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Capacity constrained accessibility of high-speed rail

Yu Shen1,2 • Jinhua Zhao1

� Springer Science+Business Media New York 2015

Abstract This paper proposes an enhanced measure of accessibility that explicitly

considers circumstances in which the capacity of the transport infrastructure is limited.

Under these circumstances, passengers may suffer longer waiting times, resulting in the

delay or cancellation of trips. Without considering capacity constraints, the standard

measure overestimates the accessibility contribution of transport infrastructure. We esti-

mate the expected waiting time and the probability of forgoing trips based on the M/GB/1

type of queuing and discrete-event simulation, and formally incorporate the impacts of

capacity constraints into a new measure: capacity constrained accessibility (CCA). To

illustrate the differences between CCA and standard measures of accessibility, this paper

estimates the accessibility change in the Beijing–Tianjin corridor due to the Beijing–

Tianjin intercity high-speed railway (BTIHSR). We simulate and compare the CCA and

standard measures in five queuing scenarios with varying demand patterns and service

headway assumptions. The results show that (1) under low system loads condition, CCA is

compatible with and absorbs the standard measure as a special case; (2) when demand

increases and approaches capacity, CCA declines significantly; in two quasi-real scenarios,

the standard measure overestimates the accessibility improvement by 14–30 % relative to

the CCA; and (3) under the scenario with very high demand and an unreliable timetable,

the CCA is almost reduced to the pre-BTIHSR level. Because the new CCA measure

effectively incorporates the impact of capacity constraints, it is responsive to different

arrival rules, service distributions, and system loads, and therefore provides a more realistic

representation of accessibility change than the standard measure.
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Introduction

Accessibility, as a vital nexus between transportation and land use systems, is widely used

in both scientific studies and policy-making practices. Hansen’s (1959) seminal work on

accessibility first demonstrated two important elements in its measurement, the ‘‘spatial

distribution of activities’’ and the ‘‘ability/desire to overcome spatial separation.’’ Fol-

lowing Hansen’s work, there have been numerous works studying the definitions, mea-

sures, and applications of accessibility. These works have been systematically reviewed by

Bhat et al. (2000), Geurs and Ritsema Van Ecka (2001), Geurs and van Wee (2004) and

Curtis and Scheurer (2010). In evaluating the relationship between land use and trans-

portation strategies, Geurs and van Wee (2004) identify four basic perspectives on

accessibility measures: (1) infrastructure-based measures, e.g. levels of congestion or

average travel speed on the road network; (2) location-based measures, e.g. the sum of the

product of jobs and travel time from origin to destination; (3) person-based measures, e.g.

the activities in which an individual can participate within a given time budget; and (4)

utility-based measures, e.g. the derived logsum of utilities from a combined mode-desti-

nation choice set. In studies of the accessibility impacts of high-speed rail (HSR), the

location-based measures are the most commonly used measurements (Baptiste et al. 2003;

Gutiérrez 2001; Gutiérrez et al. 1996; Gutiérrez and Urbano 1996; Shen et al. 2014;

Spiekermann and Wegener 2006; Vickerman and Ulied 2009). Though given in various

mathematical forms, location-based measures can be generically expressed as:

Ai ¼
XJ

j¼1

g Oj

� �
f Iij
� �

; ð1Þ

where Ai location-based accessibility indicator at origin i; g Oj

� �
activity function of

opportunities Oj, e.g. population, number of jobs in destination j, representing the ‘‘spatial

distribution of activities’’; f Iij
� �

impendence function of generalized travel cost or travel

time from origin i to destination j, reflecting the element of ‘‘the ability/desire to overcome

spatial separation.’’

The specific forms of Eq. (1) vary according to research purposes. Bhat et al. (2000)

show that past studies have developed abundant mathematical forms of the activity

function g Oj

� �
. Recent studies have further refined the measures of accessibility by inte-

grating different theories into the calculation of activity functions, e.g. the competition of

opportunities at destination, or the evaluation of equity (Geurs and van Wee 2004; Lucas

et al. 2015; van Wee et al. 2001). As macro-level measures, accessibility models tend not

to incorporate the details of transit operations in order to maintain the simplicity of the

models in general cases. However, we argue that there is at least one important operational

detail to model: capacity constraint, which could have significant impact on the accessi-

bility measure in the planning and strategic phases of transport development. The dis-

cussion of capacity constraints is mainly found in research on transit network assignments

(see Leurent (2011) and more details in ‘‘Capacity constraints in transit networks’’ section).

A review from Kitamura (2009) reveals the importance of capacity effects on measuring

accessibility and also shows that past studies fail to establish links between these two. As

shown in Bhat et al. (2000), there is little discussion of the impendence function, f Iij
� �

,

especially from an operational perspective. Thus, there is a clear gap between the acces-

sibility literature and the transit network assignment literature. This paper aims to bridge

the two by focusing on circumstances in which the capacity of transport infrastructure or
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service is limited, and explicitly incorporating capacity constraints into the accessibility

measurement.

In their review of accessibility measurements, Curtis and Scheurer (2010) point out that

travel time is possibly the most commonly used measure to quantify travel impediment. In

a transit network, waiting time (or transfer time) is an essential component of travel time

calculation. Past studies convey the significance of travel time reliability (Bates 2001;

Geurs and van Wee 2004) but do not take into account constraints on service capacity. This

results in two common assumptions: (1) that waiting time can be estimated simply by

taking the half of headway as expected waiting time (Curtis and Scheurer 2010), or by

taking half of headway multiplied by a function of the coefficient of headway variation

(Osuna and Newell 1972); (2) that all passengers are able to get onto the trains, i.e. no one

is left behind. In densely populated areas, especially during peak hours, both assumptions

could significantly diverge from reality. When capacity is constraining, passenger boarding

becomes probabilistic. For those who are left behind, the service effectively becomes

unavailable; for those who board the train, actual waiting times can be far longer than the

expected waiting time estimated by the public transit timetable. By ignoring capacity

constraints and making these unrealistic assumptions, the standard measure may sub-

stantially overestimate the accessibility impact of a new infrastructure or service. The

problem can affect both urban public transit networks and intercity railway networks,

including HSR, whenever demand approaches the service capacity.

Capacity constraints in transit networks

From the interactions between passengers, vehicles, stations, and lines emerge various

capacity issues, which are classified by Leurent (2011) into seven groups: (1) the vehicle

capacity of an infrastructure; (2) the operational capacity of vehicle fleet in a route; (3) the

passenger capacity of a vehicle; (4) the capacity of vehicles covering a route during a

certain period; (5) the passenger capacity of a station; (6) the vehicle storage and move-

ment capacity of a station; and (7) the capacity of a station for interface with personal

transport modes. Among these capacity phenomena, the literature review of Fu et al.

(2012) points out that ‘‘the waiting time for boarding a transit vehicle at a stop/platform is

an indispensable factor that needs special treatment.’’ The estimation of passengers’

waiting time becomes more complicated under scenarios with capacity constraints. In

recent years, some multi-agent transit assignment models, e.g. BusMezzo, have been

implemented to simulate the performance of public transit networks based on a set of

capacity enhancement schemes (Cats 2013; Cats and Jenelius 2015).

