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Abstract

The primary contributions of this thesis include the first stages of development of a 2D, finite-
volume, non-hydrostatic, u-coordinate code and beginning to apply the Dynamically Orthogonal
field equations to study the sensitivity of internal tides to perturbations in the density field. First, we
ensure that the 2D Finite Volume (2DFV) code that we use can accurately capture non-hydrostatic
internal tides since these dynamics have not yet been carefully evaluated for accuracy in this frame-
work. We find that, for low-aspect ratio topographies, the z-coordinate mesh in the 2DFV code
produces numerical artifacts near the bathymetry. To ameliorate these staircasing effects, and to
develop the framework towards a moving mesh with free-surface dynamics, we have begun to im-
plement a non-hydrostatic u-coordinate framework which significantly improves the representation
of the internal tides for low-aspect ratio topographies. Finally we investigate the applicability of
stochastic density perturbations in an internal tide field. We utilize the Dynamically Orthogonal
field equations for this investigation because they achieve substantial model order reduction over
ensemble Monte-Carlo methods.
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Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

The profound influence of internal waves on biological systems and human activities has

prompted the study of internal wave dynamics with observations and empirical models. Two func-

tions in particular motivate interest and enthusiasm for a thorough dynamical characterization;

first, internal waves are primary drivers of diapycnal mixing (Munk and Wunsch, 1998) and, sec-

ond, internal waves are responsible for nutrient transport in coastal regions (Shea and Broenkow,

1982). While any internal wave activity can encourage diapycnal mixing, since the osciallations

are perpendicular to resting isopycnals, the extremely energetic mixing events caused by breaking

internal waves (which we now know can exceed 200m in height (Alford et al., 2015)) may prove to

be a critical componant of global ocean circulation (Nikurashin and Ferrari, 2013). Internal waves

are also important mechanisms for nutrient transport. Some coastal systems depend on the regular

cycling of water between deep, high-nutrient regions and shallow, euphotic regions brought about

by internal wave activity (Wang et al., 2007). Many studies show that internal waves are influenced

by the strength of the barotropic tide, the steepness of bathymetry, and the stratification profile.

Here we begin to develop a numerical model that will characterize the sensitivity of internal waves

to these and other governing parameters.

Previous work has demonstrated a relationship between the strength of the barotropic tide

ans the mixing potential of internal tides (internal waves at tidal frequency) (Legg and Huijts, 2006).

This thesis describes simulations that aim to understand the influence of density perturbations on

the mixing potential internal tides. We conduct numerical simulations with a 2D Finite Volume

Framework (2DFV), that has been developed by the MSEAS group over the last four years (Ueck-
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ermann et al., 2013; Ueckermann and Lermusiaux, 2012). While many other numerical models are

available, we elect to conduct all of our simulations with the 2DFV code to take advantage of the

existing architecture, specifically the novel Dynamically Orthogonal (DO) field equations. The novel

DO field equations (Sapsis and Lermusiaux, 2009, 2012; Ueckermann et al., 2013) have been used

to efficiently solve the stochastic incompressible, Boussinesq, Navier-Stokes equations (Ueckermann

et al., 2013).

1.0.1 Verification of Internal Tide Dynamics

In chapter 2 we conduct a verification study to demonstrate the 2DFV code accurately cap-

tures internal wave dynamics. This verification study uses the internal wave dispersion relation,

linear theory from Khatiwala (2003), and simulation results generously provided by Sonya Legg for

comparison (Legg and Huijts, 2006). We find the 2DFV code can accurately capture the dynamics

of internal tides generated at steep topographies.

1.0.2 A --coordinate Mesh

In chapter 3 we describe a coordinate transformation which ameliorated numerical artifacts

due to a staircased representation of low-aspect ratio topographies. Refining the z-coordinate grid,

instead of changing the coordinate system, to smooth the representation of bathymetry may be

a sufficient solution for a deterministic problem, because the computational cost will only scale

with the grid resolution. However, when a more expensive algorithm is required, like the DO field

equations where the cost scales as the square of the number of modes, an efficient mesh can be

advantageous, if not necessary.

There are two common ways to modify a z-coordinate representation of bathymetry: re-define

the vertical coordinate, as in a --coordinate mesh, or modify the geometry of the boundary cells,

as in the cut-cell method. While a o--coordinate mesh has been shown to be an effective solution

for stair-casing effects (Gallus Jr and Klemp, 2000), the cut-cell method, which includes the shaved

cell formulation in the MITgcm (Adcroft et al., 1997) and the immersed boundary method (Tseng

and Ferziger, 2003), have also been shown to be effective solutions. A comparison of cut-cell and

u-coordinate grids conducted by Shaw and Weller (Shaw and Weller, 2016) acknowledged the merits

18



and drawbacks of both techniques and did not find either method to be superior. An advantage of

implementing the a-coordinate mesh, versus a cut-cell formulation, in the 2DFV code is that it is

a helpful intermediate step towards implementing a moving mesh with free-surface dynamics.

There are many well-known a-coordinate models including the Regional Ocean Modeling

System (ROMS; Mellor, 1998), the Penn State/NCAR Mesoscale Model (MM5; Grell et al., 1995),

the Finite Volume Community Ocean Model (FVCOM; Chen et al., 2003a), the Non-Hydrostatic

WAVE model (NHWAVE; Ma et al., 2012), and the Princeton Ocean Model (POM; Blumberg

and Mellor, 1987). These models vary in terms of the dynamics they represent (hydrostatic versus

non-hydrostatic) and numerical methodology (finite volume versus finite difference), and therefore

all manage challenges imposed by a a-coordinate mesh in slightly different ways. In chapter 3 we

describe solutions to challenges which arose in our a-coordinate model, including how the algorithm

maintained both de-coupled horizontal and vertical momentum equations and fully implicit diffusion

scheme from the z-coordinate 2DFV code. Additionally, we explain the way the issue of hydrostatic

inconsistency was ameliorated.

1.0.3 The DO Field Equations

For the first time we utilize the DO field equations to study the sensitivity of internal tides

to perturbations in the stratification. In these preliminary simulations, we initialize variability in

the density field near the peak of a steep sea mount, representing sub-grid scale eddies that stir

the fluid in this region, and find that initial perturbations to this region result in greater mixing

potential after tidal forcing compared to the unperturbed deterministic run in chapter 2. While

the stochastic simulations will require more rigorous verification than is presented in this thesis

to ensure the fidelity of the simulations, the first few verification study presented in chapter 4 is

encouraging.
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Chapter 2

Verification with Linear Theory and

MITgcm

Internal gravity waves are generated when a stably stratified fluid is perturbed such that a

heavier parcel of fluid moves over a parcel of lighter fluid. Gravity works to restore the stably

stratified configuration, and the resultant oscillations are internal gravity waves. A primary gener-

ation mechanism of internal waves in both the ocean and atmosphere, and the mechanism which

we consider in this thesis, is stratified fluid flow over rough topography resulting in Lee waves

downstream.

In this chapter we demonstrate that the 2D Finite Volume framework (2DFV) accurately

captures internal wave dynamics using three resources: the internal wave dispersion relation, linear

theory developed by Khatiwala (2003), and a simulation performed by Legg and Huijts (2006) on

the MITgcm .

In the first section we describe the setup of a test-case from Legg and Huijts (2006) in the

2DFV framework. In the second section, we briefly review the derivation of the internal wave

dispersion relation and verify the angle of propagation and wavelength of the internal tides in the

numerical simulations is correct. Next we confirm linear theory is an appropriate approximation

with the power spectra of the wavefield. Finally, we compare the particle velocity fields between

the 2DFV and MITgcm simulations.

21



2.1 Problem Setup

We reproduce the "Tall-Narrow" test-case from (Legg and Huijts, 2006), where the barotropic,

M2 tide (period of 12.4 hours) oscillates over an idealized Gaussian topography of height ho

exp - X). The dynamical regime of this test-case is characterized by two dimensionless num-

bers, the Froude number (Fr) and the tidal excursion parameter (RL), which are defined as

U0  Uo
Fr = RL =

wL

where Uo is the magnitude of the barotropic tide, w is the tidal frequency, ho is the height of

the topography, g is gravitational acceleration, and L is approximately the e-folding length of the

Gaussian topography. The Froude number is a measure of mixing potential; narrower topographies

have more mixing potential than wider topographies. The tidal excursion parameter is a measure of

topographic impedance to the flow; tall topographies impede flow more than shorter topographies.

The Tall-Narrow (TN) topography has ho = 2350m and L = 1215m. With a 2 cm/s barotropic

tide, we have a Froude number of 0.011 and a tidal excursion parameter of 0.117.

The fluid is initially at rest with a linear background stratification corresponding to a constant

Brunt-Vdisaild frequency (N)

29p'(x, y, t = 0) = pON 2  (2.1)
Dy g

where the total density p is the sum of po, the constant background density, and p', the density

anomaly. The initial pressure field is hydrostatic such that

-- p(X, y, t = 0) = -pg. (2.2)
Oy

We add the tidal forcing term from Legg and Huijts (2006) and Khatiwala (2003) to the horizontal

momentum equation such that F(x, t) in Equation 2.5 is

Fu UOW cos(wt)
(2.3)

-Fv 0
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The tidal velocity can be found by differentiating Equation 2.3, Ubarotropic = Uo sin(wt).

The 2DFV Code

The 2DFV code solves the incompressible Navier-Stokes equations with the eddy viscosity

and Boussinesq approximations. For our simulation we have

V -u= 0, (2.4)

+U + Vu= - VpI + vV2u + -g + F(x, t), (2.5)
(t PO

+ U -Vp' =0. (2.6)at

where density (p) is defined Ptotal = po + p'(x, y, t) and p = kg such that T1 < 1, and pressure is

defined p = po + p'po such that Vpo = -pog and P1 < 1. The boundary conditions on velocity,1Po/PO I

shown in Figure 2-1, are zero-Neumann conditions on the inlet and outlet (Ou/Ox = Dv/Ox = 0),

free-slip, no-penetration conditions on the top and bottom of the domain (Ou/Oy = v = 0), and no-

slip conditions on the sea mount (u = v = 0). The boundary conditions on the pressure-correction

term (q) are imposed by the velocity boundary conditions according to the pressure-correction

formulation described in Appendix A. The pressure-correction term has zero-Neumann conditions

on the top of the domain, bottom of the domain, and sea mount, and open (- = 0) conditions on

the left and right domain boundaries. The boundary conditions on density are zero-Neumann on

all boundaries. Simulation results for the velocity and density fields after 13.9 hours of tidal forcing

are shown in Figure 2-2. We notice the zonal velocity field is antisymmetric about the horizontal

centerline (at y = -2350 m depth) and symmetric about the vertical centerline (at x = 0 km). The

azimuthal symmetric about the horizontal centerline velocity is antisymmetric about the vertical

centerline. For these relatively weak internal tides, the undulations in the density field are very

mild.
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Figure 2-1: A schenatic illustrating the boundary conditions on velocity in the 2DFV simulation.

