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Abstract We study the Faddeev–Jackiw symplectic Hamil-
tonian reduction for 3 + 1-dimensional free and Abelian
gauged Rarita–Schwinger theories that comprise Grassman-
nian fermionic fields. We obtain the relevant fundamental
brackets and find that they are in convenient forms for quan-
tization. The brackets are independent of whether the theo-
ries contain mass or gauge fields, and the structures of con-
straints and symplectic potentials largely determine charac-
teristic behaviors of the theories. We also note that, in contrast
to the free massive theory, the Dirac field equations for free
massless Rarita–Schwinger theory cannot be obtained in a
covariant way.

1 Introduction

In 1941, Rarita and Schwinger constructed a theory of spin- 3
2

vector–spinor fields which has a local fermionic gauge invari-
ance [1]. However, this symmetry is lost when the vector–
spinor field has mass or couples to the other lower spin fields.
More precisely, in 1961, Johnson and Sudarshan studied mas-
sive Rarita–Schwinger field minimally coupled to an exter-
nal electromagnetic field, and they showed that the equal-
time commutators and relativistic covariance of the theory
are in conflict, which makes the quantization a rather sub-
tle issue [2]. In 1969, Velo and Zwanziger found that the
massive gauged extension of the theory also admits superlu-
minal wave propagation. Thus, the causality principle is also
violated in the theory [3]. Despite these persistent problems,
the massless theory keeps its importance particularly in two
respects. First, the massless (Majorana) Rarita–Schwinger
field plays a central role in the construction of covariantly
interacting supergravity theory [4–6]. The theory describes
a generalization of the Rarita–Schwinger fermionic gauge
invariance and the vector–spinor fields are fermionic super-
partner of gravitons, namely gravitinos of the supergravity.

a e-mail: sdengiz@mit.edu

By this concept, Das and Freedman showed that the mass-
less theory is free from the non-causal wave propagation and
has a unitary propagator structure [7]. Second, the massless
Rarita–Schwinger theory is valuable for the cancelation of
SU(8) gauge anomalies. Unlike the generic anomaly can-
celation mechanisms in which the anomalies are supposed
to be canceled withing the lower spin fermionic fields, it
was shown by Marcus [8] and later studied by Adler [9]
that a complete SU(8) gauge theory can be constructed via
Rarita–Schwinger fields. In this set-up, the vector–spinor
field acquires a crucial role in canceling anomalies arising
in the gauge theory. Thus, it is left to determine whether
the gauged Rarita–Schwinger fields describe well-behaved,
complete classical or quantum field theories. For this pur-
pose, Adler has recently studied minimally gauged mass-
less Rarita–Schwinger theories at both classical and quantum
levels in detail [10,11]. He showed that, unlike the massive
case, the massless gauged Rarita–Schwinger theory provides
consistent classical and quantum theories with a generalized
fermionic gauge invariance.

Taking the above mentioned observations as inspiration
points and noting the hard task of getting proper brack-
ets of constrained systems providing viable quantization,
we study the Faddeev–Jackiw (FJ) symplectic Hamiltonian
reduction [12,13] for free and gauged Rarita–Schwinger the-
ories. Unlike Dirac’s approach for constrained systems [14],
the FJ symplectic first-order formalism does not require any
classification of constraints.1 In other words, the method
avoids analyzing systems by evaluating all commutation rela-
tions among the constraints and classifying them accordingly.
Apparently, the FJ approach supplies a rather economical
way of quantizing constrained systems. In doing so, we find
the fundamental brackets for the free and gauged Rarita–
Schwinger theories for both massless and massive versions.
Here, the brackets are in admissible structures to be quan-

1 For the quantization of the constrained system, see for example [15–
17].
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tized. We also observe that the brackets are identical for all
kinds of the theories; the brackets are independent of whether
the theory is massive or interacting with external electromag-
netic field or not. The differences between the theories arise
among the constraints they have. We also notice that, in con-
trast to the massive case, the Dirac field equations for free
massless Rarita–Schwinger theory cannot be obtained in a
covariant way.

The layout of the paper is as follows: In Sect. 2, we reca-
pitulate the fundamental properties of free massless Rarita–
Schwinger theory and apply FJ Hamiltonian reduction to the
theory. In Sect. 3, we turn our attention to the FJ Hamil-
tonian reduction for free massive Rarita–Schwinger theory.
Sections 4 and 5 are devoted to the first-order symplec-
tic analysis for Abelian gauged extensions of massless and
massive Rarita–Schwinger theories. In Sect. 6, we conclude
our results. In Appendix A, the derivation of the transverse
and traceless decomposition of the fields in the free mass-
less Rarita–Schwinger theory is given as a sample. In the
Appendix B, we briefly review the FJ approach for con-
strained and unconstrained systems. We also give an example
of the application of symplectic method to anti-commuting
spin- 1

2 Dirac theory.

2 Free massless Rarita–Schwinger theory

The 3 + 1-dimensional free massless Rarita–Schwinger the-
ory is described by the Lagrangian

L = −ελμνρψ̄λγ5γμ∂νψρ, (1)

where ψμ and ψ̄μ are vector–spinor fields with spinor indices
suppressed. We work in the metric signature (+,−,−,−),
γ5 = iγ 0γ 1γ 2γ 3, and {γ μ, γ ν} = 2ημν . We consider the
fermionic fields as independent anti-commuting Grassman-
nian variables. Recall that, unlike the complex Dirac field,
for the Grassmannian variables there is no such relation as
ψ̄μ = γ 0ψ+

μ . Instead, ψμ and ψ̄μ are independent gener-
ators in the Grassmann algebra. Thus, one can define the
conjugation as follows:

ψ∗
μ = ψ̄ν(γ

0)νμ, (ψ̄μ)∗ = (γ 0)μ
νψν. (2)

Notice that this does not mean that Eq. (2) produces a
new element in the Grassmannian algebra. This is merely
the conjugation of independent variables. Therefore, with
the help of the conjugation of the Grassmannian variables
(θ1θ2)

∗ = θ∗
2 θ∗

1 , one can show that the Lagrangian in Eq. (1)
is self-adjoint up to a boundary term:

