
Uncertainty Quantification and Calibration

In Nuclear Safety Codes

Using Gaussian Process Active Learning

by

Eric Nels Fugleberg

B.S., Systems Engineering
United States Naval Academy, 2014

Submitted to the Department of Nuclear Science and Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Nuclear Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

© 2016 Massachusetts Institute of Technology. All rights reserved

Signature of Author .
Department of Nuclear Science and Engineering

May 6, 2016

Certified by. .
Dr. Michael Golay

Professor of Nuclear Science and Engineering, MIT
Thesis Supervisor

Certified by. .
Dr. Robert Youngblood

Senior Risk Consultant, Idaho National Laboratory
Thesis Reader

Accepted by .
Dr. Ju Li

Battelle Energy Alliance Professor of Nuclear Science and Engineering
Chair, Department Committee on Graduate Studies

1

Uncertainty Quantification and Calibration In Nuclear Safety Codes

Using Gaussian Process Active Learning

by

Eric Nels Fugleberg

Submitted to the Department of Nuclear Science and Engineering
on May 6, 2016 in Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Nuclear Science and Engineering

Abstract

Inverse problems and inverse uncertainty quantification (UQ) are challenging issues when
dealing with complex and highly non-linear functions. Methods have been developed to
decrease the computational burden by using the Gaussian Process (GP) emulator model
framework to approximate the input-output relation of a deterministic computer code. The
GP emulator can then be used in place of the computer code to perform Bayesian calibration
techniques to determine uncertain parameter distribution. The performance of a GP
emulator is largely dependent on the quality of the points in its training set; the best
emulator exactly replicates the output of the computer code. The uncertain parameter
posterior sample space is not known a priori, resulting in GP training sets covering as much
of the prior sample space as possible in hopes of covering the posterior space well enough.
This work improves the performance of the simple GP emulator using an active learning
methodology to select additional training points which cover the posterior sample space of
the unknown parameters. Furthermore, the effect of the covariance function on the
performance of the GP is investigated with recommendations made for future GP emulator
applications.

Thesis Supervisor: Dr. Michael Golay
Title: Professor of Nuclear Science and Engineering, MIT

Thesis Reader: Dr. Robert Youngblood
Title: Senior Risk Consultant, Idaho National Laboratory

3

Acknowledgements

Many thanks to Dr. Joe Yurko whose previous work made this thesis entirely possible.

He took the time to teach me about Bayesian Inference, MCMC sampling, and Gaussian

Processes. Additionally, he was always available to answer my questions and push me further

along in my research.

Thank you Professor Buongiorno for approaching me with this unique and challenging

research topic. I’m glad you encouraged me to go out of my comfort zone and had the

patience to deal with me along the way.

I wish to thank Professor Golay for taking me on as a new advisee this previous year. He

offered a new perspective to this work, and I appreciated his guidance and support along the

way.

Thank you to Dr. Youngblood at Idaho National Laboratory for listening to my ideas

of how to improve the simple Gaussian Process regression model. I thoroughly enjoyed

our intellectual discussions, and the little history lessons that worked their way into our

conversations. Your guidance and mentorship was very much appreciated.

Financial support for this research was provided by the Department of Nuclear Science

and Engineering and Idaho National Laboratory. Thank you for ensuring I received the

necessary funding to complete this research and my Masters degree.

I would like to thank my Mom, Dad, and brother for their continued support

Lastly, thank you to my wife Rebecca for her patience and support these past two years.

I love you.

5

Contents

1 Introduction 15

1.1 Organization of this Work . 16

2 Bayesian Inference for Inverse Problems 17

2.1 Inverse Problems . 17

2.2 Bayesian Inference . 18

2.3 Approximate Inference with MCMC . 19

2.3.1 Random-Walk Metropolis Sampler 21

2.3.2 Adaptive Metropolis Sampler . 22

2.4 Demonstration Problem . 23

3 Gaussian Process Emulators 27

3.1 Non-parametric Emulators . 27

3.2 Gaussian Process . 28

3.3 Gaussian Process Regression (GPR) . 29

3.3.1 GPR Training Set . 30

3.3.2 GPR Predictions . 32

3.4 Building the Emulator . 33

3.5 GPR Emulator Uncertain Parameter Calibration 35

3.6 GPR Demonstration . 36

7

4 Covariance Functions 41

4.1 Covariance Function Properties . 41

4.2 Basic Covariance Functions . 42

4.3 Advanced Covariance Functions . 44

4.4 Combining Covariance Functions . 45

4.4.1 Multiplication of Covariance Functions 46

4.4.2 Sum of Covariance Functions . 47

5 Active Learning For Gaussian Process Regression 49

5.1 Methodology . 50

5.2 Control Parameter Training Values . 51

5.3 Uncertain Parameters Training Values . 51

5.4 Greedy and Batch Training . 52

5.5 Friction Factor Revisited . 53

5.6 Influence of the Covariance Function . 57

6 Demonstration of Active Learning GPR with RELAP Models 61

6.1 Cheng & Todreas (C&T) RELAP Simulation 63

6.2 Gopalakrishnan & Gillette (G&G) RELAP Simulation 68

6.3 Experimental Error Scaling as the Mean . 73

7 Summary, Conclusions, and Future Work 81

7.1 Summary . 81

7.2 Conclusions . 82

7.3 Recommendations for Future Work . 83

8

List of Figures

Chapter 2

2.1 MCMC sample histories . 25

2.2 Autocorrelation for MCMC sampling . 26

2.3 Friction factor directly sampled posterior distributions 26

Chapter 3

3.1 Demonstration of different initial sampling schemes 32

3.2 Training set scaled values of B and C parameters 38

3.3 GPR training set with 50 training points . 38

3.4 Posterior predictions from direct MCMC sampling and GP Regression 39

3.5 Posterior distributions from direct MCMC sampling and GP Regression . . . 39

3.6 Posterior sample space of known true B and C values 39

Chapter 4

4.1 Basic covariance functions . 43

4.2 Multiplication of covariance functions . 46

4.3 Sum of various covariance functions . 48

9

Chapter 5

5.1 Workflow for Gaussian Process Active Learning 50

5.2 Active learning training set with SE covariance function 54

5.3 Active learning posterior predictions with SE covariance function 54

5.4 Active learning posterior distributions with SE covariance function 56

5.5 Active learning posterior sample space of known B and C parameters 56

5.6 Training set from the SE and Matérn covariance functions 59

5.7 Posterior predictions from the SE and Matérn covariance functions 60

5.8 Posterior uncertain parameter distributions from the SE and Matérn covariance

functions . 60

Chapter 6

6.1 RELAP model illustration for two simulations. 62

6.2 Cheng & Todreas (C&T) experimental data and initial training set. 64

6.3 C&T additional training points from SE and Linear covariance functions . . 66

6.4 C&T emulator posterior predictions from SE and Linear covariance functions 67

6.5 C&T posterior distributions from SE and Linear covariance functions 67

6.6 Gopalakrishnan & Gillette pressure drop experimental “data” 68

6.7 Gopalakrishnan & Gillette (G&G) experimental data and initial training set. 69

6.8 G&G additional training points from SE and Linear covariance functions . . 71

6.9 G&G emulator posterior predictions from SE and Linear covariance functions 71

6.10 G&G posterior distributions from SE and Linear covariance functions 72

6.11 C&T additional training points with 1% error 75

6.12 C&T emulator posterior predictions with 1% error 75

6.13 C&T posterior distributions with 1% error 76

6.14 C&T correlation of uncertain parameters . 76

6.15 G&G additional training points with 1% error 78

6.16 G&G emulator posterior predictions with 1% error 79

6.17 G&G posterior distributions with 1% error 79

10

List of Tables

Chapter 3

3.1 Gaussian prior bounds for friction factor uncertain parameters. 37

Chapter 5

5.1 Covariance function influence on GPR performance 58

Chapter 6

6.1 Prior bounds for Cheng & Todreas uncertain parameters. 64

6.2 C&T emulator performance with constant error 65

6.3 Prior bounds for Gopalakrishnan & Gillette uncertain parameters. 69

6.4 G&G emulator performance with constant error 70

6.5 C&T emulator performance with 1% error 74

6.6 G&G emulator performance with 1% error 77

11

List of Abbreviations and

Mathematical Symbols

Abbreviations

AM Adaptive Metropolis
ARD Automatic Relevance Determination
BIC Bayesian Information Criterion
DF Driver Fuel
FFGP Function Factorization with Gaussian Process Priors
GP Gaussian Process
GPR Gaussian Process Regression
LB Lower Blanket
LHS Latin Hypercube Sampling
Lin. Linear Covariance Function
MCMC Markov Chain Monte Carlo
MH Metropolis-Hastings
MVN Multivariable Normal
Pa Pascal, a unit of pressure [1 atm = 101.3⇥ 103 Pa]
Per. Periodic Covariance Function
RELAP Reactor Excursion and Leak Analysis Program
RMSE Root Mean Square Error
RQ Rational Quadratic Covariance Function
RWM Random-Walk Metropolis
SE Squared Exponential Covariance Function
UB Upper Blanket
UQ Uncertainty Quantification

13

Mathematical Symbols

↵M MCMC Acceptance Probability
D Number of input parameters
E [x] Expected value, or mean, of x
f(x) Output of computer code or simulator
fGP (x) Gaussian Process latent function
GP Gaussian Process
I Identity matrix
k(xp,xq) Covariance function between xp and xq

K⌫ Modified Bessel Function of Second Order ⌫

K (X,X

0) Covariance matrix of matrices X and X

0

l Characteristic Length-Scale
m(x) The mean function
M Matrix of Characteristic Length-Scales [M = diag (l)�2]
N Number of training points
N⇤ Number of test points
� Emulator Hyperparameters
�S Friction Factor Correlation Shape Factor
rk Autocorrelation coefficient
⌃̂ AM-MCMC expirical covariance matrix
⌃t Experimental Error Covariance Matrix
s

2 MCMC Tuning Scalar Constant
s

2⌃ MCMC Covariance Matrix
✓ Uncertain input parameters
xcv Control variable input parameters
x

o Initial sample in MCMC sampling
x

⇤ Proposed sample in MCMC sampling
x

t Current guess in MCMC sampling
X Training set input matrix of size N ⇥D

X⇤ Test matrix of size N⇤ ⇥D

y Training set output matrix of size N ⇥ 1

y

e

Experimental data points
y⇤ Posterior predictive mean

14

Chapter 1

Introduction

Uncertainty quantification (UQ) for nuclear reactor safety codes is more of an art than

a science due to the highly non-linear system response. Methods have been developed to

implement Bayesian inference techniques and calibrate parameter distributions to experimental

data. These methods are systematic and statistically rigorous, but come at large computational

costs. Bayesian methods are more expensive than other UQ methods because they require

the computer code to be run thousands, if not tens of thousands of times in series. Therefore,

a fast approximation to the computer code is required to implement Bayesian calibration

methods better. Gaussian Process (GP) emulators have been developed to be used in place of

the computer code to use Bayesian calibration methods for parameter calibration quickly. The

uncertain parameter posterior sample space is not known a priori, resulting in GP training

sets covering as much of the parameter prior sample space as possible in hopes of covering

the parameter posterior space well enough. This naive approach works well with a large

number of training points, but if the computer code takes hours to complete one iteration then

generating thousands of data points is not realistic. The work reported here seeks to improve

the performance of the simple GP emulator by developing an active learning methodology

to select training points covering the parameter posterior sample space. Furthermore, the

effect of the covariance function on the performance of the GP will be investigated with

recommendations made for future GP emulator applications.

15

Chapter 1. Introduction

1.1 Organization of this Work

Chapter 2 gives an introduction to Bayesian inference and inverse problems. Approximate

inference with Markov Chain Monte Carlo (MCMC) is also introduced. This chapter illustrates

why emulators are required when performing Bayesian calibration of long running computer

codes.

Chapter 3 describes the Gaussian Process emulator used in this work. The standard

Gaussian Process Regression (GPR) emulator is introduced and demonstrated to show the

flexibility and power of the GPR framework. A friction factor demonstration problem

familiarizes the reader with simple GPR emulators.

Chapter 4 discusses the covariance function in greater detail. Various simple and complex

covariance functions are introduced, as well as methods to combine the various covariance

functions. The rest of this work requires understanding the different covariance functions.

Chapter 5 introduces the active learning methodology created to improve the training

set for the GPR emulator. The methodology requires constructing an initial GPR emulator

from a space-filling training set and then adding training points which cover the posterior

sample space. Ideally, the emulator will exactly reproduce the same output as the computer

code. The friction factor demonstration is revisited, with the emulator nearly replicating

the directly sampled computer code output. The effects of different covariance functions are

investigated with a “best” covariance function chosen for the friction factor problem.