Focusing on stations, previous studies propose various assumptions about boarding

strategies to estimate the capacity constrained waiting time of passengers. The first

assumption is that passengers follow a first-in-first-out (FIFO) discipline that establishes an

ordered queue (Cominetti and Correa 2001; Hamdouch and Lawphongpanich 2008;

Hamdouch et al. 2004a, b; Poon et al. 2004). In this case, the passengers’ waiting time is

modeled by means of bulk queuing. The other approach assumes that the passengers’ wait

at platform is mingled, meaning that if the capacity of the arriving vehicle is less than the

number of candidate passengers, all these passengers have an equal probability of boarding

(Kurauchi et al. 2003; Leurent and Chandakas 2012; Leurent et al. 2014; Schmöcker et al.

2011; Shimamoto et al. 2005). If the waiting passengers are mingled, the waiting time of a

passenger is thus dependent on the probability of success-to-board (or failure-to-board).

Among the capacitated transit assignment models reviewed above, the main strategy is

to minimize the waiting time and the main purpose is to find the network equilibrium,
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whereas in this study, we aim mainly to find the distribution of waiting time under capacity

constraints. To derive the waiting time distribution, one of the classical methods in the field

of Queuing Theory is provided by Chaudhry and Templeton (1983). The study assumes

that queues follow an M/GB/1-FIFO system with the limiting behavior as t ? ?. After a

series of mathematical transforms, the authors demonstrate that the Laplace-Stieltjes

transform (L.-S.T.) of stationary waiting time distribution is dependent on (1) the limiting

probability (as t ? ?) that there is no customer in queue; (2) the limiting probability (as

t ? ?) that there are j customers remaining in the queue immediately after a departure

epoch, where j = 1, 2, 3, …, etc.; (3) the L.-S.T. of a given service time density; (4)

Poisson arrival rate (k); (5) mean service rate (l); and, (6) maximum batch size, i.e.

capacity (B); under the condition of k/Bl\ 1. Based on their findings, the analytical

solutions for two specific cases of M/GB/1 queuing system, namely M/Ek
B/1 (service dis-

tribution being Erlang k) and M/DB/1 (service distribution being deterministic), are also

provided (Chaudhry 1991). As the conditions to obtain an analytical solution for a queuing

system with bulk service are quite restrictive, the analytical solutions are not available for

other queuing systems. Thus, some works study the M/GB/1 systems based on numerical

methods under more general scenarios (Dümmler and Vicari 1999; Glazer and Hassin

1987; Gold and Tran-Gia 1993).

None of these solutions can address the specific waiting time distribution of queuing in

HSR stations. Analytical or numerical analyses of queuing system focus on a stationary

condition (as t ? ?) with a system load less than 1, whereas the main interest of our work

is to study queue accumulation at public transit stations when the travel demand may

sometimes exceed service capacity. As discussed by Gross et al. (2008), due to the

complexity of the transit systems, it becomes necessary to implement simulation tech-

niques in order to study the performance of such a queuing system.

In ‘‘Methods’’ section, we introduce an approach to estimate the expected waiting time

and the probability of forgoing trips, based on M/GB/1 type of queuing scenario and

discrete-event simulation. The impacts of capacity constraints with a specific focus on HSR

station are then formally incorporated into the new accessibility measure: capacity con-

strained accessibility (CCA). To illustrate the differences between CCA and the standard

measure, we use the Beijing–Tianjin corridor in China as the case study and describe the

increasing demand and crowding in the Beijing–Tianjin Intercity high-speed railway

(BTIHSR). ‘‘Results’’ section simulates the performance at HSR station under five queuing

scenarios with various assumptions of passengers’ arrival rules, train service distributions,

and system loads. We compute the accessibility to Tianjin for a 10-km buffer area around

Beijing South Station and compare the capacity-constrained and standard accessibility

measures. ‘‘Discussion’’ section concludes with a discussion of the planning implications

of the new CCA measure and future research directions.

Methods

Capacity constrained accessibility

The capacity of transit services is limited and passenger demand may exceed service

capacity in certain conditions, entailing that some passengers suffer longer waiting time, or

worse, may be unable to use the transit service at all. The consequences of longer waiting

or inability to board vary depending on trip purpose, trip frequency, trip distance (or time),
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service frequency, ticketing policies, etc. In the context of the Beijing–Tianjin HSR, a

route for which the service frequency is high, if passengers cannot board the first train, they

have to wait for subsequent train until they are able to board. The sole consequence at this

stage is longer waiting time. However, if wait-to-board passengers accumulate and the

waiting time keeps increasing, some passengers may forgo waiting and cancel their trips or

use other alternative modes.

Longer waiting time due to limited capacity leads to longer total travel time and

therefore larger time–space distance between the origin and destination. The underesti-

mation of travel impedance by the standard accessibility measure results in the overesti-

mation of the accessibility benefits of the infrastructure or service, which will then lead to

biases in any follow-up studies, such as changes in land value and the relocation of

economic activities. This paper, focusing specifically on the nodal capacity constraints,

introduces a new measure, CCA, to provide a more realistic representation of the acces-

sibility contribution by a transportation infrastructure or service.

We assume that a new infrastructure (or service) m, signifying HSR in this study but

also inclusive of metro or a bus rapid transit, reduces the travel time from origin i to

destination j. A passenger arrives at station s to wait for service m based on the FIFO rule.

When queue length exceeds the train capacity, passengers at the end of the queue will be

unable to board the train and will have to remain in the queue for subsequent train arrivals.

The accessibility offered by m starts to decline for left-behind passengers. If the waiting

time is overly long, certain passengers will forgo trips or switch to other modes. For these

passengers, the accessibility offered by the new infrastructure m is neutralized, equivalent

to a period when the infrastructure m was not available.

Waiting Time Distribution fω
s(ωi j) at station s

Ωi j: max tolerance of waiting time in a trip from i  to j
Waiting Time: ωi j
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ro
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Fig. 1 Capacity constrained accessibility
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To measure the accessibility from i to j via m with capacity constraints, we propose the

following expression of CCA, as illustrated in Fig. 1:

~Am
ij¼Fs

x Xij

� �
� ~amij E xij xij �Xij

��� �� �
þ 1 � Fs

x Xij

� �� �
� Aante

ij ; ð2Þ

where ~Am
ij CCA from i to j via transit infrastructure or service m, xij waiting time at station,

denoted s, in a trip from i to j; Fs
x the cumulative distribution function (CDF) of waiting

time x at station s; Xij threshold of persistence, i.e. the maximum tolerance of waiting;

E xij xij �Xij

��� �
expected waiting time of xij given threshold of persistence Xij; ~amij E �½ �ð Þ

accessibility via m as a function of expected waiting time E �½ �; Aante
ij accessibility without

m, e.g. accessibility before the inauguration of m.

