set to 0.01 m/s
in the direction of the left boundary. Velocities of the bound-
ary particles are set to zero to impose the no-flow boundary
condition [55]. Then, the position, velocity, acceleration,
and density are calculated according to the time integration
schemes previously described. Figure 4 shows the variation
of kinetic, internal, and total energy in the model for each
time integration scheme.

From the energy variation plots shown, it is evident that
in all time integration schemes, energy is correctly con-
verted from kinetic to internal, and vice versa, as the fluid
particle oscillates between the boundary particles. Though it
appears that the total energy is conserved, inspection of the
relative total energy error in Fig. 5 shows this is not the case.

Generally, the magnitude of total energy error for all
considered integration schemes is less than 1 %. However,
some differences are still observed, particularly between
the Verlet and leapfrog methods, where the cause of the
discrepancy is likely due to numerical imprecision. This
occurs because the Verlet algorithm requires the addition of
a second-order (in �t) term to a relatively large first-order
term in Eq. 5.1, which may produce roundoff effects [53].

Another significant difference is obvious when compar-
ing the relative total energy error of the Verlet methods
using the continuity (Eqs. 5.3–5.5) and summation (Eqs.
5.1, 5.2, and 3.19) approaches. When the density summation
approach is used, the average total energy error is extremely
small, and the variation is consistent. However, when the
Verlet scheme is applied with the continuity approach, the
relative total energy error becomes very noisy, and grows
in magnitude as the simulation proceeds. It should be noted
that by removing the Euler correction, the average energy
error becomes smaller. The errors associated with different
integration schemes are summarized in Table 1.

Note that the total energy can be found directly from the
equation de

dt
= − 1

ρ
∇ · (P v), which allows the conservative

SPH discretization

mi

dei

dt
= −

N∑

j=1

(
Pjvi

n2
j

+ Pivj

n2
i

)

· ∇iW(rij , h). (5.13)

The right-hand side of this equation is anti-symmetric
with respect to indices i and j . Hence, the total energy∑

i miei of a closed system determined from this equation
would be exactly conserved, regardless of the choice of time
integration scheme. Therefore, in SPH simulations of non-
isothermal flows, it is common to compute the total energy
from Eq. 5.13 rather than Eq. 5.12.
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Fig. 4 Energy variation in 1D
test case
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6 Boundary conditions for the Navier-Stokes equations

6.1 No-slip boundary condition

When the support of the kernel intersects the boundary
of the domain for a given SPH particle, it is necessary

to account for the truncated kernel support and enforce
appropriate boundary conditions. While it is possible to do
this by integrating by parts the SPH integral approxima-
tions of the spatial derivatives and directly evaluating the
resulting boundary terms, this requires a discretization of
the boundary and becomes computationally expensive for
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Fig. 5 Relative Total Energy
Error in 1D Test Case
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geometrically complex domains. In the PF-SPH model, this
problem is resolved by using “solid boundary” SPH par-
ticles that are included in summations in the momentum
conservation Eq. 3.14. These particles “cover” the support
of fluid SPH particles near the boundary. When the dis-
crete operators are evaluated, values of velocity, density,

and viscosity are prescribed to the solid particles in such a
way that appropriate boundary conditions are approximately
enforced at the wall.

There are a number of approaches for determining “arti-
ficial” velocity values vb

j at solid particle j . For the Dirichlet
boundary condition v(x, t) = vD(x, t) on 
D , the simplest
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Table 1 Mean and variance of relative total energy error

Mean (%) Variance (%)

Leapfrog, Continuity 1.28e-06 7.35e-13

Verlet, Continuity, Euler Correction 9.43e-06, 2.05e-11

Verlet, Continuity 1.19e-06 3.26e-11

Leapfrog, Summation 4.80e-07 9.86e-14

Verlet, Summation 2.78e-08 2.40e-07

approach is to set vb
j = vD(x∗, t), where x∗ is the closest

point on 
D to particle j . However, this approach introduces
an O(h) error and, when used to apply the no-slip bound-
ary condition, results in a finite slip velocity at the wall.
Review of the most common methods for implementing the
Dirichlet boundary conditions for the NS equations and the
corresponding error analysis can be found in [58].

The most common extrapolation method for applying
Dirichlet boundary conditions for the NS equations was pro-
posed originally by Takeda et al. [59]. Later, this method
was used by Morris [37] to model flow in porous media.
In the Takeda-Morris approach, when calculating the differ-
ence in velocities of fluid and boundary particles vi − vb

j |i
in the force (3.15), the artificial velocity of the solid par-
ticle j with respect to fluid particle i is found by linear
extrapolation

vb
j |i = −db

j

di

vi , (6.1)

where the distances db
j and di are the closest perpendicular

distances to the wall of boundary particle j and fluid particle
i, respectively. For the homogeneous Neumann boundary
condition, vi − vb

j = 0 is enforced instead.
For straight wall or circular boundaries, calculations of

db
j and di can be performed relatively easily. For more com-

plex boundaries, these calculations become non-trivial, and
for boundaries with sharp corners, db

j and di may not be
uniquely defined. To address this, Holmes et al. [43] pro-
posed to approximately compute the distance from a particle
to the interface as follows:

di = h

0.5
(κi − 0.5) , (6.2)

where

κi =

N∑

j=1
δijW

(|ri − rj |, h
)

