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Abstract The paper presents studies of Bose–Einstein Cor-
relations (BEC) for pairs of like-sign charged particles mea-
sured in the kinematic range pT > 100 MeV and |η| < 2.5
in proton–proton collisions at centre-of-mass energies of 0.9
and 7 TeV with the ATLAS detector at the CERN Large
Hadron Collider. The integrated luminosities are approxi-
mately 7 µb−1, 190 µb−1 and 12.4 nb−1 for 0.9 TeV, 7 TeV
minimum-bias and 7 TeV high-multiplicity data samples,
respectively. The multiplicity dependence of the BEC param-
eters characterizing the correlation strength and the correla-
tion source size are investigated for charged-particle multi-
plicities of up to 240. A saturation effect in the multiplic-
ity dependence of the correlation source size parameter is
observed using the high-multiplicity 7 TeV data sample. The
dependence of the BEC parameters on the average transverse
momentum of the particle pair is also investigated.

1 Introduction

Particle correlations play an important role in the understand-
ing of multiparticle production. Correlations between iden-
tical bosons, called Bose–Einstein correlations (BEC), are a
well-known phenomenon in high-energy and nuclear physics
(for reviews see [1–12]). The BEC are often considered to be
the analogue of the Hanbury-Brown and Twiss effect [13–
15] in astronomy, describing the interference of incoherently
emitted identical bosons [16–19]. They represent a sensitive
probe of the space–time geometry of the hadronization region
and allow the determination of the size and the shape of the
source from which particles are emitted.

The production of identical bosons that are close together
in phase space is enhanced by the presence of BEC. The first
observation of BEC effects in identically charged pions pro-
duced in p p̄ collisions was reported in Refs. [20,21]. Since
then, BEC have been studied for systems of two or more
identical bosons produced in various types of collisions, from

� e-mail: atlas.publications@cern.ch

leptonic to hadronic and nuclear collisions (see Refs. [1–9]
and references therein).

Studies of the dependence of BEC on particle multiplic-
ity and transverse momentum are of special interest. They
help to understand the multiparticle production mechanism.
The size of the source emitting the correlated particles has
been observed to increase with particle multiplicity. This
can be understood as arising from the increase in the ini-
tial geometrical region of overlap of the colliding objects
[22]: a large overlap implies a large multiplicity. While
this dependence is natural in nucleus–nucleus collisions, the
increase of size with multiplicity has also been observed in
hadronic and leptonic interactions. In the latter, it is under-
stood as a result of superposition of many sources [8,23–27]
or related to the number of jets [28,29]. High-multiplicity
data in proton–proton interactions can serve as a reference
for studies of nucleus–nucleus collisions. The effect is repro-
duced in both the hydrodynamical/hydrokinetic [30–32] and
Pomeron-based [33,34] approaches for hadronic interactions
where high multiplicities play a crucial role. The dependence
on the transverse momentum of the emitter particle pair is
another important feature of the BEC effect [35]. In nucleus–
nucleus collisions the dependence of the particle emitter size
on the transverse momentum is explained as a “collective
flow”, which generates a characteristic fall-off of the emit-
ter size with increasing transverse momentum [36–38] while
strong space–time momentum–energy correlations may offer
an explanation in more “elementary” leptonic and hadronic
systems [6,7,9,30–32,35] where BEC measurements serve
as a test of different models [30–32,39–46].

In the present analysis, studies of one-dimensional BEC
effects in pp collisions at centre-of-mass energies of 0.9 and
7 TeV, using the ATLAS detector [47] at the Large Hadron
Collider (LHC), are presented. At the LHC, BEC have been
studied by the CMS [48,49] and ALICE [50,51] experiments.
In the analysis reported here, the studies are extended to the
region of high-multiplicities available thanks to the high mul-
tiplicity track trigger. The results are compared to measure-
ments at the same or lower energies.
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2 Analysis

2.1 Two-particle correlation function

Bose–Einstein correlations are measured in terms of a two-
particle correlation function,

C2(p1, p2) = ρ(p1, p2)

ρ0(p1, p2)
, (1)

where p1 and p2 are the four-momenta of two identical
bosons in the event, ρ is the two-particle density function,
and ρ0 is a two-particle density function (known as the refer-
ence function) specially constructed to exclude BEC effects.
The densities ρ and ρ0 are normalized to unity, i.e. they are
the probability density functions.