As in Fig. 1, the probability of persistence when under threshold Xij, F
s
x Xij

� �
, is:

Fs
x Xij

� �
¼

Z Xij

0

f sx xij

� �
dxij; ð3Þ

where f sx is the probability density function (PDF) of waiting time x at station s. CCA is a

weighted average of after-m and before-m accessibilities, with the probabilities of per-

sistence and forgoing trips being the weights. By inserting Eq. (2) into the impedance

function of Eq. (1), one gets a more general form of the location-based CCA measure:

~Am
i ¼

XJ

j¼1

g Oj

� �
Fs
x Xij

� �
� f Imij E xij xij �Xij

��� �� �� �
þ 1 � Fs

x Xij

� �� �
� f Ianteij

� �h in o
;

ð4Þ

where ~Am
i location-based CCA at origin i; g Oj

� �
activity function of ‘‘opportunities’’ in

destination j; f Ianteij

� �
before-m impendence function from origin i to destination j

f Imij E xij xij �Xij

��� �� �� �
after-m impedance function incorporating E xij xij �Xij

��� �
.

Assume that the travel times from i to j before and after the opening of m are tanteij and

tmij , respectively, calculated based on standard infrastructure-based methods of calculating

origin–destination (OD) travel time. Procedures for OD travel time calculation without

capacity constraints are explicated in Appendix 1. With known tanteij and tmij , A
ante
ij and ~amij —

without taking into account E xij xij �Xij

��� �
—can be easily obtained. In this study, the

threshold of persistence Xij is defined as

Xij ¼ tanteij � tmij : ð5Þ

In Eq. (2), the trickiest component to estimate is the waiting time distribution, Fs
x. As in

Fig. 1, the weights (i.e. probability of persistence) and the expected waiting time

E xij xij �Xij

��� �
are both determined by the specific waiting time distribution.

Waiting time distribution and probability of persistence

The waiting time distribution of passengers is determined by passengers’ arrival distri-

bution and trains’ service headway distribution. The queuing dynamics are shown in

Fig. 2. As an example, the queue length starts to increase from t0, and the trains arrive at

time t1, t2, t3, etc. If the lengths of queues at t1, t2, and t3 are no greater than the capacity
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B of the trains, all passengers are transported. If the length of the queue at t4 is greater than

the train’s capacity, only B passengers are able to board, and the remaining passengers stay

in the queue for the train arriving at t5.

There is no closed form for the waiting time distribution in this application context. To

simulate the queuing dynamics, this study applies a discrete-even stochastic simulation

method suggested by Gross et al. (2008) with three major elements: (1) input modelling

and generation, (2) bookkeeping of the queuing process, and (3) output analysis. The

discrete-event simulation is programmed in Java based on AnyLogic simulation platform,

and the outputs are recorded in SQL and analyzed in R.

The simulation system has two categories of inputs: passenger arrival headway and train

service headway. Previous studies indicate that passenger’s arrival incidence at transit

stations appears to be random below a 10-min service headway (Abkowitz and Tozzi 1987;

Fan and Machemehl 2002). Thus, if the service headway is less than or equal to 10 min, we

assume that passengers arrive at station s randomly and singly, following the Poisson

distribution. Therefore, the arrival headway in the simulation is randomly generated from

an exponential distribution. We acknowledge the limitation of this idealization of the

arrival process, since real-world passenger arrival (or the incidence behavior) at a transit

station is proven to be a more complicated phenomenon than the Poisson process; it may be

also influenced by the transit network, times of day, and service reliability, among other

factors (Bates 2001; Frumin and Zhao 2012). For the other input, train service headway, we

test two different distributions of service headways: uniform headway and real, schedule-

based service headway with and without disturbances. We assume that the queuing system

Queuing Dynamics of System M GB 1 at Station

Train arrival time
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Fig. 2 Queuing dynamics with bulk service
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has one server with an unlimited queue capacity (i.e. the station is large enough to

accommodate all waiting passengers), and the service rule is FIFO.

With the predefined headway distribution tH and service capacity B, the simulation tests

the queuing performance with various system loads q from 70 to 115 %. For each system

load q, the arrival rate k is calculated by:

k ¼ qB
tH

: ð6Þ

During the simulation, when passenger Pn arrives at the station, the system prints the

arrival time of Pn and simultaneously prints the length of the queue immediately after the

arrival of Pn. When a train arrives and collects passengers, up to B passengers will leave

the system. If Pn is located within the first B passengers, Pn leaves the queue and the model

prints the waiting time of Pn as the difference between its arrival time and departure time.

The simulation starts the bookkeeping after 30 min to allow a warm-up period, and keep

recording the waiting time of each passenger and the queuing performance at the station for

the next 240 min to simulate a 4-h peak period. The simulation stops at 400 min to make

sure that all passengers Pn are able to leave the queue when the simulation ends. For each

service headway and each system load, the simulation is replicated 1000 times.

Case: Beijing–Tianjin intercity high-speed railway

In addition to the large network coverage and high speed, what really differentiates China’s

HSR system is its frequency: along major corridors, such as the ones between Beijing and

Tianji, and Shanghai and Nanijing, the peak hour headways are often below 10 min. The

Beijing–Tianjin route operates with a 10-min average headway during peak hour now; the

Shanghai–Nanjing route operates with a 7-min headway. These HSR lines operate as a

high-frequency public transit service in general. Furthermore the wide adoption of ‘‘Transit

IC card’’ and its integration between HSR and urban transit enable many passengers to use

HSR just like a subway: they no longer time their arrivals according to the schedule,

instead they simply show up at the train station and swipe their IC cards.

Beijing–Tianjin intercity high-speed railway (BTIHSR), inaugurated in August 2008, is

one of the first passenger-only HSRs in China. The geographical location of this intercity

rail service is shown in Fig. 3. It runs 117-km route between Beijing South Railway Station

and Tianjin Railway Station, with a connection to Wuqing Station in Tianjin. Two addi-

tional intermediate stations in Beijing suburbs, Yizhuang and Yongle, are expected to be

opened in future. The two termini are well integrated into the local public transit systems of

each city. The Beijing South Station is one of the largest railway complexes in Asia, acting

as an interchange for Beijing Subway Lines 4 and 14, national railway, and HSR service to

Shanghai. The Tianjin Railway Station is also one of the major stations in China, with local

connections to Tianjin Metro Line 2, 3 and 9, and national railway connections to Shanghai

and Harbin.

The inter-city high-speed service travels at a maximum speed of 300 km/h, reducing the

travel time between Beijing and Tianjin from *70 min to *35 min over conventional

intercity rail. The bullet trains serving this line, China Railways CRH3 s, have about 550

seats, and passenger ticketing is restricted to the number of seats. The February 2014

morning timetable from the Ministry of Railways (MOR) is shown in Table 5 in Appendix

2. The schedule shows that, average peak-hour headway (from 06:35 to 08:31) from

Beijing South to Tianjin is about 10 min and 35 s, with a minimum headway of 5 min. In
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the future, the daily average service headway is expected to be reduced to 3 min. There are

two major classes of tickets: first-class seats, the price of which is 66 Chinese Yuan (about

US$10), and second-class seats, for 55 Chinese Yuan (about US$8).

The operation of HSR in China along corridors of rapid economic growth, such as the

Beijing–Tianjin mega-region, attracts a large number of passengers (Wang et al. 2013).

