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ABSTRACT

The scattering of light off sound waves, known as the
(normal)Brillouin effect, has been previously used to investigate
velocities of sound in the hypersonic range. Using a He-Ne red
laser as the exciting source, one can improve such measure-
ments easily by better than an order of magnitude in accuracy.
More importantly, this technique has allowed us to detect for the
first time a significant width to the Brillouin components in
some liquids, allowing us to measure the attenuation of hyper-
sonic waves.

With the advent of extremely high-power lasers it is now
possible to generate hypersonic waves of great intensity from
light waves, using the stimulated Brillouin effect. One can view
this effect as the parametric generation of sound from intense
light in a nonlinear (e. g. electrostrictive) medium. The sound
waves so generated are, in solids, typically in the frequency
range of 20 KMc and have a peak power of-lKwatt of a duration
of ^- 3 x 10-8 sec.

A theoretical study has also been made on the possibility
of diffractionless propagation of light beams which undergo non-
linear (e. g. electrostrictive) interaction with the medium. Such
a phenomenon may occur when the diffracted rays from a finite-
aperture beam are confined by total internal reflection inside
a dielectric waveguide which the light beam creates for itself.

Thesis Supervisor: Charles H. Townes
Title: Provost of M. I. T. and Professor of Physics
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Introduction

Radiation and matter can interact in a variety of ways. The

lowest order process of interaction results in the familiar- one-

photon absorption and the associated dispersion of electromagnetic

radiation. This process is linear because the polarization of the

matter responsible for these effects is linear in electric field.

One consequence of this linearity is that there is no alteration

(except for transient effects) of the frequency of the interacting

radiation. Stimulated emission associated with this lowest order

process has led to the now familiar maser and laser action.

The next order process of interaction results in two-

photon effects, such as the Raman and Brillouin scattering. These

processes are nonlinear in the sense that the polarization of the

matter varies nonlinearly with the electric field. Thus new fre-

quencies can arise through nonlinear mixing and parametric pro-

cesses. For example, in Brillouin scattering in which light is

scattered off sound waves, the scattered light waves are shifted in

frequency with respect to that of the incident light due to modulation

by the scattering sound waves. As in the one-photon case, there

are stimulated processes of emission and absorption associated

with two-photon effects in addition to the normal effects (i. e. scatter-

ing from zer o-point and thermal fluctuations). These lead to the

stimulated Brillouin effect and phonon maser action.

In this thesis, nonlinear interactions of light and the collec-

tive motions of matter, in particular sound waves, will be investi-

gated.
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Chapter I. The Kinematics of Brillouin Scattering

One may view Brillouin scattering either classically or quantum

mechanically, but both give the same answer as far as the kinematics of

the process is concerned. First, classically one envisages light waves

being diffracted by a grating of periodically varying index of refraction

caused by the sound wave. The diffracted light will also suffer a Doppler

shift since the grating is moving at the speed of sound. The Bragg law

gives us (see fig. 1):

fig. 1: Classical Description of Brillouin Scattering

(1. 1) 2d cos = m m = 1, 2, 3, . . .
p

where f is the incidence angle and X is the incident wavelength and n is
p p

the index of refraction of the medium at X p. Since 9= -2 #0

2d sin- = P m
2 n

p

where 9 is the scattering angle. Since d = Xs, the wavelength of sound, and

=v 5 :

(1. 2) in)) - 2 n 1 sin-
s CS p p2

The Doppler shift suffered by the scattered light is (as is easily seen by

transforming into an inertial frame moving along with the sound wave):
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(1. 3) = 2 n P( )cosp = n p() sin
p

where 46)) is the Doppler shift. Since the sound wave is modulating the

incident light at frequency 1/, we require ) = ) and hence m = 1 and

we obtain the Brillouin shift formula1 :

V
(1.4) 2 )/= 2n -- sin- s p p c

Of course, it must be pointed out that in the above analysis one makes the

approximations that since v 10-5 the Doppler shift is small (and hencec
first order) and the wavelength of the shifted radiation is very nearly equal

to the incident wavelength, thus allowing us to use (1. 1).

Quantum mechanically, one envisages Brillouin scattering as a

collision process in which a photon collides inelastically with a phonon and

emerges as a photon of a different energy (see fig. 2).

(a) (b)

fig. 2: Quantum Description of Brillouin Scattering

Energy and momentum must be conserved in such a process, and since

TWi s represent the energies andti s represent the momenta of

the incident, scattered photon and phonon respectively, we require:
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(1. 5) WJCJ= w (s
i p s+ "anti-Stokes".021 + I

*h + + -"Stokes"(1.6) k = kp - k

where + is for the case of phonon annihilation and - is for phonon creation.

Now the magnitude of the wave-vectors are related to frequencies by:

(1. 7) k= n ki 1 n. , k = s
p c p 'i c s vs

It is clear that conservation of momentum, represented by the wave-vector

triangle in fig. 2(b), implies the Ik , k i1, 1k ) must be of the same order

of magnitude so long as 9 is not small. Hence (1. 7) implies that

so() p is very small compared with w. Thus from (1. 5) . - p
5to a part in 10 and we may therefore also set n. n , whence:

1p

(1. 8) k p ki

implying that the triangle in fig. 2(b) is isosceles. Hence the sound wave

always moves away from the scattered light wave (i. e. k .ks< 0). By

geometry:

(1.9) f ks = 2 kI sin

or, converting to frequencies using (1. 7)

(1. 10) s = 2np ( sin

which is identical to (1. 4). Again it must be pointed out that this relation-

ship was derived with the assumption that v is small.

vLet us investigate the case involving higher orders of - so that

relativistic effects will become significant. We will start with equations

(1. 5) and (1. 6). (Clasically, the interpretation of these equations, as will
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become evident in the next chapter, is that of phase matching in time and

space of the interacting waves.) The law of cosines applied to the wave-

vector triangle (fig. 2(b)) gives us:

(1. 11) k = k. + k - 2k. k cos 9.
s 1 p i p

We assume n = np temporarily. This is not a good assumption since it

is typically in error by a part in 10 so that it must be taken into account

in first order correction to the Brillouin shift. Nevertheless, for algebraic

simplicity, we defer the discussion for the case n. # n Equations (1. 11)
1 p v

and (1. 5) imply the quadratic equation for ws (n. = n n, p.M- ):s p c

2 2 2 2 2 s2 9 2 2 2. 2 9(1. 12) Ws (1- n p) 4n p sin W 4n P W sin 0

which has the solutions:

(1.13) s np2 P2 2 n P sin2 + 4sin2 n22 sin2

where + is for the sound wave associated with the anti-Stokes (up-shifted

in frequency, cf. (1. 5)) component of scattered radiation and - for the

Stokes (down-shifted in frequency) component. We have chosen the + sign

in front of the square root since in the limit P-00, ws must be positive.

Expanding in orders of P:

nP . 9 + 2 9 2 2 .9 2 9 4
(1.14) s 2 2 ( sin - - 2nP sin .- n p sin - cos 0 +O(p)+. ..

s -n 2P22

Thus both the Stokes and the anti-Stokes are shifted to the blue slightly,
v 2causing a*---- asymmetry in the Brillouin shifts
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In the case when n . np the situation is complicated by the fact

that (1. 12) is no longer quadratic and becomes:

2 22 2 2
(1. 15) W (1 2 - n~ i232 )PW (21 2 W (n.i - n n pcos 9))

S n.2 + n p) 2n. n pos 1
2 p 2 = 0

2

where n = n(Wp I WS) n np w sn + + d . .

We will solve (1. 15) neglecting terms O(P 4) and using ws = 0 (P). Then:

9 22 . 29 W d(1.216) n =2nfrA sin 2 n wsin 2(1+) + O(P3
p p * 2 p p n ~p + )

Therefore, the net shift to the blue of both Brillouin components described

above is enhanced in the case of normal dispersion ( 0). For the case

of fused quartz -= 1. 3 x 10-
p

We may also apply (1. 15) to the case of anisotropic crystals if we

let n , . be the index of refraction along the incident and scattered directions

respectively, with proper considerations of polarizations (same as from a

dielectric boundary). Thus, neglecting dispersion:

2

(1.17) 2 (n 2 - n.n cos 9)
1-n 3P

2 2 2 1 2 2nnp sin + ((n. +n )-2nn n cos 9)

or to lowest orders3 .
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Ws = p(9)o (n + n 2 ) - 2n n cos 9 p2 (9) (n 2

+ 0 (p 3 )

where P is in general a function of 9, being dependent also on crystal

orientation, and is computed from a secular equation 4 :

(1. 19)
x iklm kkk 1 - 2 i 0

whe ref is the density, x iklm are the adiabatic moduli of elasticity.

phase velocity along a propagation vector k is defined as V = whereik
w is an eigenfrequency of (1. 19).

The

(1. 18) - n.n
1 p

cos 9)

-4
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Chapter II. The Dynamics of Brillouin Scattering:

Energy Considerations

Pictured clasically, the interactiDn of light with sound waves arises

from reflection of the light off a grating of index of refraction caused by

the sound waves. Hence there must exist a relationship between the index

of refraction of the medium and its density in order for the coupling of

light and sound to occur. Such a relationship arises from the phenomenon

of electrostriction, which is the constriction of the material placed in an

electric field. Let us examine this phenomenon on the basis of some ele-

mentary energy considerations. Consider a condenser immersed in a

compressible fluid. When a voltage is applied, fluid flows into the region

between the plates, compressing the fluid already there, because this lowers

the free energy of the system due to an increase in dielectric constant.

Thus an electrostrictive pressure arises, which can be calculated as

follows (see fig.3):

fig. 3: Condenser Immersed in a Fluid

W E V ,V = volume of condenser

P el =V SW
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(2.e1) e

where 3.3...Eis the electrostrictive constant. Note that the

electrostrictive pressure P el depends quadratically on the electric field

causing it. This means that if we replace the battery by a sine wave

generator, a sound wave of double the frequency will be generated.

Furthermore, if two different frequency generators were placed in

parallel, sound waves will be generated at the sum and difference fre-

quencies.

Conversely, a change in the density of the material between the

plates of the condenser will cause a change in the dielectric constant by

an amount:

(2.2) LiE = __ - P, B = Bulk modulus

thus causing a polarization to develop (E= 1 + 41):

(2.3) P =( )E= EE - ' PE4 T 4 -r B

Hence the presence of a sound wave will modulate a voltage signal to

produce an oscillating dipole moment at sum and difference frequencies.

As a simple model of the interaction of a light wave and a sound

wave, let us consider a delay line immersed in a fluid as shown in fig. 4:

L

fig. 4: Delay-Line Immersed in a Fluid

Dashed line represents sound wave; solid line represents voltage wave.
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The gaps of the condensers will behave as if they were pistons applying the

electrostrictive pressure (2. 1) to the fluid. If the delay line is driven by

two signal generators at frequencies w and w., two waves with wave

vectors kp and k. will travel down the delay line, causing a sound wave

to be generated at a frequency w = W - W. and with a wave vector
1W

ks = kp - k. (see fig. 4), provided, of course, that ks = .. Generally
s

this requires the waves at w and w . to travel in opposite directions,

corresponding to the backward case of (1. 1) (9 = -r). Conversely, in the

presence of the wave at w alone, a sound wave at frequency ws travelling

across the gaps of the condensers will cause the generation of a voltage

wave at w. In normal Brillouin scattering the sound waves are present

due to thermal excitation, and generate a small amount of w (typically 10-6

as intense as the incident radiation at w). In stimulated Brillouin scattering,

a very intense signal at wp is catastrophically converted into large amounts

of sound wave at ws and electromagnetic wave at w . This occurs catas-

trophically because even only a very small noise-generated amount of

sound wave will generate arbitrarily large amounts of the wave at w.,

which in turn causes the sound wave to be amplified by large amounts,

and thus the interaction of these waves will feed each other energy,

leading to an instability. Of course, this catastrophic conversion can

occur only if the power generated in these waves exceeds the power lost,

due to absorption mechanisms, hence leading to a threshold condition.

The intensity of sound and electromagnetic waves thus produced are much

larger than in normal Brillouin scattering; the intensity at w. can be

nearly equal to that of wP.
We shall proceed to derive the threshold condition using energy

considerations. Let us calculate the energy interchange between an intense



(laser) wave:

E (r, t)
p

= E cos (k
po p

and an "idler" (frequency-shifted light) wave:

E. cos (k - r - W a)t + Oi)

and a "signal" (sound) wave:

= P cos (ks Wst + P s

First, consider the power transferred by the pump and the idler to the

sound wave. The process of electrostriction causes a local compression

SV which in the presence of the local pressure Ps due to

does work of an amount:

SW = - Ps(r, t)

the sound wave

V(r, t).

Thus the average power transferred to the sound wave per unit volume

will be:

d u

dt

T/2

_ 0fJT/2
Vr, t)

where, using (2. 1)

_ & el(, t)
B .2 E(,, t)

p
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"pump"5

(2. 4) p t + p )

(2. 5) E (r, t)

(2.6) P s(r, t)

(2. 7)

(2. 8)

I (2. 9) V(r, t)
V

st , t) a

onIb
. Eirr, t

=3 6(4
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omitting nonresonant terms. This gives

41TB Pso (E - E .)Ws

-cos (2 Ps) (k -k. -k )s p'is

S (C P-w 1 P)J

S(w -w.+wso

where we have chosen

(2. 11)
p - 5

The sum of Dirac delta functions contains the kinematical relations

(1. 5, 0. 6) for the Stokes case and the anti-Stokes case respectively.

Second, consider the power transferred by the pump and the sound

wave into the idler. The dipole moment & arising from the local change

in dielectric constant caused by the sound wave in the presence of the

idler's local electric field E leads to an energy transfer of:

(2. 12) W =E(r, t) t)

Thus the average power transferred to the idler wave per unityvolume

du. 3
1CT J Vr

T/2

-T/2

dt A"
E (r, t)

where, using (2. 3):

p r, A) = _ (r,t)(2. 14)

again omitting nonresonant terms. This gives

(2. 10)
du

dt

will be:

(2. 13)
.r .t
Sp(r, t)

4
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du .1
Y -P ( *E.) 'k-k' ) (W -W )- -W

(2.15) dt P (E ) 4B (k --ks p0 1

+ cos(2 fl )(k -k.+ -) (-.)s (kp i s p i s

again choosing the phase condition (2. 11). Note that the second terms of

(2. 10) and (2. 15) always have opposite sign independent of the choice of

phases, which implies that the anti-Stokes cannot build up simultaneously

with the sound wave, so that parametric generation of the anti-Stokes

cannot occur. Viewed quantum mechanically, the incident quantum can

gain in energy (and increase in frequency) only if a phonon is destroyed

in the process.