Chapter 6 applies the active learning methodology to two reactor safety code examples

with several different covariance functions being tested. The error of the experimental data is

assumed to be constant for each experimental data point in the first case; this represents

experiments which have a known error that is unresolvable. The second case investigates

how the emulator performance changes if the experimental error scales as the mean; this

represents the experimental error of the measurement device. The “best” covariance functions

are presented for each case with recommendations for future GPR applications.

Chapter 7 summarizes the work reported here, reiterates the lessons learned for using

Gaussian Process emulators, and provides areas for future work to improve Gaussian Process

emulators further using active learning process.

16

Chapter 2

Bayesian Inference for Inverse Problems

2.1 Inverse Problems

For inverse problems, we wish to estimate the values of unknown objects, such as

parameters or functions, from indirect noisy observations [1]. Consider the function y = f(x)

where the output y is considered to be a function of the input variable x. A “forward problem”

dictates the presumption that a given input produces a specific output. An inverse problem,

on the other hand, wishes to take an observation and determine which x-value produced that

particular y output value. To do this, we must compute the inverse function x = f

�1(y).

Another way to think of this process is as a forward problem using deductive logic: given a

cause, one must figure out the consequence, while an inverse problem uses inductive logic:

given a consequence, what were the underlying causes [2]. Uncertainty quantification (UQ)

works much in a similar manner. Forward UQ takes distributions (uncertainties) on the input

parameters and propagates those onto the output. Inverse UQ works in the opposite manner:

given an output distribution, what are the distributions on the input parameters. Bayesian

inference techniques can be used to perform this inverse UQ operation.

17

Chapter 2. Bayesian Inference for Inverse Problems

2.2 Bayesian Inference

The fundamental concept of Bayesian analysis is that unknowns are treated as random

variables. The power of this approach is that the established mathematical methods

of probability theory are applied to develop informative representations of the state of

knowledge regarding the unknowns [1]. Bayesian analysis relies on Bayes’ theorem, which

is a fundamental relationship of conditional probabilities. Each unknown is given a prior

probability distribution reflecting the current state of knowledge regarding their possible

values. These prior distributions are then “updated” conditional on new information, through

the likelihood function. The result is a posterior distribution that represents the new state-

of-knowledge, a combination of the prior evidence and the observed data. If x is a vector

of unknown parameters we wish to learn more about and y is the vector of observed data,

Bayes’ theorem is written as:

p(x|y) = p(y|x)p(x)´
p(y|x)p(x)dx

. (2.1)

The numerator of Eq. 2.1 consists of the likelihood function, p(y|x), which gives the

probability of the observations y given the unknown parameters x, and the prior distribution

on the unknown parameters p(x) . The denominator is known as the marginal likelihood

and integrates out (marginalizes) the unknown parameters. The denominator is therefore

equivalent to:

p(y) =

ˆ
p(x|y)p(x)dx. (2.2)

The marginal likelihood does not depend on the unknown parameters and is therefore

merely a normalizing constant. Because of this, Bayes’ theorem is often written simply as

the posterior being proportional to the product of the likelihood and the prior:

p(x|y) / p(y|x)p(x). (2.3)

18

2.3. Approximate Inference with MCMC

The difficulty in implementing Bayes’ theorem is computing the marginal likelihood in Eq.

2.2. Evaluating the potentially high-dimensional integral could be intractable analytically

and/or very expensive computationally. Analytical intractability results from the fact that

the likelihood function may involve non-linear mapping between the unknown parameters

and the observed output data. Such is the case for Bayesian calibration of computer models:

the output of the computer model is a function of the unknown input parameters and other

inputs that are not necessarily “unknown,” such as time. Therefore, the likelihood function is

not a function of the uncertain parameters themselves, but of the output of the computer

code: p(y|f(x)); the computer model will also be referred to as the compute code and is

represented as f(x). With closed form solutions not possible, sampling methods must be

used instead. The primary sampling method used is a Markov Chain Monte Carlo (MCMC)

sampling strategy that attempts to draw samples from the posterior distribution directly.

The next section will cover the basis of an MCMC scheme.

2.3 Approximate Inference with MCMC

The basic premise behind Markov Chain Monte Carlo (MCMC) is to construct a Markov

chain whose stationary distribution is the target density that we wish to sample [3]. In

the context of Bayesian model calibration, that target density is the posterior distribution

of the unknown parameters given the experimental data: p(x|y). MCMC is similar to the

Monte Carlo (MC) sampling technique, except that the samples are correlated in MCMC

and no longer independent and identically distributed. The samples are correlated due to

the Markov chain, and that is the price that we pay for not knowing the actual posterior

distribution. The main benefit of MCMC is that the marginal likelihood, Eq. 2.2, does not

need to be computed. This is accomplished by a scientific “guess and check” method which

will be discussed later.

19

Chapter 2. Bayesian Inference for Inverse Problems

All MCMC strategies involve some sort of random walk around the sample space of the

unknown parameters of interest. The main components to MCMC sampling are:

1. An initial guess, xo

2. A proposal (or transition) distribution, q(x⇤|x), where x

⇤ is the proposed sample for

the unknown parameters

3. An accept/reject rule for whether to keep the proposed sample.

The proposal distribution, q(x⇤|x), determines the efficiency of the MCMC sampling; the

more naive and random the proposal, the less efficient the MCMC scheme. Efficiency relates

to how correlated the MCMC samples are, meaning a more efficient proposal distribution

allows the MCMC chain to “forget” the initial state faster [4].

Making a good initial guess in MCMC schemes is difficult. The prior distribution mean is

often a good initial guess (xo), but if the posterior distribution is quite different from the

prior distribution, it may take the sampling scheme a long time to shift the prior distribution

to the posterior distribution. Even so, the chain will gradually “forget” its initial state and

will eventually converge to a unique stationary distribution, which does not depend on the

sample number [5]. This means a poor starting point only affects the number of samples

required for the chain to “forget” its initial point. However, if a limited number of samples

are used, the initial sequence may impact the results. That is why it is common to discard a

portion of the sample values at the beginning of the MCMC scheme as “burn-in.”

The most common acceptance/rejection criterion is the Metropolis-Hastings (MH) criterion.

The MH criterion compares the posterior probability for the initial guess and the proposed

sample. If the posterior probability of the sample point increases, then one accepts the

proposed sample. But, if the posterior probability of the sample point decreases, then one

may randomly choose whether to accept the point with acceptance probability of:

↵M = min
✓
1,

p(x⇤|y)
p(xt|y)

◆
, (2.4)

where t is the current sample. Thus, if the proposed value of x

⇤ is less probable than the

current guess, x

t, the chain may still move there anyway. Instead of greedily moving to only

20

2.3. Approximate Inference with MCMC

more probable states, we occasionally allow “downhill” moves to less probable states [3]. This

kind of behavior ensures that the fraction of time spent at each point x, is proportional to

the posterior distribution p (x|y) [4]. One important characteristic of Eq. 2.4 is that because

it is a ratio of the posterior probabilities, the marginal likelihood cancels out and does not

need to be computed. Hence, samples are drawn from the posterior distribution without

computing Eq. 2.2.

2.3.1 Random-Walk Metropolis Sampler

The simplest MCMC scheme is the Random-Walk Metropolis (RWM) sampler. For this

scheme, the proposal distribution is centered at the current guess for the unknown parameters,

x

t, with specified covariance matrix of s2⌃. The scalar s

2 is some constant set to facilitate

“rapid mixing” [3]. It is usually assumed that the uncertain parameters are uncorrelated when

implementing a RWM sampling scheme, thus the covariance matrix ⌃ is diagonal. If the

unnormalized posterior density is written as h(x) = p(y|f(x))p(x), then the RWM update

occurs in the following manner:

1. At current guess, xt, with current unnormalized posterior h(xt), propose a move to x

⇤

with proposal density: q (x⇤|xt) = N (xt
, s

2⌃).

2. Compute the proposed unnormalized posterior h(x⇤).

3. Compute the Metropolis acceptance probability using Eq. 2.4.

4. Set the next sample value to be: x

t+1

8
><

>:

x

⇤ , with probability ↵M

x

t , with probability 1-↵M

This process is repeated for the desired number of MCMC samples (including burn-in).

The scalar constant s

2 may be tuned in order to equal some optimal sampling rate. If the

constant is too large, the proposal sample x

⇤ will be far away from the initial guess x

t and

the acceptance probability (or chance of the chain moving) will be very low. In this case, the

chain will most likely “sit” at the same value for a long time. Conversely, if the proposal is

very close to the initial guess then the acceptance rate will be very high, but the information

gained from each sample will be very low. The optimal acceptance rate (or mixing rate) is

21

Chapter 2. Bayesian Inference for Inverse Problems

0.234, meaning that roughly 23% of all proposed samples are accepted [6]. The scalar value

s

2 can be tuned, but only during the burn-in phase and must remain fixed for the rest of the

sampling. This is because the tuning effects the memoryless-ness nature of the Markov chain

[4].

2.3.2 Adaptive Metropolis Sampler

Tuning the scalar constant, s2, is a simple adaptive scheme that essentially adapts the

variance of each element in x equally; remember that x = [x1, x2, . . . , xD]
T. It is possible to

tune each element of the proposal variance, but that becomes computationally expensive

as the dimension D grows. Haario et al. [7] set up an Adaptive Metropolis (AM) scheme

that adapts the entire proposal covariance matrix by using the past samples of the Markov

chain. This allows the proposal distribution to better describe the covariance between the

different elements in x and can improve the efficiency of the MCMC. In order to denote the

proposal covariance being computed on the fly for the AM sampling scheme, it is labeled ⌃̂.

The proposal matrix is now: q(x⇤|xt) = N (xt
, ⌃̂); the update steps are the same as with the

RMW, but using ⌃̂ instead of s2⌃.

In implementing the AM scheme, the initial MCMC runs do not update the proposal

covariance matrix. After the initial runs, the proposal covariance matrix is updated using a

specified number of past samples after a specific number of iterations. For example, after

every 1000 samplings the previous 1000 samples are used to compute the empirical covariance

matrix, ⌃̂. This is more efficient than computing the empirical covariance matrix at every

iteration using all past samples.

22

2.4. Demonstration Problem

2.4 Demonstration Problem

In order to demonstrate Bayesian model calibration using directly sampled MCMC, a

method of manufactured solutions is used. Here the experimental data are generated using

a computer model with specified true-parameter values [4]. The goal is to see whether the

MCMC sampling yields posterior distributions around these true-parameter values. The

turbulent friction factor problem in [4] will be used as the “computer model” parameterized

as:

f = exp (b)Re

�exp(c)
, (2.5)

where Re is the Reynolds number and b and c are the two uncertain parameters. This

model is usually written as f = B · Re

�C , but the model was transformed such that

B = exp(b) and C = exp (c) in order to ensure always positive values for the uncertain

parameters. Furthermore, this transformation made it easier to use Gaussian distributions for

the priors on the uncertain parameters and give the original parameters, B and C, log-normal

prior distributions. The prior mean values were chosen such that exp(E[b]) = 0.184 and

exp(E[c])=0.2, where E [x] denotes the expected (or mean) value of a variable x; expected

values correspond to the McAdams’ friction factor correlation values [8]. The prior variance

for each transformed parameter was assumed so that 95% of the probability covered ±50%

around the prior means.

Twenty-five artificial “experimental data” points were generated at the specified true-

parameters values of exp (b) = 0.25 and exp (c) = 0.10 at evenly spaced intervals between

Reynolds numbers of 5000 and 45000. The experimental data points are denoted as

y = [y1, y1, . . . , yNo]
T where NO = 25 is the number of experimental data points. These

experimental data points are used as if they had came from a physical experiment, but they

are artificially created for ease of use in this demonstration.

The simple friction factor model shows that usually multiple types of input variables exist:

the b and c parameters are the unknown or uncertain parameters, while the Reynolds number,

Re, is a control variable [9]. The uncertain parameters are denoted collectively as ✓ = [b, c]T

23

Chapter 2. Bayesian Inference for Inverse Problems

with b and c denoting the vectors of uncertain parameters, and the control variables will

be denoted as xcv = [Re1, Re2, . . . , ReNO
]T. Denoting the prior means as µb and µc with

variances �

2
b and �

2
c , the prior distribution is a multivariate normal (MVN) distribution:

p (✓) = N

0

BBB@

2

6664

µb

µc

3

7775
,

2

6664

�

2
b 0

0 �

2
c

3

7775

1

CCCA
. (2.6)

A Gaussian likelihood function is used to relate the data to the friction factor model:

p (y|f (xcv, ✓)) = N (f (xcv, ✓) ,⌃t) , (2.7)

where ⌃t is the experimental error covariance matrix. The experimental error covariance

matrix, ⌃t, for this example is assumed to be diagonal with experimental error (variance) to

have 95% of the probability covered by ±10% around the mean data values [4]. In a real

applications, the experimental error is usually defined by the uncertainty of the measurement

device.