L∗ = L + ∂ν(ε
λμνρψ̄λγ5γμψρ), (3)

such that the total derivative term naturally drops at the action
level. Moreover, variations with respect to independent vari-
ables, respectively, yield

ελμνργ5γμ∂νψρ = 0, ελμνρ∂νψ̄λγ5γμ = 0, (4)

which are the corresponding field equations. From now on,
we will work with the first of Eq. (4). But, by following the
same steps, one could easily obtain similar results for the
second equation. Notice that by using the identity

ελμνργ5γμ = i(ηλργ ν − ηλνγ ρ − γ ληρν + γ λγ νγ ρ), (5)

one can recast the field equation in Eq. (4) as follows:

/∂ψλ − ∂λ(γ · ψ) − γ λ∂ · ψ + γ λ/∂(γ · ψ) = 0. (6)

Here /∂ = γ μ∂μ and γ ·ψ = γ μψμ. Contracting Eq. (6) with
γλ gives

∂ · ψ − /∂(γ · ψ) = 0. (7)

Finally, by plugging this result in Eq. (6), the field equation
reduces to

/∂ψλ − ∂λ(γ · ψ) = 0. (8)

To obtain the real propagating degrees of freedom, let us
now study gauge transformation and corresponding gauge
conditions. For this purpose, let us recall that under the local
Rarita–Schwinger fermionic gauge transformation

δψρ(x) = ∂ρε(x), (9)

the Lagrangian in Eq. (1) transforms as

δL = ∂λ(−ελμνρ ε̄γ5γμ∂νψρ). (10)

Here ε is an arbitrary four-component spinor field. As is seen
in Eq. (10), the free massless Rarita–Schwinger Lagrangian
changes by a total derivative under the Rarita–Schwinger
gauge transformation, which drops at the action level and thus
we have a completely gauge-invariant theory. This means
that the theory admits a gauge redundancy. To find the correct
physical degrees of freedom of the theory, one needs to fix this
gauge freedom. For this purpose, let us assume the Coulomb-
like gauge condition

γ iψi = 0, (11)

where i = 1, 2, 3. In fact, this is a reasonable gauge choice:
Any initial data ψ

′
i (x, t) that does not satisfy Eq. (11) can be
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tuned to the desired form via2

ε(x, t) = −γ i∂i

∫
d3 y

4π |x − y|γ
jψ j (y, t). (12)

(See [7,18] for further discussions.) For the sake of the self-
completeness, one needs to examine the theory further to see
whether Eq. (11) imposes any additional conditions or not.
For this purpose, note that ψ0 component does not have a
time derivative, so it is a Lagrange multiplier. In other words,
as in the electromagnetic case, the zeroth component of the
vector–spinor field is a zero mode which is followed with a
constraint. More precisely, the λ = 0 component of the field
equation in Eq. (8) reads

γ i∂iψ0 − ∂0(γ
iψi ) = 0. (13)

One can also get a secondary constraint by contracting the
field equation with ∂λ. But since our primary aim is not ana-
lyzing the system by examining all the existing constraints,
we leave it as a comment. As is seen in Eq. (13), gauge-fixing
condition γ iψi = 0 imposes γ i∂iψ0 = 0. Here, since the
operator is not invertible, we are not allowed to have ψ0 = 0
as a corollary of γ iψi = 0; yet we assume an additional con-
dition of ψ0 = 0. Furthermore, splitting the fully contracted
equation in Eq. (7) into its space and time components yields

∂ iψi − γ 0∂0(γ
iψi ) − γ i∂i (γ

0ψ0) − γ i∂i (γ
jψ j ) = 0. (14)

In Eq. (14), one should notice that the gauge-fixing condition
γ iψi = 0 together with the assumed condition ψ0 = 0
impose ∂ iψi = 0. As a consequence of this, we obtain the
set of consistency conditions

γ iψi = 0, ∂ iψi = 0, ψ0 = 0. (15)

Observe that Eq. (15) can also be written in covariant forms
as follows:

γ μψμ = 0, ∂μψμ = 0, (16)

which are the Rarita–Schwinger gauge-fixing conditions.
Thus, with the gauge choices in Eq. (16), the field equa-
tion for the free massless Rarita–Schwinger theory in Eq. (8)
turns into the Dirac field equation for massless spin- 3

2 vector–
spinor field,

/∂ψλ = 0. (17)

2 Since the gauge choice ∂ i ψi = 0 on the initial data will also arise due
to the self-consistency, one should also be able to regulate the gauge
parameter via ε = − 1

∇2 ∂i ψ
i . But since we start with Eq. (11), we have

to use Eq. (12).

Symplectic reduction for free massless Rarita–Schwinger
theory

In this section, we study the FJ Hamiltonian reduction for the
free massless Rarita–Schwinger theory which will lead us to
the fundamental brackets of the theory. For this purpose, let
us recast the Lagrangian in Eq. (1) in a more symmetric form:

L = −1

2
ελμνρψ̄λγ5γμ∂νψρ + 1

2
ελμνρ(∂νψ̄λ)γ5γμψρ. (18)

To study the theory in the first-order symplectic formalism,
one needs to convert Eq. (18) into the desired symplectic
form. That is, one needs to split the Lagrangian into its space
and time components. After a straightforward decomposi-
tion, one gets

L = A(k)
1 ψ̇k + A(k)

2
˙̄ψk − H(ψ0, ψ̄0, ψk, ψ̄k), (19)

where the symplectic coefficients are

A(k)
1 = −1

2
εi jkψ̄iγ5γ j , A(k)

2 = 1

2
εi jkγ5γ jψi , (20)

and the corresponding symplectic potential reads

H(ψ0, ψ̄0, ψk, ψ̄k) = 1

2
εi jkψ̄0γ5γi∂ jψk

− 1

2
εi jkψ̄iγ5γ0∂ jψk − 1

2
εi jkψ̄iγ5γ j∂kψ0

− 1

2
εi jk(∂ j ψ̄0)γ5γiψk + 1

2
εi jk(∂ j ψ̄i )γ5γ0ψk

+ 1

2
εi jk(∂kψ̄i )γ5γ jψ0. (21)