In order to compare with data over the widest possi-
ble range of centre-of-mass energies and system sizes, the
density function is parameterized in terms of the Lorentz-
invariant four-momentum difference squared, Q2, of the two
particles,

Q2 = −(p1 − p2)
2. (2)

The BEC effect is usually described by a function with two
parameters: the effective radius parameter R and the strength
parameter λ [52], where the latter is also called the incoher-
ence or chaoticity parameter. A typical functional form is

C2(Q) = ρ(Q)

ρ0(Q)
= C0[1 + �(λ, QR)](1 + εQ) . (3)

In a simplified scheme for fully coherent emission of identi-
cal bosons, λ = 0, while for incoherent (chaotic) emission,
λ = 1. The QR dependence comes from the Fourier trans-
form of the distribution of the space–time points of boson
emission. Several different functional forms have been pro-
posed for �(λ, QR). Those used in this paper are described
in Sect. 2.4. The fitted parameter ε takes into account long-
distance correlations not fully removed from ρ0. Finally, C0

is a normalization constant, typically chosen such thatC2(Q)

is unity for large Q. In this paper, the density function ρ is
calculated for like-sign charged-particle pairs, with both the
++ and −− combinations included, ρ(Q) ≡ ρ(++,−−).
All particles are treated as charged pions and no particle iden-
tification is attempted. The purity of the analysis sample in
terms of identical boson pairs is estimated from MC to be
about 70 % (where about 69 % are π±π± and about 1 % are
K±K±). The effect of the purity is absorbed in the strength
parameter λ, while the results of the analysis on the effective
radius parameter R were found to be not affected.

2.2 Coulomb correction

The long-range Coulomb force causes a momentum shift
between the like-sign and unlike-sign pairs of particles. The
density distributions are corrected for this effect by applying
the Gamow penetration factor per track pair with a weight
1/G(Q) [53–55] (for review see Ref. [82])

ρcorr(Q) = ρ(Q)

G(Q)
, (4)

where the Gamow factor G(Q) is given by

G(Q) = 2πζ

e2πζ − 1
(5)

with the dimensionless parameter ζ defined as

ζ = ±αm

Q
. (6)

Here α is the electromagnetic fine-structure constant and m
is the pion mass. The sign of ζ is positive for like-sign pairs
and negative for unlike-sign pairs. The resulting correction on
ρ(Q) decreases with increasing Q and at Q = 0.03 GeV it is
about 20 %. A systematic uncertainty on G(Q) is considered
to cover effects like the extended size of the emission source
and other effects, see discussion in Refs. [10,11]. Neither
the Coulomb interaction nor the BEC effect are present in
the generation of MC event samples which are used in the
analysis. The Coulomb correction is thus not applied to MC
events.

2.3 Reference sample

A good choice of the reference sample is important to allow
the experimental detection of the BEC signal. Ideally, ρ0(Q)

should include all momentum correlations except those aris-
ing from BEC. Thus, several different choices have been stud-
ied to construct an appropriate reference sample.

Most of the proposed approaches use random pairing of
particles, such as mixing particles from different events (the
“mixed event” technique [56]), or choosing them from the
same event but from opposite hemispheres or by rotating the
transverse momentum vector of one of the particles of the
like-sign pair [9]. Although these mixing techniques repro-
duce the topology and some properties of the event under con-
sideration and destroy BEC, they violate energy–momentum
conservation. Moreover, there are many possible ways to
construct the pairs, such as mixing the particles randomly,
or keeping some topological constraints such as the event
multiplicity, the invariant mass of the pair or the rapidity of
the pair. All of these introduce additional biases in the BEC
observables. For example, it was observed in dedicated MC
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studies that the single-ratio correlation functions C2 using
reference samples constructed with the event mixing or oppo-
site hemispheres techniques exhibit an increase in the low-Q
BEC sensitive region. This effect is found to be more pro-
nounced with increase of the multiplicity or average particle-
pair transverse momentum and indicates that these reference
samples are not suitable.

A natural choice is to use the unlike-sign particle pairs
from the same events that are used to form pairs of like-
sign particles, i.e., ρ0(Q) ≡ ρ(+−), called in the follow-
ing the unlike-charge reference sample. This sample has the
same topology and global properties as the like sign sam-
ple ρ(++,−−), but is naturally free of any BEC effect.
Studying the C2 correlation functions on MC, none of the
deficits of the event mixing and opposite hemispheres tech-
niques described above were observed. However, this sample
contains hadron pairs from the decay of resonances such as
ρ, η, η′, ω, φ, K ∗, which are not present in the like-sign
combinations. These contribute to the low-Q region and can
give a spurious BEC signature with a large effective radius
of the source [57–63].

In this paper, the unlike-charge reference sample is used.
To account for the effects of resonances, the two-particle
correlation function C2(Q) is corrected using Monte Carlo
simulation without BEC effects via a double-ratio R2(Q)

defined as

R2(Q) = C2(Q)

CMC
2 (Q)

= ρ(++,−−)

ρ(+−)

/
ρMC (++,−−)

ρMC (+−)
.

