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ABSTRACT

The metamorphic core of the central Himalaya, the Greater Himalayan sequence, is
exposed in a 15 km thick section of amphibolite facies gneisses in the Marsyandi Valley of
central Nepal. The sequence is bound by the Miocene north-dipping Main Central Thrust
(MCT) at the base, and roofed by coeval north-dipping normal faults of the South Tibetan
detachment system. Structurally above the Greater Himalayan sequence are lower-grade
rocks of the Tibetan sedimentary sequence, and below are greenschist facies rocks of the
Lesser Himalayan sequence. All of these rocks are Indian crust that was deformed and
metamorphosed during intercontinental collision between India and Eurasia. Collision
initiated in the Eocene and continues today. This study combines structural analysis with
U-Pb and "Ar/ 39 Ar geochronology and metamorphic petrology to determine the structural
and thermal history of the central Himalayas. The results are threefold and include 1)
significant crustal thickening within the Indian plate, north of the MCT, by the mid-
Oligocene; 2) Early Miocene orogen parallel extensional deformation within the upper half
of the Greater Himalayan sequence during peak metamorphism; 3) a transition from north-
south to east-west extension within the middle and upper crust of the northern Himalaya
and southern Tibetan plateau during the Miocene.

A minimum Oligocene age for crustal thickening within the Tibetan sedimentary
sequence is constrained by -30 Ma *Ar/39Ar cooling ages from phlogopite that is
synkinematic with south verging folds. The Oligocene syn-metamorphic deformation is
preserved within the hanging wall of the South Tibetan detachment. The South Tibetan
detachment in the Marsyandi valley dips to the NW and footwall mylonites indicate top-to-
the-west displacement (orogen-parallel) at sillimanite through greenschist-grade conditions.
Uranium-lead geochronology of migmatite from the base and the top of the Greater
Himalayan sequence and from undeformed leucogranite at the top indicate syn-
metamorphic displacement on the South Tibetan detachment and the MCT between 18 and
22 Ma. Thermobarometric results indicate that the metamorphic core was at a minimum
of 900K throughout by 22 Ma. A minimum age of 14 Ma for east-west extension of the
southern Tibetan plateau was determined by 4Ar/39Ar dating of muscovite-filled
extensional fractures.

Thesis advisor: Kip V. Hodges, Professor of Geology
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Chapter 1

Introduction

The Himalayan orogen hosts the highest mountains in the world, and is one of the

most impressive results of intercontinental collision. Following the closing of the Tethys

Ocean, the Indian and Eurasian plates started to collide about 50 million years ago

(Gansser, 1964; Patriat and Achache, 1984), and the convergence continues today at a rate

of about 5 cm/yr (Molnar and Tapponnier, 1975). The mountain range extends from

Pakistan eastwards beyond Bhutan, and reaches elevations of over 8000 m. Most of the

Himalayan range is made up of Indian crust that was imbricated during northward

subduction of the Indian plate beneath Tibet. In general, the high part of the range consists

of a continuous belt of metamorphosed Indian crust, the Greater Himalayan sequence.

These rocks were buried down to 40 km and reached temperatures in excess of 700K

before being unroofed and uplifted (Hodges et al., 1988). The tectonothermal evolution of

the Greater Himalayan sequence is enigmatic in many respects, and understanding this

evolution is the focus of this thesis.

One important discovery about orogenic processes in recent years has been the

identification of extensional faults that unroof mid-crustal rocks during convergence. The

Himalaya provide excellent examples of extensional faulting within a convergent setting

(Burchfiel and Royden, 1985). Along the length of the orogen, the contact between the

metamorphic core and its suprastructure is a set of north-dipping normal faults and shear

zones referred to as the South Tibetan detachment system (Burchfiel et al., 1992, and

references therein). One of the principal goals of this study was to evaluate the role of

extensional faulting at the top of the Greater Himalayan sequence in the Marsyandi valley

of central Nepal. The Marsyandi region was chosen for the following reasons:



" The basic structure and geology is well-constrained by nearly three decades of research

by field geologists (e.g. Hagen, 1969; Bordet et al., 1971; LeFort, 1975; Pecher, 1977,

1989; Colchen et al., 1986).

" Previous work had indicated the existence of normal faults at the top of the Greater

Himalayan sequence, although they were thought to be minor (Caby et al., 1983).

* Access to the Marsyandi region is relatively easy by Himalayan standards, and

provided the opportunity to make detailed maps and also study along strike variation of

the South Tibetan detachment system.

The study involved detailed geologic mapping, structural analysis of deformational

fabrics, U-Pb and *Ar/9Ar thermochronology, and metamorphic petrology. It was

designed to integrate these various tools in order to constrain the geometry and timing of

extensional and compressional deformation of the Greater Himalaya, and to evaluate the

effects of deformation on the thermal history of the metamorphic core.

The thesis is divided into seven chapters. The second chapter contains a detailed

structural analysis of extensional deformation within the upper Greater Himalayan

sequence and overlying Tibetan Sedimentary sequence in the Marsyandi and Dudh Khola

valleys (Figure 1, Chapter 2). Three generations of orogen-parallel extensional faults were

distinguished in the Marsyandi valley, and a single north-dipping extensional fault was

identified in the Dudh Khola valley. Chapter 3 presents U-Pb age constraints on

deformation and anatexis within the lower and upper Greater Himalayan sequence. These

data provide limits on the age of extensional faulting on the South Tibetan detachment and

on the age of thrust faulting at the base of the sequence. Chapter 4 presents *Ar/39 Ar

thermochronologic results from the hanging wall and footwall of the South Tibetan

detachment system. The thermochronologic data provide supporting evidence for large

displacement on the South Tibetan detachment in this region, and give new insights into the



early stages of Himalayan metamorphism and deformation within the Indian plate.

Chapter 5 discusses the metamorphic petrology of the Greater Himalayan sequence and

the timing of metamorphism and deformation. Temperatures and pressures througout the

sequence were calculated by quantitative thermobarometric analysis. Chapter 6 presents

*Ar/Ar constraints on the minimum age of east-west extension within the northern

Himalaya and southern Tibetan plateau, and discusses implications for timing of the uplift

of the Tibetan plateau. Finally, Chapter 7 synthesizes the major contributions of this

dissertation.

Chapters 2 through 6 were written as stand alone papers for publication, which

requires a certain amount of repetition among the chapters. Chapter 2 is in press in the

Geological Society of America Bulletin, and Chapter 3 will be submitted for publication in a

Geological Society of America Special Volume on Himalayan tectonics. Chapters 4 and 5

will be submitted for publication in Tectonics and the Journal of metamorphic Geology,

respectively, both with K.V.Hodges as co-author. Chapter 6 was co-authored by K.V.

Hodges and was published as a letter to Nature in March of 1995.
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Chapter 2

Orogen-parallel and orogen-perpendicular extension in the central Nepalese
Himalaya

Abstract

North-dipping, gravitationally-driven-extensional structures that unroof the high-

grade core of the Himalaya have been recognized in several parts of the orogen.

Recent work in west-central Nepal demonstrates that the extensional history at the top of

the Greater Himalayan metamorphic sequence in this region is laterally variable. In the

upper Marsyandi valley there is evidence for three generations of Early to Middle Miocene

west-directed (orogen-parallel) extensional structures. The study area consists of two

tectonostratigraphic sequences. The lower consists of a 12 km thick section of high-grade

metasedimentary rocks of the Greater Himalayan sequence. The higher one consists of a 4

km-thick section of medium-grade marble of the Tibetan sedimentary sequence; it overlies

the Greater Himalayan sequence in the Marsyandi valley along a northwest-dipping ductile

shear zone (the Chame detachment). Mylonitic fabrics in footwall rocks show evidence of

top-to-the-west displacement at sillimanite-grade through greenschist-grade conditions. A

cataclastic zone indicates progressively more brittle deformation at the eastern end of the

outcrop trace of the Chame detachment. In the Dudh Khola valley, 15 km east of the

Marsyandi valley, the Tibetan sedimentary sequence is juxtaposed with the Greater

Himalayan sequence by an Early Miocene north-dipping ductile shear zone (the Dudh

Khola detachment) with well-developed, north-trending stretching lineations formed during

sillimanite-grade metamorphism. North-directed (orogen perpendicular) extension in the

Dudh Khola region is interpreted as coeval with west-directed (orogen-parallel) extension

in the Marsyandi region. Along-strike variations in the orientation of extensional strain at

the top of the Greater Himalayan sequence may be explained by lateral crustal thickness

gradients.



Introduction

Discussions regarding the role of extensional faulting in the evolution of the

Himalaya and Tibet commonly focus on two classes of structures. The oldest are E-W-

striking, shallowly N-dipping normal faults of the South Tibetan detachment system

(Burchfiel et al., 1992). Presently exposed near the crest of the range, these features are

thought to have developed during evolving gravitational instability of the Himalayan

topographic front in Early Miocene time (Burchfiel and Royden, 1985). The second class

of structures are N-S-striking, E- and W-dipping normal faults that bound extensional

basins throughout much of the southern Tibetan Plateau and continue as far south as the

outcrop trace of the South Tibetan detachment (Armijo et al., 1986; Molnar and

Tapponnier, 1978). These features are commonly regarded as the manifestation of E-W

extension of the Tibetan Plateau over the Middle(?) Miocene to Holocene interval (Molnar

et al., 1993).

Although there is a tendency by many geologists to emphasize the importance of S-

directed thrusting and N-directed extension in the structural history of the Himalaya and

view orogen-parallel deformation in this region as a "Tibetan" phenomenon, there is no a

priori reason to presume that orogen-parallel deformation should be restricted to Tibet.

Indeed, both Brun et al. (1985) and Pecher (1991) identified structures related to a

component of strike-slip displacement within the central Himalaya. This paper describes

geologic relationships in the upper Marsyandi and Dudh Khola areas of central Nepal

(Figure 1) that demonstrate partitioning of strain associated with the South Tibetan

detachment system into discrete westward (orogen-parallel) and northward (orogen-

perpendicular) displacement components on roughly contemporaneous extensional

structures. This observation implies that the kinematics of the South Tibetan detachment

system are more complicated than originally thought, at least in this segment of the orogen.

Further work is necessary before we can determine whether this orogen-parallel extension

represents the effects of local, lateral crustal thickness gradients or testifies to the regional



importance of transtensional processes during the collapse of the Himalayan topographic

front.

The Himalayan Orogen

The Himalaya formed as the result of continued convergence of two continents

since the Paleogene (Gansser, 1964; Le Fort, 1975). India has moved in a roughly N10 0E

direction relative to northern Asia since the collision at a rate of about 5cm/yr (Molnar and

Tapponnier, 1975). Collision resulted in the vast elevated region of the Tibetan plateau

(Asian plate) and the Himalayan range (of Indian plate affinity). The Himalaya sensu

stricto are typically divided into three tectonic zones that trend roughly WNW-ESE

(Gansser, 1964, Figure 1). The high-grade rocks of the metamorphic core of the range are

referred to as the Greater Himalayan sequence. These occur between low to medium grade

rocks of the Tibetan sedimentary sequence to the north and the Lesser Himalayan sequence

to the south. The Greater Himalayan sequence is made up of amphibolite-facies schists

and gneisses, migmatites and scattered leucogranite plutons. The Tibetan sedimentary

sequence comprises a nearly continuous section of lower Paleozoic to lower Tertiary

marine sedimentary rocks of Tethyan affinity (Gansser, 1964; Le Fort, 1975). The Tibetan

sedimentary sequence rocks are unmetamorphosed except very near the contact with the

Greater Himalayan sequence, where they reach amphibolite grade in a few areas

(Schneider and Masch, 1993). To the south, the Lesser Himalayan sequence consists of

low to medium grade metasedimentary and metavolcanic rocks of Mesoproterozoic (?) to

lower Eocene age (Stocklin, 1980; Parrish and Hodges, 1995).

The tectonic zones described above are juxtaposed primarily by east-west striking,

north-dipping structures along which large amounts of shortening and extension were

accommodated: the Main Central Thrust zone (MCT) which separates the Greater and

Lesser Himalayan zones (Brunel and Kienast, 1986; Gansser, 1964; Le Fort, 1975; Pecher,

1989) and the South Tibetan detachment system, which places the Tibetan sequence on

higher-grade Greater Himalayan metamorphic rocks (Burchfiel and Royden, 1985;



Burchfiel et al., 1992; Burg et al., 1984; Herren, 1987). This paper focuses on the South

Tibetan detachment system in the central Himalaya.

North-dipping extensional structures at the top of the Greater Himalayan sequence

were first recognized in southern Tibet north of Nepal and Bhutan (Burg et al., 1984).

There, a north-directed detachment juxtaposes slightly metamorphosed rocks of the

Tibetan Sedimentary sequence against older highly metamorphosed gneisses and Miocene

leucogranites of the Greater Himalayan sequence. These observations led to the hypothesis

that gravitationally-driven extension, occurring sub-parallel to the transport direction of the

dominant compressional faults during convergence, occurred at the same structural level

along a significant length of the orogen (Burchfiel and Royden, 1985; Burchfiel et al.,

1992). Subsequently, similar structures were identified in the western Himalaya (Herren,

1987; Searle and Fryer, 1986) .

Continued mapping in the eastern Himalaya demonstrated that the same system of

normal faults is continuous for at least 700 km along strike, with roughly 10 km of vertical

displacement and at least 35 km of northward displacement in the vicinity of Mt. Everest

(Burchfiel et al., 1992). Normal-sense movement on the South Tibetan detachment system

in the Everest region is constrained to be between 19 and 22 Ma (Hodges et al., 1992),

coeval with south-directed thrusting on the MCT at the same longitude (Hubbard and

Harrison, 1989). Normal faulting on the South Tibetan detachment system is thought to

have had a significant effect on the thermal history of the Greater Himalayan sequence.

Metamorphic assemblages in rocks of the Greater Himalayan sequence record pressure-

temperature paths, characterized by isothermal decompression, which suggest a minimum

of 6 km of unroofing on the South Tibetan detachment system in the eastern Himalaya

(Hodges et al., 1992; Hodges et al., 1993). Anatectic melting in the Greater Himalayan

sequence and the emplacement of syn- to late-kinematic leucogranites near the South

Tibetan detachment system have been attributed to decompression due to tectonic

unroofing (Harris and Massey, 1994).



Where it has been mapped in the eastern and western Himalaya, the basal

detachment of the South Tibetan detachment system is an obvious structure that marks a

clear metamorphic and structural discontinuity. In the Annapurna - Manaslu region,

arguably one of the most intensively studied segments of the Himalayan orogen, the basal

detachment has proved remarkably difficult to distinguish. There is no obvious

metamorphic break between the Greater Himalayan sequence and the Tibetan sedimentary

sequence in this area, and the transition zone between the two appears to have had a

complex deformational history.

Nature of the Greater Himalayan sequence - Tibetan Sedimentary sequence contact
in the Annapurna-Manaslu region of Central Nepal

Because of difficulties related to accessibility, most previous studies of the South

Tibetan detachment system in southern Tibet and India focused on narrow, across-strike

transects. The drainage pattern of major rivers in the Annapurna-Manaslu region of central

Nepal (Figure 1) is unusual in that it provides relatively easy access to the South Tibetan

detachment system over a strike length of 150 km. Although this entire length of the

system has not yet been mapped in detail, research along various segments of the Greater

Himalayan sequence - Tibetan Sedimentary sequence contact indicates a kinematically

complex structural history (Bordet et al., 1971; Le Fort, 1975; Colchen et al., 1981; Caby et

al., 1983; Pecher, 1989; 1991; Brown and Nazarchuk, 1993; Guillot et al., 1994; Hodges et

al., in press; this study).

In the western part of the Annapurna range the Greater Himalayan sequence

comprises a monoclinal sequence of north-dipping high grade gneisses, exposed below

Cambrian (?) to Ordovician medium grade marbles and quartzites of the basal part of the

Tibetan sedimentary sequence. Rocks of the Tibetan sedimentary sequence are foliated and

also folded into large scale north-vergent recumbent folds that refold earlier south-vergent

folds (Brown and Nasarchuk, 1993; Colchen et al., 1981). The north-vergent folds are

conspicuously absent below the contact with the Greater Himalayan sequence (cross



section in Colchen et al., 1981). Caby et al. (1983) recognized a structural discontinuity at

the base of the large-scale north-vergent folds exposed in the north face of Annapurna

within the basal Formation of the Tibetan sedimentary sequence, which they attributed to

gravitational collapse. In the Kali Gandaki valley (Figure 1) Brown and Nazarchuk (1993)

described ductile and brittle fabrics associated with north-directed normal movement at the

top of the Greater Himalayan sequence and interpreted the contact as a strand of the South

Tibetan detachment system which they refer to as the Annapurna detachment fault.

In the Modi Khola drainage, thirty kilometers east of the Kali Gandaki transect,

structural relationships at the same stratigraphic level are quite different. Parrish and

Hodges (1993) reported evidence suggesting both south-directed (thrust-sense) and north-

directed (extensional) deformation at this contact. Younger north-directed ductile

extensional faulting higher in the Tibetan sedimentary sequence coincides with a break in

metamorphic grade (Hodges et al., in press).

Eighty kilometers east of the Modi Khola valley, in the Burhi Gandaki valley, the

Greater Himalayan-Tibetan sedimentary sequence contact is deformed by Miocene high-

temperature north-dipping shear zones which overprint the main metamorphic foliation and

indicate normal and dextral strike-slip displacement (Pecher, 1991). These structures are

considered to be late and not necessarily related to juxtaposition of the Tibetan Sedimentary

sequence and Greater Himalayan sequence. The late high-temperature shear zones are

interpreted to be synchronous with the last phases of Manaslu pluton emplacement while

the temperature was still elevated, and intrusion of the pluton is considered to be late-

synchronous to post-kinematic with respect to normal movement on an South Tibetan

detachment system-related structure (Pecher, 1991; Guillot et al., 1994). Although it is

likely that there was a structure equivalent to the South Tibetan detachment system in the

Manaslu region, emplacement of the Early Miocene Manaslu pluton (Vidal et al., 1982;

Deniel et al., 1987; Guillot et al., 1994; Harrison et al., 1995) and elevated temperatures

coeval with regional dextral shearing (Pecher, 1991), have essentially erased its trace.



40Ar/ 39 Ar cooling ages from the metamorphic aureole of the pluton show rapid cooling

from 19 to 16 Ma and have been interpreted to be the result of normal faulting at higher

levels in the Tibetan sedimentary sequence after normal movement on the South Tibetan

detachment system and emplacement of the Manaslu pluton (Guillot et al., 1994).

Between the Modi Khola and Burhi Gandaki valleys, a transition occurs from a

contact with north-south convergent and north-directed extensional deformation during

high-temperature metamorphism to a contact partially obscured by the Manaslu pluton and

overprinted by high-temperature right lateral shear zones. The principal aim of the present

study was to document the nature of the transition between south directed contraction and

north directed extension by mapping structures located along the contact between the

Greater Himalayan sequence and the Tibetan sedimentary sequence in the Marsyandi area

and in the Dudh Khola valley region (Figures 1 and 2). In the upper Marsyandi valley, the

main foliation within the Greater Himalayan sequence and overlying Tibetan sedimentary

sequence strikes NE-SW and dips moderately to the NW (Colchen at al., 1980). The

Greater Himalayan sequence consists of sillimanite-grade schists and gneisses overlain by

biotite-grade marble of the Tibetan sedimentary sequence. Similar to the Kali Gandaki

region, this area displays open to tight folds within the Tibetan sedimentary sequence

which are absent within the homoclinal Greater Himalayan sequence below, indicating the

presence of a structural discontinuity at the contact (Schneider and Masch, 1993).

To evaluate the deformational history of the Greater Himalayan and Tibetan

sedimentary sequence contact in the Marsyandi and Dudh Khola valleys, mapping was

carried out at 1:12,000 scale during the spring of 1993 and 1994. Previous 1:200,000 scale

mapping of central Nepal by Colchen et al. (1981) and Fuchs et al. (1988) provided a

regional tectonostratigraphic and structural framework.

Tectonic Stratigraphy of the Marsyandi region

Greater Himalayan Sequence



In Central Nepal, the Greater Himalayan sequence is typically divided into three

lithologically distinct packages (e.g., Colchen et al.,1981 and 1986), referred to as

Formations I (structurally lowest), II, and III (structurally highest). Formations I, II, and

III are continuous along strike for hundreds of kilometers. Formation I comprises a

section of pelitic schists, gneisses, and migmatites. The upper 5 km of the Greater

Himalayan sequence in the Marsyandi region includes a wide variety of sillimanite-grade

calcareous and pelitic metamorphic rocks of Formation II and III, intruded by abundant

concordant and cross-cutting leucogranites. The rocks included in Formation II in this part

of the section consist of the following (in order of decreasing abundance):

1) Green calc-silicate rocks (Di + Ep + Cam + Kfs + PI + Cal + Qtz + Spn + Bt +

Ms + Grt) that vary texturally from massive granofels to banded gneisses.

2) Meta-psammites (Bt + P1 + Qtz + Ms + Ksf ± Grt) that are foliated and fine-

grained. The psammite is interbedded with calc-silicates at the scale of centimeters to tens

of meters.

3) Coarse grained pure marble layers (Cal + Phi) up to several meters thick.

4) Schists (Bt + Kfs + P1 + Sil + Qtz + Grt), gneisses (similar in composition), and

felsic migmatites that are interlayered with the other Formations at a variety of scales.

5) Minor amphibolite layers (Hbl + Pl).

In the Marsyandi valley Formation III occurs within the upper half of Formation II.

A 400 m thick section of calc-silicate and pelitic gneiss of Formation II overlies Formation

III and marks the top of the Greater Himalayan sequence. Formation III is a distinctive

augen orthogneiss (Qtz + Kfs + P1 + Bt + Sil + Ms + Grt) characterized by large K-

feldspar augen up to 4 cm in the long dimension in a finer-grained foliated to mylonitic

matrix. In the Chame region, the augen gneiss is about one kilometer thick and has screens

within it up to tens of meters thick of psammite and biotite gneiss. The crystallization age

of the augen gneiss was previously thought to be Cambrian based on a composite Rb/Sr

plot of whole rock ages from samples from different locations (Le Fort et al., 1986).



Recently obtained U/Pb results from the augen gneiss from the Annapurna region include

monazite ages of ca. 36 Ma and discordant zircon ages with a large Paleozoic -

Precambrian inherited component (Hodges et al., in press). The U/Pb data are consistent

with the interpretation that it is either a deformed Oligocene granite or a Cambro-

Ordovician igneous rock that experienced a high temperature Oligocene metamorphic

event.

Tibetan sedimentary sequence

In the upper Marsyandi valley a complete stratigraphic section of the Tibetan

Sedimentary sequence from the Cambrian through the Jurassic is exposed (Fuchs et al.,

1988). The basal Formation, referred to as the Cambrian(?) Annapurna Yellow Formation

(Cal + Qtz + P1 + Phl + Di + Kfs ± Tr), is a 5 km-thick section of complexly folded

amphibolite- to greenschist-facies marble. Phlogopite-rich layers define a well-developed

foliation within the Annapurna Yellow Formation and give it a brownish-gold color.

Compositional layering (alternating phlogopite layers and Cal + Qtz + P1 rich layers) may

reflect primary bedding, but the marble is too metamorphosed and deformed to display any

primary sedimentary features. Above the Annapurna Yellow Formation, the Ordovician

Northface Quartzite (Fuchs et al., 1988) consists of white quartzite interbedded with minor

amounts of limestone. Primary sedimentary features, such as cross bedding, can be

recognized in outcrop.

Intrusive rocks

Tourmaline-bearing leucogranitic dikes that are both concordant and discordant to

the foliation intrude the upper part of the Greater Himalayan sequence and the Annapurna

Yellow Formation. Cross-cutting leucogranite is much more voluminous in the Dudh

Khola region than in the Marsyandi valley, where it comprises 30-50% of the outcrop.

Previous U-Pb geochronologic studies from central Nepal have obtained Early Miocene

ages of ca. 22 Ma for both cross-cutting and deformed leucogranite at the top of the Greater

Himalayan sequence (Nazarchuck, 1993; Harrison et al., 1995). U-Pb monazite and zircon



analyses provide similar direct age constraints for the described leucogranite from the

Marsyandi and Dudh Khola valleys (Coleman and Parrish, 1995; Coleman, in prep).

Structural History

The orientation and kinematic interpretation of major structures within the

Marsyandi and Dudh Khola valleys (Figure 2 and 3) differ significantly and will be

discussed separately. In the Marsyandi region, the Greater Himalayan sequence and the

Tibetan sedimentary sequence have undergone a complex deformation history involving at

least two penetrative deformational and two metamorphic events. In the following

description "Di, D2 , D3, ... " notation is used to differentiate the relative ages of

deformational structures within specific regions. "DI, D2 , D3, ... " structures are not meant

to be correlated between different regions or across significant structural sections, where

deformation may have been diachronous.