As expected, all the non-dynamical components have been
relegated into the Hamiltonian part of the system. In analyz-
ing the theory, one could also choose the conjugate momenta
of ψ̄k as a dynamical variable. But in our analysis, we will
not work with it. Instead, we consider ψμ and ψ̄μ as the
independent variables. Note that ψ0 and ψ̄0 are not dynami-
cal components, so they are Lagrange multipliers. Following
[12,13], the elimination of constraints gives the equations

εi jk(∂kψ̄i )γ5γ j = 0, εi jkγ5γi∂ jψk = 0. (22)

To solve the constraint equations, one can decompose the
independent fields into its local transverse and γ -traceless
parts as

ψi = ψT
i + ψ̂i ψ̄i = ψ̄T

i + ˆ̄ψi , (23)

where “T ” and “∧” stand for the transverse and traceless
parts, respectively. Here the γ -traceless parts are

ψ̂i = ψi − 1

3
γiγ

jψ j ,
ˆ̄ψi = ψ̄i − 1

3
ψ̄ jγ

jγi , (24)
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such that γ i ψ̂i = 0 and γ i ˆ̄ψi = 0. Then, by using the identity

εi jkγ5γk = −γ 0σ i j where σ i j = i

2
[γ i , γ j ], (25)

as well as the constraints in Eq. (22), one can show that
the transverse and traceless decomposition of the fields in
Eq. (23) can actually be written as follows:

ψi = ψT
i + ∂iζ

∇2 , ψ̄i = ψ̄T
i + ∂i ζ̄

∇2 , (26)

where ζ = /∂(γ · ψT ) and ∇2 = ∂i∂
i . As a side comment,

one should note that as is done in [13], without addressing
the transverse and γ -traceless parts Eq. (23), one could also
directly start with Eq. (26). Here, we further provide what
the explicit form of the Longitudinal part is. (See Appendix
A for the derivation of Eq. (26).) Accordingly, the constraint
equations in Eq. (22) turn into completely transverse ones

εi jk(∂kψ̄
T
i )γ5γ j = 0, εi jkγ5γi∂ jψ

T
k = 0. (27)

Finally, by inserting Eqs. (26) and (27) in the Eq. (19),
up to a boundary term, one gets a completely transverse
Lagrangian

L = A(k)T

1 ψ̇T
k + A(k)T

2
˙̄ψT

k − HT (ψT
k , ψ̄T

k ). (28)

Here the transverse symplectic coefficients and potential are

A(k)T

1 = −1

2
εi jkψ̄T

i γ5γ j , A(k)T

2 = 1

2
εi jkγ5γ jψ

T
i ,

HT (ψT
k , ψ̄T

k ) = −1

2
εi jkψ̄T

i γ5γ0∂ jψ
T
k

+ 1

2
εi jk(∂ j ψ̄

T
i )γ5γ0ψ

T
k . (29)

Thus, by defining the symplectic variables as (ξ1, ξ2) =
(ψT

k , ψ̄T
k ), one gets the corresponding symplectic matrix,

fαβ =
(

0 εi jkγ5γ j

−εi jkγ5γ j 0

)
= εαβεi jkγ5γ j ,

which is clearly non-singular. Notice that the minus sign in
the sub-block is due to the anti-symmetric ε tensor. There-
fore, by taking care of the epsilons contraction in the current
signature, one can easily show that the inverse symplectic
matrix is

f −1
αβ =

(
0 − 1

2εimkγ5γ
m

1
2εimkγ5γ

m 0

)
= 1

2
εβαεimkγ5γ

m .

Once the inverse symplectic matrix is found, one can evaluate
the fundamental brackets. That is, by using the definition of
the FJ equal-time brackets for the Grassmann variables,

{ξβ, ξα}F J = − f −1
αβ , (30)

one gets the fundamental brackets for free massless Rarita–
Schwinger theory as follows:

{ψT
i (x), ψ̄T

k (y)}F J = −1

2
εimkγ5γ

mδ3(x − y),

{ψT
i (x), ψT

k (y)}F J = 0, {ψ̄T
i (x), ψ̄T

k (y)}F J = 0. (31)

Note that, with the help of the identity in Eq. (25), the non-
vanishing bracket can also be rewritten as

{ψT
i (x), ψ̄T

k (y)}F J = i

2
γkγiγ0δ

3(x − y), (32)

which is identical to the one found in [19].

3 Free massive Rarita–Schwinger theory

The Lagrangian that describes the 3 + 1-dimensional free
massive Rarita–Schwinger theory is

L = −ελμνρψ̄λγ5γμ∂νψρ + imψ̄λσ
λρψρ, (33)

where σλρ = i
2 [γ λ, γ ρ] = i(ηλρ − γ ργ λ). Recall that

the fermionic fields are anti-commuting Grassmannian vari-
ables. Accordingly, the field equations of the independent
variables, respectively, read

ελμνργ5γμ∂νψρ − imσλρψρ = 0,

ελμνρ∂νψ̄λγ5γμ + imψ̄λσ
λρ = 0. (34)

In dealing with the fundamental properties of the theory, as
we did in the massless theory, we will work only with the first
field equation in Eq. (34). Notice that by using the identity
in Eq. (5), one can recast the field equation as follows:

i[/∂ψλ −∂λ(γ ·ψ)−γ λ∂ ·ψ +γ λ/∂(γ ·ψ)]− imσλρψρ = 0.

(35)

Observe that the contraction of Eq. (35) with γλ yields

2i[/∂(γ · ψ) − ∂ · ψ] + 3mγ · ψ = 0, (36)

and the contraction of Eq. (35) with ∂λ gives

m[/∂(γ · ψ) − ∂ · ψ] = 0. (37)

Combining both contracted field equations Eqs. (36) and
(37), one obtains

γ · ψ = 0, ∂ · ψ = 0. (38)

With these gauge-fixing conditions, the equation in Eq. (35)
turns into the Dirac field equation for a massive spin- 3

2
vector–spinor field,
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(i/∂ + m)ψλ = 0. (39)

Note that, unlike the massless theory, one obtains the Dirac
field equation in Eq. (39) without addressing the space and
time decompositions of the field equations. On the other
hand, due to the mass term, the Rarita–Schwinger gauge
invariance is inevitably lost.