2.2 A Cut-Cell Boundary Condition for a Structured Finite Volume

Mesh

The simulations performed by Legg and Huiijts (2006) impose free-slip velocity boundary

conditions on the sea mount. as opposed to the no-slip conditions described in the previous section.

If we wish to impose free-slip conditions oil the topography, one option is to use a cut-cell method.

Instead of requiring interpolations like the immersed ghost cell boundary condition (Tseng and

Ferziger, 2003), we can solve for the values of boundary cells already present in the structured finite

vohime mesh such that the stress-free condition is observed. Figure 2-3 shows a few cells on either

side of a masked region. The cut-cell algorithm we propose solves implicitly for the boundary values

V4, v6, U,3, a5 in Figure 2-3) according to the stress-free, no-penetration conditions

d h, = 0 (2.7)

( t- ) = (2.8)
On

where h, and t are a unit vectors in the normal and tangential directiolis, respectively.

2.2.1 Review of the Analytical Solution

The test-case with which we choose to study this new cut-cell boundary condition is Colette

flow between two concentric cylinders. The analytical solution for incompressible flow hetween
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Figure 2-2: The zonal velocity (top), azimuthal velocity (middle), and density (bottom) are shown

fields initially (left) and after 13.9 hours of tidal forcing (right).

concentric cylinders in polar coordinates is outlied b)low.

The inner cylinder Ias no-slip bounldary conditions and rotates at a fixed angular velocity

(Q-); the outer cylinder has free-slip, no-penetration boundary conditions as shown in Figure 2-4a.

Since this test-case is radially symmetric and has a steady-state solution, we expect derivatives in

the 0 and time to vanish. Thus the continuity equation simplifies to

1 0
(p ur) =(1 (2.9)

whviere v.r is the velocity in the radial direction and p is the fluid density. Equation 2.9 simplifies

to rur = C1, where C,1 is a constant. Since we enforce no-penetration at both boundaries (or(r
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-pV-5
116

Figure 2-3: The structured C-grid mesh considers the center of the velocity cells to be at the center

of the scalar grid cell faces. Boundary cells on the scalar grid and on the velocity grids are shown
in grey, and the analytical boundary of the masked region is represented by the blue dashed line.

The local normal and tangential directions are identified with blue arrows.

R 1) = rGr R2) = 0) we see that the radial velocity must vanish everywhere in the flow.

Next. the momentum equations in the radial and angular directions simplify to

0 = /I (rf. [1 }
0r Ir Or

(2.10)

(2.11)

where ao is the angular velocity, p is the dynamic viscosity. and p is the pressure. Equation 2.11 can

he easily solved hy integrating twice such that the solution to the annular Couette flow test-case is

Itr = 0

O = rCI 2 +
C03

(2.12)

(2.13)

The boundary conditions for this flow are

uo(r = R1 ) = QR1

Ouo(r = R.)
0r = 0

(2.14)

(2.15)
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SO the constants C2 and C are

RCl

C =

C2R2 + R2
1 2

Cly3 M12 -
R+ R2

uO(r = R) = __

(O)r

4(a

Figure 2-4: Two schematics of the setup of the annular Couette flow (a) and a sketch of the solution
for R1 = 5 in, R2 = 40 m, and Q = 1 rad s. The solution for velocity everywhere in the flow is in
the third box of (b).

I

2.2.2 The Algorithm

If we know the analytical function for the boundary (e.g. a Gaussian, or a cylinder), then

we can calculate exactly the angle 0 between the (x, y) coordinate systemn and the (n, t) coordinate

system as shown in Figure 2-5. This cut-cell algorithm effectively considers the analytical boundary

to be composed of' piecewise linear segments rather than discrete and even steps. In this particular

test-case (with the origin at the center of cylinders) the radial and angular directions are exactly

the normal and tangential directions. The rotation matrix which converts velocities between the

Cartesian (u, v) and normal-tangential (u, ut) coordinate systems is

Fu1,] cos(0) sin(0) 1[
1u - sin(0) cos(0) [11

(2.18)

(2.16)

(2.17)

ua(r =R2 40m) = 1.2 /

uO(r =R, = m= 5 m/s

24.6
up = 0.015r + -

(h)

I



Now

We can use the rotation matrix in Equation 2.18 to write the boundary conditions in Equations

Y

t

n

0

(a) (b)

Figure 2-5: The two local coordinate axes are shown in (a) and for a cylindrical boundary containing
fluid (b) the coordinates are shown on the boundary.

2.12 and 2.15 in terms of the Cartesion velocities. The normal boundary condition becomes

Un = 0

u cos(O) + v sin(O) = 0,

and the tangential boundary condition becomes

a
a(Ut) = 0

a
n (- u sin(0) + v cos(0))

an ay
+ sin(O) +ay an}

- sin(0) cos(0)
sOX

- sin 2(0)

0

Du 8
-U sin(O) + an cos(O) = 0
an On

(v aax

ax an
i'v

+ 0 cos(O) +2 av

+ Cos2(0)
9y OX

+ yOCos (0) = 0

avasin() cos(O) = 0ayav N

+ sin(O) cos() = 0.ay

The two conditions (2.19b and 2.20f) couple the u and v velocities. and so the solution for the

predictor velocity (see Appendix A) is nolonger two separate linear systems for u and v, but is

solved as one coupled system. At each timestep we solve implicitly for both the interior predictor
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velocity values, as well as for velocities in the boundary cells that form the perineter of the outer

(ylil(ler. All of the derivatives in Equation 2.20f are computed with first-order accuracy.

2.2.3 Results

After the simulation has reached a steady state the numerical velocity, shown in Figure 2-6,

is compared with the analytical solution. Samples of the velocity field along two radii of the setup

u velocity [m/s], cut-cell free-slip boundary condition v velocity [m/s], cut-cell free-slip boundary condition
0

-20 L

30 22

-40 i1

E -o 0 0

60 -10

709 20

-80 9

90 4

-60 -40 20 0 20 40 -20 0 20 40

(ai) (b)

Figure 2-6: The numerical u (a) and v (b) velocity fields for annular Couette flow with the free-slip
boundary condition on the outer cylinder after the simulation has reached steady state agrees with
the overall profile of' the analytical solution, but the numerical solution is a little faster than the
analytical solution.

are shown in Figure 2-7 are compared with the analytical solution. The velocity profile respects the

boundary conditions (Equations 2.12, 2.14, 2.15), but the numerical velocity field is slightly faster

than the analytical field. The maximnuni relative error, found in the cells adjacent to the outer

cylii(ler, is approximately 13 %.

A more sophisticated algorithm and careful verification needs to be conducted to ensure

accuracy of the cut-cell boundary condition. Potential explanations for the discrepancy between

the niumerical and analytical solutions include truncation error, which can be confirmed with a grid-

refinement study and ameliorated by increasing the order of accuracy of the computed derivatives.

Ve will proceed to apply with new boundary condition to the Low, Wide topography with a 2

cm/s tide, cognizant that the accuracy of these results is predicated on a thorough evaluation of
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E
tot

-40-

Figure 2-7: The numerical solution in the cells identified by the black lines in the diagramn are

shown above and to the left of' the annular Couette flow sketch. The plots show that near the outer
cylinder the boundary condition is observed, but there is approximately a 13 percent error in the

ve(llociJty value.

tHie cut-cell boundary cmndition. Figure 2-8 shows the free-slip boundary conldition signlificanitly

improves but does not eliminate the numerical artifacts emanating from the Low, Wide topography.

lImprovem-ents to the accuracy of the algorithmn, such as computing the derivatives with a higher

order of accuracy, mnay help further ameliorate the observed numerical artifacts and improve the

representation of' internal waves in the 2DFV code.

2.3 Verification

We have identified four mnetrics to evaluate the ability of the 2DFV/ code to sufficiently repre-

sent the dynamyics of internal tides. The first two, angle of propagation and horizontal wavelength,

confirmn the stratification is correct and that advective and diffusive transport are dominiated by the
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Figure 2-8: The Low, Wide topography with a no-slip velocity boundary condition on the topog-

raphv (a) shows numerical artifacts after 13.9 hours of tidal forcing. The cut-cell free-slip velocity

boundary condition (b) improves the representation of the internal waves.

pressure gradient force. Next we study the power spectra of the wavefield to confirm that linear

theory is a reasonable simplification. Finally, the particle velocity fields fIrom the 2DFV code and

the 1\IlTgnm are compared, and discrepancies are discussed.

2.3.1 Verification of Wavebeam angle with Linear Theory

First, we overviewv the derivation of the internal wave dispersion relation, which can be found

in many geophysical fluid dynamics textbooks, including Cushinan-1 Roisin and Beckers (2011), and

use it to evaluate the angle of propagation of the internal tides. If we consider the regime where

we can ignore amnbienit rotation (large Rossby mnnber), dissipative effects (small Ekman munmber),

non-linearity (the wave amplitude is much smaller than the wavelength), and make the Boussinesq

approximation, we can simplify the primitive equations to the following system:

Ou 1 Op'

Ot po OyDo1 Up'01)- -
Of [po Uy

Uu Ui w 1 Yp'

0,1 + + 0z

Ox Oy 0z

Op' (I)
+ -1-7- = 0.

Ot (k

1 )
-qp'

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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where p = po + 7(z) + p'(x, y, z, t) and p = pO(z) + p'(x, y, z, t) = - f pogdz + p'(x, y, z, t) . The

magnitudes of the perturbations are much smaller than the mean values < 1, () < 1, < 1.