Marsyandi transect

Structures within the Greater Himalayan sequence

Throughout the Greater Himalayan sequence in the Marsyandi valley,

compositional layering (SO) has been transposed by F1 isoclinal folds into parallelism with

the predominant S1 foliation. The composite fabrics in the lower half of the Greater

Himalayan sequence strike roughly E-W and dip 250-400 N (Figure 4D). A constantly N-

trending Li lineation is defined by alignment of micaceous mineral aggregates and quartz

and feldspar rods (Figure 4D). S2 mylonitic fabrics including abundant top-to-the-south S-

C mylonitic shear-sense indicators on both macroscopic and microscopic scales and south-

verging F2 folds deform the basal 1 km of the section and indicate that D2 was an

important phase of syn-metamorphic, top to the southwest-directed thrusting (Pecher,

1977; Pecher, 1989; Figure 1 and 3, D-D'). L2 mineral lineation is defined by alignment of

kyanite as well as micaceous mineral aggregates in the stretching direction. U-Pb monazite

ages from mylonitic kyanite-grade schist indicate an Early Miocene age for D2 shearing at



the base of the Greater Himalayan sequence during peak metamorphism (Coleman and

Parrish, 1995; Coleman, in prep.).

Foliation orientations in the upper half of the Greater Himalayan sequence are not

as uniform as in the lower half probably as a consequence of subsequent deformation. The

main composite foliation (S2) within the upper 3 km of the Greater Himalayan sequence

strikes NE and dips 250-450 NW (Figure 2 and 4C). A mylonitic S2(?) foliation deforms

the upper 1000 m of the Greater Himalayan sequence. L2 lineations range in trend between

WSW and WNW. D2 S-C fabrics indicate top to the west-directed shearing at sillimanite-

grade conditions (Figure 5A and 5B). The top to the west-shearing is characterized by

penetrative within-sheet deformation that indicates oblique normal sense motion in the

upper Marsyandi and it is not limited to deformation at the tectonic contacts shown on the

cross sections in Figure 3. There are several generations of lineations within the upper 5

km of the Greater Himalayan sequence. In the pelitic formations, some outcrops clearly

exhibit two generations of lineation development, a WNW- to WSW- trending- stretching-

lineation (L2) superimposed on an older NE-trending mineral-lineation (Li) (Figure 6).

Typically, L i is defined by the alignment of micaceous minerals and L2 is defined by

quartz and feldspar rods. L2 lineations are also formed by the alignment of fibrolitic

sillimanite. Within the calc-silicate rocks, it is difficult to distinguish between different

generations of lineations. In some places, two generations are weakly preserved, in other

locations, the rock is recrystallized and does not preserve a stretching lineation. There is a

large scatter in the orientation of lineations measured within the upper half of the Greater

Himalayan sequence (Figure 4 C, D). However, the scatter is due (in large part) to the

preservation of two generations of lineations, a population of WNW- to WSW- trending

L2 lineations and an older, N- to NE- trending DI lineation.

Structures within the Tibetan Sedimentary sequence

Throughout the Annapurna Yellow Formation, preferred alignment of phlogopite

defines an S 1 foliation. S1 is deformed by open to tight F2 folds with amplitudes up to 50



meters, that verge primarily (on an individual outcrop scale) to the W to SW. An S2

foliation is defined by secondary growth of phlogopite, axial planar to F2 folds. S2

foliation is variably developed throughout the section but is most intense within the basal

200 meters of the Annapurna Yellow Formation, where it strikes NE-SW and dips

moderately to the NW, concordant with the mylonitic foliation of the underlying Greater

Himalayan sequence. Within this zone, F2 folds are sheared out parallel to S2 foliation

planes, so that only the fold hinges or limbs are preserved. Cross-cutting leucogranite

dikes that intrude the basal section of the Annapurna Yellow Formation are offset in a

normal-sense on shear planes parallel to S2.

A shear zone measuring 200-300 meters in thickness occurs three kilometers above

the base of the Annapurna Yellow Formation (Figures 2 and 3). This structure is

intraformational and does not mark a significant metamorphic break; however, it is a zone

of significantly increased strain with well developed D3(?) asymmetric structures

overprinting older penetrative fabrics. Fold structures within the shear zone range from

tight, WSW-verging fold trains to isoclinal recumbent folds with axial planes parallel to S3

mylonitic foliation. S3 is defined by layers of recrystallized calcite, quartz and feldspar

separated by layers of aligned phlogopite (Figure 7C&D). On mylonitic foliation surfaces,

WSW-trending, shallowly-plunging L3 stretching lineations (Figure 4A) are defined by

mineral rods and aligned phlogopite aggregates. Outcrops oriented parallel to the stretching

lineation and perpendicular to the foliation exhibit asymmetrically boudinaged pegmatite

veins and asymmetric folds that indicate a top to the WSW shear-sense (Figure 7E&F).

Petrographic analysis reveals S-C mylonitic fabric also indicative of top to the WSW

shearing (Figure 7C&D). All leucogranite bodies within the shear zone are strongly

deformed and concordant with the NW-dipping mylonitic foliation (Figure7A&B). This is

in contrast to the section of Annapurna Yellow Formation below the shear zone, which is

intruded by both concordant and cross-cutting leucogranite, and is the basis for regarding

the higher level shear zone as a D3 structure. Above the shear zone, a large NW-plunging



F3 synform, referred to as the Mutsog synform (Colchen et al., 1980), folds the entire

remaining Tibetan Sedimentary sequence exposed above this level (Fuchs et al., 1988)

(Figures 2 and 3). Fuchs et al. (1988) pair the Mutsog synform with the north-verging

anticline in the north face of Annapurna, which has been interpreted as a gravitationally

driven drag fold related to along-strike equivalents of the D2 Chame detachment (see

below; Caby et al., 1983; Hodges et al., in press). There are no correlative structures to the

Mutsog synform below the D3 shear zone in the Marsyandi region, and we interpret the

fold as related instead to movement on the D3 shear zone.

Nature of the Chame detachment

Less than a kilometer west of the village of Chame, marble of the Annapurna

Yellow Formation is in direct fault contact with calc-silicate gneiss of the Greater

Himalayan sequence. The fault plane, referred to here as the Chame detachment (Figure 2),

is concordant with the D2-mylonitic foliation of the Greater Himalayan sequence below.

Kinematic indicators within pelitic Formations of the footwall on surfaces parallel to L2-

lineations and perpendicular to S2-foliation, include shear bands and S-C fabrics (Platt and

Vissers, 1980; White et al., 1980; Berth6 et al., 1979; Lister and Snoke, 1984; Pecher,

1977) that indicate a significant component of top down to the west-directed shearing

(oblique normal faulting). Synkinematic growth of minerals suggests that top to the west-

south-west shearing occurred at sillimanite grade and lasted through retrograde conditions

at greenschist-grade (Figure 5B and 5C). The prevailing sense of displacement across S2

shear planes within the basal 100-200 meters of the Annapurna Yellow Formation is top to

the west, consistent with shear-fabrics in the top 1000 m of the Greater Himalayan

sequence.

Along a N-S transect, 2 km east of the confluence of the Naur Khola and

Marsyandi rivers (Figure 2), a >20 m thick cataclastic zone juxtaposes marble of the

Annapurna Yellow Formation with psammitic schist of Formation II. Petrographic

analysis of the cataclasite reveals textures indicative of semi-brittle deformation (Figure 8).



The cataclastic zone dips 450 NW and appears to have cut up section toward the east and

exposed a thicker section of Formation II gneisses above the Formation III augen gneiss

(Figure 2). The D2 mylonitic fabrics and L2 lineations observed in the Chame region are

not present in the footwall of the cataclastic zone. The absence of D2 mylonites indicates

either 1) that a shallower level of the Chame detachment is exposed here; or 2) that the fault

surface has cut down-section through the mylonitic carapace.

Late structures affecting the upper Marsyandi valley

The top of the Annapurna Yellow Formation and the overlying Tibetan

sedimentary sequence are deformed by multiple high-angle, NNE-striking normal faults

(D4) (Figures 2, 3, and 9A). These structures truncate the northwest limb of the Mutsog

fold (F3) (Figure 9C) and deform all foliations within the Tibetan sedimentary sequence,

clearly postdating D2 and D3 deformation. Extensional fractures and slickenside lineation

surfaces within the brittle fault zones consistently indicate normal displacement.

Extensional fractures (Figure 9C&D) are filled with low-T minerals including calcite,

quartz and muscovite. 40Ar/39Ar dating of muscovite from the extensional fractures

indicates that this phase of brittle extensional deformation is at least 14 Ma (Coleman and

Hodges, 1995) . The D4 normal faults are part of a pervasive set of brittle normal faults

that deform the region between the upper Marsyandi valley and the Thakkola graben to the

west (Colchen et al., 198 1)(Figure 1). They are correlated with the oldest NNE-striking

extensional faults within the Thakkola graben system (Bordet, 1971; Colchen et al., 1981;

Coleman and Hodges, 1995), which predate the Late Miocene opening of the Thakkola

graben (Fort et al., 1982) but are indicative of Middle Miocene regional east-west

extension (Coleman and Hodges, 1995).

Dudh Khola transect

In the Dudh Khola and Surkepuk river valleys, adjacent to the main body of the

Miocene Manaslu pluton, structural relationships at the contact between the Greater

Himalayan sequence and the Tibetan sedimentary sequence are largely obscured by



abundant undeformed leucogranite. However, a north-trending ridge between the

Surkepuk and Siklikpuk rivers (Figure 2) exhibits a well exposed section through the

contact of the Greater Himalayan sequence and Tibetan sedimentary sequence, with minor

interruptions by cross-cutting leucogranite.

Structures within the Greater Himalayan Sequence

At this location, the top of the Annapurna Yellow Formation is in contact with a 1.5

- 2 km-thick layer of Formation III augen gneiss (Figures 2 and 3, C-C). The lower part

of the augen gneiss has a well-developed SI foliation (Figure I0A) that strikes NW-SE

and dips moderately to the NE. The augen gneiss does not have a well-developed

stretching or mineral lineation indicative of a direction of elongation. In contrast to the

lower part, the top 300 m of the gneiss is transposed by a strong D2-mylonitic L-tectonite

fabric with well-developed L2 quartz and feldspar rods (Figure 10B). The mylonite zone

dips 400 NNE, and the L2 stretching lineation plunges down dip to the north (Figure 4B).

The mylonitized augen gneiss, unfortunately does not display asymmetric fabrics indicative

of the shear sense.

Structures within the Tibetan Sedimentary Sequence

The terrain did not permit close inspection of deformational feature above more

than 20 meters of the contact. However, a mylonitic foliation (presumably S2) within

marble of the Annapurna Yellow Formation strikes NW-SE, dips 600 NE, and contains

NNE trending L2 lineation. A prominent large-scale (at least 100 m in amplitude) upright

synform folds the Annapurna Yellow Formation above the mylonitic-zone and is

spectacularly exposed in the cliff faces on the west side of the Siklikpuk Khola (Figure lOC

and 10D).

Nature of the contact

The Annapurna Yellow Formation is in sharp fault contact with Formation III

augen gneiss. The contact dips to the northeast and is concordant with D2 mylonitic fabric

of the Greater Himalayan sequence below. Although mylonitic fabric development is well



developed within the fault zone, shear-sense across the zone is ambiguous. The upright

orientation of the large-scale synform observed in the hanging wall does not indicate a

sense of vergence; however, its geometry is similar to the Mutsog synform and it is most

likely a drag fold related to northward displacement on the shear zone at the base of the

Tibetan sedimentary sequence. Based on these observations, D2 deformation at this

contact in the Dudh Khola may be compatible with north-directed shearing at the Greater

Himalayan - Tibetan sedimentary sequence contact.

Timing of deformational Events

Preliminary U-Pb and 4 0 Ar/3 9 Ar results provide some constraints on the timing of

deformation. These results are in preparation and will be available in a complete form in

another manuscript. At the top of the Greater Himalayan sequence in the Marsyandi

valley, a concordant leucogranite dike from the footwall of the Chame detachment,

deformed by west-directed fabrics, yields reversely discordant U-Pb single crystal

monazite ages that span 24-34 Ma (Coleman and Parrish, 1995; Coleman, in prep). The

spread in ages from a single sample is typical of Miocene Himalayan leucogranites and

most likely indicates a -24 Ma or younger age with an older (-35Ma) inherited

component. Muscovite from the same sample that defines the S2 foliation yields a

4 0 Ar/3 9 Ar cooling age of 17.5 Ma (Coleman and Hodges, 1995). The combined results

allow D2 deformation to be younger than or coeval with < 24 Ma leucogranite intrusion,

and require subsequent cooling of the footwall through muscovite closure temperature

(-400'C; Robbins, 1972), to have occurred at 17.5 Ma. The higher level, D4 brittle normal

faults in the upper Marsyandi valley are between 14 and 17.5 Ma (Coleman and Hodges,

1995). The 14 Ma age, obtained from secondary muscovite extracted from extensional

fractures associated with D4 normal faults, also places a lower limit on the age of the F3

Mutsog synform as well as the S2 foliation that it deforms.

Undeformed leucogranite that intrudes the north-dipping D2 contact between the

Greater Himalayan sequence and the Tibetan Sedimentary sequence in the Dudh Khola



valley yields concordant U-Pb zircon and monazite ages of 18-21 Ma (Coleman and

Parrish, 1995; Coleman, in prep). These results indicate that north-directed deformation at

this level ceased before -21 Ma, consistent with previous results in the Manaslu region

further east (e.g. Pecher, 1991; Guillot et al., 1994)._

At the base of the Greater Himalayan sequence in the Marsyandi valley, concordant

U-Pb monazite analyses from a mylonitic, kyanite-grade gneiss are 18-22 Ma (Coleman,

in prep.). This sample is from the D2 Main Central thrust zone and the results indicate

south-directed syn-metamorphic thrusting during monazite growth. Therefore top to the

south-directed thrusting is contemporaneous with top to the north-directed extensional

faulting and top to the west -directed orogen parallel shearing.

Discussion

Lateral strain variation at the top of the Greater Himalayan sequence

West-directed, orogen-parallel deformation on the Chame detachment was broadly

coeval with north-directed normal faulting at the same structural level 15 kilometers to the

east. Because of difficult access, the area between the two structures has not been mapped

and it is uncertain whether the two fault segments are part of one continuous structure or if

they are separated by a cross-structure. West-trending lineations overprint north-trending

lineations in the western area, indicating that west-directed shearing was later than north-

directed extension in the Marsyandi Valley. Shear fabrics and petrographic analysis

indicate that the direction of maximum elongation in the Marsyandi valley changed from

north-south to east-west during peak metamorphism while it remained north-south in the

Dudh Khola valley.

Simultaneous strain partitioning within thickened sections of penetratively

deformed crust is common. However, discussions of this phenomenon usually focus on

vertical partitioning of the strain into separate components at different structural levels.

Vertical partitioning of strain into incompatible structures can be accommodated by either

mechanical decoupling between rheologically contrasting layers (e.g. Burchfiel and



Royden, 1985) or by general noncoaxial flow within a plastically deforming rock mass

(Northrup, in press). Both models of deformation are applicable to the Miocene structural

development of the Greater Himalayan sequence; however, in central Nepal, the strain

pattern not only changes vertically but also laterally over distances on the order of tens of

kilometers.

Tectonic denudation at the top of the Greater Himalayan sequence

The question remains as to whether the South Tibetan detachment system was a

through-going structure that accommodated significant tectonic denudation in central

Nepal. A prograde increase in metamorphic grade downward through the base of the

Tibetan sedimentary sequence was documented by Schneider and Masch (1993) using

carbonate solvus thermometry. Maximum temperatures near the base of the sequence

were ca. 510-530 0C. A strong retrogressive phase of metamorphism at the base of the

Tibetan sedimentary sequence, manifested by secondary growth of sphene, clinozoisite,

and amphibole, may be attributed to syn to late-syn-metamorphic movement on the Chame

detachment (Schneider and Masch, 1993).

Effects of local pressure gradients on flow patterns of plastically deforming rock

The entire section of the Greater Himalayan sequence throughout the central

Himalaya was deforming plastically at temperatures at or above -500 0C during the early to

middle Miocene (as reviewed by Hodges et al., 1988; Pecher, 1989). This temperature is

well within the range under which rocks yield by ductile flow at geologic strain rates (Brace

and Kohlstedt, 1980). The structural thickness of the Greater Himalayan section increases

from 5 km in the Kali Gandaki valley to about 12 km thick in the Marsyandi valley without

duplication or truncation of any of the major Formations. The extreme variation in

thickness, with relative continuity of Formations, suggests a net flow of material towards

the east within the Greater Himalayan sequence. In regions of crustal thickening, lateral

pressure gradients caused by differential thinning (or thickening) of the overlying crust will

drive lower crustal flow, provided the underlying crust is hot and weak enough (Block and



Royden, 1990). Flow towards the east within the Greater Himalayan sequence could

account for west-directed shear between the Greater Himalayan sequence and the relatively

rigid overlying Tibetan Sedimentary sequence in the Marsyandi valley. A decrease in the

lateral pressure gradient toward the east at the time of deformation could also account for

the variation in strain pattern between the two fault segments. Further field analysis is

required in order to determine if there is a continuous variation in the strain or "flow"

pattern between the two areas that might be reflected in the footwall kinematics.

Regional orogen parallel strain within the Greater Himalayan sequence

Orogen-parallel strain at the top of the Greater Himalayan sequence has been

described in several locations along the length of the Himalaya. Pecher (1991) documented

top to the east dextral shear east of Manaslu within the Burhi Gandaki transect and, based

on the strain pattern there, combined with the pattern of lineation trajectories plotted for the

rest of the Himalaya, proposed an orogen scale dextral shear zone. However, the planar

fabrics in many transects, associated with orogen-parallel lineations are not asymmetric and

may have been produced during a bulk general shearing event with a large component of

pure shear strain. In Pecher's model, the top of the Greater Himalayan sequence provides a

mechanical boundary for a relatively rigid Tibetan block extruding eastward. Although this

is plausible, the reorientation of the elongation direction within the thermally weakened

Greater Himalayan sequence, on the scale of the entire orogen, may also be explained by

vertical strain partitioning of the over-thickened wedge.

If dextral shear at the top of the Greater Himalayan sequence was a regional

phenomenon, then why is there only evidence of top to the west displacement in the

Marsyandi region? From the described field relationships of dextral shearing combined

with a kinematic model for emplacement of the Manaslu pluton (Pecher, 1991; Guillot et

al., 1993), it is possible that dextral displacement occurred later than top to the west shear in

the Marsyandi valley and it may have been transferred to a higher structural level west of

the pluton. Dextral shear east of Manaslu is syn-kinematic with emplacement of the



Manaslu pluton (Pecher, 1991), whereas west directed-shearing in the Marsyandi valley

predates cross-cutting leucogranites of probable Manaslu age. If emplacement of the

Manaslu pluton was structurally controlled by a restraining bend in a regional-scale dextral

shear zone, as suggested by Guillot et al. (1993), right-lateral shear might have transferred

to a higher level of the Tibetan Sedimentary sequence within the Marsyandi valley.

West-directed deformation on the Chame detachment is associated with shallow,

obliquely down-dip, lineation trends. On a local scale, these fabrics are extensional.

However to the west in the Modi Khola valley, southwest-directed deformation associated

with high-temperature metamorphism at a similar structural level results in a

transpressional regime accommodated by oblique thrusting across a north-dipping

structure (Hodges et al., in press). In both locations, there is a significant component of top

to the west-directed orogen parallel deformation, and both fault segments may be part of

the same oblique left-lateral shear zone. Although the field relationships in the upper

Marsyandi valley all indicate oblique extension, other independent lines of evidence for

extension (i.e., as outlined by Wheeler and Butler (1994)), such as the temperature-time

history of the footwall and hanging wall, will confirm whether this is a local or regional

phenomenon.

Problems of strain compatibility aside, it is clear that orogen-parallel deformation

(or at least elongation) at the top of the Greater Himalayan sequence during peak

metamorphism was an important element of the Miocene high-temperature deformation.

Orogen-parallel deformation during convergence has been documented in other orogens

including the Alps (e.g., Mancktelow 1992, Froitzheim et al. 1994, Ratschbacher et al.

1991). In these examples, there is a change from extension normal to the orogenic core

zone early in the deformation to extension roughly parallel to the core later in the

deformation roughly coeval with peak metamorphic conditions. This consistent pattern

suggests a fundamental change in the geometry of the deformation within orogens in

general. The fact that the timing of orogen-parallel deformation seems to coincide with



peak metamorphism within the core zone of orogens, suggests a link between the mode of

deformation and the strength of the deforming wedge.

Upper crustal, orogen-parallel strain in the Himalaya and Tibet

Orogen parallel strain is known to be a major component of deformation at the

northern margin of the Himalaya and southern Tibetan Plateau (Molnar and Tapponnier,

1978). The active and recent Quaternary tectonics of Tibet and the Himalaya (Molnar and

Tapponnier, 1978; Armijo et al., 1986) clearly demonstrate that most of Tibet is

undergoing east-west extension during north-south convergence. Numerical experiments

show that for this to occur during a constant convergence rate, the plateau must have

reached a critically high elevation (England and Houseman, 1989). The most clearly

defined structures in the upper Marsyandi region are the youngest brittle normal faults (D4)

which strike NNE and deform the metamorphic fabrics associated with west-directed

ductile deformation in the region. The orientation of these faults is consistent with the

bounding faults of the slightly younger Thakkhola graben, one of the classic examples of

recent east-west spreading of the southern Tibetan plateau, and they deform the same

physiographic region of the northern Himalaya.

Conclusions

Results from this study indicate significant along-strike variation in the Miocene

deformational history of the South Tibetan detachment system in the Annapurna-Manaslu

region. In the Marsyandi region, there are three generations of Early to Middle Miocene

top to the west-directed oblique normal faults. The oldest structure, the Chame detachment,

accommodated oblique, top to the west-directed shearing during Early Miocene peak

metamorphism at the top of the Greater Himalayan sequence and continued to move

during retrograde metamorphism. West-trending stretching lineations associated with

west-directed displacement on the Chame detachment overprint older north-trending

lineations and demonstrate that the orientation of west-directed deformational fabrics was

formed by west-directed shearing rather than re-orientation of a previously north-verging



structure. A second zone of obliquely-down-dip, top to the west-directed ductile shear

higher in the Tibetan sedimentary sequence is younger than the Chame detachment and is

also interpreted to have had a component of normal movement. The youngest

deformation in the Marsyandi region is manifested in multiple, moderate- to high- angle

brittle normal faults striking to the NNE. To the west of the Marsyandi, in the Dudh Khola

region, the top of the Greater Himalayan sequence is deformed by a north-dipping

mylonitic zone which is interpreted to be a normal fault. Unlike the Marsyandi region, this

area contains north-trending lineations at the top of the high-grade gneisses but no east-

west trending lineations. A large scale synform restricted to the hanging wall indicates

normal displacement across this zone.

Although the apparently incompatible displacement vectors along the South

Tibetan detachment system contact may be diachronous, west-directed extension in the

Marsyandi valley on the Chame detachment (orogen-parallel) is roughly coeval with north-

directed displacement (orogen-perpendicular) on the South Tibetan detachment system

only 15 km away. At present, we can not unequivocally determine how these different

fault segments interacted. The footwalls of both structures are thick sections of

penetratively deformed crust which was at amphibolite grade during ductile deformation.

Extreme lateral thickness gradients in the South Tibetan detachment system footwall,

without loss of major Formations, suggests lateral flow of the plastically deforming crust

and may account for orogen-parallel deformation at the top of the Greater Himalayan

sequence in some locations without requiring large lateral displacement of the upper crustal

Formations. Lateral flow could be driven by lateral pressure gradients due to differential

thinning of the overlying rock mass during gravitational collapse.
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Figure captions

Figure 1) Simplified regional tectonic map of central Nepal from Colchen et al. (1980)

with minor modifications from this study. The major structures include the Main Central

thrust (MCT), the South Tibetan detachment system (STDS), and the Thakkhola graben.

There are two normal faults located on the map that are part of the STDS; the basal fault

(D2) is decorated with the open half circles and the structurally higher fault (D3) is

decorated with filled half circles. The summits of Annapurna I (Ann I), Annapurna II (Ann

II), and Manaslu are located by black diamonds. The village of Chame and the city of

Pokhara are marked by black squares. The inset map shows the location of the

Annapurna-Manaslu region within the Himalaya.

Figure 2) Geological map of the upper Marsyandi and Dudh Khola valley region. Cross

section lines A-A', B-B', C-C', and D-D' correspond to Figure 3. A patterned version of

the map is used as an inset in Figure 4 and provides a simplified guide to the distribution of

the various map units.

Figure 3) Cross sections correspond to section lines marked on the geologic map in Figure

2. Lines A-A' and B-B' show three generations of west-directed deformational structures.

The D3 shear zone marks the upper limit of leucogranite intrusions .Line B-B' shows the

Mutsog synform to be limited to the hanging wall of the D3 shear zone. Line C-C' shows

north-ward displacement on a structure which places the Annapurna Yellow Formation in

direct contact with the Formation III augen gneiss. Line D-D' includes the lower half of the

Greater Himalayan sequence, the south- directed Main Central Thrust zone and the top of

the Lesser Himalayan sequence (unpatterned).