Symplectic reduction for free massive Rarita–Schwinger
lagrangian

Let us now study the symplectic Hamiltonian reduction of
the free massive Rarita–Schwinger theory. For this purpose,
let us recall that the Lagrangian in Eq. (33), up to a boundary
term, can be written as

L = −1

2
ελμνρψ̄λγ5γμ∂νψρ

+ 1

2
ελμνρ∂νψ̄λγ5γμψρ + imψ̄λσ

λρψρ. (40)

In order to proceed the FJ symplectic reduction of Eq. (40),
one needs to separate the dynamical components from the
non-dynamical ones so that the non-dynamical components
can be relegated to Hamiltonian part of the Lagrangian.
Therefore, by splitting the Lagrangian into its space and time
components, one will obtain

L = A(k)
1 ψ̇k + A(k)

2
˙̄ψk − H(ψ0, ψ̄0, ψk, ψ̄k), (41)

where the coefficient of the dynamical parts are

A(k)
1 = −1

2
εi jkψ̄iγ5γ j , A(k)

2 = 1

2
εi jkγ5γ jψi , (42)

and the explicit form of the symplectic potential is

H(ψ0, ψ̄0, ψk, ψ̄k) = 1

2
εi jkψ̄0γ5γi∂ jψk

− 1

2
εi jkψ̄iγ5γ0∂ jψk − 1

2
εi jkψ̄iγ5γ j∂kψ0

− 1

2
εi jk(∂ j ψ̄0)γ5γiψk + 1

2
εi jk(∂ j ψ̄i )γ5γ0ψk

+ 1

2
εi jk(∂kψ̄i )γ5γ jψ0 − imψ̄0σ

0iψi − imψ̄iσ
i0ψ0

− imψ̄iσ
i jψ j . (43)

Like the free massless theory, ψ0 and ψ̄0 are zero modes of
the system whose eliminations give rise the constraints

εi jk(∂kψ̄i )γ5γ j − imψ̄iσ
i0 = 0,

εi jkγ5γi∂ jψk − imσ 0iψi = 0. (44)

As was done in the previous section, by decomposing the
fields into the local transverse and γ -traceless parts as in

the Eq. (23), the constraints in Eq. (44) turn into completely
transverse ones,

εi jk(∂kψ̄
T
i )γ5γ j − imψ̄T

i σ i0 = 0,

εi jkγ5γi∂ jψ
T
k − imσ 0iψT

i = 0. (45)

In this case, the longitudinal part reads ζ = (/∂ + im)γ · ψT.
Thus, by plugging Eq. (23) and the transverse constraints
Eq. (45) into the Eq. (41), up to a boundary term, the
Lagrangian turns into

L = A(k)T

1 ψ̇T
k + A(k)T

2
˙̄ψT

k + imψ̄T
i σ i0 ζ̇

∇2

+ im
˙̄ζ

∇2 σ 0iψT
i − HT (ψT

k , ψ̄T
k ), (46)

where the transverse symplectic coefficients and potential,
respectively, are

A(k)T

1 = −1

2
εi jkψ̄T

i γ5γ j , A(k)T

2 = 1

2
εi jkγ5γ jψi ,

HT (ψT
k , ψ̄T

k ) = −1

2
εi jkψ̄T

i γ5γ0∂ jψ
T
k

+ 1

2
εi jk∂ j ψ̄

T
i γ5γ0ψ

T
k − imψ̄T

i σ i jψT
j .

(47)

Observe that the middle two terms in Eq. (46) are not in
the symplectic forms. Therefore, by assuming the Darboux
transformation

ψT
k → ψ

′T
k = e2i ζ

∇2 ψT
k , (48)

with an additional assumption of

εi jkψ̄T
i γ5γ jψ

T
k = me−2i ζ̄

∇2 ψ̄T
i σ i0, (49)

the undesired terms in Eq. (46) drop and thus we are left with
a completely transverse Lagrangian

L = A(k)T

1 ψ̇T
k + A(k)T

2
˙̄ψT

k − HT (ψT
k , ψ̄T

k )

− λkφ
k(ψT

k , ψ̄T
k ) − λ̄i φ̄

i (ψT
k , ψ̄T

k ). (50)

Note that the extra condition Eq. (49) is enforced by the
Darboux transformation and the constraint equations; other-
wise, the coupled terms in the symplectic part could not be
decoupled. In fact, it seems there is a lack in the physical
interpretation of Eq. (49). Therefore, it will be particularly
interesting if one can show that it has a relation with the real
constraints or not. Here, as is mentioned in Eq. (117), the
remaining variables (i.e., the longitudinal components) are
called the Lagrange multipliers

λk = ∂kζ

∇2 , λ̄i = ∂i ζ̄

∇2 , (51)
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such that

φk(ψT
k , ψ̄T

k ) = iεi jkψ̄T
i γ5γ0ψ

T
j

φ̄i (ψT
k , ψ̄T

k ) = −iεi jkψ̄T
j γ5ψ

T
k . (52)

As noted in [12,13], since the last two terms in Eq. (50) cannot
be dropped via elimination of constraints anymore, Eq. (52)
corresponds to the true constraints of the system. Note also
that the true constraints cannot be rewritten as linear combi-
nations of the ones that are obtained during the eliminations
of the constraints; otherwise, they would also drop when the
eliminations of constraint was performed. These are the con-
straints that cannot be eliminated anymore. Therefore, setting
φk(ψT

k , ψ̄T
k ) and φ̄i (ψT

k , ψ̄T
k ) to zero provides an uncon-

strained fully traceless Lagrangian

L = A(k)T

1 ψ̇T
k + A(k)T

2
˙̄ψT

k − HT (ψT
k , ψ̄T

k ). (53)

Thus, with the definition of the dynamical variables (ξ1, ξ2) =
(ψT

k , ψ̄T
k ), the non-vanishing equal-time FJ bracket for the

free massive Rarita–Schwinger theory becomes

{ψT
i (x), ψ̄T

k (y)}F J = i

2
γkγiγ0δ

3(x − y), (54)

which is the same as the one found in [20].