N∑

j=1
W

(|ri − rj |, h
)

(6.3)

and δij is equal to 1 if particles i and j are both either
fluid or boundary particles and zero otherwise. Figure 6
demonstrates the smoothed approximation of Eq. 6.2 of the

Fig. 6 Smoothed approximation of the distances to the wall di and db

for a simple 1D channel flow geometry. In this example, the distance to
the wall at x = 0 and x = 1 is approximated using Eq. 6.2. (After [43])

distance function for a one-dimensional channel flow. It
should be noted that Eq. 6.2 can be only used to calculate
distances for particles within distance h from the boundary.

Figure 7 shows the transient velocity profile for two-
dimensional flow between two parallel plates. The solid line
denotes the analytical solution, and asterisks show the solu-
tions obtained from the SPH simulations, where the bound-
ary particles velocities were set to zero. Circles represent the
solution obtained from the SPH simulations with the artifi-
cial velocities of boundary particles computed from Eq. 6.1.
It is evident that the Takeda-Morris approach produces a
more accurate velocity profile but at the additional cost
of computing normal distances to the boundary. Another
approach, the continuum boundary force (CBF) method,
was recently proposed in [60] for solving the NS equa-
tions subject to the Robin boundary condition describing a
partial velocity slip at the boundary. It was demonstrated
that the CBF method can be also used to model the no-
slip boundary conditions at a limiting case of the Robin
boundary condition. The CBF method is an extension of
the continuum surface reaction(CSR) method [61–63] for
advection-diffusion equations subject to the Robin (reac-
tive) boundary condition. The CBF and CSR methods are
described in Sections 6.2 and 10, respectevely.

6.2 Partial slip boundary condition

Under most natural conditions, it is reasonable to assume
that the velocity field in the pore-scale models satisfies
the no-flow boundary condition (2.6). This is because, for
simple wetting fluids, the slip length (the outer normal
distance from the boundary to where the fluid velocity is
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Fig. 7 Transient velocity profiles for flow between two parallel plates
subject to the no-flow boundary condition. The solid lines are veloc-
ity profiles obtained analytically, and asterisks and circles represent
velocity profiles obtained from SPH simulations with two different
approaches to modeling the solid boundary. The asterisks show the
results of a PF-SPH simulation obtained with zero velocities of the
boundary particles. The circles indicate the results obtained using the
approach proposed in [37] for treating no-slip boundary conditions at
solid surfaces. In the simulations, the flow is driven by a constant body
force, and the SPH momentum conservation equation is discretized
according to Eqs. 3.14 and 3.20. (After [52])

extrapolated to become zero) is on the order of molecular
size and in pore-scale simulations can be set to zero. On
the other hand, for non-wetting fluids (such as oil), the slip
length can be in the range of 10–15 nm [64], and for flow
in nano- and micron-size pores, the slip length cannot be
set to zero without introducing significant errors. In some
complex flows (e.g., flow of supercritical carbon dioxide in
the presence of the residual water film) and near a fluid-
fluid-solid contact line, the slip length can be significantly
larger.

In general, velocity slip at the boundary is described by
the Robin boundary condition

τ (xs , t) · n(xs) = f
(xs , v) xs ∈ 
, (6.4)

or its linear form, the Navier boundary condition, corre-
sponding to f
(xs , v) = βv, where β is a constant inversely
proportional to the slip length. Two limiting cases of the
Navier slip boundary condition include (1) β = 0, corre-
sponding to the free-slip boundary condition, and (2) and
β = ∞, corresponding to the no-slip condition (i.e., v = 0).

A direct implementation of the Robin boundary condi-
tion in SPH can be difficult, especially if the boundary is
geometrically complex. Similar difficulties exist in the grid-
based finite difference and finite volume methods, which
have led to the development of approximate methods that
replace the boundary condition with a continuous forc-
ing field such as the immersed boundary method [65] and
the diffuse domain method [66]. In the context of SPH,
a so-called continuum boundary force (CBF) method was

recently proposed [60]. In the CBF method, the boundary 


is replaced with a diffused region of the thickness 2h cen-
tered on 
. Then, the NS equations subject to the Robin
BC are approximated with the momentum conservation
equation

ρr(x, t)
dvr (x, t)

dt
= −∇P r(x, t) + ∇ · τ r (x, t) + ρr (x, t)g

−f
(x, vr )

∫∫∫

�S

[n(x) + n(x′)]

·∇xW(x − x′, h)dx′,
x ∈ �F , (6.5)

subject to the homogeneous Neumann boundary condition

τ r (xs , t) · n(xs) = 0, xs ∈ 
. (6.6)

Here, the computational domain is extended to � =
�F ∪�S , where �S is the extension of �F , i.e., �F ∩�S =
0. The kernel W is the standard SPH kernel, and its support
h determines the size of the diffused boundary region. In the
limit h → 0, the CBF formulation recovers the standard NS
equations, i.e.,

lim
h→0

vr = v, lim
h→0

ρr = ρ, lim
h→0

P r = P. (6.7)

