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Abstract

An exponential increase in hip fracture risk is an apparently immutable consequence of
aging in our society. Approximately 1.66 million hip fractures occurred worldwide in
1990, and this number is expected to increase markedly as the elderly population grows.
From an engineering viewpoint, a hip fracture is a structural failure of the proximal femur
resulting when loads applied to the bone exceed its structural capacity. The objective of this
thesis was to improve current understanding of hip fracture etiology by investigating
factors contributing to the structural capacity of the femur. This goal was accomplished
using two research strategies: material level studies examining multiaxial failure properties
of trabecular bone, and finite element studies at the whole bone level aimed at elucidating
the relative contributions of age-related bone loss and fall mechanics to hip fracture risk.
Using an analytical approach applicable to cellular materials, failure surfaces for general,
three-dimensional states of stress were derived for trabecular bone of any density and
degree of transverse isotropy. Comparison with surfaces derived experimentally
demonstrated that the microstructural failure mechanisms used in the model do contribute to
muitiaxial failure behavior at the continuum level. For studies at the structural level, an
anatomically accurate finite element model of the proximal femur was generated using
geometric and densitometric information from Quantitative Computed Tomography (QCT).
The structural capacity of the femur was predicted under load vectors representing in vivo
falls impacting on the hip, revealing that variations in impact direction can dramatically
influence load-bearing capacity. Using a novel algorithm allowing direct comparison of
QCT data fromi femurs with different geometry, three-dimensional patterns of bone loss
associated with osteopenia and osteoporosis were determined. The structural consequences
of bone loss were assessed by applying these highly non-uniform density reductions to the
finite element model. The results suggest that clinically "uniform” bone loss (i.e. that which
appears uniform based on two-dimensional clinical bone density exams) causes
progressively larger percent reductions in structural capacity, and that inter-region
differences in the rate of bone loss can have a dramatic effect on structural capacity.
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Chapter 1

Introduction

1.1 Background

Fracture of the proximal femur is an enormous public health problem. Over
280,000 hip fractures occur each year in the United States alone, with an estimated health
care cost approaching $10 billion (AAOS, 1993). Approximately 1.66 million hip fractures
occurred worldwide in 1990, with Europe and North America accounting for about half
(Cooper et al., 1992). With the exponential growth of the elderly population, experts
project that the number of hip fractures will exceed 600,000 in the United States (AAOS,
1993) and 6.26 million throughout the world (Cooper et al., 1992) by the middle of next
century if incidence is not reduced. Over 90% of hip fractures occur in individuals over the
age of 70 (Cummings et al., 1985), a group that experiences significant morbidity and
mortality as a result of these fractures. Those who experience a hip fracture have a 12 to 20
percent higher mortality rate than those of similar age and gender who do not experience a
fracture, and approximately one third of fracture patients are dependent on other people or
mechanical aids for mobility after fracture (Cummings et al., 1985).

The successful design of intervention efforts to reduce hip fracture incidence
depends upon a sound understanding of the factors that contribute to hip fracture risk.
From an engineering viewpoint, a hip fracture 'is a structural failure of the proximal femur
that results when the loads applied to the bone exceed the structural capacity of the bone.
Using this conceptual framework, hip fracture risk is conveniently quantified by defining a
factor of risk, which is simply the ratio of the load applied to the femur during a particular
activity to the load required to fracture the femur during that activity (Hayes and Myers,

1995). When the load applied to the femur meets or exceeds the structural capacity of the
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femur during a particular activity, fracture is predicted to occur. Clinical studies have
demonstrared that both factors related to loading of the femur (e.g. fall direction and impact
site) and factors related to the structural capacity of the femur (e.g. bone density) are
significant and independent contributors to hip fracture risk (Hayes er al., 1993; Greenspan
et al., 1994). Although complex interactions between factors related to loading (i.e. fall
severity) and factors related to structural capacity (i.e. bone fragility) ultimately determine
an individual's risk of hip fracture, examination of these factors independently is extremely
valuable in elucidating the fundamental mechanisms through which each factor acts. In this
thesis, I hope to improve our understanding of hip fracture etiology by examining factors
that contribute to the structural capacity of the femur (the denominator of the factor of risk).
This goal will be accomplished using two distinct but complementary research strategies:
experimental and analytical studies at the material level examining the multiaxial faiiure
properties of trabecular bone, and finite element studies at the whole bone level aimed at
elucidating the contribution of various factors to the structural capacity of the femur.

The stength properties of trabecular bone as a material play a critical role in
determining the load-bearing capacity of the femur. During loads associated with normal
gait as well as falls on the hip, trabecular bone carries approximately 70% of the load at the
subcapital region, 50% at the mid-neck, and 20% at the intertrochanteric region (Lotz et al.,
1995). As the trabecular bone of the proximal femur transmits these substantial loads, it
experiences highly complex, multiaxial states of stress (Lotz er al., 1991a). Despite its
structural importance in the femur, knowledge of the failure properties of trabecular bone
under multiaxial states of stress is limited. Trabecular bone failure properties have been
measured under relatively simple multiaxial loading conditions (e.g. compressive loading
with radial pressure [Borchers and Gibson, 1992] and biaxial plane stress [Stone et al.,
1983]). However, attempts to extrapolate these data to define the failure envelope for a
general, three-dimensional state of stress have thus far been unsuccessful. Much of the

difficulty in determining multiaxial failure properties arises from two sources: the technical
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difficulties involved in performing accurate multiaxial experiments, and the potentially large
inter-specimen variations in th= density and architecture of trabecular bone. Further
experimental work is needed to quantify the multiaxial failure properties of trabecular bone,
and how they relate to density and architecture.

In addition to experimental work, analytical models of trabecular bone can also
significantly enhance our understanding of multiaxial failure behavior. Microstructural
models serve to relate deformation and failure mechanisms at the trabecular level to
macroscopic material properties, and therefore provide a framework for interpreting and
extending experimental results. Such microstructural models can be of particular value in
understanding the effects of trabecular architecture on failure properties, since three-
dimensional architecture is extremely difficult to control and measure in the experimental
setting. The combination of accurate measurements of trabecular bone failure properties
under relatively simple, experimentally feasible states of stress, combined with analytical
models relating microstructural properties to macroscopically observed behavior, should
lead to improvements in our understanding of multiaxial failure in trabecular bone, and in
turn help to elucidate the role of trabecular bone in age-related hip fractures.

In addition to its dependence on trabecular bone failure properties, the structural
capacity of the proximal femur also varies as a function of the applied loads. Since over
90% of hip fractures occur as a result of a fall (Hedlund and Lindgren, 1987; Cummings et
al., 1990), yet fewer than 5% of all falls actually result in a hip fracture (Tinetti, 1987,
Nevitt et al., 1989), the mechanics of falling must contribute considerably to hip fracture
risk. In fact, both a fall to the side (Greenspan et al., 1994) and impact near the hip (Hayes
et al., 1993) have been shown clinically to be significant contributors to hip fracture risk,
independent of bone density measurements. However, the mechanisms responsible for the
increased risk associated with particular types of falls has not been explained. Using the
factor of risk described previously as a framework, it may be that particular types of falls

cause increased fracture risk either because they increase the load applied to the femur (the



numerator of the factor of risk), because they decrease the structural capacity of the femur
(the denominator of the factor of risk), or both. The ability of any structure to bear loads
depends on the direction of application of those loads. In the case of the femur, it is well-
established that substantially higher forces are needed to cause fracture under gait loading
conditions than under a typical fall loading condition (Lotz et al., 1991b; Lotz et al.,
1991a). It is likely that the range of fall trajectories experienced by hip fracture patients and
other fallers expose the proximal femur to impact force vectors with a range of directions.
However, the effect of differences in loading direction on the structural capacity of the
femur has not been examined for loads associated with falling. Such knowledge would be
beneficial in elucidating the independent contribution of fall mechanics to hip fracture risk,
and could lead to improved clinical assessment of fracture risk by identifying impact load
vectors that place the femur at highest risk for fracture.

Age-related reductions in bone density are by far the most widely cited and
recognized explanation for the exponential increase in fracture risk that occurs with age.
Prospective cohort studies have repeatedly demonstrated associations between
densitometric indicators of osteopenia and the incidence of hip fracture (Cummings et al.,
1990; Cummings et al., 1993; Melton et al., 1993; Nevitt et al., 1994; Cummings et al.,
1995). For example, a study of over 9000 women 65 years and older demonstrated that a
decrease in femoral bone mineral density (BMD) of one standard deviation is associated
with a 2.6-fold increase in the age-adjusted risk of hip fracture (Cummings et al., 1993).
Long-term follow-up of over 300 women has also shown that a one standard deviation in
femoral BMD is equivalent, in terms of fracture risk, to a 13-year increase in age (Melton et
al., 1993). The findings of several case-control studies (Riggs et al., 1982; Mazess et al.,
1988; Aloia et al., 1992; Greenspan et al., 1994) are consistent with these longitudinal
investigations. Although the existence of a connection between age-related bone loss and
increased hip fracture risk is indisputable, several questions related to the mechanisms

underlying this connection remain unanswered or only partly answered. For example, what
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is the relationship between a change in clinical bone denrsity for an individual and a change
in structural capacity of the femur? Does a given reduction in bone density at a relatively old
age (i.e. starting at a relatively low BMD level) cause a larger or smaller change in
structural capacity than the same bone density change starting at a relatively high BMD
level? Are certain patterns of bone loss associated with larger reductions in structural
capacity than other patterns? Are the relative values of BMD in different regions of the
femur important to consider in the assessment of hip fracture risk? The results of several
laboratory studies relating ex vivo structural capacity to clinical BMD measurements have
helped to explore the answers to these questions. However, the considerable difficulties
involved in controlling for the confounding influences of inter-bone differences in
geometry and inter-region differences in BMD limit the extrapolation of ex vivo results to
the longitudinal assessment of fracture risk in individuals. Modeling studies are needed to
examine the role of bone density changes independent of these confounding factors. When
combined with the results of experimental studies, the results of such modeling studies can
be used to improve our ability to assess hip fracture risk in the clinical setting, and can be

of use in the development of preventive strategies.

1.2 Outline of Thesis

All of the topics addressed in this thesis are related to proximal femur mechanics,
either at the material or structural level. Although there are certainly connections between
topics (which are addressed where appropriate), each represents a unique contribution and
therefore each chapter is self-contained with its own Introduction, Methods or Analysis,
Results, Discussion and References. The topics of the thesis lend themselves to division
into two areas: studies of trabecular bone at the material level (Chapters 2, 3 and 4), and
studies of hip fracture mechanics at the whole bone level (Chapters 5, 6 and 7). A brief

summary of each chapter follows.
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Chapter 2 describes the measurement of the failure properties of trabecular bone
under shear loading, and the application of these measurements to the development of a
multiaxial failure criterion for trabecular bone. Although shear is a critical component of the
stresses experienced by trabecular bone during traumatic loading, the failure properties of
trabecular bone in shear, and their dependence on apparent density and architecture, have
not been accurately quantified. This chapter describes the development of a system for
accurately measuring shear strains on trabecular bone during torsional loading, and its use
in determining shear failure properties for a range of densities and for two different
trabecular orientations. These results for shear loading are then combined with results from
other uniaxial experiments and a triaxial experiment to formulate a Tsai-Wu failure criterion
for trabecular bone.

In Chapters 3 and 4, microstructural models of cellular materials are developed to
explain the uniaxial and multiaxial failure behavior of trabecular bone, and their dependence
on density and architecture. In Chapter 3, microstructural analysis reveals that the density-
dependent, compression-strong strength asymmetry that has been observed in trabecular
bone (Keaveny et al., 1994) can arise if two conditions are met: the cell wall material (i.e.
trabecular tissue) is stronger in compression than in tension, and the cell walls (i.e.
trabeculae) are loaded simultaneously by axial forces and bending moments. In Chapter 4,
these mechanisms are incorporated into the derivation of failure surfaces for cellular
materials under a general, three-dimensional state of stress. Comparison between the
analytically-derived failure envelopes and those formulated experimentally in Chapter 2
suggests that the microstructural deformation and failure mechanisms described in the
analytical models do in fact contribute to multiaxial failure behavior observed
experimentally at the continuum level.

In Chapter 3, attention turns from failure of trabecular bone at the material level to
failure of the proximal femur as a structure. The focus of this chapter is the effect of impact

direction during a fall on the structural capacity of the proximal femur. Using geometric and
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densitometric information from Quantitative Computed Tomography (QCT), a three-
dimensional finite element model of the proximal femur is developed. The structural
capacity of the femur is then predicted under load vectors that represent a range of possible
in vivo fall impact directions. The results of this parametric study reveal that even
seemingly subtle variations in impact direction from a fall can have a substantial influence
on the femur's load-bearing capacity. In fact, the predicted differences in structural capacity
resulting from differences in impact direction are of the same order as differences resulting
from up to two decades of age-related bone loss.

Chapter 6 describes the use of QCT data to determine the three-dimensional patterns
of bone loss that occur with age in the proximal femur, and their relationship to clinical
measures of BMD from dual-energy x-ray absorptiometry (DXA). Since DXA
measurements are by nature two-dimensional, they do not give complete information about
the distribution of age-related bone loss in three dimensions, which is essential to
determining the structural consequences of bone loss. This chapter describes the
development of a geometric scaling algorithm that allows direct comparison of QCT density
data from bones of different geometry. Using this algorithm and a database of QCT and
DXA data from several femurs, a relationship between changes in BMD and changes in
three-dimensional density distribution is derived and validated. Analysis of this relationship
reveals that patterns of bone loss that appear uniform from clinical DXA measurements can
in fact be non-uniform in three dimensions.

In Chapter 7, the relationship between BMD changes and three-dimensional density
changes derived in Chapter 6 is used to assess the structural consequences of age-related
bone loss. By mapping the three-dimensional density distributions associated with normal,
osteopenic and osteoporotic BMD levels (diagnostic levels defined by an expert panel of the
World Health Organization [Kanis et al., 1994]), to the finite element model developed in
Chapter 5, the structural consequences of clinically "uniform” bone loss are assessed.

Since bone loss in individuals can occur at different rates in different regions of the femur,
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the effects of clinically "non-uniform" bone loss in the femoral neck, trochanteric, and
intertrochanteric regions is also assessed. The results of these parametric studies reveal that
the reductions in structural capacity associated with clinically "uniform" bone loss can be
nonlinear (i.e., can depend on the baseline BMD level), and that inter-region differences in

bone ioss can have a dramatic effect on structural capacity.
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Chapter 2

The Shear Failure Properties of Trabecular Bone,
with Application to Multiaxial Failure

2.1 Introduction

Prediction of trabecular bone failure during in vivo loading, which is essential for
prosthesis design and fracture risk assessment, requires accurate knowledge of its shear
failure properties. If the high shear stresses which exist near prostheses (Cheal er al., 1992)
exceed the shear strength of trabecular bone, prosthesis loosening may occur. Since falls
can induce multiaxial stresses in the proximal femur (Lotz et al., 1991), hip fracture risk
prediction also requires knowledge of shear failure properties, which directly affect
multiaxial strength (Tsai and Wu, 1971). Since trabecular bone in load-bearing skeletal
regions is adapted to transmit compressive and tensile loads along its primary orientation
during habitual activities, shear failure may play a large role in trabecular bone fracture
during traumatic loads which are not aligned with the primary orientation.

There is mounting evidence that failure strains for tensile (Rohl et al., 1991;
Keaveny et al., 1994c) and compressive (Hvid et al., 1985; Hansson et al., 1987,
Mosekilde et al., 1987; Hvid et al., 1989; Keaveny et al., 1994c) loading of trabecular
bone are homogeneous (independent of apparent density and modulus) and isotropic
(independent of trabecular orientation, Turner, 1989; Keaveny et al., 1994b), suggesting
that trabecular bone failure is fundamentally a function of the strain that the bone
experiences, rather than the stress. However, previous investigations of the shear failure
properties of trabecular bone have focused exclusively on stresses at failure (Halawa er al.,

1978; Saha and Gorman, 1981; Stone et al., 1983), such that there is currently a lack of
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knowledge about shear failure strains. In addition, there is a lack of information regarding
relationships between shear failure properties (both stresses and strains) and trabecular
orientation. Knowledge of these relationships would provide considerable insight into
whether trabecular bone failure in vivo is due primarily to shear or to normal strains, both
for when the bone is subjected to habitual loading or to traumatic, off-axis loading. If
trabecular bone failure during off-axis loading occurs primarily in shear, this result may
have substantial implications for predicting age-related fracture risk and evaluating the
structural consequences of 0steoporosis.

The existing knowledge related to failure of trabecular bone under multiaxial loads
is even more limited than the available data for shear failure properties. The main obstacles
to performing multiaxial strength experiments on trabecular bone have been its wide range
in density and architécture within a specimen, as well as the considerable difficulties
involved in applying and measuring controlled multiaxial loads to trabecular bone
specimens. However, the recent development of new protocols for preparation and testing
of trabecular bone specimens allows for greater control of trabecular architecture within a
specimen, and for significant reduction of experimental artifacts in the measurement of
tensile and compressive strains (Keaveny et al., 1994a). In addition, this chapter describes
the development of a new system for accurate measurement of shear strains during pure
shear loading. These new experimental protocols can now be used to accurately perform
the experiments needed to determine the multiaxial failure properties of trabecular bone.

The strength of trabecular bone under any arbitrary three-dimensional state of stress
can be predicted by combining the results of several uniaxial and simple multiaxial
experiments into a multiaxial failure criterion. A general multiaxial failure criterion
applicable to most engineering materials is the Tsai-Wu criterion (Tsai and Wu, 1971),
which requires experimental determination of up to 27 independent coefficients depending
upon material anisotropy. For a transversely isotropic material (a reasonable simplification

for much of the trabecular bone in the proximal femur, vertebral body, and proximal tibia),
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seven coefficients are independent. To determine these coefficients, seven destructive
mechanical tests are required: uniaxial tension in the longitudinal and transverse directions
(2 experiments), uniaxial compression in the longitudinal and transverse directions (2
experiments), pure shear in the longitudinal and transverse directions (2 experiments), and
axial compression with radial pressure (1 experiment). The first part of this chapter
describes the methods and results for two of these experiments, pure shear in the
longitudinal and transverse dirzctions. The additional S experiments were performed by
teams of collaborating investigators (Keaveny et al., 1994b; Keaveny et al., 1994c;
Keaveny et al., 1996), using identical specimen preparation methods and similar
mechanical testing protocols. In the second part of this chapter, results from the pure shear
experiments are combined with results from the remaining 5 experiments to formulate the
Tsai-Wu failure criterion for trabecular bone.

It was hypothesized that shear failure strains (yield and ultimate) in trabecular bone
are homogeneous, and that by contrast to shear failure stresses which are anisotropic, shear
failure strains are isotropic. It was also hypothesized that shear is a dominant failure mode
when trabecular bone is loaded obliquely relative to its primary trabecular orientation. To
test these hypotheses, the specific objectives were to: 1) determine the dependence of shear
failure stresses and failure strains on apparent density and shear modulus by testing
cylindrical specimens of bovine tibial trabecular bone to failure in torsion; 2) compare
magnitudes of shear failure stresses and strains for specimens with longitudinal versus
transverse trabecular orientations; 3) use the shear data, combined with compressive,
tensile and triaxial data (Keaveny et al., 1994c; Keaveny et al., 1996), to formulate the
Tsai-Wu criterion for trabecular bone, and 4) and use the Tsai-Wu criterion to investigate
the dominant failure modes when compressive loads are applied obliquely relative to the

primary trabecular orientation.



2.2 Materials and Methods

2.2.1 Specimen Preparation

Thirty-nine tibiae from 1-2 year old cows were obtained from a slaughterhouse
(Bertolino Beef Company, Boston, MA). Reduced-section cylindrical specimens, used to
bias failure toward a region of uniform surface stress, were prepared according to
published protocols (Keaveny et al., 1994a). Briefly, sagittal and coronal plane sections of
bovine proximal tibiae were radiographed to identify regions of longitudinally and
transversely oriented trabecular bone (Fig. 1). Parallelepipeds were cut from well-oriented
regions, and 40 mm long, 8.3 mm diameter cylinders were obtained using a diamond-
tipped coring tool (#102095, Starlite, Rosemont, PA) at 360 RPM. The specimen ends
were cleaned, dried, and press-fit with cyanoacrylate (Prism 401, Loctite, Newington, CT)
into aligned brass end-caps. After freezing for three hours at -70° C, the central 18 mm
section was turned down at 315 RPM to a diameter of six mm. Microscopic analysis has
demonstrated that no obvious damage occurs to surface trabeculae during this machining
process (Keaveny et al., 1994a). All but the embedded ends of the specimens were kept
wet during preparation and testing. Twenty-eight longitudinal and 26 transverse specimens
were produced in this manner. Of the 39 tibiae used, 17 of the bones yielded only
longitudinal specimens, 20 of the bones yielded only transverse specimens, and 2 bones
yielded both longitudinal and transverse specimens. Due to the arrangement of trabecular
bone within the bovine proximal tibia, longitudinal specimens tended to come from the
anterior and posterior aspects, and transverse specimens generally came from closer to the
central aspect. Despite the potential bias introduced by this slight difference in harvest
locations, serial sectioning of a random subset of specimens revealed that trabecular
architectures within the two groups were similar, and each were approximately transversely

isotropic (Fig. 1).
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LONGITUDINAL

TRANSVERSE SPECIMEN SECTION C-C SECTION D-D

Figure 1: Sections of typical trabecular bone specimens (bone is black) from longitudinal
(top) and transverse (bottom) groups. Longitudinal specimens, where the primary
trabecular orientation was parallel to the long axis of the specimen (Section B-B), were
typically harvested from the anterior and posterior aspects of the tibia and the long axis of
the specimen was approximately aligned with the long axis of the tibia. Transverse
specimens, where the primary trabecular orientation was perpendicular to the long axis of
the specimen (Section D-D), were typically harvested from the central aspect of the tibia,
with the long axis of the specimen perpendicular to the long axis of the tibia. The similarity
in architecture between Sections A-A and D-D, which appear isotropic, combined with the
similarity between Sections B-B and C-C, which appear aligned, demonstrates that the
architecture of the bone in both groups was approximately transversely isotropic.
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2.2.2 Design & Validation of Shear Strain Measurement System

To measure shear strain on the reduced section of each specimen, a rotational
displacement transducer system was designed (Fig. 2). This system included two 1 mm
thick, 13 mm diameter split polyethylene rings, attached 6 mm apart to the specimen gage
length using orthodontic elastic bands. A 0.3 mm thick aluminum tab perpendicular to each
ring was used to couple the rotation at the specimen surface to the deflection of a linear
variable differential transformer (LVDT, model LBB-375-TA-100, Lucas Schaevitz,
Pennsauken, NJ). Engineering shear strain on the gage length surface Y was calculated
based on the deflections of the LVDT's 87 and 82, the axial distance between the two rings
L, the distances between the specimen surface and the point of contact of each LVDT with

its aluminum tab 7, 19, and the radius of the specimen r using the following equation:

y =/ arctan J —arctan % |Ir (1)
r+t, r+t, J|L

Validation was accomplished by comparing elastic strains measured with this

system to those measured using a rosette strain gage glued to a 6 mm diameter reduced-
section aluminum specimen. Ten non-destructive torsional tests were performed with
repositioning of the rotational transducer system between each test. The mean (£ S.D.)
percent difference between the strain gage measurement of strain and the rotational
transducer system measurement for the 10 tests (1.7% + 1.0%, range -3.4% - 2.0%) was
not statistically different from zero (p = 0.24), confirming the system's accuracy with
respect to the strain gage. The coefficient of variation of the rotational transducer system
measurement on the aluminum specimen was 1.9%, demonstrating its repeatability. The

shear modulus of one randomly-chosen bovine tibial trabecular bone specimen was also
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measured six times with repositioning of the transducer system each time, yielding a
coefficient of variation on trabecular bone of 4.5%. Based on these data, the system was

considered to be accurate and precise for bovine trabecular bone.

