Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1007/s10858-015-9984-x

Publisher
Springer Netherlands

Version
Author’s final manuscript

Citable link
http://hdl.handle.net/1721.1/106575

Terms of Use
Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms
http://creativecommons.org/licenses/by-nc-sa/4.0/
Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy

Dominic Barthelmes1 · Markus Gränz2 · Katja Barthelmes1,5 · Karen N. Allen3 · Barbara Imperiali4 · Thomas Prisner2 · Harald Schwalbe1

Received: 17 August 2015 / Accepted: 1 September 2015 / Published online: 4 September 2015
© Springer Science+Business Media Dordrecht 2015

Abstract We recently engineered encodable lanthanide binding tags (LBTs) into proteins and demonstrated their applicability in Nuclear Magnetic Resonance (NMR) spectroscopy, X-ray crystallography and luminescence studies. Here, we engineered two-loop-LBTs into the model protein interleukin-1β (IL1β) and measured 1H, 15N-pseudocontact shifts (PCSs) by NMR spectroscopy. We determined the Δχ-tensors associated with each Tm3+-loaded loop-LBT and show that the experimental PCSs yield structural information at the interface between the two metal ion centers at atomic resolution. Such information is very valuable for the determination of the sites of interfaces in protein–protein-complexes. Combining the experimental PCSs of the two-loop-LBT construct IL1β-S2R2 and the respective single-loop-LBT constructs IL1β-S2, IL1β-R2 we additionally determined the distance between the metal ion centers. Further, we explore the use of two-loop LBTs loaded with Gd3+ as a novel tool for distance determination by Electron Paramagnetic Resonance spectroscopy and show the NMR-derived distances to be remarkably consistent with distances derived from Pulsed Electron–Electron Dipolar Resonance.

Keywords Paramagnetic NMR · EPR · PELDOR · Lanthanide binding tags

Introduction

In living cells, the majority of proteins assemble into multimers forming dynamic networks with cognate binding partners (Lynch 2013). A survey of the Protein Data Bank (PDB) (Bernstein et al. 1977) reveals that structures of multi-domain proteins and protein–protein complexes solved by NMR spectroscopy are highly underrepresented compared to monomeric proteins. Recent studies (Mackereeth et al. 2011; Lapinaite et al. 2013; Duss et al. 2014; Alonso-García et al. 2015) on biomacromolecules and their
multimers have addressed this problem using a combination of complementary methods in a “divide and conquer” strategy where structures of single domains are determined individually and assembled using long-range angular and distance restraints.

In principle, EPR and NMR spectroscopy allow the investigation of long-range angular and distance restraints by measuring PELDOR or PCSs (Göbl et al. 2014; Hass and Ubbink 2014; Duss et al. 2015). These methods require the introduction of spin-labels (Tamm et al. 2007; Schiemann and Prisner 2007; Keizers and Ubbink 2011; Yagi et al. 2011; Loscha et al. 2012; Russo et al. 2013) attached to or within a protein. In NMR-spectroscopic studies, attachment of a single paramagnetic lanthanide center (Keizers and Ubbink 2011) with an anisotropic $\Delta \chi$-tensor (Bertini et al. 2002) has been employed to obtain PCSs, which report on the distance and radial coordinates of a nuclear spin with respect to the paramagnetic center. For Gd$^{3+}$–Gd$^{3+}$ PELDOR distance measurements, simultaneous two-site attachment is required and has been established using chemical tags (Raitsimring et al. 2007; Potapov et al. 2010; Gordon-Grossman et al. 2011; Lueders et al. 2011; Song et al. 2011; Yagi et al. 2011; Garbuio et al. 2013; Matalon et al. 2013).