According to the MOR, since 2009, the average seat occupancy rate (i.e. loading rate) of

the BTIHSR is over 70 %. During weekends and the ‘‘Golden Week’’ (a week-long

national holiday), the seat occupancy rate often surges to 100 % (ChinaNews.com 2009).

Fig. 3 Geography of Beijing–Tianjin Intercity Railway. (Created by the authors based on data from
OpenStreetMap.org). Note DCM direct-controlled municipality
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As of 2013, passenger use of the BTIHSR had grown at an annual rate of 20 % since its

opening. Before the BTIHSR, annual ridership between these cities on conventional rail

was about 8 million (Bullock et al. 2012). Twelve months after the inauguration of this

line, the annual passenger volume increased to 18.70 million, and reached 22.26 million by

August 2010, 24 months after the inauguration (Yin et al. 2014). The BTIHSR has become

one of the most important travel modes for daily commuting between Beijing and Tianjin.

Many people who live in Beijing choose to commute to Tianjin to work every day (Tan

2014). Although the MOR keeps updating the operation schedule of BTIHSR by shrinking

its service headways, as travel demand on this line booms, service capacity is a critical

constraint, especially during peak hours, weekends, and holidays.

Results

Five queuing scenarios in HSR station

The service of BTIHSR with queuing at Beijing South Railway Station is close to an ideal

queuing system, fitting our assumptions. As one of the largest railway complexes in Asia,

the waiting area in this station is very large, and the resulting capacity constraint on queue

length is trivial. The single-line HSR network between Beijing and Tianjin is also quite

simple. Thus, the prevailing bottleneck is the boarding of the train, and bottlenecks are

unlikely to occur in other operational aspects. Since passenger ticketing is restricted to the

number of seats and Beijing South Station is a terminal station for this HSR service, a fixed

train capacity (B) of 550 can be set in our simulation. From each simulation, 10–15 million

records of waiting time and queue length are produced, depending on the demand. For each

service headway and each system load, the simulation is replicated 1000 times and an

empirical probability density function (EPDF) is obtained. For each OD (from i to j), given

a threshold of persistence Xij, we calculate the probability of persistence and the expected

waiting time E xij xij �Xij

��� �
.

Five queuing scenarios with varying assumptions of arrival and service distributions are

simulated for the analysis of the queuing performance at the Beijing South HSR station,

where Scenario 1 is the least realistic scenario and Scenario 5 is the most realistic scenario

based on our available data. The key characteristics of each scenario—service headway,

disturbance of headway, passengers’ arrival rate, and system loads—are summarized in

Table 1.

In Scenario 1, we assume the queuing system follows an M/DB/1 system, in which the

service headway is exact 10 min without disturbance. Theoretically, if passengers arrive at

the station independently and randomly without capacity constraints, the PDF of waiting

time follows:

f sx xij

� �
¼

1

10 � 0
for xij 2 0; 10½ �

0 otherwise

8
<

: ð7Þ

As there is a known closed form of the unconstrained waiting time distribution, with this

scenario we are able to validate that the simulated distribution is consistent with the

analytical one.

In Scenario 2, holding all other assumptions constant, we change the train’s headway to

follow the February 2014 timetable of BTIHSR (Table 5; Appendix 2), forming an
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M/SchB/1 systems. In this scenario, the passengers’ arrival rate is assumed to accord with

the service rate, i.e. passengers are aware of the headway variations and their demands

change accordingly. For instance, assume q = 100 %. Between 9:01 and 9:06 the service

headway is 5 min, meaning that an expected number of q 9 B = 550 passengers will

arrive at the station within this 5-min slot to take the 9:06 train. The next train departs at

9:19, meaning that the same expected number of passengers will arrive at the station within

the 13-min slot.

In Scenario 3, holding all other assumptions of the second one constant, the arrival rate

remains the same across the entire simulation period (i.e. passengers ignore the service

headway variation), which is computed based on the 4-h average service headway from

6:35 to 10:29, about 10.65 min. Based on the findings of the previous studies mentioned in

‘‘Waiting time distribution and probability of persistence’’ section, the passengers’ inci-

dence behavior becomes random when the headway is 10 min or less. According to the

MOR, the service headway of BTIHSR will be further reduced in the future. Therefore, we

believe that this scenario is more realistic than Scenario 2 in that the passengers are more

likely to arrive at the station regardless of the actual timetable.

In Scenario 4, holding all other assumptions of the third one constant, we introduce

disturbance to the service headway. In this scenario, we allow the train’s arrival times to

deviate from the time table following a triangular distribution (with a maximum 2 min

deviance from the timetable). The aim of this scenario is to test the waiting time distri-

bution when the service is unreliable.

Scenario 5 is an extension of Scenario 3 but mimics a quasi-real scenario of passenger

arrivals during morning hours. As the punctuality rate of BTIHSR is 98 % (ITourBei-

jing.com 2015) we assume that the service follows the timetable exactly. Instead of setting

a uniform q, this scenario allows the build-up of demand at a higher q during a 2-h peak

period from 30 to 150 min, then the system load declines to a lower percentage until the

end of the simulation. As the average seat occupancy rate of BTIHSR is reported as 70 %,

the simulation starts at 70 % for the warm-up period; 30 min later, q surpasses 100 % for

120 min, after which q decreases to keep the average q at 70 %. The scenario tests the

peak hour demands at four levels, from 105 to 120 %.

Simulated probability density functions of waiting time from the 5 scenarios

Scenario 1 An M/DB/1 queuing system with equal service headway

Table 1 Summary of scenarios

Scenario Service headway Disturbance Arrival rate Load

1 10 min No Constant Constant across the entire period

2 Based on the
actual timetable

No Subject to the service
headway variation

Constant across the entire period

3 Based on the
actual timetable

No Ignore the service
headway variation

Constant across the entire period

4 Based on the
actual timetable

Triangular,
max 2 min

Ignore the service
headway variation

Constant across the entire period

5 Based on the
actual timetable

No Ignore the service
headway variation

Surpasses 100 % at the first 2 h,
then decreases to keep the
average q less than 100 %.
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The EPDFs of this scenario are shown Fig. 4. When system load q is less than 90 %

(Fig. 4a), the EPDF is consistent with Eq. (7) and validates the simulation results in the

low system load scenario. However, when q becomes more than 95 % (Fig. 4b), the EPDF

starts to deviate from Eq. (7). When q is greater than 100 % (Fig. 4c, d), the EPDF

becomes significantly different from (6). Table 2 reports the probability of persistence and

the expected waiting time for any given waiting time budget based on the queuing sim-

ulation. With an unlimited threshold of persistence, when q is 100 %, the unconditional

expected waiting time E xij

� �
is 6.1 min. With only a 2 % increase of q (q = 102 %),

E xij

� �
becomes 8.3 min. When q reaches 110 %, E xij

� �
grows to more than 20 min.