Hence if we choose the kinematical relations

(2.16) k = k.+ k

W W. +WA
p 1 s

Op Oi s 2

we get:

du V
(2. 17) s - P E E.dtgain 16 WB so p 10

du W

dtgain 1T WFB so Ep 10

where we have chosen the polarization of E and hence E. to be perpen-
p 1

dicular to the plane of scattering. The energy density of sound wave is6
P&soUs B and a loss mechanism will cause damping according to:
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dus

loss

u
sS

Similarly, the energy density for the idler wave is u =
2

8 Tr

the dielectric constant at the idler frequency) and the decay law is:

du.
1

dtloss,

U.
1

t 1

We require that both the sound waves and the idler build up, implying:

du
5

dtgain

du.

gain

Ws

16: B

du
+

loss

du.
+ dt

loss

P E E .
so po 10""

0

1

5's

P E E-
s0 p0 10 ~

P so
2B

E. 2
1 0

8 T

Multiplying (2. 19) and (2. 20) together we get the threshold condition:

E 2

po
8Tr

1

5s5s11

2B C
0

This states that in order to have catastrophic buildup of sound and idler

waves, the pump must be sufficiently intense to overcome losses.

Perhaps a more transparent way of describing the above treatment

I
is

(2. 18)

I
Hence

(2. 19)

(2. 20)

(2. 21)
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is that we are calculating the buildup in time of particular normal modes

of the idler field and sound waves which can couple kinematically.- (This

way of picturing the interaction is best suited for the quantum mechanical

approach to Brillouin scattering. ) Hence the above approach is appro-

priate for resonant cavities, the normal modes of which decay in a time:

L
t s Q
s vs 1 -rs _

(2. 22)
L.

i c 1-r. -

where Ls and L are the lengths of the sound and idler cavities, respec-

tively and rs and r. are the reflectivities of the mirrors forming the

cavities, and Q and Q are the quality factors of these cavities. In

most cases, the sound wave is so highly attenuated that the cavity losses

are negligible in which case:

(2. 23) - v =
v >< s OI

where( is the attenuation length, " is the percentage loss of sound

power per unit time and is the percentage loss per unit length.

For the case of quartz, where T= 5 x 10~ secand using an

auxiliary cavity for the idler with length 10 cm and r = 0. 9, so that

-9 9 12t 3 x 10 sec and where E=0. 6and the bulk modulus is l x 101

dynes/cm2, we get for the threshold:

2

(2.24) 8 n c .10 :Mw/c m8 -Tr p
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This power is easily attainable using present Q-switching techniques with

the ruby laser. However, considerations concerning the rate of growth

must accompany this figure for threshold; such considerations will be

given in the next chapter.
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Chapter III. The Coupled Wave Equations and TheirI

7 .D

(3. 1)

7x H 1
=C- + 47r J

We consider the case where J = 0 and
true

N - B = 0

= 0. The constitutive

equations are:

Eo E+ E

(3.2)

B

where E arises from pressure fluctuations via electrostriction (cf.

(2. 2)):

P
s

B '(3. 3)

Deriving the wave equation from (3. 1) we proceed as usual:

7x (7x E) D
c

Now 7. (6 0 + 1 )E = 0 so that

Solutions

Maxwell's equations state that:

(3. 4) 7(7 - E) - C7 2E .

c t Itrue

C: _ =



(3. 5)

Since e
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V- E=
0

- V- (& I E) = - E 7 E .

1 0

+E = E ' . 7 E.

Therefore the electromagnetic wave equation becomes:

1 i 1
,g 7E + -,g- E -
c. c.

2
V E B6 P s E)

2

1w - so ts E)
c i atI

where the second term is a phenomenologically introduced loss, and

c

Next we derive the wave equation for sound. Newton's equation

states:

- 7P + f

where P is the pressure and f is an external force per unit volume on a

small "particle" of fluid moving at a velocity u and fP is its density.0

continuity equation states:

-+ 7- (W.dPu) = 0 .

I4e4 , (3.9) becomes:

I1

(3. 6)

(3. 7)

where c.
1

(3. 8)

(3. 9)

The

- 7 1i

.4u
W/Po t

If we leti = J00 + swhere-
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(3. 10) s-u -

where the seond term is negligible since sP s. Using = 10

(3. 10)becomes:

1
(3. 11)

SPs

at -7-. U

Taking the

(3. 12)

7 of (3. 8) and

2 
s

& t 2
_ B 2

17

of (3.11)we get:

BPs P

where in our case f is due to electrostriction. We

as follows 11 : Conservation of energy tells us that

derive f more rigorously

in the interaction of

matter and radiation:

(3. 13)
d Wd em

dt

d Wmat
dt

W and Wmat em being the energy in matter and radiation respectively:

d Wmat

dt f - u dv,

- E - D) dv = 1 E
8Tr 

I

(: 9 d

Now . = (f(,(rt)). 1 2 Hence., using the chain rule and (3. 9):

L

+ v 2
s

(3. 14)

and

(3. 15)
d W em

dt

v s2 \/P s
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d+ -A
u)

7' -

(YE27- u + E2 76 - u) dv .

Integrating by parts the first term and eliminating the surface term since

u = 0 at the surface:

E2) + E2 we] u dv.

Since u is arbitrary, (3. 13) and (3. 14) and (3. 19) imply

=.. - 1 7( YE2f 8tr 1 28-rr

The first term corresponds to electrostriction and since f = - 7 Pel

we have:

(3. 21) P - -
el 8Tr

The second term of (3. 20) corresponds to the force which causes a fluid

level to rise into the gap between a pair of capacitor plates.

calculate the source term in (3. 12) using (3. 3):

1 P
7 E2 . 7 B

We now can

- E2 7 2 PS

The last term is a small modification of the velocity of sound by an amount

I

(3. 16)

(3. 17)

(3. 18)
d Wem

dt
=1-

(3. 19)
d Wdem

dt

(3. 20)

(3. 22)

-28-

=d -6 - u d

7(V2E 2--7 - "f =

7 pU--*
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2 v s
v

S

E 2

~87~

quartz) and E ~10

6 ~ -2
B ~10

5

assuming ::-0.6, B.::-10 (values for

7 13esu(3 x 10 volts/cm) . In any case both

and last terms are negligible because Ps4- B.

for the sound wave is:

(3. 23)
dl 1

P + -Ps s s - v 2 2 Pss P s

the second

Thus the wave equation

v 2 d 2 E2
s~ Tr8

where we again introduce phenomenologically the loss term.

The solutions will be assumed to have the form

E
p

i LO t .A -Ai~ tk r=E e p p + 0 )

E. = E.
1 10

P =P
s so

e i (wt - k - r + Pi)

e i(Ws t - ks - r

where E , E ., P so are slowly varying functions of r and t. We assume

that E is very large and E and P very small. Taking the time and space

averages of waves equations (3. 7) and (3. 23) with (3. 24) substituted into

them (which we can do if tI- aE i etc. ) we see that the waveE..~
10

equations will become, since only resonant terms remain:

#6 d

P + CIP P
E s

E. + . E.
1 1 1

s - v  2 Ps
8 Y s5

2 2 _,*
-c. 57 E.c E

c.
1

(2E.*, - E
2 2 EE

Vs V 82 2

B C-

2

t

C 2

P E )

(3. 24)

+ 0s

(3. 25)

(3. 26)

-j
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4 * 14 2
.. hh 2 2 .:_ _ _ _ _ 2

(3. 27) E + E -cE = s
p p p p p Be 2

2 2 (P E)7

c t
p

Equation (3. 27) immediately tells us that we can consider E a
po

constant, i. e. independent of space and time, since its source term

is a product of two small quantities. In other words, the percentage

rate of decay of E is small compared with the percentage rates of

growth of E. and P 0 . The first of the source terms in (3. 26) is a
10 so

vector parallel to k., which makes the idler slightly nontransverse, and

arises from polarization charge, as one sees from (3. 6). This non-

transverse component of the idler will not propagate outside of the

medium, where one makes observations, and we shall omit it. In any

case, to reduce (3. 25-27) to scalar equations we choose k- E = 0.
s p

Thus (3. 25) and (3. 26) reduce to, assuming E. , P are small andio, so

slowly varying and keeping lowest order terms only:

*~2
(3.28) (2 i w P +i P + 2 i v k 7P ) =S so S s5 5 s so

2 2+ - vs k i E. E

2-(3. 29) (2 i w. E.0 +k0. . E. + 2 i c. k. 7E. ) =1 0 1 1 10 1 1 10

2Y . iP E
2B i 1so po0

where the factor i in the source terms arises from the choice of phase
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o = P. + Ps + /2. One notices that had one chosen the anti-Stokes equation

in place of (3. 29), the source terms would have opposite signs, independent

of the choice of phases, again proving that the anti-Stokes idler cannot

build up simultaneously with the sound wave.

(3. 30)

(3. 31)

8S
P + -

so 2

a

E.10 + 2

Pso

E.
10

+ vs ks

A
+ c. k.

1 1

Simplifying we get:

E. E
10 po

' 7 E. = .i P E
10 50 so

A
wherek

Aand k. are
1

the unit vectors along the directions of sound and

idler waves and

Fs
Vi

s

- 4 B 0
w.

Since (3. 30) and (3. 31) are linear, we solve by separation of variables.

Let

Pso

E.
10

= R (r) T (t)

= . (r) T (t)

Multiplying (3. 30) and (3. 31) together and dividing by P 0 E :

A '7 R+ vks Rs +
1<. A'7R .

+ c - R

I s 2E

(3. 32)

(3. 33)

(3.34)

(3. 35)
T
T + S

2

V so

['.
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Since the right side is independent of (r, t), so must the left, implying:

V

Ts =s Ts

(3. 36)
v k S = v (k * q ) R

T.c.(k. .. T.i Pi Ti

(3. 37)
c 'ki , q ) R

so that exponential solutions (which are complete) result. Substituting

these solutions back into (3. 30) and (3. 31) we see that Ps =i. p and

q= q= q. Since kinematics imply that s 4..0 (i. e. the idler and

sound waves are always travelling in opposing directions), this means

that if we choose q real (travelling wave case) then it would seem that

one wave will always rob power from another. However, we must super-

pose solutions to fit boundary conditions to get the correct solution.

Let us first consider the boundary value problem of a resonant

cavity for either idler or sound wave. Since we shall demand that Rfl

be zero at the boundary, it is clear that q must be imaginary to give

us the necessary oscillatory solutions. Let us choose to resonate the

Aidler; then q = i A k points in the direction k. (this corresponds to a

slight shift in wavelength in order to couple to a mode of the resonator).

We get from (3. 35):

(3. 38) + 2 + i& k' v + + i Ak c i s E-

A k
iL where k' k k(k. . k At threshold =k 0Oand using (2.23):



E T
(3. 39) 8-n

in agreement with (2. 21).

(3.40)

Solving p in general we obtain (c >> vs

+ k
+ 2

- iAkc 2

Above threshold, only the (+) solution corresponds to a growing wave, and

p, near threshold, is:

>< N - 2 i A ki s (c. s+ v' 5 C< )

2 [(<.+c<) + 2iAkc.
1 S 1

Therefore the real part p, representing growth,

+4 k c 2

++ /

which is clearly a maximum when A k = 0. The imaginary part of P,

representing "pulling", is:

I

-33-

Y2

1

1 T s s

= - ~s

+ 4E2

(3. 41)
E

p = ET 0
- )

A
v k

5

A
k.

U
where v'

s

is:

(3.42)
E2e =

2 Re p= ET
4 k c.

i s 1
+ kc

V'
+

1 s -ki

NVA .......... W

I

S
+ C><

.j ( 1 s



(3. 43) Imp = -Akc.

2v'
E .x CO /W + s

po _ _i S + s ci

T +( CK-.2+'=)2 +1 _S

/k c
I + 4

i+ Ms

which is zero if A k = 0. From (3. 42) it must be concluded that the rate

of growth is less than the lowest loss in the system near threshold. Thus

for Cs-,12 2 Re P =(po - 1 ,the first factor being smaller

than unity around threshold. For the case of quartz considered in the

8 -1 -~--8 -1previous chapter, c< = 2 x 10 sec and o< 3 x 10 sec are

8 -1about equal, and thus 2 Re p 7 1. 2 x 10 sec when we are twice above

threshold, giving us an e-folding time of 0. 8 x 10-8 sec 1. Since the

-8 -1laser pulse lasts only -- 2 x 1,0 sec , this means the signal will only

be a factor of ten above the initial noise.

Larger rates of growth can be obtained by raising the power of

the pump or by decreasing =<. and thereby decreasing the threshold. In

either case, when we far exceed the threshold

E
p0

(3.44)

For a pulse of 100MW/cm2 (unfocussed laser beam), E = 1 x 103 esu
9  - 1 14  -8so that p=. 7x 10 sec for quartz, meaning a gain of e in 2 x 10 sec.

Taking the ratio of (3. 30) and (3. 31) will tell us the ratio of

signal to idler:

s
(p + 2 + i v A k')

s5

(p + + i c 4 k)21

2

Fs E P0
-so

-34-

(3. 45)

I

. 'd - I
-T :: T-
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In the limit 3 and k small, the ratio of energy densities is:

(3.46) s . 1 s s

Ui W. W~ "11 5 1

When far above threshold (p large):

u W
(3.47) s s

1 1

This is a statement of the Manley-Rowe relations. Quantum mechanically

stated, each photon of the idler is produced in association with a phonon of

the signal. The energy of the photon is ti . , whereas the energy of the

phonon is ti Ws, whence (3. 47). Clearly, at maximum conversion by

energy conservation the idler becomes very nearly equal in intensity to
d u d u

the pump. From (3. 47) and since 2 P u and :s 2 p U,

we then see that maximum power in the sound wave is~O. 6 kilowatt/cm2

2
from a 10 megawatt/cm laser beam. This corresponds quantum mech-

anically to converting every single pump photon into an idler photon and

a signal phonon.