Recently, a genetically encodable lanthanide-binding tag (LBT) was introduced, which was initially attached to the protein termini (Wöhnt et al. 2003), then extended to a double LBT (Silvaggi et al. 2007; Martin et al. 2007) and then further rigidified by insertion into loop regions of interleukin-1-beta (IL1β) (Barthelmes et al. 2011). We demonstrated the applicability of LBTs for obtaining structural restraints by paramagnetic NMR spectroscopy. The LBT consists of an amino acid sequence (Fig. 1a, b) that specifically binds trivalent lanthanide (Ln) ions with low nM affinity and the fusion LBT-protein can be produced in any suitable expression platform. Herein, we extend our approach by inserting the LBT sequence into both the R2 and S2 loop regions of the model protein IL1β (Barthelmes et al. 2011) forming the two-loop-LBT tagged protein termed IL1β-S2R2 (Fig. 1c) and show the applicability of the two-loop LBT approach for PELDOR measurements and paramagnetic NMR-spectroscopy.

Materials and methods

Protein expression, purification and sample preparation

15N-labelled samples of the single and two-loop-LBT tagged IL1β constructs were prepared as Glutathione S-transferase (GST) fusion proteins in BL21(DE3) Escherichia coli cells grown in autoinducing medium (P-5052) (Studier 2005). After cell lysis using a Microfluidizer® system (Microfluidics, Westwood, MA 02090 USA), the GST fusion proteins were extracted from the supernatant using GST affinity chromatography, cleaved with tobacco etch virus (TEV) protease and further purified using size-exclusion chromatography. Samples were concentrated to 50 μM in 10 mM HEPES, pH 7.0. 100 mM NaCl and 5 mM β-mercaptoethanol and loaded by careful titration with 10 aliquots of 0.11 equivalents of the paramagnetic (Tb$^{3+}$, Tm$^{3+}$, Dy$^{3+}$) or diamagnetic lanthanide (Lu$^{3+}$). The final sample contained 1.1 equivalents of lanthanide and was repeatedly concentrated and diluted with fresh buffer to a final concentration of 0.2 mM using Amicon Centriprep/Centricon centrifugal concentrator devices.

NMR experiments

NMR measurements were performed in buffer containing 10 mM HEPES at pH 7.0, 100 mM NaCl, 5 mM β-mercaptoethanol, 100 μM DSS and 90/10 % H$_2$O/D$_2$O. All 1H–15N-HSQC spectra were recorded at 293 K on a Bruker AV600 NMR spectrometer equipped with a 5 mm TXI Cryoprobe H/C/N-D with single-axis and a Z-gradient. For diamagnetic samples, the spectral widths/acquisition times of the 1H–15N-HSQC spectra were set to 14 ppm/60.8 ms (1H) and 28 ppm/75.2 ms (15N) using 32 scans per increment. Paramagnetic spectra were recorded using a spectral width of 14 × 28 ppm in t_2 and t_1 and acquisition times of 60.8 ms (1H) and 56.3 ms (15N) and 96 scans per increment. For calibration of the chemical shifts in the proton dimension, 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) was used as a reference signal. Pseudocontact shifts (PCS) were calculated as the difference of the chemical shifts in the diamagnetic and paramagnetic samples. The determination of the $\Delta \chi$-tensors and metal positions is described in the Supporting Information (SI).
EPR and PELDOR/DEER experiments

EPR measurements were performed in buffer containing 10 mM HEPES at pH 7.0, 100 mM NaCl, 5 mM β-mercaptoethanol, 100 % H2O. Glycerol (20 %) was added to the solution for cryoprotection. Pulsed EPR data were recorded on an ELEXYS E580 EPR spectrometer (Bruker) equipped with a PELDOR unit (E580-400U, Bruker), a continuous-flow helium cryostat (CF930, Oxford Instruments), and a temperature control system (ITC 502, Oxford Instruments). Experiments were performed at Q-band frequencies (33.7 GHz) using an ELEXYS SuperQ-FT accessory unit and a Bruker AmpQ 10 W amplifier with a Bruker EN5107D2 cavity at 10 K. For PELDOR experiments, the dead-time free four-pulse sequence with phase-cycled π/2-pulse was used (Pannier et al. 2000). Pulse lengths were optimized to 16 ns (π/2 and π) for the observer pulses and 8 ns (π) for the pump pulse. The pump pulse was set to the maximum of the echo-detected EPR spectrum and the probe pulses were set 100 MHz higher. To obtain distance distributions, the PELDOR trace was processed to remove the background function from intermolecular interactions and the background-corrected trace was fitted with a Tikhonov regularization and Two Gaussians resulting in distance distributions, as it is implemented in the software package DeerAnalysis2013 (Jeschke et al. 2006).