Scenario 2 An M/SchB/1 queuing system with a schedule-based arrival rate

The EPDFs are shown in Fig. 5. Under this scenario with a relatively lower q (as in

Fig. 5a), passenger arrivals follow the service timetable, and within each headway the

waiting time exhibits a uniform distribution. For instance, the minimum headway during
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Table 2 Probability of persistence and expected waiting time for M/DB/1 with 10 min headway

Probability of persistence

q= 70 % 90 % 95 % 100 % 102 % 104 % 106 % 108 % 110 %

Threshold of persistence (in min)

1 0.100 0.100 0.097 0.036 0.006 0.001 0.000 0.000 0.000

2 0.200 0.200 0.196 0.106 0.028 0.006 0.001 0.000 0.000

3 0.300 0.300 0.297 0.194 0.067 0.020 0.006 0.002 0.000

4 0.400 0.400 0.397 0.289 0.125 0.044 0.018 0.008 0.003

9 0.900 0.900 0.897 0.788 0.569 0.320 0.188 0.121 0.080

10 1.000 1.000 0.997 0.888 0.668 0.404 0.243 0.160 0.109

11 1.000 1.000 1.000 0.952 0.762 0.491 0.302 0.201 0.139

12 1.000 1.000 1.000 0.982 0.841 0.579 0.368 0.247 0.174

13 1.000 1.000 1.000 0.994 0.901 0.661 0.436 0.297 0.212

14 1.000 1.000 1.000 0.998 0.943 0.735 0.504 0.349 0.253

15 1.000 1.000 1.000 1.000 0.971 0.800 0.571 0.401 0.295

16 1.000 1.000 1.000 1.000 0.987 0.855 0.636 0.453 0.337

19 1.000 1.000 1.000 1.000 0.999 0.958 0.804 0.607 0.462

20 1.000 1.000 1.000 1.000 1.000 0.974 0.848 0.657 0.504

24 1.000 1.000 1.000 1.000 1.000 0.999 0.969 0.840 0.670

25 1.000 1.000 1.000 1.000 1.000 1.000 0.983 0.876 0.711

26 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.907 0.751

27 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.933 0.789

28 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.954 0.825

29 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.969 0.858

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.979 0.886

34 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.973

35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984

36 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

41 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

42 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Expected waiting time

q= 70 % 90 % 95 % 100 % 102 % 104 % 106 % 108 % 110 %

Threshold of persistence (in min)

1 0.50 0.50 0.51 0.60 0.65 0.70 0.80 0.82 0.96

2 1.00 1.00 1.01 1.22 1.37 1.49 1.63 1.67 1.73

3 1.50 1.50 1.52 1.80 2.06 2.24 2.43 2.53 2.58

4 2.00 2.00 2.02 2.37 2.73 2.96 3.16 3.31 3.45

9 4.50 4.50 4.52 4.98 5.79 6.35 6.59 6.78 6.99

10 5.00 5.00 5.02 5.49 6.35 7.00 7.26 7.45 7.66

11 5.00 5.00 5.03 5.83 6.86 7.62 7.90 8.07 8.27

12 5.00 5.00 5.03 6.00 7.29 8.21 8.54 8.72 8.91

13 5.00 5.00 5.03 6.08 7.63 8.75 9.16 9.36 9.57

14 5.00 5.00 5.03 6.11 7.90 9.22 9.75 9.97 10.21
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the simulated hours is 5 min, and below the capacity (i.e. the dashed lines in Fig. 5a) we

can find a period of uniform distribution from 0 to 5 min. The longest headway is 19 min

(from 8:42 to 9:01), and the distribution also shows the longest waiting time as 19 min.

The aggregation of these uniform distributions becomes step-shaped.

Scenario 3 An M/SchB/1 queuing system with uniform arrival rate

The EPDFs can be found in Fig. 6. The passengers are assumed to neglect the timetable.

When the service rate (e.g. with 5-min headway) is higher than the constant arrival rate

(k = qB/10.65), no passengers are likely to be left behind, but the train may depart with an

actual seat occupancy rate lower than load q. When the service rate (e.g. with 15-min

headway) is lower than arrival rate, a queue may still accumulate, even with q of less than

95 %. Therefore, in Fig. 6a, with full service capacity (the dashed lines), although the

longest waiting time is still 19 min, the distribution is no longer step-shaped. When q
increases to more than 90 %, even though the train is not fully loaded, the longest waiting

may be up to 23 min.

Scenario 4 An extension of Scenario 3 with unreliable timetable

The EPDFs are shown in Fig. 7. The comparison between Scenario 3 and 4 shows that

when the service timetable is unreliable, the maximum waiting time becomes much larger

under a constant q. When q increases, the change of the EPDF with unreliable timetable is

more significant than that with punctual train arrivals. The finding that reliability is an

important factor influencing waiting time is consistent with past studies (Bates 2001). If

capacity constraints and unreliable service occur together, the situation becomes much

worse.

Table 2 continued

Expected waiting time

q= 70 % 90 % 95 % 100 % 102 % 104 % 106 % 108 % 110 %

15 5.00 5.00 5.03 6.12 8.08 9.65 10.30 10.56 10.82

16 5.00 5.00 5.03 6.12 8.20 10.02 10.83 11.12 11.40

19 5.00 5.00 5.03 6.12 8.31 10.81 12.21 12.74 13.05

20 5.00 5.00 5.03 6.12 8.32 10.95 12.59 13.26 13.58

24 5.00 5.00 5.03 6.12 8.32 11.21 13.72 15.14 15.67

25 5.00 5.00 5.03 6.12 8.32 11.21 13.88 15.53 16.18

26 5.00 5.00 5.03 6.12 8.32 11.22 13.98 15.87 16.68

27 5.00 5.00 5.03 6.12 8.32 11.22 14.04 16.16 17.15

28 5.00 5.00 5.03 6.12 8.32 11.22 14.07 16.40 17.60

29 5.00 5.00 5.03 6.12 8.32 11.22 14.08 16.59 18.02

30 5.00 5.00 5.03 6.12 8.32 11.22 14.09 16.73 18.39

34 5.00 5.00 5.03 6.12 8.32 11.22 14.09 17.02 19.57

35 5.00 5.00 5.03 6.12 8.32 11.22 14.09 17.03 19.74

36 5.00 5.00 5.03 6.12 8.32 11.22 14.09 17.04 19.86

40 5.00 5.00 5.03 6.12 8.32 11.22 14.09 17.04 20.00

41 5.00 5.00 5.03 6.12 8.32 11.22 14.09 17.04 20.01

42 5.00 5.00 5.03 6.12 8.32 11.22 14.09 17.04 20.01

Transportation

123



Scenario 5 A quasi-real scenario with variable system loads

Figure 8a shows that even when the average q is constant, if peak hour q is higher, the

maximum and expected waiting times become much greater. Importantly, the results show

that even an overall system load of 70 % can still be constrained by service capacity

because of the demand concentration during the peak hours. Figure 8b, c, d show the

(PDF) of waiting times when the average load of BTIHSR increases to q = 80, 90 and

100 %, which represent the cases during weekends, holidays, or other high demand periods

of the year.