(7)

2.4 The parameterizations of BEC

Various parameterizations of the �(λ, QR) function can be
found in the literature, each assuming a different shape for
the particle-emitting source. In the studies presented here,
the data are analysed using the following parameterizations:

• the Goldhaber parameterization [20,21] of a static Gaus-
sian source in the plane-wave approach,

� = λ · exp (−R2Q2), (8)

which assumes a spherical shape with a radial Gaussian
distribution of the emitter;

• the exponential parameterization of a static source

� = λ · exp (−RQ), (9)

which assumes a radial Lorentzian distribution of the
source. This parameterization provides a better descrip-
tion of the data at small Q values, as discussed in [9].

The first moment of the �(QR) distribution corresponds to
1/R for the exponential form and to 1/(R

√
π) for the Gaus-

sian form. To compare the values of the radius parameters
obtained from the two functions, the R value of the Gaussian
should be compared to R/

√
π of the exponential form.

3 Experimental details

3.1 The ATLAS detector

The ATLAS detector [47] is a multi-purpose particle physics
experiment operating at one of the beam interaction points of
the LHC. The detector covers almost the whole solid angle
around the collision point with layers of tracking detectors,
calorimeters and muon chambers. It is designed to study a
wide range of physics topics at LHC energies. For the mea-
surements presented in this paper, the tracking devices and
the trigger system are of particular importance.

The innermost part of the ATLAS detector is the inner
detector (ID), which has full coverage in φ and covers the
pseudorapidity range |η| < 2.5.1 It consists of a silicon
pixel detector (Pixel), a silicon microstrip detector (SCT)
and a transition radiation tracker (TRT). These detectors are
immersed in a 2 T solenoidal magnetic field. The Pixel, SCT,
and TRT detectors have typical position resolutions of 10, 17
and 130 µm for the r–φ coordinate, respectively. In the case
of the Pixel and SCT, the resolutions are 115 and 580 µm,
respectively, for the second measured coordinate. A track
from a charged particle traversing the full radial extent of the
ID would typically have three Pixel hits, eight or more SCT
hits and more than 30 TRT hits.

The ATLAS detector has a three-level trigger system:
Level 1 (L1), Level 2 (L2) and event filter (EF). For this
measurement, the trigger relies on the L1 signals from the
beam pickup timing devices (BPTX) and the minimum-bias
(MB) trigger scintillators (MBTS). The BPTX are composed
of electrostatic button pick-up detectors attached to the beam
pipe and located 175 m from the centre of the ATLAS detec-
tor in both directions along the beam pipe. The MBTS are
mounted at each end of the detector in front of the liquid-
argon end-cap calorimeter cryostats at z = ±3.56 m. They
are segmented into eight sectors in azimuth and two rings in
pseudorapidity (2.09 < |η| < 2.82 and 2.82 < |η| < 3.84).
Data was collected requiring coincidence of BPTX and
MBTS signals, where only a single hit in the MBTS was

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar angle θ

as η = − ln tan(θ/2).
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required on either side of the detector. The efficiency of
this trigger was studied with events collected with a sepa-
rate prescaled L1 BPTX trigger, filtered by ID requirements
at L2 and at EF level in order to obtain inelastic interactions
and found to be 98 % for two selected tracks and 100 % for
more than four selected tracks [64,65].

High-multiplicity track (HM) events were collected at
7 TeV using a dedicated high-multiplicity track trigger. At
L1, the collisions were triggered using the summed trans-
verse energy (�ET) in all calorimeters, calibrated at the elec-
tromagnetic energy scale [66]. The high-multiplicity events
were required to have �ET > 20 GeV. A high number of hits
in the SCT was required at L2, while at the EF level at least
124 tracks with pT > 400 MeV were required to originate
from a single vertex.

3.2 Data and Monte Carlo samples

The study is carried out using the pp-collision datasets at
the centre-of-mass energies

√
s = 0.9 and 7 TeV that were

used in previously published ATLAS studies of minimum-
bias interactions [64,65].

The event and track selection criteria are the same as the
ones used for the ATLAS minimum-bias multiplicity analysis
[65] with the same minimum-bias trigger and quality criteria
for the track reconstruction. All events in these datasets are
required to have at least one vertex [67], formed from a min-
imum of two tracks with pT > 100 MeV and consistent with
the average beam spot position within the ATLAS detec-
tor (primary vertex) [68]. The tracks satisfying the above-
mentioned selection criteria are used as the input to deter-
mine the corrected distributions, as described in Sect. 3.3.
The multiplicity of selected tracks with pT > 100 MeV and
|η| < 2.5 within an event is denoted by nsel.

The contributions from beam–gas collision and from non-
collision background (cosmic rays and detector noise) were
investigated in Ref. [64] and found to be negligible. Events
with more than one primary vertex (less than 0.3 % of the
sample) are rejected in order to prevent a bias from multiple
proton–proton interactions (pile-up) in the colliding proton
bunches.