Results and discussion

We recorded 15N-HSQC NMR spectra of IL1β-S2R2 loaded with diamagnetic Lu3+ or paramagnetic Tm3+ at a field strength of B0 = 14.1 T. The 1H, 15N resonance assignments of diamagnetic IL1β-S2R2 were inferred from the assignments of the respective single-loop LBT constructs IL1β-R2 and IL1β-S2 (Barthelmes et al. 2011). Metal ion binding of IL1β-S2R2 occurred in slow exchange preventing paramagnetic assignment via lanthanide titration or exchange spectroscopy. In the presence of different lanthanides, the respective cross peaks approximately resonate on diagonal lines within the 15N-HSQC spectra. We therefore recorded additional 15N-HSQC spectra of IL1β-S2R2 loaded with Tb3+ and Dy3+ and employed a bootstrapping assignment procedure as described previously (Barthelmes et al. 2011). Despite considerable line broadening resulting from the two paramagnetic metal ion centers, a total of 61 cross peaks in the 15N-HSQC spectrum of IL1β-S2R2 loaded with Tm3+ could be unambiguously assigned (Figures S1 and S2), with most of the respective residues located at the interface between the metal centers (Fig. 5c). Sizeable pseudocontact shifts (PCS) ranging from −0.82 to 0.35 ppm were calculated as the difference of the diamagnetic and paramagnetic chemical shifts (Fig. 2 and Table S2).

To investigate the effect of two paramagnetic centers on the nuclear spins, we first determined the Δχ-tensors of the single-loop-LBTs constructs IL1β-S2 and –R2 individually (Fig. 3). We then calculated the PCSs for IL1β based on the hypothesis that Δχ-tensors of IL1β-R2 and -S2 are additive (Bentrop et al. 1997) in IL1β-S2R2. The correlation of the calculated PCSs to the experimental PCSs obtained for IL1β-S2R2 is remarkably good with an R2 of 0.959 (Fig. 4) confirming the additivity of both Δχ-tensors in the two-loop-LBT construct. To obtain the lanthanide positions and the Δχ-tensors in IL1β-S2R2, we fitted the PCS against the previously refined IL1β wild-type structure (Barthelmes et al. 2011) under the assumption that the Δχ-tensors of Tm3+ in the R2-loop and the S2-loop are additive using a Mathematica (Wolfram Research Inc., Champaign 2014) script developed in-house (see SI). Following an approach implemented in the program Numbat (Schmitz et al. 2008), we assessed the error of the Δχ-tensor and metal position in a Monte-Carlo (MC) simulation, in which 30 % of the data were randomly deleted and Gaussian distributed noise was added to both the experimental PCS and the structure prior to the fit.