For the travelling wave case involving a general scattering

angle 0, the geometrical shape of the region of interaction between pump,

idler, and sound is usually quite complicated, especially when the pump

beam is circular in cross section. On the one side of the boundary of

the region of interaction in which the idler or the pump originates, the

amplitude of the idler or the pump is zero everywhere. On the other side

of the boundary from which the amplified idler or pump leaves, the un-

coupled propagating wave solutions are projected back onto the boundary

to give us boundary conditions for the other side. The procedure is then



to superpose exponential solutions to solve (3. 30) and (3. 31) with these

given boundary conditions. This is in general a complicated problem

A A
except in the collinear case where k. - ks -

In the collinear case 14let us choose the boundary conditions for

(3. 30) and (3. 31) as follows (see fig. 5):

(0)

I~P
-lum ;PcA

r 5OUNUP

( 0z

r

fig. 5: Boundary Conditions for Backward Wave

Amplifier

(3. 48) E o (L) = 0 and Ps (0) = a.

The slab of material is assumed to have no Fresnel reflections at the

boundaries (no feedback). One may visualize these boundary conditions

as those for a slab of "active" material ( K 0) imbedded in a "passive"

medium ( 0), with all other properties (i. e. c. and v ) the same. Now
(3 3

(3. 35) becomes . = -1k and'. s = )

0< i . FKZ
+ + v q) ( + - c q) i ' sE2 s 2 1 s P

which has as solutions, assuming vs 4<c. and defining

(3. 49)

-c-

-36-
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(50i

(3. 50) 2 q

1
Is vs

Z v s

( U s } i+ . +
2 ( 2)

2

-1 TTB6io
k. k E .

1 S p0

When E 2is sufficiently large, q has an imaginary component. This

has a quantum mechanical analogue in the splitting of degenerate states

by a "mixing" perturbation by which these states can interact. In the

present case the phase velocities of the normal mode of sound wave and

the idler wave are split from their uncoupled propagation values by

their interaction via the presence of the electrostriction and a large

pump wave.15Let us define:

2

(3. 51) D = k
16q B C0 i

2 q =-S + iD,

+ , .
V

S

s + 2
2 v s)

2 q' = - 5
Now let us solve the boundary value problem as described in fig. 5.

We have solutions of the form P = P e q + P' e5 q and E. =

Eo +10

E ecl + E' e 1- with:

(3. 52)

a = P + P'

0 = E qL + E' eq' L

- iD

kE 2
s po

=
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We define as the amplitude gain of the sound wave:

Peq L + PI eq' L
(3. -)

P+ P'

The ratio of (3. 30) with the two exponential solutions relates P's

to the E's:

p

C s
s

+ 2 +s2

+q) P
E eq L

q L

q ) pI

Hence we have for the amplitude gain:

(3. 55) Gq q

+ q) e-q L + + q) e-q L
P

e- /2 L

cos + s2

(c+
+ 5

2

D

sin DL
2

This gain can become infinite if D is real because the denominator may

then vanish, corresponding to a situation in which Ps (0) = 0, i. e. both

idler and sound waves break into oscillation. The condition that D is

real implies:

2 B 0
2

k
k.i k s(

(3; 54)

( -v +

(3. 56)

-38-

E 2
po-
8-rr
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5 2For quartz this is about 1. 5 x 105 Megawatts/cm2. Strictly speaking

(3. 56) is for the case of infinite L, as we shall see shortly. For finite

L and D> 0, there always exists a real P so that the denominator

vanishes; we get the transcendental equation for 16

(3. 57) tan DL - D2 + X

v - +

The choice of a pure real p corresponds physically to the fact that the

amplifier represented by fig. 5 becomes unstable for D.>0 and any

arbitrary L> Lc, some critical value to be determined shortly, and

starts to oscillate. Thus the solution will start growing exponentially

in time, just like the case of the resonant cavity. But unlike the

resonator case, there is also exponential spatial behavior; the solu-

tions are, for the unstable case:

E. + s2 sin10 D[V Z

(3. 58) + D cos Z e 7- +

Pso D T sin 2 s

Note the large spatial gain for the idler and the correspondingly large

spatial decay of the sound wave. This occurs because the sound wave

travels at such a slow speed that the idler can readily rob its power.
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i is not determined uniquely from the boundary conditions P so(0) = 0

and Eio (L) = 0, but like any oscillator problem, will be determined by

initial noise. Of course, the maximum amount of power transferred to

the idler and sound waves is still limited by the Manley-Rowe relations

(cf. (3. 45) and (3. 47)) and the final steady-state level of oscillation

will be determined by nonlinear saturation effects.

Solutions to (3. 57) are obtainable by a graphical method, as

illustrated by fig. 6:

LI

'5L0 &

/
/ /

/ / /
7/

//' /

I /
/ 7

" /X

~1~I
I-

I.

1~'
i,-'7

V
7<

If //~

-1X.-

fig. 6: Graphical Solution for D

Unshaded areas denote regions where oscillation can build up. The

circled intersections give solutions to (3. 57). f is determined from

2 2 _ _s_+D by = g E .- D 2
po 2
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It is obvious on inspection of fig.. 6 that niar threshold, when

D -0, it is necessary that L-> eO so that D2L in opder to be

in the first region ofinstability. Indeed,. i is necessary that'L L c

where:

(3. 59)

where g =

L
- ~-

C=
c 

2 E
I po

k. k

16Tr B C5

S +
2

Hence L as we approach the threshold

(3. 56). For L > Lc and small n, inspection of fig. 6 shows that the

roots become:

n 1 T 2T L
n

so that from (3. 51) the rate of growth of the nth mode is:

I I
2g E <s+ 

2

The number of modes that will be excited will be:

N I L
Lc

The wavelength of the highest mode will be:

X - 2 L 4 LN N c

(3.60)
D Ln

(3. 61)
Pn
vs

n2 2n LT

L 
2

(3. 62)

(3. 63)

I

-41-
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so that another physical significance of Lc is that it is one fourth the

shortest wavelength excitable at a given power level. When we are far

above threshold g E2 s 2 and when L >,> L all

the lower modes grow at the same rate:

(3.64) . ,A: k.k E2

vs Lc 16-Tr B 19 sp

so that still another physical significance of L c is that it gives the

spatial rate of growth of the idler and decay of the sound wave and also

the temporal rate of growth of both waves for the lower modes when far

above threshold. Notice that this growth rate is smaller than that of the

resonator case (3. 44) by a factor of 2J> 9 x 10-3 Physically this

results because when we resonate the idler, feedback occurs at the

speed of light, whereas in the backward travelling wave case, the slow-

moving sound wave is an essential link in the feedback process, and

hence will slow down the rate of buildup.

Numerically, let us examine the conditions which we obtain experi-

mentally when a 10MW laser beam emitted from a ruby of diameter

2a = 1 cm is focussed down by a lens withfocal length f = 5 cm into a piece of

quartz, inside which the cylindrical focal region has a diffraction-limited radius of

f-4 fa1. 22 X ( ) = 4. 3 x 10 cm. and a diffraction-limited length L n ( i

= 1. 1 x 10 cm. The energy flux in the focal region is 10 MW/cm , or

E po3 x 105 esu, which far exceeds the threshold (3. 56), so that we use

(3. 64) to give us s3::'2 x 109 sec 1, meaning a gain of e40 in 2 x 10-8 sec.

Also, from (3. 64) we see- L 1 x 103 cm.<:e.La = 1. 1 x 10- cm., the

effective length of "active" material, so that the rate of growth of the lowest

modes is independent of La and hence independent of the exact nature of the
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boundary conditions, which in the focal region are clearly not as sharp

as those used in the above analysis (cf. fig. 5). The number of modes

which oscillate is calculated from (3. 62) to be N'E : 7. These modes

(solutions given in (3. 58) if D is replaced by Dn and P by Pn) have

nearly the same rates of buildup in time and are identical in frequency

so that spectroscopically they will appear indistinguishable. In space,

however, they behave quite differently, with the nth mode having a

4 L
wavelength (n 1) Hence we may superpose these modes

to produce arbitrarily shaped mode patterns (which, however, cannot

vary rapidly in a distance X N)

Indeed we should be able to solve the problem in which E

varies slowly, such as in the case of the focal region, by superposing

solutions of the case when L-> > . These solutions are:

(3. 65) E (n) = L(+ ~s2 sin z) e+t s

An un (z) g (z, t )

(3. 66) Ps 2n~ r = E sin- z e + s

Bn un (z) g (z, t)

where g(z, t) = est - + 2 )2 is independent of n in the limit

L' ; un (z) = sin a; An - 2 n)s 2

n Vsi n nr PtPv 5 1Z

-4



andB n L 3/2
Tjr

2(n) E
2nrr pa

k A
5 * and let r = An

16Tr Bn

which also is independent of n. The equations (3. 30) and (3. 31) become

for the focal region:

0 4 s
P + 5 P

E.

10 2 10

+ so E E (z)
az . 1.

z0 E (z)

where E (z)= E'
sin F2 k (z -L/2) 20Ip

F2 k (z - L/2)
p

where F2

Let

E a=(a u (z)) g (z, t)

(3.69)

P = ( u (z))g (z,so n n n I

= U (z) g (z, t)

t) = U(z) g (z, t)

be trial solutions of (3. 67) and (3. 68). We then get conditions on an

and bn using the orthogonality of un (z):

_ 1
an E

po

bn E 1
Eo

JnfL

r b n cf

1
r an

cos ET z E (z) dz and c = c . HenceL po n -n*

2

- ks

(3.67)

(3.68)

fK,

L p

(3. 70)

(3. 71)

where c

-44-
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1 

n E 2.
po be

In the limit L- oc , these Fourier series become Fourier integrals

so that (3. 72) becomes:

a (k)

K (k, k')

dk' a (k')
Eof

poU

K (k, k')

dk'' c (k - k' - k') c (k')= c * c (k - k')

This is a singular homogenous Fredholm equation of the second kind,
1with eigenvalue I2

po

21 The kernel is real and symmetric. Generally

the eigenvalue spectrum is continuous, with certain conditions depending

on the kernel, so that we can superpose the eigenfunctions to form

arbitrarily shaped solutions, just like Fourier integrals. For the field

distribution in the focal region:

c (k) = (c z cos k z - E'
-0po

= E' 1 + ) - k
KK

1 x> 0
where f(x) 0 x = 0

Q x(k

4c(k)

- K

. Hence c (k) looks like fig.

E'
po

I
(a)

2 K

7 (a):

c * c(k)

4K 2

W.
SK

(b)
fig. 7: The Fourier Transform of the Field in the Focal Region c (k)

and its Self-Convolution c * c (k).
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(3. 72)

(3. 73)

(3.74)

(3. 75) sin K z
K z

- 13

k+2K.

4

I ah rl_ P

C I



Clearly c (k) -- ~>(k) as K-30 and E' -> E which is a trivialClealy (k --,*spo po

reduction to the previous problem. The kernel of the focal region is

therefore (fig. 7 (b) ):

c * c (k) =

E' 2

(2 K - Ik )H (2 K - Ik)
4K2

where H is the Heaviside function. Hence (3. 73) becomes:

E
2

a (k) = po
E 2

po

1

4K

k+2K

k-2K

dk' a (k') (2K - k - k' I)

Upon differentiating twice, this becomes the differential equation:

2 E' 2
(3. 78) 2 po I a (k + 2K) - 2a (k) + a (k - 2K .

dk E 4K2
p0

+ ik z
0

Solutions will be of the form a = a e
0

where the transcendental equation

E'
zo = E~ 0o0 E

or U (z) = (z - z ),

sin K zo

is the eigenvalue condition. Since 47 E p
=

v
+ 2 s , (3.79)

determines how quickly the mode z 0 will grow. In order for there to be a

solution to (3. 79), clearly E < El must obtain. For z 4 ,
solution to (3 79), clal B ms ban o

E B E is independent of z0 , implying modes localized in the focal
po~ ~0

region grow at the same rate as expected from the plane wave solutions.

Modes with zo> 1 (located away from the focal region) grow more

(3. 76)

(3. 77)

(3. 79)

-46-
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slowly, with the modes localized near the nodes e = not growing0 K
at all. One should note that we have assumed the growth factor g (0, t)

is independent of k, which breaks down when k -s&k cd. Indeed there

will be a cutoff to the spectrum at kc 2 Lc ,corresponding to the
c

highest mode excitable. Hence U (z) is smeared out by an amount

A L ~ Lc from an exact Dirac delta function.

Again a is determined only by noise, with nonlinear satura-

tion effects ultimately limiting its steady state value. The problem of

exactly how oscillations build up from noise can become important under

certain conditions. For instance, if the laser pulse is of such a short

duration that the sound wave does not have sufficient time to propagate

a long enough distance to establish the feedback necessary for the onset

of oscillation, transient solutions arising from the noise will dominate

the behavior of the waves. The criterion for this to happen is that

L = vs O, where -r is the pulse duration, is less than Lc, the shortest

length of oscillator that will still make it unstable. For a laser pulse

of O= 2 x 10-8 sec, the sound wave travels a distance Lt = 1. 2 x 10-2 cm

>. Lc = 1 x 10-3 cm for the focal region, so that instability will

occur for most of the plane wave modes. However, since the effective

length of the "active" region La = 1. 1 x 10-2 cm is comparable with

Lt, transient effects may be important for the lowest modes. Transient

effects will probably also be important when the laser beam is weakly

focussed or unfocussed.22 We can introduce the effect of noise by

inserting a term 0 2 1 into (3. 73), corresponding to a
11/4 + k T

uniform excitation of all modes k (true at high temperatures). This

makes the integral equation inhomogeneous and unique solutions are

then possible2 3
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Kroll has treated this problem in another way in the case when

the laser field is constant 1 4 . He starts with (3. 30) and (3. 31) without

transformation. Let us extend his method to allow for focal-region

variations in

(3.80)

field intensity. Let

U = a - vs t

w = a +v t
5

u= - c. t
1

1

By the chain rule of differentiation -
vs a

1

+ Cl z - 2 ai and
a w

so that (3. 30) and (3. 31) become:

2 c% 43s w

-2 c .8ll-

P + soso a ~so

+

= E. E
s 10 po

E = Pso E 

Let us obtain the Green's function for (3. 81):

s + 2

+ 6

fdw

Iwo
w 0 +G

2 v
s

s

e~ 4 vs

v

(w - w )
0 H (w-w) .

