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Abstract Results of a search for new phenomena in events
with at least three photons are reported. Data from proton–
proton collisions at a centre-of-mass energy of 8 TeV, corre-
sponding to an integrated luminosity of 20.3 fb−1, were col-
lected with the ATLAS detector at the LHC. The observed
data are well described by the Standard Model. Limits at
the 95 % confidence level on new phenomena are presented
based on the rate of events in an inclusive signal region and
a restricted signal region targeting the rare decay Z → 3γ ,
as well as di-photon and tri-photon resonance searches. For
a Standard Model Higgs boson decaying to four photons via
a pair of intermediate pseudoscalar particles (a), limits are
found to be σ ×BR(h → aa)×BR(a → γ γ )2 < 10−3σSM

for 10 GeV < ma < 62 GeV. Limits are also presented for
Higgs boson-like scalars (H ) for mH > 125 GeV, and for a
Z ′ decaying to three photons via Z ′ → a + γ → 3γ . Addi-
tionally, the observed limit on the branching ratio of the Z
boson decay to three photons is found to be BR(Z → 3γ ) <

2.2 × 10−6, a result five times stronger than the previous
result from LEP.

1 Introduction

Many extensions of the Standard Model (SM) include phe-
nomena that can result in final states consisting of three or
more photons. Extensions of the SM scalar sector [1–5], for
example, often include pseudoscalar particles (a) with cou-
plings to the Higgs boson [6,7] (h) and branching ratios
into photons that would be visible at the LHC, in addi-
tion to scalars (H ) with masses different from the SM-like
Higgs boson of mh = 125 GeV that can also decay via
H → aa → 4γ . Other models feature additional vector
gauge bosons that can decay to a photon and a new pseu-
doscalar boson, a, with the subsequent decay of the a into
a pair of photons, resulting in a three-photon final state [8].
Moreover, in the SM, the Z boson can decay to three pho-
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tons via a loop of W± bosons or fermions. The decay is
heavily suppressed and the branching ratio is predicted to
be ∼5×10−10 [9]. The current most stringent bound on this
process comes from the L3 Collaboration, which placed a
limit of BR(Z → 3γ ) < 10−5 [10]. The ATLAS detector
has collected ∼109 Z boson events, and thus an observation
of this decay would indicate an enhancement of this decay
rate and could be evidence of phenomena not predicted by
the SM. Feynman diagrams for some of these beyond-the-
Standard Model (BSM) and rare SM scenarios are shown in
Fig. 1.

To ensure sensitivity to these and other possible rare SM
and BSM scenarios, an inclusive three-photon search is per-
formed using 20.3 fb−1 of LHC proton-proton collisions col-
lected by the ATLAS detector in 2012 at a centre-of-mass
energy of 8 TeV. Such a model-independent search is the
first of its kind, as are the interpretations for a Higgs boson
decaying to four photons via two intermediate pseudoscalar
a particles (for a Higgs boson of mh = 125 GeV and for
Higgs-like scalars of higher masses) and for three-photon
resonances corresponding to a new vector gauge boson.

The dominant backgrounds include the irreducible com-
ponent with three or more prompt photons, as well as the
reducible components consisting of combinations of photons
and electrons or hadronic jets misidentified as photons. The
contributions from events with jets which are misidentified
as photons are calculated from data-driven methods, while
simulation is used to estimate the contributions from the irre-
ducible background and the reducible background originat-
ing from electroweak processes that lead to electrons which
are misidentified as photons in the detector. Collision data is
used to derive corrections to the probability obtained from
simulation that electrons are misidentified as photons.

2 The ATLAS detector

The ATLAS experiment [11] at the LHC is a multi-purpose
particle detector with a forward-backward symmetric cylin-
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Fig. 1 Feynman diagrams for
possible beyond-the-Standard
Model (top) and rare Standard
Model (bottom) scenarios that
result in final states with at least
three photons
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drical geometry and a near 4π coverage in solid angle.1 It
consists of an inner tracking detector surrounded by a thin
superconducting solenoid providing a 2 T axial magnetic
field, electromagnetic (EM) and hadronic calorimeters, and
a muon spectrometer. The inner tracking detector covers the
pseudorapidity range |η| < 2.5. It consists of silicon pixel,
silicon micro-strip, and transition radiation tracking detec-
tors. Lead/liquid-argon (LAr) sampling calorimeters provide
EM energy measurements with high granularity. A hadronic
(iron/scintillator-tile) calorimeter covers the central pseudo-
rapidity range (|η| < 1.7). The end-cap and forward regions
are instrumented with LAr calorimeters for both EM and
hadronic energy measurements up to |η| = 4.9. The muon
spectrometer surrounds the calorimeters and is based on three
large air-core toroid superconducting magnets with eight
coils each. Its bending power ranges from 2.0 to 7.5 T m.
It includes a system of precision tracking chambers and fast
detectors for triggering. A three-level trigger system is used
to select events. The first-level trigger is implemented in hard-
ware and uses a subset of the detector information to reduce
the accepted rate to at most 75 kHz. This is followed by
two software-based trigger levels that together reduce the
accepted event rate to 400 Hz on average depending on the
data-taking conditions during 2012.

3 Event and object selection

This search utilises a three-photon trigger that places a min-
imum requirement on the photon momentum in the plane

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar angle θ

as η = − ln tan(θ/2).

transverse to the beam axis (transverse momentum, or pT)
of 15 GeV, applied on three photon candidates in the EM
calorimeter. Each candidate is additionally required to sat-
isfy a set of loose photon identification criteria [12]. Stringent
detector and data quality criteria are applied offline. Events
are required to contain at least one interaction vertex, with
no additional vertex requirements.