A B C

Elastic band Aluminum tab

Polyt:ithylene »

Aluminum tab LVDT

Cross-sectional view
of transducer

Figure 2: Schematic of rotational transducer system used to measure shear strain on
specimen surface (not to scale). Each 40 mm long, 8.3 mm diameter trabecular bone core
was glued into brass endcaps approximately 25 mm apart, and the central 18 mm length
was turned down to a diameter of 6 mm. Two 1 mm-thick, split polyethylene rings were
mounted to the gage length of each specimen (L = 6 mm nominally) using orthodontic
elastic bands. A 0.3 mm thick aluminum tab perpendicular to each ring was used to couple
the angular displacement of the specimen surface to the deflection of a linearly variable
differential transformer (LVDT), positioned perpendicularly at a distance t = 8 mm from the
edge of the specimen. (A) View of rotational transducer system showing setup without
LVDT's. (B) Perpendicular view, showing LVDT placement. (C) Top view detail of split
polyethylene ring, showing attachment to specimen via orthodontic elastic bands.
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2.2.3 Mechanical Testing

Young's modulus was measured non-destructively in compression using a uniaxial
servo-hydraulic load frame (Model 1331, Instron Corp., Canton, MA). Specimen diameter
was measured six times with a digital caliper. Specimens were instrumented with a 5 mm
gage length, 16 gram extensometer (Model 632-29C-30, MTS, Minneapolis, MN) and
loaded from 0% to 0.4% and back to 0% strain four times with the extensometer
repositioned 90° circumferentially each time. Young's modulus was defined as the mean of
the slopes of the resulting stress-strain curves between 0.1% and 0.4% strain (Keaveny et
al., 1994c).

After overnight storage at 2° C, specimens were tested to failure in torsion at room
temperature using a biaxial servo-hydraulic load frame (Series 3300, Interlaken Corp.,
Minneapolis, MN). The rotational transducer system was mounted onto each specimen,
and the axial distance between the two rings was determined using the mean of six
measurements with a digital caliper. The end-caps were then gripped in the test frame with
zero axial load and torque. Angular displacement was applied at a rate of 2°/sec (rate of
approximately 0.6% strain/sec, similar to the rate of 0.5% strain/sec used in previous
experiments [Keaveny et al., 1994c]) up to an angular displacement of at least 30° to ensure
reaching the ultimate torque. Torque was measured using a multicomponent force
transducer (Model MC3A-6-500, Advanced Mechanical Technology, Inc., Newton, MA).

After mechanical testing, a low speed diamond saw (Labcut 1010, Extec, Enfield,
CT) was used to section out a cylinder (approximately 5 mm in length) from one or both
sides of the fracture site, depending on the amount of intact bone remaining in the gage
length. The height and diameter of each cylinder were measured six times using a digital
caliper. Marrow was removed from the cylinders using at least five 10-minute cycles in an

ultrasonic cleaner with a 1:3 bleach:water solution, with a water jet rinse after each cycle.
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The cylinders were centrifuged for 15 minutes at 1000 RPM and weighed to calculate wet

apparent density.

2.2.4 Data Analysis

Shear stress T was determined from the torque versus angle of twist curve using the

following equation (Nadai, 1950):

1 dT '|
T = 60— + 3T
213 [ do J 2

where T is the measured torque, r is the radius of the specimen, and @ is the angle of twist
per unit length. The term dT/dq was determined by fitting a fifth-degree polynomial to the
torque versus angle of twist curve. Although the derivation of equation (2) assumes
material isotropy, the errors associated with use of this equation should be minimal since
the specimens were approximately transversely isotropic and trabeculae were aligned either
parallel or perpendicular to the axis of the specimen. Shear strain at the specimen surface
was calculated using equation (1). Shear modulus was defined as the slope of the stress-
strain curve between 0.1% and 0.4% strain (Keaveny et al., 1994c). The elastic range was
the strain at which a line drawn from the origin with a slope cqual to 95% of the shear
modulus intersected the stress-strain curve. The yield stress and yield strain of each
specimen were defined by the intersection of the stress-strain curve with a line parallel to
the line defining shear modulus, but offset by 0.2% strain. The ultimate stress was the
maximum stress; the ultimate strain was the lowest strain corresponding to the ultimate
stress.

Six specimens were lost during testing, leaving 48 specimens (from 36 different

tibiae; n = 25 longitudinal; n = 23 transverse) for statistical analysis. Reasons for lost
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specimens were: 1) insufficient gage length for proper rotational transducer placement (2
transverse); 2) specimen mishandling (2 longitudinal, 1 transverse); and 3) operator error
(1 longitudinal). Although four longitudinal and nine transverse specimens fractured
outside the gage length, the stress-strain curves for these specimens indicated that the
fractures occurred after the ultimate stress had been reached within the gage length. Thus,
valid yield and ultimate data were obtained for all 48 specimens.

An unpaired Student's t-test indicated that the mean apparent density in the
transverse group (0.59 £ 0.11 g/cm3) was 18% higher (p = 0.008) than in the longitudinal
group (0.50 £ 0.11 g/cm3). Thus, comparisons between failure stresses were based on
mean values adjusted for apparent density, using analyses of covariance with apparent
density as covariate (RS1 version 4.3, BBN Software, Cambridge, MA). Unpaired t-tests
were used to detect any dependence of failure strains on the trabecular orientation, since
these properties did not depend on apparent density (see below). Linear regression analysis
was used to determine relationships between shear failure properties, shear modulus and

apparent density.

2.2.5 Formulation of the Tsai-Wu Failure Criterion

The Tsai-Wu failure criterion is a mathematical formulation that describes an
ellipsoidal failure surface in six-dimensional stress space. The criterion can be expressed

using indicial notation as
Fo +Fo00,=1 ij=1-6 (3)

where O, are the stress components and F, and F,.j are the experimentally derived Tsai-

Wu coefficients. For a coordinate system where directions 1, 2 and 3 correspond to

directions X, Y and Z, the 0O, indices i = 1-3 correspond to the normal stresses 0,,, O,
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and O_; the indices i = 4-6 correspond to the shear stresses 7, , T _, and T, . For a

transversely isotropic material with isotropy in the 2-3 (or transverse) plane, the indices 2

and 3 of Equation 3 are interchangeable, as are the indices 4 and 6. In this case, the

criterion (Eqn. 3) reduces to

F.o, +2F,0,+F, 0} +4F, 0,0, +2(F, + F,)o: @)
+2(F,, ~F,)o; +2F 0] =1

Six of the independent coefficients can be found from uniaxial tests (tension, compression
and shear performed on longitudinally and transversely oriented specimens); they are

expressed in terms of the uniaxial strengths as follows (Tsai and Wu, 1971)

F‘=—-17— lc F2=L‘-— lt F,=F,
o o G oo
F,=F,=F =0
1 1
FH:O';G',‘ Fzz:O';G; F,=F, 3
1 1
F44=o__: F55=O'_52 Fo=F,

where the superscripts t and c refer to tensile and compressive strengths, respectively. The
coefficient F12 can be determined from a triaxial test that combines axial loading in the
longitudinal (1) direction with radial pressure in the transverse (2 and 3) directions. For this

loading condition, the Tsai-Wu criterion reduces to

Fo,+2F,p+F, 0] +4F,0,p+2(F,+F,)p' =1 ©6)
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where p is the applied radial pressure. The coefficient F»3 is not independent; Cowin
(1986) derived the following equation for F»3 based on symmetries in the microstructure of

a transversely isotropic material:
F,=F,-05F 0]

Equation 6 can be rearranged to express Fj2 as a function of the known coefficients (Fy,

Fa, F11, F22, and F73), and the radial pressure p and axial stress O, at failure in the triaxial

test, giving

1
F, =m(1-F,a,—2F2p—F,,af—2(F,2+F2,)p2). ®)

Each of the coefficients Fjj was expressed as a function of density, using power
law relationships between strength values and apparent density from the seven
experiments. The equations for calculating the coefficients Fy and F1| were determined by
Keaveny et al. (1994c), who measured the tensile and compressive strengths of
longitudinally oriented specimens. Equations for the coefficients F, and Fp7 were derived
from similar experiments (Keaveny et al., 1994b, unpublished data) on transversely
oriented specimens. The equations for calculating the coefficients F44 and Fs5 were derived
directly from the shear stress results described later in this chapter. Finally, the equation
governing the coefficient F15 was derived by Keaveny et al. based on the results of triaxial
tests on longitudinal specimens of trabecular bone (Keaveny er al., 1996). Using these

coefficient values, the Tsai-Wu failure envelope was calculated at three levels of apparent

density (0.30, 0.45, and 0.60 g cm3), for two states of stress: biaxial stress with 0, = 0,

and triaxial stress with 0, = O,.
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To gain insight into the importance of shear properties in multiaxial failure
behavior, yield stresses were predicted for off-axis compressive loads acting from 0° to 90°
relative to the primary orientation (equivalent to biaxial stress in the 1-2 plane) using both
the maximum stress (Jones, 1975) and the newly developed Tsai-Wu failure criterion. The
maximum stress criterion was used in addition to the Tsai-Wu criterion because it does not
allow for interactions between different failure modes, and therefore it provides insight into
the dominant mode of failure for a given loading condition. Under the maximum stress
criterion, yielding was predicted when either: 1) the normal stress in the longitudinal
direction exceeded the longitudinal yield stress, 2) the normal stress in the transverse
direction exceeded the transverse yield stress, or 3) the shear stress in the 1-2 direction
exceeded the transverse shear yield stress. Therefore, the predicted yield stress was the

minimum of:

)

¥

where O is the off-axis compressive yield stress, Ois the angle between the applied stress
and the primary trabecular orientation, O} is the longitudinal compressive yield stress, O
is the transverse compressive yield stress, and o, is the transverse shear yield stress
determined in this experiment. All yield stress values were calculated from the same
density-strength relationships used to formulate the Tsai-Wu constants, evaluated at an
overall mean apparent density of 0.62 g cm-3. To allow for interactions between failure

modes and therefore provide a more realistic prediction of off-axis behavior, off-axis yield
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stresses were also predicted using the more complex Tsai-Wu criterion. For a transversely
isotropic material under an off-axis compressive load, the Tsai-Wu failure criterion was

reduced to:

F,0, cos’ 0+ F,0 sin’ 0+ F, 0} cos* 8+ F,0, sin" 6
. ' (10)
+F,07sin’ Ocos’ §+2F, 0} sin’ Ocos’ 6 =1

where the F; and Fjj terms are defined in Equations 5. To investigate the relative
contribution of shear to the biaxial failure properties, off-axis yield stress O, were
predicted using a value of F44 calculated based on the measured transverse shear yield
stress values, and also using values of F44 calculated assuming that shear yield stress
values were 30% higher and 30% lower than measured values, while keeping all other
properties constant. All off-axis yield stress predictions were made for an overall mean

apparent density of 0.62 g cm3.
2.3 Results
2.3.1 Shear Failure Properties

All stress-strain curves were linear initially, followed by a gradual yield region until
the ultimate point was reached (Fig. 3). Since the theory used to calculaté the stress-strain
curves is not valid beyond the ultimate point, conclusions could not be drawn regarding
stress-strain behavior beyond the ultimate point. However, it was noted that specimens
carried one-third to two-thirds of the ultimate torque when the limit of the rotational
transducer system was reached (approximately 15% strain). Since all bone throughout the
cross-section has yielded when the maximum torque is reached, this behavior suggests that

there is a substantial load-carrying capacity after shear failure. Fracture lines were generally
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oblique (at approximately 45°) in the longitudinal group, and were either oblique or

perpendicular to the specimen axis in the transverse group.
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Figure 3: Typical stress-strain and torque versus angle of twist (per unit length) curves
for a longitudinal specimen. All specimens exhibited linear behavior initially, and yielded
between 1.05% and 1.78% strain. The equation used to calculate stress from torque is not
valid beyond the ultimate point. However, specimens typically carried one-third to two-
thirds of the ultimate torque when the limit of the rotational transducer system was reached
(approximately 15% strain), suggesting that there is a load-carrying capacity after the
ultimate stress in shear.
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While shear failure stresses were heterogeneous (i.e. dependent on apparent density
and shear modulus) as expected, shear failure strains were homogeneous (i.e. independent
of apparent density and shear modulus). Shear yield and ultimate stresses were positively
and linearly correlated with apparent density (r2 = 0.61 - 0.80, Fig. 4, Table 1), and the
slopes of the relationships were statistically similar (p = 0.20 and 0.36) for longitudinal vs.
transverse trabecular orientations. By contrast to the failure stresses, shear failure strains
were independent of apparent density (Fig. 5, Table 1). Similar but stronger relationships
were observed for failure stresses with shear modulus as the independent variable. There
were weak negative correlations (longitudinal, r2 = 0.25, p = 0.01; transverse, r2=0.20, p
= 0.03) between yield strain and shear modulus and between ultimate strain and shear
modulus in the longitudinal group (r2 = 0.35, p = 0.002, Table 1).

While yield and ultimate stresses were highly anisotropic, ultimate strains were
isotropic and yield strains were only slightly anisotropic (Table 2). Mean (£ S.D.) values
of shear yield and ultimate stress for the longitudinal orientation were 4.24 * 1.42 MPa and
6.35 * 2.00 MPa respectively; after adjusting for apparent density, these values were 62%
and 61% higher respectively (p < 0.0001) than for the transverse orientation. The mean
shear yield strain for the longitudinal orientation was 1.46 * 0.19%, which was 10%
higher (p = 0.01) than for the transverse orientation (1.33 £ 0.15%). By contrast to the
yield strains, there was no difference (p = 0.24) between the mean ultimate strains for

longitudinal (4.60 £ 0.77%) vs. transverse (4.24 * 1.25%) trabecular orientations.
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Figure 4: Plots of yield and ultimate stress against apparent density for longitudinal and

transverse trabecular orientations. LYS, longitudinal yield stress; TYS, transverse yield

stress; LUS, longitudinal ultimate stress; TUS, transverse ultimate stress. For both yield

and ultimate stress, the slopes of the relationships were statistically similar for the two

trabecular orientations, although the adjusted mean (+ S.E.M.) yield and ultimate stresses
for the longitudinal group (4.61 + 0.16 MPa and 6.92 £ 0.21 MPa) were 62% and 61%
higher, respectively (p < 0.0001, analysis of covariance with apparent density as covariate)
than for the transverse group (2.85 £ 0.17 MPa and 4.30 = 0.22 MPa).
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Figure 5: Plots of yield and ultimate strain against apparent density for longitudinal and
transverse trabecular orientations. LYS, longitudinal yield strain; TYS, transverse yield
strain; LUS, longitudinal ultimate strain; TUS, transverse ultimate strain; numbers are mean
(S.D.). Yield and ultimate strains were independent of apparent density in both groups.
The mean ( S.D.) yield strain for longitudinal loading (1.46 £ 0.19%) was 10% higher (p
= 0.01, Student's t-test) than for transverse loading (1.33 £ 0.15%), indicating that shear
yield strains were slightly anis;t;opic. However, there was no significant difference (p =
0.20) between the uitimate strains for the longitudinal (4.60 + 0.77%) and transverse (4.24
+ 1.25%) trabecular orientations, indicating that the ultimate strains were isotropic.
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Longitudinal Transverse

Y X slope intercept*  p2 slope intercept* 2
Shear modulus (MPa)  p 931 — 0.61 775 -158 0.64
E 0.i43 — 0.78 0.351 — 0.67
Elastic range (%) G — — — — —_ —
P — — — _ — —
Tyield (MPa) G 9.88 — 0.80 8.72  0.681  0.83
p 103 — 0.61 7.67 — 0.68
Yyield (%) G -0756 172 025 -0.647  1.52  0.20
P — — — — — —
Tyltimate (MPa) G 142 139 083 13.1 1.04  0.84
p 150 — 0.65 124 236  0.80
Yultimate (%) G -352 58 035 — — _
P — — — — — —

*Intercepts are only reported when significantly different from zzro (p < 0.09).
— regression was not significant (p > 0.05).

Table 1: Linear regressions (Y = aX + b) of shear properties against apparent density (p,
g cm3) and either shear modulus (G, GPa) or Young's modulus (E, MPa), compared for
longitudinal and transverse trabecular orientations. Relationships for failure stresses (1,

MPa) had statistically similar slopes in the longitudinal and transverse groups (analysis of
covariance, p > 0.05). Failure strains ("¢ %) were independent of apparent density and only

weakly dependent on shear modulus.
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Longitudinal (n =25) Transverse (n =23) Transverse to
Material property mean + S.D. mean + S.D. longitudinal
range range ratiot
adj. mean (S.E.M.)*  adj. mean (S.EM.)*
Apparent densi ) Cm'3 0.50 + 0.11 0.59 + 0.1 1 1.1 8 i
PP " (g em) 0.25 - 0.65 0.38 - 0.76
Shear modulus (MPa) 349 + 128 296 + 103
99 - 535 95 - 546
384 (15) 257 (16) 0.67 §
Young's modulus (MPa) 2470 £ 789 719 + 241 0.29 §
704 - 3700 306 - 1300
Failure stresses (MPa):
Yield stress 424 + 142 3.26 £ 0.99
1.37 -7.18 1.11 - 5.10
4.61 (0.16) 2.85 (0.17) 0.62 §
Ultimate stress 6.35 £2.00 492 + 148
2.22 -9.83 1.96 - 7.53
6.92 (0.21) 4.30 (0.22) 0.62 §
Failure strains (%):
Elastic range 0.97 £0.23 0.80 £ 0.22 0829
0.46 - 1.35 045 -1.21
Yield strain 1.46 £0.19 1.33 £ 0.15 091¢
1.07 - 1.78 1.05 - 1.56
Ultimate strain 4.60 £ 0.77 424 + 1.25 0.92 (No
2.96 - 6.00 2.16 - 7.17 difference)
%%k

*Adjusted means are only reported for properties where the slopes of the relationships with
density were statistically similar for longitudinal and transverse loading (by analysis of

covariance with density as covariate).
tRatios are based on adjusted means for shear modulus and failure stresses; for Young's

modulus and failure strains, comparisons were based on unpaired z-tests.
$p = 0.008; §p < 0.0001; §p = 0.01; **p =0.2.

Table 2: Comparison of mean values of the material properties for longitudinal and
transverse trabecular orientations. All material properties, except apparent density and
ultimate strain, were significantly lower for the transverse group.



2.3.2 Application of Shear Properties to Multiaxial Failure

The results described above for shear yield stresses were combined with results
from tensile, compressive (Keaveny et al., 1994b; Keaveny et al., 1994c) and triaxial
(Keaveny et al., 1996) experiments to formulate the Tsai-Wu failure criterion for bovine
tibiai trabecular bone. Although linear relationships were reported above between apparent
density and shear yield strengths, power law relationships provided similarly good
correlations. Power laws were used to formulate the following relationships between the

Tsai-Wu constants and apparent density:

po_ L 1
' T 46.9p"  86.4p"”
1 1
2 43T (10.8pl.59) - (22.4p2‘58)
F, = L
"~ (4.9 )(36.4p")
1
=F_ = 11
22 33 (10. 8pl.$9 )(22.4p2.58 ) ( )
1
F =F =— "
“ 66 (7-39pl.58)2
1
55— (10 lpllo)
F,=F, “%073-‘3 +0.00398

For the case of bjaxial stress with 0, = 0, at all densities, the major axis of the

Tsai-Wu failure ellipsoid was nearly parallel to the line defining an axial to transverse stress
ratio of about six (Fig. 6). However, the ellipsoid was more elongated at lower densities
than at higher densities. Since the amount of elongation in the ellipsoid is controlled by the

magnitude of the strength interaction term F3, this result indicates that for biaxial stress
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Figure 6: Plane through the Tsai-Wu failure surface for a biaxial state of stress, for three
apparent densities (0.3C g cm-3, inner envelope; 0.45 g cm™3, middle envelope; 0.60 g
cm-3, outer envelope). At all densities, the major axis of the ellipsoid was aligned nearly
parallel with the line defining an axial to transverse stress ratio of about six. At lower
densities, the ellipsoid is more elongated than at higher densities. Since Fy2, the strength
interaction term, determines the level of elongation of the ellipsoid, this result indicates that
there is more of a strength interaction effect at lower densities.
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states, there is more of a multiaxial strength interaction effect at lower densities. The
orientation and elongation of the failur.: envelopes for the triaxial, axisymmetric stress state
were similar to the biaxial case (Fig. 7). However, the ratio of transverse to longitudinal
stress at failure was lower for all densities in the triaxial case than in the biaxial case.

The dominant failure mode for off-axis compressive loading depended on the angle
between the applied load and the primary trabecular orientation (Fig. 8). Using the
maximum stress criterion and ithe measured shear yield stress, yielding in shear was
predicted for angles between 6° and 62°, while yielding due to normal stresses was
predicted for all other angles (Fig. 8B). When the shear yield stress was increased by 30%
(therefore increasing the ratio of shear to compressive yield stress), yielding in shear was
predicted for a slightly smaller range of angles (8° - 55°); when the shear yield stress was
reduced by 30%, yielding in shear was predicted for a larger range of angles (4° - 69°).
Although the maximum stress criterion did not allow for interaction between failure modes
(as evidenced by slope discontinuities), the predicted yield stresses follow trends similar to
those calculated from the Tsai-Wu criterion (Fig. 8C). Thus, if the failure behavior of
trabecular bone is well-described by the Tsai-Wu criterion, the dominant failure mode will
be shear when compressive loads are applied at approximately 6° - 62° oblique to the

primary trabecular orientation.

2.4 Discussion

Based on trends measured for tensile and compressive failure of bovine tibial
trabecular bone (Keaveny et al., 1994b; Keaveny et al., 1994c), it was hypothesized in this
study that shear failure strains of bovine tibial trabecular bone are homogeneous and
isotropic. It was also hypothesized that shear is a dominant failure mode when trabecular
bone is loaded obliquely relative to its primary trabecular orientation. The results indicate

that while failure stresses in shear were highly inhomogeneous and anisotropic, shear
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Tsai-Wu Failure Envelope, Triaxial Stress
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Figure 7: Plane through the Tsai-Wu failure surface for a triaxial, axisymmetric state of
stress for three apparent densities (0.30 g cm-3, inner envelope; 0.45 g cm-3, middle
envelope; 0.60 g cm-3, outer envelope). At all densities, the major axis of the ellipsoid was
aligned nearly parallel with the line defining an axial to transverse stress ratio of about 11.
As in the case of biaxial stress, the ellipsoid is more elongated at lower densities, indicating
that there is more of a strength interaction effect at lower densities.
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Figure 8: (A) Yield stresses were predicted for uniaxial compressive stresses o acting
from 6 = 0° (longitudinal loading) to 8 = 90° (transverse loading) relative to the primary
trabecular orientation, using the measured shear yield strength values, and also using
values 30% above and 30% below the measured value. Using the maximum stress criterion
(B) and the measured shear yield stress, yielding in shear was predicted for angles between
6° and 62°; when the shear yield stress was increased, yielding in shear was predicted for a
smaller range of angles (8° - 55°); when the shear yield stress was reduced, yielding in
shear was predicted for a larger range of angles (4° - 69°). The predicted yield stresses from
the maximum stress criterion follow trends similar to those based on the more complex and
realistic Tsai-Wu criterion (C), which also predicts large changes in off-axis yield stress
with changes in the ratio of shear to compressive yield stress.
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failure strains were homogeneous and were either isotropic (ultimate) or only slightly
anisotropic (yield). These results indicate that failure in shear can be predicted for (bovine
tibial) trabecular bone of any density and orientation with knowledge of only its failure
strains. The data for shear yield stresses were then used to formulate the Tsai-Wu
multiaxial failure criterion for trabecular bone. Assuming that the Tsai-Wu criterion
describes the failure behavior of trabecular bone under plane stress conditions, it was
demonstrated that shear failure can dominate trabecular bone failure for a substantial range
of off-axis compressive loading directions, and that this range depends on the magnitude of
the shear yield stress.