4 Gauged massless Rarita–Schwinger theory

In this section, we study the massless Rarita–Schwinger field
minimally coupled to an external electromagnetic field which
is described by the Lagrangian

L = −ελμνρψ̄λγ5γμ

→
Dνψρ. (55)

Here the gauge-covariant derivative isDν = ∂ν+g Aν , where
g is the relevant coupling constant and Aμ is an Abelian gauge
field. The field equations read

ελμνργ5γμ

→
Dνψρ = 0, ελμνρψ̄λ

←
Dνγ5γμ = 0. (56)

As in the free massless and massive theories, while deducing
the some basic properties of the theory, we will only deal
with the first of Eq. (56). Notice that with the help of the
identity in Eq. (5), Eq. (56) turns into

/Dψλ − Dλ(γ · ψ) − γ λD · ψ + γ λ /D(γ · ψ) = 0. (57)

Moreover, contracting Eq. (57) with γλ yields

/D(γ · ψ) − D · ψ = 0. (58)

Finally, substituting Eq. (58) in Eq. (57) gives

/Dψλ − Dλ(γ · ψ) = 0. (59)

On the other side, contracting Eq. (56) with Dλ becomes

gελμνργ5γμFλνψρ = 0, (60)

which is a secondary constraint in the theory and does not
provide any further simplification in the field equation in
Eq. (59).

Symplectic reduction for gauged massless
Rarita–Schwinger theory

Let us now apply the first-order symplectic formalism to the
massless Rarita–Schwinger fields minimally coupled to an
external electromagnetic field. For this purpose, let us note
that the Lagrangian of the theory in Eq. (55) can be recast in
a more symmetric form as follows:

L = −1

2
ελμνρψ̄λγ5γμ

→
Dνψρ + 1

2
ελμνρψ̄λ

←
Dνγ5γμψρ. (61)

Similarly, by splitting the Lagrangian in Eq. (61) into its
space and time components, one gets

L = A(k)
1 ψ̇k + A(k)

2
˙̄ψk − H(ψ0, ψ̄0, ψk, ψ̄k, A0, Ak), (62)

where the symplectic coefficients are

A(k)
1 = −1

2
εi jkψ̄iγ5γ j , A(k)

2 = 1

2
εi jkγ5γ jψi , (63)

and the related symplectic potential is

H(ψ0, ψ̄0, ψk, ψ̄k, A0, Ak) = 1

2
εi jkψ̄0γ5γi∂ jψk

− 1

2
εi jkψ̄iγ5γ0∂ jψk − 1

2
εik j ψ̄iγ5γk∂ jψ0

− 1

2
εi jk∂ j ψ̄0γ5γiψk + 1

2
εi jk∂ j ψ̄iγ5γ0ψk

+ 1

2
εik j∂ j ψ̄iγ5γkψ0 + gεi jkψ̄iγ5γ j A0ψk

+ gεi jkψ̄0γ5γi A jψk − gεi jkψ̄iγ5γ0 A jψk

− gεik j ψ̄iγ5γk A jψ0. (64)

Note that although the gauge fields are non-dynamical vari-
ables, due to being external potentials, one cannot vary and
then impose these variations to be vanished. Otherwise, as
in the Quantum Electromagnetic Dynamics with external
potential, the gauge-field current would be enforced to be
zero which is not a desired situation. Hence, as in the free
theories, hereψ0 and ψ̄0 are the only zero modes of the theory.
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Therefore, variations with respect to ψ0 and ψ̄0, respectively,
give the following constraint equations:

εik j∂ j ψ̄iγ5γk − gεik j ψ̄iγ5γk A j = 0,

εi jkγ5γi∂ jψk + gεi jkγ5γi A jψk = 0. (65)

As was done in the free theories, by decomposing the fields
into the local transverse and γ -traceless parts as in Eq. (23)3

and using the constraints in Eq. (65) as well as by assum-
ing the Darboux transformation Eq. (48), with an additional
assumption of

iεi jkψ̄T
i γ5γ jψ

T
k = ge−2i ζ̄

∇2 εi jkψ̄T
i γ5γk A j , (66)

the Lagrangian Eq. (62) turns into a completely transverse
one,

L = A(k)T

1 ψ̇T
k + A(k)T

2
˙̄ψT

k − HT (ψT
k , ψ̄T

k )

− λkφ
k(ψT

k , ψ̄T
k ) − λ̄i φ̄

i (ψT
k , ψ̄T

k ), (67)

where the transverse symplectic coefficients and potential
read

A(k)T

1 = −1

2
εi jkψ̄T

i γ5γ j , A(k)T

2 = 1

2
εi jkγ5γ jψ

T
i ,

HT (ψT
k , ψ̄T

k ) = −1

2
εi jkψ̄T

i γ5γ0∂ jψ
T
k

+1

2
εi jk∂ j ψ̄

T
i γ5γ0ψ

T
k + gεi jkψ̄T

i γ5γ j A0ψ
T
k

−gεi jkψ̄T
i γ5γ0 A jψ

T
k . (68)

Note that the symplectic potential also contains gauge-field
parts. Furthermore, as is given in Eq. (117), the remaining
variables (i.e., the longitudinal components) are called the
Lagrange multipliers,

λk = ∂kζ

∇2 , λ̄k = ∂i ζ̄

∇2 , (69)

such that

φk(ψT
k , ψ̄T

k ) = iεi jkψ̄T
i γ5γ0ψ

T
j + gεi jkψ̄T

i γ5γ j A0

+ gεi jk λ̄iγ5γ j A0 − gεi jkψ̄T
i γ5γ0 A j

φ̄i (ψT
k , ψ̄T

k ) = −iεi jkψ̄T
j γ5ψ

T
k + gεi jkγ5γ j A0ψ

T
k

− gεi jkγ5γ0 A jψ
T
k − gεi jkγ5γ0 A jλk, (70)

which cannot be dropped via elimination of constraints any-
more; so, according to [12,13], they are the true constraints
of the system. Thus, by setting φk(ψT

k , ψ̄T
k ) and φ̄i (ψT

k , ψ̄T
k )

to zero, one arrives at a completely transverse Lagrangian,

L = A(k)T

1 ψ̇T
k + A(k)T

2
˙̄ψT

k − HT (ψT
k , ψ̄T

k ). (71)