(3.81)

(3. 82)

(3. 83)

(3. 84)

-w)
0

CPC
+ 2 G

Sso 2vs

Hence
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Ps (u, w)= s v
5

w -4
w(w-w

dw 0F E io(u, w 0) E po(u, w0) e 4vs 0

Changing the variables and using z - v t = u = - v t :

Ps0 (%, t)

z

S s f

Similarly for

(3.88)

Vs
de0 E. (eo, t - 1( - j0)) Epo , t - (.-00))e

E we get:

E o (.a, t)

d&z P (VI , t + I(*-JA )) Eo(00., t + I(e-* ))e0 50o0 C. 0 0 o 0 C. 0

+1'
4 ~%

Physically, this says that the solution is a superposition of properly

retarded sources originating from the coupling of the waves. We re-

strict ourselves to the case of a finite medium which has a boundary

(without Fresnel reflection) at - = 0. The other boundary is not

important if L -* io . Hence we replace the lower limits of inte-

gration of (3. 87) and (3. 88) by o = 0. We introduce noise sources

g t - t
0(3. 87) and 0

tuting (3. 87) into (3. 88) we then get:

- t
E. (e, t) = A e

10 0

to (3. 88). Substi-

_92cs
- 2t

+ B e 2
0

(3.86)

(3. 87)

2 c.

-- S

(3. 89)

I
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4 .cdo, des E o(01, t + C( - -V (*-o)4 v 1 s

0 0

+ - - ) - -
E (01, t + (-e )) e~ 1 -4 1p0 1' . lv 10I

1 S

v 14
Kroll has solved this for the case -- j; 0 and 0 by iterationc1

His results indicate that for - , the growth factor is

exp 2 z instead of the usual exp 7 fr1 )

(see (3. 58) and (3. 64)). The growth factor can be measured by

studying the intensity of stimulated Brillouin scattered light from long

liquid cells using an unfocussed laser beam as a function of length of
50

the cell.
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Chapter IV. Experimental Observations of the

Stimulated Brillouin Effect

Experimental detection of the stimulated Brillouin effect can be

accomplished by monitoring either the generated sound wave or idler

wave. Since the hypersonic waves expected to be generated by the

process are highly attenuated at room temperature, their detection

would only be feasible near liquid Helium temperatures. Even then,.

when non-piezoelectric materials are used as the generating medium,

detecting transducers for the hypersonic frequency range involves

difficult bonding techniques and accompanying impedance -matching

problems 24 . Also, detection of the microwave signal thereby gener-

ated is not trivial. Nevertheless, one should note that materials with-

very large Brillouin shifts may yield significant amounts of sub-

25millimeter radiation.

The much simpler alternative is to detect the back-scattered

light wave. Its frequency shift, which is the signature of the scattering

process, is very small, necessitating the use of a high resolution spec-

troscopic technique or an optical heterodyne technique to measure it.

(The pulsed laser is an intrinsically narrow line source, with theore-

tically a width of 1t 'a10 mc, where t '::20 nsec is the pulse duratioi,

so that very small shifts can be measured. ) The latter technique is

especially useful in examining near-forward scattering, where the

frequency shift to be measured is sufficiently low to use standard elec-

26tronic techniques . But frequency shifts for large angle scattering are
vs-1 -1

typically--- i- which is o1l cm for solids and~0. 1 cm for
c p

liquids, which is large enough to make heterodyne techniques difficult
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and spectroscopic ones easy, by the same token. And of all the high-

resolution spectroscopic instruments, the highest in resolution, the

easiest to calibrate, the simplest to align, and the most compact to

27incorporate into the apparatus is the Fabry-Perot interferometer

Indeed, for the solids, the shifts are so large that an unconventionally

small spacer had to be used to prevent overlapping orders. This was

1 "'achieved by using three precision ball bearings as spacers, giving

us an interorder spacing of 3. 15 cm 1 .

From the previous chapter, we see that there are two main

categories of methods for generating stimulated Brillouin scattering.

One involves a resonator and the other involves a travelling-wave

oscillator. Since the threshold (2. 21) seemed so low for the resonator

case, this was the first method attempted experimentally. A sketch of

the experimental arrangement is shown in fig. 8:

&LASS PLATE
Di El-,. 7R I C

To FAr 1&?T

fig. 8: Experimental Arrangement for Observing Stimulated Brillouin

Effect Inside the Cavity of a Laser

28
A Q-switched laser system , consisting of a 0. 6 cm diameter and 8 cm

long ruby at room temperature, placed inside a resonator system of a

99. 7% dielectric mirror and a rotating prism, generated coherent

light at 6943 R with a power of A3 'Megawatts inside this cavity. Also

placed inside this cavity was a rod of quartz 1. 5 cm in diameter and
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10 cm long and a thin piece of glass for coupling out a small amount

of radiation to be examined spectroscopically using a Fabry-Perot

interferometer. With the quartz piece removed, the output of the

ruby spectroscopically consisted sometimes of a single mode and

sometimes of a double mode with spacing 0. 5 cm 1 . With the quartz

placed inside the cavity, the backwards Brillouin-scatte~ted radiation

should be resonated by this same cavity since the frequency shift is

very small, so that a new frequency component should have been

-1observed with a (Stokes) shift of,^o#l cm down from the laser com-

ponent and almost as intense as the laser radiation if the stimulated

Brillouin effect occurs intensely (3. 47), so that we should have been

able to detect it easily. However, the effect did not show up conclus-

ively in a large number of trials. There are several explanations for

this negative result. Firstly, I was calculated from static values

and may possibly be lower at hypersonic frequencies due to some

relaxation phenomenon. Also, there is experimental evidence.that

may be smaller at higher frequencies, which will be discussed shortly.

Since enters quadratically into the threshold and linearly into the

rate of growth P (3. 44), its effect will be large. Secondly, the threshold

was calculated on the basis of 10% loss for 10 cm cavity length. The

length actually used in the experiment was N100 cm, which lowers the

threshold by a factor of 10. However, if the shift were so large that

the Brillouin light fell on an absorptive portion of the ruby line, this

could cause arl increase in the threshold. Again there is some experimental

evidence that this may be so, which we shall discuss later. Thirdly,

and most importantly, the rate of growth (3. 44) is independent of the

threshold, as long as we far exceed it, and depends only on the square
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root of intensity of the pump. For 10MW/cm2 this means a gain of

4 -8
e in 2 x 10 sec. The amount of normal Brillouin scattering in

all directions for quartz is .- 17 x the incident power per scatter-

ing length in cm, so that for a solid angle of 10-6 the amplified signal

-11
will only be 10 of the laser intensity, which under our experimental

conditions would have been difficult to detect. Another resonator type

of experimental method was used by Dennis and Tannenwald2 9 and

Takuma and Jennings 30in observations of the stimulated Brillouin

effect. In the following we shall discuss the experiment of Takuma

and Jennings.

Instead of using the laser cavity for resonating the idler,

they used an auxiliary resonator external to the laser resonator and

tilted at an angle 9, with respect to it. (cf. fig. 9)

I M~~~/ODE (/z=Ao96) '' 4.
C ETO/.TTOR

fig. 9: Experimental Arrangement used by Takuma and Jennings 3 0

The substance they placed inside this off-axis resonator was CS. In

2 M

any such a resonator configuration, it is clear that Brillouin scattering

at both 95 and 92 can occur (see fig. 10) where 9, + 92 = -r. Thus by

comparing the thresholds for the onset of the 95 and 92 components,
1 2s

from~ (3.rop 39 eseta
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2 2 2

(4 . 1 ) E T (9 ) - 1 2  1 2r2

where W1 2 s 2 )92 is given by (1. 3) and 1, 2 1,2 and

w2 1'?"1, 2) and s s. Using the single relaxation theory

of liquids, which we have verified to be valid in the Kmc region using

the normal scattering technique (see Chap. V.):

(4.2) 1 2 - 46. 5
42 1 +W 2 2 W4 2

wherer = 2. 0 x 10 sec is the relaxation time3 1 and where

W (0 1 ) 124 mc and s ) = 5.8 Kmc for 9 = 0. 0433 rad. which

was used in their experiment. This would imply that

ET 2 = 46. 5 if Ywere independent of frequency. In fact they
ET 2) 2

ET 1 32observed experimentally" that 2 . 1, so that this must mean:

ET 2

(4.3) ~ '(124 mc)
-4 (5800 mc) ) 6. 8.

Hence in the case of quartz, perhaps is also smaller at hypersonic

frequencies, supporting the first of the reasons listed above why we

did not see the stimulated Brillouin effect in quartz using the resonator

technique. However, the reasons why Takuma and Jennings saw it in

CS2 may simply be that they used larger power (50 Megawatts/cm2 )

and that the threshold is lower and the rate of growth larger for CS2

than for quartz. It goes without saying that their technique is very



r -56-

useful if F'(w) is known since by varying 9 one can map out ' (Ys '

Despite its higher threshold, the travelling-wave oscillator

method was the means by which stimulated Brillouin scattering was
33

first observed Because of the large field intensities in the focal

region, much larger rates of growth can be obtained, in spite of the

factor 2 ( (3. 64) et seq. ), than in the resonator case, once the

threshold (3. 56) is much exceeded, which, as seen in the previous

chapter, is indeed the case at the reasonable unfocussed laser power

2levels of. 1 0 Megawatt/cm , although practical considerations of

beam divergence of the laser beam and aberrations in the focussing

lens will make this figure higher. To get more power for this

focal egioi. experiment, we changed rubies; the -new ruby had a

diameter of 1. 3 cm and length of 10 cm and generated a power of

50 Megawatts/cm2 with an aperture of I cm and beam divergence of

~ 3 x 10-3 rad.34 Furthermore, in contrast to the resonator techniques,

all that is required experimentally is the simple procedure of focussing

the laser beam into the material, obviating the alignment difficulties

associated with the resonator. Collection of the backward-going idler

light was accomplished by the same lens used to concentrate the laser

beam (fig. 10). A glass plate placed in the path of the thus collimated 3 5

backward-scattered Brillouin light coupled a fraction of this light to

the Fabry-Perot for analysis without deflecting away much of the forward-

going laser beam. For the purpose of analysis~10% of this deflected

laser beam Was reflected by the mirror M 2 to be combined with the

Brillouin scattered light for comparison in Fabry-Perot B. However,

since the laser sometimes discharges in two modes of frequency

separation 0. 53 cm- 36 to be able to distinguish the Brillouin light from
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fig. 10: Schematic of Experimental Apparatus Used to Observe

Stimulated Brillouin Scattering in the Backward Direction. A trav-

elling-wave oscillator is produced in the focal region.
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fig. 11: Comparison of Fabry-Perot Interferograms of Laser and

Stimulated Brillouin Effect. Both pairs (a) and (b) were taken

simultaneously with experimental arrangement shown in fig. 10.

Rings identified as laser radiation are labeled L; rings identified

as stimulated Brillouin scattered light are labeled by B. In (a)

the laser output consists of a single mode; in (b), a double mode.

The laser was directed along the X-axis of the quartz and polarized

along the Y-axis.
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AB
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these modes another Fabry-Perot (labeled A in fig. 10) was introduced

with an associated glass beam-splitter and a mirror M of " 100%

reflectivity. The forward-going laser radiation can then be identified

as those frequency components which are stronger in A than they are

in B and the Brillouin components as those which are weaker in com-
.37parison .

Two such pairs of simultaneous shots at A and B are shown

in fig. 11; pair (a) was taken when the laser going in a single mode,

pair (b) when going in a double mode. The material used for these

pictures was quartz at room temperature, with the laser beam

38entering it as an ordinary ray along the X-axis. The rings labeled B

are identified by the procedure described above as stimulated Brillouin

components. Since the B pictures; taken using mirror M of 10%

to reduce the' laser intensity in comparison with that of the

Brillouin components, show the laser t.nd the Brillouin components

nearly equal in intensity, these must actually be ^., 10 times -weaker than

the laser. That the effect observed is stimulated is clearly proved

by the three following observations: (i) There is a threshold below

which the rings labeled B disappear and above which they appear consis-

tently and reproducibly; (ii) Only the Stokes component appears, which

is clear from the fact that the Brillouin components (labeled B) are

smaller in radius than the corresponding laser components (labeled L),

whereas the normal effect at room temperature produces Stokes and

anti-Stokes with equal intensity (see Chap. V); (iii) The intensity of

the Brillouin components is ^0 101 that of the laser, whereas in the

normal effect we would expect less than 10- of the laser intensity.

When the effect is generated even more strongly, the Brillouin rings

__a
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taken with Fabry-Perot 13 will appear more intense than the laser rings,

as exemplified by fig. 12(a) and (b), but of course they cannot actually

exceed the laser in intensity, as pictures taken with Fabry-Perot A.showed,

in which they were nearly equal in intensity. This means that

the Manley-Rowe relations have been fulfilled and that there is an

acoustic power of a1 Kilowatt in the focal region. Therefore, nearly

all of the laser beam has been reflected as a Brillouin-shifted wave by

the quartz, as if there were a dielectric mirror moving at velocity vs
in the focal region. Indeed, under such conditions, when attempts were

made to analyze the forward going laser radiation which had passed

through the crystal, its intensity was found to be much reduced.

To verify that we were actually generating sound waves and

not some other excitation of the individual molecules or of the lattice,

we need to measure the shifts and compare with those calculated from

(1. 3) using ultrasonic values of the sound velocity. This is done in

the table accompanying fig. 12, from which it is clear that we are

39exciting the longitudinal sound waves, as expected3. Stimulated

Brillouin scattering was observed not only. in the backward direction,

but also at 9 = -T/2, as shown in fig. 12(c), but much more weakly,

with the idler.*/1O-3 the intensity of the laser, and with the sound wave

thus generated no longer purely longitudinal. The reason why the

backward direction predominates in intensity of scattering over all

other directions is a geometrical one, namely, that the "active" length

La, which enters in the exponent in the growth factor, is much longer

along the axis of the focal region than transverse to it. Figure 12(d)

shows evidence for stimulated Brillouin scattering in sapphire in the

backward direction, but it has a higher threshold than quartz and the



fig. 12: Stimulated Brillouin Spectra of Solids Taken with Fabry-Perot B. These interferograms

have an interorder spacing of 3. 15 cm 1 . They yield frequency shifts which compared with values

calculated from ultrasonic data and from hypersonic data obtained by normal Brillouin scattering

as follows:

scattering
crystal angle

laser idler laser
incident scattered polarized
along along along

shift
calculated

observed from
shift ultrasonics
(cm-1 ) (cm-1 )

shift
calculated
from
hype jsonics
(cm~ )

0. 9 7 u

0. 88

0. 70i0. 0 5 w

2. 0 1 u

0.96

0.90

0. 75 0. 03

1. 32

Calculated from elastic constants given by

u 2

v
VP v L

H. B. Huntington, Solid State Phys., 1_, 213 (1958).

= 33

= 11

v = -( c1+ c33 +4c + 2c13 4c4)

l *f
Calculated from data given by R. S. Krishnan, Proc. Indian Acad. Sci. , A41, 91 (1955).
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(d)
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0. 73
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effect does not occur very strongly at ourpower levels. That the

stimulated Brillouin effect has been observed in sapphire, which is

a nonpiezoelectric material and in quartz along its Z-axis (fig. 12(a)),

40where the piezoelectric coefficient vanishes due to symmetry , proves

that electrostriction, and not piezoelectricity, is the phenomenon

responsible for the coupling of the three waves involved in the stimu-

lated scattering process. The shifts were measured using the method

41of fractional orders , giving accuracies of 3% for fig. 12 (a), (b) and

(d) and 10% for fig. 12(c). Our data is also consistent with that

42obtained by Krishnan using normal Brillouin scattering42

The materials were badly damaged and produced accompanying

ionization near the focal region during these experiments. In quartz

the damage occurred reproducibly with an X-shaped cross-section when

the laser was directed along the X-axis of the quartz, much as if two

cleavage planes emanated from the focal region with an intersection

angle of 530 (which is unexpected since quartz does not cleave

naturally). It is not clear that the stimulated Brillouin effect is the

primary cause of this effect, since it occurred even when the Brillouin

components were absent in the interferograms. Also, substances which

did not exhibit stimulated Brillouin scattering, such as lithium fluoride,

were badly damaged. Nevertheless, since the sound wave, once

produced, will generate pressures of 103 atmospheres and will raise

the temperature 10 4C due to its large attenuation, large local

stresses will build up, cracking the crystal. Even without the sound

wave (i. e. below the threshold of the stimulated Brillouin effect) one
E 2

might conjecture that electrostrictive pressure P alone

may break the crystal, which perhaps may explain the above obser-

vations. However, if breakage is actually due to electrostriction alone,



we can comp

as follows.