The use of a custom rotational displacement transducer system and a reduced-
section cylindrical geometry eliminated end-artifacts and biased failure to a region of
constant surface stress, resulting in a higher level of accuracy in the measurement of
trabecular bone shear properties than has been achieved previously. By harvesting
specimens from 36 different bones, the data also provide a good representation of the
behavior of bovine proximal tibial bone in general. Since longitudinal and transverse
specimens were not selected randomly from identical sites within the tibia, there may be
architectural differences between groups which introduced a bias into the comparisons for
different orientations. However, the most structurally important differences between
groups were in apparent density and the direction of the primary trabecular orientation.
Since failure strengths were adjusted for inter-group differences in apparent density, the
comparisons for different trabecular orientations should closely reflect the anisotropy of
trabecular bone. It should also be noted that the absolute values of the reported properties
may be somewhat inaccurate relative to the in vivo situation because in vivo boundary
conditions can never be simulated exactly with excised trabecular bone specimens.

One possible limitation of the results is their applicability to human bone, due to
differences in apparent density and architecture between human and bovine bone. The mean

(1 S.D.) wet apparent density of 0.54 £ 0.11 g cm™3 of the specimens used here is higher
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than those reported for the human lumbar spine, 0.19 + 0.08 g cm™3* (Hansson et al.,
1987) and proximal tibia, 0.26 + 0.14 g cm-3* (Ashman et al., 1989), although the
densities reported here are similar to those reported for the human proximal femur, 0.50 +
0.16 g cm3* (Rohlmann er al., 1980). Since failure stresses are highly dependent on
apparent density, the failure stress results should be extrapolated carefuily (if at all) to
densities below the measured values. However, since failure strains were independent of
apparent density, the mean failure strain values reported here may apply to low density
human bone. Differences in architecture must also be considered when extrapolating the
results to human bone, since the failure mechanisms at the trabecular level may differ. The
substantial overlap of failure strains for longitudinal and transverse trabecular orientations,
however, suggests that shear failure strains may be independent of architecture.

The mean values for ultimate shear stress and shear modulus agree with values
reported by previous investigators (Table 3). The mean ultimate strength for longitudinal
specimens (6.35 £ 1.89 MPa) agrees best with the value of 6.60 + 1.66 MPa reported by
Stone et al. (1983) for bovine humeral bone, most likely due to similarities in density and
trabecular orientation between the two studies. The slightly lower values reported by Saha
and Gorman (1981) are probably due to their use of lower density human bone. The shear
modulus values also compare favorably with those measured by ultrasound for the bovine
femur (Ashman et al., 1987). Although values for shear failure strains have not been
reported, previous investigators have concluded that compressive failure strains are
isotropic (Turner, 1989) or slightly anisotropic (Mosekilde et al., 1987), which is in
general consistent with the results for shear failure strains.

The combination of data presented in this chapter for shear yield stresses with data
for tensile, compressive and triaxial loading to formulate the Tsai-Wu failure criterion
represents a significant advance in the application of multiaxial failure theory to trabecular

bone. In particular, the failure criterion described here can be used to predict failure for any

" Dry apparent density values reported in these studies were converted to wet apparent density based on the
data of Galante et al. (1970).
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state of multiaxial stress and for a specimen of any apparent density. However,
extrapolation of the failure surface to densities outside the range used to formulate the
criterion (approximately 0.4 - 0.8 g cm>) may result in inaccurate predictions of failure
stresses. In addition to its limitation to relatively high density bone, the formulation
described here may not be applicable to trabecular bone with different architecture than
bovine tibial bone. Therefore, additional experimental work is required to determine the
multiaxial failure behavior of human bone for various anatomic sites. Finally, although the
Tsai-Wu failure criterion has been formulated for trabecular bone, its predictive accuracy
has not been evaluated in prospective tests, which should occur before the criterion can be
effectively used in predicting structural failure of whole bones.

The prediction that shear can dominate failure during off-axis loading may have
implications for traumatic failure of bones, particularly age-related hip fractures. Although
the analysis using the maximum stress criterion did not take into account interactions
between failure modes (as evidenced by slope discontinuities in Fig. 8B), the predictions
are consistent with those based on the more realistic Tsai-Wu criterion. Therefore, although
one mode is not necessarily solely responsible for failure, the results indicate that shear can
dominate trabecular bone failure for a relatively large range of off-axis loading directions. If
this prediction holds for human bone, then failure of trabecular bone in vivo during
traumatic, off-axis loading (such as in the proximal femur during falls) may be dominated
by shear failure. The results also indicate that if changes in trabecular structure with aging
degrade shear properties more than compressive properties — which may occur as the
body attempts to maintain maximum structural capacity for habitual activities — then shear
will dominate trabecular bone failure for an even larger range of off-axis loading.
Therefore, efforts to understand and predict the failure properties of the proximal femur
under traumatic loading conditions may be improved by considering the shear as well as

compressive properties of the trabecular bone.
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Chapter 3

Uniaxial Strength Asymmetry in Cellular Materials:
An Analytical Model

3.1 Introduction

Both natural and engineering cellular solids bear mechanical loads. Successful
design of engineering cellular materials requires an understanding of their response to load,
in particular how their stiffness and strength relate to those of the solid from which they are
made, to their relative density and to their cell geometry. Analytical models based on the
microstructural mechanisms responsible for observed macroscopic behavior are useful in
designing materials with appropriate properties for specific applications. The development
of microstructural models that explain material strength behavior is essential for accurate
prediction of failure in both natural and engineered structures.

Some cellular materials have different uniaxial tensile and compressive strengths.
This strength asymmetry may arise as a result of the cellular material failing by different
mechanisms in tension and compression (Gibson and Ashby, 1988). Flexible polyurethane
foams, for instance, typically fail by yielding in tension and by elastic buckling in
compression: then the tensile yield strength is greater than the compressive elastic collapse
strength and the degree of strength asymmetry decreases as the relative density increases.
Brittle ceramic foams often fail by brittle fracture in tension and by brittle crushing in
compression; if there is a pre-existing crack in the material, the tensile fracture strength is
less than the compressive crushing strength. Strength asymmetry may also arise in cellular
solids which fail by the same mechanisms in tension and compression but which are made
up of a solid with different tensile and compressive strengths. Examples include trabecular

bone (Stone et al., 1983; Kaplan et al., 1985; Keaveny et al., 1994) and rigid polyurethane
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foams (Triantafillou et al., 1989). Both are stronger in compression than in tension and
both show considerable ductility, suggesting that failure is by yielding or microcracking.
The degree of strength asymmetry increases with relative density (Fig. 1). Here, the
strength asymmetry in cellular solids arising from a difference in the tensile and
compressive yield strength of the cell wall material is described. First, strength asymmetry
is modeled in a simple, two-dimensional honeycomb, and then these results are extended to

three dimensions using a tetrahedral unit cell to represent open-cell foams.
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Figure 1: Compressive and tensile yield strength plotted against density for trabecular
bone (Keaveny et al., 1994) and rigid polyurethane foam (Triantafillou et al., 1989). Both

materials exhibit compression-strong strength asymmetry that increases with density.
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3.2 Analysis: Honeycombs

The uniaxial yield strength of hexagonal honeycombs is analyzed first, allowing for
differences in the tensile and compressive yield strengths of the cell wall material, using the
method of Gibson and Ashby (1988). They neglected the effect of axial stresses within the
cell wall, which leads to equal tensile and compressive yield strengths in the honeycomb,
even for differing tensile and compressive strengths in the cell wall material. As shown
below, strength asymmetry in the honeycomb results from the presence of the axial stress
in the oblique struts; it increases with increasing ratio of the axial to the bending stresses.

The unit cell of a regular, isotropic honeycomb is shown in Fig. 2a; anisotropy is

introduced by changing either i/l or 8 (Fig. 2b). The relative density of the honeycomb is

given by

P (2+h/1)

p,  2cosB(h/l+sin 6)

t
] (1)

The application of a remote uniaxial stress o, in the X>-direction (Fig. 2) produces both a

bending moment M and an axial stress @, on the inclined member of the unit cell (Fig. 3),

given by
M= Plcos@ )
2
Psin @
o, = 3
“ bt )
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(A) (8)
Figure 2: Unit cells of hexagonal honeycombs used for modeling strength asymmetry.
The cell shape is described by parameters 4/l and 0; the relative density is proportional to
the aspect ratio of the cell walls /1. (A) Regular, isotropic unit cell with #/l =1 and 0 =
30°. (B) Anisotropic unit cell. Anisotropy is introduced when either h/l # | or 6 # 30°.

T)M
MQ

Figure 3: The application of a remote uniaxial stress in the vertical (X3) direction

produces bending moments M and forces P on the inclined members of the honeycomb unit
cell.
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where P is the vertical force applied to the oblique strut and o, = P/bfcos@. Failure

occurs when the cell wall has yielded across its entire section (Fig. 4). The depth of the

neutral axis ¢ is given by

o
c=—2t_ )

where o}, and O';_, are the compressive and tensile yield strengths (absolute value) of the

cell wall material, respectively. The moment required to cause formation of a plastic hinge

is then given by the force, F, times the moment arm, #/2:

M,=(c,-0) % (5)
or
2 o 6°, +(0’, - 0%, )o, — O?
M __bL ¥y ( ys )’J) a a (6)
P2 o, +0;,
o-;s _O-a o-ﬂ o-;'x
'y ‘f [ ]
+| F +
t c —T—> +
' .
F €T - + -
Y M
—0' _0- Ga Gc

Figure 4: The bending, axial and total stress distributions across the section of an oblique
strut that has failed as a result of plastic hinge formation. The depth of the neutral axis c is
found by equating forces above and below the neutral axis.
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By equating the applied moment M (Eqn. 2, which can be positive or negative) and the
plastic moment M, (Eqn. 6), the equation governing the uniaxial tensile and compressive

strengths @, of the honeycomb is obtained:

4 0, €os 9)_ 7
( Iy v

-—-—-l . i o\2 .
o5, +0, [o‘y,oj‘ +(l/t)o, cos Bsin 9(0-; - G;:)—(l/t)z(az) cos? Osin? 9]

Note that if the axial stress within the cell wall is zero (o, = 0) the second and third terms
within the square brackets of Equation (7) vanish and the tensile and compressive strengths
of the honeycomb are identical.

The analysis for loading in the X direction (Fig. 2) directly parallels that for the X,

direction. The equation governing the uniaxial strengths o is:

o, (/1 +sin 6)sin OJ g
‘[ (Y ®
7t a, ———[05.05, + (U)o (1 + sin B)cos §(07, - o)~ (1)’ (07 )" (b1 +sin 6)" cos” 0]

To demonstrate the effects of geometry on strength asymmetry, tensile and
compressive strengths of the honeycomb o, (normalized by the compressive strength of

the cell wall material o7,) were calculated as a function of #/I for values of h/l from 0.5 to
3 (with 8 =30°), for values of 6 from 30° (isotropic case) to 75° (with A/l = 1), and for
an extreme case of anisotropy where i/l =3 and 6 = 75°. These analyses were performed

assuming that the compressive strength of the cell wall material was 40% higher than the

tensile strength (R = o7,/0,, = 1.4). The effect of cell wall material properties was

examined by varying R from 1.1 to 1.7.

55



3.3 Results: Honeycomb

In all cases, the honeycomb model predicted an increase in the strength differential
with an increase in relative density for loading in the X direction (Fig. 5). For a given
relative density, anisotropic honeycombs had higher absolute normalized strengths as well
as a higher degree of strength asymmetry than the isotropic honeycomb (Fig. 5a). Increases
in both geometric parameters (4// and 6) caused increases in the uniaxial strengths of the
honeycomb as well as approximately linear increases in the ratio of compressive to tensile
strength of the honeycomb (Figs. 5b, 5¢). Increases in h/! had a relatively small effect on
the ratio of compressive to tensile strength of the honeycomb, with an increase in strength
ratio from 1.04 to 1.08 with an increase in //! from 0.5 to 3.0 (at a relative density of 0.3,
Fig. 5b). An increase in the oblique strut angle 6 from 30° to 75° resulted in a larger
increase in the strength ratio of the honeycomb, from 1.05 to 1.14 at a relative density of
0.3 (Fig. 5c). The parameter with the largest effect on the predicted honeycomb strength
ratio was the ratio of the compressive and tensile strengths of the cell wall material R. An
increase in this ratio from 1.1 to 1.7 caused an increase in the strength ratio of the isotropic
honeycomb from 1.02 to 1.08 and a much larger increase from 1.04 to 1.24 in the highly

anisotropic honeycomb, both at a relative density of 0.3 (Fig. 5d).
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Figure 5: Strength asymmetry results for honeycomb model, for loading in the X3
direction (A) Compressive (open symbols) and tensile (filled symbols) yield strengths of
honeycomb plotted against relative density, for the isotropic case (6 = 30° and h/l = 1)
and a highly anisotropic case (6 = 75° and A/l = 3.0), with a ratio of compressive to
tensile strength of the cell wall material R of 1.4. Yield strengths were normalized by the
compressive strength of the cell wall material, o},. (B) Ratio of compressive to tensile
strength of the honeycomb plotted against relative density for values of h/! from 0.5 to
3.0.
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Figure S: Strength asymmetry results for honeycomb model. (C) Strength ratio of the
honeycomb plotted against relative density for values of 8 from 30° (isotropic case) to 75°.
(D) Strength ratio of the honeycomb plotted against relative density for values of R (ratio of
compressive to tensile strength of the cell wall material) equal to 1.1 and 1.7, both for the
isotropic case (h/l =1, 6 =30°) and a highly anisotropic case (h/l =3, 8 =75°).
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3.4 Analysis: Open-cell foam

The mechanisms of deformation and failure in open-cell foams are similar to those
in honeycombs. Since strength asymmetry arises from combined axial forces and bending
moments in oblique struts, it is assumed that a microstructural element comprised of a
single vertical strut with three oblique struts joining at equal angles captures the essential
features of the mechanical behavior of open-cell foams (Fig. 6a). This representative
microstructural element is now analyzed using dimensional arguments.

Each strut has a square cross section of width ¢. A tetrahedral element (Fig. 6a),
with four struts of equal length meeting at equal tetrahedral angles, is similar to that
analyzed by Warren and Kraynik (1988). Struts of unequal lengths, or at angles other than
the tetrahedral angle, model more anisotropic foams (Fig. 6b).

In a manner similar to the honeycomb analysis, a single oblique strut is isolated,
and the applied moment (due to the application of a remote uniaxial stress &,) is equated
with the moment required to form a plastic hinge. The applied moment and axial force in

the oblique strut due to the application of a remote uniaxial stress o, (Fig. 7) are given by:

M=§1c056 9)
Psin8

o,= 10

R T (10)

59




02

(o) G2

(A) (B)
Figure 6: Microstructural element used to study strength asymmetry in open-cell foams.
Each strut has a square cross section with width r. (A) Four struts of equal length meet at
equal tetrahedral angles, similar to the microstructural element analyzed by Warren and
Kraynik (1988). (B) Struts of unequal lengths, or at angles other than the tetrahedral angle,
model more anisotropic foams.
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Figure 7: The application of a remote uniaxial stress in the vertical (X5) direction
produces bending moments M and forces P/3 on each inclined member of the
microstructural element (total vertical force on the microstructural element = P).




It is assumed that for a single microstructural element, the remote stress acts over an area

proportional to (/cos8)’, and therefore P = ko,!* cos” @, where k is an unknown constant

of proportionality. The relative density of the foam is proportional to (1/1)2. The depth of

the neutral axis is given by Equation 4 (Fig. 4). The moment required to form a plastic

hinge is given by:

(11)

which is simply Equation 6 defining the plastic moment for the honeycomb with b replaced
by the strut edge length t. By equating the applied moment (Eqn. 9) and the plastic moment

(Eqn. 11), the following equation governing the uniaxial strengths o, of the open-cell

foam is obtained:
+k o,l’cos’ 6= (12)

3 2
(0';: :‘ G;:) [0';0—:1 * 1;-0-; (I/I)Z(o-;“ - O';')cosz Osin6 - (g) (‘7;)2(1/’)4 cos* Bsin’ 9]

For the open-cell foam model, normalized strengths were calculated as a function of
t/1 for values of A/l from 0.5 to 3 (with 6 = 19°), values of 8 from 19° (tetrahedral angle)
to 75° (with A/l = 1), and for an extreme case of anisotropy where h/l = 3 and 6 = 75°.
As with the honeycomb, these analyses were performed assuming that the compressive
strength of the cell wall material was 40% higher than the tensile strength (R = &} /o), =
1.4). The effect of cell wall material properties was examined by varying R from 1.1 to
1.7. Since the parameter k affects only the absolute value of the predicted strengths and not

the ratio of the compressive to tensile strength, k was assumed to be unity in all analyses.
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3.5 Results: Open-cell Foam

Results for the open-cell foam model were qualitatively similar to those for the
honeycomb model. Strength asymmetry increased with t// in each case, and was more
pronounced when the foam was more anisotropic (Fig. 8a). An increase in A/l from 0.5 to
3.0 did not affect the ratio of compressive to tensile strength of the foam (Fig. 8b), a resuit
which was expected because the parameter 4/l affects only the relative density of the
material and not its uniaxial strengths. An increase in 6 from 19° (isotropic case) to 75°
caused an increase in the predicted strength ratio (an increase from 1.04 to 1.15 at a relative
density of 0.3, Fig. 8c). An increase in R from 1.1 to 1.7 caused an increase in strength
ratio from 1.01 to 1.06 in the more isotropic foam, and a much larger increase from 1.08 to

1.48 in the highly anisotropic foam (at ¢/l = 0.3, Fig. 8d).

3.6 Discussion

The objective of this chapter was to determine the mechanisms responsible for
compression-strong strength asymmetry in cellular materials, and to describe the way in
which strength asymmetry depends on relative density, cell geometry, and cell wall material
properties. By incorporating different tensile and compressive strengths of the cell wall
material into honeycomb and open-cell foam models, it was demonstrated that density-
dependent differences between tensile and compressive strengths of a cellular material arise
when oblique struts are loaded simultaneously by axial forces and bending moments.
Increases in the alignment of the oblique struts with the direction of loading (resulting in an
increase in the amount of axial relative to bending force) caused a decrease in the ratio of
tensile to compressive strength of the material. In the limit where struts are perfectly aligned
with the direction of loading, the material would be expected to exhibit strength asymmetry

equal to the strength asymmetry of the solid cell wall material. However, increases in the
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Figure 8: Strength asymmetry results for open-cell foam model, for loading in the X3
direction. (A) Ratio of compressive and tensile yield strengths of the foam versus relative
density, for the tetrahedral case ( @ = 19° and h// = 1) and a highly anisotropic case (6 =
75° and h/l =3.0), with a ratio of compressive to tensile strength of the cell wall material
R of 1.4. (B) Ratio of compressive to tensile strength of the foam plotted against the strut
aspect ratio ?/l for values of A/l from 0.5 to 3.0.



"3, 1.50
g ]=—6=19"° -
< 140 ] ~7776=30° -

1=~ "0=60"° i
@ ) [ ° X
- - 6=75 -
E L i -
3 1| =1 e
E 120 J[R=14 e L
.U-, ] ’ ..on""‘- ‘:
o 1.10 ] L
Q : o ..a"-..-.. :
& 100 JmAmTors -

. T I
© 0.1 0.2 0.3
Strut aspect ratio, t/l
(C)

S 150
2 1~ HWI=3, 0=75° R=1.7 -
o 1 """ "Wi=3, 0=75° R=1.1 C
% 140 4~ = "hi=1, 0=19° R=1.7 -

Jrereeeee =1, 6=19° R=1.1 :
o ] y
‘® 130 7 N
@ - -
3 : X
3 1.20 ] -
2 i -
3 < R
@ 1.10 - PR
Q. - .-..a-"'-..._--
E 1/ ..e==2 .———-—_ -------- :
g 100 sestisasascitesatiiiiisosiiiice:s

Strut aspect ratio, t/i

(D)

Figure 8: Strength asymmetry results for open-cell foam model. (C) Strength ratio of the
foam plotted against #/] for values of @ from 19° (tetrahedral angle) to 75°. (D) Strength

ratio of the foam plotted against 7// for values of R (ratio of compressive to tensile strength
of the cell wall material) equal to 1.1 and 1.7 for the tetrahedral case (h/l = 1, O = 19°)
and a highly anisotropic case ( 4/l = 3, 8 =75°).

64




relative density of such a material (by increasing the strut aspect ratio #//) would result in
no differences in the ratio of tensile to compressive strength. Therefore, both bending
moments and axial forces in the struts, combined with strength asymmetry of the cell wall
material, are necessary to explain the density-dependent strength asymmetry that has been
observed in real materials (Fig. 1).

The predictive ability of the model can be assessed by comparing strength
predictions (using the open-cell foam model) to measurements of tensile and compressive
strength available in the literature for trabecular bone. The predictions are compared to the
data of Keaveny er al. (1994, Fig. 1), who report a ratio of tensile to compressive strength
of 0.73 + 0.47 at an apparent density of 0.6 g/cm3 (relative density of 0.33, assuming a
bone tissue density of 1.8 g/cm3 [Galante et al., 1970]; the variability in the strength ratio
was calculated by adding the coefficients of variation for the tensile and compressive
strngth measurements, defined as the standard deviation divided by the mean). Specimens
in this experiment were prepared such that the direction of the primary trabecular orientation
was closely aligned with the direction of loading. Therefore, 8 = 60° is used in the model

to represent, on average, the relatively steep angle at which the oblique trabeculae lie

relative to the horizontal (Fig. 9). A value of A/l = 0.5 is also used; this combination of

h/l and O results in a strength anisotropy ratio (ratio of longitudinal to transverse

strength) of approximately 8 from the model, consistent with anisotropy ratios reported for
highly oriented trabecular bone (Williams and Lewis, 1982). It is assumed that the cell
walls are made of cortical bone, which has a tensile strength of 140 MPa and a compressive
strength of 209 MPa (Burstein et al., 1976). Unfortunately, the exact relationship between
the strut aspect ratio #// and relative density for this trabecular bone is unknown, However,
for strut aspect ratios ranging from 0.1 to 0.5, which are reasonable estimates for this
trabecular bone, our model predicts levels of strength asymmetry that are consistent with
the experimental results. The open-cell foam model predicts a ratio of tensile to

compressive strength of 0.83 at a strut aspect ratio of 0.3, which agrees reasonably well
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with the reported value of 0.73 + 0.47, particularly given the large amount of scatter
present in the strength-density relationship for this trabecular bone (r2 = 0.66, Fig. 1a) and
the assumptions made regarding cell geometry and cell wall material properties. Neither the
compressive nor the tensile strength of trabecular tissue have been directly measured; the
ratio of compressive to tensile strength may in fact be higher than the value assumed here.
The experimental trabecular bone data also show that the tensile and compressive strengths
become equal at an apparent density of approximately 0.5 g/cm3 (relative density of 0.28).
The theoretical model predicts that the tensile and compressive strengths do not become
equal until the strut aspect ratio becomes vanishingly small. A probable explanation for this
discrepancy is that trabeculae begin to fail by buckling in compression at low relative
densities, a phenomenon that is not accounted for in the the model. However, the model
does predict levels of strength asymmetry that are consistent with experimental dat for
apparent densities above about 0.55 g/cm?, and also correctly predicts that the strength

asymmetry increases with relative density.