3 Notice that, in this case, the longitudinal part becomes ζ = (/∂ + g γ ·
A)γ · ψT − g A · ψT .

Finally, with the definition of the symplectic dynamical vari-
ables (ξ1, ξ2) = (ψT

k , ψ̄T
k ), one obtains the non-vanishing

equal-time FJ basic bracket for the gauged massless Rarita–
Schwinger theory as follows:

{ψT
i (x), ψ̄T

k (y)}F J = i

2
γkγiγ0δ

3(x − y), (72)

which is consistent with the Pauli-spin-part of the funda-
mental bracket obtained in [10,11] in which Adler studies
the Dirac quantization of the non-Abelian gauged Rarita–
Schwinger theory via the left-chiral component of the
fermionic field. One should notice that such a difference is
expected because in [10,11], the corresponding gauge fields
are non-Abelian variables; however, here the gauge fields are
Abelian vector fields.

5 Gauged massive Rarita–Schwinger

In this section, we study the massive Rarita–Schwinger the-
ory minimally coupled to an external electromagnetic field
which is described by the Lagrangian

L = −ελμνρψ̄λγ5γμ

→
Dνψρ + imψ̄λσ

λρψρ, (73)

where the gauge-covariant derivative is Dν = ∂ν + g Aν .
Accordingly, the field equations for the independent anti-
commuting fermionic fields are

ελμνργ5γμ

→
Dνψρ − imσλρψρ = 0,

ελμνρψ̄λ

←
Dνγ5γμ + imψ̄λσ

λρ = 0, (74)

which with the help of the identity in Eq. (5) turns into

i[ /Dψλ−Dλ(γ ·ψ)−γ λD·ψ+γ λ /D(γ ·ψ)]−imσλρψρ = 0.

(75)

Moreover, contraction of the equation in Eq. (75) with γλ

gives

2i( /D(γ · ψ) − D · ψ) + 3mγ · ψ = 0. (76)

And contraction of the field equation in Eq. (74) with Dλ

becomes

gελμνργ5γμFλνψρ + m[( /D(γ · ψ) − D · ψ] = 0, (77)

which, with the additional redefinition

Fd = Fd
μ

ρ = εμ
ρλ

ν Fλ
ν, (78)
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turns into

m[ /D(γ · ψ) − D · ψ] − gγ5γ · Fd · ψ = 0. (79)

Combining Eqs. (76) and (79), one gets the secondary con-
straint that determines the equation of motion of ψ0 compo-
nent as follows:

γ · ψ = −2

3
m−2igγ5γ · Fd · ψ. (80)

Observe that using Eq. (80) in Eq. (79) gives the relation

D · ψ = −
(

/D − 3im

2

)
2

3
m−2igγ5γ · Fd · ψ. (81)

Finally, by plugging Eqs. (80) and (81) into the field equation
in Eq. (75), one obtains

(i /D−m)ψλ+
(

iDλ + m

2
γ λ

) 2

3
m−2igγ5γ ·Fd ·ψ = 0, (82)

which is the equation that is used by Velo and Zwanziger
in deducing the acausal wave propagation of the solution by
finding the future-directed normals to the surfaces at each
point [3].

Symplectic reduction for gauged massive Rarita–Schwinger
theory

Finally, let us apply FJ symplectic Hamiltonian reduction to
the massive Rarita–Schwinger field minimally coupled to an
external electromagnetic field. In order to do so, let us rewrite
the Lagrangian in Eq. (73) in a more symmetric form:

L = −1

2
ελμνρψ̄λγ5γμ

→
Dνψρ + 1

2
ελμνρψ̄λ

←
Dνγ5γμψρ

+imψ̄λσ
λρψρ. (83)

Subsequently, by splitting the Lagrangian in Eq. (83) into its
space and time components, one gets

L = A(k)
1 ψ̇k + A(k)

2
˙̄ψk − H(ψ0, ψ̄0, ψk, ψ̄k, A0, Ak), (84)

where the symplectic coefficients are

A(k)
1 = −1

2
εi jkψ̄iγ5γ j , A(k)

2 = 1

2
εi jkγ5γ jψi , (85)

and the relevant Hamiltonian H(ψ0, ψ̄0, ψk, ψ̄k, A0, Ak) is

H(ψ0, ψ̄0, ψk, ψ̄k, A0, Ak) = 1

2
εi jkψ̄0γ5γi∂ jψk

−1

2
εi jkψ̄iγ5γ0∂ jψk − 1

2
εik j ψ̄iγ5γk∂ jψ0

− 1

2
εi jk∂ j ψ̄0γ5γiψk + 1

2
εi jk∂ j ψ̄iγ5γ0ψk

+ 1

2
εik j∂ j ψ̄iγ5γkψ0 − imψ̄0σ

0iψi − imψ̄iσ
i0ψ0

− imψ̄iσ
i jψ j + gεi jkψ̄iγ5γ j A0ψk

+ gεi jkψ̄0γ5γi A jψk − gεi jkψ̄iγ5γ0 A jψk

− gεik j ψ̄iγ5γk A jψ0. (86)

Note that as is emphasized in the massless gauged part, since
the gauge fields are external potentials, one is not allowed to
set their variation to zero. Hence, here ψ0, ψ̄0 are the only
Lagrange multipliers that induce constraints on the system.
Therefore, eliminations of constraints yield

εik j∂ j ψ̄iγ5γk − imψ̄iσ
i0 − gεik j ψ̄iγ5γk A j = 0,

εi jkγ5γi∂ jψk − imσ 0iψi + gεi jkγ5γi A jψk = 0. (87)