This system of five constant coefficient PDE's above has solutions of the form

u = U(y, z)ei(kxx+kyy+kzz-wt) (2.26a)

v = V(x, z)e i(k.x+kyy+kzzwt) (2.26b)

w = W(x, y)ei(kzx+kyy+kz--wt) (2.26c)

P' = P(t)ei(kxx+kyy+k;z-wt) (2.26d)

p' = 7Z(X, y)ei(kxx+kyy+kzz-wt). (2.26e)

Writing the system 2.26 in matrix form we have

-iw 0 0 k 0 U(y, z)PO

0 -iw 0 0 V(x, z)PO

0 0 - iw k 9 W(x, y) =0. (2.27)
PO PO

kx ky kz 0 0 P(t)

0 0 2 0 -iw 7Z(x,y)

If we set the determinate of the matrix in 2.27 to zero, and solve for w, we find the dispersion

relation

2 (gdp k2+k2
W = (2.28)

podz k2+k+k(

If we consider a 2D case (ky = 0) and take -y as the angle between the horizontal and the wavenumber

vector (kr, kz), the dispersion relation can be simplified to

w = N cos(y), (2.29)

where N 2 = - . For a buoyancy frequency of N = 8(10-4) rad/s, and the MA tidal frequency

of w = 1.41(10-4) rad/s, we expect the phase velocity vector to propagate at an angle of 1.39 radians

(79.84') to the horizontal. Recall that the phase velocity propagates at 90' to the group velocity, so

a line of constant phase will be at 90' - 7. Let 6 = 90' - -y so that w = N cos(90' - 7) = N sin(9).
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For the aformentioned values of N and Lc, 0 = 10.20. In Figure 2-10 we superpose dashed lines at an

1.5

1

0

-1

0

E -2350 -

-4700 - -
- 10 km

Slope of Tall, Narrow

slope

Tall, Narrow

0 km 10 km

Figure 2-9: The
propagation, (9

slope of the TN topography is shown in blue alongside the theoretical angle of
0.178 radians. We see the topography is supercritical, or that the slope of the

topography exceeds the slope of the internal tides, within approximately three kilometers of' the
apex.

angle 0 on to a snapshot of the zonal velocity field from the 2DFV code. Note that the topography is

supercritical within 3 kilometers of the apex, as seen in Figure 2-9. We observe excellent agreement

0

-500

1000

1500

2000

2 SjC1 0

3000

350O

40 0

45 O]

zonal velocity [m/si

'7
0 km 55 km

O_)

0.04

0.03

C 01

0

-0.01

-002

-0.03

-0 I

-00)

Figure 2-10: The dashed lines forming an angle, 0, are superposed onto a snapshot of the 2DFV
zonal velocity field of the TN topography (UO - 2cm/s) simulation after 13 hours of tidal forcing.
The lines of constant phase agree well with the superposed (lashed line.
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between the line of constant phase and the wave trajectory, and conclude that the waves produced

in this simulation are well-predicted by the linear theory derived above.

2.3.2 Verification of Horizontal Wavelength with Linear Theory

We will briefly describe the derivation performed by Khatiwala (2003) for the internal tide

wavenumber given an oscillating flow over an arbitrary topography. For a 2D domain, we can de-

scribe an arbitrary topography with a function h(x) and a tide in the form of a time-dependent

body force U(t) = Uow cos(wt), oscillating the fluid above the topography. After a Galilean trans-

formation to a reference frame that moves with the tide, Khatiwala takes a Fourier transform in

both spatial dimensions of the momentum equations and solves for the horizontal wavenumber,

k j~r n2 2 _ 2 - 1/2

H IN2 _ n2W2I

where H is the maximum fluid depth, n is the vertical mode number, and j is the horizontal mode

number. We assume no damping in this system. The analytical, horizontal wavelength for the first

mode (j = n = 1), can be found from k. = 27r/A.. The first mode will have the longest wavelength

and so it will travel the fastest and be the first wave we will clearly observe at the edge of the

wavefield. To find the numerical wavelength from the 2DFV simulation, we create a Hovmbller

plot from horizontal cross-sections of the zonal velocity field at 1567m depth from the surface.

The horizontal wavelength from the numerical solution is the distance between two nulls in the

Hovmbller. In Figure 2-11 we see that the analytical solution (equal to the length of the superposed

black line) agrees well with the distance between two nulls in the Hovmaller. We conclude the

horizontal wavelength from the simulation agrees well with the horizontal wavelength prescribed by

linear theory.

2.3.3 Verification of Frequency Spectra

If the frequency spectra of the waves is principally at the tidal frequency, and higher harmonics

thereof, linear theory is an appropriate simplification. Energy between harmonics of the tidal

frequency can be attributed to non-linearities associated with the internal waves that are spawned

by internal tides (Helfrich and Grimshaw; 2008). Figure 2-12 shows power spectra of the horizontal
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Figure 2-11: The analytical horizontal wavelength, equal to the length of the superposed black line,
agrees well with the wavelength in the mninerical simulation.

aid vertical velocity fields have peaks at the tidal frequency anid higher harmonics. There appears

to be slightly iore energy betweell peaks in the 2DFV simulation than in the MITgm simulation

(see Figure 9B in Legg and Huijts (2006)).
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Figure 2-12: The vertically ilntegrated power spectra of the horizontal (left) and vertical (right)
velo (i ty field, normalized by the barotropic velocity, at 11 km from the TN topography reveals

a large peak at the forcing frequency (w) and monotonicallv lower peaks at increasingly higher

harmonics confirmng linear theory is appropriate.
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2.3.4 Verification of Particle Velocity Fields

Finally, we compare the particle velocity fields between the 2DFV and MITgcn simulations.

Since this metric is most sensitive to the details of the model implementation, we discuss the

properties of both frameworks and how model discrepancies may affect the result. A snapshot of

the zonal total velocity field after 13.9 hours in Figure 2-13 shows very good agreement between

the simulations, but the velocity fields from the 2DFV code are a little larger at the intersection

between the wavebeams and the domain boundary (about 10 km to the left and right of the sea

mount on both the top and bottom of the domain). Additionally, the center of the waves radiating

away from the topograplv exhibit slightly larger velocities (about 50 km to the left and right of the

sea mount on both the top and bottom of the domain).

The MITgcm is a 3D, non-hydrostatic, structured finite volume framework; the 2DFV code

is a 2D, non-hydlrostatic, structured finite volume framework. Descriptions of each model and the

available numerical schemes can be found in Marshall et al. (1997) and Ueckermann and Lermusmaux

(2012), respectively.

MITgcm U [m/s] r = 13.9 hours 2DFV U [m/s] t 13.9 hours

- 1000 -1000

E

3000 3000

00&

-4000

55 km 0 km 55 km

Figure 2-13: A comparison of the zonal velocity fields for the TN topography and a barotropic tide
of 2cm/s between the MITgcm simulation (left) and the 2DFV simulation (right) after 13.9 hours
of tidal forcing.

The simulations use the same grid size in the vertical (31.3 m) and approximately the same

grid size in the horizontal (the resolution of the 2DFV code is 10% finer with 200 m cell widths).

The 2DFV code differs in five respects from the MITgcrm simulation which are enumerated in Table

2.1. We will address each of these discrepancies to evaluate their influence on the simiulation results.
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Table 2.1: Model Characteristics of the 2DFV code and the MITgcm

2DFV MITgcm

Coriolis Term f 0 8(10-4)
Surface Coundary Condition rigid lid free-surface
Inlet/Outlet Boundary Condition sponge radiative boudnary condition
Bathymetry Boundary Condition no-slip stress-free
Bathymetry Representation z-coordinate (staircased) shaved-cell

Coriolis terms in 2DFV and the MITgcm

The MITgcm simulation uses an f-plane formulation, where the Coriolis parameter, f

2Qsin(#), is assumed to be constant. However, in a 2D flow with zonal and azimuthal direc-

tions, there is only one Coriolis term, and it appears in the zonal momentum equation. This term

is multiplied by the meridional velocity, and thus, vanishes. While the reciprocal Coriolis term,

f, = 2Q cos(), appears in both the zonal and azimuthal momentum equations, they are negligible

compared to the Coriolis terms in most geophysical flows. A simple scaling argument demonstrates

that a flow with a small height-to-width aspect ratio renders the reciprocal Coriolis terms, much

smaller than the Coriolis terms. The aspect ratio of this simulation domain, 1:23, is very small.

Since we can neglect the reciprocal Coriolis terms and the only Coriolis term vanishes, we can set

f = 0 in the 2DFV code without influencing the results.

Top Boundary Condition

We use a scaling argument to demonstrate that the rigid lid boundary condition used in the

2DFV code is a good approximation for the TN topography with a 2cm/s barotropic tide. The

MITgcm simulation solves for the free-surface parameter (q), and we will use the results from this

simulation to demonstrate that free-surface effects on the flow are small compared to the other

forcing terms. The evolution equation for the free surface height (q) is

+ U -Vq + qV -U = 0 (2.30)
at

for a velocity field U.
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If we non-dimensionalize equation 2.30 with characteristic scales:

t* * w U
1 U W

X* = Z* =_ g
L HT

we have

T aq* UT iq* WT ,q* UT ,au* WT ,&w*
r at* L ax* H 1y* L ax* H Oz*, (2.31)

and observe that
-=- + W T (2.32)

L HI

We choose the characteristic values to be the barotropic tidal velocity (U = 0.02 m/s), the barotropic

tidal period (T =12.4 hours), the internal tide wavelength (L = 52,800 m), and the domain depth

(H = 4700 m). The magnitude of the vertical velocity is generally 10% of the horizontal velocity

(recall the domain height-to-width aspect ratio of 1:23), so we choose W = (0.1) U = 0.002 m/s.

Evaluating the terms in expression 2.32 with these characteristic values gives us two small numbers

UT Wr

L 0.016 and H ~ 0.019.

Since U' and H are much smaller than 1, it seems we can neglect terms (, and with

respect to , and so it seems we can neglect free surface effects. We also note that the slope of the

free-surface is small; Figure 2-14 shows snapshots of the free surface elevation every 1.39 hours for

the first 13.9 hours. The total variation in 77 over the 110 km domain is within 0.012 m of the resting

surface height; a liberal estimate of the slope would be (0.012 - -0.012)m/110000m = 2.8(10-7).

However, a free-surface would introduce a source of damping. Lack of a free-surface in the 2DFV

code may partially account for the slightly higher velocities we see in the 2DFV simulation at

x = t10km.
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Figure 2-14: We plot snapshots of the free-smface displacement (left) at 10 evenly spaced intervals
for the first 13.9 hours of the simulation. A 1 identifies the maximum displacement of each free
surface snapshot, and xe observe the change in height to be much smaller than the domain width.

Note that, since the tide starts flowing to the right, we expect the free-surface will first buildge up
on the left of the topograp)hy.

Inlet and Outlet Boundary Conditions

The MITgcm simulation uses a radiative boundary condition at the inlet and outlet of the

domain to prevent spurious reflections from the left and right boundaries. This boundary condition

could damp the velocity field near the inlet and outlet of the domain, possibly accounting for the

discrepancy between the 2DFV and MITgcm simulations at the J.= +50km. The 2DFV uses a

sponge to similarly, prevent waves from reflecting off the left and right boundaries and propagate

back towards the generation site, but the 2DFV simlation is also initialized on a domain that is

four times wider than the MITgcnm (440 kin). This is to enisure that internal tides generated at the

topography have not had time to reach the left or right boundaries before the snapshots at 13.9

hours. The center 110 km is used for the comparisons. Additionally, the first mode internal tides that

are generated with the aforementioned buoyancy frequency will have wavelengths of approximately

53 km. Therefore we extend the computational domain in order to observe a, full wavelength on

either side of the generation site that is not contaminated by the artificial boundary forcing. The

difference in the inlet/outlet boundary conditions should not, implact the accuracy of the internal

tides, but may account for the discrepancy at the edge of the \"ITgcm simulation.
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Table 2.2: Froude Number and Tidal Excursion Paramter for all four topographies tested by Legg
and Huijts (2006), with a 2cm/s barotropic tide.

Fr RL
Tall-Narrow 0.011 0.117
Tall-Wide 0.011 0.029
Low-Narrow 0.125 0.343
Low-Wide 0.125 0.014

Bathymetry Representation and Boundary Condition

While the MITgcm simulation imposes a stress-free velocity boundary condition on a shaved-

cell bathymetry (Alistar Adcroft and Marshall, 1997), the 2DFV code imposes a zero-Dirichlet

velocity boundary condition on a staircased bathymetry.