Figure 9: Section through a typical bovine tibial trabecular bone specimen (bone is black;
Keaveny er al., 1994). Specimens were harvested such that the primary trabecular
orientation was aligned relative to the direction of loading (horizontal).

Experimental data are also available for the uniaxial strengths of rigid polyurethane

foams, another material that exhibits density-dependent differences in tensile and
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compressive strengths (Fig. 1, Triantafillou er al., 1989). Unfortunately, a lack of
experimental data for the tensile strength of the cell wall material prevents us from making a
direct quantitative comparison between the model predictions and experiment. Assuming
that the tensile strength of the cell wall material is less than the compressive strength and
that the cell wall material has ductility in tension, then the model can qualitatively explain
the increase in the strength differential with relative density that is observed experimentally
in these foams. Although these comparisons for trabecular bone and rigid polyurethane
foams would benefit from improved data for cell wall material properties, the comparisons
nevertheless support the conclusion that combined axial and bending forces acting on
obliquely oriented struts gives rise to strength asymmetry in real materials.

Although simple unit cell models are useful for characterizing the mechanisms
responsible for observed cellular material behavior, these models are limited because they
do not account for the natural variability present in real materials. In fact, finite element
analyses have revealed that honeycombs with non-periodic structure are typically 30-35%
weaker than regular honeycombs of the same density, because a small number of cell walls
in non-periodic structures experience higher strains than the cell walls in periodic structures
(Silva and Gibson, 1996). Although this finding is limited to two-dimensional materials, it
suggests that idealized unit cell foam models may overestimate the absolute strength of real
materials with inherent variability. The larger strains that occur in materials with
microstructural variability are likely to occur to the same extent in tension and compression,
however, and therefore the predictions for ratios of tensile to compressive strength should
not be significantly limited by the assumption of an idealized unit cell geometry. Even so,
predictions of absolute strength values based on unit cell models with idealized geometries
should be interpreted with care.

The three-dimensional unit cell geometry used in this study is most representative of
an open-cell foam, and therefore may not be the most appropriate model for explaining

strength asymmetry behavior in closed-cell foams. However, the open-cell model may still
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provide insight into the behavior of closed-cell foams. In closed-cell materials, where plates
rather than rods are the primary structures, it is feasible that a combination of axial and
bending forces in obliquely oriented plates results in density-dependent strength
asymmetry. This idea is supported by the fact that the model was able to explain the
uniaxial strength behavior of rigid polyurethane foams, which are closed-cell materials.
Since membranes in closed-cell foams tend to carry higher axial loads than cell edges, the
strength differential effect may be even more pronounced in closed-cell than in open-cell
foams. The analysis presented here is also limited to honeycombs and foams where the
direction of loading is aligned with the principal material directions (X and X» directions,
Fig. 2). In practice, materials can also be subjected to uniaxial loads that are aligned
obliquely relative to the unit cell orientation, and also to more complex multiaxial loading
conditions. To address this issue, in the following chapter these models are used to analyze
the strength behavior of cellular materials under more complex loading conditions. Given
that the model explains the mechanisms responsible for uniaxial strength behavior which
were previously not well-understood, the insights gained from the uniaxial analyses
presented here should allow for the development of improved multiaxial failure criteria for

cellular materials.
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Chapter 4

Muitiaxial Failure Properties of Cellular Materials:
An Analytical Model

4.1 Introduction

The service loads experienced by natural and engineering cellular solids can cause
complex multiaxial states of stress to develop within the material. For example, foams used
in protective equipment are subjected to three-dimensional states of stress during impact,
and natural cellular materials such as trabecular bone undergo complex multiaxiai stresses
during normal and traumatic activities. An understanding of how cellular materiais fail
under multiaxial stresses is directly applicable to the design of materials for packaging and
protective devices, and for failure prediction in natural and engineered structures.

Analysis of the microstructural mechanisms of deformation in cellular materials
under load can lead to an understanding of how the macroscopically-observed failure
properties of a material relate to features such as cell geometry, relative density and cell wall
material properties. This unit-cell approach has been used previously to describe the
multiaxial failure behavior of two-dimensional honeycombs and three-dimensional porous
foams (Gibson et al., 1989). Despite its success in predicting the failure behavior of a
number of materials, this model does not always accurately predict the failure behavior of
cellular materials that have greater coinpressive than tensile strength, and whose strength
differential increases with increasing relative density. In particular, failure of materials
(such as trabecular bone and rigid polyurethane foams) that fail by the same mechanism in
tension and compression (yielding or microcracking), and whose strength asymmetry
arises from a difference between the tensile and compressive strengths of the cell wall

material, is not well-described by previous theory (Triantafillou et al., 1989; Borchers,
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1991). In Chapter 3, a tetrahedral unit cell model was used to demonstrate that density-
dependent, compression-strong strength asymmetry arises in cellular materials when two
conditions are met: the solid cell wall material is stronger in compression than tension, and
obliquely oriented members are loaded simultaneously by axial forces and bending
moments. In this chapter, these mechanisms are incorporated into an analysis of the
behavior of cellular materials under more cornplex states of stress. First, the failure
behavior of a simple, two-dimensional honeycomb is analyzed under a biaxial state of
stress, and then the three dimensional tetrahedral unit cell from the previous chapter is used
to derive yield surfaces for foams under a general, three-dimensional state of stress. The
chapter is then completed by comparing the failure envelopes derived analytically using the
microstructural model to the Tsai-Wu failure criterion developed experimentally in

Chapter 2.

4.2 Analysis: Honeycomb

First, the failure surface for hexagonal honeycombs under a general biaxial state of
stress are derived, incorporating a difference in the tensile and compressive yield strengths
of the cell wall material, using the method of Gibson and Ashby (1988). The analysis is
confined to cases where the solid cell wall material has ductility in both tension and
compression, suggesting that failure is either by yielding or microcracking. This analysis
closely parallels that presented in Chapter 3, but allows for stresses in both the X and X3
directions (Fig. 1).

The unit cell of a regular, isotropic honeycomb is shown in Fig. la; anisotropy is
introduced by changing either /i/l or 8 (Fig. 1b). The relative density of the honeycomb is

given by

P (2+m)
P, 2cosO(h/l +sin6)

!
- I
; (1)
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(A) (B)

Figure 1: Unit cells of hexagonal honeycombs used to model failure under biaxial loads.
The cell shape is described by parameters h/l and @ the relative density is proportional to

the aspect ratio of the cell walls ¢/[. (A) Regular, isotropic unit cell with 4/l =1 and 0 =
30°. (B) Anisotropic unit cell. Anisotropy is introduced when either A/l # 1 or @ # 30°.

The application of remote uniaxial stresses 0, and o, produces a bending moment M and

an axial stress ¢, on the inclined member of the unit cell (Fig. 2). The maximum bending

moment and the axial stress in the cell wall are given by

Y
v

P,sin@ - P, cos6)!
2

M=( (2)

P,cos@ + P,sin 0
o, = <

a b (3)
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where Py and P are the loads applied to the oblique strut in the X 1 and X directions,
respectively. These loads on the oblique strut relate to the remotely applied stresses o, and

o, through the following equations:

P, = o,(h+1sin8)b 4
P, =0,(lcosB)b. (5)
Py
T \M
—
P4
P1 4‘—‘
A

Figure 2: The application of remote stresses in the vertical (X2) and horizontal (X;)
directions produces bending moments M and axial forces P and P> on the inclined
members of the honeycomb unit cell.

Failure of the honeycomb occurs when the cell wall has yielded across its entire section

(Fig. 3). The depth of the neutral axis ¢ is given by

(0%, +0,)
=) (6)
O”L.[+U\I
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where o7, and 0, are the compressive and tensile yield strengths of the cell wall material,

respectively (see Chapter 3). The fully plastic moment is then given by the force, F, times

the moment arm, t/2:

bct
M, = (O’i, - a)_‘;__
or
b 0,07, +(0), - 0%, )o, - o
M, =——
P2 o, +0o,,
o, —0, o,
Yy —f B
+ F +
c ——>

§ F e -

[+

Q

-0, -0

u a

(7

8)

s

(4

(o)

1S

Figure 3: The bending, axial and total stress distributions across the section of an oblique

strut that has failed as a result of plastic hinge formation. The depth of the neutral axis c is

found by equating forces above and below the neutral axis.

The applied moment M (Eqn. 2, which can be positive or negative depending on the signs

and relative magnitudes of o0, and 0o, ) is equated with the plastic moment Mp (Eqn. 8),

resulting in the equation governing the failure surface for the honeycomb under a biaxial

stress state:
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I+
/N

6,(h/l +sin 6)sin 6 — 5, cos? 9) _

(e/1)"
1 ( Gi't - G:s . .
e kof,of, + —'t——(o, (h+1sin §)cos 8 + 0,/ cos Bsin 6) 9)
ys ys

—;12—(0', (h +1Isin 6)cos 8 + 0,/ cos Bsin 9)2)

4.3 Results: Honeycomb

The solution to Equation 9 is two intersecting ellipses that define the failure surface
for plastic yielding of the honeycomb under biaxial loading. To demonstrate the effects of
anisotropy on the shape of the failure envelope, the envelope was calculated for both an
isotropic honeycomb( s/l =1, 8 =30°) and for an anisotropic honeycomb (h/l =2, 6 =
60°, Fig. 4). These calculations were performed assuming that the compressive strength of
the cell wall material was 40% higher than the tensile strength (R = o7,/0;, = 1.4), and
assuming ¢/l = 0.2. An increase in the anisotropy of the honeycomb corresponded to a
distortion of the isotropic yield envelope in the ratios of the uniaxial yield strengths.

To demonstrate the effect of strength asymmetry in the cell wall material, the case
where the compressive strength of the cell wall material was 40% higher than the tensile
strength (R = o7,/ 0}, = 1.4) was plotted with the case where the tensile and compressive
strengths of the cell wall were equal (Fig. 5). The difference in cell wall strength ratio had
the largest impact in the tension-tension quadrant, since the extreme point on the failure
envelope in this quadrant corresponds to pure axial tension in the cell walls. In contrast, the
change in cell wall strength ratio had very little effect on the failure envelope in the

compression-compression quadrant.
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Honeycomb Failure Envelops, Biaxial Stress

Theta = 30.0,1=0.20, M =1.0
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Figure 4: Yield surface for isotropic (top) and anisotropic (bottom) honeycombs under
biaxial loading. S1 and S2 are the stresses in the X and Xj-directions, respectively,
normalized by the compressive strength of the cell wall material ¢ .- Surfaces are plotted
assuming that the compressive strength of the cell wall material is 40% higher than the

compressive strength.
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Honeycomb Failure Envelope, Biaxial Stress
Theta = 30.0, 1=0.20, 1 = 1.0
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Figure 5: Yield surface for isotropic honeycomb with ratio of compressive to tensile
strength of the cell wall material R = 1.4 (solid line), compared with yield surface assuming
no strength asymmetry in the cell wall material (R = 1.0, dashed line).

4.4 Analysis: Foams

The mechanisms of deformation and failure in foams are similar to those in
honeycombs. As in the previous chapter, it is assumed that a microstructural element
comprised of a single vertical strut with three oblique struts joining at equal angles captures
the essential features of the mechanical behavior (Fig. 6). Each strut has a square cross
section of width ¢. A tetrahedral element, with four struts of equal length meeting at equal
angles, is used to model more isotropic foams; anisotropy is increased by changing the
angle 6. The behavior of this microstructural element is now analyzed under a three-

dimensional state of stress using dimensional arguments. The case where the principal

stresses 0,, 0, and 0, are aligned with the principal material directions is analyzed here;
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G3
(A) (B)

Figure 6: Microstructural elements used *o study multiaxial failure in foams. Each strut

has a square cross section with width z. (A) Four struts of equal length meeting at equal

tetrahedral angles. (B) Struts of unequal length, or at angles other than the tetrahedral

angle, model more anisotropic foams.

the considerably more complex case where principal stresses are not aligned with the
principal material directions is treated in the Appendix.

To determine the failure surface, the applied moment in each oblique strut (due to
the application of the remote stresses &,, 0, and 0, ) is equated with the moment required
to form a plastic hinge in that strut. By contrast to the honeycomb analysis (where the
moments applied to each oblique strut were equal), here the applied moment can be
different in each strut and therefore each oblique strut must be analyzed separately. The

applied moment and axial stress in strut A (Fig. 8B) are given by

M, =(P3sin6—%cose)é (10)

a

()'.A=(P3cost9+%sin9)ti2 (11)
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where Py, P2, and P3 are the local forces applied to the microstructural element in the X,
X2, and X3 directions (Fig. 7). The applied moments and axial stresses are equal in struts

B and C (Fig. 7C, D); they are given by

2 2 2
M, = —21-[(P, sin¢ ——%—cos ¢) (l --}cosz 0)+(%sin y/—%—cos t;/) (l - i’:cos2 0)]

V3

1 P, . P
C,5= ,,.C=;2—(-—2-—P,cos¢+—3—zsm0+-z3cosw) (12)

where tan¢@ =tan8sec30’ , tany =tanfcsc30° (Fig. 7B). In the case where the
principal stresses are aligned with the principal material directions, the vertical strut is
subjected to only an axial force with no bending moment; therefore, the deforrnation of the
vertical strut is negligible with respect to the oblique struts, and it need not be included in
the analysis. It is assumed that for a single microstructural element, the remote stress o,
acts over an area proportional to (/cos 9)2 (the product of the characteristic dimensions of
the microstructural element in the X;- and Xj3-directions), and therefore
P, = k,0,0* cos® 0. Similarly, it is assumed that the remote stresses o, and o, each act
over an area proportional to /cos 8(Isin 8 + h) (the product of the characteristic dimensions
of the microstructural element in the X, and X3 directions), and therefore
P, = ko,lcosO(Isinf+h) and P, = k,0,/cosO(Isin6 + h). ky, k and k3 are unknown
constants of proportionality related to the spatial arrangement of unit cells within the

material. The moment required to form a plastic hinge in each strut is given by

Mp'.='— ‘ - i a.i (13)
2 o +0

¥y ¥s

¢ (o,0; +(0l, - 0})o,, -0
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where i = 1,2,3. Failure of the material is defined when the applied moment in any strut

equals the fully plastic moment for that strut. Therefore, failure occurs whenever one of the

following conditions is met:

Condition 1 (Applied moment = plastic moment in strut A):

(k,0'3rHsin9—%0'2r2)é- - (14)

P 1 kK, 1 k
———)[ofx - F(k,ongcos 0+ 3 O,r°sin 9))(0’1, + t—z(kaongcos 0+ 3 o,r’sin 6))

Condition 2 (Applied moment = plastic moment in struts B or C):
! (k o,rHsin ¢ -ﬁa r’ cos¢)2(l ~Leos? 0)
21U 3°° 4

2

e

|
+( i o,rHsin y — % o,r’ cos w)(l - -f%cos2 0)]2

(15)
3 i
= %[o';s — %(—23 k,o,rHcos ¢ + k—;o'zrz sin @ +%0'3"HCOS W])

(o{‘ + tiz[\—?-klolrf]cos«p + % o,r’sin 6 + %oyHcos I/IJ]

where r =/cos6 and H=h+1sin@.
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Figure 7: Detail of forces acting locally on each strut of the microstructural element due to
the application of normal stresses in the X, X and X3-directions. (A) Struts A, B and C
experience both bending moments and axial forces as a result of the remotely applied
stresses. Strut D experiences only axial loading, and therefore is not included in the
analysis. (B - F) Detail of local forces acting on struts A, B and C.
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4.5 Results: Foam

The failure surface was plotted for two different states of stress: triaxial loading
with o, = o, (Fig. 8), and biaxial loading with o, =0 (Fig. 9). To demonstrate the effects
of anisotropy, the failure surface for each state of stress was plotted for both the tetrahedral
element (h/l = 1, 6 =19°) and for a more anisotropic element (h/l = 2, 8 = 45°). Each
failure surface was calculated assuming that the compressive strength of the cell wall
material was 40% higher than the tensile strength (R = 07,/0,, = 1.4), and with a strut
aspect ratio t/1 of 0.2. To determine reasonable valucs for the constants of proportionality
k1, k2 and k3, it was assumed that the microstructural element occupies a volume equal to
that of a circular cylinder, with height equal to the height of the microstructural element H
and radius equal to half of the width of the element (). Therefore, ki, ko and k3 were set
equal to 2, m, and 2, respectively. The choice of a circular cylinder to represent the unit cell
volume results in a constant of proportionality between the strut aspect ratio ¢/ and the
relative density (or volume fraction of solid) ranging from about 1.0 (for 6 = 19°) to 2.7
(for 6 = 60°), consistent with regular, space-filling structures such as tetrakaidecahedra
and pentagonal dodecahedra (Gibson and Ashby, 1988).

For the triaxial stress state, the failure surface had an ellipsoidal shape, elongated
along the line representing hydrostatic stress (transverse stress = axial stress). When
anisotropy was increased, this elongated ellipsoid was distorted in the ratios of the uniaxial
strengths (Fig. 8). For the biaxial stress state with o, = 0, the failure envelope took a
shape resembling a parallelogram with vertical sides curved outward (Fig. 9). The sharp
corners in the failure envelope occur at stress states where the equations defining failure of
individual struts (Eqns. 14, 15) intersect. As in the case of triaxial stress, an increase in
anisotropy resulted in a distortion of the failure envelope in the ratio of the uniaxial

strengths.
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To assess the effects of strength asymmetry in the cell wall material, failure
envelopes were plotted with R = 1.4 and R = 1.0, for both the triaxial and biaxial stress
states (Fig. 10). For the triaxial stress state, the decrease in tensile strength relative to
compressive strength of the cell wall material had a relatively large effect on the failure
envelope in the triaxial tension quadrant, and a much smaller effect in the triaxial
compression quadrant. For the biaxial stress state, the decrease in tensile relative to
compressive strength of the cell wall material resulted in contraction of the failure envelope

in all quadrants.

4.6 Comparison of Analytical and Tsai-Wu Failure Envelopes

The analytical failure criterion developed here and the Tsai-Wu failure criterion
developed experimentally in Chapter 2 were compared for both axisymmetric and biaxial
states of stress. Yield surfaces based on the von Mises failure criterion are also included in
the comparison, since the von Mises criterion has been used by previous investigators to
model trabecular bone behavior (Lotz et al., 1991b; Lotz et al., 1991a) Since accurate
predictions of strength magnitudes from the analytical model are not possible without
accurate measurements of the strength properties of trabecular tissue, the calculated failure
stresses (from both the analytical and Tsai-Wu criteria) were normalized by the uniaxial
compressive strengths of the cellular material in the principal material directions (i.e., all o,
values were normalized by the uniaxial compressive strength in the 1-direction, etc.). Input
geometric parameters for the analytical model (8 = 60°, h// = 0.5) were chosen such that
the predicted strength anisotropy ratio (i.e. ratio of axial to transverse strengths) was
consistent with the anisotropy ratio predicted by the Tsai-Wu criterion. The predicted
analytical failure envelope (for a strut aspect ratio of 0.4) and the Tsai-Wu failure envelope
for an apparent density of 0.4 (relative density of 0.2) are plotted together in Fig. 11 for

triaxial (axisymmetric) and biaxial states of stress. For the axisymmetric case, the failure
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envelopes both have elongated shapes, and are oriented in a similar manner relative to the
axial and iransverse stress axes. In the triaxial compression quadrant, the analytical
criterion predicts substantially higher stresses at failure for stress states approaching
hydrostatic compression than the Tsai-Wu criterion. In the triaxial tension quadrant, and in
the quadrants where the axial and transverse stresses are in opposite directions, the two
criteria are qualitatively similar in shape. The von Mises yield surface is open in the triaxial
tension and compression quadrants, because the criterion depends only on the deviatoric
stress in the material and has no dependence on the mean stress. For the biaxial stress state,
the analytical and Tsai-Wu failure envelopes cover similar areas in all quadrants, although
the analytical criterion contains relatively sharp corners where the failure equations for
individual struts in the microstructural element intersect. In the biaxial tension and
compression quadrants, both the analytical and Tsai-Wu yield envelopes predict higher
stresses at failure than the von Mises criterion, again because the von Mises criterion has no

mean stress dependence.

4.7 Discussion

In the preceding chapter, it was demonstrated that compression-strong, density-
dependent strength asymmetry can arise in a cellular material when two conditions are met:
the cell wall material is stronger in compression than in tension, and members are loaded
simultaneously by axial forces and bending moments. In this chapter these mechanisms
were incorporated into the derivation of failure surfaces for cellular materials under a
general, three-dimensional state of stress, which can be formulated for varying degrees of
anisotropy. The derived failure surfaces are applicable to materials that are isotropic or
nearly transversely isotropic, whose cell walls fail by yielding or microcracking (and
therefore exhibit considerable ductility), and materials which fail by the same mechanisms

in both tension and compression.
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Analytical Failure Envelope, Triaxial Stress
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Figure 8: Sections through the plastic yield surface for an isotropic (top) and anisotropic
(bottom) foam, under axisymmetric loading, assuming a ratio of compressive to tensile
strength of the cell wall material of R = 1.4. Axial and transverse stresses are normalized

by the compressive strength of the cell wall material o7,
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Figure 9: Sections through the plastic yield surface for a nearly isotropic (top) and an

anisotropic (bottom) foam under biaxial loading with o, =0, assuming a ratio of

compressive to tensile strength of the cell wall material of R = 1.4. Axial and transverse

stresses are normalized by the compressive strength of the cell wall material o,
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Analiytical Failure Envelope, Triaxial Stress
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Figure 10: Section through the yield surface for a (nearly) isotropic foam under
axisymmetric loading (top) and biaxial loading (bottom), with ratio of compressive to
tensile strength of the cell wall material R = 1.4 (solid line), compared with yield surface
assuming no strength asymmetry in the cell wall material (R = 1.0, dashed line).
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Analytical, Tsai-Wu, and von Mises Failure Envelopes, Triaxial Stress
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Figure 11: Yield surfaces for the analytical criterion developed here (solid line), the Tsai-
Wu criterion developed in Chapter 2 (dashed line), and the von Mises yield condition
(dotted line), for axisymmetric (top) and biaxial (bottom) states of stress.