Accessibility with and without capacity constraints

To illustrate and to visualize the changes of CCA, the origin–destination (OD) matrix is

defined as the travel time from the 10-km buffer area of Beijing South Station to the 10-km

buffer area of Tianjin Station. For each buffer area, 1324 square cells of 500 9 500 meters
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Fig. 5 Simulated probability density function of waiting time in scenario 2
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are tessellated, forming an OD matrix of 1324 9 1324. The cell’s size is consistent with

the spatial resolution of MODIS C5 urban land-cover data (Schneider et al. 2009, 2010).

Based on our definition of CCA in Eq. (2), we can calculate and compare the CCA of

the BTIHSR using the standard accessibility measure without capacity constraints. As

there are no closed analytical solutions for M/GB/1 queuing, the CCA is calculated based

on the simulated PDF of waiting time, by looking up the probability of persistence and

expected waiting time (PPEWT) in a table created under the five abovementioned sce-

narios, similar to Table 2. The CCA of origin i is expressed as:

~AHSR
i ¼ j � 1

Nj

�
XNj

j¼1

~AHSR
ij ; ð8Þ

where ~AHSR
i CCA at origin cell i, i.e. Beijing South Station’s buffer area; Nj total number of

land parcel cells in destination j, i.e. 1324; j: empirical scale parameter to keep the value
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Fig. 6 Simulated probability density function of waiting time in scenario 3
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of ~AHSR
i around 1, set to 100; ~AHSR

ij CCA from origin i to destination cell j, i.e. Tianjin

Station’s buffer area, which is calculated as:

~AHSR
ij ¼g Oj

� �
Prob xij xij�Xij

��� �
�~tij E xij xij�Xij

��� �� �
þ 1�Prob xij xij�Xij

��� �� �
� tanteij

n o�1

;

ð9Þ

where g Oj

� �
activity functions of opportunities at j. xij waiting time of persistence of OD

pair i to j; ~tij �ð Þ travel time from i to j with queuing at HSR station, as a function of

expected waiting time with queuing; tanteij travel time from i to j before the opening of HSR;

Prob �ð Þ probability of persistence, which is obtained by looking up the table;

E xij xij�Xij

��� �
expected waiting time at HSR station in a trip from i to j, based on the

threshold of persistence Xij, obtained from the look-up table. The threshold of persistence

Xij is calculated based on Eq. (5).
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Fig. 7 Simulated probability density function of waiting time in scenario 4
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Since this study focuses on the impacts of time–space separation due to capacity

constraints from public transit, we do not go into details of the activity function. Thus,

g Oj

� �
is normalized to 1 and is removed from the equation. The calculation of CCA is

based on the PPEWT table (e.g. Table 2) generated in each scenario. Given a particular

threshold of persistence for each OD pair from i to j, obtained from Eq. (5), the CCA can

be calculated by looking up the PPEWT table. Take Scenario 1 as an example, with

q = 90 %. Assume Xij for OD pair i to j is 15 min. According to the table, all passengers

will wait for the train and the expected waiting time E xij xij � 15
��� �

is 5 min. Equation (2)

can be rewritten as:

~AHSR
ij ¼ 1:0 � ~aHSRij E xij xij � 15

��� �� �
þ 0 � Aante

ij ¼ AHSR
ij ; where E xij xij � 15

��� �
¼ 5;

ð10Þ

which is equivalent to the standard accessibility measures. When q increases to 104 %,
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only 80 % passengers would persist in waiting based on the 15-min Xij. And the expected

waiting time increases to 9.65 min. For the other 20 %, accessibility declines to the before-

BTIHSR situation. For the 80 % of passengers we need to use the expected waiting time

E xij xij � 15
��� �

= 9.65 min in their accessibility calculation. In this case, the CCA is thus

calculated as:

~AHSR
ij ¼ 0:8 � ~aHSRij E xij xij � 15

��� �� �
þ 0:2 � Aante

ij ; where E xij xij � 15
��� �

¼ 9:65: ð11Þ

Figure 9a shows the accessibility patterns before the opening of BTIHSR. The calcu-

lation of OD travel time follows the discussions in Appendix 1. Since Tianjin is located in

the southeast of Beijing, travel via road network was generally fastest before the inau-

guration of the BTIHSR, and the travel time from southeastern cells, especially those close

to ring roads and motorways, is shorter than that from other places. After the opening of the

BTIHSR, the travel time from central areas becomes the shortest without considering

capacity constraint, as shown in Fig. 9b. Figure 9c through 9h show the accessibility

patterns in Scenarios 2–5 based on the CCA measures.

The aggregate value of CCA is calculated as:

~AHSR ¼ 1

Ni

XNi

i¼1

~AHSR
i ð12Þ

The calculations of the aggregate standard accessibility after the opening of HSR AHSR and

the aggregate before-HSR accessibility Aante follow the same idea. To quantify the dif-

ference between the new CCA measure and the standard measure in terms of the acces-

sibility improvement thanks to the BTIHSR, we calculate the overestimation e by the

standard measure relative to the CCA as

e ¼ DA

D~A
� 1 ¼ AHSR � Aante

~AHSR � Aante
� 1 ð13Þ

Table 3 reports the aggregate accessibility from Beijing South Station’s buffer area to

Tianjin and the overestimation error of the standard measure in each scenario.

Figure 9c is almost identical as Fig. 9b and the value of ~AHSR (1.215) is also very close

to unconstrained accessibility (1.214). With a low system load, CCA is equivalent to the

standard measure. Thus, CCA is compatible with and absorbs the standard accessibility

measure as a special case where capacity constraints are not binding.

Figure 9d shows the results in Scenario 3 with q = 100 % of with lighter colors of

many cells than in Fig. 9b. The aggregate ~AHSR decreases from 1.214 to 1.178, and in this

case the standard measure overestimates the accessibility improvement by 16.7 %. When

the timetable becomes less reliable in scenario 4 (Fig. 9e), the CCA decreases even further

to 1.133. Under an extreme situation in scenario 4 with q = 115 % and unreliable

timetable (Fig. 9f), the aggregate accessibility declines greatly to 1.015, which almost

triples the overestimation error e. With unreliable timetable and high loads q together, the

value accessibility becomes much lower. As the results, Fig. 9f looks more similar to

Fig. 9a than Fig. 9b, i.e. for much of the study area, the accessibility nearly declines to the

situation before the opening of BTIHSR.

Figure 9g, h depict the CCA patterns of two quasi-real situations in Scenario 5. In

Fig. 9g, the average load q is set at 70 % and the 2-h peak load qpeak is set at 110 % to

represent a typical morning. A comparison of Fig. 9g, b, in which ~AHSR equal 1.181 and
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Fig. 9 Accessibility to Tianjin
from Beijing South Railway
Station’s Buffer Area
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1.214 respectively, shows that even under a moderate average load of 70 % accessibility

can suffer if the system is saturated during peak hours. If the average load increases to

90 %, such as on weekends and holidays, ~AHSR decreases to 1.153, as shown in Fig. 9h.

The visual difference between Fig. 9h, b becomes obvious. The overestimations of

accessibility by the standard measure are respectively 14.2 and 29.8 %, which are sub-

stantial errors for any practical purposes in the accessibility applications.

Applying Eq. (10) at the individual level, we can calculate the overestimation of the

accessibility changes for each cell and examine the variation in the errors. Figure 10 plots

the distributions of the overestimation errors for the two quasi-real situations in Scenario 5.