It is possible that the staircased representaton and no-slip boundary conditions results in

numerical artifacts in the form of large vertical velocities near the topography contributing to the

slightly larger velocities in the 2DFV code. This effect is difficult to observe with the TN test-case,

so we examine all four topographies tested by Legg and Huijts (2006) with a barotropic tide of

2 cm/s; the corresponding F, and RL numbers are listed in Table 2.2. The MITgcm and 2DFV

simulation results compare well for the Low-Narrow (LN), and Tall-Wide (TW) topographies, as

shown in Figures 2-15a and 2-15b. However, we see numerical artifacts in the 2DFV simulation

with the Low-Wide (LW) topography in Figure 2-15c due to the staircased representation of, and

boundary condition on, the topography.

The influence of a staircased representation is going to be most noticeable in a low-aspect ratio

topography because the streamlines are nearly horizontal and parallel, so the staircasing effects result

in vertical velocities that significantly influence the flow. In the TN topography, the streamlines

go up and over the topography, so staircasing effects are less noticeable. We can understand low-

aspect topographies to be most different (and steep topographies most similar) between shaved-cell

and staircased representations by considering the limiting case of a knife-edge topography. The

representations of shaved-cell and z-coordinate topographies converge for a knife-edge topography,

a unit-cell width boundary, and as the aspect ratio decreases, so does the z-coordinate approximation

of the shaved-cell boundary.

One solution to ameliorate staircasing effects is to refine the spatial grid; simulations with

the LW topography and a reduced grid-cell size are shown in Figure 2-16. While grid refinement
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Figure 2-15: A comparison of the zonal velocity fields between the MITgcm simulation (left) and
the 2DFV simulation (right) for the LN (a), TW (b), and LW (c) topographies with a barotropic
tide of 2cm/s after 13.9 hours of tidal forcing. Numerical artifacts near the LW bathymetry are
visible.

does improve the results, it does not eliminate staircasing effects. We cannot afford to refine

the grid by more than half (twice as many elements in each dimension) without shrinking the

computational domain. Unfortunately shrinking the computational domain introduces boundary
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Figure 2-16: Both grid cell dimensions are reduced to half (left) and to one-third (right) of the
original discretization. The no-slip condition and the stair-cased representation seem to affect the
flow near the topography even for a substantially refined grid.

effects that contaminate the simulation much earlier, so the refined plots are snapshots after only

five hours of tidal forcing.

2.4 Conclusion

We conclude that we can reproduce the correct internal tide dynamics for the TN topogra-

phiy with a 2cm/s barotropic tide based on our evaluation of the angle of propagation, horizontal

wavelength, power spectra, and particle velocity field. The 2DFV code simulations exhibit slightly

larger particle velocities, and one possible explanation is that the free-surface in the MITgcm simu-

lation introduces a source of damping that is absent in the 2DFV simulation. The discrepancies are

small enough to consider the 2DFV code capable of capturing internal tide dynamics with sufficient

accuracy. Additionally, we found the staircased representation can lead to numerical artifacts that

could noticeably disrupt the wavefield.

The particle velocity fields compare well for three of the four topographies studied by Legg

and Huijts (2006). To improve the comparison for the LW topography we develop a cr-coordinate

framework, described in the following chapter.
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Chapter 3

A Non-hydrostatic, Finite Volume,

o--coordinate Framework

In this chapter we describe the --coordinate grid and algorithms for each term in the momen-

tum and tracer-convection equations. Next we demonstrate the accuracy of the framework with two

test-cases. Finally, we address the --coordinate pressure-gradient error and show the improvement

that the --coordinate code has made from the z-coordinate framework.

3.1 The a-coordinate Grid

Different definitions of the dimensionless coordinate - are used to achieve specific mesh prop-

erties (Haley and Lermusiaux, 2010). The definition we use in this framework is

X =- = "(3.1)
H (x)'

where H(x) is the fluid depth, but the algorithm's architecture is generic such that re-definition of o-

is simple to implement. Figure 3-1 shows a grid where # is on the scalar grid of an Arakawa C-grid

mesh (Arakawa and Lamb, 1977). Definition 3.1 creates the - levels at evenly spaced fractions

of the total fluid depth, where o- varies between 0 at the surface and -1 at the bathymetry. The

horizontal discretization is uniform. The bathymetry is represented with piecewise-linear segments,

in contrast to the staircased representation of a z-coordinate mesh, as seen in Figure 3-2.
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Figure 3-1: The spacing between vertical cell walls is uniformly Ax, and the length
cell walls is uniformly H(x)Au in the vertical at any given horizontal coordinate.

(a)

of the vertical

(b)

Figure 3-2: A J-coordinate mesh (a) and z-coordinate (h) mesh with the same number of cells in
the vertical and horizontal.

3.2 The u-coordinate Scheme

A u-coordinate scheme often removes complexity from the physical grid. For constant val-

ues of Ax and Au, where Au = uT - ujia the comiputational grid in 1, u space is a structured,

rectangular grid with uniform rectangular cells Ax wide and Au high. Unfortunately, if we were

to evaluate the terms in the momentum and tracer-convection equations using simple rectangular

(Ax x H(x)Au) cells, we would need to couple the horizontal and vertical momentum conserva-

tion equations. Instead, we use cells like those in Figure 3-2a. and keep the zonal and azimuthal

momentumn equations decoupled. This sacrifices some of the simplicity offered by u-coordinates iH
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exchange for the computational efficiency of decoupled momentum equations. We first present a

detailed discussion of the Laplacian and gradient operators evaluated in a cell bordered by other

interior cells or Dirichlet boundaries, and demonstrate that the scheme in the limit of a Cartesian

grid reduces to the central difference scheme used in the 2DFV z-coordinate code. Then we describe

modifications to each algorithm for cells that impinge on Neumann or open boundaries. Finally, we

describe the advection scheme. The time-marching scheme is a second-order backward difference

scheme, which has been preserved from the 2DFV z-coordinate code.

3.2.1 The Laplacian Operator

The Laplacian operator is used in the diffusion terms of the horizontal momentum, vertical

momentum, and tracer-convection equations. The operator is also used to calculate the Laplacian

of the pressure-correction (q) as part of the pressure-correction projection method. We assume the

horizontal eddy viscosity (vH), vertical eddy viscosity (vy), and eddy diffusivity (r,) coefficients are

constants. The Laplacian operator maps values to and from the same grid in our C-grid mesh;

we will see in the next section that this is not the case for gradient operations. We construct this

operator and perform an LU factorization at the beginning of the simulation before time-marching,

in preparation for the inversion that occurs at each timestep. If we wish to use the same numerical

operator for the Laplacian of the velocity fields and the Laplacian of the pressure-correction field,

we need to construct it such that the definitions imposed by the pressure-correction method are

observed. See Appendix A for an explanation of the projection method and the way we have

guaranteed discrete consistency.

The Importance of an Implicit Scheme

Diffusion is the stiff term in our equations of motion, and while many a-coordinate and un-

structured frameworks compute the diffusion term explicitly (Fringer et al., 2006; Marshall et al.,

1997; Chen et al., 2003b), we maintain a fully implicit scheme to avoid a stringent Courant-

Friedrichs-Lewy (CFL) condition (Courant et al., 1967). Von Neumann stability analysis can be

used to show an explicit diffusion operator would require a CFL condition of

<Ay 2
At <A 2

-2vv
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(the limiting direction for this problem is the vertical). This restricts the timestep in the TN

test-case to At < _1.[M2-T =4 .91(103 )s. The CFL condition imposed by advection is

AtyAt < A
- Vmax

where Vmax is the largest velocity the simulation must capture. With a barotropic tide of 2 cm/s, the

advection-imposed CFL condition is conservatively At < 31.3 = 7.83(10) 3 s, 60% larger than
- .004[ms s]

the condition imposed by diffusion. A fully implicit diffusion operator permits a larger timestep

and substantially improves computational cost.

The Algorithm

The finite volume formulation, which comes from control volume theory, casts divergence and

gradient operations as surface integrals around individual finite volumes by way of the divergence

theorem. This design is a principle advantage of the finite volume method for computational fluid

dynamics; by calculating surface fluxes between cells, local and global conservation of mass, mo-

mentum, and often energy, is guaranteed in a discrete sense. The construction of the method also

means state-variables are considered in a cell-averaged sense.

We first write the Laplacian as the divergence of a gradient, then take averages over individual

cell volumes and, finally, use the divergence theorem to arrive at a surface integral around each cell.

Once we know the gradient of the state variable at the center of each cell face, as shown in Figure

3-8, we can take the divergence of those gradients to arrive at the Laplacian.

(V VO)Volume Averaged v V(
V

(V VO)Volume Averaged v n
S

(V V)Volume Averaged J { Vsatellite V dsateite } dS 34)

(V V)Volume Averaged = s a1{ f 0satellite dSsatellite } n dS (3.5)

S Ssatellite
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The first step is to calculate the gradients., the terms inside the braces of Equation 3.5.

We focus on the North gradient first. The gradient needs to be evaluated at the center of the

top cell face (xj + , H(x.+1) ai). The closed region over which we will evaluate the gradient,

identified by the dashed line in Figure 3-4, has the same width as the center cell, and extends from

the midpoint of the cell above to the midpoint of the center cell. For clarity, we will enumerate cell

faces as shown in Figure 3-3.

,---------- 4 --------

1 2

L--- 3 --------

Figure 3-3: The left, right, bottom, and top faces of cells are the first, second. third, and fourth

faces, respectively.

Notice we need to interpolate 0 to faces 1 and 2 of the North satellite cell, and we will also

need to interpolate 0 for the other satellite cells to #ij-i and Oj+ + . We use a first-order,

hi-directional interpolation.

,i 1

I. ! i 01 i
0_ 2 2

j10
0
i+1.j

Figure 3-4: The North satellite cell.

1
I = I (Oi-1i-i + o -ij + 40j-1 + Oij)

1
- (Oij-1 + Oj + #5 +1,j-1 + Oi+1,j)24

1
= (#*-i + #i-1,j 1 + #e + #ij+)
1

+ 1+ (ij + Oij+1 + #i+1,j + Oi++1 +1 )

(3.6)
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Similarly, we interpolate values of a with a first-order scheme, i+.i = a"+"i. The normal vectors
2 2

corresponding to the four faces of the North satellite cell can be easily calculated.

nN,1 = [-1, 0] (3.7)

nN,2 = 10 3.8)

H(xj+1)Oi-1/2 - H(Xj)gi-11 2 , Xj - (x3 + Ax) (3.9)
nN,3 =-9

(H(xj+1)/i-1/2 - H(xj)oi-1/2 )2 + Ax 2

H(xj)ai+1/2 - H(xj+1)i+1/2 , -(xi - (xi + Ax))

(H(xj+1)i+1/2 - H(xj)i+1/2)2 + AX2

The North gradient of # is calculated from the surface integral around North cell as

1 (xjH(xj)oi+ ) (xj+A,H(xj+1)Ui+ )
VNorth 2 f l 2 i7jnN,3dS3North

VNorth ( J(x3 ,H(xj)i 1) 2 (xj,H(xj)a.+ f)

/(xj+Ax,H(xj+1)oi 1) orh (xj+Ax,H(xj+l)a; 1)Nrt
2 i-.I,j+.i nN,2d S2ot + 2i-j jnN,4dES4oI

(xj+Ax,H(x+l)cr. .) (x +zx,H(xj)a )-i)
/ 2 2

(3.11)

The right hand side of Equation 3.11, written in terms of coefficients of the six values of # used to

compute VqNorth, is

VVNorth North ([,]H )( _ + ...