The same event selection criteria are applied to high-
multiplicity events, which are defined to be those with at
least 120 selected tracks. To estimate the possible influence of
multiple pp interactions in the 7 TeV high-multiplicity track
trigger data, the distribution of the distances �z between the
z coordinates of primary and pile-up vertices are studied.
The study shows that on average there is less than one pile-
up track selected in the HM sample, which has a negligible
influence on the BEC studies.

For the measurements at
√
s = 0.9 TeV, about 3.6 × 105

events with a total of more than 4.5 × 106 tracks are after
selection, and in the case of

√
s = 7 TeV, about 107 events

with about 2.1 × 108 tracks overall are after selection. This
corresponds to integrated luminosities of ∼7 and ∼190µb−1

at 0.9 and 7 TeV, respectively. For the measurements at 7 TeV
with the high-multiplicity track trigger, about 1.8×104 events
with more than 2.7 × 106 tracks overall were after selection.
This corresponds to integrated luminosity of ∼12.4 nb−1.

Large Monte Carlo samples of minimum-bias and high-
multiplicity events were generated using the PYTHIA 6.421
Monte Carlo event generator [69] with the ATLAS MC09 set
of optimised parameters (tune) [70] (1.1×107 for

√
s = 900

GeV, 2.7 × 107 for
√
s = 7 TeV and 1.8 × 106 for

√
s =

7 TeV high-multiplicity data) with non-diffractive, single-
diffractive and double-diffractive processes included in pro-
portion to the cross sections predicted by the model. As dis-
cussed in Sect. 2.2, no simulation of the BEC effect is imple-
mented in the generator. This is the baseline Monte Carlo
generator which reproduces single-particle spectra [64]. The
generated events were passed through the ATLAS simula-
tion and reconstruction chain; the detector simulation pro-
gram [71] is based on GEANT4 [72]. Dedicated sets of high-
multiplicity events were also generated.

For the study of systematic effects, additional Monte Carlo
samples were produced using the PHOJET 1.12.1.35 gen-
erator [73], PYTHIA with the Perugia0 tune [74]; and the
EPOS 1.99_v2965 generator [46] for the high-multiplicity
analysis. The PHOJET program uses the dual parton model
[75] for low-pT physics and is interfaced to PYTHIA for the
fragmentation of partons. The EPOS generator is based on
an implementation of the QCD-inspired Gribov–Regge field
theory describing soft and hard scattering simultaneously,
and relies on the same parton distribution functions as used
in PYTHIA. The EPOS LHC tune is used with parameters
optimised to describe the LHC minimum-bias data [76].

The high-multiplicity PYTHIA MC09 and EPOS samples,
each are about two magnitudes larger than the data sample.
The C2(Q) single-ratio correlation functions in MC repro-
duce data well for Q > 0.5 GeV. In the region Q < 0.5 GeV,
the BEC effect is clearly seen in the data C2(Q) correlation
function while no such effect is seen in the MC as expected,
since no BEC present in MC.

3.3 Data correction procedure

Following the procedure applied in the previous ATLAS
minimum-bias measurements [64,65], each track is assigned
a weight which corrects for the track reconstruction effi-
ciency, for the fraction of secondary particles, for the fraction
of the primary particles2 outside the kinematic range and for

2 In the Monte Carlo simulations, primary charged particles are defined
as charged particles with a mean lifetime τ > 0.3 × 10−10 s either
directly produced in pp collisions or from the subsequent decay of
particles with a shorter lifetime.
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the fraction of fake tracks.3 In addition, the effect of events
lost due to trigger and vertex reconstruction inefficiencies
is corrected for using an event-by-event weight applied to
pairs of particles in the Q distribution. The efficiency of the
high-multiplicity track trigger has been studied in data as a
function of the number of reconstructed tracks and is found
to be 5 % for 120 selected tracks and to reach a plateau at
100 % once 150 tracks are selected. The measured trigger
inefficiency is used to correct the experimental distributions
and is found to have negligible impact on the extraction of
the BEC parameters discussed in Sect. 5.

The multiplicity distributions are corrected to the parti-
cle level using an iterative method that follows the Bayesian
approach [77] as it is described in Refs. [64,65]. An unfold-
ing matrix reflecting the probability of reconstructing nsel

charged tracks in an event with generated charged-particle
multiplicity nch is populated using Monte Carlo simulation
and applied to the data. The unfolding matrix is built using
the ATLAS MC09 PYTHIA tune [70]. The unfolding proce-
dure converges after the fifth iteration. It is found that the cor-
rected multiplicity distribution agrees well with the published
result [64,65]. The unfolding procedure of the 7 TeV high-
multiplicity data follows the same technique and unfolding
matrix used in the previous analysis of minimum-bias data
in Ref. [64], restricted to the region of high charged particle
multiplicity specific to this analysis, and convolved with a
normalised Gaussian distribution to account for the experi-
mental resolution on the number of selected tracks. It is found
that a number of 120 selected tracks at detector level,nsel, cor-
responds to about 150 charged particle, nch, at particle level.
Momentum distributions are unfolded in a similar way.