The solid line shows the overestimation ranges between 10 and 30 %. When q increases to

90 %, show as a dotted line, the overestimation can be as high as 70 %. By ignoring the

capacity constraint, the standard measure can result in huge errors of estimation beyond

any reasonably acceptable level.

Discussion

Prior accessibility measures rarely take into account the transit network’s operational

details. In this paper, we present one such detail, capacity constraint, which is too

important to ignore even at the planning and strategic stages of the accessibility discussion.

In densely-populated areas where passenger demand is high, travel time is not only

determined by the availability of infrastructure, but also constrained by service capacity.

The longer waiting times and forgone trips resulting from capacity constraints can sig-

nificantly change the accessibility patterns.

We bridge the gap between the accessibility literature and the transit network assign-

ment literature to propose a new accessibility measure that incorporates the capacity

constraints of a transit network. We formalize the measure of CCA as the weighted average

of accessibilities before and after the new infrastructure. The weights, the probability of

forgoing trips and the probability of persistence, are determined by the threshold of per-

sistence and distribution of waiting time as simulated by the M/GB/1 queuing model.

To illustrate the difference between the standard measure and CCA measure, we

examine the accessibility change in the Beijing–Tianjin mega-region resulting from the

introduction of the BTIHSR by using five queuing scenarios with varying assumptions

about arrival rules, service distributions, and system loads. The case study shows that,

Table 3 Aggregate accessibility and overestimation in each scenario

Figure 9a–h Accessibility ~AHSR Overestimation e

9a: Accessibility before HSR 0.948 N.a.

9b: Unconstrained accessibility after HSR 1.214 N.a.

9c: Scenario 2, q = 70 % 1.215 -0.4 %

9d: Scenario 3, q = 100 % 1.178 16.7 %

9e: Scenario 4, q = 100 % 1.133 43.8 %

9f: Scenario 4, q = 115 % 1.015 297.0 %

9 g: Scenario 5, average q = 70 % 1.181 14.2 %

9 h: Scenario 5, average q = 90 % 1.153 29.8 %

N.a. not applicable
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under low system load, CCA is compatible with and absorbs the standard accessibility

measure as a special case. If the system is saturated, the standard measure overestimate the

accessibility contribution of new infrastructure, with overestimation errors ranging from 14

to 30 % in two quasi-real scenarios tested in our study. The CCA measure can effectively

incorporate the impact of capacity constraints: it is responsive to different arrival rules,

service headway distributions, and system loads, and provides a more realistic represen-

tation of the accessibility changes than the standard measure. The use of CCA makes the

measurement of accessibility more complex, but our findings demonstrate that avoiding

these significant overestimation errors requires this more complex approach.

HSR infrastructure in China influences population distribution, investment patterns, and

the functional integration of Chinese cities by dramatically reducing transit times across

and between urban regions (Fang 2013). At station-level, a study in Europe concluded that

the usage of railway depends on the quality of integration into local transport infrastruc-

tures (Brons et al. 2009). Adding to the conclusions from past studies, this paper highlights

that capacity constraints also influence the level of access to rail service. By taking into

account capacity constraints, the value of accessibility becomes dynamic instead of static

because capacity constraints vary with many operational factors including travel demand,

service frequency, etc. Planners and policy-makers should not neglect the effect of oper-

ational conditions on accessibility dynamics. In the worse-case scenario we test—unreli-

able service and 115 % passenger load during peak hour—the accessibility improvements

of HSR are almost nullified by capacity constraints. With an overestimation of accessi-

bility, post hoc analysis of a transit system’s wider economic and spatial impacts is likely

to be misjudged. Policy adaptations or timely interventions, such as increasing service
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Fig. 10 Distribution of overestimation errors by the standard measure

Transportation

123



frequency or offering alternative travel modes can mitigate the accessibility effects of

capacity constraints.

The CCA is a generic method that can be applied in the other transit systems in which

capacity constraints are critical, even though the queuing details have to be modified to

reflect the specific system characteristics. Many urban transit systems in large cities are

close to capacity, including those of London and New York in the West and Seoul,

Shanghai, Hong Kong and Singapore in Asia. These metro systems often operate at sat-

uration level throughout the peak hours. To apply CCA in the study of these systems, it

may be possible to simplify the calculation by creating parametric functions for the

probability of persistence and expected travel time as functions of threshold of persistence,

system loads, peak-hour periods, service headway, etc., based on a more general and

comprehensive PPEWT table.

In addition to the route-level analysis presented in this paper, CCA can also be used for

network-level analyses of accessibility. Our paper shows that the CCA offers a lower (and

more realistic) estimate of the accessibility contribution by a new transportation service. If

the creation of a new service reduces crowding in other service lines by diverting demand,

CCA can be extended to detect the accessibility improvement in those lines. Therefore the

CCA not only better represents the aggregate value of the accessibility improvement (as in

Table 3), but can also capture the spatial distribution of its benefits.

CCA can be further extended to examine the interchange stations between inter-city rail

system and the urban transit system, which are often the bottleneck for both systems. Local

demand for rail usage and intermodal accessibility are both essential for urban rail planning

(Horner and Grubesic 2001). CCA is able to provide an additional tool in the planning

process which also takes into account intermodal demand for accessibility measurement.

For instance, the High Speed 2 project in the U.K. is planned to connect Northern England

to London’s Euston Railway Station, where passengers currently transfer to Victoria

Station or Northern lines, both of which are heavily congested during peak hours. It is

critical to understand the capacity constraints in the London Underground in order to

estimate the accessibility benefit of the High Speed 2 project.

Another application is to more accurately calculate the accessibility gain in interme-

diary cities along the high speed rail lines. High passenger demand at upstream stations can

restrict accessibility gains at intermediary stations. A city may be seemingly connected to a

high speed rail line but not experience substantial accessibility improvements if the actual

seat capacity is constrained. The standard accessibility measure is not sensitive to such

details. Since the actual service capacity can be a function of the seat allocation policy set

by the operating companies or government authorities, it is important to use the CCA

measure to evaluate or design such policies.

One limitation in this paper is that we assume the passenger capacity is the dominant

constraint on accessibility. Although the studies reviewed in ‘‘Capacity constraints in

transit networks’’ section demonstrate that train boarding is perhaps more important than

other capacity issues in the context of BTIHSR network, we acknowledge that capacity

constraints may also occur elsewhere in a given transit network. To implement CCA in

transit networks where other capacity constraints prevail, a more system-wide analysis is

necessary. Another limitation of the paper is the lack of treatment of the pre-trip seat

reservation: some passengers reserve the tickets in advance and therefore they do not need

to join the queue. In our future work, we will try to acquire the data of the percentage of

pre-ordered tickets in order to enhance the accuracy of the model. We anticipate a complex

dynamics of ticketing choice behavior. The percentage may not be constant. Rather, people

are more likely to reserve the tickets ahead of time when the crowding increases, and the
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government may also adjust its ticket allocation policy out of fairness concerns and/or to

encourage the IC card adoption.
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Appendix 1: calculation of OD travel time

In this study, travel time from origin i to destination j without capacity constraints is

calculated by using the actual road and railway network data for the municipalities of

Beijing and Tianjin as well as the intermediary city of Langfang in Hebei Province. The

transportation network in the study area is obtained from OpenStreetMap.org and contains

more than 150,000 links, including all types of roads from residential street to motorway,

local metro systems in Beijing and Tianjin, and national railway network including

BTIHSR. The main transportation infrastructures are shown in Fig. 3. The travel time

before and after the opening of BTIHSR are calculated by the same procedures.