(H(xj+i) - H(xj))oi+I, -AX [(H(xj) - H(xj+i))oi-I, Ax

Sorth 2 Sorth + i-1,j North Sorth

(3.12)

We can group the right hand side of 3.12 according to the # value so that the gradient is the sum

of six vectors, one for each q in the gradient stencil.

VNorth = I ij [aCN, bcN] + i-1,j[aNN, bNN] + Oi1,-1[aNWN, bNWN]+
VNorth "(3.13)

$rj1,j+1[aNEN, bNEN I Oij-1 [aEN IbEN] -'- +i,1 [awN wN, bwN

The coefficients in Equation 3.13, which are constant for the entire simulation since the grid does
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not evolve in time, are:

aCN = (H(xj+i) - H(xj))o

bcN - -AX

aNN = (H(xj) - H(xj+1 ))oa 1

bNN- Ax

aNWN = H(xj)( -

bNWN 0

1
aNEN = H(xj+1)(oa -

bNEN 0

awN = H(xj)(a -

bwN=0

1
aEN = IH(xj+)(oi_ -

1
+ H(xj)(o

4 2

+ IH (xj) (oi -

- -_) + IH(xj+1)(oi-i -orI)

I
- a _ + H-f(xj+1)(Ui-.I

OU 1)
12

- O2 +)

U. 1)
12

- O )
2

bEN = 0

Now we repeat this procedure for the South (Figure 3-5), East (Figure 3-6), and West (Figure 3-7)

satellite cells until we have the four gradients in Figure 3-8.
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H(x;) H(x .,) H(xj+2 )

0 - - 0

- I --1~------

F1 + IT 4 s 1

Figure 3-5: The South satellite cell.

ns,i = [-1,0]

nS,2 = [1, 0]

(H(xj 1) - H(xj))i%3 , Xj - (Xj + AX)
nS,3 =

[(H(X ji)+3 - H(xj) 3) 2 + Ax 2

(H(x 3 ) - H(xj+ 1 ))u2 i , -(xj - (xj + Ax))
nS,4 =

(H(xj i)oi+ - H(xj)cr, 1)2 +,AX2

1r(x,,H(x)o 1)

VOSouth =f 
2

VSouth (j,H(x )o+ )

(X ,+A 
x,H(x 

i1) r 1 )

(x+.Ax,H(x,+1~ 3

Oj+1-ins,1dS2 h

+ , + Ins,2dSsout +

(xj+Ax, H(xi+.I)ca ,

2 ~ 1 i 3  aSouth i-+ i+,jnS,3dS -3..
(xi,H(xj)- )

(xj+,Ax, H(xj+1)oi 1 )

1(,r H.r ) u + O,j ns,4d 4zon

(3.14)

H x+1) H xJ+2)

-V E,,,, fj+

*0ij 1

nE,1 [-1,0]

nE,2 [1,01

(H (X )+- H(X +1))oCi+1, 3 - (x 3 + Ax)
nE,3=22

E(H(X 3  1 )I1j+ - H(X 3)o+ 1)2 + AX 2

(H(x_, ) - H(X + 3 ))c-, -(Xi - (x + Ax))
nE,4 = 2 x

(H (X )i - H (Xj+ ) C7)2 + AX2

(/ + ,H(x )cG)

Vt/East V L
East (i + H(x )a,+1)

(xj+3 2,H(x 3)0,)

( +3 ,H(x :3) Oi+ ) I

2j u,

Oi,jnE,ld1E

2E,2 dgSast

-(x+3 ',H(x 3)O,+)
St - 2

(I gH(x oi1
2 1+9

f(X+3",H(x + )a)

(,+ ',H(x +1)-j) 2I

NI/,j 4, 3 fnE, 3 S3

+ 1 nE,4 dSast

(3.15)
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Figure 3-6: The East satellite cell.
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HI(x1j,)

nw,i = [-1,0]

nw,2 = [1, 0]

(Tj+ 1) - H(xj 1))Oi +1, X]
nw 3 = 2 2

- (H(x )i+ - H(x )3 2 2

H(xj)

00,

*j

(H(x ) - H(x2 1 ))oi, -(x 3 - (x. + Ax))
nW,4 = - H ) 2

H(x + 1)0' - H(x _- 1)(T)2 + Ax2

Figure 3-7: The West satellite cell.

1
Vwbest = I

Vwest (/1-1
_ H(x. _1)a,)

2 H(x _ )17,1)

-1 j+ nW,3dSVAest +
2 ' 23

+ H(x 2 )Ci+1)2 2

(G; -2 H x a+)

/(x, + ' ,H(x 
I ) ,

(.x)+ - , H (. + )7,+J)

(x iHx4)a;)
Ojjnw,2dS2wcst + 2

(x,- H(x I ),Ti)

S nW,4 dSWest~ j- 1 W1

Since the East and West satellite cells do not precisely outline cells on the scalar grid (i.e. the East

H

1 .j- VQ\T, .I

V ---I V rJh

0
2')~

4
1 .j

V (PEus'2

- - - I +1u+ j+1

Figure 3-8: The Laplacian numerical stencil uses nine values of 0. First the four gradients at the
center of each cell face are computed, then a divergence of these gradients gives us the Laplacian at

the center.

and West satellite cells do not have a "kink" in the middle), we cannot guarantee conservation of

mass and momentum as with a z-coordinate mesh. However, for small changes in slope we do not
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expect a significant error (Ferziger and Peric, 2002). Next we calculate the Laplacian by taking the

divergence of the four gradients

/xjHioi
(V.* V)Volume Averaged = IxH VOv

J x +Ax,Hj+ 

it7i

f xj+Ax,Hj+i+lest nidS1 +
jx, Hjoi+

j ,H j+oi
VOEast ' n2dS2 + fjAo,

VOSouth n3dS3 +

Vq$North n 4 dS4A.

The four normal vectors of the center cell are

ni = [-1,0]

n2= [1, 0]

n Hj+loi - Hjoi , Xj - (xj + Ax)

= ( Hj+1+i - Ho-i ) 2 + AX 2

4 Hjoi+l - Hj+li+1 , -(xj - (j + Ax))

I (Hj+1oj+1 - -Hjo-i+1)2 + AX2

(3.18)

(3.19)

(3.20)

(3.21)

We rearrange Equation 3.17 into coefficients for each of the nine values of the state variable as in

Equation 3.13.

#qi, [ aCN +V 

INorthi-1,j [ NN
' 1 North

kji~[ass
Oi+1 j Vsout

i [-a WN
'i - VN orth

i j+1 [EN
North

aSW
Oi+1,j-1

vSE
Oi+1,j+1 VO

i-1j+ NE
'il~~ VNor

acs aCE acW bcN 4
Vsouth East West' VNorth

+ N + aNw bNN + bNs
East West VNorth Vsouth

+ aSE Sw bSN + Vs
YEast VWest VNorth VSouth

1 Ws + aww bwN bWs
Vsouth VWest VNorth VSouth

+ Es + aEE bEN + Es
South VEast VNorth Vsouth

a NWw bNWN [a NW

th VWest I VNorth V

+ asww bsws I s 0SW
th VWest VSouth 0
s aSEE bSES 1 0SE
th VEast VSouth 0

N a aNEE bEN aNE
th VEast VNorth 0

Ic.1 [ac 7bc]

as bsN VN

[w 0,

W

aE

-1
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These values are indexed into the Laplacian operator, which is subsequently LU factored to expedite

inversion.

The Algorithm on a z-coordinate Grid

We can evaluate the truncation error of the Laplacian operator by Taylor expanding each of

the nine values in the stencil about the center value (#i,j), and find that for arbitrary H(x) the

truncation error is first-order, and for constant domain height,H(x) = Ho the truncation error is

second-order. This operator will reduce to the second-order central difference scheme used in the

2DFV z-coordinate code on a z-coordinate mesh. On a z-coordinate mesh, the domain will have

constant height, H(x) = H0 , and all of the normal vectors will reduce to either the standard basis

vectors or the negative of the standard basis. This implies the coefficients corresponding to the

four "corners" of the stencil (i-1,j-1, i+1,j-1, i-1,j+1, Oi+1,j+1) vanish. The four gradients for a

z-coordinate grid are then

VONorth [0, oi-1j - 0/ij VOSouth = 0, ' j - Ok+1lj
zAXLy AXAy

VOEast - i ~j+1 - kj 0] VOWest -ji j - 0ij-1

We can take the divergence of these gradients to arrive at the Laplacian.

0 - 0 + (- )') ('1 )+ 0 - 0
V -V0 = (3.23)

_ 4 i-1,j + Oi+1,j - 4ij + 0hj+1+ /ij,-1 (3.24)
AX2A y2

and find the second-order central difference scheme is recovered exactly.

3.2.2 The Gradient Operator

Calculating gradients is required for several terms each timestep; the gradient of pressure

appears in the momentum equations, and the gradient of velocity appears in the pressure-correction

step. Unlike the Laplacian, these operators must map between grids in our C-grid mesh. The two

pressure gradient operators , map values from the scalar grid, to the u and v grids. The
wa x 

a a

two velocity gradient operators LU ,v map values from the u and v grids, to the scalar grid.
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Figure 3-9 shows the locations of the u and v values on the a-cooridnate grid. Another difference

H( j-1) 1(x) H( Xj+ 1) H(xj+2 )

-1 - _- -. " - i --I + r - -- -Vi - i~j

-1i -1 __P_ ;

oi+1i~ -p I~jui1e

'P +i-i ' j I

Figure 3-9: The a-coordinate grid maintains a C-grid configuration for the locations of the iu and v
velocities.

between the Laplacian and the gradient operators is that the gradient is always part of an explicit

calculation. We can construct the four gradient operators once at the beginning of the simulation,

and evaluate gradients with matrix-vector multiplication at each timestep.

The Algorithm

Since the Laplacian operator required the computation of gradients, we will recycle part of

that algorithm for the gradient operators. The interpolated values of u, v, and p, just as with the

Laplacian in Equation 3.6, are computed as the average of the four neighboring values. We first

consider the horizontal pressure gradient. The dashed line in Figure 3-10, denotes the closed surface

over which we will evaluate the horizontal pressure gradient.