Two MCMC schemes were used to sample the posterior distribution directly on the

uncertain parameters, p (✓|y); each scheme used 5⇥104 burn-in samples and 5⇥104 posterior

distribution samples. The first is the Random-Walk Metropolis (RWM) sampler with the

scalar constant s2 fixed to s

2 = (0.5)2. The second scheme is the Adaptive Metropolis (AM)

sampler, which adapts during the burn-in period after an initial delay of 2 ⇥ 103 samples.

While adapting, the AM scheme recomputes the empirical covariance matrix every 1000

samplings using the past 1000 samples. Figure 2.1 illustrates the poor mixing of the fixed

scalar constant as well as the well-mixed behavior obtained using the Adaptive Metropolis.

24

2.4. Demonstration Problem

Figure 2.1: MCMC sample histories

This well-mixed behavior can be observed quite clearly in the sample histories, but

also through an autocorrelation length over a specified lag as shown in Figure 2.2. The

autocorrelation length is the correlation between observations as a function of the time lag

between them defined as [10]:

rk =

N�kP
i=1

�
Xi � X̄

� �
Xi+k � X̄

�

NP
i=1

�
Xi � X̄

�2
, (2.8)

for given measurements X1, X2, ..., XN with a lag k over N observations, where X̄ = 1
N

NP
i=1

xi.

Autocorrelation is a correlation coefficient not between two different variables, but between

two values of the same variable at times Xi and Xi+k; autocorrelation is used to detect

non-randomness in the behavior of a variable [11]. In Figure 2.2, the autocorrelation is

computed with a lag of 100. The untuned RWM scheme has samples that are correlated

by roughly 0.8 at best. The AM scheme, on the other hand, has an independent sample

drawn nearly every 60 or 70 samples, and corresponds to an autocorrelation of nearly 0. The

increased mixing rate from the AM-MCMC scheme also improves the posterior predictions,

as shown in Figure 2.3.

25

Chapter 2. Bayesian Inference for Inverse Problems

Figure 2.2: Autocorrelation for MCMC sampling.

Figure 2.3: Friction factor directly sampled posterior distributions.

The posterior distributions were generated using the MATLAB function, ksdensity, over

the 5⇥ 104 posterior distribution samples [12]. The AM-MCMC scheme has a much smoother

posterior distribution, attributed to the better mixing rate. Since Bayesian inference and

calibration requires tens of thousands of MCMC samples, the limiting factor in the time it

takes to perform Bayesian calibration is the speed required to evaluate the computer code,

providing numerical values for f (x
cv

, ✓). Using an emulator in place of the computer code

can greatly speed up the MCMC sampling process.

26

Chapter 3

Gaussian Process Emulators

3.1 Non-parametric Emulators

As illustrated in Chapter 2, performing Bayesian inference requires using tens of thousands

of samples from the MCMC scheme. Thus, the limiting factor is the speed in which we can

draw one sample and compute the likelihood function, p (y|f(x)). Even a “fast” computer

simulation taking three seconds per iteration to compute f (xcv, ✓) would require over 83 hours

of run time for producing 105 MCMC samples. Most codes require much more time than

three seconds per iteration, meaning that they are time consuming and too computationally

expensive. A relatively quick method for determining the input/output relation of the model

is therefore desirable. In the literature, these non-parametric models are often referred to

as emulators as they try to emulate (or reproduce) the behavior of the computer code. A

non-parametric model uses the training data to dictate the trends, rather than a modeling

choice beforehand. A popular choice for emulators is the Gaussian Process which has been

in use since the 1960s, and has recently gained much attention by the machine learning

community.

27

Chapter 3. Gaussian Process Emulators

3.2 Gaussian Process

A reactor safety analysis code, such as RELAP1, is technically deterministic as it will

produce the same outputs given the same inputs. However, the output is somewhat unknown

until the computer code is run. Therefore, the output, subject to special conditions, can be

treated as a random variable. Formally, a Gaussian Process (GP) is a collection of random

variables, any finite number of which have a joint Gaussian distribution [13]. What makes a

GP special is that the covariance matrix of this multivariate normal distribution is computed

using the training dataset. This feature allows the GP to interpolate the training data,

thereby emulating the behavior of the computer code [4].

A GP is completely specified by its mean and covariance functions. The mean function

m(x) and covariance function k(xp,xq) are defined as:

m(x) = E [f(x)] ,

k(x,x0) = E [(f(x)�m(x)) (f(x0)�m(x0))] ,
(3.1)

where x is the vector of inputs and the output, fGP (x), is a random variable. The GP is

written as:

fGP (x) = GP (m(x), k (x,x0)) . (3.2)

An important part of Eq. 3.2 is that the covariance function is only a function of the inputs,

x. The mean function is often taken to be equal to zero for notational simplicity and to

not assume any trend of the data (such as linear or quadratic) [13]. A Gaussian process

is defined as a collection of random variables. Thus, the definition automatically implies a

consistency requirement, which is also sometimes known as the marginalization property [13].

This property simply means that, for example, if the GP specifies (y1, y2) ⇠ N (µ,⌃) , then

it must also specify y1 ⇠ N (µ1,⌃11), where ⌃11 is the relevant submatrix of ⌃. This means

that examination of a larger set of variables does not change the distribution of the smaller
1
The Reactor Excursion and Leak Analysis Program (RELAP) is a light water reactor transient analysis

code.

28

3.3. Gaussian Process Regression (GPR)

set [13].

The covariance function depends on a set of hyperparameters which specify the covariance

function and must be learned from the training data; this keeps the GP non-parametric as

it only depends on the training data. The most common covariance function used in the

literature is the squared exponential (SE) covariance function:

k(xp,xq) = �

2
fexp

✓
�1

2
(xp � xq)

T
M (xp � xq)

◆
, (3.3)

where the subscripts p and q are two different indices of the input x. The hyperparameters

are the signal variance �

2
f and the matrix M , which is a symmetric matrix given as:

M = diag (l)�2
, (3.4)

where l is a vector of positive values, and each element l1, . . . , lD plays the role of the

characteristic length-scale for each input parameter [4]. The length-scale, loosely speaking,

represents how far a sample needs to move (along a particular axis) in the input space for

the function values to become uncorrelated [14]. This formulation of the hyperparameters

implements what is known as automatic relevance determination (ARD), meaning that the

inverse of the length-scale determines the relevance of that input parameter.

3.3 Gaussian Process Regression (GPR)

The GP model is able to interpolate the training data exactly if there is no noise. However,

noise is allowed to prevent ill-conditioning of the covariance matrix. Because of this, the

GP model is better labeled a Gaussian Process Regression (GPR) model as it is trying to

regress the training dataset within some allowable noise level [4]. The GP prior is therefore

placed on a latent (or hidden) function, fGP (x), that we wish to infer from the noisy data, y [4].

29

Chapter 3. Gaussian Process Emulators

While the computer code training output is not noisy, the output y can be related to the GP

function, fGP (x), as:

y = fGP (x) + ✏, (3.5)

where ✏ is the error structure. Assuming additive independent identically distributed Gaussian

noise ✏ with variance �

2
n, the prior on the noisy observations becomes:

cov (y) = K (X,X) + �

2
nI. (3.6)

This follows from the independence assumption about the noise [13].

3.3.1 GPR Training Set

If there are N training points for D input parameters, all of the parameters are stacked

into an N ⇥D matrix. Each row of X contains the D input parameters. The training output

values, y, are in a similar stacked matrix, that is of dimension N ⇥ 1:

X =

2

6666666666664

x

T
1

x

T
2

...

x

T
N

3

7777777777775

y =

2

6666666666664

y1

y2

...

yN

3

7777777777775

.

Since fGP(x) is a GP and the likelihood function is also Gaussian, the training set prior

is also Gaussian as:

y ⇠ N
�
0,K (X,X) + �

2
nI
�
, (3.7)

where K (X,X) is the training set covariance matrix and I is the identity matrix.

30

3.3. Gaussian Process Regression (GPR)

The training set covariance matrix requires applying the chosen covariance function to

each pair of input parameter values:

K (X,X) =

2

6666666666664

k (x1,x1) k (x1,x2) · · · k (x1,xN)

k (x2,x1) k (x1,x2) · · · k (x2,xN)

...
...

k (xN ,x1) k (xN ,x2) · · · k (xN ,xN)

3

7777777777775

. (3.8)

If the SE covariance function in Eq. 3.3 is used, then each diagonal element of K (X,X) is

the signal variance �

2
f .

For a GPR model, we want each training point to offer as much new information as

possible. That means if several training points have the same x1 with differing x2, there is

no learning of the relation between x1 and the output y(x) from those points. This is why

an initial training set wishes to cover as much of the prior sample space as possible over all

input parameters. Latin hypercube sampling (LHS) as proposed by [15] is a sampling scheme

where each input variable xi has all portions of its distribution represented in N strata with

equal probability of 1/N and one sample from each stratum. These form the xi,n component

for i = 1, . . . , I inputs and the n = 1, . . . , N stratum. The components of the various xi,n are

then matched so as to not have two points in the same i or n. Further refinement of the LHS

is the orthogonal sampling in which the full sample space is divided into further subspaces of

equal probability. This could be thought of as another implementation of the LHS within

itself. Figure 3.1 shows a visual representation of three different input sampling schemes:

random, Latin hypercube, and orthogonal.

31

Chapter 3. Gaussian Process Emulators

Figure 3.1: Demonstration of different initial sampling schemes (L to R): Random
sampling, Latin hypercube sampling, Orthogonal sampling.

3.3.2 GPR Predictions

With a training set and known covariance matrix (assuming, for now, the hyperparameters

are known), we wish to make predictions at new input parameter values, or test points. For

N⇤ test points, the test input matrix, X⇤, is similar to the training set matrix and is N⇤ ⇥D.

The GP prior is of a similar structure as Eq. 3.7:

f⇤ ⇠ N
�
0,K (X⇤, X⇤) + �

2
nI
�
. (3.9)

The test covariance matrix K (X⇤, X⇤) has the same structure as the training set covariance

matrix, except that now the elements in the matrix are computed using the test input

parameters. However, Eq. 3.9 provides information of little value as it is not informed about

the structure of the training set. Therefore, the test distribution must be conditioned on the

training set distribution. First, the joint prior is written as:

2

6664

y

f⇤

3

7775
⇠ N

0

BBB@

2

6664

0

0

3

7775
,

2

6664

K (X,X) + �

2
nI K (X,X⇤)

K (X⇤, X) K (X⇤, X⇤)

3

7775

1

CCCA
, (3.10)

where K (X,X⇤) is the cross-covariance matrix between the training set and the test input of

size N ⇥N⇤, with N⇤ ⇥N being its transposed matrix.

32

3.4. Building the Emulator

Standard multivariate normal theory allows us to write the conditional distribution p (f⇤|y)

and give the key predictive equations for the GPR [13]:

f⇤|y ⇠ N
�
f̄⇤, cov (f⇤)

�
(3.11)

f̄⇤ , E [f⇤|y] = K (X⇤, X) [K (X,X) + �

2
nI]

�1
y (3.12)

cov (f⇤) = K (X⇤, X⇤)� K (X⇤, X) [K (X,X) + �

2
nI]

�1
K (X,X⇤) . (3.13)

To make a posterior prediction, y⇤, in the training data space, the posterior distribution is

obtained as:

y⇤ ⇠ N
�
f̄⇤, cov (f⇤) + �

2
nI
�
. (3.14)

Eq. 3.12 and Eq. 3.13 give insight to the power of GPR models: First, for predictions

at the training points (X⇤ = X), the predictive uncertainty shrinks to the allowable error

tolerance, as shown in Eq. 3.12. Second, the posterior predictive covariance shrinks the prior

covariance by the subtraction of the first and second terms in Eq. 3.13. The computational

expense is completely determined by the cost to invert the training set covariance matrix.

Furthermore, if the training set covariance matrix is ill-conditioned, the inverse cannot be

computed. Thus, the noise is allowed in order to ensure that [K (X,X) + �

2
nI]

�1 is always

invertible [4].

3.4 Building the Emulator

When introducing GPR predictions before, the training set hyperparameters were assumed

to be known. Using the SE covariance function and noise structure as before, the complete

set of hyperparameters are � =
�
l, �

2
f , �

2
n

. The posterior predictive distribution is now more

formally written as f⇤|y,� ⇠ N
�
f̄⇤, cov (f⇤)

�
; the posterior predictive mean and covariance

are the same as in Eq. 3.12 and Eq. 3.13.