(4.4)

assuming

P = bB w

strength of t

(4.5)

is then the c

(4.6)
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are its onset with that of stimulated Brillouin scattering,

For from (3. 56):

2
ET

= -r
2 B 1

.2 k. k 2

4 . If b is the breakage coefficient defined by

here B is the Bulk modulus and PB is the tensile

he material,

E2
EB

8-r B
bB

ritical field for fracture. Then

29
ET

EB)

2

b2-

-32 22For quartz, b 2:010 , and hence we estimate E 2 102 E , so that
B T sta

this explanation of the occurrence damage is probably also invalid

except in the cases where X p or when b is smaller. The correct

43
explanation probably involves plasma formation in the focal region43

The stimulated Brillouin effect has also been seen to occur in

44various glasses by Atwood et al. , in association with damage track

production. They introduced an ingenious experimental technique

which greatly simplified the identification of forward-going laser radia-

tion and backward-going stimulated Brillouin radiation, eliminating

the introduction of Fabry-Perot A in fig. 10 for this purpose. Their

technique is sketched in fig. 13.
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fig. 13: Simplified Apparatus for Detection of Stimulated Brillouin

Scattering

The use of the quarter-wave plate as shown in fig. 13 makes mutually

perpendicular the polarizations of forward-going and backward-going

45radiation reaching the Fabry-Perot. Hence by placing immediately

in front of the film a filter composed of two perpendicularly oriented

polaroids placed side by side, one can immediately separate the

frequency components present due to laser from those due to

stimulated Brillouin scattering. Using this technique, De Martini4

has seen the stimulated Brillouin effect in rutile, Rochelle salt and

triglycine sulfate.

(.f~

I I
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The stimulated Brillouin effect has also been seen in many

liquids using the travelling-wave oscillator method by Brewer and

47 48Rieckhoff and Garmire and Townes Liquids generally have lower

thresholds than solids because they are much more compressible

(cf. (3. 56) and (3. 64)), as evidenced by their smaller velocities of

sound. Indeed, Brillouin shifts are - 10 times smaller in the

liquids than in the solids. Because of this, a novel feature appears

in the observation of the effect in the liquids which was absent in the

case of the solids. As is apparent from examination of fig. 14

(we shall describe the work of Garmire and Townes), if the shift

is so small thatBrillouin component lies within the amplification

bandwidth of the ruby, the back-scattered Brillouin light will be

amplified upon re-entry into the ruby and reflected by the prism back

into the liquid cell, after further amplification, so that if it has

been sufficiently intensified, it will generate its own Brillouin com-

ponent. This iterative process can generate multiple orders of

Brillouin shifts, as shown in fig. 15. That amplification has actually

occurred is proved experimentally by the fact that the pictures of

fig. 15, which were taken at site A of fig. 14, are orders of magnitude

more intense than those taken at site B. Only Stokes shifts seem to

be present in fig. 15(e) and (f), where the inner rings get progressively

weaker, indicating that the outermost ring is from the original laser

pulse. This is the situation when the laser excitation is weak and

amplification of the Brillouin components is not strong. That the

multiple shifts do not occur inside the liquid itself due to intrinsic

higher order Brillouin scatterings, in which the first back-scattering

wave undergoes stimulated Brillouin scattering to produce a forward-

going doubly shifted (second-order Stokes) wave and a backward-going
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fig. 14: Experimental Arrangement used by Garmire and Townes 4 8

for Observation of Stimulated Brillouin Effect in Liquids
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fig. 15: Stimulated Brillouin Spectra of Liquids. These were taken

with Fabry-Perot at position B shown in fig. 14. The interorder

spacing is 0. 701 cm . Rings corresponding to Brillouin scatterings

are labeled Bn; n = order of iterative generation. They yielded

hypersonic velocities which compared with ultrasonic values as follows:

Calculated
Hypersonic
Velocity
(m/sec)

Ultrasonic"
Velocity
(m/sec)

Maser without any liquid target

CCd
4

Methanol

Acetone

CS
2

HO2H2il

Aniline

0. 141

0. 139

0. 153

0. 1925

0. 188 5

0. 257 5

1007 7

1100 11

1174 7

1242 6

1471 8

1699 i 8

1040 27

1190 40

1265 - 22

1509 25

Acoustic velocities given by K. F. Herzfeld and T. A. Litovitz,
Absorption and Dispersion of Ultrasonic Waves, New York,
Academic Press (1959), p. 362.

Liquid

Brillouin
Shift
(cm~I)

(a)

(b)

(c)

(d)

(e)

(f)

(g)
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sound wave, and further iterations of this process, is shown by the

fact that alternate Stokes orders are not absent, which such intrinsic

scatterings in the liquid would imply. Under higher laser excitations

this simple monotonic intensity profile of shifts became more compli-

cated, as shown in fig. 15(b) and (d) and there appears to be anti-

Stokes components if one identifies the most intense component

(e. g. B 3 in fig. 15(b)) as the laser. However, the correct explanation

of this intensity profile is that first few orders of Brillouin shifts are

generated so strongly and amplified so much that they become more

intense than the initial laser pulse itself. Of course, when the order

of the shift becomes so large that the Brillouin radiation is near the

edge of the amplification bandwidth of the ruby, they will become more

and more attenuated. Although the process of intrinsic scatterings

described above might give the first order anti-Stokes (since a backward-

going sound wave is produced in the second order), it cannot give a

backward-going second order anti-Stokes, which would be there

according to 15(b) and (d). Hence the extrinsic iteration process,

which involves amplication by the ruby, seems to dominate over any

intrinsic iteration process.

This conclusion was verified experimentally by three observa-

tions by Brewer4 9 . Firstly, a simple comparison of the output

spectrum of the laser (properly temperature-controlled to avoid fre-

quency drifts on successive shots) with and without a liquid target

showed that, independent of the intensity profile of Brillouin components,

the highest frequency component was indeed that of the laser and all

the Brillouin shifts were to the Stokes side. Secondly, when an optical

isolator (analyzer and 1/4 X plate in series) was placed between the
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laser and the liquid target, so that backward-going radiation could

45not have re-entered the laser , only one Brillouin Stokes component

was seen, just as in the solids. Thirdly, by removing the liquid

target far away from the laser, each step involved in the extrinsic

iteration process could be time resolved, and successive pulses in

time were identified as successively higher order Stokes shifts. By

varying the distance of laser to target it may be possible to measure

hypersonic phonon lifetimes". In more recent developments, Brewer5 0

has observed stimulated Brillouin scattering using an unfocussed

laser beam, allowing expei-imental tests for Kroll's trans.L~ients

theory (see previous chapter); he has also observed acoustical second

harmonic generation, by using the second harmonic of the laser as a

probe and observing back-scattering of this probe.

The largest number of shifts due to the extrinsic iteration

process seen in the liquids is~10. This indicates the amplification

-lbandwidth of the laser to be % 1 cm . Thus shifts in the solid are

generally too large to be amplified and thereby undergo extrinsic

iterative generation. Also, experiments inside the laser cavity using

solids, as described earlier, may not be feasibly due to the possible

quenching of the Brillouin shifted wave. However, Tannenwald 5 1 has

recently observed multiple Brillouin scattering in solids. If the iterative

process is extrinsic, this implies a broader amplification bandwidth

for the ruby and excitation system used in his experiments, than those

used previously.

iH I

-il
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Chapter V: Normal Brillouin Scattering

In the previous chapters, we have dealt with stimulated

Brillouin scattering, which could only be observed with the advent

of extremely powerful laser beams. The resulting generation of

intense hypersonic waves will provide an important tool for physical

acoustics, especially in investigations of acoustical nonlinearities.

Nevertheless, some useful information may still be obtained from

physical acoustics in the linear region, i. e. from studies of absorp-

tion and dispersion of hypersonic waves. For such studies it is not

necessary to use the material-shattering intensities generated by

the stimulated Brillouin effect. However, generation and detection

of hypersonic waves by extension of conventional ultrasonic methods

is very difficult. Fortunately, as was realized many years ago,

these waves are generated, although weakly, simply by thermal excitation;

examination of light scattered off these waves will yield their velocities
52

and absorption This process of light scattering, which we shall

call normal or thermal Brillouin scattering, to distinguish it from

the previously discussed stimulated process, was observed previously

using an incoherent Hg line source. But because of the large width

of the exciting line, the Brillouin components of liquids were barely

resolved from the central component and their intrinsic widths were

undetectable.

With the advent of the continuous laser, it was realized by

various workers53 that it was ideally suited as a source for normal

Brillouin scattering. Because of its intensity, exposure times are

reduced from hours to seconds; because of its extremely narrow line-
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width, the Brillouin components are resolved much better54, and, for

55the first time, their widths are measurable ; because of its coherence,
56optical heterodyning with the scattered light is possible ; because of

its almost perfect collimation, the scattering angle, even when it is

57small, can be precisely defined and varied ; because of its complete

polarization, precise measurements of the depolarization of the

Brillouin components can be made5 8

To calculate how much scattering we expect from thermally

excited sound waves, let us first employ the energy-considerations

method used in chapter II. There is present in the scattering medium

the well-known black body distribution of sonic power; since

k T > is the energy per normal mode is by equipartition:

P
2

(5.1) sBo V k T

where V is the volume of the target scattering medium, which for

simplicity we assume to have the shape of a rectangular parallele-

piped of dimensions d x d x32 (see fig. 16) oriented so that the

scattered radiation is emitted along its long axis.

TAROET d.

fig. 16: Normal Brillouin Scattering Diffracting from Rectangular

Parallelepiped Target
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The thermal sound waves will modulate the incident laser beam to

generate an idler or scattered light wave with a power per unit volume

of:

d u. y .
(5.2) C -F-1 --- B P E E.

gain

which we calculated in chapter 11 (2. 17b). However, in the present

case w = w ws, k = k k-s; i. e. we must allow anti-Stokes as

well as Stokes generation, since we no longer need concern ourselves

with the converse process in which the sound wave is amplified, as

was necessary in parametric generation. Since we are not interested

in transient effects, in the steady-state the generated power in the

idler will be radiated:

d u. 2
(5.3) 1 V c E. Ad t -- T 10

gain

where A = d . Hence the scattered amplitude is:

(5.4) E. = 2Bc P E J.io 2Bc so po

and the intensity is:

(5. 5) . c E.B P 2 E 2 921 8w rr io 3T2 c so po

To convert this into a formula for scattering cross-section, let

us remove the detection apparatus a distance r >sJP far away from

the target. Let I(r) be the intensity which will be received at r.

Diffraction and energy conservation imply (see fig. 16):
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(5. 6) I(r) 2 r 2 = I d 2

Hence

4 p 2
2 11so 2

(5.7) r I(r) = - ) 2 B
c4 1T B

4
W 1 221

C4 161T 0

where 6 = Bso is the maximum change in dielectric

constant due to the sound wave and where I - E 2 is the

laser intensity. The scattering is highly directional for a given

sound wave direction; the differential cross-section is zero unless

the angle of observation is kinematically correct, in which case:

(5.8) d 6=r 2 d ( ) - 2 2-r-- ( A E) V dfL
o

B k T V d Jl

where d/l. = solid angle of detection system and where - 2wc
WA.

But thermal sound waves exist in all directions so that the total

cross-section is:

(5. 9) = 41r r2 I(r) 41T 3  (AZ6) 2 V2 8 3 WI.k T V.
0X

Another quantity commonly used is the extinction coefficient, other-

wise known as the total scattering coefficient 5 ?



n
4 1T I(r) r2

(1 = 0( A) - X_
6' 8n3
V ~T I.

X2
I-T k T .

This quantity has the dimensions of cm~ 1 and tells us how much of

the laser power is scattered per unit length of travel through the

scattering medium. Both (5. 9) and (5. 10) are a factor 3 too large

due to the neglect of polarization considerations, as we shall see

shortly. The typical order of magnitude of R for liquids is

-5 -1-7 -. 10 cm and for solids% 10 7 cm .

A more rigorous method of deriving these results starts

from the wave equation (3. 7). Because its source is oscillatory

at the idler frequency, we proceed to solve it using temporal Fourier

analysis:

(5. 11) E. (r,

The source term of

(5. 12) - 1--
c.

1

i w.t __

t) = e E ,

the wave equation is (P
00

P = - -T-
fcP=ON-

W ) d i .

= polarization):

e g (r, w ) doW

where

(5. 13)

OWD

g (r, w) =e
1- e

The wave equation then reduces to the Helmholtz equation,which has
Gree's fnctin6 0 ~r) 1 i k r

a Green's function" G(r) = 4I Ie i ,so that the solution by

superposition is:
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(5. 10)

P s r, t) E p (r, t) d t.
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2 i k. rT"r)

(5.14) E.(r, w 1 -) d 3r'
c fr-

where we have chosen (+) for the exponent since we detect outgoing

waves. When we are far away from the target, i. e. r , r', we use

the approximation (see fig. 17):

(5. 15) 1r -r' = r - k. - r'A

-T AREr

eLPtTECTION PIWNT

fig. 17: Radiation from an Extended Source. Cross-section is calculated

with the approximation r > r'.