The failure criterion developed in this chapter represents an extension of a
previously developed failure criterion for foams, described by Gibson et al. (1989). In this
analytical model, the yield surface for foams was derived using dimensional arguments: the
analysis was based on a simple, cubic unit cell, and geometrical factors were lumped into
an unknown constant of proportionality. Although the resulting failure criterion gave good
predictions of the multiaxial strength behavior of several foams, it was less successful in
predicting the strength behavior of materials that exhibit density-dependent differences in
tensile and compressive strength (such as rigid polyurethane foams [Triantafillou er al.,
1989] and trabecular bone (Borchers, 1991]). A possible explanation for this is that the
dimensional analysis did not allow for struts to be loaded simultaneously by axial forces
and bending moments during uniaxial loading, a prerequisite for obtaining density-
dependent differences in uniaxial strengths (Chapter 3). In addition, the previous model did
not allow for differences between the tensile and compressive strengths of the cell wall
material. The analysis techniques presented by Gibson et al. were applied to a
microstructural element that allows simultaneous bending and axial forces in struts, and
allows for strength asymmetry in the cell wall material, thereby effectively extended the
previous failure criterion to allow for density-dependent differences in tensile and
compressive strength of the cellular material. When the tensile and compressive strengths
of the cell wall material are equal in the newly developed failure criterion, the shape of the
failure envelope is similar to that of the previous model for the triaxial stress state (with the
exception that the new criterion predicts somewhat lower strengths in hydrostatic tension
and compression, Fig. 12). For the biaxial stress state, the shapes of the failure envelopes
are similar except that the newly developed criterion predicts higher stresses at failure for
ratios of transverse o axial stress greater than about 1.5. In addition. the new failure
criterion is not perfectly isotropic (because of the geometry of the microstructural element)
and therefore predicts uniaxial strengths in the transverse directions that are slightly lower

than in the axial direction.
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New failure envelope compared with Gibson et al., triaxial stress
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Figure 12: Comparison of failure surfaces derived here (isotropic case, assuming no
strength asymmetry in the cell wall material, solid line) with failure surfaces derived by
Gibson et al. (1989) for axisymmetric (top) and biaxial (bottom) loading. Axial and
transverse stresses were normalized by the yield strength of the cellular material in the axial
direction.
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In general, there was good qualitative agreement between the predictions of the
analytical failure criterion presented here, and the Tsai-Wu criterion developed in Chapter
2. However, for the triaxial state of stress, the analytical failure criterion predicted
substantially higher stresses at failure for stress states approaching hydrostatic compression
(Fig. 11). One possible explanation for this is that the new model does not account for
trabecular buckling, which is a possibility whenever any of the principal stresses is
compressive. For states of stress other than triaxial compression, however, the failure
envelopes derived analytically and those derived experimentally are qualitatively similar.
The good qualitative agreement of the shapes of the surfaces suggests that the failure
mechanisms used to derive the analytical criterion (i.e., the combination of bending and
axial forces acting on struts, coupled with differences in the tensile and compressive
strengths of trabecular tissue) do in fact actively contribute to trabecular failure under
multiaxial loads.

Due to the limited amount of experimental data available regarding multiaxial failure
properties of trabecular bone, it was not possible to fully test the predictive ability of the
analytical failure criterion developed here. However, a small amount of data was available
from experiments performed by Borchers (1991), who performed triaxial experiments
(axial load plus radial pressure) on bovine humeral trabecular bone. Ratios of radial to axial
stress at failure from these experiments (for specimens which were approximately
transversely isotropic) were compared to ratios predicted by the analytical model. The value
of 6 used as input to the model was chosen such that the predicted strength anisotropy
ratio (i.e. ratio of axial to transverse uniaxial strengths) matched the strength anisotropy
ratio measured in the experiments (defined as the ratio of axial strength to the average of the
transverse strengths). Values of the geometric parameters i/l and t/l were chosen as 1.0
and 0.3, but these parameters do not significantly effect the predicted ratio of radial to axial

stress at failure. Although the model consistently underestimated the stress ratio at failure,
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the model predictions agree within about 20% with measured values for five of the nine
specimens (Table 1). The underestimation of the stress ratio (caused by an overestimation
of the axial stress at failure) may be due to the fact that trabeculae buckled during triaxial
compression, a phenomenon not accounted for in the model. However, given the
tremendous scatter present in the trabecular bone data (due in part to inhomogeneities in
density and anisotropy within specimens), and given the technical difficulties involved in
measuring multiaxial failure properties of trabecular bone, these comparisons are
encouraging. Prospective tests need to be performed under multiple loading conditions
(including conditions where one or more of the principal stresses is tensile) and with
specimens whose trabecular alignment is strictly controlled '0 determine the predictive

accuracy of the model presented here.

Specimen ID _Strength 0 () radial/axial predicted
anisotropy ratio stress at failure radial/axial
stress
TRO7 3.1 38 .46 0.17
TR23 3.9 42 0.39 0.12
TR28 4.0 43 0.31 0.13
TROS 1.4 25 0.43 0.34
TR10 1.8 29 0.24 0.20
TR18 2.2 32 0.26 0.21
TR20 2.4 34 0.27 0.25
TR24 1.8 25 0.24 0.15
TR30 1.9 30 0.07 0.06

Table 1: Comparison of measured and predicted ratios of radial to axial stress for nine
trabecular bone specimens from the bovine proximal humerus. Data taken from Borchers
(1991). A value of 8 was chosen for each specimen such that the predicted strength
anisotropy ratio (ratio of axial to transverse uniaxial strengths) matched the measured

strength anisotropy ratio (ratio of axial strength to average transverse strength).

The failure criterion presented here was developed based on a microstructural

element whose geometry can represent a nearly isotropic or transversely isotropic material.
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Therefore, the failure surfaces presented here are not necessarily appropriate for fully
orthotropic trabecular bone. However, the failure mechanisms active in isotropic and
transversely isotropic trabecular bone are likely to be the same as those active in orthotropic
trabecular bone. Therefore, the general shapes of the failure surfaces derived here are
probably similar to those for orthotropic bone, with the surfaces for orthotropic bone
simply scaled according to the uniaxial strengths in the principal material directions.
Although the criterion developed here represents an improvement in our
understanding of multiaxial failure mechanisms in trabecular bone, further work is required
before the criterion can be effectively used to predict absolute stress magnitudes with high
accuracy. The largest obstacle to using this criterion to predict absolute stress magnitudes is
the lack of data regarding the compressive and tensile strengths of trabecular tissue.
Although several investigators have attempted to measure the elastic properties of trabecular
tissue (Townsend et al., 1975; Ashman and Rho, 1988; Kuhn et al., 1989; Mente and
Lewis, 1989; Chot et al., 1990), technical difficulties related to the small size of individual
trabeculae have precluded accurate measurements of the uniaxial tensile and compressive
strengths. Recent developments in micromachining of individual trabeculae (Kuhn et al.,
1989), however, may ultimately allow for accurate measurement of trabecular tissue
strength properties. In addition to requiring accurate values for the uniaxial strengths of
trabecular tissue, the use of the criterion developed here to predict absolute strength values
requires an understanding of what model geometric parameters are appropriate for use with
particular trabecular architectures and apparent densities. Since the level of anisotropy
predicted by the model depends primarily on the geometric parameter 6 (and less so on
h/1), knowledge of the level of anisotropy in a particular specimen of trabecular bone
would allow for an appropriate choice of the parameter 6. When the parameter 8 is fixed,
the parameter t/! determines the magnitudes of the uniaxial strengths. Therefore, if accurate
trabecular tissue properties are known, and if the uniaxial strengths of a specimen of

trabecular bone are known (or are estimated from relationships between strength and
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density or between strength and architectural parameters), the analytical model presented
here allows for the prediction of the strength of that bone specimen under any three-
dimensional state of stress. Prospective mechanical tests are needed, along with strength
data for trabecular tissue, in order to determine if the criterion developed here can give
accurate predictions of failure stress magnitudes. Even without these data, however, the
analysis presented here provides substantial insight into the mechanisms of trabecular bone
failure under multiaxial loads, and how the shapes of the failure surfaces relate to density

and microstructure.
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Appendix: Derivation of Failure Surface for States of Stress
where Principal Stresses are not Aligned with Principal

Material Directions

The analysis is now extended to include cases where the principal stresses are not
aligned with the principal material directions, by allowing both normal and shear stresses to
act on the microstructural element. In the previous analysis, forces acting on the
microstructural element were limited to Py, Py, and P3, which were caused by the
application of the remote normal stresses 0,, O, and O, . Now, the forces induced by
the application of remote shear stresses T,,,» Ty, and T, are added to the forces Py, Py
and P3_As in the previous analysis, each oblique strut is considered separately, and now
the vertical strut is considered in the analysis since it experiences bending as well as axial
deformation.

The applied moment and axial stress in strut A are given by

F, ‘ \((F. 2
M, ! [p3 +_-3i)sin6—(i+ F,s,)cose +(( — +F,3,]c056 ] (A1)
2 3 37T U3 moe J

Fyy 5 .
o, . ={(P3+AJCOSB+(i+ F,p)sme}
. 3 \3 3.2

|-

I

(A.2)

"~

t
where Fjjk is the force on the microstructural element in the k-direction due to the

application of the remote shear stress 7, . Similarly, the applied moments and axial stresses

in struts B and C are given by
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(A.6)
Finally, the applied moment and axial stress in the vertical strut (strut D) are given by
M, = h F> +F’ %
D~ 5( 21 23.3) (A7)
P2
O,p,= —t—; (A.8)

It is assumed that the remotely applied shear stresses which act in the 1-2 plane and
in the 2-3 plane act over an area proportional to rH , the same area over which the normal
stresses O, and O, act. Similarly, it is assumed the shear stresses in the 1-3 plane act over
an area proportional to r*, the same area over which the normal stress O, acts. Therefore,

the relationships between the forces Fij k and the remote shear stresses are the following:
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F,, =T.k,r’
F,,=1,krH
F,,=17,k;tH (A.9)
Fpq=Tuk,r’

F, =1,k;oH

Fio,= Tk, rH

As in the previous analysis, failure occurs when th applied moment in any strut (Eqns.
A.1, A3, A5, A7) reaches its fully plastic moment. The fully plastic moment in each strut

is given by Equation 13. Therefore, failure occurs when any one of the following four

conditions are met:

Condition 1 (Applied moment = plastic moment in strut A):

|
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Condition 2 (Applied moment = plastic moment in strut B):
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Condition 3 (Applied moment = plastic moment in strut C):
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Condition 4 (Applied moment = plastic moment in vertical strut):

hle,r ! £ . ko, (koY
—é—(’l’,22+1'232)2 =2(d—+oz_)(o;xo_“+(oj,—c;,) 212 -( t: ) (A.13)

¥§ ¥§

100



Chapter 5

The Effect of Impact Direction on the Structural
Capacity of the Proximal Femur During Falls

5.1 Introduction

The successful design of intervention efforts to reduce hip fracture incidence
depends on a sound understanding of the dominant factors that contribute to hip fracture
etiology. The reduction of bone mineral density at the hip with age (Riggs et al., 1982,
Steiger et al., 1992), coupled with the demonstrated associations between bone density and
femoral strength (Alho et al., 1988; Esses et al., 1989; Lotz and Hayes, 1990; Weber et al.,
1992; Courtney et al., 1994; Courtney et al., 1995), demonstrate that age-related bone loss
contributes to in vivo hip fracture risk. Clinical evidence that the frequency of hip fracture
increases as bone mineral density declines below a densitometric fracture threshold
supports this contention (Riggs and Melton, 1986). However, since over 90 percent of hip
fractures are the result of falls (Hedlund and Lindgren, 1987; Cummings et al., 1990) and
fewer than 5 percent of falls result in hip fracture (Tinetti, 1987, Nevitt et al., 1989), the
mechanics of falling must also contribute substantiaily to hip fracture risk. In this regard,
both a fall to the side (Greenspan et al., 1994) and impact near the hip (Hayes et al., 1993;
Nevitt and Cummings, 1993) have been shown to be significant predictors of hip fracture
risk, regardless of bone mineral density. Elucidation of the mechanisms by which fall
mechanics influence hip fracture risk, and incorporation of this knowledge into fracture risk
assessment techniques, should result in an improved ability to measure hip fracture risk in
the clinical setting.

Hip fracture risk can be quantified using a factor of risk, defined as the ratio of the

force applied to the proximal femur divided by the structural capacity of the femur (Hayes
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and Myers, 1994; Myers and Hayes, 1994). Intrinsic factors that affect the structural
capacity include femoral geometry and material properties of the bone tissue. The direction
of impact is an extrinsic factor that can also affect the structural capacity, because of the
femur's complex geometry and inhomogeneous material properties. Although the role of
bone density as a determinant of hip fracture has been extensively investigated ex vivo
(Alho et al., 1988; Esses et al., 1989; Lotz and Hayes, 1990; Weber et al., 1992; Courtney
et al., 1994; Courtney et al., 1995), the contribution of loading direction has been largely
ignored. Differences in loading direction may partly explain why investigators have
reported structural capacities for fall loading conditions which differ by as much as a factor
of three to four B(Smith, 1953; Lotz and Hayes, 1990; Weber et al., 1992; Courtney et al.,
1994; Courtney et al., 1995, Table 1). Although comparison of these ex vivo studies
indirectly suggests that loading direction may influence structural capacity, the results are
confounded by inter-bone differences in geometry and bone density, as well as inter-study
differences in loading rate, and therefore the effect of loading direction independent of these
confounding factors is unknown.

It was hypothesized in this study that impact directicn, independent of confounding
factors such as geometry and bone mineral density, affects both femoral structural capacity
and failure location. Testing of this hypothesis is well-suited to the finite element method
because failure of a single femur can be simulated under several different loading
conditions. In addition, finite element models have previously been used effectively to
predict fracture of the femur under both gait and fall loading conditions (Lotz e al., 1991a;
Lotz et al., 1991b). Therefore, a three-dimensional finite element model of the proximal
femur was developed based on geometry and density data from Quantitative Computed
Tomography (QCT) to address the following specific objectives: 1) to compare the
structural capacity of the proxima! femur under four fall loading configurations representing
possible in vivo falls on the hip, ranging from a direct lateral impact to a posterolateral

impact, and 2) to determine if the direction of impact influences the location of bone failure.
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The theoretical information gained from this study shold be useful in the development of

new fracture risk assessment tools that account for fall mechanics as well as bone mineral

density.
Study Sample Force  Diaphysis Loadingrate Meanage  Mean failure
size angle angle (deg)p  (mm/sec) (yr) load (N)
(deg)a S.D.

Smith. 1953 10 ~0  not reported impact not reported 7330 £ 1000

Lotz, 1990 12 60 30 0.7 69.5 2110 £+ 1060
Weber, 1992 10 60 30 0.7 55 2933 + 1028
4 60 30 14.0 55 3505 £ 1716
6 60 30 4000 not reported 6017 + 2291
Courtney,
1994 8 15 10 2.0 73.5 3440 £ 1330
9 15 10 2.0 33 7200 + 1090
10 15 10 100 73.5 4162¢
10 15 10 100 33 8064¢

a Relative to the femoral neck axis, as viewed from the superior aspect of the femoral head
b Relative to the horizontal
¢ Standard deviation not reported

Table 1. Literature review of mean values of femoral structural capacity from ex vivo
studies that have used fall loading conditions. Differences in loading direction may account
for the broad range of reported failure loads, although direct comparison is difficult because
of inter-study differences in age and loading rate.
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5.2 Materials and Methods

5.2.1 Finite Element Model

The right proximal femur from a 49 year-old man was obtained post-mortem. The
femur was harvested fresh, and stored frozen at -20° C. Prior to scanning, the bone was
thawed at room temperature and placed in a water bath. The bone mineral density of the
femoral neck was measured using dual-energy x-ray absorptiometry (DXA; QDR-2000,
Hologic, Inc., Waltham, MA), and found to be within the normal range based on age and
sex (Wahner and Fogelman, 1994). The submerged femur was then scanned using a
clinical CT scanner (model 9800, General Electric, Milwaukee, WI) set at 120 kilovolt
potential and 240 milliampereseconds. The femur was scanned perpendicular to the
diaphysis, with contiguous 3 mm slices beginning at the superior aspect of the femoral
head until just distal to the lesser trochanter, and then with 10 mm slices through the
diaphysis. The geometric and densitometric information in the QCT scan set was used to
generate a finite element model of the femur using the IBID Software Suite (Hospital for
Special Surgery, New York).

The finite element mesh consisted of 20-noded quadratic brick elements with 15-
noded wedge elements in transition regions, for a total of 1560 elements and 6527 nodal
points (Fig. 1). Bone was modeled as an isotropic but heterogeneous material. To
incorporate material heterogeneity, each element in the model was assigned a unique elastic
modulus based on the volume-weighted average of the QCT data sampled at 27 points
within the element (Edidin, 1991; Keaveny and Bartel, 1993). To calculate the elastic
modulus of each element, the following steps were taken. First, a gencral linear
relationship between QCT data (in Hounsfield units, HU) and apparent density was

assumed (Hvid et al., 1989; Lotz et al., 1990; Ciarelli er al., 1991). To determine the
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constants in this linear relationship, the mean Hounsfield Unit values at the center of the
femoral head (449 HU) and in the mid-diaphysis (1650 HU) were matched with literature
values reported for modulus, which were 332 MPa for the trabecular bone of the femoral
head (Brown and Ferguson, 1978) and 18 GPa for the cortical bone of the diaphysis
(Reilly and Burstein, 1975). The resulting equation between QCT data (HU) and apparent
density (p) was p = 1.106 x 103 HU + 0.684, where apparent density was expressed in
g cm-3, and QCT data were calibrated such that air and water yield values of -1000 HU
and 0 HU respectively. A quadratic relationship was then used between apparent density
and modulus (E, MPa) for trabecular bone (Rice et al., 1988), along with a linear

relationship for cortical bone (Snyder and Schneider, 1991) :

E = 820p% + 70 (trabecular bone)
E =21910p - 23500 (cortical bone)

The transition point between trabecular and co:tical bone was defined at an apparent density
of 1.12 g cm-3 (with a corresponding modulus of 1100 MPa), based on the intersection
point of these empirical relationships. The resulting moduli in the finite element model
ranged from 0.1 MPa (representing marrow space) to approximately 18 GPa for the stiffest
portion of the diaphysis (Fig. 1). All pre- and post-processing of the finite element model
were performed using PATRAN (Version 2.5, PDA Engineering, Costa Mesa, CA), and
stresses were computed using ABAQUS (Version 5.3, Hibbitt, Karlsson & Sorensen,

Pawtucket, Rhode Island).

5.2.2 Loads and Boundary Conditions

The loading configurations represented falls with lateral to posterolateral impact on
the greater trochanter. The boundary conditions were derived from an ex vivo femoral
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Figure 1: Finite element model of the right proximal femur from a 49 year old male
donor, posterior view, showing modulus distribution at proximal (A-A) and distal (B-B)
cross sections. The finite element mesh was composed of 1560 20-noded brick elements
and 15-noded wedge elements in transition regions, for a total of 6527 nodal points.

fracture study (Courtney et al., 1995) which was based on body configurations at impact
during voluntary falls from standing height (van den Kroonenberg et al., 1996). This
loading configuration was chosen because it produced ex vivo fracture patterns similar to
those observed clinically. Using the model, a fall with impact on the lateral aspect of the
greater trochanter was simulated by placing the diaphysis of the femur at a 10° angle relative
to the horizontal (Fig. 2). The femur was fixed distally against rotation about the diaphyseal
axis, simulating the resistance to rotation provided by the knee joint and the inertia of the

lower leg during a fall in vivo. A distributed load was applied over an area of
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approximately 2 cm? on the inferior surface of the femoral head, with the resultant force
acting through the center of the femoral head. The femoral head was constrained such that it
could rotate about its center (simulating sliding of the femoral head within the acetabulum),
but the center could translate only in the direction of the applied load (simulating the
resistance to femoral head translation provided by the acetabulum). The greater trochanter
was constrained vertically (simulating the constraint provided by the impact surface during
a fall), but free to slide in the horizontal plane. Four variations of this loading condition
were examined, all simulating falls with impact on the greater trochanter, but with variation
in the angle between the load vector and the femoral neck axis (as viewed from the superior
aspect of the femoral head). An angle of 15° (Fig. 3B) represented a typical body position
at impact during experimental sideways falls (van den Kroonenberg ez al., 1996). This
configuration has been shown to produce clinically realistic fracture patterns in ex vivo
fracture studies (Courtney et al., 1994; Bouxsein et al., 1995; Courtney et al., 1995). An
angle of 0° simulated a fall in which the femur impacts in a more direct lateral direction on
the greater trochanter relative to the 15° case (Fig. 3A). Angles of 30° and 45° represented

falls in which the femur impacts more posterolaterally relative to the 15° case (Figs. 3C, D)

5.2.3 Failure Criterion

The non-linear stress-strain behavior of bone was simulated using an elastic-
perfectly plastic material model based on the von Mises failure criterion. Differences
between the tensile and compressive strengths for both cortical and trabecular bone were
modeled as follows. First, the principal stresses in each element were determined using a
linear elastic analysis. The primary mode of deformation in each element was then
determined by comparing the absolute value of the maximum (tensile) and minimum

(compressive) principal stresses. For elements where the tensile priucipal stress was
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Resultant applied force

No rotation
about diaphysis

Fixed vertically

Figure 2: Boundary conditions used for all load cases. The angle of the f:moral shaft
with respect to the horizontal was 10°. The distal surface was constrained a;ainst rotation
about the diaphyseal axis, and the greater trochanter was fixed vertically but free to slide in
the horizontal plane. A force was applied vertically to the inferior surface of the femoral
head, with the resultant acting through the center of the femoral head.

largest, strengths were assigned by multiplying the elastic modulus of the element by a
constant tensile yield strain of 0.8% (based on reported yield strain values for trabecular
bone [Keaveny et al., 1994] and unpublished values for cortical bone). For elements where
the compressive principal stress was largest, strengths were assigned by multiplying the
elastic modulus by a constant compressive yield strain of 1.0% (Keaveny et al., 1994).
This technique resulted in maximum assigned tensile and compressive strengths of 144
MPa and 180 MPa, respectively, which is consistent with experimental results for cortical

bone (Reilly and Burstein, 1975). Yielding in an individual element occurred when the

108



effective von Mises stress in the element reached the assigned strength of the element. The
structural capacity of the femur was defined as the force required to cause the peak strain in
cortical bone loaded in tension to reach an ultimate value of 3% (Reilly and Burstein,

1975), corresponding to the onset of structural collapse.

(C) 30° load (D) 45° load

Figure 3: Variations in impact direction examined (view of right femur, looking down
femoral axis from superior aspect of femoral head). The 15° case (B) represented a typical
fall impacting on the greater trochanter. The 0° case (A) simulated a fall with the femur
externally rotated relative to the 15° case, with impact occurring in a more direct lateral
direction. The 30° and 45° cases represented falls with impact occurring more
posterolaterally relative to the 15° case. A = anterior, P = posterior.
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5.3 Results

As hypothesized, the structural capacity of the femur was highly dependent on the
direction of impact, with differences in structural capacity of up to 26% depending on
impact direction. The lowest predicted force of 2090 N occurred in the 45° case, and was
26% lower than the maximum force of 2820 N, which occurred in the 0° case (Fig. 4). A
structural capacity reduction of 21% (from 2820 N to 2240 N) was predicted with a change
of impact direction from 0° to 30°, and a reduction of 12% (from 2820 N to 2470 N) was

predicted between 0° and 15°.
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Figure 4: Structural capacity as a function of impact direction. The lowest structural
capacity (2090 N) occurred in the 45° case, and was 26% lower than the maximum
structural capacity (2820 N) which occurred in the 0° case.
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By contrast to the range of structural capacities, the location of bone failure was
similar in all cases. Local yielding was predicted first in the superior basicervical region,
and subsequently spread to the inferior subcapital and midneck regions (Fig. 5). Ultimate
failure of cortical bone in each case occurred at the inferior midneck. Therefore, although
impact direction had a profound effect on structural capacity, it did not substantially effect

the predicted fracture pattern.