Figure 4) Equal area lower hemisphere plots with foliation and lineation data from the

Marsyandi and Dudh Khola valleys. The map is simplified from Figure 2.



Figure 5) (a) migmatitic layers in meta-psammite deformed by top to the west-directed S-

C fabrics. A vertical leucogranitic dike cross-cuts all fabric. (b) Syn-kinematic fibrolitic

sillimanite in top to the west-directed mylonitic S-C foliation planes. (c) Syn-kinematic

chlorite in mylonitic shear band foliation indicating top to the west shear-sense at

greenschist grade conditions. Photographs a, b, and c, are viewed toward the north. The

top to the west shear sense indicates obliquely down dip displacement across the Chame

detachment on a local scale, and on a more regional scale indicates orogen-parallel shear.

Figure 6) Photograph of a meta-psammite foliation surface from Chame showing

development of two generations of lineation. A west-trending stretching lineation (Ls2) is

defined by quartz and feldspar rods, and a north-trending mineral lineation (Lml) is

defined by alignment of micaceous aggregates and felsic minerals. Ls2 overprints Lml.

Figure 7) (A) photograph and corresponding line drawing (B) of a 4 km thick section of

the Annapurna Yellow Formation. View is towards the north. The horizon of concordant

leucogranite (highlighted in the line drawing) coincides with a mylonitic zone with top-to-

the-west shear-sense kinematic indicators. (C) photograph and corresponding line drawing

(D) of type II S-C mylonite (i.e. Lister and Snoke, 1984) that deforms marble of the

Annapurna Yellow formation. The shear sense deduced from S-C mylonites indicates a

component of top to the west-directed shear within the Mutsog shear zone. View is

towards the north. (E) photograph and corresponding line drawing (F) of west-verging

folds and boudinaged pegmatite in the Annapurna Yellow formation also from the Mutsog

shear zone. View is towards the north.

Figure 8) Photomicrograph of cataclasite from northwest of the Naur Khola (Figure 2).

Clasts of quartz, feldspar and diopside are in a matrix of ductily deformed calcite.



Figure 9) (A) Photograph and corresponding line drawing (B) of the "Mutsog synform", a

northwest plunging synform in the hanging wall of the Mutsog shear zone that deforms

mylonitic foliation of the Annapurna Yellow formation. The view is towards the southeast

across the upper Marsyandi River and the cliff is an exposed dip-slope surface of the

folded foliation surface. (C) Photograph (view to the north) of an avalanche gully that

follows the trace of a steeply northwest-dipping brittle normal fault that deforms the

northeast limb of the Mutsog synform. Also shown are north-striking steeply east-dipping

extensional fractures. (D) photograph of vertical north-striking extensional fractures, part of

the same fracture system shown in (C). Extensional fractures that deform foliation within

the Annapurna Yellow formation filled with secondary muscovite growth.

Figure 10) (A) Photograph of Formation III. Outcrop surface is perpendicular to the

foliation and displays the large K-feldspar augen diagnostic of this Formation. (B) L-

tectonite from a north-dipping shear zone at the top of Formation III. (C) Photograph and

(D) corresponding line drawing of north dipping shear zone separating the Annapurna

Yellow Formation from the Formation III orthogneiss at the head waters of the Siklikpuk.

A large synform deforms the hanging wall sedimentary Formations.
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Chapter 3

U-Pb Constraints on Oligocene - Miocene Deformation and Anatexis,
Marsyandi Valley, central Nepalese Himalaya

Abstract

In the Marsyandi and Dudh Khola valleys of central Nepal a 12 km thick section of

amphibolite-facies gneisses, the Greater Himalayan sequence, is completely exposed. and

can be described as a metamorphic wedge. It is bound by the Miocene north-dipping Main

Central Thrust (MCT) at its base, and roofed by the roughly coeval north-dipping normal

faults of the South Tibetan detachment system. Monazite and zircon U-Pb analyses

indicate that migmatization at the base of the Greater Himalayan sequence was coeval with

migmatization and leucogranite emplacement at the top of the section. Metamorphic

monazite ages from mylonitic migmatitic schists within the MCT-zone indicate syn-

tectonic amphibolite-grade metamorphism at -22 Ma, possibly lasting until 18 Ma.

Within the upper Greater Himalayan sequence, foliated migmatitic leucogranites yield

complicated U-Pb systematics, but are interpreted to have formed at -22 Ma. Monazite

data from the -22 Ma migmatite have a -35 Ma inherited component which may reflect

Oligocene metamorphism or magmatism. Undeformed leucogranite dikes transect all

foliations and intrude the contact between the Greater Himalayan sequence and the

overlying Tibetan sedimentary sequence; they yield -18 Ma ages, placing a lower bound

on the age of regional metamorphism and high-temperature deformation.

Field relationships and the ages of migmatization and leucogranite intrusion support

models for melt-enhanced deformation (Hollister and Crawford, 1986) along the South

Tibetan detachment system, but also allow for late syn-tectonic granite melting to be

enhanced by decompression associated with normal faulting. Previous suggestions that



leucogranite generation within the upper Greater Himalayan sequence is temporally

unrelated to the formation of migmatites or high-temperature deformation associated with

the MCT are inconsistent with the age constraints presented here. Although fundamental

distinctions are made between the migmatites and the leucogranites based on trace-element

geochemistry, it seems unlikely that they are not genetically related considering their close

proximity and timing.

Introduction

The Himalaya host several examples of anatectic granites that intruded during the

peak of syn-orogenic metamorphism. As in other continent-continent collisional settings,

the mechanism for granite genesis is difficult to determine and there are at least two

competing viable models. Whether these granites formed in response to decompression

during normal faulting or by wet-melting triggered by thrusting emplacement of hot rocks

onto cooler rocks is a fundamental unresolved issue relevant not only for the Himalaya but

for magma genesis in compressional orogens in general.

Competing geochemical models that explain anatexis within the Himalaya rely on

unique tectonic conditions which, to a certain degree, are testable. In the case of wet

melting, granites are produced when fluids are advected from a cool footwall to a relatively

hot hanging wall during thrust faulting (e.g. LeFort, 1975). Conversely, for dry melting to

occur, significant decompression along normal faults immediately prior to granite

emplacement is required in order to produce the volume of melt observed (e.g. Harris and

Inger, 1992). The dry melting model introduces an additional controversy of whether

magma intrusion triggered extensional faulting (i.e. Hollister and Crawford, 1986) or visa

versa. Establishing the relative timing of metamorphism, deformation, and anatexis is a

key step toward understanding how these tectonic processes are related. The central



Himalaya which have nearly continuous exposure of the metamorphic core, provide an

ideal place to explore the genesis of alpine granites.

The metamorphic core of the Himalaya hosts a thick section of plastically deformed

medium to high grade migmatitic schists and gneisses intruded by anatectic granites. The

base of the core is a north-dipping crustal scale thrust fault system, the Main Central thrust

(MCT), and its roof is marked by gravitationally-driven north-dipping normal faults of the

South Tibetan detachment system. The upper half of the metamorphic core is intruded by

abundant leucogranites that are both deformed by and cut across ductile fabrics within the

metamorphic rock. The combined results of several studies demonstrate rapid and largely

contemporaneous thrust faulting, extension, peak metamorphism and anatexis during the

early Miocene (e.g. LeFort, 1975, 1981; Pecher, 1989; Hubbard and Harrison, 1989;

Burchfiel et al., 1992; Hodges et al., 1992). However, despite these efforts, many aspects

the thermal evolution of the core region remain enigmatic.

Geochronologic data presented here are for leucogranites and gneisses from the

metamorphic core of the central Nepalese Himalaya in the Marsyandi and Dudh Khola

valleys (Figure 1). The main reason for establishing the ages of leucogranite intrusion and

migmatization in this region was to establish the absolute and relative ages of MCT and

South Tibetan detachment deformation. A detailed structural analysis of deformation in the

upper portion of the Greater Himalayan sequence is given in Chapter 2.

Geologic setting

In the Marsyandi valley the metamorphic core of the orogen, the Greater

Himalayan sequence, is exposed in a 12 km-thick section of north-dipping gneisses

(Figure 1). The gneisses are subdivided into three mappable formations (Colchen et al.,

1986). Formation I consists of pelitic gneisses and migmatites. Formation II is primarily

comprised of calc-silicate rocks, and Formation III is a distinctive augen orthogneiss found



at the top of the Greater Himalaya sequence in most transects through the orogen (Colchen

et al., 1986). The Greater Himalayan sequence was derived from Indian crust accreted

during northward intercontinental subduction (Gansser, 1964).

The MCT at the base of the Greater Himalayan sequence in the Marsyandi region

was described in detail by Pecher (1977, 1989), who documented top to the south thrust

faulting penecontemporaneous with kyanite-grade metamorphism. Along the entire

orogen, the MCT is associated with an inverted metamorphic sequence (Gansser, 1964;

Bordet, 1973; LeFort, 1975). In the central Himalaya, most MCT displacement was syn-

metamorphic and the thrust is clearly linked to the configuration of metamorphic isograds

within the upper Lesser Himalayan sequence and in the lower section of the Greater

Himalayan sequence (LeFort, 1975, 1981; Pecher, 1978, 1989; Hubbard, 1989).

However, where the Greater Himalayan sequence is relatively thick, a second inverted

metamorphic gradient occurs within it (e.g. Hubbard,1989; Pecher, 1989; Macfarlane,

1992), and this thermal structure cannot be explained in any simple way by syn-

metamorphic displacement.

Peraluminous leucogranites are distributed along the strike of the High Himalaya

for at least 1000 km. They form discreet sills, dikes, or laccoliths emplaced within the

upper Greater Himalayan sequence at or near its upper contact. Although the mechanism

that triggered the formation of the granites is controversial, it is generally agreed that they

represent intracrustal anatectic melting. In the Marsyandi valley, the metamorphic grade

increases along a Barrovian field gradient from chlorite grade structurally below the Greater

Himalayan sequence, to kyanite-grade near the MCT, to sillimanite-grade within the MCT-

zone. Accompanying the apparent upward increase in grade within the Greater Himalayan

sequence is a noticeable increase in the amount of migmatization within the pelitic gneisses

of Formation I, from 5-10% within the MCT zone to ~ 30% at a position 1-2 km higher.



Abundant deformed and undeformed leucogranite intrudes the top 4 km of the Greater

Himalayan sequence and the basal part of the Tibetan sedimentary sequence.

The top 1-3 km of the Greater Himalayan sequence is deformed by extensional

shear zones, penecontemporaneous with sillimanite-grade metamorphism (Pecher, 1991;

Coleman, in press). North-directed extensional faulting at the top of the Greater Himalayan

sequence is recognized along the length of the orogen (Burchfiel et al., 1992; and references

therein) and it is coeval with early Miocene thrusting on the MCT in the Everest region

(Hodges et al., 1992). Ductile extensional structures in the Marsyandi region are in part

coeval with peak metamorphism and pre- to late- kinematic with respect to anatectites and

leucogranite plutons, the largest of which is the Manaslu pluton (LeFort, 1981; Pecher,

1989; Guillot, 1993).

The Manaslu pluton was emplaced between gneisses of the Greater Himalayan

sequence and lower grade metamorphosed marble of the Tibetan sedimentary sequence (Le

Fort, 1975; 1981). The pluton truncates deformational structures within the Tibetan

sedimentary sequence that are associated with north-directed displacement on the South

Tibetan detachment system. However, parts of the granite are foliated, and the base of the

pluton is both concordant and in metamorphic equilibrium with the Greater Himalayan

sequence (Le Fort, 1981).

Metamorphism and anatectic melting

The metamorphic history of the Greater Himalaya in central Nepal has been

described as a two-stage process commonly referred to as Eohimalayan (MI) and

Neohimalayan (M2) (see Hodges et al. 1988; and Pecher, 1989; for a review of pressure-

temperature constraints and tectonic evolution). Initially, rocks at the base of the Greater

Himalayan sequence were buried to about 30 km depth during inter-continental subduction,

at which time high-pressure, moderate-temperature assemblages equilibrated at the base of



the Greater Himalayan sequence (M,). Neohimalayan metamorphism took place at lower

pressures and higher temperatures during displacement on the MCT. Anatexis within the

Greater Himalayan sequence, sillimanite-grade metamorphism, and leucogranite

emplacement are all thought to be signatures of the M2 phase of metamorphism.

The existence of large volumes of leucogranite melt at the top of the Greater

Himalayan sequence has been explained in a variety of ways. It is generally agreed that the

leucogranites were derived from a pelitic crustal protolith; geochemical and field studies

suggest that metasedimentary rocks of the Greater Himalayan sequence are the probable

source (Dietrich and Gansser, 1981; LeFort, 1981; Vidal et al., 1982; Deniel et al., 1987;

LeFort et al., 1987; France-Lanord et al., 1988). However, there is lack of agreement over

what section of the Greater Himalayan sequence they were derived from and whether they

were produced by "wet" or "dry" melting (e.g., LeFort et al., 1981; Inger and Harris,

1993). These opposing melting models are of interest because they not only require

different geochemical processes but are also linked to different tectonic events.

The "wet" melting model of LeFort et al. (1981) requires thrust emplacement along

the MCT. In this model, fluids are advected from the footwall of the MCT into the

relatively hot hanging wall during thrust emplacement. The fluids trigger anatexis within

the Greater Himalayan sequence during sillimanite-grade metamorphism and ultimately

lead to emplacement of the leucogranites. In this model the source for leucogranites is

within the sillimanite-grade migmatitic gneisses immediately below the granites. It gains

support from field relationships that demonstrate synkinematic to late-synkinematic

emplacement of the leucogranites with respect to MCT movement (LeFort et al., 1981).

In the "dry" melting model, leucogranites are formed under vapor-absent

conditions, as suggested by trace-element systematics (Harris and Inger, 1992; Harris et

al., 1993). In this case, decompressional melting, accomplished by normal faulting along



the South Tibetan detachment system, is required to produce the necessary melt fraction

(Harris and Inger, 1992; Inger and Harris, 1993). This model does not require syn-

anatectic thrusting along the MCT, but suggests that most leucogranites would be

synchronous with or postdate South Tibetan Detachment displacement. Additionally, on

the basis of contrasting Sr and Nd isotopic signatures, Inger and Harris (1993) argue that

the large leucogranite bodies and distributed migmatites are from different sources, and that

the latter may be significantly older than Miocene movement on the MCT.

The link between the South Tibetan detachment system and the leucogranites has

important implications for the competing geochemical models. The close proximity of the

leucogranites to the South Tibetan Detachment system along the length of the orogen is

remarkable. However, it remains an unresolved issue as to whether the granites triggered

normal faulting (i.e. Hollister and Crawford, 1986) or the converse is true (e.g., Inger and

Harris, 1992). Scaillet et al. (1995) concluded that emplacement of leucogranite from the

Garhwal Himalaya must be genetically related to normal faulting, but that magma

generation could still be related to thrusting.

In order to rigorously test the link between leucogranite emplacement at the top of

the Greater Himalayan sequence and formation of migmatites 12 km down section, we

must obtain direct age constraints from both the leucogranite and the MCT. A recent study

interpreted the crystallization age of the Manaslu pluton to be 22.4 + 0. 5 Ma based on

2m2Th/20 8Pb ion-microprobe dating of monazite (Harrison et al., 1995), and these results are

consistent with the conclusions of Guillot et al. (1994) for the crystallization age of the

granite based on "Ar/3Ar cooling ages from the metamorphic aureole. Past studies cite

isotopic age determinations from the Manaslu pluton as the age of syn-metamorphic

displacement on the MCT (Copeland et al., 1990; Harrison et al., 1995). However,



because there are alternative models for anatexis, it is essential to determine separately the

ages of the Manaslu pluton, MCT-related metamorphism, and migmitization.

Sampling strategy

In the lower Marsyandi valley, a migmatitic pelitic schist was collected from the

MCT mylonite-zone in an attempt to constrain the age of migmatization and syn-

metamorphic displacement on the MCT. In the upper Marsyandi and Dudh Khola valleys

(Figure 1) samples were collected from both deformed and undeformed leucogranite dikes

at the Greater Himalayan sequence-Tibetan Sedimentary sequence boundary, in order to

constrain the age of anatexis as well as to bracket the age of sillimanite-grade deformation

and extensional faulting at this structural level.

The sample from the MCT zone (MCT-1) contained garnet, staurolite, kyanite,

biotite, muscovite, plagioclase, and quartz. The outcrop displayed-5% leucogranite melt

by volume, and both migmatitic and schistose layers are deformed by well-developed

mylonitic fabrics with a top to the south shear-sense (Figure 2A ). Mylonitic textures,

including "rolled" garnets with asymmetric pressure shadows and kyanite aligned in the

stretching direction of the mylonitic foliation, indicate synkinematic growth of the peak

metamorphic assemblage (Gt+Bt+Ky+H 20). Pressure and temperature calculations based

on rim thermobarometry (Chapter 5) indicate pressures of 1100±110 MPa and

temperatures of 640±30*C for the peak equilibrium assemblage. Accessory phases

included monazite and zircon. The closure temperature for monazite (720-750 0C from

Copeland et al., 1988) is close to or above the peak temperatures obtained by

thermobarometry, so that the age of metamorphic monazite provides a potential constraint

on the time of staurolite- to kyanite-grade mylonitization within the MCT. Although

monazite is ubiquitous, there are commonly concentrations of it in contact with staurolite,

suggesting that the growth of these minerals was coeval. Staurolite within MCT- 1 is



typically embayed or anhedral (Figure 2B) and mineralogical textures indicate that the

sample was quenched during the prograde reaction St = Gt + Bt + Ky± Sil+ H20 (Figure

2C).

Deformed leucogranite (MC-93-88 & MC-94-36)

Deformed leucogranite sills (MC-93-88 and MC-94-36) were collected from near

Chame in the upper Marsyandi valley within sillimanite-grade gneisses (Figure 1). In the

upper Marsyandi valley the top 2-3 kilometers of the Greater Himalayan sequence is

deformed by sillimanite-grade, obliquely down-dip top-to-the-west ductile shear related to

the Chame detachment (Chapter 2). The sampled sills, each less than a meter thick and

separated by about 500 meters of section, contain foliation associated with west-directed

shearing (Figure 3A). Both are two mica tourmaline granites containing potassium

feldspar, quartz, plagioclase, tourmaline, muscovite, and biotite. The Formation III host to

sample MC-93-88 is composed of potassium feldspar, plagioclase, quartz, biotite,

muscovite, ± garnet, ± sillimanite. The MC-94-36 dike intrudes Formation II gneiss,

which contains biotite, plagioclase, potassium feldspar, quartz, sillimanite, tourmaline, and

garnet. Migmatitic tourmaline-bearing felsic layers (0.5 cm to 0.5 m thick) within the

Formation II gneiss have the same mineralogy as the leucogranite sills, indicating that the

sills are anatectic in origin.

Undeformed leucogranite (DK- 1 & DK-2)

Two dikes were sampled from an abundant network of undeformed leucogranite

dikes and sills that intrude both hanging wall and footwall rocks of the South Tibetan

detachment system in the Dudh Khola valley, adjacent to the Manaslu pluton (Figure 1).

These dikes clearly cross-cut all fabric development within both the Greater Himalayan

sequence and the Tibetan sedimentary sequence (Figure 3B). A similar network of

"aplopegmatitic" dikes is described by Le Fort (1981) about 10 km to the northwest where



they extend at least 10 km from the pluton into marble of the Tibetan sedimentary

sequence. The samples include DK- 1 which intrudes sillimanite-grade augen gneiss

(Formation III) of the Greater Himalayan sequence, and DK-2, which intrudes marble of

the Annapurna Yellow formation (Tibetan sedimentary sequence). DK- 1 is a medium-

grained leucocratic rock that consists of quartz, plagioclase, potassium feldspar, muscovite

and biotite, and tourmaline. DK-2 is a fine-grained leucogranite with the same mineralogy

as DK- 1 except that it contains neither muscovite nor biotite.

U-Pb analytical methods

Final mineral separates of monazite and zircon were hand picked and analyzed at

the Geochronology laboratory at the Geological Survey of Canada and analytical methods

follow those outlined by Parrish et al. (1987). Initial separation of U-Pb minerals from

samples weighing 1.0-2.0 kg was done at M.I.T. using standard heavy liquid and magnetic

separation techniques.

Results

Main Central Thrust zone

Sample MCT-1

Seven monazite fractions from MCT- 1 show a significant spread on the concordia

diagram (Figure 4, Table 1). Three of the fractions (b, f, and g) fall on a chord with an

upper intercept of 760 +20 Ma and a lower intercept of 21.5 + 0.3 Ma with an MSWD of

0.64. Although this is a well defined line, the lower intercept age is not necessarily precise

considering that the remaining fractions (a, c, e, and d) fall on or very close to concordia

between 22 Ma and 18 Ma. The two strongly discordant fractions (f and g) were

preliminary analyses comprised of multi-grain populations (15 and 20 grains, respectively)

with visible inclusions probably delineating older cores. The position of f and g relative to

concordia most likely reflects mixing between an older Precambrian component and a



younger 20-22 Ma metamorphic component. Previous U-Pb constraints on detrital zircons

from the Greater Himalayans sequence require that the sequence is no older than

Neoproterozoic and no younger than Cambrian (-900-570 Ma) (Parrish and Hodges, in

press). The -760 Ma upper intercept from the line defined by b, f, and g is consistent with

this age range and strengthens the argument that it represents inheritance from an originally

detrital sedimentary source.

The fractions that plot close to concordia comprised three single-grain analyses (a,b,

and c) and two fractions (d and e) relatively free of inclusions. Two of the single-grain

analyses plot slightly above concordia (a and c) indicating that the pure metamorphic end-

member component of monazite initially incorporated an excess amount of 23 Th (e.g.,

Scharer, 1984). Therefore the concordant analyses may be a fortuitous mixture of

inheritance and Th- disequilibrium, and if the analyses were free of inheritance they would

plot above concordia.

There are several possible explanations for the spread in slightly discordant

analyses between 21 and 18 Ma. These possibilities include continuous or episodic

monazite growth at elevated temperatures, growth of secondary monazite from late-stage

hydrothermal fluids, high-temperature Pb-loss, or inheritance. It is also possible that the

observed pattern results from some combination of these processes such as a mixture of

minor amounts of inheritance and initial Th-disequilibrium combined with prolonged high-

temperature Pb-loss. Prolonged monazite growth near or below the closure temperature of

monazite over a > 1 Ma period from hydrothermal fluids is also a possibility and has been

documented in Proterozoic rocks of the southwestern U.S. (Hawkins, 1996). From the

observed pattern in monazite data, it is impossible to resolve a precise age of metamorphic

monazite growth without additional single and/or sub grain analyses. However the data



argue strongly that high-temperature metamorphism between 21.5 and 18 Ma

accompanied top to south displacement on the MCT.

Deformed Granites

Monazite and zircon were separated from samples MC-94-36 and MC-93-88. In

both samples, two distinct monazite morphologies were divided into separate populations.

One consists of large (>200gm) dark green irregularly shaped crystals (Figure 5A), and

the other has smaller ( 100gm), light green to clear, rounded to gem-like crystals, with

minor inclusions (Figure 5B). Although both populations of monazite are ubiquitous

throughout the samples, the large irregularly shaped grains are most abundant as inclusions

within muscovite grains (Figure 6A) and the smaller more gem-like grains are more

typically concentrated at reaction boundaries between muscovite and quartz (Figure 6B).

Zircons from MC-94-36 and MC-93-88 were clear and prismatic; some of them had

visible inclusion-rich cores.

Sample MC-94-36

The monazite analyses for sample MC-94-36 plot in a fairly even distribution of

reversely discordant ellipses that sit above concordia between 22 Ma and 34 Ma (Figure

7). The reversely discordant pattern is common for young monazite and most likely

results from excess 23 Th-derived 206Pb. The 20 7Pb/235U ages of such samples are typically

interpreted as the best estimate of the crystallization age of the mineral (Parrish, 1990).

Although initial Th-disequilibrium is a likely cause for reverse discordance in this case, the

spread in analyses precludes the possibility of assigning a single crystallization age, and

instead leaves several possible interpretations for the observed U-Pb systematics. Two

possible explanations are that either 1) the analyses plot on a mixing line between an older

inherited component and a younger metamorphic or magmatic component, or that 2) the

monazites in this sample are ca. 34 Ma and have experienced variable amounts of Pb loss.



Although some degree of Pb-loss cannot be ruled out, there is a correlation between grain

morphology and age; the two single-grain analyses of large, dark green, and irregularly

shaped monazites plot towards the "older" end of the array (fractions a and b, Figure 7),

whereas the single-grain analyses of clear gem-like monazites plot towards the "younger"

end (fractions c, d, and e, Figure 7). This indicates that the distribution most likely reflects

mixing between an older > 34 Ma and a younger 24 Ma component both of which plot

above concordia due to Th disequilibrium. Inheritance in monazite from peraluminous

granites is not unusual and was first described in Miocene Himalayan leucogranites

(Copeland et al., 1988).