33

Chapter 3. Gaussian Process Emulators

Building the emulator requires the learning of the hyperparameters, �, from the training

set. Two different approaches to building the emulator are the empirical Bayes and the full

Bayesian approaches. The empirical Bayes approach uses optimization schemes to find point

estimates to the hyperparameters, while the full Bayesian approach uses the MCMC process

to draw samples from the posterior distribution of the hyperparameters [4]. The empirical

Bayes process is much faster than the MCMC process, but lacks cross-validation to determine

whether the “optimized” hyperparameters yield the “best” results.

Empirical Bayes Process

Empirical Bayes optimizes the hyperparameter values by maximizing the marginal

likelihood, Eq. 2.2. Given the notation for a training set X and training outputs y,

the marginal likelihood becomes:

p (y|X) =

ˆ
p (y|f , X) p (f |X) df . (3.15)

The prior, p (f |X), is just the GP prior specified above with the likelihood, as before, being

the Gaussian likelihood:

y|f ⇠ N
�
f , �

2
nI
�
. (3.16)

Integrating out the latent function gives the function that must be maximized during the

Empirical Bayes optimization as:

log [p (y|X)] = �1

2
y

T ⇥
K (X,X) + �

2
nI
⇤�1

y � 1

2
log

⇥��
K (X,X) + �

2
nI
��⇤� N

2
log |2⇡| . (3.17)

Eq. 3.17 is referred to as the log-marginal likelihood and has easily interpretable terms.

On the right hand side of the equation, the first term represents the data fit, the second term

represents the complexity penalty which depends only on the covariance function and the

inputs, and the last term is a normalizing constant [4].

34

3.5. GPR Emulator Uncertain Parameter Calibration

Full Bayesian Process

In the full Bayesian approach a prior is placed on the hyperparameters, p (�), with the

goal being to sample the posterior distribution conditioned on the training data [4]. The

joint posterior is written as:

p (f ,�|y, X) =
p (y|f ,�, X) p (f |�, X) p (�)´

p (y|f ,�, X) p (f |�, X) p (�) dfd�
, (3.18)

since the latent function is also unknown. Since the latent function variables can be integrated

out, the posterior distribution on the hyperparameters can be written as:

p (�|y, X) / p (y|�, X) p (�) . (3.19)

The likelihood, p (y|�, X), is given by Eq. 3.7, with the condition on � and X showing that

it is for constructing the emulator [4]. The hyperparameter prior must still be specified, and

the easiest prior to implement is a “flat” prior, where p (�) / 1 [4]. This means there is no

bias, a priori, on the hyperparameter values. Drawing samples from the hyperparameter

posterior distribution in Eq. 3.19 can be done with the MCMC techniques mentioned earlier.

3.5 GPR Emulator Uncertain Parameter Calibration

Once the GPR emulator is constructed, it can be used to calibrate the uncertain parameters

in lieu of the computer code. In Chapter 2 the uncertain parameter calibration with MCMC

was demonstrating a mapping function between the uncertain parameters, ✓, and the computer

code results. The experimental data points are denoted as y
e

, with the computer code output

now denoted as y in order to prevent confusion between the latent variables and the computer

code results. The total likelihood can now be broken into two parts: the likelihood between

the experimental data and the computer code predictions, p (y
o

|y), and the likelihood

between the computer code predictions and the uncertain parameters, p (y|xcv, ✓). The

posterior distribution is now written as the joint-posterior distribution between the uncertain

35

Chapter 3. Gaussian Process Emulators

parameters and the computer code predictions, conditioned on the experimental data [4]:

p (y, ✓|y
o

) / p (y
o

|y) p (y|xcv, ✓) p (✓) . (3.20)

Using NO experimental data points, the experimental data points and computer code

predictions vectors are written as y

e

= [ye,1, ye,2, . . . , ye,NO
]T and y = [y1, y2, . . . , yNO

]T,

respectively. If the GPR emulator were already built from a given training set and the

hyperparameters were determined using one of the previously mentioned approaches, the joint-

posterior distribution between the emulator predictions, y⇤, and the uncertain parameters, ✓,

would be:

p (y⇤, ✓|y
o

, {X,y} ,�) / p (y
o

|y⇤) p (y⇤| {xcv, ✓} , {X,y} ,�) p (✓) . (3.21)

Because the likelihood p (y
o

|y) and emulator posterior predictive distribution are both

Gaussian, the emulator predictions can be integrated out of Eq. 3.21. The likelihood is now

the GPR emulator modified likelihood, which is simply the emulator posterior predictive

distribution with the measurement error added to the predictive variance, yielding the result:

y⇤| {xcv, ✓} , {X,y} ,� ⇠ N
�
f̄⇤, cov (f⇤) + �

2
nI
�
. (3.22)

The (integrated) posterior distribution, conditioned upon the experimental data is then [4]:

p (✓|y
o

, {X,y} ,�) / p (y
o

| {xcv, ✓} , {X,y} ,�) p (✓) . (3.23)

3.6 GPR Demonstration

The same friction factor problem from Section 2.4 will be used to demonstrate use of the

GPR model. The friction factor equation, Eq. 2.5, uses the same parameterization. Twenty-

five artificial “experimental data” points were generated at the specified true-parameters

36

3.6. GPR Demonstration

values of exp (b) = 0.25 and exp (c) = 0.10 at evenly spaced intervals between Reynolds

numbers of 5000 and 45000. The general process for using GPR is as follows:

1. From the uncertain parameter prior distribution, choose lower and upper bounds on

each of the uncertain parameters.

2. Create the training set using a Latin hypercube sampling scheme.

3. Generate the training output by running the computer code at each training point

within the training set.

4. Build the emulator.

5. Calibrate the uncertain parameters using MCMC, using the emulator in place of the

computer code.

A total set of 50 training points was used to build the GPR emulator. A Gaussian prior was

used for the uncertain parameters, B and C, as shown in Table 3.1.

Table 3.1: Gaussian prior mean and variance for the friction factor uncertain parameters.

Uncertain Parameter Mean Variance Minimum Maximum

B Coefficient log(0.18) 0.179 -2.539 -0.846

C Exponent log(0.20) 0.162 -2.414 -0.805

In order to construct the training set, the LHS sampling scheme in MATLAB called

lhsdesign was used [12]. The output of lhsdesign is a set of scaled values between 0 and 1, as

shown in Figure 3.2. The scaling minimum and maximum values of the uncertain parameters

using the Gaussian priors were set at ±2� from the mean value. The training points were

then built by turning the scaled output from lhsdesign into raw B and C values; this same

process was also completed for the Reynolds numbers between 5000 and 45000. The raw

training points then were used as the inputs to the computer code (friction factor formula)

to produce the raw training set shown in Figure 3.3.

The GP emulator was built using AM-MCMC sampling with 2⇥ 104 burn-in samples and

2⇥ 104 covariance matrix samples with the AM proposal matrix, ⌃̂, being computed every

37

Chapter 3. Gaussian Process Emulators

Figure 3.2: Training set scaled values of B and C parameters.

Figure 3.3: GPR training set with 50 training points.

1000 samplings using the past 1000 samples. The posterior distributions were then sampled

using another AM-MCMC algorithm using 5 ⇥ 104 burn-in samples and 5 ⇥ 104 posterior

distribution samples. The resulting posterior predictions of the emulator are shown in Figure

3.4, with the posterior distributions of the uncertain parameters shown in Figure 3.5. As

reference, the directly sampled MCMC predictions and posterior distributions from Section

2.4 are also shown. The perfect GP emulator exactly reproduces the directly sampled MCMC

predictions and posterior distribution. The performance of the GPR is strongly dictated by

the training set, and Figure 3.6 shows that the training set covers the entire prior sample

space well, but not the posterior sample space; the posterior sample space is defined by ±2�

of the true, directly sampled B and C posterior distributions.

38

3.6. GPR Demonstration

Figure 3.4: Posterior predictions from direct MCMC sampling and GP Regression.

Figure 3.5: Posterior distributions from direct MCMC sampling and GP Regression.

Figure 3.6: Training set with posterior sample space and known true B and C values.

39

Chapter 4

Covariance Functions

The flexibility of GP models raises the question of which covariance function to use for

a given problem. The covariance function is a vital part of the Gaussian Process emulator,

inherently encoding some important prior assumptions about the underlying function that we

wish to model. The notion of similarity between data points is important: a basic assumption

is that points with inputs x which are close to one another are likely to have similar target

outputs, y [13]. In the Gaussian Process framework, the covariance function defines this

similarity, or closeness. The covariance shorthand is defined as:

Cov [f (x) , f (x0)] = k (x,x0) . (4.1)

4.1 Covariance Function Properties

A covariance function is a positive-definite function of two inputs, x and x

0 [16]. A

stationary covariance function depends only on the difference x � x

0. Furthermore, if the

covariance is only a function of |x� x

0| then it is called isotropic. This means that the

probability of observing a particular dataset remains the same even if the x values are all

moved by the same amount [16]. In contrast, non-stationary covariance functions will produce

different predictions if the data are moved similarly. All of the following covariance functions

have a �

2
f term at the beginning that specifies the signal covariance for each x and x

0.

41

Chapter 4. Covariance Functions

4.2 Basic Covariance Functions

Linear (Lin.)

The linear (Lin.) covariance function is of the form:

k(xp,xq) = �

2
f (xp � c)(xq � c), (4.2)

where c is a hyperparameter used as an offset constant to determine which points all the lines

in the posterior distribution go through; at this point, the function will have zero variance.

The linear covariance function is non-stationary and therefore is dependent on the absolute

location of the inputs. The linear covariance is too simple for most applications, but it is

useful when combined with other covariance functions.

Squared Exponential (SE)

The squared exponential (SE) covariance function is defined as:

k(xp,xq) = �

2
fexp

✓
�1

2
(xp � xq)

T
M (xp � xq)

◆
, (4.3)

where the subscripts p and q represent two different indices of the input x. The hyperparameters

are the signal variance �

2
f and the matrix M , which is a symmetric matrix usually given as:

M = diag (l)�2
, (4.4)

where l is a vector of positive values and each element, l1, . . . , lD plays the role of the

characteristic length-scale for each input parameter [4].

The squared exponential (SE) function has several properties that make it the default

covariance function for many Gaussian Process applications. The SE function has relatively

few parameters to estimate, with each one easily interpretable. This function is also capable

of learning any continuous function given enough data, under some conditions; this property

42

4.3. Advanced Covariance Functions

makes the SE a universally applicable covariance function [16]. The SE function is also

infinitely differentiable, meaning a Gaussian Process using this covariance function is very

smooth [13].

Periodic (Per.)

The periodic (Per.) covariance function is written as:

k(xp,xq) = �

2
fexp

✓
�2Msin2

✓
⇡

|xp � xq|
p

◆◆
, (4.5)

where p determines the distance between repetitions of the function, and M is the matrix of

characteristic length-scales [16].

Figure 4.1: Basic covariance functions with arbitrary units.

43

Chapter 4. Covariance Functions

4.3 Advanced Covariance Functions

Matérn Class

The Matérn class of covariance functions is given by:

kMatérn(xp,xq) =
�

2
f

�(⌫)2⌫�1

hp
2⌫ (xp � xq)

i⌫
K⌫M

hp
2⌫ (xp � xq)

i
, (4.6)

where �

2
f is the signal variance, � is the Gamma function, K⌫ is a modified Bessel function

[17] of the second kind of order ⌫ and M is the matrix of characteristic length-scales [13].

It was named for the work of Bertil Matérn by Michael Stein [18]. The Matérn covariance

function has an interesting feature in that it is [⌫ � 1] times differentiable [19]. Therefore,

the hyperparameter ⌫ can control the degree of smoothness. Special cases of the Matérn

covariance function exist when ⌫ is a half-integer: ⌫ = p + 1/2, where p is a non-negative

integer [13]. For these cases, the covariance function is a product of an exponential and a

polynomial of order p [13]. The first three forms are:

k⌫=1/2 (r) = �

2
fexp

⇣
�r

p
M

⌘

k⌫=3/2 (r) = �

2
f

⇣
1 +

p
3Mr

⌘
exp

⇣
�
p
3Mr

⌘

k⌫=5/2 (r) = �

2
f

⇣
1 +

p
5Mr + 5

3r
2
M

⌘
exp

⇣
�
p
5Mr

⌘
,

(4.7)

where r = xp � xq and M is the matrix of characteristic length-scales [13]. As ⌫ ! 1,

the Matérn covariance function becomes the squared exponential covariance function. For

Gaussian Process applications, ⌫ = 1/2 becomes very rough, and for ⌫ � 7/2 it becomes very

hard to distinguish between values of ⌫ � 7/2 unless there is explicit prior knowledge about

existence of the higher order derivates [13].