Von Mises stress / yield stress
1.0 go

0.0

Figure 5: Contour plot of the ratio of von Mises stress to yield stress at the point of
structural failure for the 0° case. The stress distribution was qualitatively similar for all
loading cases, with high stress ratios occurring in the midneck and superior basicervical

regions. Ultimate tensile failure of cortical bone occurred at the inferior midneck.
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5.4 Discussion

The objectives of this chapter were to quantify the effect of impact direction on
femoral structural capacity during falls on the greater trochanter, where all potentially
confounding effects such as inter-bone variations in density and geometry were eliminated,
and also to determine if impact direction influences the location of bone failure. A change in
the angle between the axis of the femoral neck and the line of action of the applied force
from 0° (representing direct lateral impact) to 45° (representing posterolateral impact)
decreased structural capacity by 26%, but did not affect the location of bone failure. These
results indicate that the direction of impact is an important determinant of fall severity, and
therefore the data obtained in this study can provide the basis for improving hip fracture
risk prediction in the clinical setting.

Several important strengths of this study relate to the structural model used. First,
failure of a single femur was modeled under several loading conditions, therefore
eliminating the confounding effects of inter-bone variations in geometry and bone density.
Second, the model incorporated detailed geometry as well as the full range of material
heterogeneity found within the femur, which has not been done previously in finite element
models of the femur during falls. Third, the three-dimensional nature of the model allowed
incorporation of loads which lie outside the frontal plane, producing more physiological
femoral loading conditions than have been used previously (Beck et al., 1990; Yoshikawa
et al., 1994). The finding that the femur is weakest under loads that lie outside the frontal
plane emphasizes that out-of-plane loading is an important consiceration in the assessment
of hip fracture risk. Fourth, the criterion used to determine bone failure accounted for the
multiaxial nature of the strains within bone, as well as the strength asymmetries of both
cortical and trabecular bone. Finally, the model predicted failure locations that are clinically
realistic, lending support to both the validity of the model itself and to the loading

configurations used. While the use of a single femur from a relatively young (49 year old)
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donor may limit the generality of the results, recent ex vivo data suggest the reported trends
do have generality. In particular, it has been shown that once bone mineral density is
accounted for, elderly femurs tested to failure at 30° (n = 11) are 24% weaker than those
tested at 0° (n = 11; Pinilla er al., 1996), which compares favorably with the 21% reduction
predicted by the finite element model. The strong agreement between the trends predicted
by the model and these experimental results for elderly femurs supports the external validity
of the results.

While the relative trends predicted by the model and therefore the conclusions are
valid, the absolute magnitudes of the predicted structural capacities may be sensitive to
modeling parameters such as the isotropy of the bone material properties and the chosen
failure criterion. These modeling parameters may explain why the predicted failure load of
24770N for the 15° case is somewhat lower than the failure load of 3140N measured in the
laboratory for the modeled femur. Since apparent density explains approximately 80% of
the variance in trabecular bone modulus (Rice et al., 1988), and the addition of architectural
parameters results in only slight improvements in predictive accuracy (Snyder and Hayes,
1990), the use of fully heterogeneous but isotropic material properties for trabecular bone is
reasonable. Most of the discrepancy between predicted and measured failure loads is
probably due to the fact that while the material properties assigned to the model were
appropriate for quasi-static loading, the loading rate used to measure the failure load in the
laboratory (50 mm/sec) more closely reflected the fast loading rate experienced by the
femur during a fall. An increase in loading rate from quasi-static conditions to conditions
appropriate for a fall increases the structural capacity of the femur by approximately 20%
(Courtney et al., 1994). An increase of 20% would result in a model prediction of 2960N
for fast ioading, which is only 6% less than the measured value of 3140N.

With respect to the choice of failure criterion, element strengths were assigned
based on observations that failure strains for bone are constant and independent of density

and direction (Vahey et al., 1987, Keaveny et al., 1994), and also incorporated the strength
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asymmetries of cortical and trabecular bone (Keaveny et al., 1994). The major difference
between the von Mises yield condition used here and either the analytical criterion
developed in Chapter 4 or the Tsai-Wu criterion presented in Chapter 2 is that while the
analytical and Tsai-Wu criteria depend on both the deviatoric and mean stresses in the
material, the von Mises depends only on the deviatoric stress. The contribution of the mean
and deviatoric stresses to the failure behavior of a cellular material is most readily
demonstrated in the following equation describing the failure surface from Gibson and

Ashby (1988):

2

g—‘;‘-+0.81(G—T] =1 (1)
(o)
where 0y is the deviatoric stress, 6™ is the compressive yield stress, p*/pg is the relative
density, and oy, is the mean stress. If the term involving the mean stress is small relative to
the term involving the deviatoric stress, then the equation essentially reduces to the von
Mises yield condition. Post-processing of the finite element results revealed that for all
yielded trabecular bone elements, the term in Equation 1 that includes the mean stress had a
magnitude that was at most 0.014% of the magnitude of the term involving the deviatoric
stress (even for apparent densities as large as 1.0). Therefore, for the states of stress
present in this particular finite element model, incorporation of a failure criterion with a
mean stress dependence would not significantly alter the results. However, for states of
stress in trabecular bone where mean stresses are significant relative to deviatoric stresses
(which could arise in the femur for other loading conditions or at anatomic sites other than
the femur), the use of a failure criterion that incorporates mean stress effects would be
important for accurate failure prediction.

To place the effects of impact direction in perspective relative to other factors which

contribute to hip fracture, it is possible to compare the predicted changes in structural
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capacity as a function of impact direction with an estimate of the change that occurs due to
age-related bone loss. An average individual experiences a uniform bone loss of 7% per
decade (Mazess, 1982). Using a linear relationship between femoral neck bone mineral
density and femoral fracture force reported by Courtney et al. (1995), this 7% per decade
bone loss is associated with a structural capacity reduction of approximately 10% per
decade. Therefore, the predictions suggest that the effect of changes in impact direction on
the femur (a potential weakening of 26%) is comparable to the effect of two to three
decades of age-related bone loss.

These findings may provide the basis for improving estimates of an individual's
risk for hip fracture in the clinical setting. Current techniques for estimating hip fracture
risk relate the force applied to the femur to its structural capacity for a single fall loading
condition (Myers et al., 1994; Yoshikawa er al., 1994). The finding that the structural
capacity of the femur is sensitive to impact direction indicates that current fracture risk
predictions are also sensitive to the impact direction considered. Since soft tissue can
attenuate the force delivered to the femur during a fall (Robinovitch et al., 1994), it is likely
that the magnitude of the external force applied to the femur is also a function of impact
direction. A refined estimate of an individual's fracture risk, that accounts for interactions
between impact direction and soft tissue attenuation, could be achieved by considering a
series of high-risk loading conditions (i.e., falls impacting the greater trochanter in a lateral
to posterolateral direction as described in this study). The attenuation properties of an
individual's trochanteric soft tissue could be estimated using measurements of tissue
thickness (Maitland et al., 1993) combined with data relating thickness to attenuation
properties (Robinovitch et al., 1994). This information, plus knowledge of body habitus,
would provide estimates of the force delivered to the femur for the chosen impact
directions. Then, the structural capacities of the femur for the same set of impact directions
could be estimated using ex vivo data relating bone mineral density to structural capacity

(Bouxsein et al., 1995; Courtney et al., 1995), combined with percentage changes in
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structural capacity with impact direction reported in this study. The individual's fracture
risk, then, would simply be the maximum calculated ratio of applied force to structural
capacity for the range of impact directions considered. This scheme for assessing fracture
risk could be further refined by weighting each calculated ratio by the probability of impact
occurring in that particular direction, although further research into fall mechanics is
required to produce this information. Even without this probability data, however, this
scheme represents a logical step in the development of fracture risk assessment tools that
consider the complex interactions between fall severity and bone fragility.

In summary, the structural capacity of the femur during falls is sensitive to changes
in the direction of impact, and the magnitude of this effect is comparable to the effect of two
to three decades of age-related bone loss. This finding supports the notion that factors
related to fall mechanics are independent contributors to hip fracture risk (Hayes et al.,
1993; Nevitt and Cummings, 1993; Greenspan et al., 1994), and provides further insight
into why measurements of bone density only partially reflect the full domain of hip fracture
risk. The most important clinical implication of this finding is that accurate evaluation of hip
fracture risk for an individual requires consideration of a range of femoral structural
capacities, since in vivo traumatic loads are not known a priori and can vary substantially.
In addition, the effects of impact direction must be considered when evaluating new
modalities for reducing fracture risk, particularly in the evaluation of therapeutic
interventions aimed at slowing age-related bone loss. Future modeling efforts directed
toward further quantifying the independent effects of aging and loading on structural
capacity for a wide range of femoral morphologies, as well as potential interactions
between these effects, should increase our understanding of hip fracture etiology and

improve our ability to predict hip fracture risk.
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Chapter 6

Three-Dimensional Patterns of Bone Loss in the
Proximal Femur

6.1 Introduction

Age-related reductions in bone density are an important etiologic determinant of hip
fractures in the elderly. Prospective cohort studies have repeatedly demonstrated
associations between densitometric indicators of osteopenia and the incidence of hip
fracture (Cummings et al., 1990; Cummings et al., 1993; Melton et al., 1993; Nevitt et al.,
1994; Cummings et al., 1995). For example, a study of over 9000 women 65 years and
older demonstrated that a decrease in femoral bone mineral density (BMD) of one standard
deviation is associated with a 2.6-fold increase in the age-adjusted risk of hip fracture
(Cummings et al., 1993). Long-term follow-up of over 300 women has also shown that a
one standard deviation in femoral BMD is equivalent, in terms of fracture risk, to a 13-year
increase in age (Melton et al., 1993). The results of several case-control studies (Riggs et
al., 1982; Mazess et al., 1988; Aloia et al., 1992; Greenspan et al., 1994b) are consistent
with these longitudinal investigations.

Although the existence of a connection between age-related bone loss and increased
hip fracture risk is indisputable, the precise relationship between a reduction in bone
density and a reduction in structural capacity of the femur has not been adequately
explained. The ability of the femur to bear loads is directly related to its material properties,
which are determined by the three-dimensional distribution of bone density. Any change in
density distribution (such as that which occurs as an individual experiences bone loss)
results in a change in the distribution of material properties, with a concomitant change in

stress distribution and load-bearing capacity of the fernur. If reductions in bone density are
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non-uniform in the femur, then the resulting redistribution of material properties and
therefore stresses may be dramatic given the power law relationships that relate density to
bone modulus and strength (Carter and Hayes, 1976; Rice et al., 1988). Detailed
knowledge of the three-dimensional patterns of bone loss in the femur, then, is critical to
explaining the relationship between bone loss and increased fracture risk. Despite their
potential importance, the three-dimensional patterns of bone loss that occur with aging in
the femur are unknown.

The rate of bone loss experienced by an individual can depend, among other
factors, on the type of bone (i.e. cortical versus trabecular), the age of the individual, and
anatomic site (Mazess, 1982). On average, women lose about one third of their cortical
bone and half of their trabecular bone over their lifetime; however, age-related decrements
in bone density can differ depending on anatomic site (Riggs et al., 1981; Riggs et al.,
1982; Schaadt and Bohr, 1988; Elliot et al., 1990; Hannan et al., 1992; Harris and
Dawson-Hughes, 1992; Steiger et al., 1992; Greenspan et al., 1994a). Much of the
apparently conflicting data from anatomical and densitometric studies regarding rates of
trabecular bone loss (Riggs and Melton, 1986) can probably be explained by inter-study
differences in anatomic site used for density assessment. However, in addition to
differences in bone loss that exist between skeletal sites, there is also evidence to suggest
that bone loss is variable within certain skeletal sites. For example, in the proximal femur,
both longitudinal (Greenspan et al., 1994a) and cross-sectional studies (Riggs er al., 1982;
Hannan et al., 1992; Steiger et al., 1992; Greenspan et al., 1994a) have revealed
differential rates of bone loss in the femoral neck, trochanteric, and intertrochanteric
regions using clinical densitometric techniques.

Although densitometric techniques such as DXA and dual-photon absorptiometry
(DPA) have provided valuable clinical information regarding age-related bone loss, these
technologies are limited because they provide only a two-dimensional projection of an

individual's density distribution, and also because their output is dependent on bone
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geometry. Therefore, data generated from these techniques cannot be used to assess
patterns of age-related bone loss in three dimensions. In addition to densitometric studies,
patterns of bone loss have been investigated in cadaveric femurs using both
histomorphometry (Kawashima and Uhthoff, 1991) and radiography (Singh et al., 1970).
As with most clinical densitometric methods, however, these methods are inherently limited
to analysis of density in a single plane (generally the frontal plane). The fact that the femur
is particularly weak under loads that lie outside of the frontal plane (as demonstrated in
Chapter 5) underscores the need for density information that is three-dimensional and not
confined to projections in the frontal plane. In addition, the fact that rates of BMD loss in
the femur can depend on location in the frontal plane (Greenspan er al., 1994a) suggests
that there are likely to be gradients in bone loss in the sagittal and coronal planes as well.
By contrast to clinical densitometric techniques such as DXA, Quantitative
Computed Tomography (QCT) can provide extremely detailed three-dimensional bone
density information. Due to its relatively high cost, high radiation dose, and difficulties in
repositioning, QCT is much less practical than DXA for clinical assessment of femoral
bone density. However, comparison of QCT data from cadaveric femurs can potentially
provide a wealth of information regarding three-dimensional patterns of age-related bone
loss, provided that the confounding effects of inter-bone differences in geometry can be
accounted for. In this study, a geometric scaling technique was developed that allowed
direct comparison of the three-dimensional QCT density distributions of cadaveric femurs
with varying geometries. The specific objectives were to: 1) apply this scaling algorithm to
QCT data from three groups of cadaveric femurs (chosen to represent a wide range of BMD
levels) to determine the relationship betwcen three-dimensional QCT density distribution
and BMD, and 2) to use this relationship to determine (cross-sectionally) the three-
dimensional patterns of bone loss associated with BMD levels defined as normal,
osteopenic, and osteoporotic by an expert panel of the World Health Organization (Kanis et

al., 1994).
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6.2 Methods

6.2.1 Development and Validation of Relationship between BMD Level and

Three-Dimensional Density Distribution

Through previous ex vivo fracture studies of the proximal femur performed in this
laboratory (Courtney et al., 1994; Courtney et al., 1995; Pinilla et al., 1996), both QCT
and DXA data were available for a large number of femurs spanning a broad range of ages
and BMD levels. QCT and DXA data for all femurs were obtained using the following
protocols. Proximal femurs were placed in water and fixed distally such that both the
diaphysis and femoral neck were parallel with the scan table. QCT scanning was performed
using the bone algorithm of a clinical CT scanner (model 9800, General Electric,
Milwaukee. WI). Scans were taken perpendicular to the diaphysis, with contiguous three
mm slices beginning at the superior aspect of the femoral head until just distal to the lesser
trochanter, and then with 10 mm slices to the mid-diaphysis. Femurs were positioned in
water in the same manner for DXA scanning. DXA scans of each femur were obtained
using the pencil-beam mode of a Hologic QDR-2000 densitomet! :r (Hologic Inc., Waltham,
MA). Standard measures of areal bone mineral density and bone mineral content were
obtained for the femoral neck, trochanteric, and intertrochanteric regions (Wahner and
Fogelman, 1994).

The DXA database was examined to identify three groups of femurs whose BMD
values were high, medium, and low relative to the available population. Although complete
medical records were not available for the femur donors, the available information (Table 1)
was used to rule out metastatic disease or disorders known to directly affect bone
metabolism. Three femurs were chosen at each BMD level such that when average regional

BMD values were calculated for each group (in the femoral neck, trochanteric and
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intertrochanteric regions), the coefficients of variation in BMD were as small as possible.
Therefore, each group (high-BMD, mid-BMD, and low-BMD) consisted of three ferurs
with different geometries but similar BMD values (Table 2).

Using publicly available software (NIH Image, version 1.58), the transverse QCT
dataset for each femur (Fig. 1a) was reconstructed and resliced in the frontal plane to create
a stack of consecutive frontal images. The axis of the femoral neck was identified from the
frontal images, and then the frontal stack was resliced perpendicular to the neck axis, with
the position and thickness of the slices determined by anatomic landmarks as follows.
First, a line perpendicular to the neck axis was placed such that it was tangent to the medial
aspect of the femoral head. Five contiguous slices were taken between this position and the
start of the femoral neck (subcapital site, Fig. 1b). Five contiguous slices were then taken
between the subcapital site and the base of the femoral neck, defined as the point where the
line just contacted the tip of the greater trochanter. Another five contiguous slices were
taken from the base of the femoral neck to the edge of the trochanteric region, defined by

the most lateral point on the femur.

Age (yrs.) Sex Cause of death
High-BMD group:
21 F Pulmonary embolus
48 M Head trauma; motor vehicle accident
31 F Primary brain tumor
Mid-BMD group:
78 F Sepsis; bladder cancer
83 F Cardiogenic shock
69 F Hepatic failure
Low-BMD group:
88 F Sepsis
79 F Myocardial infarction
89 F Myocardial infarction

Table 1: Age at time of death, sex and cause of death of femur donors.
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femoral neck trochanteric intertrochanteric

ID Sex Group BMD BMD BMD (g cm™2)
(gcm2) (gcm?)

1293 F L 0.451 0.439 0.676
1328 F L 0.423 0.422 0.713
1355 F L 0.393 0.411 0.578
mean % S.D. 0422+£0.029 0424t 0.014 0.656 £ .070
1233 F M 0.695 0.692 0.907
1317 F M 0.694 0.598 0.966
1386 F M 0.691 0.558 0.901
mean * S.D. 0.693 £0.002 0.616 £ 0.069 0.924 £ 0.036
9018 F H 0.909 0.745 1.126
9037 M H 0.864 0.737 1.152
9044 F H 0.901 0.792 1.225
mean + S.D. 0.801 £ 0.024  0.758 £ 0.030 1.168 £ 0.051

Table 2: Regional BMD values of cadaveric femurs used to derive a relationship between
BMD and three-dimensional density distributicn. F, female; M, male; L, low-BMD group;
M, mid-BMD group; H, high-BMD group.

Once the QCT data from all nine femurs were sampled according to the above
protocol, a geometric scaling algorithm was applied to each slice which mapped the density
distributions to a constant geometry (Fig. lc), and therefore facilitated inter-bone

comparisons of density distribution. First, a smoothing and an edge detection filter were

applied to each slice. The edge detection filter generated both horizontal and vertical

derivatives at each point, and replaced each pixel of the original slice with the larger of the
two derivative values. The contour representing the outer edge of each slice was then
identified by thresholding the filtered image. The contour just inside the outer boundary
where the cortical density was a maximum was also identified. The bone pixels within the

outer boundary were then mapped to a constant geometry using in-house software as
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follows. After locating the medial and lateral borders of a slice, each line of pixels in the
anterior/posterior direction was interpolated such that it spanned a distance of 150 points.
The resulting rectangular array was then reinterpolated in the medial/lateral cimension to a
distance of 150 points, resulting in a 150 by 150 array of QCT density values (outer
contour, Fig. 1c). During this geometric manipulation, the locations of the cortical peaks
were tracked. The square array representing each bone slice was then re-interpolated in two
dimensions such that the cortical peaks were located at the same positions for each slice
(inner contour, Fig. Ic).

The geometry-adjusted density distributions for each slice were then averaged
(point by point) within each group to determine a 'typical’ three-dimensional density
distribution for that slice that was representative of the group's BMD level (Fig. 1d). The
coefficient of variation in density was also calculated at each point in the distribution to
quantify the similarity in density distribution within each group. Once a 'typical' density
distribution was established for each slice and BMD level, the density distribution for any
BMD level could be predicted by interpolating between the averaged levels (Fig. le). The
described method, therefore, led to the development of a relationship between BMD level
and three-dimensional density distribution. The predicted density distributions could then
be mapped to any available femur geometry, using the reverse of the scaling algorithm

described above (Fig. If).
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Figure 1: Flow chart describing the geometric scaling algorithm used to determine a
relationship between BMD level and three-dimensional density distribution. (A) Nine
proximal femurs were scanned transversely using QCT, with contiguous 3 mm slices from
the superior aspect of the femoral head to below the lesser trochanter. (B) A stack of frontal
images was created from the transverse scans, and resliced perpendicular to the femoral
neck. (C) Each slice was then mapped to a constant geometry (outer boundary), and
reinterpolated in two dimensions such that the cortial peaks were in the same position for
each slice (inner boundary). (D) Geometry-adjusted density distributions for each slice
were averaged (point by point) within each group. (E) For each slice, the density
distribution for any BMD level could be predicted by interpolating between the averaged
levels. (F) The predicted density distribution could then be mapped to any available femur
geometry using the reverse of the scaling algorithm described in steps A through C.
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To determine the predictive ability of the relationship between BMD level and three-
dimensional density distribution, two femurs were chosen from our femur DXA database
whose BMD levels were a maximum distance from the averaged BMD levels used in the
derivation. One femur was chosen whose regional BMD values were between the high and
medium averaged levels. and one whose regional BMD values were between the medium
and low levels (Table 3). Femurs were chosen in this manner to provide the most rigorous
test of the derived relationship. First, the (geometry-independent) three-dimensional density
distributions of these two femurs were predicted, using only their regional BMD values and
the derived relationship between BMD and three-dimensional density distribution. Then,
the geometric scaling algorithm described previously was applied to the actual QCT data
(which were smoothed once to remove noise), and the predicted density distribution was
compared to the actual density distribution. To quantify the error in the predictions, we
calculated the percentage difference in density, point by point, between the predicted and

the actual densities for each slice.