Sample MC-93-88

Three multi-grain fractions and one single grain fraction of monazite were analyzed

from sample MC-93-88. The multi-grain fractions overlap slightly above concordia at -28

Ma and the single-grain analysis plots slightly above concordia at 34 Ma (Figure 7). It is

possible that the grouping of analyses at 28 Ma is indicative of a metamorphic event,

however attaching geological significance to these analyses is dangerous. The monazite

results for MC-94-36 suggest instead that each fraction represents a mixed population that

may overlap fortuitously on concordia. Although both samples MC-93-88 and MC-94-36

have a similar inheritance pattern, the degree of reverse discordance is noticeably different

between samples, but consistent within each sample. The two leucogranites are within

distinct lithologies, indicating a possible correlation between the amount of excess 2 0'Th

derived 2
0 Pb and the host rock.

Because of the relatively low probability of obtaining resolvable zircon ages from

metamorphosed Himalayan leucogranite due to inheritance problems, only two preliminary

multi-grain zircon fractions were analyzed from both samples MC-93-88 and MC-94-36.

The results are plotted in Figure 7B. There is a linear relationship between these points



which most likely represents a mixing line with an upper intercept between 400 and 500

Ma and a Tertiary lower intercept, however the linear fit to the data is relatively poor

(MSWD = 110) and I regard the lower intercept as having no geological significance.

Undeformed leucogranite

Sample DK-J

Five zircon fractions for DK- 1 define a linear array with a lower intercept between

17 and 19 Ma. Three of the analyses are slightly discordant between 18 and 19 Ma, and

the other two are highly discordant. The three analyses that plot close to concordia consist

of clear flat equant crystals with very few visible inclusions (Figure 8B). In contrast, the

two discordant fractions are multi-grain populations of long prismatic crystals, some

having visible clusters of inclusions probably delineating older cores (Figure 8C). The

linear array defined by the latter population is most easily explained as a mixture of an

older inherited component with a younger (18-19 Ma) magmatic component. The nearly

concordant population most likely represents crystallization age of the leucogranite. The

slight discordance may be explained either by minor Pb loss or by initial Th

disequilibrium, which in the case of zircons causes an initial deficit of 20 6Pb (e.g.

Mattinson,1973; Coleman and Parrish, 1991). The <1 Ma spread in ages of the three

nearly concordant fractions may either be explained by differing amounts of Pb-loss or

minor inheritance. Three monazite fractions (4 to 5 grains each) with clear gem-like grains

(Figure 8A) overlap slightly above concordia at -19 Ma (Figure 9). The tightly clustered

data and the good agreement between zircon and monazite dates in this case justifies

interpreting 18.8 ± 0.1 Ma as the crystallization age of the mineral (i.e. Parrish, 1990).

Sample DK-2

Monazite was the only U-Pb bearing accessory phase separated from sample DK-

2. These monazites have very low concentrations of U and Pb relative to those in sample



DK-1 (>0.1 ppm Pb vs. 10-100 ppm Pb), and therefore required the analysis of relatively

large multi-grain fractions (ca. 50 grains each). These samples yielded 20 Pb/135U ages with

relatively large analytical errors (17.6±3.4 Ma and 17.4+3.4 Ma, Figure 9). Despite their

relatively poor precision, they reinforce the interpretation that some of the undeformed

granite dikes in the Dudh Khola drainage crystallized at 18-19 Ma.

Discussion

Implications for Eohimalayan metamorphism

Most petrographic evidence for the existence of an Eohimalayan event comes from

samples at the base of the Greater Himalayan sequence (e.g., Hodges et al., 1988; Pecher,

1989). The MCT- 1 data show no evidence of an inherited Oligocene component.

However, the migmatites at the top of the section (MC-94-36 and MC-93-88) show a clear

indication of an Oligocene monazite crystallization event that may be related to

Eohimalayan metamorphism. Oligocene ages of ca. 36 Ma from monazite obtained from

Formation III in the Modhi Khola (Hodges et al., in press) about 40 km to the west of

Chame, provide important supporting evidence that the older inherited component from

samples MC-93-88 and MC-94-36 is in fact Oligocene. Sample MC-93-88 is from a sill

within the Formation III augen gneiss and MC-94-36 was sampled less than 300 meters

down section from the basal contact of Formation III. Formation III is continuous along

strike over most of the length of the Himalaya and the -36 Ma monazite ages from the

Modi Khola augen gneiss have been interpreted as either the result of Oligocene

magmatism or high-temperature metamorphism (Hodges et al., in press). Either scenario

could produce high enough temperatures in the adjacent Formation II gneiss for monazite

growth at -36 Ma.

Miocene leucogranite generation



There is abundant evidence throughout the Himalaya for ca. 22 Ma high-

temperature metamorphism and anatexis at the top of the Greater Himalayan sequence. In

the Annapurna-Manaslu region leucogranites of this age have been found in the Kali

Gandaki valley (Nazarchuk, 1993), the Modi Khola drainage (Parrish and Hodges, in

press; Hodges and Parrish, in press), and as one phase of the Manaslu pluton (Copeland et

al., 1990; Guillot et al., 1994; Harrison et al., 1995). However there are at least two

temporally distinct phases of granite emplacement in the upper Marsyandi-Dudh Khola

valleys: an 18 My old phase (this study) and a 22 My old phase (Harrison et al., 1995).

This age range is similar to those reported from eastern Nepal and southern Tibet (e.g.

Scharer et al., 1986; Hodges et al., 1992). The combined U-Pb results in the Annapurna-

Manaslu region indicate that granite was emplaced either over a prolonged period of time

(at least 4 My) or in distinct pulses at -22 Ma and at 18 Ma. Distinguishing between these

two possibilities requires more data.

Different phases of the Manaslu pluton are distinguished on the basis of cross-

cutting field relationships (e.g. Guillot, 1993) and also by different geochemical signatures

of mineralogically distinct phases (Guillot and LeFort, 1995). Guillot and LeFort (1995)

determined the source rock for tourmaline granite to be metapelite and the source rock for

two-mica granite to be metagreywacke. Both the 18 Ma leucogranite from this study (DK-

1) and the 22 Ma leucogranite from Harrison et al. (1995) are two-mica tourmaline

leucogranites, implying that there is no obvious transition in bulk mineralogy over the 22-

18 Ma period, arguing against fundamentally different petrogenetic mechanisms.

Implications for melting models

Field relationships allow for -22 Ma migmatization at the top of the Greater

Himalayan sequence before or during early stages of extensional faulting. The -18 Ma

ages on cross cutting dikes from the Dudh Khola, and the large volume of Manaslu pluton



that cross cuts the South Tibetan detachment system, also allow for models in which

melting is enhanced by decompression. High-temperature deformation within the MCT

zone is the same age as migmatization at the top of the Greater Himalayan sequence and is,

at least in part, coeval with the South Tibetan detachment. These results demonstrate that

the migmatites cannot be significantly older than the leucogranites as suggested by Inger

and Harris (1993), and it is clear that migmatization within the MCT was coeval with

migmatization ~10 km above within the upper Greater Himalayan sequence.

Migmatization within the lower and upper portions of the Greater Himalayan

sequence at -22 Ma is consistent with the existence of a steep thermal gradient throughout

the entire sequence at this time, similar to that documented in the Everest, Nyalam and

Burhi Gandaki regions (Hodges et al., 1988; Hubbard, 1989; Hodges et al., 1992).

Although the source of heat responsible for this thermal structure is controversial, recent

results from thermal modeling (Huerta et al., in press) demonstrate that the radiogenic

material in the upper plate of a subduction complex, the amount of which is controlled by

the rates of accretion and erosion, can dominate the thermal structure of the upper plate, and

in fact, result in an inverted thermal gradient at temperatures consistent with those observed

in the Himalaya. The timing constraints presented here cannot unequivocally rule out either

granite melting model; however, it seems likely that in situ melting within the Greater

Himalayan sequence during syn-metamorphic displacement on the MCT facilitated normal

faulting which in turn may well have contributed to further melting by decompression.

Conclusions

U-Pb monazite ages provide evidence for high-temperature deformation and

migmatization within the MCT-zone between 18 and 22 Ma. Migmatization within the

upper Greater Himalayan sequence is loosely constrained to -22 Ma with additional

evidence for Oligocene regional metamorphism within the upper Formations of the Greater



Himalayan sequence. However, these data do not provide evidence of metamorphism

prior to 22 Ma within the lower Greater Himalayan sequence. Extension at the top of the

Greater Himalayan sequence was roughly coeval with 18-22 Ma thrusting on the MCT.

All foliation and ductile deformational structures are cut by an ~18 Ma leucogranite dike

that intrudes both the Greater Himalayan sequence and the Tibetan Sedimentary sequence

and postdates all ductile fabrics in the area and limits the age of regional metamorphism

and high-temperature deformation within the upper Greater Himalayan sequence.
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Table 1. U-Pb isotopic data for monazites and zircons.

Concentrations Atomic ratios Ages (Ma) Total
Fractions*& Weight U Pb* 206Pbt 208Pb* 2 0 6Pbt 207pbt 20 7 Pbt 2 06 Pb 20 7Pb 20 7Pb corr. Common
Properties (sg) (ppm) (ppm) 20 4Pb 20 6Pb 2 3 8U % err 23 5 U % err 206Pb % err 2 38 U 235 U 206Pb err coef. Pb (pg)

Samole MCT-1. migmatitic pelitic schist from the Main Central Thrust zone. lower Marsyandi riyer valley

a,M(1),cl,in 17.2 9869.7 63.64 2096.5 1.2394 0.00325 0.23 0.02064 0.32 0.04606 0.18 20.9 20.7 0.8 ±4.4 0.828 16.7

b,M(1),cl,in 9.3 7176.9 60.94 1358.1 1.8993 0.00334 0.22 0.02131 0.48 0.04634 0.40 21.5 21.4 15.3 ±9.5 0.571 10.4

c,M(1),cl,in 10.3 8013.1 60.16 1004.8 2.0161 0.00284 0.21 0.01809 0.50 0.04626 0.41 18.3 18.2 11.3 ±9.9 0.594 14.9

d,M(3),cl,in 14.4 9008.7 70.72 1907.7 1.6640 0.00333 0.24 0.02160 0.35 0.04699 0.23 21.5 21.7 48.7 ±5.4 0.762 14.4

e,M(5),cI,in 25.3 9818.9 74.42 2428.5 1.6817 0.00319 0.28 0.02036 0.33 0.04622 0.17 20.6 20.5 9.1 ±4.1 0.850 20.7

f,M(15),cl,in 27.9 7704.1 96.84 2379.7 2.2601 0.00436 0.23 0.03046 0.28 0.05069 0.14 28.0 30.5 226.5 ±3.1 0.882 24.9

g,M(20),cI,in 27.2 7174.8 65.12 1598.7 1.7882 0.00371 0.26 0.02460 0.34 0.04814 0.19 23.8 24.7 106.2 ±4.4 0.843 28.7

Sample MC-94-36. foliated leucogranite from Formation I aneiss. upper Marsyandi river valley

1a, M(1),dg 35.1 12609 147.4 3546.8 1.6302 0.00504 0.38 0.02836 0.41 0.04083 0.12 32.4 28.4 -298.5 ±3.0 0.958 39.6

1b,M(1),dg 29.1 13117 177.9 3248.2 1.4488 0.00549 0.49 0.03155 0.51 0.04170 0.12 35.3 31.5 -244.8 ±3.1 0.513 40.7

1c,M(1),Ig,cl 14.7 19959 156.3 4259.4 1.0810 0.00429 0.28 0.02381 0.32 0.04031 0.13 27.6 23.9 -331.2 ±3.3 0.912 18.6

1d,M(1),Ig,cl 27.5 18391 142.2 3721.2 1.1446 0.00408 0.42 0.02262 0.45 0.04026 0.15 26.2 22.7 -334.4 ±3.8 0.943 34.9

1e,M(1),lg,cl 39.3 14158 155.6 3688.1 1.5523 0.00488 0.49 0.02766 0.51 0.04114 0.12 31.4 27.7 -279.0 ±3.0 0.973 46.4

1f,M(4),Ig,cl 17.7 13725 151.7 3066.0 1.5598 0.00489 0.26 0.02845 0.31 0.04221 0.13 31.4 28.5 -214.2 ±3.2 0.912 24.4

le,M(6),Ig,cl 28.0 14249 139.2 3414.9 1.4753 0.00446 0.39 0.02566 0.43 0.04175 0.13 28.7 25.7 -248.1 ±3.4 0.950 39.9

1f,M(3),Ig,cl 135.4 13158 169.3 4099.8 1.7356 0.00533 2.57 0.03115 2.57 0.04240 0.11 34.3 31.1 -202.8 ±2.6 0.999 146.0

1e,Z(5),vc 11.0 4842.6 33.18 2418.8 0.0349 0.00736 0.22 0.05482 0.30 0.05403 0.22 47.3 54.2 372.3 ±4.9 0.682 10.2

1f,Z(16),d 6.0 4001.5 28.19 2461.7 0.0596 0.00745 0.28 0.05684 0.32 0.05533 0.25 47.9 56.1 425.5 ±5.6 0.658 4.6

Samole MC-93-88. foliated leucoaranite from formation IlIl aneiss. ugoer Marsvandi river vallev

2a,M(9),cl 10.3 10856 144.1 1914.8 2.3598 0.00447 0.26 0.02792 0.34 0.04528 0.34 28.8 28.0 -40.5 ±6.2 0.674 16.5

2b,M(4),cl,in 8.2 7692.0 105.4 533.19 2.3931 0.00444 0.31 0.02823 1.52 0.04611 1.38 28.6 28.3 3.1 ±33.0 0.513 34.2

2c,M(5),ci,in 66498 978.1 704.36 2.6315 0.00448 0.29 0.02794 0.59 0.04526 0.45 28.8 28.0 -41.9 ±10.9 0.664 245.0

2d,M(1),cl,in 8.9 16139 173.3 4641.7 1.2803 0.00534 0.26 0.03390 0.31 0.04602 0.17 34.3 33.9 -1.3 ±4.0 0.839 10.4

2e,Z(8),vc,in 6.0 565.67 36.1 2710.8 0.0593 0.06701 0.31 0.52288 0.39 0.05660 0.29 418.1 427.1 475.8 ±6.4 0.685 5.3

2f,Z(11),vc 17.0 1392.2 53.4 8838.4 0.0384 0.04087 0.20 0.31558 0.24 0.05600 0.13 258.2 278.5 452.5 ±2.9 0.833 6.9



Table 1. (continued)

Sample DK-1. undeformed leucogranite from Formation Ill gneiss. Dudh Khola

a,Z(1),cl,f 24.8 5029.5 13.96 916.92 0.0468 0.00291 0.23 0.01880

b,Z(2),cl,f 6.9 4892.7 12.73 741.9 0.0545 0.00288 0.53 0.01850

c,Z(5),d,f 1.0 87256 222.3 2382.7 0.019 0.0028 0.22 0.01822

d,Z(10),cl,p 41.0 4029.9 12.02 3690.1 0.0246 0.00325 0.24 0.02194

e,Z(20), p,in 59.0 4978.1 19.07 9804.7 0.0201 0.00417 0.31 0.03004

f,M(5),cl 11.9 10123 73.02 751.95 1.6742 0.00299 0.27 0.01862

g,M(4),cl 11.3 11158 82.61 650.66 1.7104 0.00302 0.30 0.01892

h,M(5),cl 16.9 10119 73.1 633.85 1.6480 0.003 0.29 0.01874

Sample DK-2. undeformed leucoaranite from the Annapuma Yellow Formation. Dudh Khola

a,M(>50),in 719.4 142.1 0.656 48.78 1.1958 0.003 1.00 0.01745

b,M(>50),in 602.2 150.64 0.684 52.94 1.1865 0.0003 0.96 0.01771

0.46

4.57

0.34

0.30

0.33

0.55

0.65

0.66

17.70

16.74

0.04680

0.04662

0.04679

0.04899

0.05226

0.04511

0.04550

0.04529

0.35

4.28

0.25
0.18

0.10
0.42
0.52

0.52

0.04244 17.03

0.04234 16.06

18.8

18.6

18.2

20.9

26.8

19.3

19.4

19.3

19.2

19.5

18.9
18.6

18.3
22.0

30.1

18.7
19.0
18.9

17.6

17.8

39.3
29.6

38.7
147.1

297.0

-49.7

-28.6

-39.9

±8.4

±103.0

±6.0

±4.2

±2.2

±10.3
±12.6

±12.8

0.664

0.570
0.677

0.803

0.955

0.664

0.626

0.640

25.4

8.4

6.5

9.2

7.8

30.9

37.9
52.3

-200.6 ±380 0.695 639.0

-206.2 ±360 0.725 505.0

Z=zircon, M=monazite. Number of grains analyzed in each fraction shown in parantheses. cl-clear, dg=dark green,
cores, f-flat crystals, p-prismatic crystals.

lg=light grean, in=inclusions, vc=visible

* Radiogenic Pb.

t Measured ratio corrected for spike and fractionation only.

* Corrected for fractionation, spike, blank, and initial common Pb

All errors are reported as 2a. Zircons and monazites analyzed using mixed 205Pb-233U-235U spike. Zircon and monazite dissolution and chemistry followed
methods of Krogh (1973) and Parrish (1987). Decay constants used are 238U - 0.15513 x 10-9 yr- 1, and 235U = 0.98485 x 10-9 yr-1 (Steiger and Jager, 1977).
Common Pb corrections were calculated using the model of Stacey and Kramers (1975) and the interpreted age of the sample. Pb blank ranged from 7 to 8 pg
and U blank ranged from 0 to 2 pg during this study. Data reduction and error analysis was accomplished using the algorithms of Ludwig (1989, 1990).
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Figure captions

Figure 1) Simplified regional tectonic map of central Nepal from Colchen et al. (1980)

with minor modifications from this study. The major structures include the Main Central

thrust (MCT), the South Tibetan detachment system (STDS), and the Thakkola graben.

The summits of Annapurna I (Ann I) Annapurna II (Ann II), and Manaslu are located by

black diamonds. The village of Chame and the city of Pokhara are marked by black

squares. The sample locations for U-Pb age determinations are labeled according to

sample numbers MCT-1, MC-93-88, MC-94-36, DK-1, and DK-2. The inset map shows

the location of the Annapurna-Manaslu region within the Himalaya.

Figure 2) (A) Mylonitic pelitic-schist (Grt+St+Ky +Bt+Ms+Pl+Qtz) from the Main

Central Thrust zone (Sample MCT-1 site). S-C mylonitic textures indicate a top-to-the-

south shear-sense. Pencil for scale. (B) Embayed staurolite crystal. (C) Garnet with

inclusion rich core. Textures within this assemblage indicate that the rock was quenched

during the prograde reaction St=Grt+bt+ky+H 20.

Figure 3) (A) Deformed leucogranite (sample MC-94-36) within sillimanite-grade biotite-

gneiss of Formation II. Hammer for scale. (B) Undeformed leucogranite intrudes

sillimanite-grade gneiss of the Greater Himalayan sequence.

Figure 4) Concordia plot from U-Pb monazite analyses obtained from mylonitic pelitic

schist sample MCT- 1. Four nearly concordant monazite analyses plot between 20 and 21

Ma indicating metamorphic monazite growth at this time. The single concordant analyses



at 18 Ma is either the result of Pb-loss while the rock remained at elevated temperatures or

continued monazite growth at 18 Ma.

Figure 5) (A) Large dark green irregularly shaped monazite found both within leucogranite

sample MC-94-36 and within thin sections of Formation III augen gneiss and Formation II

biotite-gneiss. These grains yield analyses within the "older" half of the spread of monazite

analyses from this sample (Figure 7) and are thought to be inherited from the parent

gneiss. (B) Light green gem-like monazites from leucogranite sample MC-94-36 plot

within the younger half of the spread of analyses and are thought to have crystallized

during anatexis and contain an inherited component from the larger dark green crystals

shown in Figure 5A.

Figure 6) (A) Large dark green anhedral monazite (similar to those shown in Figure 5 A)

surrounded by muscovite. (B) Monazite concentrated at the reaction boundary of

muscovite and quartz. Clear gem-like monazites are typical of the "younger" analyses

from sample MC-94-36.

Figure 7) Concordia plots from U-Pb monazite and zircon analyses obtained from two

deformed leucogranite samples. Note that error ellipses are for the most part smaller than

symbols used for location of plotted analyses. See text for explanation and discussion of

data.

Figure 8) (A) Gem-like monazites analyzed from undeformed leucogranite sample DK- 1.

(B) Clear, flat, semi-equant zircons analyzed from sample DK- 1. These zircons seem to

be among the few zircons from Himalayan leucogranites that yield nearly concordant



results (see Figure 9, fractions a, b, and c). (C) Zircons from sample DK- 1 with a large

degree of inheritance.

Figure 9) Monazite and zircon analyses from undeformed leucogranite dike samples DK-1

and DK-2 from the Dudh Khola valley.
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Chapter 4

Insights into the Oligocene thermal history of the central Himalaya from "Ar/"Ar
thermochronology, Marsyandi Valley, central Nepal

Abstract

In the Marsyandi valley of central Nepal, a major strand of the South Tibetan

detachment system - the 18-22 Ma Chame detachment - places epidote-amphibolite to

amphibolite facies calc-silicate rocks and marbles of the Tibetan sedimentary sequence on

amphibolite facies pelitic gneisses and calc-silicate rocks of the Greater Himalayan

sequence. Although the resulting metamorphic discontinuity is minor and sometimes

cryptic, "Ar/-" Ar thermochronologic results from the area reveal that the hanging wall and

footwall of the detachment had distinctive thermal histories. Hanging wall phlogopites and

biotites yield cooling ages of 27.1 to 29.9 Ma, compared with footwall biotite ages of 14.1

to 16.6 Ma. U-Pb monazite thermochronology demonstrates that the Greater Himalayan

sequence experienced peak amphibolite facies conditions ca. 22 Ma, but the 40Ar/39Ar

results require hanging wall metamorphism to be an Oligocene (or older) phenomenon.

These events represent the "Neohimalayan" and "Eohimalayan" metamorphic phases

proposed by previous workers in the central Himalaya. Some of the dated hanging wall

phlogopites grew synchronously with development of SW-vergent macroscopic folds in

the Tibetan sedimentary sequence, implying that Eohimalayan metamorphism was

associated with an important phase of crustal shortening in this sector of the Himalaya.

Despite the intensity of Neohimalayan metamorphsim below the Chame

detachment, evidence for Eohimalayan metamorphism and igneous activity is preserved in

the footwall rocks of the Marsyandi drainage. Inherited ca. 35 Ma monazites of either

metamorphic or igneous origin have been found in the upper Greater Himalayan sequence,
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and one hornblende separate from the uppermost footwall yields a *Ar/Ar age of

30.0±3.0 Ma. This hornblende date and a similar result from the same structural level in

the nearby Kali Gandaki valley, if robust, suggest that the duration of the Neohimalayan

event was extremely short, probably less than 1 million years, and that peak temperatures

in the upper part of the Greater Himalayan sequence were not substantially greater than

about 900K.

Introduction

The Himalayan orogen is the result of roughly 50 million years of continental

collision between the Indian and Eurasian plates (Patriat and Achache, 1984; Dewey et al.,

1988). The high part of the range, the Greater Himalayan sequence, comprises a thick

section of accreted continental crust derived from the subducting Indian plate (LeFort,

1975). The Greater Himalayan sequence was metamorphosed at temperatures of 870-

1070K at mid-crustal depths during intracontinental subduction (see Hodges et al., 1988,

and Pecher, 1989, for reviews). Most thermochronologic data from the central part of the

range record cooling after Miocene or "Neohimalayan" metamorphism and anatexis, and

there is very little known about the previous 30 million years of convergent tectonics.

There is petrographic evidence for an earlier period of regional metamorphism, commonly

referred to as the "Eohimalayan" phase (Brunel and Kienast, 1986; Hodges et al., 1988;

Pecher, 1989). However both phases could have been part of a single protracted

metamorphic event, and without supporting geochronologic data it has remained unclear

whether or not there was significant crustal thickening within the Indian plate prior to the

Miocene.

Over the past decade, a few isolated Oligocene hornblende and monazite cooling

ages have been obtained from the Greater Himalayan sequence (Treloar et al., 1986;

Hodges et al., 1994; Hodges et al., in press; Vannay and Hodges, in press; Chapter 3). In
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the central part of the orogen, 35-36 Ma monazite ages from two separate locations (but

within the same orthogneiss horizon), suggest that there was either Oligocene

metamorphism or magmatism within the upper Greater Himalayan sequence (Hodges et

al., in press; Chapter 3). In addition, a 37 Ma homblende cooling age from a similar

structural level (Vannay and Hodges, in press) provides further evidence of a pre-Miocene

thermal event. However, the same rocks that have the Oligocene homblende and monazite

ages have a strong Miocene metamorphic and structural overprint. Miocene monazite ages

for leucogranitic melt layers that are concordant with the oldest deformational fabric in the

Greater Himalayan sequence make it very difficult to correlate the Oligocene ages with any

structures (Chapter 3; Hodges et al., in press).