Photon candidates must satisfy a pseudorapidity require-
ment of |η| < 2.37, excluding the transition region between
the barrel and end-cap of 1.37 < |η| < 1.52, and must
satisfy requirements on the shape of the energy deposit
in the calorimeter. A photon candidate is rejected if the
barycentre of its energy deposit is within a cone of 	R ≡√

(	η)2 + (	φ)2 < 0.15 around the barycentre of the
energy deposit of a higher pT photon candidate. Finally,
selected photon candidates are required to satisfy a more
stringent set of identification criteria, known as tight [12].
Photon isolation is defined by the amount of transverse
energy, E iso

T , deposited in the EM calorimeter within a cone of
size 	R around the photon candidate, excluding the energy
of the photon candidate itself. It is a powerful means of dis-
tinguishing between photons and hadronic jets misidentified
as photons, since the energy clusters deposited by photons
in the EM calorimeter tend to be narrower in the transverse
direction than those deposited by jets. Because minimum-
bias proton–proton interactions in the same or nearby bunch
crossings (pileup) can affect the calculated photon isolation
energy, a correction is applied based on an event-by-event
energy density pileup estimation. This search uses an isola-
tion cone of size 	R < 0.4, and a correction to the E iso

T value
of a photon candidate is made when another photon candi-
date passing the tight identification criteria is found within
an annulus of 0.15 < 	R < 0.4 around the photon candi-
date. The correction consists of subtracting the pT value of
the other photon candidate found within the annulus from the
E iso

T value of the photon candidate under consideration. The
final isolation criterion is E iso

T < 4 GeV.
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Events in the inclusive signal region are required to have at
least three tightly identified and isolated photon candidates,
where the two photon candidates with the highest transverse
momentum must have pT > 22 GeV while the third highest
must have pT > 17 GeV. The restricted signal region, target-
ing the rare decay Z → 3γ , is a subset of these events where
an additional criterion of 80 GeV < m3γ < 100 GeV is
placed on the invariant mass of the three-photon system. The
signal regions are supplemented by several control regions,
where at least one of the photon candidates fails the isolation
requirement.

4 Simulated event samples

Simulated event samples are used to estimate several SM
background processes in the search for excesses in the inclu-
sive signal regions, as well as to model signal predictions for
both the inclusive searches and the resonance searches for
the specific BSM scenarios considered here. The simulated
BSM signal samples are also used to define a fiducial region
for which the search criteria are largely model-independent.

4.1 Simulated backgrounds

The SM two-photon process is an irreducible background to
a three-photon search because a third photon may arise from
minimum-bias proton–proton interactions in the same bunch
crossing. The SM two-photon background is simulated with
Pythia 8 [13], and the three- and four-photon backgrounds
are simulated with MadGraph 5 [14], with Pythia 8 used
for fragmentation and hadronisation. The production of two,
three and four photons in the SM contains large contribu-
tions from higher-order Feynman diagrams. Thus, the two-,
three- and four-photon simulated event samples calculated
at leading order (LO) are multiplied by factors (“K -factors”)
determined from studies with generators that include next-to-
leading order (NLO) contributions, namely MCFM 6.8 [15]
and VBFNLO 2.7.0 [16–18], using the parton distribution
function (PDF) sets CTEQ6L1 [19] for the LO cross sec-
tions and CT10 [20] and MSTW8NL [21] for the NLO cross
sections. These K -factors are 1.9 ± 0.2 for the two-photon
process and 3.3 ± 0.5 for the three-photon process. The four-
photon process is not included in NLO generators, and since
the four-photon background is ∼10−3 of the total background
expectation in the inclusive signal region, the three-photon
K -factor is applied to the four-photon background sample.
The uncertainties for these K -factors are determined by mul-
tiplying the renormalisation and factorisation scales indepen-
dently by 2 and 0.5 and taking the largest deviations from the
nominal value of the K -factor.

The reducible backgrounds where electrons are misiden-
tified as photons originate from multiple sources. Processes

where a Z boson decays to an e+e− pair, accompanied by
a photon not from the matrix element, are modelled with
Powheg- Box 1.0 [22], using Pythia 8 for fragmentation
and hadronisation, and Z+γ production is modelled with
Sherpa 1.4.1 [23]. Backgrounds from processes involving
the leptonic decay of the W boson in association with pho-
tons and/or hadronic jets are simulated withAlpgen [24] and
Herwig [25,26]. Possible mis-measurement of the rate of
electrons misidentified as photons in simulation is addressed
by comparing to electrons misidentified as photons from
Z → e+e− events in data.

To obtain estimates of the rates at which true photons
populate the regions of kinematic phase space assumed to be
dominated by jets (used in the calculation of the systematic
uncertainty for the data-driven estimate of jet backgrounds),
a sample containing events with one hard-process quark or
gluon and one prompt photon is simulated using Pythia and
the CTEQ6L1 PDF set.

The PDF sets for the simulated event samples of back-
ground processes used for the final background estimate in
the inclusive search, for the MadGraph, Pythia and Alp-
gen + Herwig samples, are taken from CTEQ6L1, while
for the Powheg- Box and Sherpa samples the PDF sets are
taken from CT10.

4.2 Simulated signal processes

The Zγ γ γ effective vertex has been implemented with
FeynRules [27,28] and then used in a customised Mad-
Graph 5 model which is employed to simulate events,
using the CTEQ6L1 PDF set and Pythia 8 for fragmenta-
tion and hadronisation. Each of the two non-trivial, indepen-
dent, lowest-order effective Lagrangians for this process [29]
contains a dimensionful coupling constant, and the values
of these constants have been calculated [30] using the SM
expected Z → 3γ branching ratio of 5.41×10−10. These
SM values are used in the simulation. The BSM process of
a Higgs boson produced via gluon fusion and decaying to
four photons via a pair of intermediate a particles is sim-
ulated with Powheg- Box and Pythia 8 (using the CT10
NLO PDF set). The BSM process of a new vector gauge
boson decaying to three photons via Z ′ → a + γ → 3γ

is simulated with Pythia 8 (using the MSTW2008LO [21]
leading-order PDF set).

4.3 Minimum-bias interactions and the ATLAS detector
simulation

Minimum-bias proton–proton interactions in the same or
nearby bunch crossings (pileup) are modelled with Pythia
8, using the MSTW2008LO PDF set. These pileup events
are overlaid onto the hard-scattering process for all simulated
signal and background samples to reproduce the distribution
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of the average number of interactions per bunch crossing
observed over the course of data-taking in 2012.

All signal and background samples are processed with the
full ATLAS detector simulation [31] based on Geant 4 [32]
and reconstructed using the same software as that used for
collision data.