Hence (5. 14) becomes:

(5. 16)
'.A W 2 ei k. r

E (r, W )B ~~ 4r
c

g r. r 3
g( i ) e 1 d r'

The latter integral is called the form factor. Using the spatial

Fourier analysis of P5 (r, t) (i. e. plane wave decomposition) and

remembering that E = E cos (k r - w t + 0 ) this form factor
p po p p p

reduces to V 4 (k -k - k.) which states the kinematics of the
p 5 1

process. If the sound wave has an infinite lifetime, (5. 16) becomes:

(5. 17)

2 1b
-A 1 ei k r P) E oE (r, T) 4r B 2 .

c
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From this we can calculate intensity of the scattered wave by squaring,

as we did before in (5. 7) et seq. , and obtain the scattering cross-section:

(5. 18) = -- kT V 1

1

This is smaller than (5. 9) by a factor of . The reason for the

difference is that actually only the transverse component of the

polarization source (5. 12) radiates, so that we replace~~g(~r', W )

in (5. 16) by k x ( xg r', W.)). This introduces a factor of
A A
Ep E. = sin into the scattering amplitude (5. 17). By geometry,
A A
E k. = cos = sin 9 cos 0, where 9 = scattering angle and $ =p1

azimuthal angle of k. relative to E . Integrating sin2 over solid

angle gives us 41 in the total cross section (5. 18).3

If the sound wave has a finite lifetime 11, then we expect
s1

that there should be a smear in its frequency s . Never-
5

theless, when we observe scattering precisely at an angle 9, we

are picking out a plane wave of an exact wave vector ks (therefore

of infinite spatial extent) for observation, as is clear from the Bragg

picture of the scattering process. However, because of the uncertainty

9 s of the frequency ws (and hence the velocity) of this wave due to

its finite lifetime, we will observe a corresponding smear in the

frequency of the scattering light wave equal to S Ws, as is clear from

the Doppler picture of the scattering process. Another experi-

mental procedure for measuring the lifetime of the sound wave is to

use at infinitely sharp frequency filter centered at some frequency W i

in the detection of the scattered light and to vary the scattering angle 9,
v

and thereby measuring the smear 6 k - in k for a given
s OV 5
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62
frequency s . However, it is easier to fix 9 and observe the spectrum

of the scattered light. These conclusions can also be drawn more
t/2* .A ,A 63

rigorously using (5. 13). For if Ps = Po e exp i (ks - r - wst + 0s)

then

ik. r

(5.19) gero) = e 1 P E
9 2 -2, 1/2 so po

i k. r
where a W = .- W S* The spatial factor e 1 enters

into the form factor in (5. 16) to give as scattering only in the

observation direction. The Lorentzian factor in g r, W ) gives

the spectral distribution of the scattered light (5. 16), which we see

has a full-width at half-height SOB 12rr where t = lifetime

64 -q_- _of the sound wave. Similarly, if we put in P = P P r
S. v s so 2

e i(ks. r-t+ s) , with q = -F , we would obtain a Lorentzian

smearing of the scattered light around the kinematically exact

scattering angle 9, as one can see by evaluating the form factor.

Which Lorentzian factor comes into the observations depends on

whether we vary w or 9.

Hence it is clear that we can measure not only the velocity

of a sound wave involved in the scattering process by measuring

the shift in frequency of the Brillouin components, but also its

absorption or lifetime by measuring the widths of these components.

It should be noted that nothing more than the kinematics of the

scattering process is actually involved in deducing the velocity and

absorption of this sound wave, so that these quantities are as reliably

measured as in experiments where the sound wave is directly detected.

The dynamics of the scattering process, which deals with the intensity
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of the scattered radiation, is unessential as far as the properties

of the sound wave is concerned. Nevertheless, dynamical consider-

ations related to the cross-section (5. 18) can yield useful informa-

tion about some other properties of the scattering medium.

Firstly, if we know the temperature of the target, by meas-

uring the total amount of light scattered relative to the power of the

laser beam for a given length of target (i. e. by measuring R) we

can calculate 3'. Furthermore, by measuring the intensity of the

Brillouin components as a function of angle of scattering (i. e. by

measuring (9)), we can obtain as a function of the frequency

s of the sound wave (cf. Takuma and Jennings experiment of

chapter IV).

Secondly, at extremely low temperatures, the principle

of detailed balancing will show that the ratio of intensities of

anti-Stokes to Stokes Brillouin components is e w s/kT, thus

65enabling us to determine the temperature of the target . However,

since most experiments are done around room temperature, the

Stokes and the anti-Stokes are to an extremely good approximation

equal in intensity, so that this method of temperature measurement

is not feasible. Physically this arises because at high temperatures

there are a very large number of phonons per mode (we can treat

the sound wave classically) so that spontaneous emission is com-

pletely swamped by stimulated emission of the scattered light, and

since there are as many thermal sound waves travelling in a

direction toward the incident beam as there are away, Doppler

shifts upward in the frequency of the scattered radiation are as

intense as Doppler shifts downward.
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Thirdly, there exist in the scattering medium entropy

fluctuations 6 6 due to thermal excitation, as well as pressure fluc-

tuations, since in general e= 6 (P, s) and:

(5.20) =((= +s
\ s a s p

We have already considered the effect of the first term on light

scattering. As we have seen, since the pressure fluctuations

propagate according to the wave equation for sound, the scattered

light will suffer a Doppler shift proportional to the velocity of

propagation of the fluctuation. However, since entropy fluctuations

propagate according according to the diffusion equation (since

s = C T 67
p Cp T- )

(5.21) 7 2 s -D s =s 0

vpC1
where D = K "P = density, Cp = specific heat capacity at

Kp
constant pressure, K = thermal conductivity of the scattering

medium, the scattered light from these fluctuations will suffer no

Doppler shift because the velocity of propagation of entropy waves

is zero. More rigorously, plane wave solutions of (5. 21) have the

form s = s e cos(Is 'r)where e = C Substituting thisso s 22k K

into the form factor (see (5. 16)) gives the usual kinematical condition

k = kp - ks, whence ks = 2k sin - , but the spectral distribution

is now a Lorentzian centered around w. = wp with a width6 8

S-1 s K , as can be seen by evaluating (5. 13). Hence
R = 

Vp
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we expect there to be light scattered at an unshifted frequency

(the Rayleigh component) in addition to the Brillouin components.

The width of this Rayleigh component will be a measure of the

thermal conductivity of the medium; measurements of width as a

function of scattering angle gives K(ks).

Fourthly, if the dielectric constant is a function of the

density of scattering medium alone and is independent of the

temperature, then:

(5.21) -=A P
P T

is another way of expressing (5. 20). In other words, the total

amount of scattering, Brillouin plus Rayleigh, can be calculated

starting with (5. 21) (assuming A P id s = 0). Hence if we do not

measure the spectral characteristics of the scattered light (and

since the frequencies of the various components differ very little

from the frequency of the incident radiation), the total cross-

section for Rayleigh and Brillouin components taken together, cal-

culated using the same method as for (5. 18) is:

2

8,rr Y'T1
(5.22) B kT V 14

T X
p

where T fQ and BT are isothermal values, whereas:

(5. 18) B Ts kT V

where s and Bs are adiabatic values, is the
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Brillouin components cross-section derived previously (5. 18).
B s C \- 69weV:7

Since -= 69 and since = when = 0: 70BT V

(5.23) TB
+ p

This enables us to measure the ratio of specific heats of the

medium.

Fifthly, not only are there pressure and entropy fluctua-

tions in the medium, but there are also anisotropy fluctuations.

In solids, these give rise to light scattering off transverse sound

waves; in liquids these give rise to a depolarized continuous back-

71ground around the Rayleigh component. Furthermore, there is

scattering from the rotational states of the molecules, which, due

to their interactions, usually is so smeared out that light scattered

off them will add to the continuous background around the Rayleigh
71

component . This background, sometimes called the "Rayleigh

wings", extends typically 10 cm-. Scattering off rotational states

is an example of Raman scattering, which arises from the individual

molecules rather than from collective notions of the media.

There are two main categories of experimental methods for

detecting normal Brillouin scattering. The first involves optical

heterodyning, the second, high-resolution spectroscopic techniques.

Although the first method is by far the higher in resolution, it

requires a very intense scattering source and careful alignment pro-

72cedures in order to utilize the coherence of the laser beam So

far this technique has been successfully used only for detection of

critical scattering3. The second method involves use of either a
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high-resolution grating spectrograph or a Fabry-Perot. Using these

means various workers have detected normal Brillouin scattering using

the He-Ne red laser as a source. Fabelinskii et al. saw widths in

carbon tetrachloride and benzene by photographing the Fabry-Perot

rings; Benedek et al.75 measured the velocities of sound of various

solids and liquids using a grating spectrograph; Stoicheff et al.76

used the pressure-scanning Fabry-Perot system to measure velocities

in various liquids and obtained a width measurement of the Brillouin

components of acetic acid. Although the Fabry-Perot is a much

higher resolution instrument than the grating spectrograph, its light-

gathering power is usually inferior unless proper experimental pro-

cedures are adopted. As we shall see later, this is because the Fabry-

Perot selects light from a very small portion of the scattering path,

whereas by orienting this path parallel to the slit of a grating instru-

ment, light from the entire length of the path can be collected.

We describe the experimental arrangement for 900 scattering

of Stoicheff et al. in fig. 18. The output of a He-Ne red laser whose

power ranged from 4 milliwatts (and linewidth 660 Mc) to 20 milliwatts

(and linewidth 810 Mc) was directed on a liquid sample placed inside a

second cavity external to the laser. Light scattered at-90 0 is

collected by a f/10 lens and passed through a dielectrically coated

(R = 0. 90) Fabry-Perot interferometer with a 2. 9992 cm spacer,

which gave an inter-order spacing of 0. 1667 cm- . The resulting

ring pattern was either photographed using a 1. 3 m focal length lens

or, using a 36 cm focal lens, pressure-scanned through a pinhole

centered on the pattern for photoelectric recording (an RCA 6199

photomultiplier was used for this purpose). For scattering in the
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fig. 18: The Experimental Arrangement Used by Chiao and Stoicheff

for Observations of Normal Brillouin Scattering in Liquids at 9 '==900.

Brewster angle windows are shown rotated through 900.
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near-backward direction, the laser beam was focussed into the

sample and the scattered light deflected into the interferometer with

a mirror.

Examples of Brillouin spectra obtained by pressure-scanning

of the interferometer are shown in fig. 19. The traces are noisy

due to the poor quality of the photomultiplier. However, the Brillouin

components were so intense that they were easily visible to the eye

and were photographed in seconds. Unfortunately, since the exact

angle at which the 9 == 90 data was obtained was unmeasured, the

calculated velocities were unreliable toA 5%, although the standard

deviation of the frequency shifts was ^ 0. 1 %. In the near backward

direction the angle was measured crudely to 50 by measuring the

length of the image of the scattering path at the pinhole knowing the

length of the cell and the magnification of the lens system. In any

case, the velocity is not a very sensitive function of angle near the

backward direction, and the following values were obtained at 9 = 1650:

in toluene, vs (6. 45 KMc) = 1380 m/sec; in CS 2, v (6. 36 KMc) =

1253 m/sec; in water, vs (6. 15 KMc) = 1470 m/sec. The accuracy

of these velocities is A0. 5%.

The width of the Brillouin components in acetic acid is quite

noticeable in fig. 19(b) in comparison with those of ether ethyl at

14. 0 C in fig. 19(a). However, the zero level, determined by blocking

the scattered light, shown in fig. 19(b) should not be used as the base

line for determining the widths of the components, since there is a

sizeable amount of background scattering (the "Rayleigh wings") which

forms the real base line. This implies that a larger free spectral

range than that used in this experiment is needed for an accurate
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f ig. 19: Recorder Traces of Brillouin Spectra Taken with Experimental

Arrangement as Shown in fig. 18.

a) Spectra of ethyl ether showing the effect of temperature on the

Brillouin shift.

b) Observed spectrum of acetic acid and its analysis into the central

(Rayleigh) and Brillouin components. (The large noise spikes in the

central component are due to scattering by dust particles. )

PPOI---- -
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r 78
determination of this base line. A later measurement of the width

of acetic acid at 9 = 900 showed it to be 190 Mc, so that the broaden-

ing evident in fig. 19(b) is ~25% of the maser linewidth. It should be

noted that the linewidth of the maser is not real, but is simply due to

the fact that many modes of the laser, which were separated by

^060 Mc, could not be resolved by the analyzing system.

As is apparent by inspection of the Brillouin formula (1. 4),

by varying the angle of scattering it is possible to vary the frequency

of the sound wave whose velocity and absorption we are measuring.

It is thus possible to do acoustical spectroscopy, i. e. investigate

the absorption and velocity of hypersonic waves as a function of

frequency. Thus we can extend the study of relaxation processes to

78 79
hypersonic frequencies '. Also, if acoustical waves can interact

resonantly with molecules, atoms, or nuclei or with other collective

80modes of the medium (e. g. through spin-phonon coupling and

magneto-acoustic coupling 8), the properties of such resonances can

give interesting spectroscopic information about the low-lying levels of

the medium, especially when selection rules forbid coupling to micro-

waves. 7 8 ' 79 One way of picturing this coupling is that if the acoustical

branch of the w vs k curve intersects a low-lying optical branch and

if interaction occurs, the crossing levels are repelled from each other

(see fig. 20(b) below), giving rise to anomalous dispersion of the

acoustical phase velocity (which is the velocity which enters into the

kinematics of Brillouin scattering) and absorption of the acoustical

wave. More rigorously, let us start with the coupled wave equations82

2 2 6 12 2 2(5.24) v V P +aP - tL 2c-I P = c F
& vV

I III

' Ij~I1
I j ~
ill II~
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2  2  2 2
u IV F + bF - .t F - w F =c 2 

(5. 24) represents a sound wave; (5. 25) represents an optical branch,

which, when uncoupled with the sound wave and when b = 0, has the

dispersion relation:

(5. 26)
2 2 2 2

W = o0 + u k

This optical phonon has an effective mass m 0 near k = 0.
u

These equations differ from the coupled equations (3. 7) and (3. 23)

used for the stimulated Brillouin effect in that they are linear and

therefore can be solved exactly using exponential solutions

P = P0 ei(k z - ot) and F = F0 ei(kz - ot) where P and F are now

constants. Substituting these solutions into the coupled equations,

we get the dispersion: relation:

(5. 27) (v 2k 2+ ia w+ w)2 u 2k 2+ ib w +(w 2- W2
222 0

= c 2 v u k

which is quartic in o. If a = b = 0 we can solve (5. 27):

(5. 28) 1
v (k) 2 (w)2

2

( k 2 v

42 2+ I_ O + u2 - 2
72 u-

+ 4u2 v2 c1 c2

When u2 4< v2 and c1 c 2 is small:



v +1 4u2 v 2

-v2
k

where v+ = 0 and v_ = v. Choosing the (-) branch (that of the

sound wave), we see that v_(k) looks like fig.