In this paper, we present *Ar/39 Ar thermochronologic data for a suite of samples

collected from the hanging wall and footwall of an extensional shear zone at the top of the

Greater Himalayan sequence, the Chame detachment. The Chame detachment is part of

the South Tibetan detachment system (Burchfiel et al., 1992), a family of primarily north-

dipping extensional faults that form the upper boundary of the Greater Himalayan sequence

along the length of the orogen. They are thought to have developed through gravitational

instability of the Himalayan topographic front in Early Miocene time (Burchfiel and

Royden, 1985). The South Tibetan detachment in other parts of the Himalaya, such as in

eastern Nepal and southern Tibet, juxtaposes unmetamorphosed rocks of the Tibetan

Sedimentary sequence against upper amphibolite facies rocks of the Greater Himalayan

sequence (Burchfiel et al., 1992). In contrast, although there is structural evidence for

normal faulting along the Chame detachment (Chapter 2), there is not an obvious break in

metamorphic grade across the fault. However, thermochronologic results from the Chame

detachment transect indicate a dramatic contrast in cooling histories across the fault. Data

from the upper plate rocks provide clear evidence of Oligocene regional metamorphism
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synchronous with the development of major deformational structures in the Tibetan

Sedimentary sequence.

Geologic setting

The upper Marsyandi valley is a major drainage that lies between the Annapurna

and Manaslu massifs in central Nepal (Figures 1 and 2). The uppermost samples collected

for thermochronology are from the basal unit of the Tibetan sedimentary sequence known

as the Cambrian(?) Annapurna Yellow Formation. This unit is a 5 km-thick section of

complexly folded amphibolite- to epidote-amphibolite-facies marble. Carbonate solvus

thermometry indicates temperatures of 780-800K for prograde metamorphic conditions

within the upper half of the Annapurna Yellow Formation (Schneider and Masch, 1993).

Throughout the unit, the preferred alignment of phlogopite defines an S 1 foliation. This

fabric is deformed by open to tight F2 folds that verge primarily to the W and SW. An S2

foliation is defined by secondary growth of phlogopite, axial planar to F2 folds. The S2

foliation is variably developed throughout the section but is most intense within the basal

200 meters of the Annapurna Yellow Formation, where it strikes NE-SW and dips

moderately to the NW, concordant with the mylonitic foliation in the underlying Greater

Himalayan sequence. Within this zone, F2 folds are sheared out parallel to S2 foliation

planes (Chapter 2).

A northwest-dipping shear zone, the Chame detachment, juxtaposes the Annapurna

Yellow Formation with calc-silicate gneiss of the Greater Himalayan sequence (Chapter 2).

The Chame detachment has a significant component of top down-to-the-west, normal-

oblique slip. Synkinematic growth of minerals suggests that shearing occurred at

sillimanite-grade and lasted through retrograde conditions at greenschist-grade (Chapter 2).

The remaining samples were collected from the upper 5 km of the Greater

Himalayan sequence. In the Marsyandi region this includes a variety of sillimanite-grade
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calcareous and pelitic metamorphic rocks intruded by abundant concordant and cross-

cutting leucogranites (see Chapter 2 for a detailed description of lithologies).

Thermobarometry of a pelitic gneiss 3 km below the top of the Greater Himalayan

sequence indicates final equilibration at 870±40K and 630 ±80 MPa (Chapter 5).

Although there is strong evidence that these data do not record equilibrium conditions,

phase equilibrium constraints suggest that Neohimalayan temperatures at this level were at

least 900K. The upper 3 km of the Greater Himalayan sequence contains a composite

foliation (S2) that strikes NE and dips 250-450 NW. A mylonitic S2(?) foliation, parallel

to the Chame detachment deforms the upper 1000 m of the Greater Himalayan sequence,

and D2 S-C fabrics indicate west-directed shearing at sillimanite-grade conditions (Chapter

2).

Previously obtained U-Pb monazite data from both foliated and cross-cutting

leucogranites within the footwall gneisses reflect Middle Miocene anatexis and bracket

displacement on the Chame detachment to between 18 and -22 Ma (Chapter 3). Monazite

analyses have an Oligocene inherited component of -35 Ma (Chapter 3), implying that the

Greater Himalayan section experienced Oligocene metamorphism or magmatism.

Previous *Ar/39Ar analysis of muscovite that defines S2, indicates that the upper Greater

Himalayan sequence passed through the muscovite closure temperature (ca. 625K;

McDougall and Harrison, 1988) at 17.5 Ma (Coleman and Hodges, 1995).

Thermochronology

Thermochronologic analyses of samples from the upper Marsyandi valley were

originally intended for comparison of the T-t histories of the footwall and hanging wall of

the Chame detachment. The samples collected for thermochronology fall into three

categories (see Figure 2 for sample locations). The first category includes metamorphic

rocks from the footwall of the Chame detachment (MC-93-88, MC-93-47, MC-93-91, and
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MC-93-52); the second includes metamorphic rocks from the hanging wall of the

detachment (MC-93-54, MC-93-98, and MC-93-92); and the third includes one sample

from a cross-cutting and undeformed leucogranite dike that intrudes the hanging wall (MC-

93-92). Minerals analyzed by the *Ar/9 Ar method include biotite, phlogopite, and

homblende. Estimated closure temperatures are 580K for biotite, 680K for phlogopite,

and 780K for hornblende (McDougall and Harrison, 1988). Analytical procedures are

given in the Appendix and results are summarized in Table 1. Complete data for each

sample may be found in Table 2. All ages and isotopic ratios are reported at the 2a

uncertainty level.

Footwall samples

Footwall samples include biotite-bearing gneiss and schist (MC-93-47 and MC-93-

91), foliated leucogranite (MC-93-88), and amphibolite gneiss (MC-93-52). Biotite and

homblende define well-developed S2 and L2 fabrics in these rocks and can be used to

constrain the minimum age of deformation.

Biotite *Ar/Ar results

Biotites from MC-93-88, MC-93-47, and MC-93-91 were analyzed by incremental

laser step heating. All three samples yield flat release spectra with plateau ages ranging

from 15.53± 0.31 Ma to 16.9 ± 0.2 Ma (Figures 3a - 6a). Inverse isochron ages range

from 14.87 ± 0.69 Ma and 16.63 ± 0.65 Ma (Figures 3b - 6b). While within uncertainty

of the plateau ages, the isochron ages are substantially less precise because most data

cluster near the 31 Ar/'*Ar axis, resulting in poorly constrained (but essentially atmospheric)

initial*oAr/*Ar ratios of 358 ± 38, 280 ±300, and 380 ± 120.

Hornblende *Ar/ Ar results

Sample MC-93-52 is a layered amphibolite gneiss containing hornblende,

plagioclase, biotite and quartz. Hornblende was analyzed by furnace incremental heating
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(Table 2). The release spectrum (Figure 7a) is characterized by a flat central region

(defining a plateau age of 35.28 ± 0.88 Ma) but inconsistent results at the lowest and

highest temperatures of the experiment. Much of the last 20% of 39ArK released was

associated with significantly older ages (>50 Ma). Since these ages are improbably old

(nominally as old as India-Asia collision in this sector of the range), the sample almost

certainly contains a significant amount of excess "Ar. Unfortunately, the high

concentration of *Ar in the trapped component makes it difficult to estimate the true

cooling age of this sample more precisely than 30.0±3.0 Ma.

Hanging wall samples

Samples from the hanging wall include a biotite schist from the upper half of the

Chame detachment shear zone (MC-93-54), a coarse-grained phlogopite marble in the

immediate hanging wall of the Chame detachment (MC-93-93), and a fine-grained

phlogopite marble (MC-93-98) from 3 km above the detachment. Phlogopite in MC-93-

98 defines an SI foliation that is folded by SW-verging F2-folds.

Phlogopite *Ar/Ar results

Laser step heating of MC-oDI-93 phlogopite resulted in a relatively flat release

spectrum (Figure 8) with a plateau age of 29.9 ± 0.7 Ma (57% of the total 39ArK released).

Nine of the ten increments (80% 39Ark) define an isochron age of 29.7 ± 1.2 Ma, within

uncertainty of the plateau age. Furnace step heating of sample MC-93-98 phlogopite also

resulted in a robust plateau (100% 39ArK) (Figure 9) with an age of 27.4 ± 0.5 Ma and a

similar but less precise isochron age of 26.7 ± 1.4 Ma.

Biotite *Ar/PAr results

Laser step heating of MC-93-54 biotite resulted in a well-defined inverse isochron

with an MSWD of 1.32 and a 40 Ar/36Ar intercept of 280 ± 10, close to the modem
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atmospheric value (Figure 10). The isochron age is 29.5 ± 1.2 Ma, within uncertainty of

the plateau age for this samples 28.7 ± 0.5 Ma (98% 39ArK).

Cross-cutting leucogranite within hanging wall

Biotite 'Ar/9 Ar results

Roughly 97% of the gas released by laser incremental heating of MC-93-92 biotite

define a plateau age of 16.4 ± 0.3 (Figure 10a). On the isotope correlation diagram (Figure

10b), all but the last three increments fall on an isochron, indicating an age of 16.3 ±0.7

Ma.

Discussion

The combined results imply a significant contrast in cooling histories between

foliated rocks from the footwall and hanging wall of the Chame detachment. Footwall

mica cooling ages range from ~ 14 to 17 Ma, while hanging wall ages range from ~ 27 to

30 Ma. Given that trioctahedral micas have a propensity to incorporate excess *Ar in

many environments (e.g., Roddick et al., 1980), one interpretation of the observed age

discrepancy in the Marsyandi transect is that the hanging wall micas preferentially

incorporated an unconstrained excess component. However, this possibility can be

discounted using the isotope correlation diagrams in Figures 7-9. The hanging wall data

consistently suggest either an atmospheric or a well defined excess component, and

isochron ages for the hanging wall samples are virtually indistinguishable from plateau

ages (which assume a "Ar/*Ar ratio of 295.5). We conclude that prograde

metamorphism of the Tibetan sedimentary sequence in this transect is at least 30 Million

years old.

The footwall hornblende analysis may provide further evidence of Oligocene

metamorphism. In this case, the isotope correlation diagram provides evidence of

significant contamination with an excess *Ar component, and the result is a 2a error of
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about 10% on the calculated age of the sample. However, the hornblende age is

significantly greater than the ca. 22 Ma age of prograde Miocene metamorphism at this

structural level, implying that the hornblende is not Neohimalayan. This conclusion is

supported by another pre-Miocene *Ar/ 39Ar hornblende age obtained at roughly the same

structural level in the nearby Kali Gandaki transect by Vannay and Hodges (in press), and

by Oligocene U-Pb monazite ages from the Modi Khola transect (Hodges et al., in press,

Figure 1). More importantly, a deformed leucogranite collected about 1.5 km structurally

below the Marsyandi hornblende contained - 35 Ma metamorphic or igneous monazite

(Chapter 3).

The preservation of Ordovician *Ar/ 39Ar hornblende ages in rocks that experienced

sillimanite grade Miocene metamorphism presents an interesting thermal problem. Given

our knowledge of the diffusivity of Ar in homblende, the Miocene Neohimalayan event

must have been very brief; otherwise, the hornblendes would have been reset. We have

explored this in a semi-quantitative way using the MacArgon software package of Lister

and Baldwin (in press). MacArgon permits the forward modeling of release spectra for

minerals based on a user-definable temperature-time history. The approach is based on

straightforward diffusion theory that is described in detail by McDougall and Harrison

(1988), Giletti (1974), Harrison et al. (1985), and Lister and Baldwin (in press).

By trial and error, we found that the temperature-time trajectory shown in Figure

11, which is consistent with all petrologic and U-Pb geochronologic data from the

Marsyandi transect, would produce homblende, muscovite, and biotite ages such as those

reported in this paper and in Coleman and Hodges (1995). Specific modeled release

spectra are shown in Figures 12-14. It is important to note that the exact forms of these

spectra are dependent on the assumption that Ar is released from these minerals in the

laboratory exclusively through volume diffusion. This is certainly incorrect, because
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hydrous phases undergo a series of dehydroxylization reactions that release Ar during

vacuum heating (Lee et al., 1991; Wartho et al., 1991; Hodges et al., 1994). However, the

relatively flat, high-temperature segments of the modeled spectra probably correspond to

plateau (or near-plateau) ages that would be obtained for samples subjected to the assumed

T-t trajectory.

The modeled results should not be regarded as unique; ages similar to those

obtained for Marsyandi samples could almost certainly be produced by somewhat different

T-t histories. However, all viable histories that we examined shared some characteristics:

e An initial period of high-grade Eohimalayan metamorphsim prior to 35 Ma.

e Relatively rapid cooling from the Eohimalayan metamorphic peak.

* Extremely rapid heating (>500K/m.y.) to peak Neohimalayan temperatures

(assumed to be at least 900K based on petrologic constraints in Chapter 5).

* Cooling from the Neohimalayan peak to less than 800K in less than 1 million years

e Maintenance of temperatures roughly corresponding to greenschist facies for at

least five million years after the Neohimalayan peak.

The exact mechanism by which the upper part of the Greater Himalayan sequence

could have been heated to Neohimalayan temperatures in such a short time remains

enigmatic. In any case, the hornblende data suggest strongly that the Neohimalayan event

in this part of the Himalaya was short lived.

Tectonic Implications

The '*Ar/39Ar thermochronologic results presented here indicate that the Chame

detachment juxtaposes rocks with very different temperature-time histories. The hanging

wall retains evidence of an Oligocene metamorphic history, but such evidence has been all

but obliterated in the footwall by a strong Miocene overprint. There is no evidence of

Miocene metamorphism in the cooling ages of metamorphic micas from the hanging wall,
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indicating that these rocks preserve syn-metamorphic deformation that is at least -30 Ma.

The hanging wall lithologies preserve an Oligocene S, foliation defined by the preferred

alignment of phlogopite. Throughout the Annapurna Yellow Formation, S, is folded by

SW and W verging F2 folds. In some areas a second generation of phlogopite is axial

planar to the F2 folds, suggesting that the phlogopite grew both prior to and during folding.

Cooling ages from both phlogopite that defines S, and S2 demonstrate that S, foliation

development and F2 folding are both Oligocene phenomena. This conclusion is consistent

with the observation that south-west verging F2 folds are sheared out at the base of the

Annapurna Yellow formation by the Chame detachment (Chapter 2). Oligocene

homblende ages and monazite ages from the upper Greater Himalayan sequence, in the

footwall of the Chame detachment, provide evidence of regional metamorphism at a deeper

structural level during thrusting. The conclusion that southwest-directed thrusting occurred

along the leading edge of the Indian plate prior to Miocene time is inconsistent with the

tectonic model proposed by Yin et al. (1994), which maintained that the last major

thrusting prior to MCT development occurred along the 27-23 Ma Gangdese thrust, more

than 200 km to the north of the high Himalaya and within the Eurasian plate. Our data

suggest a more complicated history of foreland propagating thrusts.

A separate but equally important tectonic problem is understanding what

mechanism cooled the Greater Himalayan sequence during the Miocene. The Greater

Himalayan sequence preserves a steep to inverted Miocene metamorphic field gradient

with temperatures of at least 900K from the base of the section to the top (Chapters 3 and

4; Hubbard, 1989). The two main mechanisms by which orogens are unroofed and cooled

are erosion and tectonic denudation. Thermal models demonstrate that the unroofing rate

of an evolving orogen plays a key role in the resulting thermal structure (Ruppel et al.,

1988; Royden, 1993; Huerta et al., in press). It is also known that rates of surficial erosion
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in mountain ranges with rapid uplift rates are comparable to rates of tectonic erosion (e.g.,

Adams, 1980; Burbank, et al., 1996). Thus, in an orogen such as the Himalaya, where

present and past surficial erosion rates are high (1 to 10 mm/yr) (Burbank et al., 1996;

Copeland and Harrison, 1990) and where extension was active during convergence

(Burchfiel and Royden, 1985; Hodges et al., 1992), it is not necessarily clear which

mechanism was more important. Although our data do not constrain the cooling or

unroofing rate on the Chame detachment, it seems most reasonable to attribute the cooling

of the Greater Himalayan sequence in the Marsyandi transect to unroofing along the

Chame detachment. This interpretation is supported by the close agreement in cooling ages

(-16.5 Ma) between biotite from a leucogranite dike which cross cuts foliation within the

hanging wall and biotite from the footwall foliation.
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Appendix

Analytical methods

Samples were crushed using standard crushing and grinding techniques and sieved

to obtain fractions close to the actual grain sizes of micas, and smaller than the actual grain

sizes of homblendes(in order to avoid composite grains). Pure mineral separates were

prepared using standard heavy liquid, magnetic, and paper shaking methods. Hornblendes

were also cleaned with a high-power ultrasonic probe. Hornblende and some of the mica
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separates were hand picked to achieve the desired purity (>99%). The separates were

washed in water, acetone, and ethanol prior to being wrapped in individual Al foil packets

for irradiation. Samples were irradiated in position 8D of the McMaster University reactor

for 7 hours with Cd shielding. Ca, K, and Cl production factors during irradiation were

established by analyzing reagent grade CaF2, K2 S0 4 , and KCl included in the irradiation

package. The fast neutron flux was monitored using Mmhb- 1 hornblende (520.4 Ma,

Samson and Alexander 1987) and Fish Canyon sanidine (20.8 Ma, Cebula et al. 1986).

Irradiated samples were analyzed at the Cambridge Laboratory for Argon Isotope Research

at MIT using a MAP 215-50 mass spectrometer. Gas was extracted using either a 10 W

Ar-ion laser or a double-vacuum resistance furnace. During the course of these analyses,

laser blanks for M/e 40 and 36 (moles) were 3 x 10-16 and 5 x 10-l8, respectively. For

furnace analyses, over the 800 - 1500 K range, M/e 40 and 36 blanks (moles) ranged from

6 x 10-1 and 1 x 10-16, to 3 x 10-" and 3 x 10-8, respectively. Additional details of

laboratory procedures, descriptions of facilities, and propagation of uncertainties can be

found in Hodges et al. (1994).
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Table 1 Summary of "Ar/" results'

Sample Mineral Extraction Plateau Age 39Ar Isochron/ 39Ar ("'Ar/ Ar) MSWD*
method (Ma)b (%) Errorchron Age ()

MC9388 Bt Laser 16.9±0.2 100 16.6±0.7 98 360±40 1.9
MC9391 Bt Laser 15.0±0.2 100 14.8±0.7 100 380±120 1.75
MC9347a Bt Laser 14.7±0.2 100 13.0±0.9 77 445±67 8.9
MC9347b Bt Laser 15.5±0.3 71 15.6±1.1 71 280±300 5.02
MC9352 Hbl Furnace 35.3±0.9 75 30.0±3.0 100 820±190 1.64
MC9393 Phl Laser 29.9±0.7 57 29.7±1.2 81 301±53 1.05
MC9398 Phl Furnace 26.8±0.4 100 26.7±1.4 77 480±400 2.2
MC9354 Bt Laser 28.7±0.5 98 29.5±1.2 100 250±20 1.32
MC9392 Bt Laser 16.8±0.3 97 16.6±0.7 56 280±10 1.14

'All uncertainties quoted at the 2a confidence level. b Calculated following methods outlined in Hodges et al. (1994).
* Percentage of total '9Ar in the sample that was released in the heating steps included in the plateau. d Calculated using
a least squares linear regression with correlated errors (York 1969). 'Percentage of total '9Ar in the heating steps used
for the regression. g Mean squared weighted deviation.



Sample: MC-93-88 biotite
J Value: 5.93E-04 + 2.26E-05

Amps 36/40 (36/40)err 39/40 (39/40)err 39ArK moles Cum. 39ArK% 40Ar*% Age (Ma) err w/o J

11.5 2.99E-03 2.88E-04 1.22E-02 1.80E-04 2.38E-14 0.46 11.78 10.3 7 7.41 0.3
12.5 2.21E-03 9.88E-05 2.28E-02 1.11E-04 8.66E-14 2.14 34.74 16.22 1 1.36 0.1

13 7.88E-04 9.67E-05 4.67E-02 3.17E-04 2.25E-13 6.5 76.7 17.49 1 0.66 0.1
13.5 3.88E-04 5.22E-05 5.45E-02 3.97E-04 4.12E-13 14.49 88.53 17.31 1 0.33 0.0

14 2.19E-04 4.41E-05 5.88E-02 3.12E-04 5.26E-13 24.67 93.52 16.94 1 0.25 0.0
14.5 3.08E-04 4.50E-05 5.76E-02 2.28E-04 4.92E-13 34.2 90.87 16.82 1 0.25 0.0

15 2.26E-04 6.29E-05 6.06E-02 2.95E-04 5.24E-13 44.35 93.3 16.4 1 0.33 0.0
16 1.16E-04 3.98E-05 6.08E-02 1.30E-04 8.54E-13 60.89 96.56 16.92 1 0.21 0.0
18 1.20E-04 3.45E-05 6.09E-02 2.87E-04 1.10E-12 82.19 96.43 16.87 1 0.19 0.0
20 7.99E-05 2.54E-05 6.24E-02 1.81E-04 9.19E-13 100 97.62 16.66 1 0.14 0.0

39Ar Wtd. Mean Age: 16.86 0.23

Sample: MC-93-91 biotite
J Value: 5.93E-04 + 2.26E-05

Amps 36/40 (36/40)err 39/40 (39/40)err 39ArK moles 40Ar*% Age (Ma) err

13 3.73E-04 1.07E-04 6.26E-02 6.21E-04 1.05E-15 6.25 88.55 15.16 0.56
13.5 2.36E-04 7.62E-05 6.32E-02 3.43E-04 1.49E-15 15.18 92.59 15.69 0.39

14 2.71E-04 3.95E-05 6.52E-02 2.16E-04 1.85E-15 26.22 91.53 15.04 ± 0.2
14.5 1.47E-04 7.26E-05 6.88E-02 1.OOE-03 1.75E-15 36.67 95.15 14.82 0.39

15 1.38E-04 6.85E-05 6.77E-02 2.52E-04 1.57E-15 46.03 95.42 15.1 ± 0.32
16 2.04E-04 3.57E-05 6.68E-02 5.43E-04 2.31 E-15 59.84 93.5 15 0.21
18 1.59E-04 1.60E-05 6.71E-02 4.06E-04 4.58E-15 87.21 94.83 15.14 0.12
20 1.69E-04 6.13E-05 6.66E-02 3.77E-04 2.14E-15 100 94.54 15.22 0.3

39Ar Wtd. Mean Age: 15.13 t 0.23



Sample: MC-93-47 biotite, Split B
J Value: 5.93E-04 +

Amps 36/40

13
13.5

14
14.5

15
16
18
20

3.81 E-04
1.01 E-04
1.79E-04
1.47E-04
2.52E-04
6.96E-05

-6.26E-05
-1.06E-04

(36/40)err 39/40 (39/40)err 39ArK moles

9.15E-05
1.09E-04
1.02E-04
8.60E-05
1.31 E-04
5.69E-05
4.35E-05
1.36E-04

6.22E-02
6.34E-02
6.65E-02
6.56E-02
6.58E-02
6.57E-02
6.46E-02
6.51E-02

3.92E-04
4.13E-04
3.50E-04
3.03E-04
3.94E-04
3.84E-04
4.70E-04
8.72E-04

1.50E-15
1.43E-15
1.31 E-15
1.28E-15
1.35E-15
2.69E-1 5
3.19E-15
7.77E-1 6

40Ar*% Age (Ma)

11.09
21.66
31.37
40.84

50.8
70.69
94.26

100

88.71
97

94.7
95.63
92.53
97.92

101.82
103.09

15.2
16.3

15.18
15.54
14.98
15.89

16.8
16.89

39Ar Wtd. Mean Age: 15.84 ± 0.27

2.26E-05

0.47
0.55
0.49
0.42
0.63
0.29
0.24
0.69



Sample: MC-93-52 hornblende
J Value: 5.93E-04 + 2.26E-05

T, K 36/40

1050
1100
1150
1175
1200
1225
1250
1275
1300
1325
1350
1400
1500
1800

7.46E-04
4.62E-04
2.31 E-04
2.25E-04
1.25E-04
4.22E-04
5.02E-04
3.92E-04
3.20E-04

-1.37E-05
1.20E-03
1.37E-03
1.74E-03
4.09E-04

(36/40)err 39/40 (39/40)err 39ArK moles

1.34E-04
1.21 E-04
5.45E-05
1.73E-04
7.62E-04
6.26E-04
4.56E-04
1.83E-04
5.47E-04
1.65E-03
2.69E-03
2.52E-03
2.24E-03
5.81 E-04

1.64E-02
2.69E-02
2.79E-02
2.75E-02
2.45E-02
2.06E-02
1.75E-02
1.81 E-02
1.92E-02
1.99E-02
1.67E-02
1.68E-02
1.67E-02
2.90E-02

2.65E-04
1.52E-04
1.40E-04
1.77E-04
9.25E-04
9.58E-04
5.80E-04
2.57E-04
3.05E-04
1.24E-03
3.03E-03
2.12E-03
2.08E-03
4.99E-04