Following this approach, the fit of PCS solely from data derived for the IL1β-S2R2 construct loaded with Tm3+ did not converge stably in the MC simulation because each of the 16 fitting parameters was represented by only few PCS values. Due to the need for more data points, we combined the PCS from IL1β-S2R2, IL1β-R2 and -S2 and performed a global fit against the refined IL1β wild type structure. The MC-simulation resulted in an excellent correlation of 0.976 experimental and back-calculated 1H, 15N PCSs with an R2 of 0.982 (Fig. 5a). Calculation of the Δχ-tensors for Tm3+-loaded IL1β-S2R2 resulted in Δχ-tensor values (Fig. 5b) in the R2 loop with Δχax, R2 = −20.1 × 10−32 m3, Δχrh, R2 = −2.2 × 10−32 m3 and in the S2 loop with Δχax, S2 = −26.3 × 10−32 m3, Δχrh, S2 = −9.5 × 10−32 m3 which are in the range of values previously reported (Bertini et al. 2001; Schmitz et al. 2008; Barthelmes et al. 2011). Euler angles for the rotation of the Δχ-tensor from the protein frame to the unique tensor representation (UTR) frame (Schmitz et al. 2008) were calculated in radians for the R2 loop as (α, β, γ) = (2.7 ± 0.3, 0.6 ± 0.2, 1.7 ± 0.9) and for the S2 loop as (α, β, γ) = (2.7 ± 0.1, 0.9 ± 0.9, 2.3 ± 1.0). The pseudocontact shifts give the positions of the two Tm3+ ions with respect to the structure of IL1β. As seen in previous studies, the calculated positions of the lanthanide centers were located about 1.1 nm from the LBT insertion site. From these positions we calculated the lanthanides to be separated by a distance of 3.30 ± 0.09 nm (Fig. 5c).

We validated the Tm3+-Tm3+ distance in IL1β-S2R2 by Gd3+/Gd3+ PELDOR measurements and further
demonstrate the use of encodable LBTs for distance determination by EPR spectroscopy, which had previously been performed exclusively using chemical tags (Raitsimring et al. 2007; Potapov et al. 2010; Gordon-Grossman et al. 2011; Lueders et al. 2011; Song et al. 2011; Yagi et al. 2011; Garbuio et al. 2013; Matalon et al. 2013). We measured PELDOR at 33.4 GHz frequency (Q-band) using the two-loop-LBT mutant IL1\textsubscript{b}-S2R2. The Q-band echo detected field sweep EPR spectrum exhibited an overall width of 0.8 T (Fig. 6).

The broad EPR spectral width indicated a relatively large zero-field splitting (ZFS) of \(\sim 1.8\) GHz for this Gd3+ tag, which arises from the asymmetry of the LBT coordination sphere and is much larger than for Gd3+-DOTA-tagged proteins (Goldfarb 2014). The width of the central transition (between the electron spin sublevels \(m_s = -1/2\) to \(m_s = 1/2\)) defined at half height is \(\sim 39\) mT. The resonator was centered at the pump frequency and a pump-probe frequency offset of 100 MHz was chosen (i) in order to suppress the influence of the pseudo-secular term of the dipolar coupling Hamiltonian, (ii) minimize partial overlap of the bandwidth of the pump- \((\tau = 8\) ns) and probe pulses (\(\tau/2\) and \(\tau = 16\) ns) and (iii) is the maximum width of the used resonator. Reduction of the refocused echo was observed upon application of the pump pulse, as described previously (Yulikov et al. 2012; Lueders et al. 2013). Due to the broad spectral width, a modulation depth of about 1.5 %
was achieved with a 8 ns pump pulse, optimized for the central transition. An achievement of such modulation depth is expected, as only a small fraction of the spins in the ensemble could be excited by the pump pulse. However, the relatively high echo signal intensity and a transversal relaxation time of 2.2 μs for IL1β-S2R2 (Figure S3) result in a reasonable signal-to-noise ratio.