44

4.4. Combining Covariance Functions

Rational Quadratic

The rational quadratic (RQ) covariance function:

kRQ(xp,xq) = �

2
f

✓
1 +

1

2↵
(xp � xq)

T
M (xp � xq)

◆�↵

, (4.8)

with ↵,M > 0 can be a scale mixture (infinite sum) of squared exponential functions with

different length-scales l. In this parameterization, the RQ covariance for ↵ ! 1 becomes the

SE covariance function [13]. Similar to the Matérn class, the RQ covariance has a tunable

parameter ↵. Conversely, the RQ is infinitely differentiable for all ↵ and is therefore closer in

similarity to the SE covariance than the Matérn class covariance.

4.4 Combining Covariance Functions

A single covariance function can be used to model the data for the Gaussian Process

emulator, but the power of the covariance function lies in the ability to combine covariance

functions to reflect various aspects of the data. Combining covariance functions allows

properties from each covariance function to influence the GP predictions and uncertain

parameter calibration. In the end, combining covariance functions allows one the ability to

include as much high-level structure as necessary for the data [16]. Two ways of combining

covariance functions are through addition and multiplication. The notation for these is a

shorthand without input arguments with the understanding that:

ka ⇥ kb = ka(xp,xq)⇥ kb(xp,xq) (4.9)

and

ka + kb = ka(xp,xq) + kb(xp,xq). (4.10)

45

Chapter 4. Covariance Functions

4.4.1 Multiplication of Covariance Functions

Multiplying two positive-definite covariance functions always results in another positive-

definite covariance function [16]. Working with the covariance function allows the expression

of high-level properties of functions that do not necessarily have a simple parametric form. A

few examples are:

• Polynomial Regression

Multiplying L linear covariance functions together will create a polynomial of degree L

without having to specify a particular polynomial covariance function.

• Functions with Growing Amplitude

Multiplying by a linear covariance function means that the marginal standard deviation

of the modeled function grows linearly away from the location given by the hyperparameter

c [16].

Figure 4.2: Examples of multiplication of covariance functions for the expression of
different high-level properties.

46

4.4. Combining Covariance Functions

Each of the covariance functions contributes particular characteristics when multiplied

with another covariance function, as described in [16]:

• Multiplication by SE removes long range correlations from the original model, since

SE(x, x0) decreases monotonically toward 0 as |x� x

0| increases.

• Multiplication by Lin. is the same as multiplying the modeled function by a linear

function such that x⇥ f (x) ⇠ GP (0,Lin. ⇥ k); this causes the standard deviation to

vary linearly.

• Multiplication by Per. keeps the correlation between all pairs of functions within

one period apart, thus allowing variation within each period.

4.4.2 Sum of Covariance Functions

Additivity is a useful modeling assumption that allows for strong assumptions about the

individual components that make up the total sum [16]. Encoding the additivity into GP

models is simple, too. If fa and fb are drawn independently from GP priors:

fa ⇠ GP (µa, ka) (4.11)

fb ⇠ GP (µb, kb) , (4.12)

then the distribution of the sum of the functions is another GP:

fa + fb ⇠ GP (µa + µb, ka + kb) , (4.13)

which is identical to Eq. 3.2. The covariance functions used to generate k1 and k2 can be of

different classes, allowing for different underlying assumptions about the data, giving the user

greater flexibility with their GP models. Figure 4.3 shows several combinations of the basic

covariance functions summed together, but there is no limit to the number of covariance

functions that can be used this way.

47

Chapter 4. Covariance Functions

One of the benefits of summation of covariance functions compared to the product of

covariance functions is the difference in ability to extrapolate away from the training set.

The product of covariance functions is more limited because it allows a different function

value for every combination of inputs, making the GP uncertain about the function at values

away from the training points [16].

Figure 4.3: Sum of various combinations of covariance functions.

48

Chapter 5

Active Learning For Gaussian Process

Regression

The Gaussian Process Regression (GPR) model provides a simple, flexible framework

for modeling data. However, this simplicity does have its drawbacks. Primarily, the GPR’s

performance is limited by the ability of the training set to cover the posterior sample space.

As mentioned before, this problem is unique in that because we are running a deterministic

code we do not know the results until we run the computer code. The initial training set must

cover the prior sample space as much as possible to give an accurate posterior sample space

for the future placement of additional training points. Previous active learning methodologies

using Gaussian Process applications have been used to decide how to categorize a data point

(classification problems) or to reduce the number of data points used in the training set

(sparse Gaussian Processes) [20, 21]. In both of these instances, the domain was known

a priori when applying the active learning methodology. What makes this form of active

learning unique in this instance is that the posterior domain is not known a priori.

49

Chapter 5. Active Learning For Gaussian Process Regression

5.1 Methodology

The general methodology for GPR active learning is as follows:

1. Choose lower and upper bounds on each of the uncertain parameters.

2. Create the training set using a Latin hypercube sampling scheme.

3. Generate the training output by running the computer code at each training point

within the training set.

4. Build the emulator.

5. Calibrate the uncertain parameters using MCMC, using the emulator in place of the

computer code.

6. Determine which uncertain parameter values to assign the new training point(s) and at

which control variable location to place the new training point(s).

Steps 4 through 6 are iterated upon a certain number of times to arrive at a final posterior

predictive mean and variance and uncertain parameter posterior distributions. The process

workflow structure is outlined in Figure 5.1.

Figure 5.1: Workflow for Gaussian Process Active Learning.

50

5.2. Control Parameter Training Values

5.2 Control Parameter Training Values

The training matrix, X, consists of all the input parameters, which can be subdivided into

the uncertain parameters and the “control” parameters. The control parameter is a variable

for which we already have an experimental sample space of interest and have the explicit

ability to control. For the friction factor problem, the input parameter is the Reynolds

number because the Reynolds number can easily be changed by an experimental operator

changing the mass flow rate. The decision criterion for the control parameter should favor

using locations where the emulator predictive mean is far from the experimental data values

and the predictive variance is large. Thus, the decision criterion to determine the location of

the new input control parameter is defined as [22]:

x⇤,cv = argmax
h
|y⇤ � y

o

| ·
p

var (y⇤)
i
, (5.1)

since it accounts for differences between the emulator predictive mean and the experimental

data, plus the emulator predictive variance.

5.3 Uncertain Parameters Training Values

Each uncertain parameter must provide information to the emulator, as described in

section 3.3.1, to improve its utility. The method proposed by Gorodetsky and Marzouk

designs experiments which minimize the integrated posterior variance (IVAR) of the Gaussian

Process[23]. This method aims to minimize the integrated variance of the emulator posterior

predictive variance:

x⇤,unc = argmin
ˆ
X

k (x|x) dµ(x). (5.2)

Evaluating Eq. 5.2 can be done using quadrature or Monte Carlo (MC) sampling

techniques. Since the variance is usually a smooth function, quadrature schemes may work

accurately for low-dimensional models. Monte Carlo schemes are generally better and more

robust for higher order dimensionality problems and were the schemes of choice for applications

51

Chapter 5. Active Learning For Gaussian Process Regression

of this methodology. A Monte Carlo scheme replaces the integral with a summation:

ˆ
X

k (x|x) dµ(x) ⇡ 1

Nmc

NmcX

i=1

k (xi|x⇤,cv) , (5.3)

where Nmc is the number of MC samples and xi ⇠ µ [23].

5.4 Greedy and Batch Training

Addition of the active learning training points can be done either in a greedy or batch

fashion. “Greedy” refers to the best single point being added each time. A greedy algorithm,

for instance, always makes the choice that is locally optimal in the hopes that this choice

will lead to a globally optimal solution [24]. Greedy implementations are easy to implement

overall and much cheaper computationally than exhaustive searches. However, there is no

guaranteed way to recognize whether a problem can be solved using a greedy algorithm. On

the other hand, batch training, or dynamic programming, solves problems by combining

the solutions to subproblems [24]. In the context of our work, this means that training

points are added as groups of points instead of as single points at a time. This approach is

typically applied to optimization problems having many possible solutions. Batch training is

advantageous because interactions between the training points are taken into account directly

[23].

Adding greedy training points for GPR often results in point “pile-up,” with several

training points being added at, or near, another training point value. Greedily adding T

training points also requires retraining the emulator and then recalibrating the uncertain

parameters before adding another training point, thus, a total of T + 1 iterations. But, each

additional training point adds information to the covariance matrix and, in principle, provides

a more accurate covariance matrix for better future predictions and training point additions.

Adding training points in batch allows for several alternative benefits as well: avoiding

pileup, reducing the number of iterations needed to retrain the emulator and calibrate the

uncertain parameters, and providing the freedom to modify the batch size. The added freedom

to modify the batch size allows for tuning of the batch size to allow for more exploration or

52

5.5. Friction Factor Revisited

exploitation. For example, smaller batch sizes can be chosen when the hyperparameters are

changing rapidly between iterations (exploration) and batch sizes can be increased once the

hyperparameters converge (exploitation) [23]. Tuning of the batches was not explored in our

work.

5.5 Friction Factor Revisited

The friction factor problem from Section 3.2 was repeated with the active learning

methodology implemented. In the first GPR demonstration, 50 training points were selected

from a LHS scheme using the lhsdesign MATLAB function [12]. The active learning

methodology uses 20 initial training points (10 per uncertain parameter) and is created using

the same LHS scheme in MATLAB. The SE covariance function was used to demonstrate

the improvements obtained from using the active learning alone, while not modifying the

covariance function. The GP emulator was built using AM-MCMC sampling with 2⇥ 104

burn-in samples and 2⇥ 104 covariance sampling samples with the AM proposal matrix, ⌃̂,

being computed every 1000 samplings using the past 1000 samples. The posterior distributions

were then sampled using another AM-MCMC algorithm with 5⇥ 104 burn-in samples and

5⇥ 104 posterior distribution samples. After performing GPR with the initial 20 training

points, an additional 20 training points were added using the active learning methodology

described in Chapter 5. These additional points were added in a single batch of 20 points

rather than in a greedy fashion. The emulator was then rebuilt and the posterior predictions

were sampled using the uncertain calibrated parameters. Figure 5.2 shows the initial training

points (black) and the additional training points (red) with the experimental data given as

point estimates with their 95% confidence interval given by the error bars. Notice how the

initial training points hardly cover the experimental data. This is a product of the LHS

scheme trying to cover the B and C parameter sample space as much as possible. The 20

additional training points placed using the IVAR method in Eq. 5.2 at locations specified by

Eq. 5.1 cover the experimental data very thoroughly. Thus, the active learning algorithm is

able to propose new training points that cover the posterior sample space very well. But, how

well does the addition of these new training points improve the performance of the emulator?

53

Chapter 5. Active Learning For Gaussian Process Regression

Figure 5.2: Active learning training set with the initial 20 training points (black) and
the additional 20 training points (red) using the squared exponential (SE) covariance
function.

Figure 5.3: Active learning posterior predictions of the GP with the initial training
points (green), additional training points (red), and the true MCMC sampled predictions
(blue) using the squared exponential (SE) covariance function.

54

5.5. Friction Factor Revisited

The posterior predictions are shown in Figure 5.3 with the true directly sampled MCMC

predictions from Section 2.4 shown in blue, the emulator predictions from the initial training

set in green, and the emulator predictions with the 20 additional training points shown in

red. Clearly, the 20 additional training points improve the predictive performance of the

emulator and match the directly sampled MCMC predictions. The 95% confidence intervals

for the predictions, shown with the transparent area of the same color as the mean prediction,

narrow when the additional training points are added and match the uncertainty present in

the directly sampled MCMC example. Therefore, this active learning methodology produces

an emulator which produces the same predictive quality as if the true computer code were

being directly MCMC sampled.

For the desired applications of this methodology, the uncertain parameter posterior

distributions are greatly important to the performance of the emulator. Figure 5.4 shows the

uncertain parameter distributions for both B and C parameters with their respective priors

(black) and true MCMC sampled posteriors (blue); the sample color scheme is the same as

before for the initial training points and the additional training points. Notice that the initial

posterior distributions have similar precision to the true posteriors, but the accuracies are

poor with each distribution being roughly 0.10 scaled distance away from the true posterior

mean. The posteriors from the additional 20 training points are nearly identical to the true

posteriors. There are small deviations from the true posterior distribution at the modes and

towards the tails, but the overall accuracy and precision of the emulator posterior distribution

matches the true, directly sampled MCMC posterior distribution quite well. Figure 5.5 also

demonstrates how the additional training points chosen by the IVAR criterion cover the

posterior sample space well. The linear appearance of the additional training points is due

to the B and C uncertain parameters being highly correlated. Thus, the active learning

methodology improves the performance of the simple Gaussian Process emulator, and even

uses fewer training points than the comparable demonstration described in Section 3.6.

55

Chapter 5. Active Learning For Gaussian Process Regression

Figure 5.4: Active learning posterior distributions from the initial training points (green),
additional training points (red), and the true MCMC sampled posterior distribution
(blue) using the squared exponential (SE) covariance function.

Figure 5.5: Initial and additional training points with posterior sample space and known
true B and C values.