I (xj+ ,H(xj )a) (xj+3' ,H(x 3 )o'i+l)
VP i f= 2 Pi,j n dSi + 2 32 n3 dS3 +.vpij L P +I! +-

V (Xj+{,H(x i)oi+1) J(xj + AXH(x )+ 1 ) 2 2

/ xj+ 3 -9,H (x 3)9i) 
xj+3 -,H (x 3)0i)pi,j+1 n2 dS2 + j 3+2 pj3 3Hjj i n 4 dS 4

(xsj+3A',H(x 3)(i+l) (xj+AH(x I )ai) 2 2

(3.25)

Notice Equation 3.25 is exactly the equation for VOEast in Equation 3.15. Similarly, the vertical

pressure gradient on the v grid in Equation 3.26 is exactly VNorth from Equation 3.12. The
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Figure 3-10: We integrate over the surface identified by the dashed line to find ). We can then

extract the horizontal gradient 2 Vp - [1, 0].

dashed line in Figure 3-11, denotes the closed surface over which we will evaluate the vertical

pressure gradient.

Hf(x;_,)
4

(TiI

1
,JI -

H(xA) H(xj1 H(xj+2)
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Figure 3-11: We integrate over the surface identified by the dashed line to find 2. We can then

extract the vertical gradient Vp - [0, 1].ay

j- [--1, 0]H(xj )(ri_ i -0I ) + pi !,.j+ 1 [1, 0]H(xj+1) ( - - ) -+ ...

(H(xj)
+ Pi-1 j

2 Ax 1 4
S4

(3.26)
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Finally, the velocity gradient operators are identical to the surface integral around the center cell

in Equation 3.17, and we see why this is crucial in Appendix A. The dashed line in Figure 3-12a

(Figure 3-12b), denotes the closed surface over which we will evaluate the horizontal (vertical)

velocity gradient.

Vil,)+2 . j--- --I -

H(xi_1)

0+

pi~
1 

,~-

- ~riJ~~1-

--- ---Ii tj U -~

2 2

Figure 3-12: We integrate over the surface identified by the dashed line to find
velocity, and as with the pressure gradients, we extract the relevant components

Vv [0 .1]).

/Xj,Hj(7ifuij_1 -nidS1 +
2 j,Hjoi+ j

/xj+Ax,Hj+1crjUij
dxj+Ax,Hj+lcri+1

I j +AXj+10i+I

Jfrj,Hjoi+1
Xj,Hj+1i

n2dS2 +

'_ i -n3 dS3 +...

u, 1 _n 4 dS42 2

/XjHj Yi Xj +AX,Hj+1i+i

Vvi_ Ij =i _1 .v nidS1 + V
2' fxHjVi+1 2 , f HjOi+ /xj+Ax,H. +1 ci Xj, Hj + I

tvi_1 j+.! . n2dS2+
fTj+AXH3+10'i+1 '2, 2 Ij + AX,Hj 0-

j - n3 dS3 +...

vi-Ij - n4 dS4 .

The Algorithm on a z-coordinate Grid

In the limit of a z-coordinate grid, the gradient operators also reduce to the second-order

central difference scheme implemented in the 2DFV code. For example, the horizontal gradient of

zonal velocity (h), shown in Figure 3-12. would have no contribution from faces 3 and 4 to the

horizontal flux. The contributions from faces 1 and 2 are

tU2A'y[1, 0] + usg- 1Ay[-1, 0] + u- 1 j _1Ax[0, 1] +i +a 1jA[0 1
Vui, =2 2 ) 2 (3.29)

AxAy
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VUi'j [1,0] = NuijAy - Ujjid1AY, Ui_ !_ Ax - Ui+!j-.!AX)

&u ujj - Ui,1_1

0x 2(")

(3.30)

(3.31)

Again, we exactly recover the second-order central difference scheme used in the z-coordinate code.

An advantage of a C-grid mesh illustrated here is the convenience with which second-order accurate

gradients can be computed with few or no interpolated values.

3.2.3 The Advection Scheme

In the u-coordinate framework we use an upwind advection scheme and compute the advected

flux through six regions of each cell, shown in black, blue, and orange in Figure 3-13. The values

of the horizontal and vertical velocity interpolated to the center of each cell face, shown in Figure

3-12, are used to compute the conservative form of the advection term in the horizontal (Equation

3.32) and vertical (Equation 3.33) momentum equations

Duu Dvu
ax ay

Duv Dvv
9x+ y

(3.32)

(3.33)

The integral for Equation 3.32 is

1 / x-,H(x )O)
= + 1[ui,_1, vi_+ _ - nidS1 +V+ A ( s ,H (X . )O i+ 1) 2 2

(xj+V3 -,H(xj3 )O'i+1)

2 '[U i 'j 'V i - .1 j+ . n 3  d S 3  +
(xo+ x,H(x,+ )oi+1) 2, 2

/ (os+ g ,H 2 )o) -1 1[u_1. 1, v_1,]n2 dS2+ ..
(xj+3 2 x,H (xi ) i+ 1) 2) 2 21 2

S(xj+3VH(x 

3 
)0')I 2x3 j+ Ui j[Ui+.1j_, vij] n4 dS4 .

(Xj+' ,H(xj ).7j) 21 2 2

(3.34)

This term represents an important difference between the z-coordinate and --coordinate frame-

works. The z-coordinate code uses a Total Variation Diminishing advection scheme while the

--coordinate code uses a first-order upwind scheme. Although upwind schemes lead to more nu-
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Figure 3-13: The horizontal flux terms are in black and orange and the vertical fluxes are in blue.

merical dissipation than other flux-limiting schemes, we did not observe any significant dissipation

in the test-cases used to evaluated the o-coordinate code.

3.2.4 Neumann and Open Boundary Conditions

The aforementioned schemes apply to all interior cells and cells that impinge upon a Dirichlet

boundary (0 = 0D). There are two other boundary conditions we wish to implement, a Neumann

boundary condition ( DN), and an open boundary condition (2 = 0). For a Neumann

boundary condition, we use a first-order approximation and set the value of # in the boundary cell

equal to the value of 0 in the adjacent interior cell. For example, a zero-Neumann condition on the

top domain boundary for the Laplacian operator would set the following equalities

oi-1,j-i = oij-1, #i-1,j = oij, Oi-1,j+1 = oij+1-

So we can replace #i_1j-1, -,i_j1 and, i-1,j+1 in Equation 3.22, and find new coefficients for

#ij-1, #ij and., Oij+1. An issue with this first-order approximation is that, the steepness of the

slope of the a surface is proportional to the error computed in the Neumann boundary condition.

For a o-surface with a small slope, the trajectory between the center of the bounadry cell and the

center of the interior cell will very well approximate the normal direction to the u-surface. As the

u-surfaces steepen, the trajectory between the center of the boundary cell and the center of the

interior cell will less-accurately approximate the normal direction. Specifically for our sea mount

test-cases, this should not be an issue for either the LW (the primary motivation for this coordinate
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transformation) or TWV topograplies. However, in order to use the u-coordinate framework to study

the TN topography, a more sophisticated Neumann 1oundary condition, like a ghost-cell immersed

boundary method (Tseng and Ferziger., 2003), would be required.

For an open boundary condition, which we define as a 0, we ensure that the Laplacian in

the normal direction to the doinaiii boundary vanishes. We use the open condition on the pressure-

correction variable for the inlet and outlet (green regions of Figure 2-1). For example., if the East

domain boundary was open, the terms corresponding to 1 in Equation 3.22. need to sum to zero.

Thus, for all nine coefficients, we set the part of the coefficient in Equation 3.22 that corresponds

to )20 to zero.

3.3 Verification

We Ilse two test-cases to verify the accuracy of the (T-coordinate framework. The first test-

case is on a z-coordinate grid. so we can compare results from the _-coordinate code with the

(7-coordilate code dOirectly. We also use results from this test-case to verify the order of accuracy.

The second test-case has an analytical solution.

3.3.1 Verification on z-coordinate Grid

We first consider the Lid-Driven Cavity test-case. The doinain is a square with unit area;

there are three static walls and one wall with unit velocity as pictured in Figure 3-14. Figure 3-15

UO = 1m/s

1m

------

1m /

Figure 3-14: The Lid-Driven Cavity test-case has four Dirichlet ouidaries and a square domain

(where Ax = AY).

shows the streamlines at the same instance in time from the z-coordlinate and u-coordinate codes,
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and we see the results agree very well.
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Figure 3-15: Streamlines from the z-coordinate and u-coordinate codes compare well for a test-case
on a z-coordinate grid.
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Figure 3-16: A grid refinement study, using the centerline velocity from the Lid-Driven Cavity test-
case, demonstrates that the convergence rate for both codes is between first-order and second-order
as expected.

A spatial convergence study, shown in Figure 3-16, using the center-line velocity values from
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the Lid-Driven Cavity velocity field confirms a convergence rate between first and second-order, as

expected. Recall that while the u--coordinate Laplacian and gradient operators reduce exactly to

the second-order, central difference scheme on a z-coordinate mesh, the solution results will not be

identical because the advection schemes differ.

3.3.2 Verification with an Analytical Solution

Now we show that the results from the u--coordinate code agree very well with an analytical

solution. We study Couette flow between two parallel plates, but incline both plates at a 450 angle

as shown in Figure 3-17. The inlet velocity profile is that of a fully developed Couette flow. The

velocity boundary conditions at each plate are zero-Dirichlet conditions, and the right boundary has

zero-Neumann conditions for velocity (2 = a = 0). The right boundary has an open condition on

the pressure-correction, corresponding to the definition implied by the projection method, and the

boundary condition for the pressure-correction on the other three boundaries is a zero-Neumann

boundary condition.

The mesh for this simulation is pictured in Figure 3-18. This is a very efficient mesh compared

to what would be required in a z-coordinate setup to achieve the same resolution; many more cells

would need to be generated and then masked in a z-coordinate code because the domain needs to

be rectangular.

S=45*
x

Figure 3-17: The two parallel plates are Im apart and the domain has a small width to length

aspect ratio such that velocity in the across-channel direction vanishes.

The solution of this test-case is the same for any angle 0 since there is no gravitational body

force, or any other influence that works to break the flow's symmetry about the centerline between
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Figure 3-18: o-coordinate mesh for planar Couette flow

the plates. The analytical velocity field is

1 ()p'2
y(y2 - y*) (3.35)

for distance along the planar flow L. and width between the parallel plates h. The x, and y*

axes are oriented along, and transverse to. the boundaries, respectively. Since the simulation evolves

horizontal and vertical velocities, a simple rotation matrix is used to convert the [u, v] velocity field

from the simulation to the rotated coordinate system (x , y

A velocity profile is sampled midway along the length of the domain after the flow has reached

a steady state. The u velocity (shown in Figure 3-19) and v velocity fields are linearly combined to

rotate the solution into the (X., y,) coor(dinate system. The velocity in X* dlirection Colpares very

well with the analytical solution, as shown in Figure 3-20. We see excellent agreement between the

(7-coordinate results and the analytical solution. Since the (Y-coordinate code performs well iii both

verification tests, we revisit tidal flow over the LW topography.
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Figure 3-19: The zonal velocity ( ) from the

(-coordinate Imlesh for plaiiar Coiiette flow
agrees very well with our intuition ad with
the analytical solution.