2.22E-14
4.63E-1 4
9.48E-1 4
4.34E-14
5.86E-1 5
3.78E-15
6.01 E-1 5
1.89E-14
8.06E-1 5
2.53E-1 5
1.24E-15
1.20E-15
1.32E-15
8.27E-1 5

40Ar*% Age (Ma)

8.42
25.96
61.88
78.33
80.55
81.99
84.27
91.43
94.49
95.44
95.91
96.37
96.86

100

77.85
86.18
92.96
93.15
96.13

87.4
85.06

88.3
90.4

100.25
64.55
59.45
48.55
87.71

50.13 ±
34.09 ±
35.37 ±
35.95 ±
41.57 ±
44.98 ±
51.46 ±
51.69 ±
49.83 ±
53.25 ±
41.07 ±
37.55 ±
30.85 ±
32.11 ±

39Ar Wtd. Mean Age: 37.84 ± 0.67

2.63
1.41
0.63
1.96
9.73
9.61

8.2
3.2

8.81
25.7
50.5
46.8
41.9
6.24



Sample: MC-93-93 phlogopite
J Value: 5.93E-04

36/40 (36/40)

1.10E-03 2.43
6.11E-04 1.29
4.19E-04 1.39
2.72E-04 1.10
1.40E-04 1.09
2.73E-04 1.18
3.37E-04 7.98
1.71E-04 6.40
1.06E-04 5.21
9.18E-06 2.52

err

E-04
E-04
E-04
E-04
E-04
E-04
E-05
E-05
E-05
E-04

39/40

2.45E-02
2.97E-02
3.16E-02
3.18E-02
3.07E-02
3.27E-02
3.20E-02
3.35E-02
3.49E-02
3.40E-02

2.26E-05

(39/40)err 39ArK moles

8.80E-04
2.53E-04
4.09E-04
4.82E-04
3.09E-04
2.69E-04
8.16E-04
2.29E-04
2.19E-04
4.23E-04

3.03E-16
5.63E-16
4.42E-16
3.93E-16
5.25E-1 6
4.69E-1 6
4.34E-16
6.42E-1 6
1.25E-15
1.57E-16

40Ar*% Age (Ma)

5.85
16.73
25.27
32.86

43
52.07
60.46
72.86
96.97

100

67.28
81.76

87.4
91.75
95.65

91.7
89.82
94.69

96.6
99.47

39Ar Wtd. Mean Age:

29.25
29.28
29.41
30.71

33.1
29.88
29.84

30.1
29.46
31.09

30.17 ±

Sample: MC-93-98 phlogopite
J Value: 5.93E-04

36/40 (36/40)

2.70E-03 9.17
1.85E-03 4.29
4.74E-04 1.28
3.23E-04 1.36
2.60E-04 1.48
1.54E-04 1.27
5.74E-05 1.32
1.51 E-04 8.95
4.81 E-05 2.46
7.16E-05 7.34

err

E-04
E-04
E-04
E-04
E-04
E-04
E-04
E-05
E-05
E-05

39/40

3.59E-03
2.46E-02
3.43E-02
3.74E-02
3.80E-02
3.77E-02
3.72E-02
3.77E-02
3.88E-02
3.77E-02

2.26E-05

(39/40)err 39ArK moles

1.14E-03
5.34E-04
2.96E-04
3.80E-04
2.42E-04
3.16E-04
2.25E-04
2.86E-04
2.11E-04
3.33E-04

6.85E-1 6
1.44E-14
5.29E-14
5.34E-1 4
4.93E-14
5.33E-14
4.1OE-14
7.70E-1 4
2.96E-13
1.07E-13

40Ar*% Age (Ma)

0.09
2.02
9.12

16.29
22.91
30.06
35.56
45.89
85.65

100

20.17
45.22
85.76
90.19
92.06
95.19
98.03
95.28
98.29

97.6

59.26
19.6

26.62
25.72

25.8
26.94
28.06
26.94
26.98

27.6

39Ar Wtd. Mean Age:

Amps

11.5
12.5

13
13.5

14
14.5

15
16
18
20

3.26
1.38
1.42
1.17
1.15
1.15
1.08
0.63

0.5
2.33

0.51

T,K

900
950

1000
1050
1100
1150
1200
1250
1350
1550

80.5
5.47
1.19
1.16
1.22
1.07
1.12
0.77
0.25
0.65

26.84 t 0.44



Sample: MC-93-54 biotite
5.93E-04

(36/40)err

3.58E-04
7.74E-04
7.27E-04
2.75E-04
3.61 E-04
1.92E-04
1.51 E-04
3.71 E-05
7.29E-05
2.38E-05

39/40

8.40E-03
1.27E-02
2.14E-02
1.31 E-02
2.59E-02
2.67E-02
3.05E-02
3.11E-02
3.21 E-02
3.35E-02

2.26E-05

(39/40)err

5.86E-04
2.80E-03
1.44E-03
5.29E-04
7.97E-04
6.67E-04
5.75E-04
4.59E-04
3.81 E-04
1.58E-04

39ArK moles

9.67E- 17
2.05E-17
5.66E-1 7
9.99E- 17
1.33E-16
2.83E-1 6
3.78E- 16
5.61 E-16
1.20E-15
3.53E-1 5

40Ar*% Age (Ma)

1.52
1.85
2.74
4.31

6.4
10.86
16.81
25.64

44.5
100

6.54
9.88

45.41
26.6

63.01
72.43
81.47
85.74
85.28
91.68

8.33
8.32

22.64
21.6

25.95
28.9

28.47
29.35
28.24
29.09

39Ar Wtd. Mean Age:

MC-93-92 biotite
5.93E-04

(36/40)err

2.02E-04
7.96E-05
1.39E-04
6.34E-05
2.68E-05
3.18E-05
1.80E-05
3.37E-05
2.57E-05
2.OOE-05

39/40

1.24E-02
2.02E-02
4.27E-02
4.93E-02
5.30E-02
5.66E-02
5.61 E-02
5.78E-02
5.27E-02
5.68E-02

39Ar Wtd. Mean Age: 17.0 0.2

J Value:

36/40

3.16E-03
3.05E-03
1.85E-03
2.48E-03
1.25E-03
9.28E-04
6.21E-04
4.76E-04
4.91 E-04
2.74E-04

11
11.5

12
12.5

13
13.5

14
14.5

15
16

13.4
19.3
10.8
6.62
4.44
2.35
1.63
0.57
0.78
0.26

28.67 ±

Sample:
J Value:

36/40

2.88E-03
2.48E-03
1.13E-03
5.59E-04
6.39E-04
4.35E-04
4.35E-04
2.70E-04
3.86E-04
1.25E-04

Amps

11
12
13
14
15
16
17
18
19
20

0.5

2.26E-05

(39/40)err

7.44E-04
2.18E-04
3.32E-03
5.35E-03
1.80E-04
5.65E-04
3.66E-04
3.23E-04
2.20E-03
2.28E-03

39ArK moles

2.73E-1 6
5.03E-1 6
1.27E-15
3.53E-1 5
4.40E-1 5
4.30E-1 5
4.98E-1 5
3.78E-1 5
6.30E-1 5
5.15E-15

0.79
2.25
5.93

16.16
28.91
41.38
55.82

66.8
85.06

100

40Ar*%

14.8
26.64
66.41
83.17
80.79
86.79
86.78
91.61
88.23

95.9

Age (Ma)

12.7
14.09
16.62
18.04
16.32
16.41
16.54
16.96
17.91
18.07

err

5.16
1.25
1.68
2.28
0.17
0.24
0.15
0.21
0.84
0.75



Figure captions

Figure 1) Simplified regional tectonic map of central Nepal from Colchen et al. (1986)

with minor modifications from Coleman (in press). The major structures include the Main

Central thrust (MCT), the South Tibetan detachment system (STDS), and the Thakkola

graben. The village of Chame and the city of Pokhara are marked by black squares. The

inset map shows the location of the Annapurna-Manaslu region within the Himalaya.

Figure 2) Geological map of the upper Marsyandi valley region with 40Ar/39Ar sample

locations.

Figures 3 -10) 4Ar/P9 Ar release spectra and inverse isotope correlation diagrams. The

shaded steps within the release spectra indicate the increments used for calculating plateau

ages. The shaded squares on the inverse plots indicate which points were used in the

linear regression.

Figure 11) Temperature-time path used for modeling release spectra (Figures 12-14) with

the MacArgon software package of Lister and Baldwin (1988). The temperature-time

history is consistent with petrologic and geochronologic data from the Marsyandi transect.

Temperatures indicated on the vertical axis are in degrees celsius.

Figures 12-14) Modeled release spectra for homblende, muscovite, and biotite,

respectively. The release spectra were modeled using the temperature-time history

illustrated in Figure 11.
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Chapter 5

P-T constraints on metamorphism of the central Greater Himalayan sequence: data
from the Marsyandi valley, central Nepal

Abstract

The metamorphic core of the Himalaya in the Marsyandi valley of central Nepal is

a north dipping section of penetratively deformed schists and gneisses, the Greater

Himalayan sequence. The sequence lies above a major south-directed thrust, the MCT, and

below a system of north-directed normal faults, the South Tibetan detachment system. The

dominant phase of metamorphism (M2) within the sequence produced an inverted

metamorphic field gradient. Metamorphic grade increases from kyanite near the MCT to

sillimanite + K-feldspar near the South Tibetan detachment system. Thermobarometric

results for 9 samples collected over a 16-km-thick section of the Greater Himalayan

sequence reflect P-T conditions of 1160-630 MPa and 910-1050K during M2. Estimated

paleopressures show that the base of the Greater Himalayan sequence was buried to depths

in excess of 35 km prior to MCT displacement. Collectively, petrologic data (this study)

and geochronologic data (Chapter 3) suggest that M2 conditions reflect a brief metamorphic

event. This phase of metamorphism may have resulted from early Miocene radioactive

heating within the tectonically thickened Greater Himalayan sequence.

Introduction

The metamorphic core of the Himalaya, or Greater Himalayan sequence, comprises

a thick section of the middle crust now exposed 1-8 km above sea level. Previous studies

from the central Himalaya (Pecher, 1989; Hubbard, 1989; Macfarlane, 1992; Vannay and

Hodges, in press) reveal the presence of a steep to inverted metamorphic field gradient

within the Greater Himalayan sequence above the basal Main Central Thrust (MCT), a

north-dipping, crustal scale thrust fault that is largely syn-metamorphic. The cause of this
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thermal structure has been the subject of extensive study and remains controversial (e.g.,

LeFort, 1975; Pecher, 1989; Hubbard, 1989; Jaupart and Provost, 1985; Molnar and

England, 1990).

This paper presents a petrologic and thermobarometric analysis of samples from

the Marsyandi valley in central Nepal, which augments a detailed structural and

thermochronologic study of the area (Chapters 2, 3, and 4). The Greater Himalayan

sequence is a 12 km-thick section of north-dipping amphibolite-facies schists and gneisses

(Figure 1). The Main Central Thrust places the Greater Himalayan sequence on the

greenschist facies Lesser Himalayan sequence to the south. The Greater Himalayan

sequence is roofed by a system of north-dipping normal faults known as the South Tibetan

detachment system (Burchfiel et al., 1992). Geochronologic constraints (Chapter 3)

demonstrate that the MCT was active in the Marsyandi section sometime between 18 and

22 Ma. Geochronology of both cross-cutting and deformed dikes from the top of the

sequence constrain normal displacement on the South Tibetan detachment in this region to

the Middle Miocene. The existing timing constraints suggest that thermobarometric

techniques can be used to evaluate the conditions of metamorphism within the Greater

Himalayan sequence when there was active deformation on the MCT and the South

Tibetan detachment.

Previous work

The metamorphic history of the Greater Himalaya in central Nepal has been

described as a two-stage process based on textural evidence (see Hodges et al. 1988a, and

Pecher, 1989, for a review of pressure-temperature constraints and tectonic evolution).

According to these previous studies, rocks at the base of the Greater Himalayan sequence

were buried initially to about 30 km depth during intercontinental subduction, at which time

high-pressure, moderate-temperature assemblages equilibrated at the base of the Greater
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Himalayan sequence. Following this Barrovian metamorphism (M1), metamorphic

conditions changed and were characterized by moderate-pressure, high-temperature

metmorphism (M2) during displacement on the MCT. Anatexis within the Greater

Himalayan sequence, sillimanite-grade metamorphism, and leucogranite emplacement are

all thought to be signatures of the second phase of metamorphism.

One of the first quantitative studies of metamorphism in the Nepalese Himalaya

was that of Hubbard (1989), who used thermobarometry to define an inverted

metamorphic gradient in the Everest region of eastern Nepal. Metamorphic temperatures

increased from approximately 770K about 2 km below the kyanite isograd, at the MCT, to

approximately 975K about 5 km above the isograd. Hubbard and Harrison (1989)

obtained a -21 Ma *Ar/ 39Ar age for hornblende that grew within the MCT fabric during

thrusting. Pecher (1978) estimated high-pressure metamorphism at the base of the Greater

Himalayan sequence in central Nepal to have occurred at 870-960K and 700-850 MPa

based on a simplified petrogenetic grid. Petrogenetic and thermobarometric constraints on

the Greater Himalayan sequence in the Burhi Gandaki drainage(Figure 1) record an

isothermal temperature structure of about 900K with pressures decreasing monotonically

up-section, consistent with a normal lithostatic pressure gradient (Hodges et al., 1988b).

The MCT-zone in the Marsyandi and Burhi Gandaki valleys has been described in detail by

Pecher (1977, 1989), who documented south-directed ductile shear-sense indicators that

formed synchronously with the main foliation and kyanite-grade metamorphism. One of

the goals of my work was to quantify metamorphic P-T conditions during thrusting and

normal faulting as a constraint on relationships between the deformational and thermal

evolution of this sector of the Himalaya.

Sampling strategies
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Nine metapelitic samples were chosen from the Marsyandi transect for

thermobarometry (see Figures 1 and 2 for sample localities). Rocks with low variance

assemblages, apparent textural equilibrium, and very minor or no retrogression were

selected preferentially. There are three main groups of samples based on structural

position. They span a 12 km section of the Greater Himalayan sequence (Figure 2).

Group I (MC2, MC3, and MCT- 1) includes kyanite-grade samples collected from

immediately below, within, and above the Main Central Thrust zone at the base of the

Greater Himalayan sequence. Group II samples (MC4, MC18, MC19, MC5, and MC7)

come from a wide zone in the middle of the Greater Himalayan sequence, it includes

samples at kyanite + sillimanite grade in the lower section and samples at second

sillimanite grade in the upper section. Group III is represented by sample MC36 from the

upper Greater Himalayan sequence, about 2 km beneath the Chame detachment. The

sample descriptions below synthesize observations from field work, hand-sample, and

thin-section analysis. Fabric nomenclature such as S1, S2, etc., follows Chapter 2.

Group I

Samples MC2 and MCT- 1 are both mylonites from the MCT zone that preserve

spectacular S-C fabrics indicative of top-to-the-south shear. Sample MC2 contains

muscovite (25%), biotite (20%), plagioclase (20%), quartz (20%), garnet(5%), staurolite

(5%), and chlorite (5%). Garnet growth was syn-kinematic with respect to S2 MCT-

mylonitic fabric. Garnet porphyroblasts range from 0.1 cm to 1.5 cm in diameter. Biotite,

muscovite, and staurolite help define the S2 foliation. Minor retrograde chlorite is

intergrown with biotite and partially rims garnet. Sample MCT- 1 is a migmatitic schist

with roughly 5-10% leucogranitic leucosome. Schistose layers contain quartz (30%),

plagioclase (30%), biotite (20%), muscovite (10%), garnet(5%), kyanite(3%), and

staurolite (2%). MCT-1 displays mylonitic textures similar to those in MC2, with the
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addition of large euhedral blades of kyanite (up to 3 cm-long) which are aligned within the

S2 foliation. In some examples, kyanite blades are folded and deformed by D2 shear bands

and foliation, indicating that kyanite growth is both pre and syn-kinematic with S2 fabric

development. Garnets, 0.1-5.0 cm in diameter. 2ommonly have inclusion-rich cores with

distinct inclusion-free rims.

Group II

Sample MC3, collected about 1 km above the MCT-mylonite zone, is a medium-

grained schist interlayered with -30% leucogranitic stringers. The schist contains biotite

(30%), plagiocase (25%), quartz (25%), muscovite (10%), garnet (3%), and kyanite (5%).

Biotite, muscovite, and kyanite are aligned with S1.

Sample MC4 is a pelitic schist, collected about 5 km above the base of the MCT. It

contains quartz (35%), plagioclase (30%), biotite (25%), garnet (2%), kyanite (5%), and

sillimanite (3%). S1 foliation is defined by the preferred orientation of biotite. Euhedral

kyanite is aligned within the S, foliation, and fibrolitic sillimanite mats are intergrown with

biotite, and appear to be syn to post-kinematic with respect to S1.

Samples MC18 and MC19 are pelitic gneisses that contain plagioclase (-25%),

muscovite (-20%), quartz (-20%), biotite (-15%), sillimanite (-10%), garnet (-5%), and

K-feldspar (-5%). K-feldspar is present only as perthitic intergrowths within plagioclase.

Muscovite is embayed and intergrown with sillimanite, indicating that the rock quenched

during the muscovite breakdown reaction:

muscovite + quartz = K-feldspar + sillimanite + water. [1]

Both samples exhibit D2 S-C fabric and indicate localized zone of high-strain.

Samples MC5 and MC7 are felsic gneisses that contain plagioclase (25%), quartz

(25%), K-feldspar (15%), biotite (15%), sillimanite (10%), garnet (5%), and muscovite

(5%). Feldspar and quartz grains are annealed, and K-feldspar occurs not only as
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microperthitic intergrowths within plagioclase but also as part of the matrix assemblage.

Muscovite appears as remnant, partially resorbed blades, intergrown with fibrolitic

sillimanite mats. It appears that the muscovite breakdown reaction [1] progressed more in

these samples than in MC18 and MC19. Sample MC7 garnets are 1-2 mm in diameter.

euhedral to slightly rounded, and have distinct inclusion-rich cores. Sample MC5 garnets

are 3-5 mm in diameter, filled with inclusions, and partially resorbed.

Group III

Sample MC36 is a layered gneiss with alternating leucocratic layers and pelitic

schistose layers. In outcrop, the rock displays top-to-the west D2 shear-sense indicators

related to the Chame detachment (Chapter 2). The pelitic layers contain plagioclase (25%),

K-feldspar (20%), biotite (20%), quartz (20%), muscovite (10%), sillimanite (5%), and

garnet (-1%). Garnet is partially resorbed and embayed. K-feldspar displays microcline

twinning with microperthitic albite lamellae. Felsic layers are largely annealed with

randomly oriented feldspar and biotite. Muscovite is partially overgrown by sillimanite

indicating that the rocks were quenched during Reaction [1].

Mineral rim thermobarometry

The assemblage Grt+Bt+Pl+QtziKy±Sil±Ms in metamorphic pelitic rocks of the

Marsyandi section allow application of several, well-calibrated thermobarometers (Table

1). The Marsyandi results reported here are based on the thermobarometric calibrations

recommended by Hodges and McKenna (1987) for GARB, McKenna and Hodges (1988)

for GASP, and Applegate and Hodges (1994) for GMAP. Non-ideal solution behavior

was modeled using the approaches of Chatterjee and Froese (1975), Berman (1990),

Elkins and Grove (1990), and Patifno-Douce et al. (1993) for muscovite, garnet,

plagioclase, and biotite respectively. Sillimanite, kyanite, and quartz were treated as pure

phases.
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Analytical approach

Before discussing the details of the analytical procedures, it is important to explain

the philosophy behind them. The study was designed to estimate the P-T conditions at

which the major phases in each sample equilibrated for the last time. This does not

necessarily mean peak metamorphic conditions. In order to obtain the final P-T conditions,

we use rim compositions of the relevant phases (preferably in contact with each other) for

thermobarometric calculations. This procedure follows the approach of Hodges and

McKenna (1987), such that each rim composition in Table X represents the average of 5-

10 spot measurements from at least one domain in each microprobe section. The approach

differs slightly from Hodges and McKenna (1987) in that previously obtained element

maps (WDS mapping explained below) negated the necessity to probe more than one

domain in most of the thin section. Uncertainties in oxide weight percentages were

propagated through thermobarometric calculation using a Monte Carlo approach (see

Hodges and McKenna, 1987). For further details of the error propagation techniques, see

Hodges et al. (1994).

Analytical Procedure

Prior to acquiring quantitative compositional data for rim thermobarometry,

preliminary WDS element-mapping was carried out at the University of Massachusetts

using the Cameca SX-50 electron microprobe. At least one 5 x5 mm area was mapped in

each sample. These domains contained garnet > 1 mm in diameter in contact with biotite,

plagioclase, muscovite. Images for Mg, Ca, Mn, and Na were used for selecting areas

suitable for quantitative analyses. Element maps indicated very minor chemical zoning

within garnets. We attribute this to high-temperature diffusive reequilibration, which

prevents inverse modeling of garnet zoning (e.g., Spear and Selverstone, 1983).

Compositions for quantitative rim thermobarometry were measured using the JEOL 733
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electron microprobe at MIT with a nominal beam current of 10 nA and an accelerating

voltage of 15 kV. They are reported in Table 2.

Results and interpretation

Rim thermobarometric data with nominal precision limits are presented in Table 3,

and uncertainty ellipses obtained through the simultaneous solution of GARB - GASP

and/or GARB - GMAP are shown in Figures 3-5. Whenever possible, both pairs' of

equilibria were applied to each sample.

Group I

Results from Group I samples (Figure 3) agree well with phase equilibrium

constraints on metamorphic conditions. The kyanite-bearing samples MCT- 1 and MC3

both plot in the kyanite stability field. Sample MC2 does not contain an aluminum-silicate;

however, application of GARB-GMAP results in a P-T ellipse in close agreement with

MC96 and MC3. The results from all three samples plot above the nominal, water-

saturated, minimum melt curve for pelitic compositions (curve A in Figure 3A;

Thompson, 1982) which is consistent with the observation that both samples MC96 and

MC3 contain abundant melt layers.

Group I P-T are in the range 1040-1160 MPa at 910-950 K. The three samples are

distributed over a 3 km-thick section, and pressures show a gradual increase toward the

lowermost sample as expected. These results most likely give accurate determinations of

P-T conditions during final equilibration at the base of the Greater Himalayan sequence.

Textures within the Group I samples suggest that kyanite, biotite, quartz, and feldspar grew

during the development of D2 mylonitic fabrics within the MCT-zone. In addition, garnets

in sample MC96 have optically distinct inclusion-rich cores surrounded by inclusion free

rims. The garnet rims probably grew synchronously with D,. Because these samples may
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have continued to equilibrate after mylonitization, the Group I thermobarometric data are

interpreted as providing a minimum estimate of P-T conditions during D2.

Group II

Pressure-temperature results from sample MC4, the lowermost sample from

Group II, plot within the kyanite stability field. As previously mentioned, this sample

contains both euhedral kyanite and fibrolitic sillimanite. However, both GARB-GASP and

GARB-GMAP solutions show close agreement within the kyanite field, indicating that

kyanite was most likely the phase in equilibrium with the other relevant phases. Results

from MC4 yield a P-T estimate of 720±100 MPa and 880±40 K.

Sample MC7, highest of the Group II samples, did not contain muscovite in

contact with garnet within the thin section used for analysis. Where muscovite was

observed, it appeared only as remnant, partially resorbed blades. Sillimanite is ubiquitous

throughout the sample, however, we relied on GARB-GASP for our P-T determination.

The results plot within the sillimanite stability field, to the right of the muscovite

breakdown curve and consistent with all phase equilibrium constraints. A pressure and

temperature of 860±60 MPa at 1050±40 K implies a deeper structural level for MC7 than

the rest of the Group II samples, suggesting either that the rest of the Group II samples did

not equilibrate at the same time as MC-7, or that there is an unidentified post peak

metamorphic fault between MC7 and the lower samples.

Group II samples are distributed over a 4 kin- thick section of the Greater

Himalayan sequence and P-T results agree with phase equilibrium constraints for samples

from the base and top of this sub- section (MC4 and MC7). However, the middle samples

(MC18, MC 19, and MC5) plot in the kyanite stability field if GARB-GASP is applied,

despite the fact that fibrolitic sillimanite was the only aluminum-silicate polymorph

observed. Application of GARB-GMAP to the same samples yields P-T results that

177



overlap the kyanite-sillimanite divarient curve (Figure 4) as well as the muscovite

breakdown reaction [1] (curve B in Figure 3; Thompson and Tracy, 1979; Thompson,

1982). Although there is no longer any kyanite present in the middle Group II samples,

they were collected not far above sample MC4 which contains both kyanite and fibrolitic

sillimanite. Agreement between phase equilibrium constraints and the results obtained

from applying GARB-GMAP provides strong evidence that sillimanite was not in

equilibrium with the other thermobarometric phases, and indicates that GARB-GMAP

result are the best estimates for P-T conditions during D2 from the middle samples.