Like the free massive theory, by decomposing the dynamical
components into the local transverse and traceless parts as in
Eq. (23)4 as well as using constraints in Eq. (87) and the Dar-
boux transformation Eq. (48), with the additional assumption
of

iεi jkψ̄T
i γ5γ jψ

T
k = e−2i ζ̄

∇2 (imψ̄iσ
i0 + gεi jkψ̄T

i γ5γk A j ),

(89)

the Lagrangian, up to a boundary term, turns into

L = A(k)T

1 ψ̇T
k + A(k)T

2
˙̄ψT

k − HT (ψT
k , ψ̄T

k )

− λkφ
k(ψT

k , ψ̄T
k ) − λ̄i φ̄

i (ψT
k , ψ̄T

k ). (90)

Here the transverse symplectic coefficients and potential are

A(k)T

1 = −1

2
εi jkψ̄T

i γ5γ j , A(k)T

2 = 1

2
εi jkγ5γ jψ

T
i ,

HT (ψT
k , ψ̄T

k ) = −1

2
εi jkψ̄T

i γ5γ0∂ jψ
T
k +1

2
εi jk∂ j ψ̄

T
i γ5γ0ψ

T
k

+ gεi jkψ̄T
i γ5γ j A0ψ

T
k − gεi jkψ̄T

i γ5γ0 A jψ
T
k

− imψ̄T
i σ i jψT

j . (91)

Notice that, different from the free cases, the symplec-
tic potential involves mass and gauge potentials. Here in
Eq. (90), as in the previous sections, the Lagrange multipliers

4 In this case, from the constraint equation, one finds

ζ = (/∂ + im + g γ · A)γ · ψT − g A · ψT . (88)
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are the longitudinal parts of the vector–spinor field and the
corresponding constraints read

φk(ψT
k , ψ̄T

k ) = iεi jkψ̄T
i γ5γ0ψ

T
j + gεi jkψ̄T

i γ5γ j A0

+ gεi jk λ̄iγ5γ j A0 − gεi jkψ̄T
i γ5γ0 A j

φ̄i (ψT
k , ψ̄T

k ) = −iεi jkψ̄T
j γ5ψ

T
k + gεi jkγ5γ j A0ψ

T
k

− gεi jkγ5γ0 A jψ
T
k − gεi jkγ5γ0 A jλk, (92)

which are the same as Eq. (70). Similarly, by setting Eq. (92)
to zero [12,13], one arrives at a completely transverse
Lagrangian,

L = A(k)T

1 ψ̇T
k + A(k)T

2
˙̄ψT

k − HT (ψT
k , ψ̄T

k ), (93)

whose symplectic part is the same as the ones found so
far. Thus, with the definition of the dynamical variables
(ξ1, ξ2) = (ψT

k , ψ̄T
k ), the non-vanishing equal-time bracket

for the gauged massive Rarita–Schwinger theory becomes

{ψT
i (x), ψ̄T

k (y)}F J = i

2
γkγiγ0δ

3(x − y), (94)

which is identical to the one found in [21].

6 Conclusions

In this work, we studied 3 + 1-dimensional free and Abelian
gauged Grassmannian Rarita–Schwinger theories for their
massless and massive extensions in the context of Faddeev–
Jackiw first-order symplectic formalism. We have obtained
the fundamental brackets of theories which are consistent
with some results that we found in the literature but obtained
in a more simple way. The brackets are independent of
whether the theories contain a mass or gauge field or not,
and thus the structures of constraints and symplectic poten-
tials determine the characteristic behaviors of the theories.
It will be particularly interesting to find proper transforma-
tions that will relate the constraints obtained via the Faddeev–
Jackiw symplectic method with the ones that are obtained via
the Dirac method. But since the constraints obtained in both
methods are rather complicated, in this paper, we restrict
ourselves only to the Faddeev–Jackiw analysis of Rarita–
Schwinger theories and leave this as a future work. With
the comparison with the literature, we concluded that the
Faddeev–Jackiw symplectic approach provides a more eco-
nomical way in deriving the fundamental brackets for the
Rarita–Schwinger theories. In addition to these, we notice
that, in contrast to the massive theory, the Dirac field equa-
tions for free massless Rarita–Schwinger theory cannot be
covariantly deduced.
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Appendix A: Transverse and traceless decomposition of
fields

In this section, let us give the derivations of Eq. (26) and
Eq. (27). To solve the constraint equations, one can decom-
pose the independent fields into its local transverse and γ -
traceless parts as

ψi = ψT
i + ψ̂i , ψ̄i = ψ̄T

i + ˆ̄ψi , (95)

where “T ” and “∧” stand for the transverse and traceless
parts, respectively. Here the γ -traceless parts are

ψ̂i = ψi − 1

3
γiγ

jψ j ,
ˆ̄ψi = ψ̄i − 1

3
ψ̄ jγ

jγi . (96)

Therefore, we have

∂ iψT
i = ∂ i ψ̄T

i = 0 and γ i ψ̂i = γ i ˆ̄ψi = 0. (97)

To find how the constraint equations in Eq. (22) decompose
under Eq. (95), let us focus on the following constraint equa-
tion:

εi jkγ5γi∂ jψk = 0. (98)

Note that with the identity εi jkγ5γk = −γ 0σ i j and Eq. (95),
Eq. (98) turns into

iγ 0

2
[γ k, γ j ]∂ j (ψ

T
k + ψ̂k) = 0. (99)

Furthermore, by using the relation

[γ k, γ j ] = {γ k, γ j } − 2γ jγ k = 2(ηk j − γ jγ k), (100)

and the transverse and traceless properties of the fields in
Eq. (97), one gets

iγ 0
(
∂kψ̂k − γ jγ k∂ jψ

T
k

)
= 0. (101)
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Notice that after contraction with iγ0 and relabeling of the
dummy indices, it becomes

∂ i ψ̂i − γ mγ n∂mψT
n = 0, (102)

which yields

ψ̂i = ∂iζ

∇2 where ζ = γ mγ n∂mψT
n . (103)

This structure is also valid for the other theories. The only
difference arises in the definition of ζ , which we give in
explicit form in each section. Finally, by substituting this
result into the constraint in Eq. (98), it turns into