For all distributions, closure tests are carried out using
Monte Carlo samples corrected according to the same pro-
cedure as used in the data. The difference obtained between
the reweighted distributions and those at the particle level
is due to tracking effects such as a smaller reconstruction
efficiency for pairs of tracks with very small opening angle.
These effects are small for correlation functions constructed
using data, typically 1–3 %, and are included in the system-
atic uncertainty. In the case of the unfolded Q distributions,
the data are corrected for the bias from secondary tracks
using Monte Carlo simulation and the corresponding sys-
tematic uncertainty is obtained by variation of the amount of
material in the inner detector by ±10 %.

4 Systematic uncertainties

The systematic uncertainties of the inclusive fit parameters,
R and λ, of the exponential model are summarized in Table 1.

3 Fake tracks are tracks constructed from tracker noise and/or hits which
are not produced by a single-particle.

The following contributions to the systematic uncertainties
on the fitted parameters are considered.

The systematic uncertainties resulting from the track
reconstruction efficiency, which are parameterized in bins
of pT and η, were determined in earlier analyses [64,65].
These cause uncertainties in the track weights of particle
pairs in the Q distributions entering the correlation func-
tions.

The effects of track splitting and merging are sizeable
only for very low Q values (smaller than 5 MeV), and are
found to be negligible for the measurements with Q ≥ 20
MeV.

The leading source of systematic uncertainty is due to
differences in the Monte Carlo generators used to calculate
the R2 correlation function from the C2 correlation function.
The corresponding contribution to the systematic uncertainty
is estimated as the root-mean-squared (RMS) spread of the
results obtained for the different Monte Carlo datasets. The
statistical uncertainties arising from the Monte Carlo datasets
are negligibly small.

The systematic uncertainty due to Coulomb corrections is
estimated by varying the corrections by ±20 %.

The influence of the fit range is estimated by changing
the upper bound of the Q range from the nominal 2 GeV:
decreasing it to 1.5 GeV and increasing it up to 2.5 GeV.
The latter better estimates the uncertainty due the long-range
correlations. This contribution is taken into account by the
value of ε, the parameter in the linear term of Eq. (3) describ-
ing the long-range correlations.

Other effects contributing to the systematic uncertainties
are the lowest value of Q for the fit, the bin size and exclusion
of the interval 0.5 ≤ Q ≤ 0.9 GeV due to the overestimate
of the ρ meson contribution in the Monte Carlo simulations,
as discussed in the following Sect. 5.1. These uncertainties
are estimated by varying the lowest Q value in the fit by
±10 MeV, by changing the bin size by ±10 MeV, and by
broadening the excluded interval by 100 MeV on both sides.

The background of photon conversions into e+e− pairs
was studied and found to be negligible.

To test the effect of treating all charged particles as pions,
the double-ratio correlation functions R2 are also obtained
using only identical particles in the Monte Carlo sample to
compute the correction. The resulting BEC parameters fitted
to the R2 functions defined this way show negligible differ-
ences to the nominal result and no further systematic uncer-
tainties are assigned.

Finally, the systematic uncertainties are combined by
adding them in quadrature and the resulting values are given
in the bottom row of Table 1.

The same sources of uncertainty are considered for the
differential measurements in nch and the average transverse
momentum kT of a pair, and their impact on the fit parameters
is found to be similar in size.
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Table 1 Systematic uncertainties on λ and R for the exponential fit of the two-particle double-ratio correlation function R2(Q) in the full kinematic
region at

√
s =0.9 and 7 TeV for minimum-bias and high-multiplicity (HM) events

0.9 TeV 7 TeV 7 TeV (HM)

Source λ (%) R (%) λ (%) R (%) λ (%) R (%)

Track reconstruction efficiency 0.6 0.7 0.3 0.2 1.3 0.3

Track splitting and merging Negligible Negligible Negligible Negligible Negligible Negligible

Monte Carlo samples 14.5 12.9 7.6 10.4 5.1 8.4

Coulomb correction 2.6 0.1 5.5 0.1 3.7 0.5

Fitted range of Q 1.0 1.6 1.6 2.2 5.5 6.0

Starting value of Q 0.4 0.3 0.9 0.6 0.5 0.3

Bin size 0.2 0.2 0.9 0.5 4.1 3.4

Exclusion interval 0.2 0.2 1 0.6 0.7 1.1

Total 14.8 13.0 9.6 10.7 9.4 10.9

5 Results

5.1 Two-particle correlations

In Fig. 1 the double-ratio R2(Q) distributions, measured for
0.9 and 7 TeV, are compared with Gaussian and exponential
fitting functions, Eqs. (8) and (9). The fits are performed in
the Q range 0.02–2 GeV and with a bin width of 0.02 GeV.
The upper Q limit is chosen to be far away from the low-
Q region, which is sensitive to BEC effects and resonances.
Around Q ∼ 0.7 GeV there is a visible bump which is due
to an overestimate of ρ → π+π− decays in the Monte Carlo
simulation. Therefore the region 0.5 ≤ Q ≤ 0.9 GeV is
excluded from the fits. As seen in Fig. 1, the Gaussian func-
tion does not describe the low-Q region while the exponential
function provides a good description of the data.