56

5.6. Influence of the Covariance Function

5.6 Influence of the Covariance Function

After demonstrating that the active learning methodology does improve the performance

of the GP emulator, the next step is to investigate the impact of modifying only the covariance

function. As stated before, the covariance function encodes the beliefs about the computer

code being emulated.

There are, in fact, several methods for comparing covariance functions. The marginal

likelihood is the chosen criterion here since it balances the fit and complexity of a model

[25]. Conditioned upon kernel parameters, the marginal likelihood of a GP can be computed

analytically by Eq. 2.2. In addition, if one compares GP models by the maximum likelihood

value obtained after optimizing their hyperparameters, then all else being equal, the model

having more parameters will be chosen; this introduces a bias in favor of more complex models.

Overfitting can be avoided by integrating the marginal likelihood over all parameters, but this

integral is difficult to compute in general. Instead, the integral can be loosely approximated

using the Bayesian information criterion (BIC) [26]:

BIC (X) = log [p (y|X)]� 1

2
|X| logN, (5.4)

where log [p (y|X)] is the log-marginal likelihood from Eq. 2.2 with the optimized hyperparameters,

|X| is the number of hyperparameters for the covariance function, and N is the number

of training points. This provides an adequate estimation of the “value” of each covariance

function with a penalty term for the complexity of the covariance function.

In addition to BIC, the predictive capability of the emulator is also of great importance.

Each covariance function combination requires comparing the emulator predictive mean to

the experimental data using the root mean square error (RMSE) method:

RMSE (y⇤,yo

) =

vuut 1

n

nX

i=1

�
y⇤,i � y

e,i

�2
, (5.5)

where y⇤ and y

e

are the predictive and experimental means, respectively. Table 5.1 shows

57

Chapter 5. Active Learning For Gaussian Process Regression

the calculated BIC and RMSE for several covariance functions applied to the friction factor

problem. Additionally, because the friction factor example is not computationally expensive,

a comparison between the true directly sampled MCMC posterior distributions and the GP

uncertain parameter posterior distributions is possible, appearing as the final column in

Table 5.1 with the B and C parameters RMSE, respectively. The bolded values in the table

correspond to the four best values obtained for the BIC and RMSE; a higher BIC is better,

and a lower RMSE is better.

Table 5.1: Effect of covariance function on Gaussian Process emulator performance. A
larger Bayesian information criterion (BIC) values is better, while a smaller root mean
square error (RMSE) value is better. The three “best” values for each category are bolded,
while the three “worst” values are underlined.

RMSE for:

Covariance Function BIC Predictive Mean
Posterior

Distributions
[B,C]

Squared Exponential (SE) 78.24 1.609⇥ 10�4 [0.379,0.369]

Rational Quadratic (RQ) 78.27 2.155⇥ 10�4 [0.852, 0.817]

Matérn(⌫ = 3/2) 53.72 6.568⇥ 10�4 [1.080, 1.098]

Matérn(⌫ = 5/2) 74.18 1.368⇥ 10�4 [0.819, 0.777]

Product

{SE,Linear} 69.91 7.610⇥ 10�4 [3.837, 1.678]

{SE,Matérn(⌫ = 5/2)} 70.15 1.632⇥ 10�4 [0.195,0.207]

{RQ,Linear} 54.86 2.807⇥ 10�4 [1.333, 1.221]

{RQ,Matérn(⌫ = 5/2)} 77.48 1.399⇥ 10�4 [0.399,0.393]

{Matérn(⌫ = 5/2),Linear} 39.82 3.988⇥ 10�4 [0.903, 0.818]

Sum

{SE,Linear} 69.10 1.703⇥ 10�4 [0.647, 0.641]

{SE,SE} 69.70 1.008⇥ 10

�4 [0.468,0.442]

{SE,Matérn(⌫ = 5/2)} 88.92 1.041⇥ 10

�4 [0.857, 0.812]

{RQ,Matérn(⌫ = 5/2)} 87.44 1.253⇥ 10

�4 [0.869, 0.811]

{Matérn(⌫ = 5/2),Linear} 75.30 1.463⇥ 10�4 [0.714, 0.701]

58

5.6. Influence of the Covariance Function

The covariance function which had the smallest RMSE error for the uncertain parameter

posterior distributions was the product of the SE and the Matérn with ⌫ = 5/2 covariance

functions. For comparison to the simple SE covariance function, the training set, posterior

predictions, and uncertain parameter posterior distributions are shown in Figures 5.6, 5.7, and

5.8, respectively. An interesting observation from Figure 5.6 is that the additional training

points are not directly on top of the experimental data as they were with the SE covariance

function in Figure 5.2. However, the BIC and RMSE values are comparable for the two

covariance functions, with the {SE,Matérn(⌫ = 5/2)} having the better RMSE value on the

posterior distributions. This helps illustrate how the “best” additional training points can

vary between covariance functions. The posterior distributions for the uncertain parameters

in Figure 5.8 with the additional points are nearly identical to the directly sampled MCMC

of the friction factor function. Overall, both sets of figures help demonstrate the power of

the active learning methodology in properly replicating the same results of direct MCMC

sampling of the true friction factor computer code.

Figure 5.6: Training set from the product of the SE and Matérn with ⌫ = 5/2 covariance
functions with the initial 20 training points (back) and the additional 20 training points
(red).

59

Chapter 5. Active Learning For Gaussian Process Regression

Figure 5.7: Posterior predictions from the product of the SE and Matérn with ⌫ = 5/2
covariance functions with the initial training points (green), additional training points
(red), and the true MCMC sampled predictions (blue).

Figure 5.8: Posterior uncertain parameter distributions from the product of the SE
and Matérn with ⌫ = 5/2 covariance functions from the initial training points (green),
additional training points (red), and the true MCMC sampled posterior distribution
(blue).

60

Chapter 6

Demonstration of Active Learning GPR

with RELAP Models

The friction factor model previously used is helpful for demonstration purposes, but does

not adequately represent the complex reactor safety analysis codes that this GPR active

learning methodology was developed. Problems that can be modeled with system codes

such as RELAP are the reason for GPR applications. Two RELAP simulations from Yurko

[4] were chosen to demonstrate the GPR active learning methodology and to analyze the

influence of the covariance function: the Cheng & Todreas friction factor correlation [27] and

the Gapalakrishnan & Gillette (1973) data [28]. Both of these examples use the same generic

RELAP model shown in Figure 6.1; dimensions and flow rates change for each problem, but

the overall layout is still the same. As Yurko [4] describes, the inlet boundary condition is

a time dependent junction which sets the mass flow rate. This inlet boundary condition

is attached to a dummy volume, labeled as component 200 in Figure 6.1. Dummy volume

200 is attached to the bundle/channel of interest labeled component 400 via junction 201.

When applicable to the simulation, Junction 201 is where the inlet nozzle loss coefficient

is applied. Component 400 is attached to another dummy volume, labeled as component

100. Component 100 is attached to the outlet pressure boundary condition; both dummy

volumes 200 and 100 have the wall friction turned off. Therefore, the pressure drop across

the entire model is determined by subtracting the pressures within dummy volumes 200 and

100. With the outlet pressure fixed, the pressure from the time dependent inlet mass flow

61

Chapter 6. Demonstration of Active Learning GPR with RELAP Models

boundary condition adjusts depending upon the specified mass flow rate and the frictional

characteristics of the components. The resulting pressure drop is considered to be the RELAP

�P value [in pascals (Pa)].

The Cheng & Todreas RELAP simulation considers channel component 400 as a single

channel called the driver fuel (DF). Furthermore, there is assumed to be no inlet nozzle loss

coefficient. On the other hand, the Gapalakrishnan & Gillette (G&G) RELAP simulation

breaks channel component 400 into three sections: the lower blanket (LB), the driver fuel

(DF), and the upper blanket (UB). Additionally, the G&G simulation does include a nozzle

loss coefficient applied at junction 201.

Figure 6.1: Generic RELAP model illustration for the two RELAP simulations; replotted
from [4].

RELAP User Defined Friction Factor Correlation

The RELAP user defined friction factor correlation is given for the laminar, transition,

and turbulent regimes as [4]:

f

L =
64

Re · �S

; for 0 Re 2200 (6.1)

f

+ =

✓
3.75� 8250

Re

◆�
f

T
3000 � f

L
2200

�
+ f

L
2200; for 2200 < Re < 3000 (6.2)

f

T = B ·Re

�C ; for Re � 3000 (6.3)

62

6.1. Cheng & Todreas (C&T) RELAP Simulation

where �S is the laminar shape factor, fL is the laminar friction factor, f+ is the transition

regime friction factor, fT is the turbulent friction factor, and f

T
3000 and f

L
2200 are the turbulent

and laminar friction factors calculated at Re = 3000 and Re = 2200, respectively. The

turbulent friction factor correlation is the unparameterized form of Eq. 2.5. The B and C

parameters are referred to collectively as the turbulent friction factor parameters, and B, C,

and �S parameters are collectively referred to as the friction factor parameters [4].

GPR Emulator Characteristics

The emulators used for the two RELAP models were constructed in the same way as

in Chapter 5. However, a key difference between the friction factor example demonstrated

in Chapter 5 and the emulators built in this chapter are the uncertain parameters’ prior

distributions. The friction factor demonstration problems used a Gaussian prior with a

mean and known variance. These priors were reparameterized using exponententials to avoid

ever having negative values, which physically aren’t possible. From now on, all uncertain

parameters prior distributions will be uniform priors between lower and upper values taken

from Yurko [4]. The uniform priors force the uncertain parameter values to stay within the

prior bounds since any value outside of the prior has a density of zero.

6.1 Cheng & Todreas (C&T) RELAP Simulation

The Cheng & Todreas (C&T) RELAP simulation calibrates the three friction factor

parameters in the driver fuel (DF) of the RELAP user-defined friction factor correlation.

As before, the initial training set requires 10 initial training points for each uncertain input

parameter, for a total of 30 initial training points. Twenty-five experimental data points

are generated ranging from 1% of nominal core channel flow to 100% core channel flow.

The experimental data used are generated from the Cheng & Todreas wire-wrapped bundle

average friction factor correlation, hence the naming convention for this simulation [27]. The

experimental error of the data is assumed to be that 95% of the probability was covered by

±33% around the mean data value of the first training point; this error was kept constant for

each of the 25 training points. Figure 6.2 shows the 25 experimental data points with the

63

Chapter 6. Demonstration of Active Learning GPR with RELAP Models

initial training set. The error on the experimental data is so small that it only appear as a

single line at each data point.

Table 6.1: Prior bounds for the Cheng & Todreas uncertain parameters. Values are
taken from [4].

Uncertain Parameter Minimum Value Maximum Value

DF B Coefficient 0.138 0.23

DF C Exponent 0.15 0.25

DF �S Shape Factor 0.125 1.875

Figure 6.2: Cheng & Todreas (C&T) experimental data and initial GPR training set.

As before, the emulator is built using AM-MCMC sampling and the posterior distributions

for the uncertain parameters are sampled using AM-MCMC. An additional 30 training points

are added using the active learning methodology from Chapter 5 for a total of 60 training

points. The emulator is rebuilt with the new training set of 60 points, and the uncertain

parameters are calibrated. This procedure is repeated for the 13 different covariance functions

tested, as shown in Table 6.2. The three best BIC and RMSE values are bolded, and the

three worst values are underlined. The product of the SE and Linear covariance functions

had the lowest predictive RMSE out of all the tested covariance functions. The squared

64

6.1. Cheng & Todreas (C&T) RELAP Simulation

exponential (SE) and rational quadratic (RQ) covariance functions have two of largest BIC

values, yet the worst RMSE for the the predictive mean.

Table 6.2: C&T BIC and RMSE values with constant error. A larger Bayesian
information criterion (BIC) values is better, while a smaller root mean square error
(RMSE) value is better. The three “best” values for each category are bolded, while
the three “worst” values are underlined. The product of the SE and Linear covariance
functions had the lowest predictive RMSE out of all the tested covariance functions. The
squared exponential (SE) and rational quadratic (RQ) covariance functions have two of
largest BIC values, yet the worst RMSE for the the predictive mean.

Predictive Mean

Covariance Function BIC RMSE

Squared Exponential (SE) 196.5 258.2

Rational Quadratic (RQ) 204.9 306.1

Matérn(⌫ = 3/2) 129.8 229.5

Matérn(⌫ = 5/2) 168.7 151.5

Product

{SE,Linear} 73.44 74.14

{SE,Matérn(⌫ = 5/2)} 198.4 120.6

{RQ,Linear} 100.4 112.8

{RQ,Matérn(⌫ = 5/2)} 171.2 150.3

{Matérn(⌫ = 5/2),Linear} 82.87 197.3

Sum

{SE,Linear} 196.0 187.0

{SE,SE} 190.1 146.7

{SE,Matérn(⌫ = 5/2)} 180.8 168.8

{Matérn(⌫ = 5/2),Linear} 165.2 140.6

65

Chapter 6. Demonstration of Active Learning GPR with RELAP Models

The uncertain parameter posterior distributions in Figure 6.5 are well formed and nearly

Gaussian in appearance. These results are similar to the results in Yurko where he was using

Function Factorization with Gaussian Process Priors (FFGP) and 50 training point values[4].