GARB-GMAP P-T results from samples MC18, MC19, and MC5#1, and MC5#2, yield

internally consistent pressures and temperatures of 750-7 80 MPa and 970-1010 K.

Group III

Group III consisted of a single sillimanite-bearing sample (MC36) from the upper

Greater Himalayan sequence. Initial application of both GARB-GASP and GARB-

GMAP resulted in P-T ellipses that did not overlap and gave very different pressures but

similar temperatures. The GARB-GASP solution plotted in the kyanite stability field even

though sillimanite was assumed to be the stable polymorph in the simultaneous solution.

The explanation for the erroneous P-T ellipse using GARB-GASP is most likely due to

chemical disequilibrium between the GARB and GASP phases. Results from GARB-

GMAP are plotted in figure 3 (630±80 MPa at 870±40K). The indicated pressure also

appears to be slightly high because the ellipse sits on the kyanite side of the kyanite-

sillimanite divarient curve despite the fact that sillimanite is the only aluminum silicate

polymorph found at this structural level. The temperature obtained from GARB is

somewhat lower than the temperature indicated from reaction textures within the sample

(900K approximate # from petrogenetic grid). The temperature obtained most likely

indicates final equilibration of the GARB exchange thermometer after the rock had cooled

178



from peak metamorphic conditions, and we consider 900K a minimum estimate of

temperature during D2 at this structural level.

Timing constraints on metamorphism

Geochronologic timing constraints for metamorphism and anatexis within Greater

Himalayan sequence are summarized below; for more detail see Chapter 3. Metamorphic

monazites from the MCT zone (sample MCT- 1) have single grain U-Pb ages that span 18

to 22 Ma, indicating growth of monazite during kyanite-grade metamorphism and D2

deformation at 22 Ma, possibly continuing to 18 Ma. From the upper 3 km of the Greater

Himalayan sequence, monazite ages from leucogranitic horizons within MC36 indicate

migmatization at < 22 Ma, and an earlier metamorphic or igneous event at about 35 Ma.

An undeformed leucogranite dike that cuts across foliation at the top of the Greater

Himalayan sequence yields both monazite and zircon ages of 18.5 Ma, and provides an

upper limit to the age of D2 at high structural levels.

Discussion

Thermobarometric data from the Marsyandi section appear to be reliable with a few

exceptions. P-T data from Group I are the most reliable and hold up under three tests for

assessing equilibrium: (1) data are consistent between samples, (2) P-T is consistent within

samples when more than one thermobarometer was used, and (3) the results are supported

by phase equilibrium constraints. Some of the Group II samples (MC 18, MC 19, and MC

5) fail the second test, GARB-GMAP results appear to be reliable in all cases. The least

reliable thermobarometric data are from sample MC36. In this case, the thermobarometric

data are inconsistent with the phase equilibria. However, there is good petrographic

evidence that the sample reached final equilibration during reaction [1], which is a

minimum temperature constraint of -900K.
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Thermobarometric data, combined with phase equilibrium constraints, indicate that

M2was characterized by a steep to inverted geothermal gradient over a thickness in excess

of 15 km within the Greater Himalayan sequence. The only obvious evidence of Ml

within these rocks are the inclusion-rich cores within some of the garnets. The absence of

chemical zoning within the garnets indicates essentially total re-equilibration during M2.

Temperatures within the lower 5 km of the Greater Himalayan sequence during final

equilibration were in the kyanite stability field at granite-minimum-melt conditions. The

upper 10 km were at temperatures of at least 900K, at or very close to second-sillimanite

melting conditions. Geochronologic data indicate that temperatures in excess of 900K

were reached throughout most of the Greater Himalayan sequence at roughly the same

time (18-22 Ma).

Group I samples record higher pressures than the rest of the Greater Himalayan

sequence, which is consistent with their structural position. Pressures of 1160 MPa

immediately below the MCT zone indicates burial in excess of 35 km during kyanite-grade

mylonitization. The structurally highest Group II sample (MC4) records a higher pressure

than the samples beneath, possibly indicating a post-metamorphic fault. However, given

the possibility of disequilibrium within some of the Group II samples, we are hesitant to

invoke structures in the absence of compelling structural data.

The thermobarometric data from the Marsyandi transect are broadly consistent with

previous studies from the central Himalaya (Hodges et al., 1988a; Hubbard, 1989;

Macfarlane, 1992; Vannay and Hodges; in press), which all demonstrate that M2 was

characterized by a steep to inverted geothermal gradient throughout the Greater Himalayan

sequence. Explanations for this unusual thermal structure are widely debated, and simple

models that invoke thrusting of hot rocks over cold rocks do not adequately explain it (e.g.

LeFort, 1975; England and Thompson, 1986). The possibility of other factors affecting the
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thermal structure including thermal buffering (Hodges et al., 1988b), frictional heating

(Molnar and England, 1990), and thermal blanketing (Jaupart and Provost, 1985), have all

been discussed extensively in the literature but fall short of reproducing the pattern

observed in the actual data. However, a r cently developed numerical model (Huerta et al.,

in press) demonstrates that an inverted geotherm can be produced within an accretionary

wedge of material that is enriched in radioactive elements, assuming geologically

reasonable rates of accretion and erosion. Huerta et al. (in press) present a strong case for

the redistribution of highly radiogenic material within the Himalayan orogen having been a

critical factor in producing a steep geotherm during intercontinental subduction.

Conclusions

Microfabric observations allow for two phases of metamorphism (M, and M2)

within the metamorphic core of the Himalaya in the Marsyandi region. However, M2 has

largely obscured M, and the thermobarometric results pertain only to M2-

Thermobarometry, petrography, and U-Pb geochronology show that M2 produced

temperatures of at least 900K throughout the whole thickness of the Greater Himalayan

sequence by about 22 Ma. Since all porphyroblast phases are either synchronous with or

predate S2 fabric development, the age of leucogranite that cross cuts S2 foliation indicates

that M2 was over by 18 Ma.

The timing of final metamorphic equilibration within the Greater Himalayan

sequence is interpreted to be roughly synchronous with major displacement on the MCT

and the South Tibetan detachment. Broadly coeval thrust faulting and tectonic denudation

at the base and roof of the metamorphic core were probably important factors in cooling

the rocks quickly enough to preserve a steep metamorphic field gradient. The Miocene

thermal structure within the Marsyandi section is consistent with the predicted results from

numerical modeling of an intercontinental subduction zone with similar accretion and
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erosion rates as the central Himalaya (Huerta et al., in press). In this model, enough

radiogenic heat is produced within the accreted wedge of continental material to produce an

inverted geotherm with temperatures in excess of 900K.
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Table 1 nermobarometers

Acronym

GARB FeA 2 Si,0, + KMg,AlSi,0,,(OH) 2  = MgAl2SiO + KFeA ISi,0,0 (OH)2  Ferry and Spear (1978)
GrI Bt Grt Bt

GASP CaAI2 Si,0 0  + 2Al2 SiO, + SiO2  3CaA 2Si20, Ghent (1976)
Grt AlSi Pi

GMAP FeA 2 Si,0U + Ca,A 2 Si,0, + KAlSiO 0 (OH) 2  = 3CaAI2Si20, + KFeAISi,, 0,(OH) 2  Ghent and Stout (1981)
Grt Grt Ms Pi Bt



Table 2. Garnet ri analysis compositio is (12 0 basiE)
Sample MC2 MCT-1 MC3 MC4 MC18 MC19 MC5#1 MC5#2 MC7 MC36

sio2 37.67 1 0.24 37.82 1 0.17 37.37 ± 0.22 37.22 ± 0.17 36.88 ± 0.13 37.49 ± 0.16 37.03 ± 0.18 36.33 ± 0.32 36.93 ± 0.14 36.54 ± 0.17
tio2 0.05 ± 0.02 0.06 ± 0.01 0.04 1± 0.01 0.03 ± 0.02 0.01 ± 0.01 0.05 ± 0.03 0.07 ± 0.02 0.02 ± 0.03 0.00 ± 0.00 0.05 ± 0.01
al2o3 21.46 ± 0.20 21.16 1 0.12 20.59 ± 0.11 20.80 t 0.13 21.14 ± 0.24 21.24 ± 0.05 20.90 ± 0.13 20.53 ± 0.30 20.76 ± 0.06 20.77 ± 0.26
cr2o3 0.07 ± 0.01 0.05 ± 0.01 0.10 ± 0.02 0.11 ± 0.02 0.09 ± 0.02 0.05 ± 0.05 0.09 ± 0.01 0.07 ± 0.05 0.09 ± 0.02 0.06 ± 0.01
feo 38.83 ± 0.48 32.82 ± 0.35 31.78 ± 0.33 30.75 ± 0.15 37.54 ± 0.56 34.48 ± 0.25 37.45 ± 0.44 37.70 ± 0.36 35.10 ± 0.35 30.86 ± 0.26
mno 0.37 ± 0.11 1.85 ± 0.07 1.54 ± 0.26 5.44 ± 0.15 3.68 ± 0.10 3.98 ± 0.10 2.66 ± 0.10 3.44 ± 0.26 2.67 ± 0.10 10.61 ± 0.13
mgo 4.31 1 0.31 4.77 ± 0.09 4.45 ± 0.30 3.54 ± 0.10 2.33 ± 0.11 2.33 ± 0.05 2.95 ± 0.23 2.37 ± 0.41 2.48 ± 0.12 1.71 ± 0.05
cao 0.56 ± 0.01 0.97 ± 0.02 3.43 1 0.09 1.33 ± 0.12 1.40 1 0.21 1.15 ± 0.05 1.151± 0.06 1.17 ± 0.04 1.41 ± 0.05 1.13 ± 0.04

total 103.31 ± 0.17 99.50 ± 0.11 99.29 0.13 99.24 ± 0.06 103.07 10.17 100.78 ± 16.56 102.30 1± 0.54 101.62 ± 0.78 99.44 ± 0.11 101.74 ± 0.10

si 2.953 3.020 2.998 3.014 2.973

ti 0.003 0.004 0.003 0.003 0.003 3.014 2.965 2.956 3.001 0.002

al 1.959 2.005 1.950 1.990 2.002 0.004 0.005 0.000 0.000 1.956
cr 0.004 0.002 0.005 0.004 0.001 2.009 1.948 1.953 1.993 0.004

fe 2.513 2.185 2.132 2.080 2.500 2.297 2.537 2.519 2.419 2.078
mn 0.014 0.123 0.108 0.361 0.243 0.275 0.186 0.226 0.177 0.733
mg 0.566 0.553 0.543 0.428 0.220 0.277 0.311 0.306 0.281 0.205
ca 0.038 0.081 0.283 0.107 0.066 0.101 0.097 0.099 0.122 0.094

total 8.050 7.972 8.022 7.987 5.035 7.977 8.049 8.059 7.999 8.045



Plagiaserimnalysiscomposit gs I I - - -

m pl MC2 _ MCT-1 MC3 WC4 MC18 M019 MC5#1 MCI#2 'el__MCi MC36 E

sio2 67.53 ± 0.21 68.41 ± 0.89 61.23 ± 0.42 63.68 ± 0.20 64.43 ± 0.72 63.16 ± 2.12 62.68 ± 0.27 63.16 ± 0.35 61.34 ± 0.15 65.98 ± 1.55

al2o3 19.86 ± 0.16 19.87 ± 0.23 24.12 ± 0.15 22.32 ± 0.18 22.631± 0.19 22.11 ± 0.32 23.02 ± 0.13 23.08 ± 0.38 23.96 ± 0.20 21.31,± 0.60

NO 0.04 ± 0.01 0.04 ± 0.02 0.10 ± 00.03 0.07 03 0.07 ±06 2.39 2.18 0.3 0.10 0.49 ± 0.10 0.25 ± 0.17 0.16 ± 0.05

m 0.00 ± 0.01 0.03 ± 0.01 0.00 ± 0.01 0.01 ± 0.01 0.00 ± 0.01 0.05 ± 0.07 0.05 ± 0.01 0.01 10.02 0.00 ± 0.01 0.01 ± 0.01

___ 0.49 ± 0.03 1.03 ± 0.14 5.86 ± 0.08 3.54 ± 0.08 3.40 ± 0.17 2.97 ± 0.21 4.48 ± 0.14 4.54 ± 0.12 5.28 ± 0.06 2.27 ± 0.70

na2o 11.27 ± 0.08 10.64 ± 0.33 8.25 ± 0.12 9.44 ± 0.13 9.51 ± 0.40 8.81 ± 0.21 9.03 ± 0.11 8.68 ± 0.22 8.43 ± 0.25 9.92 ± 0.24

k2o 0.06 ± 0.01 0.05 ± 0.01 0.07 ± 0.01 0.07 ± 0.02 0.16 ± 0.04 0.37 ± 0.36 0.11 ± 0.02 0.10 ± 0.03 0.17 ± 0.03 0.23 ± 0.06

total 99.25 ± 0.28 100.1 ± 0.32 99.63 ± 0.14 99.13 ± 0.08 100.2 0.52 99.86 ± 0.94 99.7 ± 0.25 100.1 ± 0.15 99.45 ± 0.09 99.881± 0.55

1 . g I m I I IM II

si 2.968 2.967 g 2.722 2.831 2.835 2.873 2.785 _ 2.779 2.746 2.875

al 1.036 _ 1.034 0.000 1.165 1.168 1.151 0.000 0.000 1.255 0.000

fe 0.002 0.001 1.270, 0.002 0.001 0.014 1.203 1.222 0.014 1.130

mg .0.000 0.001 0.002 0.001 0.002 0.000 0.0 0.016 0.001 0.004

ca 0.025 _ 0.047 0.000 0.170 0.162 . .151 0.000 0.000 0.257 0.000

Na 0.963 0.928 0.001 0.831 0.816 0.720 0.002 0.000 0.701 0.000

< 0.003 _ 0.000 0.280 0.003 __ 0.011 0.006 ] 0.217 10.215 0.008 0.124 t

4.997 1o 4.978 4.275 5n003 4.995 - 4.914 - - 5005 4.985 1 4.981 1 4.986 -
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Table 2. Biotite rim analysis com positi ns (11 C isis)
Sample MC2 MCT-1 ___ MC3 _ __ MC4_._ MCI8 _ _.._. MC19_ __ MC5#1 _ ___ MCS#2 ____MC _ MC36

sio2 36.66 1 37.93 ± 0.17 37.35 1 0.19 36.33 1 0.18 34.77 ± 0.17 35.32 ± 0.36 34.62 ± 0.24 34.38 ± 0.23 34.43 ± 0.28 35.08 0.34
tio2 0.75 ± 1.19 ± 0.07 1.23 ± 0.03 1.73 ± 0.03 3.22 ± 0.08 2.02 ± 0.07 2.68 ± 0.14 2.57,± 0.05 3.09 ± 0.03 1.33 ± 0.32
al2o3 19.07 ± 18.01 ± 0.26 19.27 ± 0.07 18.97 ± 0.13 18.36 ± 0.11 18.66 ± 0.11 19.66 ±1 0.32 18.95 ± 0.21 18.72 ± 0.24 18.62 ± 0.70
foo 20.29 ± 16.69 ± 0.32 16.37 ± 0.16 17.46 l 0.07 24.25 ± 0.34 23.78 ± 0.43 22.65 ± 0.28 22.84 ± 0.12 23.19 ± 0.40 23.65 ± 0.97
mno 0.04 ± 0.10 ± 0.03 0.07 ± 0.04 0.08 ± 0.04 0.11 ± 0.02 0.10 ± 0.07 0.07 ± 0.02 0.08 ± 0.02 0.12 ± 0.02 0.40 ± 0.13
mgo 11.50 ± 13.06 ± 0.17 12.23 ± 0.10 11.44 ± 0.06 7.08 ± 0.12 7.16 ± 0.14 7.79 t 0.19 7.72 ± 0.03 6.49 ± 0.03 7.73 ± 0.18
cao 0.37 ± 0.00 ± 0.01 0.02 ± 0.02 0.30 ± 0.02 0.01 ± 0.01 0.02 1 0.02 0.00 ± 0.01 0.02 ± 0.02 0.01 t 0.01 0.02 ± 0.03
na2o 8.46 ± 0.41 ± 0.03 0.33 ± 0.03 8.46 ± 0.29 0.13 1± 0.02 0.19 ± 0.07 0.15 ± 0.04 0.15 ± 0.02 0.09 ± 0.02 0.08 ± 0.03
k2o 0.02 ± 7.57 ± 0.27 7.88 ± 0.06 0.05 ± 0.03 9.22 ± 0.06 8.66 ± 0.16 9.07 ± 0.09 8.96 ± 0.21 8.98 ± 0.10 9.29 ± 0.15

total 97.16 ± 94.97 ± 0.12 94.75 ± 0.06 94.83 ± 0.09 97.19 ± 0.10 95.92 ± 0.14 96.73 ± 0.70 95.74 ± 0.09 95.12 ± 0.14 96.21 ± 0.32

si 2.725 2.815 2.770 2.726 2.648 2.706 2.636 2.641 2.680 2.696

ti 0.043 0.061 0.070 0.097 0.192 0.124 0.143 0.150 0.180 0.089

al 1.683 1.599 1.690 1.690 1.648 1.693 1.760 1.721 1.728 1.725

to 1.239 1.021 1.025 1.090 1.559 1.530 1.457 1.485 1.476 1.490

mn 0.002 0.004 0.002 0.005 0.007 0.003 0.004 0.005 0.010 0.018

nm 1.263 1.429 1.358 1.289 0.822 .0.820 0.892 0.886 0.753 0.858
ca 0.000 0.001 0.002 0.000 0.002 1 10.004 0.000 1 0.004 1 0.002 0.000

Na 0.055 0.063 0.045 0.043 0.016 1 10.018 0.019 1 0.022 0.015 0.014

K 0.807 0.724 0.746 0.823 0.903 10.869 0.878 0.884 0.871 0.922

total 6.955 6.929 6.915 6.897 7.797 7.788 7.8 7.719 7.82



M uscovite I I I - - - M

Sample MC2 MCT-1 MC3 _ MC4 MC18 MC19 MC5#1 MC5#2 MC7 MC36

sio2 47.61 ± 0.20 49.81 ± 0.35 48.46 ± 0.55 48.19 ± 1.24 47.58 ± 0.35 48.85 ± 0.59 47.49 ± 0.51 47.49 ± 0.51 1 47.42 ± 0.47
TiO2 0.51 ± 0.03 0.25 ± 0.05 0.38 ± 0.05 0.89 ± 0.05 0.97 ± 0.05 0.60 ± 0.29 0.79 ± 0.06 0.79 ± 0.061 0.38 ± 0.04
al2o3 34.64 ± 0.20 36.72 ± 0.22 35.59 ± 0.71 34.95 ± 0.72 34.25 ± 0.14 36.05 ± 0.27 35.03 ± 0.31 35.03 ± 0.311 33.14 ± 0.28
teo 2.37 ± 0.08 1.17 ± 0.17 1.07 ± 0.16 1.46 ± 0.05 1.62 ± 0.05 1.31 ± 0.13 1.36 ± 0.07 1.36 ± 0.07 2.81 ± 0.17
MwO 0.03 ± 0.02 0.02 ± 0.03 0.03 ± 0.02 0.09 ± 0.02 0.04 ± 0.03 0.02 ± 0.02 0.04 ± 0.04 0.04 ± 0.04 0.08 ± 0.03
mgo 0.59 ± 0.04 0.24 ±0.17 0.61 ± 0.06 0.71 ± 0.07 0.65 ± 0.03 0.43 ± 0.04 0.52 ± 0.06 0.52 ± 0.06 0.84 ± 0.01
cao 0.02 ± 0.01 0.19 ± 0.06 0.03 ± 0.02 0.03 ± 0.02 0.01 ± 0.01 0.04 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.06 ± 0.04
na2o 2.38 ± 0.06 5.09 ± 0.35 1.04 t 0.10 1.22 ± 0.22 0.52 ± 0.02 0.87 ± 0.11 0.41 ± 0.03 0.41 ± 0.03 0.40 ± 0.02
k2o 7.21 ± 0.10 1.26 ± 0.25 7.82 ± 0.66 8.13 ± 1.30 10.23 ± 0.10 8.77 ± 0.63 10.13 ± 0.12 10.13 ±1 0.12 9.87 ± 0.31

total ± 0.41 94.75 ± 0.12 95.03 ± 0.29 95.67 ± 0.54 95.88 ± 0.11 96.95 ± 0.24 95.77 ± 0.54 95.77 t 0.54 1 94.99 ± 0.75

si 3.13 3.183 3.164 3.133 2.687 3.177 3.129 3.129 3.163

al 2.689 2.765 2.744 2.693 1.676 0.056 0.036 0.036 2.621
to 0.13 0.062 0.056 0.077 1.499 2.719 2.72 2.72 0.167

Mg 0.063 0.012 0.058 0.068 0.775 0.072 0.071 0.071 0.084

ca 0.002 0.01 0.003 0 0.001 0.001 0.006 0.006 0.005
Na 0.315 0.639 0.138 0.173 0.026 0.044 0.051 0.051 0.052

K 0.601 0.114 0.667 0.732 0.9 0 0 0 0.84

total 6.96 6.785 6.83 6.876 7.564 6.746 6.013 6.013 6.954

- -, -- V- - 11 - ---



Table 3. Rim thermobarometric data

GARB-GASP GARB-GMBP

Sample T (K) P (MPa) T(K) P(MPa)
Group I

MC2 930 (50) 1160(100)

MCT-1 910 (30) 1130(140) 910(30) 1100(110)
MC3 950(60) 1040 (120) 950 (60) 1040(120)
Group II
MC4 880 (40) 720 (100) 880 (30) 710(90)
MC18 970(50) 780(110)

MC19 990 (30) 780(70)

MC5#1 990 (80) 700(120)

MC5#2 1010 (50) 750 (60)

MC7 1050 (40) 860 (60) ---

Group III I

MC36 870 (40) 630 (80) 1

192



Figure Captions

Figure 1) Geologic map of central Nepal (from Colchen et al., 1986 with minor

modifications from this study) with P-T sample locations. White, gray, and black filled

circles correspond to Group I, II and III samples, respectively. The major structures

include the Main Central thrust (MCT), the South Tibetan detachment system (STDS), and

the Thakkola graben. The inset map shows the location of the Annapurna-Manaslu region

within the Himalaya.

Figure 2) Cross sections with sample locations corresponding to A-A' and B-B' on Figure

1.

Figures 3-5) Thermobarometric results obtained through simultaneous solution of GARB

and GASP, and/or GARB and GMBP. The ellipses designate 2a uncertainties in these

values based on analytical imprecision. Unlabelled curves (after Hemingway et al.) bound

the aluminum silicate stability fields. Labeled curves correspond to the water-saturated

granite solidus ('A': Thompson, 1982), and the nominal, water-saturated, muscovite

breakdown reaction ('B': Thompson and Tracy, 1979; Thompson, 1982).
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LETTERS TO NATURE

Evidence for Tibetan plateau
uplift before 14 Myr ago
from a new minimum
age for east-west extension
Margaret Coleman & Kip Hodges

Department of Earth, Atmospheric, and Planetary Sciences, 54-1116,
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA

IMPORT4%r changes in South Asian climate occurred in the Late
Miocene epoch (-8 Myr ago)"2 , and these have been attributed
by some researchers to uplift of the Tibetan plateau at about the
same time" 5 . Unfortunately, this link has been difficult to test
because the timing of plateau uplift remains poorly constrained by
independent evidence. One way to determine the minimum age of
uplift is to establish the initiation age of the north-striking normal
fault systems in southern Tibet that are widely regarded"'-' as
being related to gravitational collapse of the Tibetan plateau. Here
we report an '*Ar/"Ar age of -14 Myr for hydrothermal mica
from an extensional fracture belonging to such a fault system in
north-central Nepal. This age implies that east-west extension
began before -14 Myr ago in at least some parts of the Tibetan
plateau, suggesting that the plateau attained its high mean eleva-
tion well before Late Miocene time.