5 Background composition estimate

The backgrounds in the search for excesses in the inclusive
signal regions are estimated from a combination of simu-
lated samples (detailed in the previous section) and methods
employing collision data. The dominant backgrounds in the
inclusive signal region are the irreducible SM two-, three-
and four-photon processes, while for the Z → 3γ search
channel, backgrounds involving electrons misidentified as
photons are dominant.

5.1 Backgrounds estimated from simulation

The irreducible SM two-, three- and four-photon back-
grounds, as well as backgrounds from processes involving
electrons in the final state originating from Z decays and
those involving the leptonic decay of the W boson in asso-
ciation with photons and/or hadronic jets, are estimated via
simulation. The third photon for the SM two-photon back-
ground process typically arises from pileup interactions, but
can occasionally be a quark- or gluon-initiated jet radiated
from the incoming partons which is misidentified as a photon.
Possible double-counting with the 2γ + 1-jet final state (esti-
mated via a data-driven method described in the following
section) is avoided by omitting from consideration events in
the SM two-photon simulated sample where one of the three
photon candidates is a jet, using generator-level information.
Possible mis-measurement of the rate of electrons misiden-
tified as photons in simulation is addressed by comparing
Z → e+e− processes in simulation and in data. The per-
electron scale factor is the ratio of the misidentification rate
determined in data to that determined in simulated samples.
This scale factor is independent of pT and η for the ranges
considered here, and is found to be 1.03 ± 0.04.

5.2 Data-driven estimates of 2γ + 1-jet, 1γ + 2-jet,
and 3-jet backgrounds

A crucial aspect of the analysis is the data-driven estimate
of the backgrounds where hadronic jets are misidentified as
photons (hereafter called “jet fakes”), i.e., SM processes that
can produce 2γ + 1-jet, 1γ + 2-jet, and 3-jet events. Collision
data are used to derive efficiencies for photons passing the
isolation criterion (εγ ) and rates at which jets are misidenti-
fied as isolated photons ( fjet). These values of εγ and fjet are

then used in a likelihood matrix method (described below)
to estimate the jet backgrounds.

A sample of photon candidates consisting mainly of jet
fakes is defined in the following way. The standard tight and
loose photon identification categories are augmented with a
mediumdefinition [33], intermediate between tight and loose.
The medium photon is defined by relaxing some EM shower
shape requirements that provide high levels of rejection of
jet fakes. When the medium definition is combined with a
further requirement that the photon candidates fail tight (the
combination hereafter called non-tight), the result is a sample
of photon candidates that is primarily composed of jet fakes.
This method presupposes that the E iso

T distribution of thenon-
tight sample is composed primarily of jet fakes, and that the
subset of tight photons with higher values of E iso

T (the “tail”,
here for E iso

T > 7 GeV) is dominated by jet fakes. Under
these assumptions, the tail of the non-tight distribution is
scaled to match that of the tight distribution, thus providing
a determination of the contribution of jet fakes to the signal
region, i.e., the collection of photons that pass both the tight
and the isolation criteria. The scaled non-tight distribution is
then subtracted from the tight distribution. Photon isolation
efficiency, εγ , is then calculated as the ratio of the number
of isolated photons (those that satisfy E iso

T < 4 GeV) to the
total number of photons in the tight distribution after this
subtraction has been performed. The rate at which jet fakes
are identified as photons, fjet, is the ratio of the number of
isolated photons to the total number of photons in the non-
tight distribution.

The assumptions described above are validated using
simulated samples of events containing photons and jets,
described in Sect. 4. Any collection of photon candidates
consists of some combination of actual photons, which can
be defined as “true”, and other objects that are misidentified
as photons. The non-zero true photon contamination in the
set of non-tight photons, and the set of tight photons that fail
the isolation criterion, is taken from the simulated samples
and is used to derive a systematic uncertainty (described in
Sect. 6) on the jet background estimate procedure.

The procedure is performed separately for three kinematic
regions as follows. Photons are ordered by pT, highest to
lowest. Three regions in the pT–η plane are defined as (1) 15
GeV < pT < 40 GeV and |η| < 1.37, (2) pT > 40 GeV and
|η| < 1.37, and (3) 1.52 < |η| < 2.37. The separation into
lower and higher pT bins around 40 GeV is chosen because
this is the value at which εγ and fjet are changing rapidly,
and the three regions were chosen to maintain a large number
of events in each bin. The values of εγ and fjet are then
calculated for each of the three regions, and the results are
shown in Table 1.

The data-derived εγ and fjet values are applied to events
with three photon candidates to estimate the SM 2γ + 1-
jet, 1γ + 2-jet, and 3-jet backgrounds. This is done using a
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Table 1 Photon isolation efficiencies (εγ ) and rates of jets misidenti-
fied as photons ( fjet) from collision data for the three kinematic regions,
used for the jet background estimate. The isolation criterion is E iso

T <

4 GeV. The three regions were chosen to maintain a large number of
events in each bin. The first uncertainty is statistical while the second
is systematic

Kinematic region Fraction satisfying isolation criterion

Photons (εγ ) Jets misidentified as photons ( fjet)

1. 15 GeV < pT < 40 GeV, |η| < 1.37 0.939 ± 0.007 ± 0.009 0.424 ± 0.001 ± 0.013

2. pT > 40 GeV, |η| < 1.37 0.906 ± 0.006 ± 0.013 0.256 ± 0.002 ± 0.010

3. 1.52 < |η| < 2.37 0.933 ± 0.007 ± 0.009 0.431 ± 0.002 ± 0.013

likelihood-based version of a standard matrix method (here
called the “likelihood matrix method”). In standard matrix
methods [33], a matrix of efficiencies relates an observed
event that falls into a particular event category (based on some
discriminating variable or variables) to the true, unknown
final states to which the event has the possibility of corre-
sponding, and the matrix is inverted to determine probabili-
ties that a given observed event corresponds to one of these
true final states. When summed over a large number of events,
these per-event estimators average to the overall estimate of
the number of events in each true final state.