In his results, the C exponent was well defined with a scaled value of roughly 0.50, but the

B coefficient and �S shape factor were compressed to the prior maximum and minimum,

respectively. The fact both the B and �S parameters are well defined within the sample

space of this active learning could explain why the C exponent has shifted slightly left to a

mean of approximately 0.38. Ultimately, the active learning methodology achieved similar

results using a much simpler methodology and 60 training points.

Figure 6.3: C&T additional training points from product of SE and Linear covariance
functions.

66

6.1. Cheng & Todreas (C&T) RELAP Simulation

Figure 6.4: C&T emulator posterior predictions of the emulator from product of SE
and Linear covariance functions.

Figure 6.5: C&T posterior distributions of B, C, and �S uncertain parameters from
product of SE and Linear covariance functions.

67

Chapter 6. Demonstration of Active Learning GPR with RELAP Models

6.2 Gopalakrishnan & Gillette (G&G) RELAP Simulation

The Gopalakrishnan & Gillette (G&G) RELAP Simulation has the same general layout as

the Cheng & Todreas simulation shown in Figure 6.1, except that component 400 is no longer

a single driver fuel section but three sections: the lower blanket (LB), driver fuel (DF), and

upper blanket (UB). The LB and UB are assumed to be the same geometry, and thus have

the same B, C, and �S values. This means that three additional uncertain parameters are

added to the RELAP model for the LB and UB friction factor parameters. An inlet nozzle

loss coefficient uncertain parameter is also added since the G&G data is for the pressure

drop across the entire channel and not a single bundle like the Cheng & Todreas simulation.

Therefore, a total of seven uncertain parameters will be calibrated using the GPR: the three

DF friction factor parameters, three LB and UB friction factor parameters, and the inlet

nozzle loss coefficient.

The experimental data for the G&G simulation comes from Gopalakrishnan & Gillette

[28]. Their data comes from hydraulically scaled water tests, making it difficult to tell whether

the results used here come directly from experimental data or from empirical corrections.

The “data” were taken from their paper and are shown in Figure 6.6.

Figure 6.6: Gopalakrishnan & Gillette pressure drop experimental “data”

68

6.2. Gopalakrishnan & Gillette (G&G) RELAP Simulation

Table 6.3: Prior bounds for the Gopalakrishnan & Gillette uncertain parameters. Values
are taken from [4].

Uncertain Parameter Minimum Value Maximum Value

LB/UB B Coefficient 0.138 0.23

LB/UB C Exponent 0.15 0.25

LB/UB �S Shape Factor 0.125 1.875

DF B Coefficient 0.138 0.23

DF C Exponent 0.15 0.25

DF �S Shape Factor 0.125 1.875

Inlet Nozzle Loss Coefficient 5 40

Only six experimental data points were taken from Figure 6.6 due to the inherent difficulty

of getting accurate “data” from Figure 6.6. The experimental error of the data is assumed

to be that 95% of the probability was covered by ±33% around the mean data value of the

first training point; this error was kept constant for each of the 6 data points. Figure 6.7

shows the 6 experimental data points with the initial training set, with the error bars barely

noticeable since they are so small.

Figure 6.7: Gopalakrishnan & Gillette (G&G) experimental data and initial GPR
training set.

69

Chapter 6. Demonstration of Active Learning GPR with RELAP Models

Table 6.4: G&G emulator BIC and RMSE values with constant error.

Predictive Mean

Covariance Function BIC RMSE

Squared Exponential (SE) 523.0 8406

Rational Quadratic (RQ) 551.3 4630

Matérn(⌫ = 3/2) 377.2 4215

Matérn(⌫ = 5/2) 498.2 4530

Product

{SE,Linear} 332.5 3128

{SE,Matérn(⌫ = 5/2)} 498.8 4461

{RQ,Linear} 375.6 3199

{RQ,Matérn(⌫ = 5/2)} 530.3 4578

{Matérn(⌫ = 5/2),Linear} 366.9 4776

Sum

{SE,Linear} 541.6 4313

{SE,Matérn(⌫ = 5/2)} 519.1 5777

{Matérn(⌫ = 5/2),Linear} 540.6 3409

The initial GPR emulator is built from an initial training set of 70 points (10 per uncertain

parameter) and using AM-MCMC sampling. The posterior distributions for the uncertain

parameters are also sampled using AM-MCMC. An additional 70 training points are added

using the adaptive learning methodology from Chapter 5 for a total of 140 training points.

The emulator is rebuilt with the new training set of 140 points and the uncertain parameters

are calibrated. This procedure is repeated for the 13 different covariance functions tested, as

shown in Table 6.2. The three best BIC and RMSE values are bolded, and the three worst

values are underlined.

The product of the SE and Linear covariance functions had the lowest predictive RMSE

out of all the tested covariance functions. The final training set, emulator posterior predictions,

and uncertain parameter posterior distributions are all shown in Figures 6.8, 6.9, and 6.10,

respectively. Unlike the Cheng & Todreas simulation, the G&G only had six experimental

data points. This creates several non-ideal situations for the emulator. First, there are

fewer locations to place additional training points. As shown in Figure 6.8, many of the

70

6.2. Gopalakrishnan & Gillette (G&G) RELAP Simulation

training points are nearly on top of one another. As explained before in Section 3.3.1, if

several training points have a shared input x1 with other differing x2,3,...,D values, there is

no learning of the relation between x1 and the output f(x) from those points. Therefore,

it is advantageous to have more experimental data points to help prevent the additional

training points from being placed nearly on top of one another. Another shortfall of the

few experimental data points is that it forces the emulator to become piecewise linear. The

covariance functions tested all have varying degrees of smoothness associated with them, but

none of them are designed to model a piecewise linear function. Furthermore, a piecewise

linear covariance function should only be used if the true underlying function is believed

to be a piecewise linear function. This clearly is not the case, and goes to demonstrate the

necessity for more experimental data points in order to provide reliable GP results.

Figure 6.8: G&G data additional training points from product of SE and Linear
covariance functions.

Figure 6.9: G&G emulator posterior predictions of the emulator from product of SE
and Linear covariance functions.

71

Chapter 6. Demonstration of Active Learning GPR with RELAP Models

The posterior distributions in Figure 6.10 further confirm this due to their lack of a clear

Gaussian form. Only the inlet nozzle loss coefficient is clearly defined by the data, with

the DF B and C parameters slightly less defined; the DF �S is pushed up against the edge

and not well defined with an extended distribution tail. The LB/UB parameters are hardly

defined at all from the data, and there is little confidence in the ability of the GP to accurately

determine those parameter values. This can also be contributed to the lack of experimental

data points from the original G&G experiment. It should be noted that even obtaining the

six experimental data points in the first place, as stated before, was difficult when there was

confusion on what the data represented in the original 1973 paper from Gopalakrishnan and

Gillette. Ultimately, any use of Gaussian processes should ensure that a proper quantity

of experimental data points are obtained in order to prevent the piecewise linear function

obtained from the G&G RELAP simulation.

Figure 6.10: G&G data posterior distributions of the seven uncertain parameters from
product of SE and Linear covariance functions.

72

6.3. Experimental Error Scaling as the Mean

6.3 Experimental Error Scaling as the Mean

In the previous simulations, the experimental error was assumed to be the same for each

of the experimental data points. In certain situations where the experimenters are unable to

resolve some constant error, this is an adequate assumption for the error. However, if the

experimental error is designed to model the uncertainty presented by a measurement device,

such as a pressure gauge, then a fixed experimental error is an incorrect assumption. The error

of industrial pressure gauges is often given as a fraction of the mean measured value. While

some measurement techniques are able to have uncertainty as low as 0.025%, a measurement

uncertainty of 1% seems more realistic [29, 30]. Therefore, both RELAP simulations (C&T

and G&G) were run again with the experimental error of the data assumed to be that 95% of

the probability was covered by ±1% around the mean data value. Besides the experimental

error, everything else was kept the same. Thus, only the results and implications of the

experimental error as it pertains to GPR active learning will be discussed.

Cheng & Todreas RELAP Simulation

Table 6.5 shows the results with the experimental error scaling as 1% of the mean for the

Cheng & Todreas RELAP simulation. As before, the product of the SE and Linear covariance

functions had the lowest RMSE for the predictive mean of the emulator. When compared

with Table 6.2, there is no large difference in performance for any of the covariance functions.

There are minor differences in the RMSE, largely due to the fact that there is a larger

experimental error, and that larger experimental error allows the emulator more freedom to

explore different uncertain parameter combinations. However, the best performing covariance

functions with the fixed experimental error are still, by and large, the best performing

covariance functions when the experimental error scales as the mean. The product of the

SE and Linear covariance functions was the best performing emulator with the larger error.

Figure 6.11 shows the 30 training points the active learning methodology added to the initial

training set.

73

Chapter 6. Demonstration of Active Learning GPR with RELAP Models

Table 6.5: Cheng & Todreas emulator BIC and RMSE values with error as 1% of mean.

Predictive Mean

Covariance Function BIC RMSE

Squared Exponential (SE) 201.8 163.0

Rational Quadratic (RQ) 200.3 155.2

Matérn(⌫ = 3/2) 82.8 286.5

Matérn(⌫ = 5/2) 186.4 167.7

Product

{SE,Linear} 116.1 111.6

{SE,Matérn(⌫ = 5/2)} 197.9 150.3

{RQ,Linear} 95.2 129.7

{RQ,Matérn(⌫ = 5/2)} 207.4 143.4

{Matérn(⌫ = 5/2),Linear} 90.6 135.7

Sum

{SE,Linear} 179.8 155.2

{SE,SE} 73.85 217.3

{SE,Matérn(⌫ = 5/2)} 177.1 158.3

{Matérn(⌫ = 5/2),Linear} 175.5 158.5

Figure 6.12 shows the posterior predictions for the same emulator. Visually, it is

indistinguishable from the fixed error posterior predictions in Figure 6.4. They both predict

the experimental data very well, but the fixed experimental error emulator performs slightly

better with a RMSE of 74.1 compared to the scaled experimental error RMSE of 111.

The posterior distributions for the uncertain parameters show the greatest difference

between the treatment of the experimental error. As anticipated, the larger experimental

error causes the variance of the posteriors in Figure 6.13 to be greater than in Figure 6.5.

The mean of the B and C posteriors are nearly the same, confirming the accuracy of the

posteriors; it would be very troubling if the posteriors from Figures 6.5 and 6.13 didn’t look

similar at all. The �S parameter, however, doesn’t have quite the same mean when the

experimental error increases. This could be a result of the B and C parameters being highly

correlated and the �S parameter not. Figure 6.14 shows that the correlation of the B and C

parameters are 1.00, while there is only a correlation of approximately 0.60 between B,C

74

6.3. Experimental Error Scaling as the Mean

and �S. This would allow for the similar B and C posteriors distributions to have a different

corresponding �S posterior distributions.

Figure 6.11: C&T additional training points with error as 1% of the mean from SE and
Linear covariance functions.

Figure 6.12: C&T emulator posterior predictions of the emulator with error as 1% of
the mean from SE and Linear covariance functions.

75

Chapter 6. Demonstration of Active Learning GPR with RELAP Models

Figure 6.13: Posterior distributions of the B, C, and �S uncertain parameters with
error as 1% of the mean.

Figure 6.14: C&T correlation of B, C, and �S uncertain parameters.

76

6.3. Experimental Error Scaling as the Mean

Gopalakrishnan & Gillette (G&G) RELAP Simulation

The results for the G&G RELAP simulation with the error scaling as the mean is much

the same as the C&T simulation. From Table 6.6 it is clear that the covariance functions

which performed well with the constant error continued to perform well with the experimental

error scaling as the mean. It is, however, interesting that with the increased experimental

error the predictive mean RMSE for the top three covariance functions in Table 6.6 is actually

lower than the top three predictive mean RMSE values in Table 6.4. This is because the larger

experimental error provides the MCMC sampling algorithm the opportunity to better explore

the posterior uncertain parameter samples space. The smaller and constant experimental

error limits the combinations of uncertain parameter values that the MCMC algorithm will

sample, causing the MCMC sampling to not be adequately mixed as discussed before in

Section 2.4. Figure 6.15 shows the 70 training points the active learning methodology added

to the initial training set, with the improved posterior predictions shown in Figure 6.16.