εi jkγ5γi∂ jψ
T
k + εi jkγ5γi

∂ j∂kζ

∇2 = 0. (104)

Because of the symmetric and anti-symmetric contraction in
the j, k indices, the second term drops, and we are left with
the transverse constraint equation

εi jkγ5γi∂ jψ
T
k = 0. (105)

Appendix B: Faddeev–Jackiw Hamiltonian reduction for
constrained and unconstrained systems

In this section, we review the Faddeev–Jackiw symplectic
first-order formalism which was introduced particularly to
quantize the constrained systems [12,13]. The method works
on the first-order Lagrangian and does not require any classi-
fication of constraints. To better understand how the method
works, let us consider

L = pαq̇α − H(p, q), α = 1, . . . n. (106)

With the definition of 2n-component phase-space coordi-
nates,

ξα = pα, α = 1, . . . , n and ξβ = qβ, β = n+1, . . . , 2n,

(107)

Eq. (106) can be rewritten as a Lagrangian one-form

Ldt = 1

2
ξα f 0

αβdξβ − V (ξ)dt. (108)

Here the symplectic 2n × 2n matrix is

f 0
αβ =

(
0 I

−I 0

)
αβ

,

where I is the identity matrix; A0 ≡ 1
2ξα f 0

αβdξβ is the canon-

ical one-form; f 0 ≡ d A0 ≡ 1
2 f 0

αβdξαdξβ is the symplectic

two-form. Note that f 0 is constant [12,13]. But, in general,
the symplectic two-form does not have to be constant. There-
fore, let us now consider the following generic Lagrangian:

Ldt = Aαdξα − H(ξ)dt, α = 1, . . . , 2n, (109)

where Aα is an arbitrary one-form. The variation of Eq. (109)
with respect to ξ yields

fβαξ̇α = ∂ H

∂ξβ

where fβα = ∂ Aα

∂ξβ

− ∂ Aβ

∂ξα
. (110)

In the case when the symplectic matrix is non-singular,
Eq. (110) becomes

ξ̇α = f −1
αβ

∂ H(ξ)

∂ξβ

. (111)

Thus, by using Eq. (111) and the Poisson brackets for the
bosonic variables, one obtains the FJ fundamental brackets
as follows:

{ξβ, ξα}F J = f −1
αβ . (112)

Note that, in the case of the Grassmannian variables, using
the anti-commutation property of the variables as well as the
Poisson brackets for the Grassmannian variables [22], one
has

ξ̇α = ∂ H(ξ)

∂ξβ

( f −1)αβ, (113)

and the corresponding fundamental brackets become

{ξβ, ξα}F J = −( f −1)αβ. (114)

On the other side, when there are constraints in the system
which are induced by the existence of the zero modes, then the
symplectic matrix cannot be inverted. In that case, according
to the Darboux theorem, which states that, for any given
one-form A = Aαdξα where α = 1, . . . , N , one can always
make the following changes in the variables:

ξα → (pβ, qγ zρ), β, γ = 1, . . . , n, ρ = 1, . . . , N−2n,

(115)

so that A turns into A = Aαdqα . As is seen above, when
there is no constraint, Eq. (115) diagonalizes fαβ. However,
when there are constraints, only a 2n × 2n sub-block of fαβ

is diagonalized and the remaining N − 2n degrees of free-
dom (corresponding to the zero modes zρ) will not be in the
symplectic form [12,13]; yet they occur in the rest of the
Lagrangian:

L = pαdqα − �(p, q, z)dt. (116)
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The equations ∂�
∂zα = 0 can be used to eliminate the zero

modes of z’s only if ∂2�
∂zρ∂zβ is non-singular. In the generic

case, after diagonalization and elimination of as many z as
possible, one ultimately arrives at

L = pαq̇α − H(p, q) − λρφρ(p, q), (117)

where the remaining z are denoted by λρ (namely, Lagrange
multipliers) and the φρ are the only true constraints in the
system

φρ = 0. (118)

Symplectic reduction for Dirac theory of spin- 1
2 fields

In this section, to see how the method works, we provide a
FJ Hamiltonian reduction for the Dirac theory for the spin- 1

2
theory as an example. For this purpose, let us note that the
Lagrangian can be written

L = − i

2
ψ̄

←
/∂ ψ + i

2
ψ̄

→
/∂ ψ − mψ̄ψ. (119)

As mentioned above, we assume that the independent dynam-
ical variables are anti-commuting Grassmann variables. In
order to pass to the symplectic analysis of the system, one
needs to separate the dynamical components from the non-
physical ones by splitting the Lagrangian Eq. (119) into its
time and space components. In doing so, one arrives at

L = i

2
γ 0ψ ˙̄ψ+ i

2
γ 0ψ̄ψ̇−

[ i

2
∂i ψ̄γ iψ− i

2
ψ̄γ i∂iψ+mψ̄ψ

]
,

(120)

whose variation, up to a boundary term, yields

δL = δψ
(

iγ 0 ˙̄ψ
)

+ δψ̄
(

iγ 0ψ̇
)

−
[
δψ̄(−iγ i∂iψ + mψ) + δψ(−iγ i∂i ψ̄ − mψ̄)

]
,

(121)

from which one gets the Dirac field equations as follows:

iγ 0 ˙̄ψ = −iγ i∂i ψ̄ −mψ̄, iγ 0ψ̇ = −iγ i∂iψ +mψ. (122)

As is seen from Eqs. (121) and (122), the symplectic matrix
for the Dirac theory and its inverse are

fαβ =
(

0 iγ 0

iγ 0 0

)
, f −1

αβ =
(

0 −iγ 0

−iγ 0 0

)
= − fαβ.

One should observe that, in contrast to the bosonic case, the
symplectic matrix for the Grassmannian variables is sym-
metric and the fundamental brackets are defined as follows:

{ξβ, ξα}F J = −( f −1)αβ, (123)

from which one gets the basic bracket for the Dirac theory

{ψ, ψ̄}F J = iγ 0. (124)

This is also valid for the massless theory. Note that, since the
theory does not have any gauge redundancy, one does not
need to assume any gauge fixing.
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