In the likelihood matrix method, by contrast (and with
respect to the present three-photon search), the expected yield
for each three-object final state consisting of jets plus photons
or all jets is the result of fitting a likelihood function to data.
For the event sample where all three photons, ordered from
highest to lowest pT, have satisfied the tight requirements,
events are placed into 160 orthogonal categories designated
by six criteria. These are defined first by the three regions
in the pT–η plane to which each photon candidate belongs.
These are the same three regions that are used to categorise
photons and to calculate εγ and fjet, described and labeled
previously as regions 1–3. The remaining three criteria by
which each event is categorized are three boolean variables,
one for each photon candidate, indicating whether it passed
or failed the isolation criterion. Since each of the three pho-
ton candidates either passes (P) or fails (F) isolation, there
are 23 = 8 possible isolation combinations for three photons:
PPP, PPF, PFP, FPP, PFF, FPF, FFP, and FFF. The three pho-
tons are ordered by pT, from highest to lowest, and, since
one of the three kinematic regions defined above depends
only upon η, there are twenty possible pT–η bin combina-
tions: 333, 332, 323, 322, 331, 313, 311, 321, 222, 223, 232,
233, 221, 211, 231, 213, 111, 113, 131, 133. This results in
8 × 20 = 160 categories, denoted PPP_333 for those events
where the three photon candidates all passed isolation and
had pT–η values placing them in the “3” kinematic region,
PPF_321 for those events where the leading and sublead-
ing photons passed isolation and the sub-subleading pho-
ton failed isolation, and the pT–η value combinations placed
them successively in the “3”, “2”, and “1” regions, etc.

Each of the 160 categories corresponds to a Poisson func-
tion where the observed number of events is the number of
events seen in data for that category and the expected number
of events is a sum of terms corresponding to each of the possi-
ble true (unknown) final states consisting of photons and jets
or only jets for a particular pT–η combination. Each term in
a given sum is multiplied by the appropriate values of εγ and
fjet. A likelihood is then constructed consisting of a product
of the 160 Poisson functions. The expectations for each true
final state are the maximum likelihood estimators that result
from fitting this likelihood function to the data. That is, the
true unknown expectations are allowed to float in the fit and
are constrained to be positive and, hence, physical. The esti-
mated number of events of a given final state in a particular
signal or control region – defined by whether the photons
passed or failed isolation – is determined by summing the
resulting expectations from the fit times the appropriate εγ

and fjet values.

6 Systematic uncertainties

6.1 Data-driven uncertainties

For the data-driven jet background estimate, systematic
uncertainties arise in the calculation of the rate of photons
passing the isolation criterion, εγ , and the rate of jets misiden-
tified as isolated photons (“jet fakes”), fjet. This calculation
relies upon the assumptions that both the tail (E iso

T > 7 GeV)
of the E iso

T distribution of tight photons and the entirety
of the E iso

T distribution of non-tight photons are primarily
composed of jet fakes. Tests on simulations of photons and
jets indicate that the true photon contamination in these jet-
dominated regions is between 5 and 15 %, depending on
the region. These values are used to calculate different val-
ues of εγ and fjet (where the number of photon candidates
in a given region is altered by the corresponding percent-
age) which are then used in the jet background estimate. The
deviations from the nominal signal region yield (assuming
no true photon contamination) are calculated separately for
the three final states of 2γ + 1 jet, 1γ + 2 jets, and 3 jets, and
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these values (4, 10 and 21 %, respectively) are taken as sys-
tematic uncertainties on the estimates of these backgrounds
in the signal region.

An additional uncertainty associated with the data-driven
methods employed arises from the choice of kinematic vari-
able used to categorise photons and then to calculate and
apply εγ and fjet. The baseline analysis uses three bins in
the pT–η plane, described in Sect. 5, and separate analyses
using either pT-dependence only or η-dependence only are
conducted as well. The largest deviation of the two different
methods from the nominal method is 13 %, which is taken
as a systematic uncertainty.

6.2 Simulation uncertainties

The uncertainty on the integrated luminosity for the data sam-
ple is 2.8 %, derived using the same methodology as that
detailed in Ref. [34].

The photon identification efficiency has been directly
measured in data using photons from Z → e+e−/μ+μ−
radiative decays [12]. The systematic uncertainties on the
signal region yield due to the uncertainty on this efficiency
measurement are found to range from <1 to 6 % for simu-
lated backgrounds, and from 3 to 7 % for simulated signal
processes, depending on the sample.

As mentioned in Sect. 3, the analysis supplements the
isolation prescription – E iso

T < 4 GeV, with a cone size of
	R < 0.4 – with an isolation energy correction that is applied
to photons with overlapping isolation cones. This procedure
improves sensitivity to lower-mass two-photon resonances
where the photon pairs are close together in 	R. To account
for possible over- or under-correction due to a photon being
near the edge of the isolation annulus, an additional system-
atic uncertainty is assessed. The pT values of all isolated pho-
tons in simulated samples are calibrated to yield agreement
with the values observed in data [35]. Since the calibration
factors for isolated photons deviate from one by typically
less than 5 %, a value of 5 % is a conservative estimate
of the uncertainty on photon pT. To assess the systematic
uncertainty on the isolation energy correction, the measured
value of the pT of the other tight photon in the isolation
cone is varied by 5 %, the correction procedure is applied,
and the effects are propagated to the final event selection in
the signal region. For example, using simulated samples of a
Higgs boson decaying to four photons via H → aa → 4γ ,
the systematic uncertainty due to this effect is smaller for
higher ratios of ma/mH (as large as 6 % when the pT is
varied by −5 and <1 % when the pT is varied by +5 %,
for mH = 900 GeV and ma = 440 GeV), and the uncer-
tainty is larger for smaller ratios of ma/mH (as large as 69 %
when the pT is varied by −5 and 12 % when the pT is var-
ied by +5 %, for mH = 900 GeV and ma = 50 GeV), as

the photons tend to overlap within the isolation cone more
frequently.