Figure 3-20: A simple rotation is used to

write the analytical solution in terms of
along-plate velocity anid across-plate velocity.
The velocity profile from the c-coordiniate
code agrees very well with the analytical so-

lution.

3.4 Mitigating Hydrostatic Inconsistency

The zonal velocity field. shown in Figure 3-21. reveals a coivective instability above the

topography very early in the simulation. We explore ad ameliorate this behavior in this section.

3.4.1 The Pressure Gradient Error

A wvell-docuimented problem in u-coordinate formulations is known as the pressure gradlielt

error, or the issue of hydrostatic inconsistency (Lin, 1997: Kanarska and Maderich, 2003; Berntsen,

2DFV U [m/si t = 0.1330 hours

0 km
I

2DFVV [m/si t = 0.1330 hours

00
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10011

3500

400 )
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Figure 3-21: We observe convection after a very short time in the cells above the sea miioumnt.
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2002; Mesinger, 1982). We will illustrate this challenge with a simple finite difference formulation

and then describe the relation to the finite volume formulation. If we convert the horizontal pressure

gradient into o coordinates we have

-P- = - -P + . (3.36)
ax ax ao ax a.

In hydrostatic equilibrium 5 = 0, so we expect L 2 + 9-1- = 0. These two terms are often

large, compared to numerical epsilon, and will have opposite signs, but the truncation errors of each

of these terms can differ significantly such that there is a remainder after summation. The result of

this residual truncation error is spontaneous convection, which is strongest where the a levels are

the steepest. The analogy in the finite volume formulation is that the 2x '2' is the horizontal flux

through the two vertical faces (1 and 2) and the !2 term is the horizontal flux through the topOx a

and bottom faces (3 and 4).

We can see this truncation error in our LW topography simulation. After initializing hydro-

static equilibrium, the pressure gradient is computed and plotted in Figure 3-22a. Next we compute

the analytical truncation error by Taylor-expanding the six values of pressure that constitute the

numerical stencil for the horizontal pressure gradient, given in Equation 3.37. For constant N,

p'(y) = N2 (Ho - y) 2 /2, where HO is the maximum height of the domain. The analytical values of

the second derivatives are a = 0 and N2

Op Op 02p 02 p 02p= 1 -+ ai 2 + a2 + a3 a 2 + O(Ax 2 , Au 2, AXAU) (3.37)ax ax 5y2 axay aX2

where

al=3 -H(xj) - H(xj+i) (A2 _40io+ 4U )Hx 2
8 (H(xj+ 1 ) + H(xj))Ax 3 3 

2 2 2A2_4 4 a2
3H(xj)(Ao, - 2ai) 2H(xj+i) + H(xj)2 (Au 2 

- iu + 3

(H(xj) - H(xj+1 ))2 (Au - 2ai)

(4H(xj+1) + 4H(xj))

a3 =0.
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The leading or(ler tern, plotted in Figure 3-22b, very well matches the truncation error we observe.
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Figure 3-22: The horizontal pressure gradient, conpute(l upon initializing a hydrostatic pressure
field (a), is noii-zer() in the cells that are skewed by the topography. The first termn in the horizontal

pressure gradient truncation error (b) agrees very well with the observe( error.
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Figure 3-23: The (lifference between the pressure gra(lient error in Figure 3-22a and the analytical
truncation error in Figure 3-221) can be attributed to higher or(ler terns ili the truncation error.

We attribute the discrepancy in magnitu(le between the observed error and the computed error, in

Figure 3-23, to the higher-order terms.

Hydrostatic Model Solutions

One technique used to ameliorate this error in hydrostatic models is to remove the mean

deisity profile (Gary, 1973), this technique is used by the MSEAS PE (Haley and Lermusiaux,
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2010). Several formulations that carefully interpolate pressure (Lin, 1997) or density (Song, 1998)

to more accurately calculate the pressure gradient force are referred to as pressure-Jacobian and

density-Jacobian methods, respectively. Unfortunately, these techniques are not applicable to a

non-hydrostatic framework.

Non-hydrostatic Model Solutions

While other models, like NHWAVE, are able to mitigate the effects of the pressure-gradient

error with a spatial discretization scheme that inhibits spontaneous flow (NHWAVE uses a second-

order Godunov-type finite volume method discretization unlike the 2DFV code), we ameliorate

this issue by removing the hydrostatic pressure from the momentum equations and refining the grid

spacing. Removing the hydrostatic component of the pressure is common practice in many numerical

models since the hydrostatic pressure is generally much larger than the non-hydrostatic pressure,

and its removal can free the simulation of errors that are proportional to this larger quantity. First

the pressure is separated into two components, the hydrostatic and non-hydrostatic pressures

P = Phyd + Pnon-hyd - (3-38)

Now we substitute this into our horizontal momentum equation.

+U - Vu = 1 pnon-hyd + gd( + VV 2U + F(x, t). (3.39)
t PO \x h x pO

Using the Leibniz Rule we interchange the order of the integral and the derivative

au 1 0 a p'
- + u -Vu = -~ Pnon-hyd - g) do + V2u+Fe(x,t). (3.40)

at PO ax fV ax (PO X t. (40

In the vertical momentum equation we have

- + u - VV = -- (hyd + Pnon-hyd) + 2  v+Fv(x, t) - - 9  (3.41)at poay PO
O9 V 1 0 a 0 P, P
-+ U - VV - (Pnon-hyd) -gd( + VV2V + Fv (x, t) -- (3.42)at po ay ay fy PO PO

+ u -Vv= - (Pnon-hyd) + P + VV 2V + F(x, t) --g (3.43)
Pt po 9y P0 P0
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Figure 3-24: The u-coordinate simulation of the LW topography with the hydrostatic pressure

removed is initially free from spontaneous convection due to the pressure gradient error. However,

a boundary layer develops near the topography that accelerates or decelerates the flow near the

boundary.

8Jc 1 ()
-- + u V = -7 -- (P+In-h/) + Vc + F" (x, t). (3.44)
0 t Po Oy

Analytically., the two formulations (Equations 2.5 and Equations 3.40 and 3.44) have identical

velo(itv field solutions. However. numierically we expect to see differences due to the relative scaling

of the computed quantities and their associated round-off and truncation errors.

Second, while it is coinonly understood that truncation error is proportional to the grid

size, the pressure gradient error in particular has been shown to diminish with the square of the

horizontal and vertical grid spacing (Mellor et al., 1994); instead of using the same resolution as the

MITgein simulation, we use a grid that is twice as fine in the horizontal (dx =100i instead of 200m)

to mitigate the truncation error. The boundary conditions on velocity and the pressure-correction

term are the same as the z-coordinate simulation.

After these modifications the results of the LW simulation, shown in Figure 3-24, significantly

improve from the previous simulation, shown in Figure 3-21, although the zero-Diriclilet condition

on the sea mount does cause a boundary layer with slightly larger velocities to develop near the

topography. There is room improve upon this solution and bring the result of the LW simulation

closer to that of the shaved cell simulation, but this procedure is an important first step towards

that goal.
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3.5 Conclusion

We have discussed in detail the algorithms in our non-hydrostatic --coordinate framework.

Our goal was to ameliorate stair-casing effects and make progress towards a moving-mesh, free

surface code. The --coordinate code better represents the bathymetry and ameliorates the stair-

casing effect we saw with the z-coordinate code. The algorithm is first-order accurate and the

fully implicit diffusion operator reduces the computational cost substantially. Future work includes

improving the schemes to further reduce the prevalence of the hydrostatic inconsistency truncation

error, which may require a more sophisticated boundary condition.
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Chapter 4

Application of the Dynamically

Orthogonal Field Equations

For the first time we utilize the Dynamically Orthogonal (DO) field equations to study the

sensitivity of internal tide dynamics to perturbations in the linear stratification. These simulations

are conducted with the 2DFV, z-coordinate code which we demonstrated in Chapter 2 can accurately

capture the relevant dynamics of internal tides for the TN test case. The DO field equations achieve

substantial model order reduction , and efficiently explore a solution space (Sapsis and Lermusiaux,

2009, 2012; Ueckermann et al., 2013; Subramani and Lermusiaux, 2016). The DO field equation

have also been utilized for data assimilation (Sondergaard and Lermusiaux, 2013a,b; Lolla and

Lermusiaux, 2016a,b).Conceptually, the advantage of the DO methodology over a Monte-Carlo

approach can be characterized as projecting a high-dimensional problem onto a lower-dimensional

subspace, and then evolving the subspace in time.

In the first section we outline the DO methodology. In the second section we discuss the

initialization of the mean, modes, and stochastic coefficients. In the third and fourth sections we

discuss the results and verification of the DO simulation. We acknowledge that the verification of

the DO simulation, while encouraging, is not definitive, and that more work need to be done to

ensure the fidelity of the simulation. In the fifth section, we proceed with a preliminary evaluation of

the influence of initial perturbations to the density field on the resultant available potential energy.

This analysis, though contingent on the accuracy of the DO simulation, does suggest a substantial

sensitivity to the density anomalies introduced at the internal tide generation site.

69



4.1 DO Methodology

We briefly discuss the DO methodology and governing equations. Let the vector containing

all the state variables be

U

S= v. (4.1)

P

We can define a generic evolution equation for the state vector as

as(x, t; Q = L(S(x, t; Q), x, t; Q) (4.2)at

where S is a function of two spatial dimensions (x = [x, y]), time (t), and random variable (Q). The

operator L in our simulation represents the Navier-Stokes equations, a DO derivation for which is

found in Ueckermann et al. (2013). After a Karhunen-Loeve (KL) decomposition,

S

S(x, t; Q) = 8(x, t) + Si (x, t)Y (t; Q), (4.3)

Sapsis and Lermusiaux (2009) apply an orthogonality condition to the stochastic subspace spanned

by s DO modes.