ID Age Sex  femoral neck BMD trochanteric BMD intertrochanteric
(g cm2) (g cm2) BMD
(g cm2)
1244 49 M 0.761 0.534 1.113
1298 82 F 0.505 0.505 0.832

Table 3: Regional BMD values, age and sex of femurs used for validation of the
relationship between BMD level and three-dimensional density distribution

6.2.2 Determination of Patterns of Age-Related Bone Loss

Using the derived relationship between BMD level and three-dimensional density
distribution, density distributions were predicted for three BMD levels representing young

normal, osteopenic, and osteoporotic women, based on the World Health Qrganization

130



(WHO) diagnostic criteria for osteoporosis and osteopenia (Kanis er al., 1994). The WHO
diagnostic approach defines osteopenia as a BMD that is between 1 and 2.5 standard
deviations below the young adult mean value, and osteoporosis as a BMD that is more than
2.5 standard deviations below the young adult level. The three BMD levels examined in
this study (Table 4) were chosen based on data from Looker et al. (1995), who measured

BMD levels of U.S. women as part of the third National Health and Nutrition Examination

Survey.
Diagnostic femoral neck BMD trochanteric BMD intertrcchanteric BMD
Category (g cm?) (g cm?) (g cm2)
Normal 0.849 0.703 1.086
Osteopenic 0.659 0.546 0.864
Osteoporotic 0.511 0.424 0.688

Table 4: Regional BMD values used to represent normal, osteopenic, and osteoporotic
diagnostic levels. Diagnostic categories are as defined by an expert panel of the World
Health Organization (Kanis et al., 1994); BMD levels are based on data reported by Looker
et al. (1995)

For ease of viewing results, each of the (geometry-independent) predicted density
distributions was mapped to the same generic femur geometry, using the reverse of the
geometric scaling algorithm described previously (Fig. 1f). The density loss between the
normal and osteopenic levels and between the osteopenic and osteoporotic levels was
assessed at each point in the femur by calculating the percent difference between the

predicted density distributions at each BMD level.
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6.3 Results

6.3.1 Relationship between DXA measurements and three-dimensional

density distribution

Once inter-bone differences in geometry were accounted for, femurs within each
group (high-BMD, medium-BMD, and low-BMD) had similar three-dimensional density
distributions. The mean coefficients of variation in density for a slice through the mid-neck
(slice 8, Fig. 1b) in the high-BMD, medium-BMD, and low-BMD groups were 6.9%,
7.4%, and 4.6%, respectively, demonstrating that the variability in QCT density between
femurs within each group was reasonably small (Fig. 2). The coefficients of variation for a
slice through the mid-trochanteric region (slice 13, Fig. 1b) were similarly small, with
means of 6.4%, 7.9%, and 6.2% in the high-BMD, mid-BMD and low-BMD groups,
respectively (Fig. 3). The coefficients of variation in QCT density for all other slices were
similar in magnitude and distribution to those for the mid-neck and trochanteric slices
(Table 5), demonstrating that, on average, the variability in QCT density within each group
was of the same order as the variability in BMD. In addition, remarkable similarities in the
shapes of the density distributions of femurs within each BMD group were noted upon
visual inspection of the geometry-adjusted slices (Fig. 4).

The three-dimensional density distributions predicted from the BMD levels of two
femurs using our derived relationship compared favorably with the actual density
distributions measured by QCT. For the first femur (BMD between the high-BMD and
medium-BMD averaged levels), the mean percent difference between the actual and
predicted density distributions ranged from -5.3% - 2.3%, for five slices sampled from the
proximal region (Fig. 5). For these five slices, the minimum and maximum percent errors
were -26.5% (occurring in the trochanteric slice) and 49.3% (occurring in the subcapital

slice), respectively (Table 6). Absolute errors greater than 10% occurred for only 6.7% of
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Figure 2: Histograms showing the frequency distribution of coefficients of variation for a
(geometry-adjusted) slice through the mid-neck (slice 8, Fig. 1b), for the low-BMD, mid-
BMD, and high-BMD groups. Only 5.7%, 9.8%, and 0.9% of pixels in the low-BMD,
mid-BMD, and high-BMD groups, respectively, had coefficients of variation greater than
15%.
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Figure 3: Histograms showing the frequency distribution of coefficients of variation for a
(geometry-adjusted) slice through the trochanteric region (slice 13, Fig. 1b), for the low-
BMD, mid-BMD, and high-BMD groups. Only 6.4%, 10.9%, and 8.8% of pixels in the
low-BMD, mid-BMD, and high-BMD groups, respectively, had coefficients of variation
greater than 15%.



Slice Mean cov (max) Mean cov (max) Mean cov (max)
low-BMD group (%) mid-BMD group (%) high-BMD group (%)

1 4.0 (11.3) 6.6 (19.4) 5.0 (16.2)
2 3.6 (12.3) 6.8 (16.3) 6.3 (24.2)
3 3.8 (12.9) 4.8 (17.8) 4.7 (13.6)
4 2.8 (13.8) 4.6 (18.8) 6.2 (18.4)
5 4.0 (17.8) 5.1 (22.7) 6.3 (23.0)
6 5.1 (23.9) 7.2 (27.9) 7.4 (30.3)
7 4.8 (20.7) 7.5 (29.2) 7.0 (28.9)
8 4.6 (19.0) 7.4 (28.7) 6.9 (25.6)
9 5.0 (18.4) 7.7 (31.5) 7.6 (26.3)
10 5.5 (23.7) 7.5 (34.4) 8.5 (31.9)
11 5.2 (22.2) 7.0 (28.7) 8.0 (29.0)
12 6.0 (34.8) 7.4 (29.0) 6.5 (42.0)
13 6.2 (32.0) 7.9 (31.7) 6.4 (35.3)
14 5.2 (35.2) 8.7 (33.9) 6.0 (33.7)
15 5.1 (34.0) 7.7 (35.8) 7.2 (35.0)

Table 5: Mean and maximum coefficients of variation (%) for each of 15 slices (see Fig.
1b) for the low, mid, and high-BMD groups

pixels in the five slices sampled (Fig. 6). Analysis of the predicted and actual density
distributions for the second femur (BMD between the mid-BMD and low-BMD groups)
revealed similarly low errors. In addition to the results of the quantitative error analysis,
plots of each of the five slices visually demonstrate the excellent agreement between the
predicted and actual density distributions (Fig. 7). It was concluded from these
comparisons between predicted and actual density distributions that the derived relationship
was effective in predicting the essential features of a femur's three-dimensional density

distribution given only its regional BMD levels.
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adjusted density distributions at the mid-neck for two femurs from

Figure 4: Geometry

the high-BMD group. The height at each point is proportional to the density. A, anterior; P,

ateral. The density distributions are similar for the two femurs.

posterior; M, medial; L
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Figure 5: Locations of slices (one pixel thick) used for calculating the percent error
between actual and predicted density distributions.

Slice mean % error minimum maximum
+ S.D. % error % error
head -5.3+4.6 -15.0 12.5
subcapital 23+ 11.1 -22.1 49.3
midneck -09+73 -279 18.9
basicervical -0.8£5.6 -24.8 20.3
trochanteric -0.8 + 8.6 -26.5 32.8

Table 6: Percent errors between actual and predicted density distributions for femur with
BMD between high-BMD and mid-BMD groups, for five slices through the proximal
region.
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Figure 6: Histograms showing frequency distribution of percent error between actual and
predicted density distributions, for five slices. The mean percent errors ranged from -5.3%
(at the femoral head) to 2.3% (at the subcapital slice). Absoiute errors greater than 10%
occurred for only 6.7% of the pixels in the five slices sampled.
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Figure 7: Plots of density distributions for five proximal slices, showing good agreement
between actual (left) and predicted (right) distributions.
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6.3.2 Patterns of Age-Related Bone Loss

The calculated reductions in QCT density depended strongly on both baseline BMD
level and anatomic site. Between the normal and osteopenic BMD levels (representing a
loss in BMD of about 22% in the femoral neck, trochanteric, and intertrochanteric regions),
reductions in QCT density at the five proximal slices sampled ranged from 0% - 23%,
depending upon anatomic location (Fig. 8, Table 7). The peak density reduction occurred at
the posterior mid-neck. For a slice through the center of the femoral head, reductions in
density were higher anteriorly than posteriorly. At the subcapital site, density reductions
were highest near the center of the slice, and were lower medially than laterally. At the mid-
neck, there were relatively high losses near the posterior and anterolateral cortices and in
trabecular bone on the medial side, with almost no density loss occurring in the area of the
medial cortex. As in the mid-neck, there were high losses in the posterior cortex at the
basicervical slice. In the mid-trochanteric region, density reductions were highest
posteromedially and lowest posterolaterally.

Reductions in density between the osteopenic and osteoporotic BMD levels
(representing a loss in BMD of about 22% in the femoral neck, trochanteric, and
intertrochanteric regions) also depended on anaiomic site within the femur (Fig. 9, Table
8). The peak reduction in density occurred at the posterior aspect of the trochanteric slice.
At the center of the femoral head, density reductions were fairly uniform except for
relatively low losses anteromedially. Reductions at the subcapital site were also fairly
uniform. At the midneck, basicervical and trochanteric slices, losses were on average
higher medially than laterally.

The density reductions observed between the osteopenic and ostcoporotic BMD
levels had different distributions than the losses observed between the normal and
osteopenic levels (Fig. 10). At the center of the femoral head, bone loss was highest

anteriorly between the normal and osteopenic levels, while bone loss was lowest anteriorly
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between the osteopenic and osteoporotic BMD levels. While losses at the subcapital site
were essentially uniform between the osteopenic and osteoporotic levels, losses were
highly non-uniform between the normal and osteopenic levels. At the mid-neck, losses in
the medial cortex were higher between the osteopenic and osteoporotic levels than between
the normal and osteopenic levels, but losses in the posterior and lateral cortices were higher
between the normal and osteopenic levels than between the osteopenic and osteoporotic
levels. Basicervically, relatively high losses were observed posteriorly and laterally
between the normal and osteopenic levels, but were highest medially and anteriorly
between the osteopenic and osteoporotic levels. At the trochanteric site, reductions were
highest medially between both the normal and osteopenic and between osteopenic and
osteoporotic levels.

In addition to the differences in the spatial distributions of bone loss, reductions in
density were, on average, of a higher magnitude between the normal and osteopenic levels
than they were between the osteopenic and osteoporotic levels (Tables 7, 8). The mean
reductions in density for each slice (ranging from 5.5% - 7.0 % between the normal and
osteopenic BMD levels and from 4.0% - 5.3% between the osteopenic and osteoporotic
BMD levels) were also substantially lower than the BMD differences of about 22% that
were used to define the normal, osteopenic and osteoporotic levels. In fact, for the five
slices sampled, fewer than 1% of pixels had density reductions greater than or equal to
22% between the normal and osteopenic levels (Fig. 11), and no pixels had density
reductions greater than or equal to 22% between the osteopenic and osteoporatic levels

(Fig. 12).
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Figure 8: Reductions in QCT density (%) between the normal and osteopenic BMD
levels, for five proximal slices. The peak density reduction of 24% occurred at the posterior

aspect of the mid-neck slice. Density reductions depended strongly on anatomic location.

Slice Density reduction Minimum density Maximum density
mean + SD (%) reduction (%) reduction (%)
Head 6.3+453 0 17
Subcapital 62144 0 17
Mid-neck 70+53 0 22
Basicervical 6.4 47 0 23
trochanteric 55+3.7 0 19

Table 7: Mean, minimum, and maximum density reductions (%) between the normal and
osteopenic BMD levels, for five proximal slices
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Figure 9: Reductions in QCT density (%) between the osteopenic and ostcoporotic BMD
levels, for five proximal slices. The peak density reduction of 19% occurred at the posterior
aspect of the trochanteric slice. Density reductions depended strongly on anatomic location.

Slice Density reduction Minimum density Maximum density
mean * SD (%) reduction (%) reduction (%)
Head 42+23 0 9
Subcapital 53£29 0 13
Mid-neck 43+29 0 15
Basicervical 40+ 3.2 0 16
trochanteric 45+34 0 19

Table 8: Mean, minimum, and maximum density reductions (%) between the osteopenic
and osteoporotic BMD levels, for five proximal slices
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Figure 10: Comparison of density reductions (%) between the normal and osteopenic
levels (left) and between the osteopenic and osteoporotic BMD levels (right). Patterns of
bone loss were substantially different for the two BMD steps, and were on average higher
between the normal and osteopenic levels than between the osteopenic and osteoporotic

levels.
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Figure 11: Histograms showing frequency distribution of density reductions between the
normal and osteopenic BMD levels, for five proximal slices.
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Figure 12: Histograms showing frequency distribution of density reductions between the

osteopenic and osteoporotic BMD levels, for five proximal slices.
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6.4 Discussion

The objectives of this study were twofold. The first objective was to apply a custom
geometric scaling algorithm to QCT data from three groups of cadaveric femurs (low-
BMD, mid-BMD, and high-BMD) to derive a relationship between BMD (a two-
dimensional density measurement) and three-dimensional density distribution. We
demonstrated that the derived relationship was effective in predicting the three-dimensional
density distribution of a femur given only its regional BMD values. The second objective
was to predict the three-dimensional density distributions associated with BMD levels
defined as normal, osteopenic, and osteoporotic by an expert panel of the World Health
Organization (Kanis et al., 1994), and to use these predictions to examine (cross-
sectionally) three-dimensional patterns of age-related bone loss. The results showed that
bone loss that appeared 'uniform' based on clinical DXA exams was in fact the result of
density reductions that were highly non-uniform when viewed in three dimensions. Both
the patterns and magnitudes of bone loss observed between the normal and osteopenic
BMD levels were substantially different from those observed between the osteopenic and
osteoporotic levels, despite the fact that the BMD reductions used to define the levels were
equal. Lastly, the mean QCT density reductions between normal and osteopenic and
between osteopenic and osteoporotic levels were only about 20-30% as large as the BMD
reductions defining the levels.

Although the results of this study represent a significant step in our understanding
of bone loss patterns in the proximal femur, some limitations of the analysis deserve
attention. First, the thinness of the cortical shell, combined with the volume averaging
phenomenon present in the QCT data, makes measurement of cortical shell density with
QCT extremely difficult. Since the voxel size of the QCT datasets used here (approximately
0.5 mm) was of the same order as the thickness of the cortical shell in some regions (Lotz

etal., 1991), and since the geometric scaling technique filtered out components of the QCT
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density distribution with very high spatial frequencies, it was not possible to assess
changes in cortical shell properties accurately with this analysis. However, the error
analysis did demonstrate that most of the essential features of the desired density
distribution could be predicted using the derived relationship. A combination of higher
resolution QCT data and performance of the scaling algorithm at a higher resolution may
allow for measurement of changes in cortical shell density in the future. Second, the
relatively small sample size used in this analysis (three femurs per group) may limit
extrapolation of the results to the gencral population. The femurs used in this analysis were
chosen based on similarities in their regional BMD levels (Table 2). The inclusion of
additional femurs from the available database in any of the groups would have substantially
increased the variability in BMD (and therefore variability in true density) within each
group. Since the relationship derived in this study (based on the analysis of only nine
femurs) was reasonably successful in predicting three-dimensional density distributions,
the inclusion of additional femurs and BMD levels in the analysis would likely result in
even better predictions of three-dimensional density distribution. In addition to attempting
to minimize the coefficients of variation in BMD within each group, an attempt was made to
limit the analysis to femurs from female donors (those with the highest incidence of hip
fracture), so that the potentially confounding effect of differences in density between men
and women could be minimized. To achieve a sample size of three femurs in each group,
we did include one femur from a male donor (in the high-BMD group). However, the fact
that the coefficients of variation in density for the high-BMD group were similar to those
for the mid-BMD and low-BMD groups (Table 5) suggests that the inclusion of a femur
from a male donor did not significantly affect the analysis. This argument is also supported
by the fact that the derived relationship between BMD and three-dimensional density
distribution was effective in predicting the density distribution of a femur from a male

donor.
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In addition to gender, there are several other factors that can influence skeletal status
and therefore may have confounded the results of this study. For example, if an individual
is subjected to prolonged bed rest, his or her femoral density distribution may be different
from that of an ambulatory individual with the same BMD. In addition, it may be that
elderly and young individuals with the same BMD have different three-dimensional density
distributions, or that individuals undergoing estrogen or glucocorticoid therapy have
different density distributions than unmedicated individuals with the same BMD. Since
complete medical records were not available for the donors used in this study, it was not
possible to assess the contributions of these and other factors (such as menopausal status
and disease) directly. The presence of any one of these factors in the donor population
studied could have affected both the average density distributions determined for each
group, as well as within-group variability. However, the confounding effects of these
factors were probably smaller than the changes observed between the normal, osteopenic,
and osteoporotic BMD levels, which were changes associated with relatively large
variations in BMD. Although not critical to this study, the geometric scaling algorithm
developed here could be used to study the differences in density distribution associated
with any factor affecting skeletal status, provided these factors could be well-controlled in
the study population.

The scaling algorithm developed in this study for QCT data allowed for elimination
of the confounding influence of inter-bone differences in geometry, and therefore provided
the first direct, quantitative and geometry-independent comparison of three-dimensional
density distributions between bones. Once geometric influences were eliminated, mean
reductions in true density were only about 20-30% as large as reductions in areal BMD.
This result implies that differences in cross-sectional femoral geometry, rather than true
density differences, may in fact be responsible for.. .a of the variability in BMD that is
observed within the population. This finding is consistent with the high correlations that

exist between geometric parameiers (such as femoral neck cross sectional area) and BMD
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measurements (Beck er al., 1990), and is also consistent with previous findings for the
lumbar spine, where investigators demonstrated that areal BMD measurements depend on
subject height (Carter er al., 1992). The current study adds to our understanding of the
relative importance of geometry and density by directly quantifying how much of the
variability in BMD across ihe analyzed population (less than one-third) is due to true
density reductions.

In addition to suggesting that differences in cross-sectional geometry are
responsible for a relatively large portion of the variability in BMD within the population,
the results suggest that the relative contributions of cross-sectional geometry and density
may differ depending on BMD level. We showed that the true density differences present
between the normal and osteopenic BMD levels were on average larger than the density
differences present between the osteopenic and osteoporotic BMD levels (Tables 7, 8),
even though the BMD reductions defining the levels were equal for each step. This result
implies that cross-sectional geometry may play a more important role at lower BMD levels
than at higher BMD levels in determining BMD variability within the population. Since the
majority of hip fractures occur in individuals with low BMD, this result points to the need
for better information about how geometric parameters affect the structural capacity of the
femur and therefore the risk of hip fracture.

The results of this study may have implications for the longitudinal assessment of
hip fracture risk in individuals. True density reductions between the normal and osteopenic
and between the osteopenic and osteoporotic BMD levels were substantially smaller than
the BMD reductions used to define the levels, suggesting that differences in cross-sectional
femoral geometry are primarily responsible for the variations in BMD observed in the
studied femur population, and probably also in other clinical and cadaveric study
populations. The dominant effect of geometric parameters in a cross-sectional analysis is
not surprising, given the tremendous variations in femoral geometry that are present across

the population. In an individual, however, the relative contribution of geometric remodeling
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to longitudinal changes in BMD is probably not as dramatic, since an individual is unlikely
to experience the broad range of anatomic variations that are present across a population.
Therefore, the trends in femoral strength observed as a function of BMD in cross-sectional
fracture studies (Weber et al., 1992; Courtney et al., 1994; Courtney et al., 1995; Pinilla et
al., 1996) may not reflect the changes in strength associated with longitudinal reductions in
BMD in an individual. In addition, it may be that the relative contributions of geometric and
density changes to reductions in BMD are different for different individuals (as they
probably are for men and women [Beck et al., 1992]), further complicating the relationship
between BMD and fracture risk. Therefore, accurate assessment of changes in an
individual's fracture risk over time may depend on determining the independent

contributions of bone density and geometry to the structural capacity of the femur.
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Chapter 7

The Structural Consequences of Age-Related Bone
Loss in the Proximal Femur

7.1 Introduction

Non-invasive densitometric techniques such as dual-energy x-ray absorptiometry
and dual-photon absorptiometry have revolutionized the study and diagnosis of
osteoporosis, because of the strong link between measures of bone mineral density (BMD)
and age-related fracture risk. For example, prospective cohort studies have repeatedly
demonstrated that BMD of the hip is a strong predictor of hip fracture (Cummings et al.,
1990; Cummings et al., 1993; Melton et al., 1993; Nevitt et al., 1994, Cummings et al.,
1995), and laboratory investigations have revealed strong correlations between BMD and
the structural capacity of the femur ex vivo (Weber et al., 1992; Courtney er al., 1994,
Bouxsein et al., 1995; Courtney et al., 1995; Pinilla et al., 1996). As a result of the
impressive clinical and laboratory evidence linking BMD and hip fracture risk,
measurements of BMD are now widely used as outcome variables in clinical trials of
osteoporosis interventions, and have become the gold standard in the diagnosis of
osteopenia and osteoporosis.

Although the existence of a connection between femoral BMD and hip fracture risk
is indisputable, questions related to the mechanisms underlying this connection remain
unanswered or only partly answered. For example, what is the relationship between a
change in BMD for an individual and a change in structural capacity of the femur? Much of
our understanding of this relationship comes from demonstrated correlations between BMD
and the structural capacity of the femur ex vivo (Weber et al., 1992; Courtney et al., 1994,

Bouxsein et al., 1995; Courtney et al., 1995; Pinilla et al., 1996). Although these studies
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have provided valuable insight into the relationship between BMD and femoral strength
over a wide range of ages and loading rates, the reported relationships are subject to the
potentially dramatic influence of confounding variables. For example, although the reported
correlations between BMD (both at the femoral neck and total hip) and structural capacity of
the femur are strong for loading rates representative of falls (r2 = 0.68 - 0.79), femurs with
nearly identical total BMD can have as much nearly a two-fold difference in structural
capacity (Fig. 1). Conversely, femurs with nearly identical failure loads can have
remarkably different total BMD values. Much of the scatter in BMD-failure load
relationships can probably be explained by the confounding effects of inter-bone
differences in geometry, as well as by inter-bone differences in regional BMD ratios (for
example, the ratio of femoral neck to trochanteric BMD). As a result of these confounding
factors (which cannot be controlled in an ex vivo study), relationships between BMD and
failure load derived from ex vivo studies may not reflect the longitudinal changes in femoral
strength that occur in an individual over time.

Age-related bone loss can occur at different rates in different regions of the
proximal femur. In a recent longitudinal study of 85 elderly women, Greenspan et al.
(1994a) found that the annual percent change in BMD of the femoral neck was not
correlated at all (r = 0.0) with the annual percent change in BMD of the trochanteric region,
and was only very weakly correlated with the annual percent changes at the
intertrochanteric region (r = 0.05) and at the total hip (r = 0.21). It may be that bone loss in
particular regions of the femur causes greater strength reductions than bone loss in other
regions, however the independent effects of region-specific density changes on the load-
bearing capacity of the femur have not been quantified. Knowledge of the structural
consequences of non-uniform bone loss would be extremely useful for assessing an

individual's change in hip fracture risk over time in the clinical setting.
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Figure 1: Relationship between total hip BMD and ex vivo failure load reported by Pinilla
et al. (1996). Although the correlation is strong (r2 = 0.68), femurs with similar total BMD

can have dramatically different failure loads. Conversely, femurs with similar failure loads
have markedly different total BMD values.

In the previous chapter, Quantitative Computed Tomography (QCT) data were used
to determine the three-dimensional patterns of bone loss in the proximal femur, and the
relationship between these patterns of bone loss and changes in clinical measures of BMD.,
In this chapter, a finite element model of the proximal femur is used to determine the
structural consequences of these patterns of bone loss, independent of the confounding
effects of changes in geometry. The specific objectives of this chapter are to: (1) examine
the changes in femoral structural capacity and fracture pattern associated with clinically
“uniform” bone loss, by determining the structural capacity of the femur (subject to loads

simulating a fall on the hip) with BMD levels defined as normal, osteopenic, and
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osteoporotic by an expert panel of the World Health Organization (WHO, Kanis et al.,
1994), (2) examine the effects of clinically "non-uniform" bone loss, by applying density
reductions to the femoral neck, trochanteric and intertrochanteric regions independently and
determining the changes in structural capacity and fracture pattern induced by these density
reductions, and (3) determine if the changes in structural capacity and fracture pattern

determined in (1) and (2) depend on the direction of impact during a fall.