The uncertainties on the event yields due to systematic
uncertainties in the photon energy scale and resolution [35]
are found to range from <1 to 4 % for the simulated sig-
nal and background samples. The uncertainties on the event
yields due to systematic uncertainties in the scale factors used
to yield agreement between photon identification efficien-
cies calculated in data and simulated samples [35] are found
to range from <1 to 8 % for simulated backgrounds, and
from 1 to 4 % for simulated signal processes. The systematic
uncertainty on the scaling factor for electrons misidentified
as photons in simulated samples is taken to be the statisti-
cal uncertainty arising from the calculation, i.e., 4 %, since
this is as large as or larger than the systematic uncertain-
ties due to the photon energy scale and resolution, above.
The efficiency and uncertainties of the three-photon trig-
ger chain have been determined to be 98.5 ± 0.1 (stat.)
±0.2 % (syst.). The trigger efficiency is calculated using
single photons (with pT values corresponding to the val-
ues used for the analysis event selection) from Z boson
radiative decays and then, under the assumption that the
per-event performance of the photon trigger for one pho-
ton is uncorrelated to that for another photon in the same
event, multiplying these values to obtain the overall trigger
efficiency.

Uncertainties on calculated cross sections for simulated
background processes due to QCD renormalisation and fac-
torisation scales and due to the choice of PDF set and value of
αs used in simulation are addressed via the recommendations
of PDF4LHC [36]. The resulting combined uncertainties are
found to range from 7 to 16 %, depending on the simulated
background process. The total theoretical uncertainty on the
SM 3γ background process due to the uncertainty on the
LO to NLO correction, combined with the uncertainties due
to choice of PDF set and renormalisation and factorisation
scales, is found to be ∼30 %.

Uncertainties exist for the measured or calculated produc-
tion cross sections for SM particles for which BSM decays
are considered as signal scenarios and are accounted for.
For the BSM Higgs boson scenario of h → aa → 4γ

the gluon fusion production cross section for the SM Higgs
boson with mh = 125 GeV [37,38], σh,SM = 19.27 pb is
used, with an uncertainty of ±10.4 % due to choice of PDF
set and renormalisation and factorisation scales. For the rare
decay Z → 3γ , the measured pp → Z cross section of
(2.79 ± 0.02 ± 0.11) × 104 pb [39] is used. An additional
uncertainty of ±12.3 % – determined by varying the QCD
renormalisation and factorisation scales, PDF set, and value
of αs – is also assessed, to account for variations in the simu-
lation of the kinematics of the final-state photons and, hence,
the acceptance in the signal region.

These systematic uncertainties are summarized in Table 2.
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Table 2 Systematic uncertainties (%) on the expected event yields in
the signal region. The values given for data-driven backgrounds corre-
spond to the three jet backgrounds described in the text. For simulated
samples, when a range is given it corresponds to the smallest and largest
uncertainties for all simulated backgrounds or signals

Data-driven Background Signal

Photon contamination of control regions 4–21 –

Kinematic parametrization 13 –

Simulation

Photon ID 1–6 3–7

Photon isolation correction <1–4 <1–69

Photon energy scale and resolution <1–4 <1–4

Photon scale factors <1–8 1–4

Electron scale factors 4 4

Trigger 0.2 0.2

Luminosity 2.8 2.8

Cross section 7–16 4–12

7 Results and interpretations

This section presents results based on the number of events
in a broad inclusive region and a restricted region focusing
on the rare decay Z → 3γ , as well as results from the search
for resonances in the di-photon and tri-photon invariant mass
spectra.

7.1 Inclusive and Z → 3γ regions

The number of SM background events expected in the signal
region is 1370 ± 140 (combined statistical and systematic
uncertainties) and the observed number of events is 1290.
The observation is in agreement with the SM expectation.
Additionally, while the event selection is optimised for a
search for physics beyond the SM as opposed to a mea-
surement of the 3γ inclusive cross section, the results are
nevertheless compatible with the irreducible all-photon pro-
cess expectations from the SM. The expected and observed
yields in the signal region are presented in Table 3, and the
expected and observed yields in signal and control regions
where all three photons have passed the tight identification
criterion are shown in Fig. 2. In the figure, the red hatched
band, in the signal region bin, is the combination of statisti-
cal and systematic uncertainties on all background sources,
while the black hatched band, in the control regions, is the
combination of statistical uncertainties of the data-driven jet
background estimate and the expected yields from simulated
samples of SM background processes. For the inclusive sig-
nal region, this corresponds to a model-independent observed
(expected ±1σ ) upper limit, at the 95 % confidence level
(CL), on the number of signal events of 240 (273+83

−66), and

Table 3 Expected and observed event yields in the inclusive signal
region and for the signal region with a further requirement of 80 GeV
< m3γ < 100 GeV. Background expectations estimated via simulations
are marked sim., whereas data-driven calculations are denoted as D–
D. The uncertainties for each row are the combination of statistical and
systematic uncertainties for a given background process, and the overall
uncertainties in the second to last row are the combined uncertainties
for the total background expectations for each signal region

Process Inclusive
signal region

80 GeV < m3γ <

100 GeV

2γ (sim.) 330 ± 50 24 ± 8

3γ (sim.) 340 ± 110 30 ± 10

4γ (sim.) 1.3 ± 0.4 0.07 ± 0.02

2γ ,1j (D–D) 350 ± 60 65 ± 19

1γ ,2j (D–D) 110 ± 40 13 ± 10

3j (D–D) 43 ± 11 6.1 ± 2.0

Z → e+e− (sim.) 85 ± 22 43 ± 13

Z+γ (sim.) 89 ± 11 48 ± 6

W+γ +(0,1,2)j (sim.) 11.4 ± 1.5 2.7 ± 0.7

W+2γ +(0,1,2)j (sim.) 6.1 ± 0.5 0.68 ± 0.08

Total SM exp. 1370 ± 140 233 ± 28

Observed 1290 244

to the model-dependent upper limits on the inclusive fiducial
cross section in the aforementioned acceptance for the sig-
nal scenarios of the BSM Higgs boson and Higgs boson-like
decays and the Z ′ decays shown in Table 4, where hypothesis
testing and limit setting are calculated using the profile like-
lihood ratio as the test statistic for the CLs technique [40] in
the asymptotic approximation [41,42]. The fiducial efficien-
cies for each signal scenario are determined with respect to a
generator-level kinematic region with the same requirements
applied to three-photon events as those used for the analy-
sis signal region. This fiducial region is defined as the set of
events that contain three photons where (1) each photon sat-
isfies a pseudorapidity requirement of |η| < 2.37, excluding
the transition region between the barrel and end-cap of 1.37
< |η| < 1.52, (2) the three photons satisfy pT > 22, 22,
and 17 GeV, and (3) each photon satisfies E truth iso

T < 4 GeV,
where E truth iso

T is a generator-level definition of the photon
isolation criterion equivalent to that used for event selection
on reconstructed events. The fiducial efficiencies are simi-
lar for the considered signal scenarios for mass points where
the distributions of photon pT, for all photons, tend to peak
higher than pT > 50 GeV. This is because the overall photon
identification efficiency decreases for photons with pT < 50
GeV [12]. Since the pT distribution for at least one of the pho-
tons for signal scenarios with lower-mass resonances tends
to peak at lower values, the fiducial efficiencies are lower.