To illustrate the general calculation procedures, in the following discussions, we denote

TT i; jð Þ as the travel time from origin i in the Beijing South Station area to destination j in

the Tianjin Station area. In other words, before the opening of BTIHSR, TT i; jð Þ is given as

tanteij ; after BTIHSR, TT i; jð Þ is given as tmij for standard accessibility measures, or given as

~tmij for CCA measures. The travel time TT i; jð Þ is the minimum between public transit travel

time TTR i; jð Þ and car travel time TTC i; jð Þ:

TTij ¼ min TTR i; jð Þ; TTC i; jð Þ
� �

: ð14Þ

Without taking waiting time into account, the in-vehicle public transit travel time is

calculated as:

TTR i; jð Þ ¼ TTwalk i;Nið Þ þ TTbus Ni;Dið Þ þ TTsubway Di; SBJð Þ þ TTicr SBJ ; STJð Þ
þ TTsubway STJ ;Dj

� �
þ TTbus Dj;Nj

� �
þ TTwalk Nj; j

� �
þ E x½ �

; ð15Þ

which is the sum of (1) walking time from i to the closet road node Ni, TT
walk i;Nið Þ; (2) bus

travel time from Ni to the closest subway station Di, TT
bus Ni;Dið Þ; (3) subway travel time

from Di to Beijing or Beijing South railway station SBJ, TT
subway Di; SBJð Þ; (4) intercity

railway travel time from Beijing to Tianjin station, TTicr SBJ ; STJð Þ; (5) subway travel time

in Tianjin to station Dj, the closest one to destination j, TTsubway STJ ;Dj

� �
; (6) bus travel

time from Dj to Nj, the closest road node to destination j, TTbus Dj;Nj

� �
; (7) walking time

from Nj to j, TTwalk Nj; j
� �

. The walking speed is set as 4.4 km/h; and the bus speed in the

city area of Beijing and Tianjin is assumed to be the same as the car speed, which will be

discussed later. Without capacity constraint, the classical expression of waiting time E x½ �
(indifferent to OD pairs) is used in Eq. (15), based on Osuna and Newell (1972):

E x½ � ¼ 1

2
E tH½ � � 1 þ CV tHð Þ2

� �
; where CV tHð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var tHð Þ
E tH½ �2

s
: ð16Þ

E tH½ � is the expected headway distribution tH; and CV tHð Þ is the coefficient of variation

of tH; and var tHð Þ is the variation of tH. As the subway and bus services in Beijing and

Tianjin are highly dense and frequent (1- or 2-min headway during peak hours), in this
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study, the expected waiting time is calculated only as the waiting time for BTIHSR. Taking

into account the capacity constraints, the expected waiting time E x½ � is replaced by

E xij xij �Xij

��� �
for each OD pair. In a mega-city like Beijing, capacity constraints should

not only occur in inter-city trips, but also in all nodes of the intra-city transit network. To

measure the CCA of whole transit network, a more realistic—but much more complex—

approach is to incorporate capacity constraints into all transit network nodes. In this study,

we only illustrate the CCA of HSR, but we hope to model network-wide capacity con-

straints in future work.

The car travel time from i to j is calculated as:

TTC i; jð Þ ¼ TTwalk i;Nið Þ þ TTcar
loc Ni;Gið Þ þ TTcar

reg Gi;Gj

� �

þ TTcar
loc Gj;Nj

� �
þ TTwalk Nj; j

� � ; ð17Þ

which is the sum of (1) walking time from i to the closet road node Ni, TT
walk i;Nið Þ; (2)

intra-city car travel time in Beijing from Ni to the closest inter-city highway entry Gi,

TTcar
loc Ni;Gið Þ; (3) inter-city highway travel time from Beijing to Tianjin, TTcar

reg Gi;Gj

� �
; (4)

intra-city car travel time in Tianjin from highway exit Gj to closest road node Nj to

destination j, TTcar
loc Gj;Nj

� �
; and (5) walking time from Nj to final destination j,

TTwalk Nj; j
� �

.

The assignment of road speed is a critical task to calculate roadway travel time. In the

cities of Beijing and Tianjin, the roadway traffic is highly congested, especially during

peak hours. The actual road speed in these cities is much lower than the designed speed. As

the actual travel speed of in each road segment of both cities is unavailable, we use the

following estimation to get the proximate travel speed in each type of road. In 2013, the

average vehicle speed �V in Beijing during peak hours was 20 to 25 km/h (World Resources

Institute 2015). Here, we let �V equal to 25 km/h in both Beijing and Tianjin. The esti-

mation of road speed Vk in each road type k is solved by the following formula:
X

k

V
city
k � Lcityk ¼ �V �

X

k

L
city
k ; ð18Þ

where L
city
k is the total length of each road type k in the city of Beijing or Tianjin; and V

city
k

is the estimated travel speed of road type k in Beijing or Tianjin. As the design speed of

each type of road is known, by keeping the ratio between each road’s design speed

constant, this formula is thus solvable. The estimated road speeds of each type of road in

the cities of Beijing and Tianjin are listed in Table 4, and these are used to calculate the

Table 4 Estimated road speed in the City of Beijing and Tianjin

Design speed Speed in Beijing Speed in Tianjin

Expressways 100 40.60 46.39

Trunk roads 80 32.48 37.11

Primary roads 60 24.36 27.83

Secondary roads 40 16.24 18.56

Tertiary roads 30 12.18 13.92

The unit of speed is km/h
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intra-city roadway travel time. The city areas of Beijing and Tianjin are shown in Fig. 3.

Appendix 2: BTIHSR morning timetable (Version Feb. 2014)

See Table 5.
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Schmöcker, J.-D., Fonzone, A., Shimamoto, H., Kurauchi, F., Bell, M.G.H.: Frequency-based transit
assignment considering seat capacities. Transp. Res. Part B 45, 392–408 (2011)

Schneider, A., Friedl, M.A., Potere, D.: A new map of global urban extent from MODIS satellite data.
Environ. Res. Lett. 4, 1–11 (2009)

Schneider, A., Friedl, M.A., Potere, D.: Mapping global urban areas using MODIS 500-m data: new
methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 114, 1733–1746 (2010)

Shen, Y., de Abreu e Silva, J., Martı́nez, L.M.: Assessing High-speed Rail’s impacts on land cover change in
large urban areas based on spatial mixed logit methods: a case study of Madrid Atocha railway station
from 1990 to 2006. J. Transp. Geogr. 41, 184–196 (2014)

Shimamoto, H., Kurauchi, F., Iida, Y., Bell, M.G.H., Schmöcker, J.-D.: Evaluating public transit congestion
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