- -- -f'
--- 4--

(a)
M6=v--

20 (a),

(b)

fig. 20: Dispersion of Lossless Sound Waves Near Resonance

which is analogous to the optical case. For the case when a* 0

and b 0 0, let us solve (5. 27) near k = k0 = 0
0 V

We will let

k = k + q, where q<.< k is real, be the independent variable and

= +f , where j | o is complex, be the dependent

variable.

(5. 30)

Keeping the largest terms, we get:

A = 10 ( 2v2 k 0 q + i(a + b) 0 )

-2v2k q + i(a-b) )2 + 4c cu2 v k

Expanding near k0 we get:

(5.31) .. L= a+ t

2
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(5. 29) v (k)
c c 2

IV

I

I

14

*01 k
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wherej + v q + aand _ = i b and whereJ+ q+ 2-ad~

)2- c )2 (a-b) k 2
(5. 32) Im = 1 v 0 24 2 ' (a-b) 12

v

c c U2 2q v k2
22

(5.33) Re c= )1 2o
4 q2 ( a -b) 1

T-+ -2v

which imply a Lorentzian shape to the resonance. The maximum

absorption of the sound wave above background, which occurs at

k = k0 and the minimum dip in velocity, which occurs at

k=k - (a-b) 1 83o 2 v-, a

(5. 34) max cic2(b 2w2

(5.35) vmin = + c 2 (V2) v

A v
(5.36) min 1

v 3) max

and the width of the resonance is = (ab| Notice thatv max
may be negative if a> b, so that there is a decrease in the sound

wave attenuation. This arises physically from the transfer of energy

from the optical mode to the acoustical mode when the former is

less lossy.

The almost perfect collimation of the laser beam makes it

very easy experimentally to study normal Brillouin scattering as a



Examples of Brillouin spectra thus obtained are shown in

fig. 22, where- liquid toluene was the scattering medium. In (a)

the scattering angle was 70. 00 0. 30; the temperature was 22. 8 0 C.

In (b) the scattering angle was 30. 00 0. 30; the temperature was

22. 4 0 C. Again, the linewidth of the maser is not real, since the

Fabry-Perot (interorder spacing 15 Kmc and finesse 50) could not

resolve the 60 Mc cavity modes of the laser. In these interferograms

the maser power was 10 milliwatts and its apparent width was 540 Mc,
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function of scattering angle. In fig. 21, we show the experimental

arrangement used by Chiao and Fleury 78. The scattering angle 9

was varied by a combination of rotation of the adjustable mirror

and translation along the precision optical rail in such a way that

the reflected laser beam passed through the center of the cylindri-

cal cell. The mirror was mounted on a spectroscopic table with

a vernier angular scale for measuring 9. With a proper centering

of the lens which collects the scattered light, 9 = 00 was established

as the direction normal to the Fabry-Perot plates. With similar

centering alignments to prevent deflection of the laser beam, a lens

84with focal length f = 10 cm was used to focus the incident beam into

the cylindrical cell, and the scattered beam was collected and

analyzed by a pressure-scanning Fabry-Perot system similar to that

shown in fig. 18. The use of a high-quality photomultiplier (RCA 7326)

eliminated the lock-in detection system used previously. Its anode

output, loaded with a o 1 Megohm resistor and d. c. biased to eliminate

dark current, was put directly into a voltage recorder. Typically a

couple of millivolts of peak signal from the Brillouin components was

obtained.
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fig. 21: Experimental Arrangement for Observing Normal Brillouin

Scattering as a Function of Angle. The scattering angle 9 was varied

by a combination of rotation of the adjustable mirror and translation

along the precision optical rail. The mirror was mounted on a spec-

troscopic table with a vernier angular scale for measuring 9.
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fig. 22: Interferograms of Brillouin Scattering in Toluene. In (a)

the scattering angle was 70. 00 + 0. 30; the temperature was 22. 8 0 C.

In (b) the scattering angle was 30. 00 0. 30; the temperature was

22. 4 0C. The maser power was 10 mW. The sweep rate was 316 Mc

per division.
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which was obtained by using a high-gain tube in conjunction with a

94% reflectivity output mirror. Collection of the scattered radiation

by a f/20 aperture lens is probably responsible for the apparent

broadening of the Brillouin components at small angles, such as

9 = 30. 00 shown in fig. 22 (b) since from (1. 4) we see that

(5.7)A No 0 g(5. 37) -s = cot22

is the portion of the width of the Brillouin components due to a

finite angular acceptance 6 9. For 9 = 30. 00 and 2 x 10-2 rad,

C I)A*!100 Mc. However, the much greater broadening of the

Brillouin components at the larger angle of 9 = 70. 00 (where

1 )An80 Mc) apparent in fig. 22 (a), must mostly be due to

the finite lifetime of the sound wave. By appropriate subtraction of

linewidths, this lifetime may be measured. (Since the apparent
85

laser lineshape is not Lorentzian, this procedure is not trivial. )

The frequency of the sound wave and thence its velocity from (1. 4)

were also measured from these spectra. In this manner the velocity

and absorption/ '",2 of sound waves in toluene were obtained as a

function of their frequency, and are plotted in fig. 23 (a) and (b)

respectively. (Simple subtraction of linewidths, assuming Lorent-

zian lineshapes, was used to obtain fig. 23 (b). ) This data is

ambiguous concerning resonances.86

When only one measurement of velocity and absorption in

the hypersonic frequency range is desired, the exact backward-

scattering direction offers several distinct advantages over other

observation directions. Firstly, light from the entire scattering
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fig. 23: The Dispersion and Absorption of Sound Waves at Hypersonic

Frequencies in Toluene.
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path, the length of which is limited only by the length of the cell,

is collected into the pinhole. For all other angles, the experimental

arrangement shown in fig. 21 will collect light only from a scattering

length of about the size of the pinhole. Thus a factor of about 102

increase in intensity of the Brillouin components can be obtained

when a scattering cell 50 cm long is used for backward scattering.

This will allow use of lasers operating in a single mode as sources.

Secondly, the cell alignment is not important since the backward-

travelling ray retraces the path of the incident laser ray. This allows

slight reorientation of the cell to deflect the Fresnel reflections

from the windows of the cell away from the collection system. Also,

the changing of liquids becomes trivial since we may interchange

liquid cells at will without having to worry about cell alignment.

Thirdly, the orientation of the Fabry-Perot plates with respect to

the incidence direction need not be overly precise, since the lens

which collects the scattered light can be translated off center to

deflect the backward-going radiation in such a way as to compensate

for small errors. Since the exact backward direction gives much

more intense scattering than even slightly off-backward directions,

alignment is assured when the signal is maximized with respect

to the lens translations. The experimiital arrangement used7 8 in

detecting exact backward scattering is shown in fig. 24:

LPA5EF

SILVER POT-, GLASS PLATE PINHOL

50 cm L IO.UD CELL

SCANNiNr 7NTERFE RoMETER

fig. 24: Exact Backward-Scattering Experiment

-A
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The technique of exact backward scattering is made feasible by the

introduction of a glass plate on which is deposited a small silver dot

(the diameter of the dot slightly exceeds the aperture of the laser

beam) into the path of the laser beam; the glass plate is centered

in such a way that the beam falls on the silver dot and is reflected

into the scattering cell. All of the backward-scattered light (dashed

lines in fig. 24) is collected by the collecting lens, except for a

small portion blocked by the silver dot. Using this technique we

have been able to observe Brillouin scattering using a 50 cm long

laser (Spectra-Physics model 130) operating on a single mode with

a 0. 2 milliwatt output. Examples of Brillouin components thus

observed are given in fig. 25. However, a severe problem arose

from instability of the laser: the broader the Brillouin component,

the longer it took to pass through it and the more the drift of the

laser frequency tended to broaden the line spuriously. Thus the width

measurements from spectra such as fig. 25 were unreliable. Also,

because of the instability of the laser, the velocity measurements

from such spectra varied about 5%, since the time for scanning

from Rayleigh to Brillouin components is of the order of minutes,

during which time the laser frequency could have drifted as much as

600 Mc. The multimode laser is much more stable since the average

peak intensity is always centered on the atomic line. However, use

of a stabilized single mode laser can improve very much the accuracy

of Brillouin width measurements, especially since the subtraction of

Lorentzian linewidths can then be performed confidently.

Another factor of about 10 increase in the intensity of the

signal can be achieved by replacing the pinhole (fig. 24) by a photo-

A



fig. 25: Brillouin Components Observed Using the Exact Backward-

Scattering Method. The asymmetry of the maser line is due to error

in the centering of the pinhole. Its width is instrumental and is a

measure of the resolution of the Fabry-Perot.
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graphic mask of the Fabry-Perot rings. This mask can be produced

by making a high-contrast transparent positive of the Fabry-Perot

rings produced by the laser beam alone, or by photographing a master

plate with the rings cut at the proper radii and widths by a lathe.

When the scanning reaches a point when one of the Fabry-Perot

rings is transmitted by one of the rings of the mask, by proper

alignment and magnification of the rings, all of them will also be

transmitted simultaneously so that there will be an enhancement

of the signal by a factor equal to the number of rings on the mask.

Still another useful technique for enhancing the signal, used by

Benedek et al. , consists of using a conical lens for collection

of the scattered light. Since the frequency of the Brillouin scattered

light depends only on 9 and is independent of 0, the azimuthal angle

of scattering, the light collected at all values of 0 by a properly

aligned conical lens will have a very small smear in frequency, since

the angular spread of the light received by the pinhole is only

9 = where d is the diameter of the pinhole and f is the focal

length of the lens in front of the pinhole. This small solid angle

of collection is especially useful for near-forward scattering. How-

ever, since such fine angular definition is not needed for measure-

ments of expected widths of Brillouin components of liquids at normal

scattering angles, a spherical lens following the conical lens would

increase the solid angle of collection and hence the signal. Thus light

can again be collected from a long length of scattering path, allowing

extension of the exact-backward scattering technique to other angles.

So far we have dealt with scattering from thermally excited

sound waves. Another way of generating moderate amounts of sound
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waves is to mix together two laser beams of slightly different
88frequencies . An experiment utilizing this method of generation

for measuring velocities and lifetimes of sound waves is described

in fig. 26 (a). A similar experiment, which generates and detects

Raman phonons, is described in fig. 26 (b).

-G

Grc ERArI ON' DETECT IN

W. - _j

WP
G6NER6TION ZDETECI-ION

A NT (STO 0
CO4

I
M vPA~OR

P

L4J ~~~

ES

(a) (b)

fig. 26: Experiments for Generation and Detection of Acoustical

and Raman Phonons

o and w in fig. 26 (a) may be two cavity modes of the laser. Detec-

tion of the generated sound waves is accomplished by reflecting back

on itself one of the laser beams. When the angles and frequencies

are kinematically correct, anti-Stokes will be generated in the back-

ward direction with respect to the other laser beam. For the Raman

experiment described in fig. 26 (b), two different lasers must be

used, but the experimental arrangement is simpler. In both these

experiments, when resonance occurs, the anti-Stokes produced is

I

CA

N -7O E
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highly directional, thus allowing a small detection solid angle for

enhancing the signal to noise. In the Brillouin experiment, by

changing the cavity length of the laser, one can precisely vary

the frequency difference of the modes, so that we can study sound

waves of various frequencies. If we could vary the frequency of

a laser by a sizeable amount (e. g. by changing the pressure on a

semiconductor laser), then we can investigate in the Raman experi-

ments the high-resolution structure of Raman lines in various

materials. Since most of the Raman linewidths are not due to the

lifetime of the Raman phonon, such spectroscopy is of limited use-

fulness. However, by chopping one of the lasers or utilizing the

beat between two laser modes, we can determine the Raman phonon

lifetime by measuring the phase shift of the anti-Stokes modulation.89

To calculate the power of the anti-Stokes that we would

expect to be produced in these experiments, let us start with

equation (5. 5) rewritten as:

(5. 38) r E E = (k )2 so2

where the primed quantities refer to the generated anti-Stokes wave.
Po

In general Bs is replaced by L E. P is determined from

the wave equation (3. 25) to be:

(5.39) P - E E -so 8 -rr p0 10 io
5

Hence:
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E 2 2 2

(5. 40) r =o 14 2 S
64 e B s 

94

E E. 2 2
n P 10

E/
T C

where ET , given by (2. 21), is the threshold for the stimulated

Brillouin effect, withA = *c. Because of the quadratic depen-

dence on the intensity, this experiment is only feasible when

intensity in the two beams is not too many orders of magnitude

from threshold (e. g. for quartz if r = 10 6, we must have in-

tensities of ~10 Kw/cm 2 in both beams with A =1 = 100 cm.)

This technique may be especially useful at low temperatures, where

thermal Brillouin scattering becomes too weak to be observed and

where w s becomes very large. A similar calculation for thes s

Raman effect starts with the maximum change in polarizability

due to the presence of the two laser beams: 9 0

22

(5.41) da ) )E_ Eio _ dc( E sA~ ~ Tx-- k dx Epo Eio CZ3s

2R R
with - - 1ift, where m, R and k are respectivelym 5

s
the mass, loss coefficient,and spring constant of a simple harmonic

oscillator model for the Raman effect, x being a molecular

coordinate. Since n A a = 1 e where n = the number of

molecules per unit volume, we see that:

(3.42) r=16r 2  E LE 2k
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E 2 E.2 2
PO~ 10 1

E (T

where here E gives the stimulated Raman effect threshold and

= 1/b is the loss length of the light wave. Since this threshold

may be lower than that for the stimulated Brillouin effect, the

power requirements for a given r may be lower. This technique

may also be especially useful when infrared sources are used

for Raman or Brillouin scattering, since the spontaneous Raman

and normal Brillouin effect cross-section is proportional to

1 1
, whereas (5. 42) goes as --

x x
p p
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Chapter VI: The Self-Trapping of Optical Beams 9 1

In chapter III, we derived the equations for the stimulated

Brillouin effect (3. 30) and (3. 31), starting with coupled wave

equations (3. 7) and (3. 25):

1 :!k Oti ?2s _

(6.1) Z E + 2 E-V E= Be s- E) - -, (PsE)c C c 1

2 ( 2 E2
(6. 2) - P + 4 P- Ps TE

and assuming slowly varying exponential solutions ( w3 << i

We then saw that under certain circumstances these coupled waves

can develop instabilities and grow catastrophically, i. e. exponen-

tially, and we studied the development of such instabilities. However,

such solutions tell us only how an instability begins and clearly are

not valid for large t, where the nonlinear terms in the sources of

(6. 1) and (6. 2) become large and will affect the behavior of the

waves. Or, as mentioned in chapter III, there may be Van der Pol

type saturation terms in O( i and 0( s which would cause the oscilla-

tions to grow until they reach some sort of limit cycle, at which point

they cease to grow, and the solutions take on a steady-state character.