The resolution of the Q variable is better than 10 MeV for
the region most sensitive to BEC effect, Q < 0.4 GeV. The
Q resolution is included in the fit of R2 by convolving the
fitting function with a Gaussian detector resolution function.
The change in the fit results from those with no convolution
applied is found to be negligible.

In the process of fitting R2(Q) with the exponential func-
tion, large χ2 values are observed, in particular for the 7 TeV
sample where statistical uncertainties on the fitted data points
are below 2–4 %. These large χ2 values can be traced back to
a small number of individual points or small cluster of points.
The removal of these points does not change the results of the
fit while the χ2 substantially improves. In the analysis of the
7 TeV data, for most of the considered cases, the expected
statistical uncertainties are small compared to the systematic
ones, therefore only total uncertainties on the fitted parame-
ters are given. The latter include the statistical uncertainties
rescaled by

√
χ2/ndf [78]. For consistency, the same treat-

ment is applied to the 0.9 TeV analysis where the statistical

uncertainties are of the same order of magnitude as the sys-
tematic ones.

The results of BEC parameters for exponential fits of
the two-particle double-ratio correlation function R2(Q) for
events with the unlike-charge reference sample are

λ=0.74 ± 0.11, R=(1.83 ± 0.25) fm at
√
s=0.9 TeV for nch ≥2,

λ=0.71 ± 0.07, R=(2.06 ± 0.22) fm at
√
s=7 TeV for nch ≥2,

λ=0.52 ± 0.06, R=(2.36 ± 0.30) fm at
√
s=7 TeV for nch ≥150.

The values of the fitted parameters are close to the values
obtained by the CMS [49] and ALICE [50] experiments.

5.2 Multiplicity dependence

The R2(Q) functions defined in Eq. (7), are shown for various
multiplicity intervals in Fig. 2 for 0.9, 7 and 7 TeV high-
multiplicity data. The multiplicity intervals are chosen so as
to be similarly populated and comparable to those used by
other LHC experiments [48–51]. Only the exponential fit is
shown. As in the fit procedure for the inclusive case, the
detector Q resolution is included in the fits.

Within the multiplicity studies, the BEC parameters are
also measured by excluding the low-multiplicity events,
nch < 8, expected to be contaminated by diffractive physics
[64]. No noticeable changes in the strength and radius param-
eters for nch ≥ 8 are observed compared to the full multi-
plicity range for nch ≥ 2.

The multiplicity dependence of the λ and R parameters is
shown in Fig. 3. The λ parameter decreases with multiplicity,
faster for 0.9 TeV than for 7 TeV interactions. The decrease
of the λ parameter with nch is found to be well fitted with
the exponential function λ(nch) = γ e−δnch . The fit param-
eter values are presented in Table 2 for 0.9 TeV and for the
combined nominal and high-multiplicity 7 TeV data.
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Fig. 1 The two-particle double-ratio correlation function R2(Q) for
charged particles in pp collisions at a

√
s =0.9 TeV, b 7 TeV and c

7 TeV high-multiplicity events. The lines show the Gaussian and expo-

nential fits as described in the legend. The region excluded from the fits
is indicated. The error bars represent the statistical uncertainties

The R parameter increases with multiplicity up to about
nch 
 50 independently of the center of mass energy. For
higher multiplicities, the measured R parameter is observed
to be independent of multiplicity. Fornch ≤ 82 at 0.9 TeV and
nch < 55 at 7 TeV the nch dependence of R is fitted with the
function R(nch) = α 3

√
nch, similar to that used in heavy-ion

studies [5,51]. The results of the fit are presented in Table 2
and are close to the CMS results [49]. The fit parameters do
not change significantly within uncertainties if data points
with nch > 55 are included in the fit, while the quality of
the fit significantly degrades. Therefore the fit is limited to
the data points with nch ≤ 55. The nch dependence of R at
7 TeV is fitted with a constant R(nch) = β for nch > 55;
the resulting value is given in Table 2. Qualitatively CMS
[49] and UA1 [79] results for the radius parameter follow
the same trend as a function of nch as ATLAS data points
up to nch ≤ 55. The ATLAS and ALICE [50,51] results on
the multiplicity dependence of the radius parameter cannot
be directly compared due to much narrower η region used by
ALICE.

The observed change of the fitted parameters with multi-
plicity has been predicted in Refs. [9,23–27], and is similar
to the one also observed in e+e− interactions [28], however
the saturation of R for very high multiplicity is observed for
the first time.