Using the same data-driven and simulation-based method-
ology restricted to the region 80 GeV < m3γ < 100 GeV
provides a test for the rare decay of the Z boson to three
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Fig. 2 Observed and expected yields in signal and control regions for
the full mass range (left) and the restricted range of 80 GeV < m3γ <

100 GeV (right), for events where all three photon candidates satisfy the
tight photon identification criteria. The bins along the horizontal axis
correspond to orthogonal subsets of events where each subset is cate-
gorised by whether the three photons – ordered from largest to smallest
values of pT– passed (“P”) or failed (“F”) the isolation criterion. The
leftmost bin is the signal region, composed of events satisfying PPP, and

the other bins are the different control regions, where at least one of the
photon candidates failed the isolation criterion. The red hatched band,
in the signal region bin, is the combination of statistical and system-
atic uncertainties, while the black hatched bands represent statistical
uncertainties. As a result of the data-driven jet background estimate,
the statistical uncertainty in each bin is partially correlated with the
uncertainty on the data in that bin

Table 4 Top row observed and
expected model-independent
upper limits on event yields for
new physics processes for the
inclusive signal region. Also
shown are the efficiencies for
the fiducial kinematic region
defined in the text for some
example mass points for the
signal scenarios explicitly
considered here, and the
corresponding observed and
expected (±1σ ) upper limits on
the fiducial cross section within
the acceptance. Total statistical
uncertainties are quoted for the
fiducial efficiencies, and the
uncertainties for the upper limits
correspond to the uncertainties
arising from the ±1σ upper
limits calculated via hypothesis
testing using the combination of
statistical and systematic
uncertainties

Expected background Observed Obs. (exp.) 95 % CL upper limit on Nsig

1370 ± 140 1290 240
(
273+83−66

)

Signal process Fiducial Obs. (exp.) upper limit, Obs. (exp.) upper limit,

efficiency σfid × A (fb) σoverall (fb)

h/H → aa → 4γ

mh/H (GeV) ma (GeV)

125 10 0.374 ± 0.005 32 (36+11
−9 ) 171 (222+50

−33)

125 62 0.490 ± 0.004 24 (27+8
−7) 118 (155+23

−15)

300 100 0.643 ± 0.003 18 (21+6
−5) 29 (35+9

−7)

600 100 0.688 ± 0.003 17 (20+6
−5) 27 (34+7

−7)

900 100 0.680 ± 0.003 17 (20+6
−5) 27 (33+7

−6)

Z ′ → a + γ → 3γ

mZ ′ (GeV) ma (GeV)

100 40 0.438 ± 0.009 27 (31+9
−7) 316 (387+98

−75)

200 100 0.611 ± 0.005 19 (22+7
−5) 53 (62+20

−16)

400 100 0.649 ± 0.004 18 (21+6
−5) 51 (63+14

−11)

600 100 0.667 ± 0.004 18 (20+6
−5) 39 (48+12

−9 )

1000 100 0.636 ± 0.004 19 (21+6
−5) 38 (46+11

−9 )

photons. The SM branching ratio for the process is predicted
to be ∼5×10−10 [9], but it has yet to be observed. Table 3
(right) and Fig. 2 (right) summarise the observed counts as
well as background expectations in this restricted region. The
data are consistent with the SM expectation: 244 events are

observed and 233 ± 28 events are expected, while the signal
expectation from simulation, for BR(Z → 3γ ) = 10−5 (cor-
responding to the previous limit from LEP [10]), is 418 ± 9
events. Using the same hypothesis-testing and limit-setting
procedure described above, but taking the signal expecta-
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tion from the simulated sample described in Sect. 4, the
observed (expected) limit, at the 95 % CL, on the branch-
ing ratio of the Z boson decay to three photons is found to be
BR(Z → 3γ ) < 2.2 (2.0) ×10−6, a result five times stronger
than the previous LEP limit of <10−5.

7.2 The 2γ and 3γ resonance searches

In addition to the tests based on the number of events in
the inclusive signal regions, searches are performed for res-
onances in the two-photon and three-photon invariant mass
(m2γ and m3γ ) distributions for events in the inclusive sig-
nal region. For these resonance searches, the background
contribution is estimated from a fit to the m2γ or m3γ side-
band regions, and thus does not rely upon simulated samples
for the background estimate. The sideband is modelled as
a fourth-order polynomial, and the size of the sideband is
mass-dependent, symmetric around the hypothesised reso-
nance mass, following a local-spectrum approach. The range
of the observed mass spectrum that is used for the sideband
fit is a local, truncated subset of the full spectrum. For the
m2γ (m3γ ) resonance search, the sideband is 20 (25) GeV
in each direction for m2γ (m3γ ) < 90 (230) GeV, where
the event counts change rapidly as a function of m2γ (m3γ ),
and rises to a sideband size of 80 (100) GeV in each direc-
tion for m2γ (m3γ ) > 195 (425) GeV, increasing roughly
linearly with mass as the spectrum becomes smoother. The
m2γ (m3γ ) resonance search begins at a mass hypothesis of
10 (100) GeV, and proceeds in steps of 0.5 GeV. The signal
component of the resonance search is a Gaussian function
with a fixed width that varies with particle mass, and the
widths are determined from simulated signal samples. Since
the simulated signal samples are generated with a narrow-
width approximation for both the pseudoscalar a and the Z ′
in all cases, the 2γ and 3γ mass resolutions for this search
are equivalent to Gaussian functions that account for detector
resolution, and are determined via fits to the simulated signal
samples. Hypothesis testing and limit setting are performed
using the profile likelihood ratio as the test statistic for the
CLs technique in the asymptotic approximation.