As in PF-SPH model, the domains �F and �S are dis-
cretized with “fluid” and “solid” particles, respectively. A
weakly compressible SPH discretization of Eq. 6.5 subject
to the boundary condition (6.6) can be written as [60]:

mi

dvi

dt
= −

∑

j∈�

(
Pj

n2
j

+ Pi

n2
i

)
rij

rij

dW
(
rij , h

)

drij

+
∑

j∈�P

4μiμj

μi + μj

vij

ninj rij

dW
(
rij , h

)

drij

+mig −
∑

k∈�S

Fb
ik, (6.8)

where
∑

j∈� denotes summation over all fluid and solid
particles,

∑
j∈�F

assumes summation over fluid particles
only, and

∑
j∈�S

denotes summation over solid particles
only. In [60], the “artificial viscous stress” approximation of
the divergence of the viscous stress was used [9], which is
applicable for modeling both incompressible and compress-
ible flows. The homogeneous Neumann boundary condition
(6.6) is enforced by performing summation over only fluid
particles when computing viscous force in Eq. 6.8, as com-
monly done in SPH free-surface flow models [38]. The
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boundary force term Fb
ik is obtained by discretizing the

integral in the CBF Eq. 6.5 as follows:

Fb
ik = β(x = ri , vik)vik

1

nink

(ni + nk) · ∇iW(rik, h), (6.9)

and the normal unit vector ni is found as:

ni =

∑

j∈�

1
nj

(ψj − ψi)∇iW(rij , h)

∣∣∣∣∣
∑

j∈�

1
nj

(ψj − ψi)∇iW(rij , h)

∣∣∣∣∣

, (6.10)

where ψ is the color function defined as:

ψ(x) =
{

1, x ∈ �S

0, x ∈ �F .
(6.11)

Figure 8 shows a two-dimensional velocity field obtained
from an CBF-SPH simulation of flow around a “sun-
flower”-shaped obstacle subject to the Navier boundary
condition. This figure also shows a good agreement between
the velocity profiles obtained from the CBF-SPH and finite
element methods for several slip lengths (including a large
β (β = 10), corresponding to the no-slip condition) and
β = 0.

In [60], the CBF method was also tested for a three-
dimensional flow of water between two planes located at
y = 0 and H = 0.1 m. The bottom plane was assumed to
be chemically heterogeneous and characterized by a spa-
tially varying slip length. The free-slip boundary condition
was imposed at the upper plane. The NS equations were

solved subject to the initial condition vx = 10−5 m and
vy = vz = 0, the Robin boundary conditions at the top and
bottom planes,

{
τ · n = β[1 + sin(ωx)sin(ωz)]v at y = 0 0 ≤ x, z ≤ H t > 0,

τ · n = 0 at y = H 0 ≤ x, z ≤ H t > 0,

(6.12)

and the periodic boundary condition at the rest of the bound-
aries. Figure 9 depicts the comparison of velocity profiles
at time t = 55.3 s, determined from the SPH-CBF and finite
element methods. A good agreement is observed between
the two methods.

7 Single phase flow simulations

The simplest application of SPH for flow in porous media
involves modeling a single-phase flow at the pore scale
(e.g., [37, 43, 67]). Single-phase SPH pore-scale flow mod-
els have been used to compute transport properties of the
porous media (permeability, tortuosity, dispersivity) and the
Lagrangian statistics of fluid velocity and particle displace-
ments. The latter is difficult to determine from grid-based
Eulerian methods. For example, in [5], the Lagrangian
velocity statistics, determined from an SPH simulation, have
been used to parameterize the correlated continuous time
random walk (CCTRW) model. In [6], the SPH model
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Fig. 8 Two-dimensional flow around the “sun-flower”-shaped obsta-
cle subject to the Navier boundary condition with f
 = βv at the
fluid-solid boundary and the periodic boundary conditions at the exter-
nal boundaries. The flow is driven by the body force acting in the x

direction. Left A snapshot of the distribution of SPH particles obtained
from the simulation with β = 10 after the flow had reached its steady

state. Gray particles represent solid particles. The color scale denotes
magnitude of the x component of the velocity of the fluid particles.
Right Comparison of vx profiles along the line at x = 0.1m for
β = 0.0, 1.0, 10.0 with the spatial resolution �x = 5.0 × 10−4m
and Re = 0.1 − 0.2, obtained with the CBF-SPH and finite element
methods (After [60])
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Fig. 9 The contour plots
(projection on x-z plane (left)
and slices in y-z plane (right))
of the velocity component vx

obtained with the CBF-SPH and
finite element methods. In these
simulations, β = 0.1 in Eq. 6.12
and the Reynolds number is
Re = 1 (After [60])

was used to compute statistics of particle displacements
and the coefficient of mechanical dispersion in an effective
stochastic reactive transport model.

Holmes et al. [43] and Pereira et al. [67] used SPH to
model flow in three-dimensional porous media and demon-
strated convergence of the SPH solutions for the effective
parameters, including permeability and friction coefficient.
Holmes et al. also showed that to obtain a reasonably accu-
rate solution, the pore throats should be “discretized” with,
at least, 30 SPH particles.