The saturation of R at high multiplicities is expected in
a Pomeron-based model [33,34] as the consequence of the
overlap of colliding protons, with the value of the radius
parameter at nch ≈ 70 close to the one obtained in the present
studies. However, the same model predicts that above nch ≈
70, R will decrease with multiplicity, returning to its low-
multiplicity value which is not supported by the data.

5.3 Dependence on the transverse momentum of the
particle pair

The average transverse momentum kT of a particle pair is
defined as half of the magnitude of the vector sum of the two
transverse momenta, kT = |pT,1 +pT,2|/2. The study is per-
formed in the kT intervals which are chosen in a way to be
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Fig. 2 The two-particle double-ratio correlation function R2(Q) for
charged particles in pp collisions for multiplicity intervals: a 36 ≤
nch < 45 at

√
s =0.9 TeV, b 68 ≤ nch < 79 at 7 TeV and c

183 ≤ nch < 197 at 7 TeV high-multiplicity events. The lines show
the results of the exponential fit. The region excluded from the fits is
indicated. The error bars represent the statistical uncertainties
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Fig. 3 Multiplicity, nch, dependence of the parameters: a λ and b R
obtained from the exponential fit to the two-particle double-ratio cor-
relation functions R2(Q) at

√
s =0.9 and 7 TeV. The solid and dashed

curves are the results of a the exponential and b 3
√
nch for nch < 55

fits. The dotted line in b is a result of a constant fit to minimum-bias
and high-multiplicity events data at 7 TeV for nch ≥ 55. The error bars
represent the quadratic sum of the statistical and systematic uncertain-
ties
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Table 2 Results of fitting the multiplicity, nch, and the transverse momentum of the pair, kT, dependence of the BEC parameters R and λ with
different functional forms and for different data samples. The error represent the quadratic sum of the statistical and systematic uncertainties

BEC Fit 0.9 TeV 7 TeV
param. function Minimum-bias events High-multiplicity events
R(nch) α 3

√
nch α = 0.64 ± 0.07 fm (nch ≤ 82) α = 0.63 ± 0.05 fm (nch < 55) —

β — β = 2.28 ± 0.32 fm (nch ≥ 55)

λ(nch) γ e−δnch γ = 1.06 ± 0.10 γ = 0.96 ± 0.07
δ = 0.011 ± 0.004 δ = 0.0038 ± 0.0008

R(kT) ξ e−κkT ξ = 2.64 ± 0.33 fm ξ = 2.88 ± 0.27 fm ξ = 3.39 ± 0.54 fm
κ = 1.48 ± 0.67 GeV−1 κ = 1.05 ± 0.58 GeV−1 κ = 0.92 ± 0.73 GeV−1

λ(kT) μ e−νkT μ = 1.20 ± 0.18 μ = 1.12 ± 0.10 μ = 0.75 ± 0.10
ν = 2.00 ± 0.35 GeV−1 ν = 1.54 ± 0.26 GeV−1 ν = 0.91 ± 0.45 GeV−1
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Fig. 4 The two-particle double-ratio correlation function R2(Q) for
charged particles in pp collisions for 500 ≤ kT < 600 MeV interval
at a

√
s =0.9 TeV, b 7 TeV and c 7 TeV high-multiplicity events.

The average transverse momentum kT of the particle pairs is defined as

kT = |pT,1 + pT,2|/2. The lines show the exponential fits. The region
excluded from the fits is indicated. The error bars represent the statis-
tical uncertainties

similarly populated and, as for the multiplicity bins, to be sim-
ilar to the intervals used by other LHC experiments [48–51].

As an example, the R2(Q) distributions for the 500 ≤
kT ≤ 600 MeV interval for the 0.9, 7 TeV and high-

multiplicity 7 TeV samples are shown in Fig. 4 together
with the results of the corresponding exponential fit. For the
R2(Q) correlation function measured at 7 TeV (see Fig. 4b),
there is an indication that the Monte Carlo simulation over-
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Fig. 5 The kT dependence of the fitted parameters: a λ and b
R obtained from the exponential fit to two-particle double-ratio at√
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momentum kT of the particle pairs is defined as kT = |pT,1 + pT,2|/2.
The solid, dashed and dash-dotted curves are results of the exponen-

tial fits for 0.9, 7 and 7 TeV high-multiplicity data, respectively. The
results are compared to the corresponding measurements by the E735
experiment at the Tevatron [80], and by the STAR experiment at RHIC
[81]. The error bars represent the quadratic sum of the statistical and
systematic uncertainties
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Fig. 6 The kT dependence of the fitted parameters: a λ and b R
obtained from the exponential fit to the two-particle double-ratio cor-
relation function R2(Q) at

√
s = 7 TeV for the different multiplic-

ity regions: 2 ≤ nch ≤ 9 (circles), 10 ≤ nch ≤ 24 (squares),

25 ≤ nch ≤ 80 (triangles) and 81 ≤ nch ≤ 125 (inverted triangles).
The average transverse momentum kT of the particle pairs is defined as
kT = |pT,1 + pT,2|/2. The error bars represent the quadratic sum of
the statistical and systematic uncertainties

estimates the production and decay of the ω-meson in the Q
region of 0.3–0.44 GeV. This region is thus excluded from
the fit range for kT > 500 MeV bin results.