The resonance search is performed separately for the three
two-photon mass spectra defined by the three possible pho-
ton pairings for three photons in the inclusive signal region.
As mentioned previously, the photons are ordered by pT,
from highest to lowest, and so the three two-photon mass
spectra are denoted m12, m13 and m23, where the 1, 2, and 3
refer to the pT-ordered photons. The observed m2γ and m3γ

spectra in the inclusive signal region are shown in Fig. 3.
Also shown in Fig. 3, for visualisation purposes only, is the
background expectation per bin, determined from the side-
band fit to data as a part of the resonance search. The reso-
nance search is performed with a step size of 0.5 GeV and

so the final results shown in Figs. 4 and 5 demonstrate sen-
sitivity to resonances with widths appropriate to the BSM
models considered here. The widths of the bins in Fig. 3 do
not correspond to the mass resolution for the signal scenar-
ios in question. The background estimates and significances
shown in Fig. 3 provide a complementary comparison of the
local agreement between data and expectation. The lower
panels show the significance, in units of standard deviations
of a Gaussian function, of the observation in each bin, taking
into account the fractional uncertainty on the background as
a result of the sideband fit. The significances shown in the
lower panels in Fig. 3 are derived from the p value for the
background-only hypothesis for each bin, calculated using
a frequentist binomial parameter test [43–45]. For regions
beyond the sensitivity of the search, no background estimate
is shown.

For the H/h → aa → 4γ BSM signal scenario, the
photon pairing (among the three pT-ordered photons) that
most often corresponds to the photons arising from the decay
of the same a particle is (2, 3). As a result, the resonance
search in the m23 spectrum provides the best sensitivity to
this model. The widths of the Gaussian signal component
– corresponding to the detector resolution – are taken from
simulated samples of a Higgs boson decaying to four photons
via a pair of intermediate pseudoscalar a particles, and vary
from 0.6 GeV < σGauss < 3.2 GeV for 10 GeV < ma < 440
GeV, and are largely independent of mh/H .

No excess above background is detected, and upper limits,
for a SM-like Higgs boson of mh = 125 GeV (and assum-
ing kinematics associated only with gluon fusion SM Higgs
boson production), are calculated. Additionally, limits are
set for Higgs boson-like scalars with masses larger than 125
GeV. The results of these resonance searches are shown in
Fig. 4 for the SM-like Higgs boson of mh = 125 GeV (in
the top row) and, as an example of a higher scalar mass, for
mH = 600 GeV (in the bottom row). The resonance search
limits for higher values of mH are limited by the small num-
ber of events in the mass spectra at higher values of m2γ .
As shown in Fig. 4, the limits vary as a function of two-
photon invariant mass, but an overall upper bound on the
limits is determined to be σ ×BR(h → aa)×BR(a → γ γ )2

<1 × 10−3σSM, for 10 GeV < ma < 62 GeV for the SM-
like Higgs boson ofmh = 125 GeV and, for the higher scalar
mass case, σH × BR(H → aa)× BR(a → γ γ )2 < 0.02 pb
for lowerma values in the range 10 GeV < ma < 90 GeV and
< 0.001 pb for higher ma (up to 245 GeV for the resonance
search in the m23 spectrum for mH = 600 GeV shown in
Fig. 4). Additionally, using the expected signal yields from
simulated samples, inclusive limits are calculated for 300
GeV < mH < 900 GeV and for a range of ma < mH/2,
including values beyond the range of the mass spectra used
for the resonance search. These inclusive limits are shown in
Table 5.
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Fig. 3 Observed spectra of m12, m13, and m23, where the 1, 2, and 3
refer to three pT-ordered photons, as well as m3γ . For illustration pur-
poses only, also shown is the expected background per bin, determined
via unbinned sideband fits to the data as a part of the resonance search,
for a hypothesised resonance mass defined by the centre of the bin, as
well as the signal expectation for a few mass points for the BSM scenar-
ios considered here. The lower panels show the significance, in units of
standard deviations of a Gaussian function, of the observation in each
bin, taking into account the fractional uncertainty on the background

as a result of the sideband fit. This significance is derived from the p
value for the background-only hypothesis for each bin, calculated using
a frequentist binomial parameter test [43–45]. The signal distributions
used for the m2γ resonance searches have two components, a narrow
Gaussian core for correctly paired two-photon combinations and a wide
distribution for incorrectly paired combinations that is well described
by the polynomial used to simultaneously model the background shape
for the resonance search described in Sect. 7.2

Moreover, upper limits on the Z ′ production cross section
times the product of branching ratios, σZ ′ × BR(Z ′ → a +
γ ) × BR(a → γ γ ), are found to be in the range of 0.04 pb
to 0.3 pb, depending upon mZ ′ and ma . Upper limits, at the
95 % CL, on σZ ′ × BR(Z ′ → a + γ ) × BR(a → γ γ ) are
shown in Table 6, as a function of ma , using the expected
signal yields from simulated samples. Additionally, using
a narrow-width approximation to the Z ′ resonance width,
local excesses corresponding to Gaussian resonances due to
detector resolution are searched for in them3γ spectrum. The

Gaussian widths are determined via fits to the Z ′ simulated
signal samples, described in Sect. 4. For the range of mZ ′ for
which the resonance search is possible, the Z ′ width exhibits
a small dependence on ma . For each Z ′ mass point, three
different samples are simulated, with different values of ma .
The average of the three measured Z ′ widths for each of the
ma points simulated is taken as the width for a givenmZ ′ , and
these values are used for the three-photon resonance search,
interpolating formZ ′ points between those for which samples
are simulated. These values range from 1.5 GeV < σGauss <
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Fig. 4 Left local p values for the background-only hypothesis as
a result of a resonance search with respect to the BSM process
h/H → aa → 4γ , for mh = 125 GeV (top row) and mH = 600
GeV (bottom row), as a function of ma , determined via a search for
local excesses in the m23 spectrum. Right upper limits, at the 95 %
CL, on (σ/σSM) × BR(h → aa) × BR(a → γ γ )2 (top row) and