Ovaysi and Piri [7] used an incompressible version of a
modified SPH method, known as the moving particle semi-
implicit (MPS) method to model single-phase pore-scale
flow in a 1.02 x 1.02 x 1.02 mm3 sandstone sample with
3.398 μm resolution. The pore geometry was reconstructed
from three-dimensional high-resolution micro-computed-
tomography (micro-CT) images of rock samples. To model
a domain of this size, adaptive splitting and coalescence
of SPH particles (analogous of adaptive resolution in grid
based methods) was used in [7]. The simulations were
used to compute the permeability of the sandstone, and the

computed values were found to be in a close agreement with
the permeability values obtained from the experiments.

8 Two-phase flow simulations

To date, most of SPH pore-scale studies of multiphase
flow have used the weakly compressible PF-SPH formula-
tion. Validation of the PF-SPH model for multiphase and
free-surface problems under static and dynamic conditions
allowing analytical solutions has been done in [17, 51,
52]. In [25], the PF-SPH method was used to model dis-
placement of one fluid by another in a microcell for a
wide range of Capillary numbers, Ca, and viscosity ratios,
M , and the results of the simulations were compared with
the laboratory experiments of [68]. Figure 10 presents the
M − Ca phase diagram developed in [68] based on the
laboratory displacement experiments. Solid lines in Fig. 10
show boundaries of the regions in the M − Ca space where
the displacement takes the form of viscous fingering, capil-
lary fingering, and stable displacement. Symbols in Fig. 10
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Fig. 10 Different types of displacements, obtained from SPH simula-
tions of a wetting fluid being displaced by a non-wetting fluid), plotted
on the phase diagram developed by [68]. Continuous lines represent
the boundaries of viscous fingering, capillary fingering, and stable dis-
placement regions. The legend lists fluids used in each experiment.
The terms PEG200, HA, DD, HD, and MO correspond to polyethylene
glycol 200, hexane, dodecane, hexadecane, and mineral oil, respec-
tively. The porous domain is initially filled with a wetting fluid (water
or PEG200) (After [25])

denote the combinations of Ca and M for which the corre-
sponding SPH simulations were conducted. The color of the
symbols corresponds to the three different types of displace-
ment observed in the simulations. This figure shows a good
agreement between displacement types obtained in the SPH
simulations and observed in the experiments.

Figure 11 provides a side-by-side comparison of the
experiments in [68] and the corresponding PF-SPH simula-
tions for three combinations of M and Ca, corresponding
to the viscous fingering, capillary fingering, and stable dis-
placement regimes. Figure 12 compares steady-state non-
wetting fluid saturations (Snw) for different Ca and M

obtained from the simulations and experiments. A good
qualitative and quantitative agreement, observed in these
figures, shows that the PF-SPH model is able to simulate
various types of displacements for the wide range of flow
conditions and fluid properties.

One of the advantages of SPH model is that it can sim-
ulate multiphase fluid flow with large density and viscosity
ratios. In [1, 69], the PF-SPH model was used to simulate
flow of water and air (unsaturated flow) in porous media.
In these simulations, the density and viscosity ratios of liq-
uid to gas phases were set to 1000 and 100, respectively. In

[1], the PF-SPH model was used to study the effect of pore-
scale heterogeneity on the pressure-saturation relationship.
In the simulations, the water was drained by incrementally
increasing capillary pressure, defined as Pc = δρgH , where
δρ is the difference in the density of the liquid and gas
phases, g is the magnitude of the body force per unit mass,
and H is one half the size of the simulation domain in the
vertical direction (the direction of the body force action).
In the simulations, Pc was changed by increasing g. Two
two-dimensional artificial porous media were considered.
One was made of non-overlapping circular grains with a
micro-fracture running through the middle of the domain.
The second porous medium was made of non-overlapping
co-oriented elliptical soil grains. Figure 13 compares the
distributions of liquid and gas phases obtained as a result of
liquid phase drainage for the fracture, oriented parallel and
perpendicular to the direction of the body force. Figure 14
compares distributions of the liquid and gas phases obtained
as a result of drainage for the soil grains, oriented paral-
lel and perpendicular to the direction of the body force.
Both figures show that anisotropy has significant effect on
the distribution of the fluid phases. Figure 15 compares
saturation as a function of Bond number (the dimension-
less capillary pressure defined as Bo = Pcl

2/(σH), where
l is the soil grain diameter). The main conclusion of this
work is that, in the presence of pore-scale anisotropy, the
Pc − S relationship may depend on the flow direction.
In the same work, the PF-SPH model was also used to
study the effect of the static contact angle on two-phase
flow.

In [69], the advantage of the SPH Lagrangian framework
for interface tracking was exploited to study interactions
between “old” and “new” water in porous media. The
PF-SPH model was used to model consequent infiltration-
drainage cycles. Figure 16 shows distributions of the old
water and new water and the air phase obtained from the
SPH simulations. This study found that pockets of old water
may remain almost intact for a long time during infiltra-
tion of new water. It was suggested that such interplay
between old and new water may play a significant role in
the chemical signature of water in the unsaturated zone and
aquifer.