7.2 Materials and Methods

7.2.1 Finite Element Model

The methods used to construct a finite element model of the proximal femur are
described in detail in Chapter 5, and therefore only a brief summary is presented here.
Geometric and densitometric data from QCT scans of a right proximal femur (donor age
49, male) were used to generate a finite element model of the femur using the IBID
Software Suite (Hospital for Special Surgery, New York). Bone heterogeneity was
modeled by assigning a unique, isotropic elastic modulus to each element, assuming a
general linear relationship between QCT and apparent density, and the following equations
between apparent density (p, g cm~3) and modulus (E, MPa; Rice et al., 1988; Snyder and
Schneider, 1991):

E = 820p% + 70 (trabecular bone, p < 1.12 g cm-3)
E =21910p - 23500 (cortical bone, p > 1.12 g cm-3)

resulting in a set of elastic moduli appropriate for quasi-static loading. During a fall, loads
are applied to the femur at a rate that is approximately 50 times faster than typical quasi-

static loading rates (Robinovitch er al., 1991; Courtney er al., 1994). Given that modulus is
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proportional to strain rate to the power 0.06 (Carter and Hayes, 1976), each modulus in the
model was multiplied by 50 (the ratio of loading rates for fast and quasi-static loading used
ex vivo [Courtney et al., 1994]) to the power 0.06, or 1.26. Each element was also
assigned a unique strength, calculated by multiplying its modulus by a constant yield strain
of either 0.8% (if the largest principal stress in the element was tensile, determined by
preliminary linear analysis) or 1.0% (if the largest principal stress was compressive). Post-
yield behavior was modeled using an elastic-perfectly plastic material model, based on the
von Mises yield condition. The structural capacity of the femur was defined as the force
required to causc the peak strain (elastic plus equivalent plastic) in cortical bone loaded in
tension to reach an ultimate value of 3% (Reilly and Burstein, 1975), corresponding to the
onset of structural collapse. Insight into fracture pattern was gained by examining the
distribution of equivalent plastic strains in the model, which give an indication of the
unrecoverable deformations present at the point of failure. Large displacement theory was
used in all analyses. All pre- and post-processing of the finite element model was
performed using PATRAN (Version 2.5, PDA Engineering, Costa Mesa, CA), and
stresses were computed using ABAQUS (Version 5.3, Hibbitt, Karlsson & Sorensen,

Pawtucket, Rhode Island).

7.2.2 Application of Age-Related Density Changes to Finite Element Model

Chapter 6 described the development of a technique for predicting a femur's three-
dimensional QCT density distribution from its regional BMD values. For each of the
regional BMD combinations used in this parametric study (described below), this technique
was used to predict the three-dimensional density distribution. Since the geometric scaling
algorithm used in this technique tends to filter out components of the density distribution
with very high spatial frequencies (in particular the structurally important cortical shell), the

predicted 3D density distributions were not used directly to assign material properties to the
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finite element model. Instead, material properties associated with the desired BMD levels
were assigned to the finite element model as follows. First, the predicted (geometry-
independent) density distribution for the desired BMD levels was subtracted from the
density distribution predicted from the BMD levels of the femur used in the original
construction of the finite element model (Fig. 2a). The result of this subtraction was a
prediction of the (geometry-independent) difference in three dimensional density
distribution between the femur used to build the model and a femur with the desired density
distribution. This predicted difference was then mapped to the geometry of the finite
element model, and resliced using publicly available software (NIH Image, version 1.58) at
the exact locations of the original transverse scans used to create the finite element model
(Fig. 2b). This new set of transverse slices was then subtracted from the original transverse
scans (Fig. 2c), resulting in a set of slices with geometry identical to the modeled femur,
but with the desired density distribution. This new set of slices was then used to assign
material properties to the model using the standard techniques summarized above and

described in more detail in Chapter 6.

7.2.3 Parametric Studies of Age-Related Density Changes

7.2.3.1 Clinically Uniform Bone Loss

The technique described above was used to assign model material properties
representative of BMD levels defined as normal, osteopenic, and osteoporotic by the WHO
(Kanis et al., 1994). As in Chapter 6, the specific regional BMD values used to define
these diagnostic levels were derived from Looker et al. (1995, Table 1). Given that elderly
women lose approximately 1% of their BMD each year (Greenspan er al., 1994a), the
reduction in BMD between the osteopenic and osteoporotic levels represents about two

decades of age-related bene loss. Each of the three models was subjected to loads
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Figure 2: Flowchart describing the creation of a set of CT slices with density distribution
_ representative of a desired BMD level. (A) The geometry-independent density distribution
for the desired BMD level was predicted and subtracted from the distribution predicted
from the BMD levels of the original femur used to create the finite element model. (B) This
difference between the desired and modeled density distributions was then mapped to the
geometry of the finite element model, and resliced at the exact locations of the original
transverse CT scans used to build the model. (C) The transverse slices were then subtracted
from the original CT scans, resulting in a set of transverse slices with density distribution
representative of the desired BMD levels. These slices were then used to assign material
properties to the finite element model.

simulating a fall with lateral impact on the greater trochanter, by placing the diaphysis at a
10° angle relative to the horizontal, and constraining it distally against internal and external
rotation (simulating the resistance to rotation provided by the knee joint and the inertia of
the lower leg during a fall in vivo, Fig. 3). A distributed load was applied to the inferior

surface of the femoral head, with the resultant force acting through the center of the femoral
head. The femoral head was constrained such that it could rotate about its center (simulating
sliding of the femoral head within the acetabulum), but the center could translate only in the

direction of the applied load (simulating the resistance to femoral head translation provided
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by the acetabulum). The greater trochanter was constrained vertically (simulating the

constraint provided by the impact surface during a fall), but free to slide in the horizontal

plane.

Resultant applied force
No rotation '
about diaphysis

Fixed vertically

Figure 3: Posterior view of finite element model, showing loads and boundary conditions
used to simulate falls with impact on the greater trochanter. The diaphysis was at a 10°
angle relative to the horizontal, and fixed distally against internal and external rotation. The
greater trochanter was fixed vertically but free to slide in the horizontal plane. The center of
the femoral head was constrained to move only vertically. Loading was applied to the
inferior surface of the femoral head, with resultant acting through the center of the femoral
head.

To determine if age-related changes in structural capacity were sensitive the
direction of impact during a fall, each of the models (normal, osteopenic, and osteoporotic)
was subjected to two variations of the fall loading condition described above. Both
variations simulated falls with impact on the greater trochanter, but with variation in the

angle between the load vector and the femoral neck axis (as viewed from the superior
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aspect of the femoral head). An angle of 15° (Fig. 4a) represented a typical body position at
impact during experimental sideways falls (van den Kroonenberg et al., 1996). An angle of

45° (Fig. 4b) simulated a fall with impact in 2 more posterolateral direction.

(A) 15° load (B) 45° load

Figure 4: Superior views of finite element model, showing two impact directions
examined. (A) An angle of 15° between the load vector and femoral neck axis simulated a
fall with lateral impact on the greater trochanter. (B) An angle of 45° simulated a fall with
posterolateral impact on the greater trochanter. A, anterior; P, posterior.

7.2.3.2 Clinically Non-Uniform Bone Loss

Although bone loss that occurs longitudinally in the trochanteric region of elderly
women is correlated with bone loss in the intertrochanteric region (r = 0.63, [Greenspan et
al., 1994a)), neither of these regions experiences bone loss that is well correlated with

BMD reductions at the femoral neck (trochanter, r = 0.0; intertrochanter, r = 0.05).
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Therefore, clinically "non-uniform" bone loss was simulated by altering the BMD of the
femoral neck independently from the trochanteric and intertrochanteric regions. Using the
osteopenic model as a baseline representing an elderly individual (whose longitudinal
changes in fracture risk would be of clinical interest), two types of non-uniform bone loss
were examined (Table 2). First, loss of bone in the femoral neck was examined by
applying femoral neck BMD reductions of 11% and 22% to the model, while keeping the
trochanteric and intertrochanteric BMD values constant. The reduction of 22% in the
femoral neck was the same as that used to model the reduction from osteopenic to
osteoporotic in the study of clinically uniform bone loss, and therefore represents about
two decades of femoral neck bone loss. Then, loss of bone in the trochanteric and
intertrochanteric regions was examined by applying BMD reductions in these regions of
11% and 22%, keeping femoral neck BMD constant. As in the femoral neck, the reduction
of 22% in the trochanteric and intertrochanteric regions represented about two decades of
bone loss. The models representing each of these regional BMD combinations was
subjected to the fall loading conditions described previously, with both lateral and
nosterolateral impact directions. Structural capacity of the femur and fracture pattern were

predicted for each case.

Model Femoral neck Trochanteric Intertrochanteric
BMD (g cm2) BMD (g cm-2) BMD (g cm-2)

Osteopenic 0.659 0.546 0.864
Femoral neck bone loss,

~1 decade 0.585 0.546 0.864
Femoral neck bone loss,

~2 decades 0.511 0.546 0.864
Troch & intertroch bone loss,

~1 decade 0.659 0.485 0.776
Troch & intertroch bone loss,

~2 decades 0.659 0.424 0.688

Table 2: BMD values used to examine the effects of clinically non-uniform bone loss. The
osteopenic model was used as a baseline.
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7.3 Results

The uniform BMD reduction of 22% between the normal and osteopenic levels
caused a reduction in structural capacity of 20.6%, from 2770N to 2200N, when the femur
was subject to loads simulating lateral impact on the greater trochanter. The uniform BMD
reduction of 22% between the osteopenic and osteoporotic levels caused a larger structural
capacity reduction of 25.9%, from 2200N to 1630N (Fig. 5). Although uniform BMD
reductions had a substantial effect on structural capacity, they did not cause the distribution

of plastic strains in the femur to change significantly (Fig. 6). When loads simulating

37 % e

Nermal Osteopenic Osteoporotic

Figure 5: Predicted failure loads for the normal, osteopenic, and osteoporotic BMD
levels, for both lateral impact (15°) and posterolateral impact (45°). For the case of lateral
impact, failure load decreased by 20.6% between the normal and osteopenic levels, and
decreased by 25.9% between the osteopenic and osteoporotic levels. For the case of
posterolateral impact, failure load decreased by similar amounts, which were 21.8%
between the normal and osteopenic levels and 26.7% between the osteopenic and

osteoporotic levels.
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Figure 6: Equivalent plastic strain distribution at failure for the osteopenic model. High
strains occurred anteriorly in the subcapital region, and superiorly at the border of the
femoral neck and trochanteric regions. This distribution of plastic strains was similar to the
distributions for the normal and osteoporotic models.
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posterolateral impact were applied to the femur, structural capacity dropped by 21.8%

between the normal and osteopenic BMD levels (from 2390N to 1870N), and dropped by
26.7% between the osteopenic and the osteoporotic BMD levels (from 1870N to 1370N,
Fig. 5). Therefore, although the predicted failure loads for lateral impact were about 15%
higher than for posterolateral impact (as expected given the resulis ¢ Chapter 5), the
direction of impact did not have a significant effect on the percent reductions in structural
capacity associated with clinically uniform bone loss. As in the case of lateral impact, the
distribution of piastic strains did not change appreciably as a function of BMD when loads
simulating posterolateral impact were applied to the femur.

When subjected to loads simulating lateral impact, one decade of femoral neck bone
loss applied to the osteopenic femur resulted in a structural capacity reduction of 7.3%,
from 2200N to 2040N; two decades of femoral neck bone loss reduced structural capacity
by 12.7%, to 1920N (Fig. 7a). Combined trochanteric and intertrochanteric bone loss
caused a reduction in failure load of 12.7% (from 2200N to 1920N) over | decade, and
caused a reduction of 16.8% (to 1830N) over two decades. Therefore, for the lateral impact
direction, loss of bone in the trochanteric and intertrochanteric regions was associated with
greater reductions in structural capacity than bone loss in the femoral neck. Failure load
reductions were similar when loads simulating posterolateral impact were applied to the
femur (Fig. 7b). In this case, one decade of femoral neck bone loss resulted in a drop in
structural capacity of 8.6% (from 1870N to 1710N); two decades caused a drop of 14.4%
(to 1600N). Combined trochanteric and intertrochanteric bone loss caused a reduction in
failure load of 11.8% (from 1870N to 1650N) over one decade, and a reduction of 14.4%
(to 1600N) over two decades.

The distribution of plastic strains in the femur at failure depended on the relative
values of femoral neck and trochanteric BMD. For the baseline case (ostcopenic), high
plastic strains were located subcapitally on the anterior surface of the femur, and also near

the border of the femoral neck and trochanteric regions, on the superior aspect of the femur
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(Fig. 8a, b). When the femoral neck BMD was reduced and the trochanteric and

intertrochanteric BMD values held constant, the plastic strains increased in the subcapital
region and decreased near the trochanteric region relative to the baseline case (Fig. 8c, d).
By contrast, when the trochanteric and intertrochanteric BMD values were decreased and
the femoral neck BMD held constant, the plastic strains decreased at the subcapital site and
increased near the trochanteric region relative to the baseline case (Fig. 8e, f). This shift in
the distribution of plastic strains occurred for both the lateral (Fig. 8) and posterolateral
(Fig. 9) loading directions, suggesting that fracture pattern may be sensitive to the relative

values of femoral neck, trochanteric, and intertrochanteric BMD.

7.4 Discussion

The goal of this study was to determine the structural consequences of uniform and
non-uniform BMD reductions in the proximal femur, independent of the confounding
effects of inter-bone differences in geometry. By applying the three-dimensional patterns of
bone loss determined in Chapter 6 to a finite element model of the femur, it was
demonstrated that a reduction in BMD from a level defined as normal to a level defined as
osteopenic (a uniform reduction in the femoral neck, trochanter, and intertrochanter of
about 22%) reduced the structural capacity of the femur by 21%. A further reduction in
BMD from the osteopenic level to a level defined as osteoporotic (also a uniform reduction
of 22% in the three regions of interest) reduced structural capacity by 26%. In addition,
loss of BMD in the trochanteric and intertrochanteric regions (with femoral neck BMD held
constant) was associated with greater reductions in structural capacity than loss of BMD in
the femoral neck (with trochanteric and intertrochanteric BMD held constant). Although the
distribution of plastic strains at failure did not change with uniform BMD reductions, there

were shifts in the strain distribution when non-uniform BMD reductions were applied to the
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Figure 8: Plastic strain distributions at failure associated with non-uniform BMD

reductions, for the case of lateral impact. (A, B) Strain distribution for osteopenic model.
Strains are high anteriorly at the subcapital site and superiorly at the border of the neck and
trochanteric regions. (C, D) Strain distribution for two decades of BMD loss in the femoral
neck, with trochanteric and intertrochanteric BMD held constant. Strains in the femoral
neck are higher than the baseline case (osteopenic), and are lower near the trochanteric
region. (E, F). Strain distribution for two decades of BMD loss in the trochanteric and
intertrochanteric regions, with femoral neck BMD held constant. Strains in the femoral
neck are lower than in the baseline case, and are higher near the trochanteric region.
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Figure 9: Plastic strain distributions at failure associated with non-uniform BMD
reductions, for the case of posterolateral impact. (A, B) Osteopenic model. (C, D) Two
decades of femoral neck BMD loss, with trochanteric and intertrochanteric BMD held
constant. Strains are lower near the trochanteric region compared to the osteopenic case.(E,
F) Two decades of trochanteric and intertrochanteric BMD loss, with femoral neck BMD
held constant. Strains are lower in the femoral neck and higher near the trochanteric region

relative to the osteopenic case.
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model, indicating that fracture pattern may be sensitive to the relative BMD levels in the

femoral neck, trochanteric, and interirochanteric regions.

The results of this study provide the first data regarding the geometry-independent
relationship between age-related bone loss and changes in the structural capacity of the
femur. Prior to this study, knowledge of the relationship between BMD and femoral
strength was limited to experimentally-determined correlations from populations with a
broad range of femur geometries. Since geometric parameters (such as femoral neck cross-
sectional area) can explain up to about 75% of the variance in femoral failure load present
within a population (Courtney et al., 1994; Pinilla et al., 1996), these ex vivo data do not
necessarily reflect the relationship between BMD and failure load for an individual, whose
density changes occur independent or nearly independent of geometric changes. The results
of this study are also unique in that they arise from models that incorporated the fully three-
dimensional patterns of bone loss that are associated with reductions in BMD. In addition
to considering the complexity of patterns of age-related bone loss, another strength of this
study is that it incorporated a range of loading conditions appropriate for simulating falls
with impact on the hip, including loads lying outside the frontal plane under which the
femur is particularly weak.

Although the results of this study provide valuable theoretical information that
would be nearly impossible to obtain experimentally, there are limitations of the
investigation that deserve attention. Important among these limitations are those associated
with the finite element model used. The magnitudes of the predicted failure loads may be
sensitive to both the use of isotropic material properties for bone, and to the use of the von
Mises yield condition to model bone material failure. Since apparent density explains
approximately 80% of the variance in trabecular bone modulus (Rice ef al., 1988), and the
addition of architectural parameters results in only slight improvements in predictive
accuracy (Snyder and Hayes, 1990), the incorporation of material anisotropy would

probably not alter the trends in femoral strength predicted as a function of age-related bone
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loss. This is particularly true since the model did incorporate the full heterogeneity in

density found within the femur, and also incorporated fully three-dimensional patterns of
density loss. With regard to the choice of failure criterion, the model reported here using
the von Mises yield condition has been used successfully to predict changes in structural
capacity associated with differences in the direction of impact during a fall (see Chapter 5).
This evidence, combined with the finite element results of previous investigators (Lotz et
al., 1991a; Lotz et al., 1991b; Keyak et al., 1996), lends support to the use of the von
Mises yield condition for predicting relative strength values. However, further research into
the multiaxial failure behavior of trabecular bone is needed before finite element models of
the femur can be used to predict failure lcad magnitudes with great accuracy.

In addition to the limitations associated with the finite element model itself, our
examination of the structural consequences of bone loss using only a single femoral
geometry may limit the applicability of our results to femurs with different geometries. It is
possible that femurs with different geometrical features (e.g. femoral neck length, width,
angle, and cross-sectional area) have different structural responses to age-related density
reductions. The techniques developed here for converting age-related density changes to
changes in finite element model material properties could be adapted to any QCT-generated
finite element model. An area for future research, then, is to examine the structural
consequences of age-related bone loss in femurs with a wide range of geometries. Another
potential limitation relates to the patterns of BMD loss examined in the parametric study of
non-uniform bone loss. It is unlikely that many individuals experience bone loss in one
region of the femur (for example, the femoral neck) completely independently from bone
loss in other regions (such as the trochanteric region). However, investigators have
demonstrated, using longitudinal data, that bone loss in the femoral neck is not correlated
with bone loss in either the trochanteric or intertrochanteric regions (Greenspan et al.,
1994a). Therefore, the patterns of BMD reduction used in this study, although extreme,

represent reasonable bounds on the types of bone loss that may occur in individuals.
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The geometry-independent reductions in structural capacity predicted here are

somewhat different from the reductions predicted by experimentally-determined
relationships between BMD and femoral failure load. The predicted reduction in structural
capacity of 21% (average of the results from the lateral and posterolateral impact directions
of 20.6% and 21.8%, respectively) between the normal and osteopenic BMD levels agrees
well with the reduction of 22% calculated from the relationship between total BMD and
failure load reported by Pinilla et al. (1996), however it is somewhat lower than the
reduction of 28% calculated from the relationship reported by Courtney et al. (1994)
between femoral neck BMD and failure load. By contrast, between the osteopenic and
osteoporotic BMD levels, the finite element model predicted a failure load reduction of
26% the data of Pinilla et al. suggest a larger reduction of 34%, while the data of Courtney
et al. suggest a reduction of 30%, somewhat closer to that predicted by the finite element
model. The apparent inconsistencies in strength reduction calculated from the data of these
ex vivo studies are probably caused at least in part by inter-study differences in geometric
variables, resulting in somewhat different relationships between BMD and femoral
strength. These inconsistencies between ex vivo studies, coupled with the differences
between the results of the ex vivo studies and the geometry-independent results from the
finite element model, underscore the idea that cross-sectional BMD-failure load
relationships are confounded by geometry, and therefore do not necessarily reflect the
(geometry-independent) BMD-failure load relationship for a given individual.

The results of this study indicate that a reduction in BMD later in life (i.e., between
normal and osteopenic BMD levels) may cause a greater percent reduction in structural
capacity than the same percentage BMD reduction earlier in life (i.e., between normal and
osteopenic BMD levels). This dependence of failure load reduction on baseline BMD level
was predicted despite the fact that true density differences were less between the osteopenic
and osteoporotic levels than they were between the normal and osteopenic levels (based on

the cross-sectional analysis of Chapter 6). When assessed longitudinally, the rate of
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femoral bone loss in elderly women actually increases with age (Greenspan et al., 1994a).
Assuming that BMD losses in these women occur in the absence of large geometric
changes, the relationship between bone loss and structural capacity for elderly women may
be even more non-linear than the results of this study indicate.

In the parametric study of non-uniform BMD reductions, loss of bone in the
trochanteric and intertrochanteric regions (with femoral neck BMD held constant) caused
larger reductions in structural capacity than loss of bone in the femoral neck (with
trochanteric and intertrochanteric BMD held constant). This result may help to explain some
of the scatter present in experimentally-determined relationships between BMD and failure
load. Pinilla et al. (1996) tested a group of cadaveric femurs to failure under fall loading
conditions identical to the lateral impact direction used in this study, and reported a
relationship between total BMD and failure load (Fig. 1). Analysis of these data revealed
that all of the data points lying abtove the regression line (n = 4) had a ratio of femoral neck
to trochanteric BMD less than one, while all points below the regression line (n = 6) had a
ratio of femoral neck to trochanteric BMD greater than one. This is consistent with the
results from the finite element model presented here, which predicted lower structural
capacities when the trochanteric BMD was reduced relative to the femoral neck BMD.
Therefore, the relative magnitudes of an individual's femoral neck and trochanteric BMD
may aid in predicting whether his or her femoral strength is greater or less than that
predicted from total BMD alone.

The dependence of plastic strain distribution (and therefore possibly fracture
pattern) on the relative magnitudes of BMD in the femoral neck and trochanteric regions is
consistent with previous clinical findings. In a population of elderly hip fracture patients,
Greenspan et al. (1994b) found that both a high femoral neck BMD and a low trochanteric
BMD were associated with the occurrence of trochanteric fractures. The finding of this
study that reduction of trochanteric BMD relative to femoral neck BMD caused plastic

strains to decrease in the femoral neck and increase near the trochanteric region is consistent
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with this clinical finding. In addition to the difference in fracture pattern associated with
relative regional BMD values, the results of this study indicate that a low trochanteric
relative to femoral neck BMD may also be associated with a lower structural capacity of the
femur. The combination of clinical and theoretical results indicates, then, that osteopenic
individuals with low trochanteric relative to femoral neck BMD have two strikes against
them: a greater risk of fracture due to lower structural capacity and, if they do fracture, a
greater risk of sustaining trochanteric fractures (which have been associated with higher
mortality [Crane and Kernek, 1983; Lawton et al., 1983] than femoral neck fractures).
Therefore, the ratio of trochanteric to femoral neck BMD, as well as total BMD, should be

considered in the evaluation of hip fracture risk.
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