σH × BR(H → aa) × BR(a → γ γ )2 (bottom row). Also shown are
the ±1 and 2σ uncertainty bands resulting from the resonance search
hypothesis tests, taking into account the statistical and systematic uncer-
tainties from simulated signal samples which are used to determine sig-
nal efficiency and Gaussian resonance width due to detector resolution
for each mass hypothesis

Table 5 Expected and observed 95 % CL upper limits on σH ×
BR(H → aa)×BR(a → γ γ )2. The uncertainties for the expected lim-
its are the ±1σ uncertainties resulting from the hypothesis tests for each
mass point, taking into account statistical and systematic uncertainties

mH (GeV) ma (GeV)

σH × BR(H → aa) × BR(a → γ γ )2 (fb)

Observed (expected) 95 % CL upper limits

20 50 100 140

300 48
(
60+13

−10

)
33

(
40+9

−8

)
29

(
35+9

−7

)
28

(
34+8

−6

)

50 100 200 290

600 31
(
38+10

−7

)
27

(
34+7

−7

)
25

(
31+7

−6

)
25

(
31+7

−6

)

50 100 200 440

900 36
(
44+11

−8

)
27

(
33+7

−6

)
26

(
33+7

−6

)
26

(
32+7

−5

)

2.4 GeV for 100 GeV < mZ ′ < 500 GeV. The results, along
with the local p values for the background-only hypothesis,
are shown in Fig. 5. The smallest local p value is found to be
0.0003 (3.4σ local significance), at m3γ = 212 GeV which,
after adjusting for a trials factor [46], corresponds to a global
p value of 0.087 (1.4σ global significance).

8 Conclusion

A search for new phenomena in events with at least three pho-
tons has been performed using 20.3 fb−1 of LHC pp collision
data at

√
s = 8 TeV collected with the ATLAS detector at

CERN. The SM background expectation is in agreement with
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Table 6 Expected and observed 95 % CL upper limits on σZ ′ ×
BR(Z ′ → a + γ ) × BR(a → γ γ ). The uncertainties for the expected
limits are the ±1σ uncertainties resulting from the hypothesis tests for
each mass point, taking into account statistical and systematic uncer-
tainties

mZ ′ (GeV) ma (GeV)

σZ ′ × BR(Z ′ → a + γ ) × BR(a → γ γ ) (fb)

Observed (expected) 95 % CL upper limits

40 60 80

100 320
(
390+98

−70

)
150

(
170+50

−40

)
310

(
370+100

−80

)

50 100 150

200 78
(
90+28

−22

)
53

(
62+20

−16

)
51

(
58+19

−14

)

100 200 300

400 51
(
63+14

−10

)
44

(
55+12

−9

)
38

(
47+12

−10

)

100 250 400

600 39
(
48+12

−9

)
41

(
52+10

−8

)
41

(
52+11

−8

)

100 350 600

800 38
(
46+11

−9

)
35

(
43+9

−8

)
35

(
43+9

−9

)

100 450 800

1000 38
(
46+11

−9

)
54

(
64+17

−10

)
37

(
43+12

−8

)

the data, and is determined to be 1370 ± 140 events while
1290 events are observed. The model-independent observed
(expected) 95 % CL upper limit on the number of signal
events is found to be 240 (273+83

−66). Upper limits at the 95 %
CL are calculated on the fiducial cross section σfid for events
from non-SM processes for several signal scenarios. The
observed (expected) limit on the branching ratio of the Z

boson decay to three photons is found to be BR(Z → 3γ ) <

2.2 (2.0) ×10−6, a result five times stronger than the previous
result from LEP.

In addition, a search for local excesses in the two-photon
and three-photon invariant mass distributions is conducted.
For the two-photon mass spectra, no significant excesses are
detected, and the 95 % CL upper limit on (σ/σSM)×BR(h →
aa) × BR(a → γ γ )2 (assuming kinematics associated only
with gluon fusion SM Higgs boson production) is calculated
to vary from ∼3×10−4 to ∼4×10−4 for 10 GeV < ma <

62 GeV for a SM-like Higgs boson with a mass of mh =
125 GeV. Limits are set for Higgs boson-like scalars H
with masses up to mH = 900 GeV and are found to be
σH × BR(H → aa) × BR(a → γ γ )2 < 0.02–0.001 pb,
depending upon mH and ma . For the three-photon mass
spectrum, the resonance search is conducted in the con-
text of a Z ′ decaying to three photons. The smallest local
p value is found to be 0.0003 (3.4σ local significance),
at mZ ′ = 212 GeV which, after adjusting for a trials fac-
tor, corresponds to a global p value of 0.09 (1.4σ global
significance). Upper limits at the 95 % CL on the Z ′ pro-
duction cross section times the product of branching ratios,
σZ ′ × BR(Z ′ → a + γ ) × BR(a → γ γ ), are found to be in
the range of 0.04–0.3 pb, depending upon mZ ′ .

These model-independent results are the first of their kind,
as are the interpretations for a Higgs boson decaying to four
photons via two intermediate pseudoscalar a particles (for a
SM-like Higgs boson of mh = 125 GeV and for Higgs-like
scalars of higher masses) and for three-photon resonances
corresponding to a new vector gauge boson.
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tor gauge boson Z ′ as a function ofmZ ′ , determined via a search for local
excesses in the m3γ spectrum, using a narrow-width approximation to
the Z ′ resonance width. The smallest local p value is found to be 0.0003
(3.4σ ) which corresponds to a global p value of 0.087 (1.4σ ). Right

upper limits, at the 95 % CL, on σZ ′ ×BR(Z ′ → a+γ )×BR(a → γ γ ).
Also shown are the ±1 and 2σ uncertainty bands resulting from the res-
onance search hypothesis tests, taking into account the statistical and
systematic uncertainties from simulated signal samples which are used
to determine signal efficiency and Gaussian resonance width due to
detector resolution for each mass hypothesis
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