9 Free surface flow

Free surface problems describe dynamics of liquid and gas
phases where the gas phase is continuous. As a result of
the very high ratio of the liquid and to gas viscosities, the
dynamics of the continuous gas phase does not have sig-
nificant impact on the liquid flow, and the pressure of the
gas phase can be assumed uniform. Therefore, free-surface
problems are formulated as the NS equations defined on
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Fig. 11 a Viscous finger
formed by hexane displacing
polyethylene glycol, log
M = −1.95 and log Ca = −4.57.
b Capillary fingers formed by
hexane displacing water, log
M = −0.49 and log Ca = −3.38.
c Capillary fingers formed by
mineral oil displacing water, log
M = 1.88 and log Ca = −1.30. In
all simulations, the non-wetting
fluid is injected through the
left-hand side boundary with a
constant rate. The constant flux
boundary condition is prescribed
at the outlet (the right-hand side
vertical boundary) (After [25])

the domain occupied by the liquid phase and subject to the
free-surface boundary condition on the liquid-gas interface

Pn = −τw · n + κσn x ∈ γ. (9.1)

In numerical models based on the phase field, level set,
and similar indirect front tracking methods, both the liq-
uid and gas phases must be modeled as the phase field, or
the level set function has to be advected on both sides of
the interface. Because of this, these methods are not very
efficient for free-surface problems.

One advantage of the PF-SPH method for free surface
problems is that it does not require discretizing the gas phase
(and solving equations for the gas phase). In [51, 52], the
PF-SPH method was used to solve the NS equations sub-
ject to the free-surface boundary condition. In these studies,

Eq. 3.19 was used to calculate particle density, and the van
der Waals EOS

P = kbT n

1 − bn
− an2 (9.2)

was used to compute pressure. Here, kb is the Boltzmann
constant, n is the number density, T is the temperature,
and a and b are the van der Waals constants. Comparisons
with analytical solutions for relatively simple flows, labo-
ratory experiments for the droplet flow through an inverted
“Y”-shaped fracture junction, and the droplet flow at crit-
ical state on inclined flat surfaces demonstrated that this
approach can accurately model surface-tension-dominated
free surface flows [20, 51, 52].

In [20], the PF-SPH free surface model was used to
study the effect of the residual fluid film on the velocity
of a droplet sliding down the surface under gravity. It was
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Fig. 12 Saturation of
non-wetting phase versus Ca for
different M. Comparison of SPH
results with micromodel
experiments of Zhang et al. [68]
(After [25])

(a) (b)

(c) (d)

Fig. 13 Equilibrium
distribution of a strongly wetting
liquid for three different Bond
numbers during drainage of the
liquid from a porous medium
containing a microfracture: a
vertically oriented fracture and b
horizontally oriented fracture.
Liquids are drained in the
vertical direction by an
incremental increase in the
Bond number. Black particles
denote soil grains and
impermeable boundaries of the
flow domain, light gray particles
represent gas phase, and dark
gray particles represent liquid
phase (After [1]).

Bo = 1.41 Bo = 2.83 Bo = 5.66 

S = 0.72 S = 0.47 S = 0.35

S = 0.6 S = 0.37 S = 0.3x

y

(a)

(b)
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Fig. 14 Equilibrium
distribution of a strongly wetting
liquid during liquid drainage
from anisotropic porous media
for three different Bond
numbers: a major axes of soil
grains are aligned in the vertical
direction and b major axes of
soil grains are aligned in the
horizontal direction. Liquids are
drained in the vertical direction
by an incremental increase in
the Bond number. Black
particles denote soil grains and
impermeable boundaries of the
flow domain, light gray particles
represent the gas phase, and
dark gray particles represent the
liquid phase (After [1])

(a)

(b)

found that droplets move faster on wet surfaces than on
dry surfaces. The effect of the residual film increases with
increasing viscosity of the liquid. In [20], droplet flow on
rough surfaces was also considered, (see Fig. 17). Surfaces
with a self-affine fractal geometry with Hurst exponents
ζ = 0.75, 0.50, and 0.25 (the roughness of the surface
decreases with increasing ζ ) were generated according to
[52]. In the simulations, the surface inclination was set to
90 and 45◦, and the static contact angle was set to θ0 = 110,
80, and 60◦. Figure 18 shows the resulting dimensionless

velocity of a droplet Re = ρvV 1/3

μ (V is the volume of the
droplet) as a function of ζ (ζ = 1 corresponds to a smooth
surface). It was found that surface roughness reduces the
velocity of droplets. For example, droplets with θ0 = 110 and
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Fig. 15 a Saturation versus Bond number as a function of the frac-
ture orientation. Drainage of a strongly wetting liquid in response to
the incremental increase in the Bond number. b Effect of orientation
of the anisotropic porous medium on the S/Bo relationship for the
strongly wetting liquid drained by incremental increases in the Bond
number. (1) Solid line: vertical particle alignment; S/Bo relationship

is estimated for the whole domain. (2) dashed line: horizontal parti-
cle alignment; Pc/S relationship is estimated for the whole domain.
(3) triangle symbols: vertical particle alignment; S/Bo relationship is
estimated for the domain bounded by the dashed line in Fig. 14. (4) X
symbols: horizontal particle alignment; S/Bo relationship is estimated
for the domain bounded by the dashed line in Fig. 14 (After [1])

80◦ experienced a velocity decrease between 33 and 37 %
on the surface with ζ = 0.75 compared to the smooth sur-
face, regardless of the surface inclination. For a droplet with
θ0 = 60◦, the velocity decreased by as much as 80 % for an
inclination angle of 90◦ and 98 % for an inclination angle
of 45◦. For lower ζ , i.e., “rougher” surfaces, a droplet with
θ0 = 60◦ barely moved, while for higher contact angles, the
velocity decreased proportionally to ζ .