Table 6.6: G&G emulator BIC and RMSE values with error as 1% of mean.

Predictive Mean

Covariance Function BIC RMSE

Squared Exponential (SE) 426.4 4898

Rational Quadratic (RQ) 400.8 2713

Matérn(⌫ = 3/2) 355.3 3781

Matérn(⌫ = 5/2) 483.8 3306

Product

{SE,Linear} 407.6 2971

{SE,Matérn(⌫ = 5/2)} 498.2 4872

{RQ,Linear} 407.5 3280

{RQ,Matérn(⌫ = 5/2)} 465.6 4571

{Matérn(⌫ = 5/2),Linear} 413.2 3979

Sum

{SE,Linear} 545.6 5836

{SE,Matérn(⌫ = 5/2)} 508.2 4703

{Matérn(⌫ = 5/2),Linear} 535.8 3861

77

Chapter 6. Demonstration of Active Learning GPR with RELAP Models

The uncertain parameter posterior distributions in Figure 6.17 show that there is little

confidence in the ability for the data to adequately determine many of the uncertain parameters.

The nozzle loss coefficient is the only uncertain parameters that is well explained by the

experimental data in this case. Therefore, the GPR demonstrates that the G&G experimental

data is not adequate to predict the value of any of the LB/UB and DF uncertain parameters.

The best solution would be to do a simultaneous calibration of C&T DF parameters with

all of the G&G uncertain parameters so the C&T data can help inform the G&G emulator.

Ultimately, the G&G data does not provide enough information to properly determine the

uncertain parameter posterior distributions and other experimental data should be used to

determine the LB/UB uncertain parameters.

Figure 6.15: G&G additional training points with 1% error from SE and Linear
covariance functions.

78

6.3. Experimental Error Scaling as the Mean

Figure 6.16: G&G emulator posterior predictions with 1% error from SE and Linear
covariance functions.

Figure 6.17: G&G emulator posterior distributions of the seven uncertain parameters
with 1% error from SE and Linear covariance functions.

79

Chapter 7

Summary, Conclusions, and Future Work

7.1 Summary

Bayesian inference allows a framework for solving inverse problems that would otherwise

be analytically intractable. Observational data can be used for uncertainty quantification

(UQ) of computer model predictions and for inferring the distribution of the input parameters;

this properly performs reverse UQ. The Gaussian Process framework allows an emulator to

be constructed in place of the long running computer code in order to make Markov Chain

Monte Carlo (MCMC) sampling of the posterior distributions feasible and computationally

economical. Even a “fast” computer simulation taking 3 seconds per iteration would require

over 83 hours of run time for 105 MCMC samples. An emulator that is 1000x faster would

allow the same 105 MCMC samples to be completed in only 300 seconds. As the run time

for a computer code increases, the value added by using an emulator increases as well since

direct MCMC sampling would become impractical to even attempt.

The work reported here improves the performance of Gaussian Process Regression (GPR)

emulators through active learning to choose which additional training points should be added

to the current emulator training set. Further investigation into the role and implications of

different covariance functions within the GPR framework are also investigated. The active

learning methodology is demonstrated using a simple friction factor demonstration problem

with a function that could easily be directly MCMC sampled from, in order to provide a

benchmark for the emulator performance. The active learning methodology is then applied to

81

Chapter 7. Summary, Conclusions, and Future Work

two RELAP simulations to demonstrate the ability for the methodology to work with a long

running computer code and higher complexity. For each of the three GPR active learning

demonstrations the influence of the covariance function is also tested with several important

observations and recommendations made.

7.2 Conclusions

The GPR active learning methodology was implemented and shown to produce nearly

identical uncertain parameter distributions to the directly sampled MCMC case. Of the several

covariance functions tested with the friction factor demonstration, the squared exponential

(SE) covariance function and the product of the SE and Linear covariance functions were

shown to perform best. This comparison was only possible because the friction factor example

was simple enough for a direct MCMC sampling. For the more complex RELAP simulations,

a direct MCMC sampling of the RELAP model was not feasible. Several recommendations

for future applications of GPR are given with regards to the covariance function, including:

• The SE covariance function as the primary covariance function used in the literature

for its simplicity also holds merit as a simple, yet effective covariance function for most

applications. However, much forethought should be given to the covariance function of

choice based upon the experimental data that is being modeled.

• In GPR applications where the experimental error is much smaller than the mean of the

experimental data, a product of the SE and Linear covariance provides better results

than the simple SE covariance function.

• In some instances, the experimental data may not be adequate to properly determine

uncertain parameter posterior distributions, and simultaneous calibration from several

different sets of experimental data for different uncertain parameters will produce better

results.

Ultimately, the active learning methodology was shown to work well and produce better

emulator performance with fewer training points. Insight was provided on which covariance

functions should be chosen based on the experimental data that is being modeled.

82

7.3. Recommendations for Future Work

7.3 Recommendations for Future Work

Optimization of Training Set

Usual GPR applications utilize data sets that containing thousands, if not tens of thousands

of data points. In those situations, the goal is to reduce the number of training points by

finding the best set that models the entire data because of the cost to invert the covariance

matrix. The application of GPR in uncertainty quantification poses a similar, yet vastly

different problem: find the minimal number of training points that still model the entire

data without having an inventory of thousands of points to choose from. This becomes more

important when each training point requires running a computer code which could take hours.

While the naive approach of using 10 trainings point per uncertain parameter for the initial

training set worked, the optimal minimal number of training points would be a great area of

further research. This could provide a lower limit on the required number of training points

and further reduce the number of times the computer code has to be run to determine the

uncertain parameters, which is the ultimate goal anyway.

MCMC Mixing Rate and Optimization

For the GPR applications that have a small experimental error, often times the MCMC

mixing was not the optimal 23% from [6]. This was a result of the experimental error limiting

the combinations of uncertain parameter proposals that would be accepted by the MCMC

sampling scheme. As a result, the MCMC scheme often sat at certain values for long periods

of time, skewing the posterior distributions. The mixing rate for all GPR applications,

regardless of experimental error or even the covariance function, is a problem for the entire

MCMC community and not just for GPR applications.

83

Chapter 7. Summary, Conclusions, and Future Work

MCMC Stopping Criterion

As mentioned before, MCMC sampling is more of an art-form than a science for many

applications. Most of the time, expert knowledge and past experience with MCMC sampling

allows a user to make informed decisions about how many iterations a simulation should

use. However, this can lead to either reduced efficiency by computing too many iterations,

or poor results by computing too few sampling iterations. Several stopping criterion, or

convergence diagnostics, have been proposed in the literature. Convergence control techniques

can be based upon one single output (single chain) or on outputs from several independent

replications of the chain started from a preassigned initial distribution (parallel chains) [31].

84

Bibliography

[1] L. Biegler et al., Largescale Inverse Problems and Quantification of Uncertainty. John
Wiley & Sons, 2011.

[2] D. S. Sivia, Data Analysis: A Bayesian Tutorial. Clarendon: Oxford University Press,
second ed., 2006.

[3] K. P. Murphy, Machine Learning : A Probabilistic Perspective. MIT Press, 2012.

[4] J. P. Yurko, Uncertainty Quantification in Safety Codes Using a Bayesian Approach
with Data from Separate and Integral Effect Tests. PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, 2014.

[5] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo in
Practice. Chapman and Hall, 1996.

[6] G. O. Roberts and J. S. Rosenthal, “Optimal Scaling for Various Metropolis-Hastings
Algorithms,” Statistical Science, vol. 16, no. 4, pp. 351–67, 2011.

[7] H. Haario, E. Saksman, and J. Tamminen, “An Adaptive Metropolis Algorithm,”
Bernoulli, vol. 7, pp. 223–42, 1998.

[8] W. H. McAdams, Heat Transmission. New York: McGraw-Hill, third ed., 1954.

[9] T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer
Experiments. Springer, 2003.

[10] G. E. P. Box and G. Jenkins, Time Series Analysis: Forecasting and Control. Holden-Day,
1976.

[11] NIST/SEMATECH e-Handbook of Statistical Methods. http://www.itl.nist.gov, March
2016.

[12] MATLAB, version R2015b. Natick, Massachusetts: The MathWorks Inc., 2016.

85

[13] C. E. Rasmussen and C. K. Williams, Gaussian Process for Maching Learining. MIT
Press, 2005.

[14] R. M. Neal, Bayesian Learning for Neural Networks. Springer, 1996.

[15] M. D. Mckay, R. J. Beckman, and W. J. Conover, “A Comparison of Three Methods for
Selecting Values of Input Variables in the Analysis of Output From a Computer Code,”
Technometrics, vol. 21, no. 2, pp. 239–45, 1979.

[16] D. K. Duvenaud, Automatic Model Construction with Gaussian Processes. PhD thesis,
University of Cambridge, 2014.

[17] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, tenth ed., 1972.

[18] M. L. Stein, Interpolation of Spatial Data. Springer, 1999.

[19] C. E. Rasmussen, “Gaussian Processes Covariance Functions and Classification,” tech.
rep., Max Planck Institute for Biological Cybernetics, 2006.

[20] A. Kapoor et al., “Active Learning with Gaussian Processes for Object Categorization,”
in Proceedings of the IEEE International Conference on Computer Vision, 2007.

[21] N. Lawrence, M. Seeger, and R. Herbrich, “Fast Sparse Gaussian Process Methods: The
Informative Vector Machine,” in Proceedings of the 16th Annual Conference on Neural
Information Processing Systems, pp. 609–16, 2003.

[22] K. Kowalska and L. Peel, “Maritime Anomaly Detection Using Gaussian Process Active
Learning,” in 2012 15th International Conference on Informaiton Fusion (FUSION),
(Singapore), 2012.

[23] A. Gorodetsky and Y. Marzouk, “Mercer Kernels and Integrated Variance Experimental
Design: Connections Between Gaussian Process Regression and Polynomial
Approximation.” arXiv preprint arXiv:1503.00021, 2015.

[24] T. H. Cormen et al., Introduction to Algorithms. MIT Press, third ed., 2009.

[25] C. D. Rasmussen and Z. Ghahramani, “Occam’s Razor,” Advances in Neural Information
Processing Systems, pp. 294–300, 2001.

[26] G. Schwarz, “Estimating the Dimension of A Model,” The Annals of Statisticcs, vol. 6,
no. 2, pp. 461–64, 1978.

86

[27] N. Todreas and M. Kazimi, Nuclear Systems Volume I: Thermal Hydraulic Fundamentals,
Second Edition, vol. 1. CRC Press, 2011.

[28] A. Gopalakrishnan and J. Gillette, “EBRFLOW — A Computer Program for Predicting
the Coolant Flow Distribution in the Experimental Breeder Reactor-II,” Nuclear
Technology, vol. 17, March 1973.

[29] S. Sadana et al., “A Computer Controlled Precision High Pressure Measuring System,”
Measurement Science Review, vol. 11, no. 6, pp. 198–202, 2011.

[30] Swagelok Company, Industrial and Process Pressure Gauges, March 2016.

[31] D. Chauveau and J. Diebolt, “An Automated Stopping Rule for MCMC Convergence
Assessment.” 1998.

87

	1 Introduction
	1.1 Organization of this Work

	2 Bayesian Inference for Inverse Problems
	2.1 Inverse Problems
	2.2 Bayesian Inference
	2.3 Approximate Inference with MCMC
	2.3.1 Random-Walk Metropolis Sampler
	2.3.2 Adaptive Metropolis Sampler

	2.4 Demonstration Problem

	3 Gaussian Process Emulators
	3.1 Non-parametric Emulators
	3.2 Gaussian Process
	3.3 Gaussian Process Regression (GPR)
	3.3.1 GPR Training Set
	3.3.2 GPR Predictions

	3.4 Building the Emulator
	3.5 GPR Emulator Uncertain Parameter Calibration
	3.6 GPR Demonstration

	4 Covariance Functions
	4.1 Covariance Function Properties
	4.2 Basic Covariance Functions
	4.3 Advanced Covariance Functions
	4.4 Combining Covariance Functions
	4.4.1 Multiplication of Covariance Functions
	4.4.2 Sum of Covariance Functions

	5 Active Learning For Gaussian Process Regression
	5.1 Methodology
	5.2 Control Parameter Training Values
	5.3 Uncertain Parameters Training Values
	5.4 Greedy and Batch Training
	5.5 Friction Factor Revisited
	5.6 Influence of the Covariance Function

	6 Demonstration of Active Learning GPR with RELAP Models
	6.1 Cheng & Todreas (C&T) RELAP Simulation
	6.2 Gopalakrishnan & Gillette (G&G) RELAP Simulation
	6.3 Experimental Error Scaling as the Mean

	7 Summary, Conclusions, and Future Work
	7.1 Summary
	7.2 Conclusions
	7.3 Recommendations for Future Work