In this chapter we shall neglect such saturation effects.

Nevertheless, the coupled waves (6. 1) and (6. 2) do possess

a steady-state solution, to which the initial instability may possibly

ultimately make a transition. For if Ps becomes time independent

(henceforth we assume U, = 0( = 0), (6. 2) reduces to
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2
(6 3 2 s 2 2 E(6.3) PS v

Here we take only the d. c. component of E since the medium

cannot respond to optical frequencies. (6. 3) has a solution

E2
(6.4) P = T+

2
where V 0 = 0. Assuming a homogeneous and unstrained medium

when E = 0, we set 0 0. Equation (6. 4) can be viewed as a state-

ment concerning the change in the index of refraction

of the medium arising from the phenomenon of electrostriction.

It states that the index of refraction of the medium is greater inside

a light beam than outside. This raises the interesting possibility

that a light beam will be trapped inside a dielectric waveguide of

its own making. Normally a light beam with a finite aperture D

will expand by diffraction with an angular divergence of:

(6. 5) 1.22

where X is the wavelength of the light and n0 is the index of refrac-

tion of the medium in the absence of stresses. However, if the index

of refraction of the medium responds nonlinearly to the field strength

of the light beam, i. e.

2(6.6) n = n + n E +o 2

where in the case of electrostriction from (6. 4),
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(6. 7) n2  B
0

then the possibility of total internal reflection of diffracted rays

in the beam if 9D where

n
(6. 8) cosc =2'

n +n 2 E

no

fig. 27: Critical Reflection and Self-Trapping

Assuming 9c small the critical power at which critical reflection

of diffracted rays occurs is:

2 22 c
( 6 . 9 ) PT D =2 c = ( 1 .2 2 c E2 4(.)P no-Tc = T o T 64 n12X 2T

Typically Pc is of the order of 106 watts. Note that this power is

independent of the diameter of the beam. This arises physically

because whereas a decrease in the beam aperture makes the

diffraction angle larger, the index of refraction, due to the higher

intensity of the beam increases in a compensating manner so that

the beam remains trapped.

More rigorously, for there to be a steady-state solution

to (6. 1) and (6. 4), there must be a solution of the form

=1



-117-

E = Et (x, y) cos (kz z - wt) (i. e. a waveguide solution) which

satisfies:

(6. 10) V 2E _-- E -2 -= 2O2 = 0
c at c at

where E- =C + C2 E2 . E2 is related to n2 by C2 = 2n n2 . We
IVPsI

neglect the nontransverse source term since <'< k if
Ps 0

D >> X, which is consistent with neglecting terms a7(E 4) in n

and the source terms of (6. 1) and (6. 2). Therefore:

2 a 2 2 -2 2 2 2-a(6.11) 2 Et + 2 Et - ~ t + ko Et Et = 0
ax ;)0 t

where r2 = k2 - k2 and k = n k n . In the case where Et= 0 0 ocI

depends only on y, and assuming linear polarization:

(6.212) E (Y - 2 Et(y) + E k2 Et3 y) = 0
dy

Et (y) represents a slab-shaped beam, confined in the y-directions,

so that the boundary conditions are E (y) -, 0 as y - 0 and
dE = 0 at y = 0. This excludes periodic solutions, implying

2 :;> 0. A mechanical problem with equations identical to

(6. 12) is that of a particle in a one-dimensional double-well

quartic potential:

*0 3(6. 13) x - x + b x =0

2

where the correspondence is x -- ).Et, t --+ Py , b = , so
2 50T
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that the boundary conditions become: x(t) -+ 0 as t -- c

x (0) = 0.

(6. 14)

and

The potential for (6. 13) is:

V (x) = -1 x2 + b x4

which is drawn in fig. 28:

ib
L

fig. 28: Potential for Mechanical Analogue to Self-Trapping

We seek solutions where x -- , 0 as t --- oo . Clearly the only

possible solution is to put the particle at 1 with zero initial

velocity (this will satisfy the other boundary condition i(0) = 0).

The particle will fall into the well and reach x = 0 after an infinite

time. Hence the only stable solution for (6. 12) will have:

(6. 15) E (0) = 2"
k

1

4"I' .

We can obtain an analytical solution as follows:

(6. 16) T + V = E = 0

where T = kinetic energy and V = potential energy and since Tinitial

= V initial = 0, E = 0.

6

- F-b5l-

Hence:
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W2 - 1 2 1 -x4x + .- x - -bx

(6.18) = x2T-bx

The solution is therefore:Jx
I;

dx

x2 - 1bx

Clearly this integral diverges when x = 0, indicating an infinite

period for oscillations in the well with E = 0 (i. e. it takes an

infinite time to reach x = 0). For the computer solutions of the

cylindrically symmetrical problem to be discussed shortly, it is

useful to know the relation between the period of oscillation and

an error in the initial condition x (0):

dx

Js0 

+ 
E

Z x 1- b x2"

log 12

where 6 is related to = - x (0) (V / r2 ) by:

(6. 21)

Hence the correction to be made on the initial condition x (0)

(6. 22) 5> 1

-T
e x (0) e

is:

T

However, we can obtain the exact solution by directly evaluating (6. 19):

(6. 17) 1

(6. 19)

x

dx

x 11 - z'b x2'442

(6. 20) T

-S -

6 = C- e2
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(6. 23) t = cosh1 )

So that the exact solution to (6. 12) is: 92

E (0) 2 1 r(6.24) E cosh = coshrV.

Physically, however, most beams have a cylindrical shape.

For this case, assuming circular polarization 9 3, (6. 11) becomes:

2 1 *) . () *3
(6.25) d E r + I d E (r ) -E (r) + E 3 =r 0

d r r d r

2 2

wherer = r, E (r') = Et (r) andb= 2 (
This allows the steady state solutions to be scaled by the factor

jb to give any arbitrary size (--) for the beam cross-section

(with the restriction D >p X). Equation (6. 25) appears to have

no simple analytical solution: numerical methods of integration

must be used. A method which is especially well adapted for this type

of problem is the Manning-Millman procedure 94, with slight

modification. Let u r . Equation (6. 25) becomes, when we

substitute E (u) - e (u):

(6.26) e' t(u) = Q 1 (u) e (u) - Q2 (u) e3 (u)

where:

(6.27) Q1 (u) = 1-
4u
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(6. 28) Q2 (u) = .

In general, by Taylor expansion, we see for any f(x):

2 a 2
(6. 29) f (x+a) + f (x-a) = 2f (x) + a f (x) + T- f' (x+a)

+ f' (x-a) - 2f" (x)3 + a(a).

Applying this to e(u), using (6. 26), we get:

(6. 30) e (u+a) + e (u-a) = 2e (u) + a2 Q1 (u) e (u) - a Q2 (u) e3 (u)

2 3

+ t Q1 (u+a) e (u+a) - Q2 (u+a) e (u+a) + Q 1 (u-a) E(u-a)

- Q2 (u-a) e3 (u-a) - 2Q1 (u) e (u) + 2Q2 (u) e 3 (u) .

The procedure for numerical integration is as follows: equation

(6. 30) tells us what e (u+a) is, if we know what e(u) and e(u-a) are.

Hence, if we start from e (0) where the behavior is known, so that

we can obtain e (a), if a is sufficiently small, then we can by

iteration obtain e (2a), e (3a), etc. If we chose a wrong initial

value e (0), we would expect oscillatory solutions, as in the one-

dimensional case discussed previously; but as we approach the

correct initial value, the period of these oscillations goes to infinity

logarithmically (6. 20), thus providing us with a correction parameter.

(6. 30) is a cubic equation for e (u+a):

( ( 2  u 2
(6. 31) e 3 u+a) - 2 A Q2 (u+a))+ e (U~a) -1- Q, (u+a))

I
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=1 2

- e3 (u) - 5 a 2 (u) - e3 (u-a)

which has a

(6. 32)

- e (u-a) - ( 1 - a2

2

QZ (u-a)

solution95.

e (u+a) = (A/D)
= w3-

3 H H 2 A3
w D 2 +

4D 27D

where

2
A = 1 (u+a)

12

1C = 1 

a2
D =

2
F = 2

2
a Q1 (u-a)

Q2 (u+a)

Q2 (u-a)

5 2G =.a Q.2 (u)

H = e (u) B - e (u-a) C - e3 (u-a) F -

To obtain the starting value e (a) let us return to equation (6. 25).

Either odd or even solutions are possible. The lowest mode is

Qi (u-a))

where

(6. 33)

(6. 34)

e3 (u) G
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even, as was the case for the one-dimensional equation (6. 12). A

series expansion of the even solutions near the origin gives:

* ; u~ E1 (4 A ()(6.35) E (u) = E (0) + E (0) -+ E Eu() 0)

+ Q(u8)

where E (0) is known and:

*" 1 * 1 *3(0
E (O)=.E (0) E (0)

'1, 1  2
(4) 3 *'*

(6. 36) E (0) = E (0) ( 1 -3 E (0))

'(6) 5 *(4)(* ")

E (0) = (E (0) - 3 (6 E (0) (E (0))

+ (E (0)) 2 E (0)))

The computer program contained three subprograms A, B,

and C. A calculated the value of E (a) from (6. 35) with u = a,

given some initial value E (0). B calculated E (2a), E (3a), etc.

(i. e. numerically integrated (6. 25)) from (6. 32), (6. 33) and (6. 34)

and calculated the period T of the oscillations of E (u) thus

obtained, which is a measure of the error of E (0). C calculated

the correction of E (0) using (6. 22) from the value of T calculated

by B, and returned this corrected E (0) to A. The first value E (0)

given to A was that given by (6. 15) for the one-dimensional case.

The program was terminated by B when the period T exceeded a

certain value determined by the programmer. Fig. 29 gives the

solution thus obtained for the lowest mode.
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fig. 29: Calculated Radial Distribution of Electric Field in a

Self-Trapped Electromagnetic Beam of Circular Cross-Section.

The values calculated by computer are:
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The critical power for the trapping of a cylindrical beam

is given by:

d

(6. 37) P n 2cf E2 (u) u du 1c qn eff F2 b

where

k
(6.38) n efn 2 + 2

0

Numerical integration of (6. 37) using the calculated solution gives:

5. 7637 - X 2 c neff
(6. 39) P = ,3f

c 8 1T n2 n

The rough calculation (6. 9) is very nearly equal to (6. 39). Since

E (0) - E (0) x 2. 20388 we have:

(6.4) n k z n2 1 2 E2 (0)
(6. 40) n n0  97144

0

For the one dimensional case the numerical factor multiplying

2 E 2 (0) becomes 1. The sole dependence of power on beam

diameter is through ne, which is usually unimportant except for

beams with diameters as small as a few wavelengths. This in

conjunction with higher order non-linearities in the dielectric

material will make the actual diameter of the trapped beam depend

on power. It should be noted that P c is not a threshold in the sense

that any beam with greater power will be stably trapped. Rather it

is a critical power at which a beam of a given diameter will be

trapped. Hence if the entire power of the beam, when appreciably
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above Pc, is trapped, we expect the self-trapped beam to be of a

very small diameter.

The dynamics of beam formation and changes in the dielectric

are not yet well understood. We do not know whether a beam whose

power exceeds P c radiates most of it away to attain P c or whether

it rather breaks up into several trapped filaments. In the case of

the slab-shaped beams, the uniqueness of the solution (6. 24)

prevents the cosxistence of several such beams. Also, we do not

know whether the steady-state solutions are stable to small arbitrary

perturbations, although it is clear that once the self-trapped wave-

guide is established, it will serve as a waveguide for higher fre-

quencies. For if El << E, expansion of (6. 10) will show that if

E' = Et' (x, y) cos (k - W't)

2 ?- ,_& 2'2 ' 2 2 2 4'(6.41) L Et + Et -I Et + 2 k Et Et = 0
ax Sy

where k'2 =' - k- and k = n . This can be viewed as az o c

time-independent Schroedinger equation with a potential
62 2

2 kz Et (x, y). In order to propagate without radiation

' 2 '> 0 (,< 0). However, the potential well must be deep enough

to allow such a bound state, which turns into a condition that c'> w. 96

If the frequency difference o - w is faster than the response of the

medium, clearly the waveguide is undisturbed to first order. Also,

it is clear that if one has two strong waves E ard E' whose frequency

2 2 '2difference is sufficiently great, then (E + E') E + E , so

that the presence of one wave helps cause the other to be trapped and

the waveguides reinforce one another. Small perturbations in one
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wave will not affect the waveguide of the other one greatly.

The self-trapping of a laser beam may be responsible for

the formation of the extremely thin, long damage tracks in a

piece of glass into which the beam is focussed, such as those
97

first observed by Hersher . Evidence that some sort of dielec-

98tric waveguide was being formed was obtained by Atwood et al9 .

They performed the simple experiment of placing a polaroid

crossed with respect to the laser's polarization behind the glass

target and found that the diffracted light emerging from the glass

after track formation formed a dark Maltese cross in a light back-

ground. Since light which is totally internally reflected from a

dielectric wall, like that of the waveguide, is elliptically polarized

except when the electric vector is parallel or perpendicular to the

plane of incidence, this is clear evidence for some form of light

trapping. Furthermore, the large angle of diffraction of the

light emerging from a damage track is consistent with diffraction

from a very small aperture whose diameter is about equal to that

of the track. However, it appears that the track travels a very

slow speed ( -- Mach 20), showing that the dynamics of the

trapping process are playing an important role. Hence a more

detailed study of the coupled equations (6. 1) and (6. 2) is required.

-4
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