In the region most important for the BEC parameters, the
quality of the exponential fit is found to deteriorate as kT

increases. This is due to the fact that at large kT values, the
characteristic BEC peak becomes steeper than the exponen-
tial function can accommodate. Despite the deteriorating fit
quality, the behaviour of the fitted parameters is presented
for comparison with previous experiments.

The fit values of the λ and R parameters are shown in Fig. 5
as a function of kT. The values of both λ and R decrease with
increasing kT.

The decrease of λ with kT is well described by an expo-
nential function, λ(kT) = μ e−νkT . The kT dependence of the
R parameter is also found to follow an exponential decrease,
R(kT) = ξ e−κkT . The shapes of the kT dependence are sim-
ilar for the 7 TeV and the 7 TeV high-multiplicity data. The
results of the fits are presented in Table 2.

In Fig. 5b, the kT dependence of the R parameter is
compared to the measurements performed by the E735 [80]
and the STAR [81] experiments with mixed-event reference
samples. These earlier results were obtained from Gaus-
sian fits to the single-ratio correlation functions and there-
fore the values of the measured radius parameters are mul-
tiplied by

√
π as discussed in Sect. 2.4. The values of the
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parameters are observed to be energy-independent within the
uncertainties.

In Fig. 6, the kT dependence of λ and R, obtained for the
7 TeV data, is also studied in various multiplicity regions:
2 ≤ nch ≤ 9; 10 ≤ nch ≤ 24; 25 ≤ nch ≤ 80; and
81 ≤ nch ≤ 125. The decrease of λ with kT is nearly inde-
pendent of multiplicity for nch > 9 and the same as for the
inclusive case. For nch ≤ 9 no conclusions can be drawn due
to the large uncertainties. The R-parameter decreases with
kT and exhibits an increase with increasing multiplicity as
was observed for the fully inclusive case.

6 Summary and conclusions

The two-particle Bose–Einstein correlations of like-sign
hadrons with pT > 100 MeV and |η| < 2.5 produced in pp
collisions recorded by the ATLAS detector at 0.9 and 7 TeV
at the CERN LHC are studied. In addition to minimum-bias
data, high-multiplicity data recorded at 7 TeV using a ded-
icated trigger are investigated. The integrated luminosities
are about 7 µb−1, 190 µb−1 and 12.4 nb−1 for 0.9, 7 TeV
minimum-bias and 7 TeV high-multiplicity data samples,
respectively.

The studies were performed using the double-ratio corre-
lation function. In the double-ratio method, the single-ratio
correlation function obtained from the data is divided by
a similar single-ratio calculated using Monte Carlo events,
which do not have BEC effects. The reference sample for
each of the two single-ratios is constructed from unlike-sign
charged-particle pairs.

A clear signal of Bose–Einstein correlations is observed in
the region of small four-momentum difference. To quantita-
tively characterize the BEC effect, Gaussian and exponential
parametrizations are fit to the measured correlation functions.
As observed in studies performed by other experiments, the
Gaussian parameterization provides a poor description of the
BEC-enhanced region and hence the exponential parameter-
ization is used for the final results.

The BEC parameters are studied as a function of the
charged-particle multiplicity and the transverse momentum
of the particle pair. A decrease of the correlation strength λ

along with an increase of the correlation source size parame-
ter R are found with increasing charged-particle multiplicity.
On the other hand no dependence of R on the centre-of-mass
energy of pp collisions is observed. For the first time a satura-
tion of the source size parameter is observed for multiplicity
nch ≥ 55. The correlation strength λ and the source size
parameter R are found to decrease with increasing average
transverse momentum of a pair. The study of BEC in (nch, kT)
bins at 7 TeV shows a decrease of the R parameter with kT

for different multiplicity ranges, while the R values increase
with multiplicity. The λ parameter is found to decrease with

kT independently of the multiplicity range. These resemble
the dependences for the inclusive case at 7 TeV for minimum-
bias and high-multiplicity data.

A comparison is made to the measurements by other
experiments at the same and lower energies where possi-
ble. The measurements presented here complement the ear-
lier measurements by extending the studies to higher mul-
tiplicities and transverse momenta. This has allowed a first
observation of a saturation in the magnitude of the source
radius parameter at high charged-particle multiplicities, and
confirms the exponential decrease, observed in previous mea-
surements of the radius parameters with increasing pair trans-
verse momenta.
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