Evaluation of the density near the free surface can be
significantly improved using the SPH discretization of the
continuity Eq. 3.18 instead of Eq. 3.19 [11, 38]. Our tests
show that this would also eliminate the need for using
the van der Waals EOS, and the more traditional EOS,
such as Eqs. 4.2 and 4.3, could be used. Another attractive
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Fig. 16 Infiltration of “new water” in a pore space wetted by “old
water.” Black denotes the old water, dark gray depicts the new water,
light gray represents the air, and white represents the quartz grains.
Flow is driven by gravity only. The effect of surface tension is clearly
visible between grains 1 and 2. Below grain 3, a pocket of old water is
dragged by the new water but does not mix with it. Old water is mixed
with new water between grains 4 and 5. Air bubbles are trapped around
grain 6 (After [69])

alternative is to use the projection approach to solve PF-SPH
equations subject to a divergence-free velocity condition to
eliminate the need for an equation of state.

It should be noted that for the weakly compressible free-
surface PF-SPH model, Eqs. 3.37 and 3.38, do not provide
an accurate relationship between the surface tension and
parameters in the pair-wise forces. Therefore, the weakly
compressible free-surface PF-SPH model must be calibrated
for a given surface tension and static contact angle. This
can be due to particle density variations near the free sur-
face (that are absent in the multiphase PF-SPH model) that
violate the assumption of constant density used to derive
Eqs. 3.37 and 3.38. It would be interesting to see if the
incompressible PF-SPH method would produce the surface
tension and static contact angle satisfying Eqs. 3.37 and
3.38.

10 Reactive transport, microbial growth, and mineral
precipitation

Reactive transport of M chemical species can be described
by the advection-diffusion-reaction equation defined on the
domain �P ,

DCm

Dt
= 1

ρ
∇ · (

ρDm∇Cm
) + 1

ρ
rm

(
C1, ..., CM

)
,

m = 1, M x ∈ �P , (10.1)
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Fig. 17 Advancing droplets on rough surfaces with Hurst coefficients
ζ = 0.25, 0.5, and 0.75 at time t = 2000 (0.13 s). Results are shown
for droplets with μsph = 0.03 and the solid-fluid interaction strength
of ssf = 0.01, 0.02, and 0.03. The equilibrium radius of the droplets is
Req = 5.85

subject to an appropriate initial condition and the Robin
boundary condition

Dmn · ∇Cm = gm
(
C1, ..., CM, �1, ..., �L

)
,

m = 1, ...,M x ∈ 
. (10.2)

Here, Cm is the mass fraction of species m, Dm is the
composition dependent diffusion coefficient, rm and gm are
the rates of the homogeneous and heterogeneous reactions
of species m, respectively. �l = Sl/Sl

max (l = 1, ..., L) is
the dimensionless surface concentration of species l formed
on the surface (Sl

max is the maximum concentration). The
reaction rate Gl of �l is given by:

D�l

Dt
= Gl

(
C1, ..., CM, �1, ..., �L

)
,

l = 1, ..., L x ∈ 
. (10.3)

The interface 
 evolves due to precipita-
tion/accumulation of surface species with the normal
velocity vn,

vn =
L∑

l=1

Sl
max

ρl
gl x ∈ 
. (10.4)
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Fig. 18 Reynolds numbers for three roughness coefficients, three
static contact angles (110, 80, and 60◦), and two inclination angles

In Section 6.2, we mentioned that a direct implemen-
tation of the Robin boundary condition in SPH can be
difficult and introduced the continuum boundary force
method for the Navier-Stokes equations subject to the Robin
country conditions. A similar approach, the continuum sur-
face reaction (CSR) method, has been proposed for solv-
ing advection-diffusion-reaction equations subject to Robin
boundary conditions using SPH. The CSR method approx-
imates Eqs. 10.1 and 10.2 with an advection-diffusion-
reaction equation subject to the homogeneous Neumann
boundary condition [61–63]:

DCm

Dt
= 1

ρ
∇ · (ρDm∇Cm) + 1

ρ
rm

(
C1, ..., CM

)
+ Rm,

m = 1, M (10.5)

and

Dmn · ∇Cm = 0, m = 1, ...,M x ∈ 
. (10.6)

As in the CBF method, the source term Rm is related to
the surface reaction gm as:

Rm(x) =
∫

�S

gm(x, y, t)[n(x) + n(y)]
[ψ(x) − ψ(y)]∇W(x − y, h)dy x ∈ �, (10.7)

where the computational domain is extended to � = �P ∪
�S , the color function ψ is given by Eq. 6.11 and

gm(x, y, t) = gm
(
C1(x), ..., CM(x), �1(y), ..., �L(y)

)
.