The tectonic evolution of the Himalayas and Tibet since the
Palaeogene collision between India and Asia has been controlled
by three classes of deformational structures. The most obvious
features are east-striking, north-dipping thrust fault systems and
subordinate folds related to shortening and crustal thickening.
Some of these, such as the Neogene Main Central and Main
Boundary thrust systems. have been traced for hundreds of kilo-
metres parallel to the strike of the orogen (Fig. 1)" '. The
second class of structures includes east-striking, north-dipping
normal faults of the South Tibetan detachment system". Devel-
oped near the crest of the Himalayas along the southern margin
of the Tibetan plateau. these Late Oligocene- Pliocene exten-
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sional structures are thought to have moved in concert with
contractional faults such as those of the Main Central thrust
system in order to moderate high topographical and crustal-
thickness gradients arising from the India-Asia convergence' ".
Active tectonics of the southern Tibetan plateau are charac-
terized by east-west extension on a third class of structures:
north-striking, east- and west-dipping normal faults and related
strike-slip features (Fig. 1)67 . Based on the results of numerical
experiments on the dynamics of continental plateau uplift, there
is general agreement that east-west extension in Tibet was trigg-
ered by elevation of the plateau to the point when topography-
related extensional stresses exceeded compressional stresses
related to continent-continent collision5 6 

0

Most estimates of the time at which east-west extension
began, and thus the minimum age of the plateau attaining its
high mean elevation if conventional wisdom proves correct, have
been based on chronostratigraphic data for extensional basin
deposits related to the second and third classes of structures near
the southern margin of the plateau. The most extensively studied
Neogene sedimentary sequence in this area is found in the Thak-
khola and Giyrong grabens (Fig. 1). Both are characterized by
a lower section of fluvial and lacustrine strata separated from
an upper fanglomerate section by an angular unconformity''".
Palaeontological and palaeomagnetic data suggest that units
found beneath the unconformities range in age from Late
Miocene to Early Pliocene" 20. The structural setting of the
basins in which these rocks were deposited is poorly under-
stood, but the basal units found within the Thakkhola graben
overlap NNE-striking extensional faults"7 , suggesting that east-
west extension may have started before Late Miocene basin
sedimentation. There is no question that units above the
unconformity were deposited synchronously with the opening
of north-trending grabens'6. Palaeomagnetic investigations
of these strata indicate Late Pliocene and younger ages. The
lack of ambiguity associated with assigning a structural setting
to these deposits prompted some researchers'"' to postulate
a 5-2 Myr age for the inception of east-west extension. More
recently, structural and geochronological studies along the
western flank of the Yangbajian graben (Fig. 1) suggest that
east-west extension in at least one part of the plateau began
11-5 Myr ago

2 ' .22

Our new constraints on the age of this phase of extension are
derived from current studies of the structural evolution of the
Annapurna range of north-central Nepal. east of the Thakkhola
graben (Fig. 2) The extensional faults that are overlapped by
basal units of the Thakkhola Neogene sequence are part of a
regionally important family of NNE-striking normal faults with
minor displacements that disrupt Palaeozoic and Mesozoic
bedrock stratigraphy for -40 km to the east of the Thakkhola
graben2 ' 25; we will refer to these structures, together with the
syndepositional faults found in the graben. as the Thakkhola
fault system. Faults of this system are confined to the region
north of the high peaks of the Himalaya, structurally above
the lowermost shear zones of the South Tibetan detachment

'S26system2s 2

Our study has focused on some of the easternmost structures
of the Thakkhola fault system in the northern part of the
Marsyandi river valley (Fig. 2). The most significant of these
are normal faults developed in essentially unmetamorphosed
Palaeozoic and Mesozoic rocks. They strike N20=E-N40=E and
dip 45-60= northwest, similar in orientation to bounding faults
of the Thakkhola graben. although we consider them to be older
and related to the earliest stages of east-west extension. Striae
on exposed fault surfaces are oriented N90 E t 10. Kinematic
indicators. including slickenside surface characteristics and ori-
entations of extensional fractures within discrete fault zones,
demonstrate that displacement was primarily hanging wall down
to the WNW These oldest and easternmost faults of the Thak-
khola system cut mylonitic fabrics related to structurally high
shear zones of the South Tibetan detachment system. and are
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FIG 1 Generalized tectonic map
of the Tibetan plateau (adapted
from refs 9 and 11) showing
the location of major structural
features discussed in the text,
and the area of Fig. 2

T
G
x
Y

9011
South Tibetan detachment system
Thakkola graben
Gyirong graben
Xixabangma-Yagru Xongia graben
Yangbaian graben

FIG 2 Simplified geological map of
the Annapurna region. X marks the
sample location. E, Cambrian: K,
Cretaceous: pE. Precambrian: Mz,
Mesozoic: Pz. Palaeofoic: PIo,
Pliocene.

Gi-E

Tibetan Sedimentary sequence Thakkbola graben fil

E - K Strata Plio-Pleistocene strata
Greater Himalayan sequence M Miocene Manaslu granite

pC-Mz(?) undifferentiated gneisses

Lesser Himalayan sequence
pC-Pz(?) undifferentiated
sedimentary rocks
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TABLE 1 4 0Ar/ 39Ar data for hydrothermal muscovite. Thakkola fault system

Tube current 
39ArK Cum.

39ArK 
40Ar Age

(A) 36Ar/ 40Ar 39Ar/4 0Ar (x 10 14 mol) (%) (Myr)
Split no. 1

11.5 0.00322 0.00694 0.004 0.12 471 7.2 =0.3
12.5 0.00228 0.02939 0.007 0.34 32.74 11.9 ±0.5
13 000256 0.02851 0.014 0.77 2433 9.1 0.3
13.5 0.00122 0.05077 0.095 3.66 63.96 13.4 0 5
14 0.00081 005709 0.192 9.51 76.03 14.2 ± 0.5
14.5 0.00033 006555 0.311 1901 90.16 14.7 0 6
15 0.00033 0.06895 0 208 25.36 90.40 14.0 20.5
16 0.00049 0.06333 0.332 35.48 85.54 14.4 ± 0.5
18 0.00043 0.06303 0.826 60.67 87.26 14.8 ± 0.6
20 0.00033 0.06865 1.289 100.00 90.17 14.0 ± 0 5

Average 14.3 ± O 1

Split no. 2
14 000100 0.05075 0.168 6.49 70.57 14.8 = 0.6
16 000042 0.06430 0.904 41.43 87.62 14.5 ±0.6
18 000035 0.06596 1.304 91.79 89.77 14.5 ±0.6
20 0.00022 0.06905 0.149 97.53 93.39 14.4 ±0.5
22 0.00035 0.07043 0.064 100.00 89.78 13.6 ±0.5

Average 14.5 ±0.3
39ArK, the number of moles of K-derived 39Ar released during each heating step, and Cum. 39ArK, the cumulative percentage after each heating

increment; 4 0Ar* (%), the percentage of radiogenic 40Ar in the total *'Ar for each analysis. Average ages are means weighted by the amount of
39ArK in each increment, with uncertainties corresponding to 2 standard errors of the mean.

thus demonstrably younger 5 . The age of the mylonitic fabrics
associated with the South Tibetan detachment system in central
Nepal is constrained by cross-cutting leucogranites (such as the
Manaslu pluton) to be at least 22 Myr old27 3.

The Thakkhola fault system also includes vertical extensional
fractures, striking NO E ± 10 which are pervasive in Palaeozoic
rocks of the upper Marsyandi valley. Many of these fractures
contain minerals precipitated from late-stage hydrothermal
fluids, apparently injected during extensional faulting. One of
the more common vein materials is muscovite. which provides
the opportunity to place minimum age constraints on exten-
sional fracturing through *Ar "Ar dating. We applied this tech-
nique to coarse-grained muscovite (Si'v = 3 20 per formula unit,
(Fe,.,,,+ Mg) Al'''=0.145, where superscript IV or VI refers to
a crystallographic site with tetrahedral or octahedral coordina-
tion. respectively) from a fracture developed in a lower amphib-
iolite facies, impure metacarbonate rock from the Annapurna
Yellow Formation3 '. The rock itself contained disseminated,
fine-grained muscovite that grew before extensional fracturing.

To ensure that our sample of hydrothermal muscovite was not
contaminated by older muscovite, the rock was broken along
the fracture and 10-15 single-crystal fragments of hydrothermal
muscovite were hand-picked from the cleavage surface under a
binocular microscope. The material was then split in two frac-
tions that were analysed separately to test for reproducibility of
the results.

The two splits exhibited easily interpretable behaviour during
laser incremental heating (Table 1: Fig. 3). The first was ana-
lysed in the most detail, yielding a relatively flat age spectrum
with an average age of 14.3 ±0.1 Myr. Split no. 2 had a statist-
ically indistinguishable average age of 14.5 ±0.3 Myr. Data from
both splits defined linear arrays on an inverse isotope correlation
diagram2, indicating isochron ages of 14.2 ±0.9 Myr (split no.
I) and 14.3 ± 0.9 Myr (split no. 2). Increments from split no. I
show greater dispersion on the correlation diagram and provide
a better constraint on the initial "MAr 30Ar ratio of these micas,
but both regression curves indicate an initial ratio within uncer-
tainty of the present-day atmospheric value.

a 30

> 24

18

Z 12

6

0

FIG. 3 Incremental release spectrum (a) and inverse isotope correlation
(b) diagrams for hydrothermal muscovites from the Thakkola fault sys-
tem and metamorphic muscovite from the surrounding mylonite (errors
at 2-). ('Cumulative Ar' is defined in Table 1.) Uncertainties for samples
shown without error bars in b are smaller than the designating symbols.
Solid and dashed lines in b designate least-squares linear regression
fits using the algorithm of York.
METHODS. Samples were wrapped in cadmium foil and irradiated
before analysis in the McMaster University research reactor in Hamilton,
Ontario, Canada. Salts included in the irradiation package were used
to correct for interference by reactor-induced masses. The fast-neutron
fluence during irradiation was monitored using Fish Canyon sanidine
(27.84 Myr); ages and age uncertainties were calculated using an esti-
mated irradiation parameter ( J) of 0.00059 ±0.00001 (2-). Incremen-
tal heating experiments were done at the Massachusetts Institute of
Technology using a 10-W argon-ion laser with the technique described
by Hodges3

b 0.0040
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Z 00024

< 0.0016

00008

0.0000
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LETTERS TO NATURE

To evaluate the possibility that, despite our best efforts, the
analysed micas were somehow relicts from the earlier mylonitic
fabric rather than neoblasts crystallized during hydrothermal
activity, we also dated compositionally similar muscovite (Si" =
3.24 per formula unit; (Fe,0 ,, 1+ Mg) Alv'=0.141) that defines
the mylonitic foliation within the South Tibetan detachment
zone in this area. Data for this mica defined a plateau age of
17.6±0.3 Myr (Fig. 3), an inverse isochron age of
17 4 ±0.7 Myr, and an initial ratio within uncertainty of the
present-day atmosphere. The ages of the micas in the mylonite
and the micas in the extensional fractures are significantly
different (at a confidence level of >9 5%X)). demonstrating that
the micas separated from the fracture grew after cooling of the
surrounding mylonitic rocks to temperatures below -625 K (the
nominal closure temperature for Ar diffusion in muscovite3 )
and that the - 14-Myr age does not reflect the long-term thermal
effects of pre-22 Myr igneous activity

We interpret the hydrothermal muscovite data as strong evi-
dence that east-west extension began before 14 Myr ago in the
area corresponding to the present-day southern margin of the
Tibetan plateau. This finding supports earlier suggestions of an
age of at least 13 Myr for the plateau based on the 4 Ar 39Ar
age of volcanic rocks that are thought to have been derived from
thinned mantle lithosphere beneath Tibet" It is also consistent
with interpretations relating geochronological evidence for rapid
cooling of rocks in southern Tibet to Early Miocene plateau
uplift .

Previous studies in southern Tibet suggested that east-west
extension had not progressed to the point that sedimentary bas-
ins, such as the Thakkola graben. began to form until the Pli-
ocene epoch; however, the existence of significantly older, north-
striking normal fault systems implies that the stress field respon-
sible for east-west extension had developed by the Middle
Miocene epoch If the onset of east-west extension marks the
beginning of accelerated uplift of the plateau due to an increase
in the potential energy of the Tibetan lithosphere9, then our data
imply that uplift was not simultaneous with the marked change
in South Asian climate at -8 Myr ago but began several million
years earlier. Future models of Cenozoic global climate change
must be reconciled with a growing body of geological evidence
suggesting that the Tibetan plateau was an established geomor-
phologic feature at least as early as Middle Miocene time, possi-
bly as old as Palaeogene3'.
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Chapter 7

Tectonic synthesis

Introduction

The Himalayan orogen provides a spectacular example of continent-continent

collision. While we know the general progression of Himalayan tectonic events over the

past 50 million years, many important questions about the history and dynamics of the

orogen remains uncertain. This paper is a synthesis of the previous chapters and is

intended to highlight important new insights gained from the combined results into three of

the less well understood aspects of the Himalayan orogeny. The three topics include:

* Oligocene crustal thickening within the Indian plate, north of the Main Central Thrust
zone

* The Miocene structural and thermal evolution of the metamorphic core

e The transition from north-south to east-west extension within the northern Himalaya
and southern Tibetan plateau

Oligocene tectonic history of the central Himalaya

One of the gray areas in our present understanding of the Himalayan orogen

concerns how much crustal thickening was accomplished in the central part of the range,

within the Indian plate, prior to about 22 Ma. A very strong, early Miocene, syn-tectonic

thermal overprint was imposed on Indian-plate rocks north of the Main Central thrust,

obscuring their earlier deformational and metamorphic history (e.g. Hodges et al., 1988).

Although it has been established that continental collision occurred by about 50 Ma (Patriat

and Achache, 1984; Searle et al., 1987 and 1988; Dewey et al., 1988), there is limited

information about the next 30 million years of orogenic evolution. Tectonic

reconstructions for the central Himalaya have invoked Oligocene thrust imbrication north

of the MCT and south of the Indus Tsangpo suture zone (e.g., Hodges et al., 1988) in order

209



to accommodate initial burial of the Greater Himalayan sequence and explain textural

evidence of a polymetamorphic history (see Hodges et al. 1988, and Pecher, 1989, for a

review). A growing body of evidence from the western Himalaya has improved our

understanding of this event. Metamorphism in the Greater Himalayan sequence in the

northwest is constrained to at least 38 Ma in one area from a hornblende cooling age

(Treloar et al., 1989). Structural data suggests that Oligocene crustal thickening was at least

in part accomplished by imbrication on thrust and fold nappes that pre-dated the

extensional north-dipping Zanskar shear zone at the top of the Greater Himalayan sequence

(Patel et al., 1993; Steck et al., 1993). In addition, recent documentation of -35 Ma

sedimentation within the foreland basin of the northwest Himalaya, indicates that there was

high relief within the Indian plate north of the MCT (Najman et al., 1994). A few isolated

isotopic age determinations from the Greater Himalayan sequence in the central part of the

range have provided hints of pre-Miocene metamorphism (e.g., Inger and Harris, 1993;

Hodges et al., 1994; Hodges et al., in press; Vannay and Hodges, in press). However, the

Miocene overprint has made it difficult to correlate these ages with specific structures. In

short, although there already exists evidence of Oligocene tectonic burial of Indian plate

rocks between the Main Central Thrust and the Indus Tsangpo suture, no unequivocally

Oligocene shortening structures had been identified prior to the work reported in this thesis.

In Chapters 2 and 4, I have shown that syn-metamorphic, southwest verging

contractional structures in the Tibetan Sedimentary sequence of the Marsyandi area have a

minimum age of -30 Ma. The key evidence for Oligocene syn-tectonic metamorphism is

the preservation of Oligocene foliation and south-west vergent folds in the lower Tibetan

Sedimentary sequence. A minimum Oligocene age was determined for SW-verging folds

by *Ar/9Ar analyses of syn-kinematic phlogopite. Although cooling ages within the

Greater Himalayan sequence are mostly Miocene, an amphibolite gneiss from the top of
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the sequence retains a hornblende cooling age of -30 Ma (Chapter 4). This result,

combined with an Oligocene U-Pb inherited component within monazite from an adjacent

leucogranite (Chapter 3), provide evidence that the upper Greater Himalayan sequence was

also metamorphosed to at least upper amphibolite facies prior to -30 Ma. Oligocene

hornblende cooling ages within the Greater Himalayan sequence in the Kali Gandaki valley

(Hodges et al., in press; Vannay and Hodges, in press) and at Dinggye (in southern Tibet,

NE of Everest; Hodges et al., 1994), contributes supporting evidence that Oligocene

metamorphism of the upper Greater Himalayan sequence was a regional phenomenon and

not just localized in the Marsyandi region.

Invoking an Oligocene north-dipping crustal-scale thrust fault between the Tibetan

Sedimentary - Greater Himalayan sequence contact is one way to explain the

metamorphism and style of folding within the Tibetan sedimentary sequence and the older

cooling ages below. No viable alternative candidates for crustal-scale thrust faults higher in

the Tibetan sedimentary sequence have yet been identified, although the amount of

thickening accomplished be folding and imbrication within it has not been evaluated either.

The proposed thrust fault is nowhere exposed at present, having been cut out by Early

Miocene displacement on the Chame detachment. Pre-Miocene thrusting at this same

structural level in the Annapurna region has also been suggested by Vannay and Hodges

(in press), who argue that it would have been obliterated by Miocene recrystallization and

displacement on the extensional Annapurna detachment. Vannay and Hodges attribute the

formation of a large refolded SW-verging antiform within the lower Tibetan Sedimentary

sequence to SW directed thrust emplacement at the base of the Tibetan Sedimentary

sequence. It is probable that this fold is of the same generation as the >30 Ma SW-verging

folds in the Tibetan Sedimentary sequence of the upper Marsyandi valley.
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In summary, the Annapurna range results indicate Oligocene (pre-30 Ma) burial

and amphibolite facies metamorphism of Indian plate sediments probably as a

consequence of south-vergent thrust faulting. Combined with results from the northwest

Himalaya (e.g. Treloar et al., 1989; Patel et al., 1993; Steck et al., 1993; Najman et al.,

1994), these data make a strong case for Oligocene crustal thickening along a large portion

of the orogen within the Indian plate north of the MCT.

Early Miocene structural and thermal history of the metamorphic core

The combined results of U-Pb dating of migmatite from the upper and lower

Greater Himalayan sequence (Chapter 3) and thermobarometry throughout the section

(Chapter 5), document the existence of a steep thermal gradient during the early Miocene,

similar to what has been found in other transects within the central Himalaya (Hubbard,

1989; Hodges et al., 1988). Although the Marsyandi results are not significantly different

from previous findings in most regards, they provide better resolution of temporal

relationships between major structures, like the MCT and the South Tibetan detachment,

and metamorphism. The causal mechanism for the steep to inverted thermal structure in

the Himalaya and other orogens remains controversial. Most recent thermal models

suggest that the distribution of radiogenic heat (produced by in situ U, Th, and K decay)

and denudation rates control the thermal structure of an active orogen ( e.g., Royden, 1993;

Huerta et al., in press). Both of these parameters are themselves controlled by

deformational processes, so an important part of testing the viability of such models is

establishing the linkages between structural and thermal processes in real orogenic settings.

In the Marsyandi region, a 15 km thick section of the Greater Himalayan sequence

reached temperatures in excess of 900K (Chapter 5) by -22 Ma (Chapter 3). This heating

event produced migmatization throughout the section and lead to the intrusion of cross-

cutting leucogranites within the upper half (Chapter 3). Structural relationships (Chapter 2)
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demonstrate that 22 Ma melting at the base and at the top of the section was synchronous

with thrusting on the MCT and extension on the Chame detachment. The age of cross-

cutting leucogranite dikes at the top of the Greater Himalayan sequence show that

metamorphism and extensional faulting ceased by 18 Ma.

In the upper Marsyandi valley 22-18 Ma normal faulting on the Chame detachment

juxtaposed the Tibetan sedimentary sequence with the Greater Himalayan metamorphic

core (Chapters 2 and 3). Previously it was impossible to definitely determine a difference

in age of metamorphism between the Tibetan Sedimentary sequence and the Greater

Himalayan sequence in the Annapurna-Manaslu region. Both the upper Greater Himalayan

sequence and basal Tibetan sedimentary sequence were metamorphosed at amphibolite

facies (Schneider and Masch, 1993), an observation that resulted in a reluctance of some

researchers working in the area to accept the possibility of a structural discontinuity

between the two rock packages. It is now clear from the *Ar/9Ar data that the Chame

detachment emplaced >30 Ma amphibolite facies rocks on -22 Ma amphibolite facies

rocks, such that the metamorphic "conformity" is pure coincidence.

Pressure-temperature constraints from the top 3 kilometers of the Greater

Himalayan sequence (Chapter 5) require burial to at least 20 kilometers depth prior to

Miocene unroofing. The existence of a ~22 Ma steep thermal gradient within the Greater

Himalayan sequence at a temperature over 770K, indicates that the strength of the section

would have been relatively low in Early Miocene time. Melt enhanced deformation (i.e.

Hollister and Crawford, 1986) is a plausible mechanism for triggering normal faulting at

the top of the Greater Himalayan sequence along the South Tibetan detachment system as

previously suggested (Burchfiel et al., 1992), and the age constraints from the migmatite

deformed by extensional shearing (Chapter 3) is consistent with this model. However, the
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existence of younger, cross-cutting leucogranites suggest that tectonic denudation could

also be the cause of some anatexis through decompression melting.

Deformation within and at the top of the Greater Himalayan sequence in the

Marsyandi valley indicates that significant amount of thinning of the section was

accomplished by lateral deformation, parallel to the strike of the orogen. West-directed

extension in the Marsyandi valley on the Chame detachment (orogen-parallel) is roughly

coeval with north-directed displacement (orogen-perpendicular) on the South Tibetan

detachment system only 15 km away. The footwalls of both structures (and the entire

section of the Greater Himalayan sequence throughout the central Himalaya) was

deforming plastically at temperatures at or above ~770K during the early to middle

Miocene. This temperature is well within the range under which rocks yield by ductile

flow at geologic strain rates (Brace and Kohlstedt, 1980). The fact that the whole section

was ductile, as well as the observation that the thickness of the Greater Himalayan

sequence varies dramatically while the lithostratigraphy remains relatively constant, indicate

a net flow of material towards the east within the Greater Himalayan sequence. In regions

of crustal thickening, lateral pressure gradients caused by differential thinning (or

thickening) of the overlying crust will drive lower crustal flow, provided the underlying

crust is hot and weak enough (Block and Royden, 1990). Flow towards the east within the

Greater Himalayan sequence could account for west-directed shear between the Greater

Himalayan sequence and the relatively rigid overlying Tibetan Sedimentary sequence in the

Marsyandi valley. Further field analysis is required in order to determine if there is a

continuous variation in the strain or "flow" pattern between different areas that might be

reflected in the footwall kinematics.

It is clear from the structural analysis of the Greater Himalayan sequence in this

study and in others (e.g., Pecher, 1991) that orogen-parallel deformation (or at least
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elongation) at the top of the Greater Himalayan sequence during peak metamorphism was

an important element of the Miocene high-temperature deformation. Orogen-parallel

deformation during convergence has been documented in other orogens including the Alps

(e.g., Mancktelow 1992, Froitzheim et al. 1994, Ratschbacher et al. 1991). In these

examples, there is a change from extension normal to the orogenic core zone early in the

deformation to extension roughly parallel to the core later in the deformation roughly

coeval with peak metamorphic conditions. This consistent pattern suggests a fundamental

change in the geometry of the deformation within orogens in general. The fact that the

timing of orogen-parallel deformation seems to coincide with peak metamorphism within

the core zone of orogens suggests a link between the mode of deformation and the strength

of the deforming wedge.

Middle Miocene east-west extension of southern Tibetan plateau and Northern

Himalaya

After major displacement on the Main Central thrust during the Miocene,

shortening was transferred towards the foreland and taken up on the Main Boundary

Thrust and successively younger faults (Molnar and Lyon-Caen, 1989). The post-early

Miocene history of the hinterland (northern Himalaya and southern Tibetan plateau) was

dominated by a transition from primarily north-south shortening and extension along

north-dipping structures, to east-west extension on north-striking grabens and strike-slip

faulting at the margins of the plateau (Molnar and Tapponier, 1978; Armijo et al., 1986).

This transition has been linked to rapid uplift of the Tibetan plateau (Molnar and Tapponier,

1978; England and Houseman, 1989; Molnar et al., 1993). The timing of the onset of east-

west extension was previously thought to be at around 8 Ma (Pan and Kidd, 1992;

Copeland and Harrison, 1993).
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Results from Chapter 6 (Coleman and Hodges, 1995) show that east-west

extension north of the central Himalaya initiated at least by 14 Ma, not long after extension

on the South Tibetan Detachment system. The combined results from the Marsyandi

region suggest that orogen-parallel extension started at mid-crustal levels within the

Himalaya during the Early Miocene. Initiation of orogen-parallel extension seems to

coincide with the entire Greater Himalayan sequence reaching temperatures in excess of

5000C. It is possible to look at east-west extension in the Marsyandi region as part of a

continuum which propagated from within the deforming wedge of the greater Himalayan

sequence towards the north to the southern Tibetan plateau over a 5-10 Ma interval.

Initiation of east-west extension has been linked to changes in rheology of the mantle

lithosphere (England and Housman, 1989). Alternatively, a change in the rheology of the

middle crust may have been accomplished by the "radioactive wedge" (i.e., Huerta t et al.

(in press)) reaching a critical temperature at which point material began to flow laterally,

driven by a combination of gravitational forces and north-south convergence. Once the

Greater Himalayan wedge started to flow, it would no longer provide a rigid back stop for

the southern part of the Tibetan plateau. It is certainly plausible that this change in physical

boundary condition triggered east-west extension along the southern Tibetan plateau.
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Figure caption

Figure 1) Schematic tectonic reconstructions of the central Himalayas from >30 Ma to 18

Ma. The relative positions of samples MCT- 1, MC-36, and MC-93 (Chapters 3 and 4) are

indicated by the square, triangle and circle, respectively. The map units include the Tibetan

Sedimentary sequence (TSS), Formation 11 (11) , and Formation I (I).
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