Figure 7 shows spectra applying a four-pulse PELDOR experiment of IL1β-S2R2 in buffered 80 % H$_2$O/20 % glycerol. The dipolar evolution time was set to 2 μs and the Q-band PELDOR time trace clearly reveals dipolar oscillations before (Fig. 7a) and after division of the background decay (Fig. 7b, black trace). Tikhonov regularization (Fig. 7b, blue trace) resulted in a distance distribution with two peaks with a maximum at 3.55 nm (Fig. 7c, blue trace). The peak at 2.50 nm is most likely an artifact that originates from the partial excitation of non-central transitions with detection pulses (Lueders et al. 2011; Yulikov et al. 2012; Goldfarb 2014). Due to the relatively large ZFS parameter D of 1.8 GHz (Fig. 6) and pump-probe frequency offset of 100 MHz, contribution from the pseudo-secular term of the dipolar coupling Hamiltonian can be neglected in the analysis of the PELDOR time trace (Dalaloyan et al. 2015). Additional fitting of the time trace with two Gaussians yields the same distance with an even smaller distribution and a broader, less intense second peak. The full width at half height (FWHH) for the maximum peak with Tikhonov regularization is only 0.5 nm and therefore remarkably good for such a system (Goldfarb 2014). Given the experimental uncertainties and different physical conditions of the sample, the Gd$^{3+}$–Gd$^{3+}$ distance measurement from PELDOR is in good agreement with the distance of 3.30 ± 0.09 nm obtained by NMR spectroscopy. Note, that the inter-metal ion distance derived from NMR spectroscopy is 0.25 nm longer than the distance obtained from PELDOR measurement. While this discrepancy is not statistically significant, it is worth noting that differences in the observation of molecular dynamics by PELDOR and PCS may contribute to the measurement difference. However, the current accuracy of the NMR and PELDOR data is not sufficient to define inconsistencies with a static structure of IL1β.

In summary, we show for a rigid biomacromolecular model system engineered with two-loop-LBTs that their $\Delta\chi$-tensors are additive and provide structural information at the interface between the two metal ion centers at atomic resolution. Such information is valuable for the determination of structures of multi-domain proteins and protein–protein complexes. In our case, we required additional data from proteins with a single LBT for the precise determination of the tensor parameters. Yet, the
procedure of adding additional data points for the single-
loop-LBT mutants might not be necessary in cases where
two-loop-LBTs are being used at different sites in multi-
domain protein complexes. The position of the lan-
thanides will be further separated and line broadening
due to the PRE might only affect signals close to the
lanthanides, resulting in a higher number of detectable
PCS. The advantage of using the two-loop-LBT approach
is that one only needs to design and prepare a single
protein construct and use it for both PELDOR and NMR
spectroscopy.

We argue that the combination of single- and two-loop-
LBT constructs might also be beneficial for the study of
interdomain motions, as the combined dataset of PCSs
yields an over determination of the experimental parame-
ters, which allows for thorough probing of the relative
motions of the individual Δ_2-tensor frames. Furthermore,
the facile handling of the protein-LBT constructs and the
remarkably precise distances obtainable by Gd$^{3+}$–Gd$^{3+}$
PELDOR measurements make the encodable two-loop-
LBT approach particularly suited for augmenting and cross
validating studies on the structure and dynamics of multi-
domain complexes.

Acknowledgments We thank Dmitry Akhmetzyanov for helpful
discussions. This work was supported by Deutsche Forschungsge-
meinschaft (DFG) in collaborative research centers 807 and 902. H.S.
and T.P. are members of the DFG-funded cluster of excellence:
macromolecular complexes and BMRZ is supported by the state of
Hesse. K.N.A and B.I. acknowledge the support of NSF Grant MCB
0744415.

Fig. 6 Calculation of the Q-band EPR spectrum of Gd$^{3+}$ at 10 K
using EasySpin (Stoll and Schweiger 2006). Simulated transitions are
separately shown (in red) as well as the experimental EPR spectrum
of IL1β-S2R2 (in blue). Parameters used for the calculation are
D = 1800 MHz, E = 400 MHz and a Gaussian distribution of 2/3
for both parameters. Experimental trace is rescaled for better visualization.

Fig. 7 Q-band PELDOR traces of 80 μM IL1β-S2R2 in 80 % buffer/
20 % glycerol at 10 K. a Normalized PELDOR traces (black) and
fitted background correction (red). Raw trace was cut at the end due
to pulse overlap (Figure S8). b Background-corrected PELDOR traces
(black) and interpolations obtained either from Tikhonov regularization
(blue) or Two Gaussian fit (red). c Distance distributions using
DeerAnalysis2013 (Jeschke et al. 2006) with the maximum at
3.55 nm and the Full Width at Half Height (FWHH) for the Tikhonov
Regularization of about 0.5 nm.
References

Champaign
doi:10.1021/ja204415w