(10.8)

In the CSR formulation, � is found as:

D�l(x)
Dt

=
∫
�

Gl(x, y, t)[n(x) + n(y)][ψ(x) − ψ(y)]∇W(x − y, h)dy
∫
�
[n(x) + n(y)][ψ(x) − ψ(y)]∇W(x − y, h)dy

x ∈ �S, (10.9)

where

Gl(x, y, t) = Gl
(
C1(x), ..., CM(x), �1(y), ..., �L(y)

)
.

(10.10)

As in the PF-SPH and CBF-SPH models, the fluid and
solid domains �p and �S are discretized with “fluid” and
“solid” particles, respectively. The SPH discretization of Eq.
10.5 subject to the boundary condition (10.6) is given by

DmiC
m
i

Dt
=

∑

j∈�P

(
Dm

i mini + Dm
j mjnj

) (
Cm

i − Cm
j

)

ninj

rij

r2
ij

·∇W(rij , h)

−mi

∑

j∈�S

1

nj

gm
(
C1

i , .., CM
i , �1

j , ..., �
L
j

)
[ni + nj ]

·∇W
(
rij , h

)
ri ∈ �P (10.11)

and

D�l
i

Dt
=

∑

j∈�P

1
nj

Gl
(
C1

j , .., CM
j ,�1

i , ..., �
L
i

)
[ni + nj ] · ∇W

(
rij , h

)

∑

j∈�P

1
nj

[ni + nj ] · ∇W
(
rij , h

)

ri ∈ �S, (10.12)

where
∑

j∈�P

and
∑

j∈�S

denote summation over all “fluid” and

“solid” particles, respectively, and the equality ψi −ψj = 1
for ri ∈ �S and rj ∈ �P is used. The last term in Eq.
10.11 is obtained by substituting Eq. 10.8 into Eq. 10.7,
and discretizing the resulting integral as a Riemann sum.
The SPH expression for the normal vector is given by
Eq. 6.10.

It can be shown that in the limit h → 0, the solution of
the CSR advection-diffusion-reaction Eq. 10.5–10.10 con-
verges to the solution of the original advection-diffusion-
reaction equation subject to the Robin boundary condition.
The convergence of the SPH solution of the CSR advection-
diffusion-reaction equation with respect to h was demon-
strated in [61, 63, 70]. The first term in Eq. 10.11 is the
discretization of the diffusion term in Eq. 10.5. Summation
in this term over only fluid particles enforces the homo-
geneous Neumann boundary condition. Dirichlet boundary
condition Cl(x) = C0 can be imposed by setting gl =
k

(
Cl − C0

)
with sufficiently large k, but a more efficient

way to prescribe the Dirichlet boundary condition is to
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define artificial mass fraction Ci for the solid particles,
and set Ci = C0. Then, the Dirichlet boundary condition
can be recovered by simply including the solid particles in
summation in the diffusion term in Eq. 10.11.

The CSF model has been used to model competitive non-
linear adsorption [62, 63] and growth of thin biofilms in
porous media [71]. During adsorption and the type of micro-
bial growth considered in [71], the reactive surfaces were
treated as immobile, i.e., vn was assumed to be zero.

The SPH model can be easily extended to model reactive
processes leading to changes in pore geometry, including
mineral precipitation and dissolution and biofilm growth.
For example, for the transport of species A and B, under-
going heterogeneous reaction A + B → Cs resulting in
formation of a solid phase C with the reaction rate

gA = gB = K

(
cAcB

Ksp

− 1

)
, (10.13)

the SPH advection-diffusion-reaction equation takes the
form

Dmic
l
i

Dt
= ∑

j∈�P

DI (mini+mj nj )
(
cl
i−cl

j

)

ninj (ri−rj )
2

(
ri − rj

) · ∇W
(
rij , h

)

−miK

(
cA
i cB

i

Ksp
− 1

)
∑

k∈�S

2(ni+nj )

ni+nj
· ∇W

(
rij , h

)
, l = A, B.

(10.14)

Precipitation and dissolution of C can be modeled by
tracking the masses, mi , of the solid particles, which change
according to:

dmi

dt
= −m0

(
CA,0 + CB,0

)
K

∑

j∈�P

(
cA
j cB

j

Ksp

− 1

)

2(ni + nj )

ni + nj

∇iW
(
ri − rj , h

)
, i ∈ s, (10.15)

where K is the reaction rate constant, Ksp is the solubility
product, and m0 is the mass of solvent carried by each fluid
particle. Here, cA and cB are normalized mass fractions of
solutes A and B,

cl = Cl

Cl,0
l = A, B, (10.16)

CI is the mass fraction (mass of solute I per mass of
solution), and CI,0 is the initial mass fraction. The initial
mass of the solid particles is set to mmax = ρs/n0, the max-
imum mass of C that can be contained in the volume 1/n0.
Once mi exceeds 2mmax, its mass is reset to mi − mmax,
and a new solid particle with the mass of C equal to mmax

is formed. A number of ways to determine the new solid
particle’s position can be devised. The simplest is to locate
a fluid particle closest to the solid particle i and replace

Fig. 19 The color scale represents the concentration profile, C/Ceq, of
dissolved DNAPL. Gray particles represent trapped DNAPL and black
particles represent soil grains and impermeable boundaries. (After
[74])

it with a solid particle. Dissolution is modeled by replac-
ing solid particles with mass equal to (or less than) zero
with fluid particles. Velocity of a newly formed fluid parti-
cle can be determined using the SPH interpolation scheme
vi = ∑

j∈f +s

vj

nj
W(rij , h), and the concentrations are set to

CA
j = CB

j = √
Ksp. A similar SPH formulation has been

used in [2, 42, 72] to model precipitation of calcium car-
bonate as a result of mixing of calcium chloride and sodium
carbonate and in [73] to model biomass growth. In the lat-
ter work, the double Monod kinetics model was used to
describe the rate of biomass growth, and the biomass was
treated as a viscous Newtonian fluid.

In [74], the multiphase PF-SPH model was used to
solve a system of two-phase NS equations coupled with an
advection-diffusion-reaction equation to model dissolution
and re-immobilization of trapped non-aqueous liquid phase
(NAPL), (see Fig. 19). In this work, the dissolution reaction
g = R(C −Ceq) was assumed, where C is the concentration
of dissolved NAPL, Ceq is the equilibrium concentration,
and R is the exchange rate constant.

11 Summary and prospects for future

Smoothed particle hydrodynamics (SPH) has a number of
advantages for modeling complex transport processes at
the pore scale. With different fluid phases modeled by dif-
ferent types of particles, treatment of interfacial problems
is trivial in SPH compared to grid-based methods. The
PF-SPH multiphase model is parameterized using surface
tensions and static contact angle only, i.e., there is no need
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to prescribe the dynamic receding and advancing contact
angles. The dynamic contact angles are the outcome of the
model and consequence of the interactions between the pair-
wise forces and hydrodynamic forces (viscous forces and
forces produced by the pressure gradient) acting on the SPH
particles near the fluid-fluid-solid interface. Advection-
diffusion-reaction equations in the Lagrangian framework
are reduced to diffusion-reaction equations (the solute is
advected by SPH fluid particles), and there is no numerical
diffusion due to discretization of the advection term.

In general, the SPH method is computationally more
expensive than grid-based methods (e.g., the finite element
and finite volume methods) as more neighboring particles
are involved in the discretization of spatial derivatives in
SPH than grid points in grid-based methods. Grid-based
methods may also employ higher-order spatial discretiza-
tion schemes than SPH, which uses second-order in h (the
support of the weighting function) discretizations of first
and second spatial derivatives. Therefore, for simple linear
problems, e.g., single-phase flow, the SPH method can-
not compete with grid-based methods in both accuracy and
computational efficiency. On the other hand, for multi-
phase flow and reactive transport problems, the SPH method
may provide an attractive alternative to grid-based meth-
ods. Lattice Boltzmann (LB) is another popular method for
pore-scale flow simulations, which has been shown to have
a smaller computational cost than the SPH method for lin-
ear single-phase flow [75]. To our knowledge, there are no
rigorous comparisons of the computational costs of the LB
and SPH methods for multiphase flow and reactive transport
problems.

The accuracy of the SPH method can be increased by
using adaptive resolution (splitting and coalescence of SPH
particles) and consistent discretization of spatial deriva-
tives. Initial work in these areas has been done for single
phase Navier-Stokes equations and needs to be extended
for multiphase flow and advection-diffusion-reaction equa-
tions. The computational efficiency of the SPH method can
be increased by using incompressible instead of compress-
ible SPH formulations. Incompressible SPH formulations
have been used to model both single-phase and two-phase
flows but mostly for problems with relatively small number
of particles. The number of particles in three-dimensional
pore-scale simulations could be on the order of tens of
millions. Since the incompressible SPH method requires
solving a Poison equation for pressure, its application for
problems with a large number of particles would require
efficient and scalable solvers for the resulting large systems
of algebraic equations.

Methods for implementing boundary conditions remain
an active research area. For example, Takeda-Morris type
approaches of assigning fictitious velocities to “solid”
SPH particles are second-order in h (the support of the

weighting function) but can be difficult to implement for
complex boundaries with sharp corners. The boundary par-
ticle method of Monaghan [76] requires some calibration
and may produce pressure fluctuations near the bound-
aries. Diffuse-boundary type approaches, such as the contin-
uum boundary force (CBF) and continuum surface reaction
(CSR) methods, have been shown to be robust. But as
immersed boundary method for a grid-based finite volume
discretization of the Navier-Stokes equations [77], the CBF,
and CSR methods are only first-order accurate.

Finally, we would like to mention that there are several
highly scalable parallel open-source SPH codes, including
GPUSPH [78], DualSPHysics [50], and GADGET [79].
These codes can be run on hardware ranging from a lap-
top to many core high performance computers and allow
users to handle problems of various complexity with little
additional code development.
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