( si ,Sj) = 6 for ij = 1,2,3...,s (4.4)

Finally, Sapsis and Lermusiaux (2009) use 4.3 and 4.4 to find evolution equations for the mean (S),

modes (Si), and stochastic coefficients (Y).

a t = E [L[u(x, t; Q), x, t; ]] (4.5)

au;(x, t)
at = "v5  [E [L[u(x, t; ), x, t; Q]Yj (t; Q)]]C y, (4.6)

dY (t ; G) _

dt = (L[u(x, t; Q), x, t; ] - E [L[u(x, t; ), x, t; ]], ui(x, t)) (4.7)

where HIV [F(x)j = F(x) - H1 s [F(x)] = F(x) - (F(x), Uk(x, t))uk (x, t) and

Cyy = E'[Y (t; Q)Yj(t; Q)]. The expectation of a quantity with respect to a random variable Q is

written EQ[e], and a spatial inner product between two quantities is written (9j, e). Thus, we find

that the computational cost of evaluating the DO field equations is aproximately equal to s2 + 1 + 1
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deterministic simulations. The s2 term comes from the modes equations, since any mode can be

advected by any other mode. The other two equations are the mean and coefficient equations which

have approximately the same cost as a deterministic simulation. For a complete derivation and

explanation of the DO equations and their numerical implementation, see Sapsis and Lermusiaux

(2009); Ueckermann et al. (2013), and Sapsis (2011).

4.2 Initialization

We need to initialize mean fields, mode fields, and stochastic coefficients for each component of

S. The mean fields for velocity and density are initially equal to the deterministic initial conditions

where the fluid is at rest and stably stratified. Next we identify a region within the domain where

we will initialize variability (i.e. where the stochastic term SjY will be non-zero). In our simulation

we use a rectangular region surrounding the peak of the topography that is 2L- = 9720m wide and

2LY = 1880m high. We initialize the stochastic term, SY from a singular value decomposition of a

covariance kernel. To compute the covariance between any two points we multiply the correlation

between the two points by the standard deviation at each point

coV 1,2 = Kl,2 UOi 2. (4.8)

The correlation between any two points (xi, yi) and (x2, Y2) in this variability region will be deter-

mined by the distance between them according to

SIX1-X2| 2+( l y1-y2l 2

K1,2 = e) 2 L , (4.9)

and zero for all other points. This formulation works to prevent steep density gradients, since points

which are closer together are more closely correlated. The standard deviation (a) of density will be

defined at each point in this region according to a Gaussian function uoe-(x/mX) 2 _(y/mv) 2 , as seen

in Figure 4-1, where ao = 2, mx = Z, and m = L . The s orthonormal modes,
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Figure 4-1: The standard deviation of p at each point in the variability region is (o = 2 weighted
by a Gaussian concentric with the variability region.
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have zero variability in the velocity fields (ui =

is proportional to the first s singular vectors of

pictured in Figure 4-2. The stochastic coefficients

values and a standard normal distribution.

vi = 0) and variability in the density field (pi)

the covariance matrix. The first four iodes are

are proportional to the square-root of the singular

0

For the following simulations we use 12,000 realizations and 28 modes. If we carry too few

modes or too few realizations, we will insufficiently characterize the total variability in the system.

To ensure that we have enough modes, we check that the variance in the highest stochastic coeffi-

cients (corresponding to the highest modes) is small compared to the lowest stochastic coefficients

(corresponding to the lowest modes), as in Figure 4-3. To ensure we have enough realizations, we

validate the DO simulation with an ensemble Monte-Carlo simulation described in section 4.4.
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Figure 4-2: The first four of 28 orthonormal inodes are proportional to the first four singular vectors

of the covariance kernel.

4.3 Results

e describe the evolution of the mean, modes. and( coefficients, as vell as several realizations

fron the DO simulation.

4.3.1 Mean

The mean fields of velocity and density, shown in Figure 4-4, closely resemble the fields in the

deterministic simulation shown in Figure 2-2. This is expected, since, random perturbations like

the on1es we apply, are not likely to exert a net force on the mean field.

4.3.2 Modes

The first four modes for u, 'e, and p after 13.9 hours of tidal forcing are pictured in Figure

4-5. We see internal tide-like structures in the modes. The modes of' the zonal velocity are anti-

symmetric about a vertical centerline, and the modes of the azimuthal velocity are symmetric about

tHie horizontal centerline; the same symmetries and anti-symmetries exhibited by internal tides as

seen i Figure 2-2.
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Figure 4-3: The variance drops off between the first and last modes by more than three orders

of magnitude, and the distribution of variance stays very constant throughout 13.9 hours of tidal
forcing.

4.3.3 Stochastic Coefficients

Figure 4-Ga shows the stochastic coefficients are initially uncorrelated Gaussian dist ribut ions.

As the simulations evolve, features in the marginals of the stochastic coefficients develop in response

to coupling of the modes and nonlinearities in the perturbed internal tide simulation dynanics.

Figure 4-6b shows the marginal pdf's of the stochastic coefficiemts after 13.9 hours of stochastic

forcing.

4.3.4 Realizations

Finally,. we show four realizations (the realization number is indicated by the reference number

in the parenthesis) out of the 12,000 after 13.9 hours of tidal forcing in Figure 4-7. Recall that the

DO methodology allowed us to evolve 12,000 realizations at the computational cost of s2 +1+1 = 786

deterministic simulations. The influence of the different perturbations in each realization can be

clearly observed.

4.4 Verification with Monte-Carlo

To verif'y the DO simulation results, we perform am ensemble Monte-Carlo simulation where

each initial condition in the ensemble corresponds to an initial realization of the DO simulation. The
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Figure 4-4: The mnean fields initially match the dlet erministic initial conditions (left) and the mnean

fields after 13.9 hours (right) agree well with the deterministic simulation results after tidal forcing.

ensemble Mlonte-Carlo simulation agrees veywell with the DO simulation; Figure 4-8 sho-ws that

after 13.9 hours of' tidal forcing, the relative error between the DO simulation and the Mlonte-Carlo

sim-ulation isabout 1%. This result is encouraging, but does not guarantee the accuracy of the

DO simulation. To fully ensure the accuracy of the DO simulation, a careful investigation of the

stochastic density and velocity fields -would be required. This task is complicated by the osciallatory

nature of the tides and the wave interactions between the tides and gravity waves generated by the

density anomnalies. A more thorough description of these challenges can be found at the end of this

chapter.

W~e will proceed with the energetics analysis and draw some preliminary conclusions about

the relative influence of variability in the density field oil the mlixing potential of' the stratified fluid,
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but understand that a more rigorous verification should be conducted to confirm the validity of the

DO simulation.

4.5 The Implications of a Perturbed Stratification for the Resultant

Available Potential Energy

To examine the influence of perturbations to the density field near the peak of the sea mount,

we calculate the available potential energy for the 12,000 DO realizations and compare them with

that of the unperturbed, deterministic simulation. We use available potential energy (Lorenz, 1955)

as a proxy for mixing potential, and draw some preliminary conclusions about the amount of mixing

potential the internal tides can accomplish with and without perturbations to the stratification. We

partition the potential energy as in Winters et al. (1995), where we define the total potential energy

as the sum of a background potential energy Eb and available potential energy Ea which can be

written as the following volume integrals

Eb = g ydV (4.10)
fv P0

Ea=gf -||y-y*IjdV (4.11)
V Po

where we set y, = H - 27, which is exactly Equation 2.11. The notions of "background" and

"available" come from the capacity of the potential energy to do work. It is easily observed from

Equation 4.11 that the deterministic simulation is initialized with zero available potential energy, and

can only acquire it when tidal forcing across the sea mount bends the isopycnals. By contrast, the

DO simulations are initialized with some available potential energy since the fluid in the variability

region is not necessarily stably stratified. Figure 4-9a shows the initial available potential energy

of the DO simulation realizations is between 1% and 90% of the available potential energy in the

deterministic simulations after 13.9 hours. The abscissa is the maximum deviation, within the

variability region, from the linear profile given by our constant buoyancy frequency. We define the

'The definition we use here differs from that in (Winters et al., 1995). The background potential energy definition
used by (Winters et al., 1995) is the minimum potential energy that can be achieved by adiabatically re-arranging
the fluids parcels. Since the internal tide simulation does not introduce large variations in the relative amount of
fluid parcels of a given density, our definition of y. will closely approximate the definition in (Winters et al., 1995).
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maximum perturbation as

max P- 100 (4.12)
P (Y)J

where pr is the initial density field for a given DO realization r and the linear profile is p(y).

Almost all of the DO simulations maintain a larger available potential energy than the deterministic

simulation, as seen in Figure 4-9b. We consider one realization to clarify the results in Figures 4-9a

and 4-9b. This realization is initialized with a perturbation that has a maximum departure from

the linear profile of 20% and is configured such that the initial available potential energy is 30%

of the available potential energy in the deterministic simulation after 13.9 hours. After the same

amount of tidal forcing, this perturbed simulation has double the available potential energy of the

unperturbed deterministic simulation. The likely explanation for this is that the wavefield in the

DO simulations is the interaction of internal tides and gravity waves spawned by the perturbation.

Even without tidal forcing, the density anomalies introduced initially in the stochastic simulations

would generate internal gravity waves since the fluid in the variability region is unlikely to be stably

stratified. It is plausible that these internal gravity waves interfere with internal tides in such a way

as to bolster the total available potential energy in the system.

4.5.1 Conclusion

We have applied the DO field equations to study internal tides. The marginals of the stochastic

coefficients show the modes of the simulation couple and interact, and the verification of the DO

simulation with the ensemble Monte-Carlo simulation is encouraging, but as we have mentioned,

not definitive. If we explore the results of this DO simulation the amount of available potential

energy created by our characterization of the sub-grid scale eddies is impressive, and the efficiency

of the DO methodology allowed us to study a wide range of perturbations and better understand the

relationship between the amount of initial available potential energy and the final available potential

energy after tidal forcing. A complete dynamical characterization of internal tide-internal gravity

wave interaction would be required to fully explain the energetics that we have begun to explore with

these stochastic simulations. The DO field equations may not only prove to be a useful technique

to efficiently study the sensitivity of internal tides to variability in the environment, but also for
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efficiently studying wave-wave interactions such as internal tide-internal gravity wave interactions

or internal tide-surface wave interactions.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

We have shown internal tide dynamics can be sufficiently captured with the 2DFV code by

demonstrating excellent agreement between the simulation results and those predicted by linear

theory for both the angle of propagation and horizontal wavelength. The power spectra of the

internal tides confirmed linear theory is an appropriate simplification and the 2DFV particle velocity

field matched the MITgcm results well for the TN topography used in the DO simulations. For low-

aspect ratio topographies, a coordinate transformation can significantly improve the particle velocity

field between the MITgcm and 2DFV code. Our 2D, non-hydrostatic, --coordinate framework has

a fully implicit diffusion operator which offers a substantial advantage in computational cost. The

issue of hydrostatic inconsistancy was ameliorated by removing the hydrostaic pressure and refining

the grid spacing. Finally, we have, for the first time, utilized the Dynamically Orthogonal field

equations to study internal tides. Specifically we aimed to study the sensitivity of internal tides to

sub-grid scale phenomena paramaterized by perturbations in the stratification near the apex of a

steep topography.

5.2 Future Work

Some possible directions to move forward with the --coordinate framework and the stochastic

simulations are described below. Broadly the goals would generally focus on improving the repre-
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sentation of internal tides in the LW simulation with the a-coordinate framework and conducting a

careful verification of the stochastic simulation.

5.2.1 a-coordinate Framework

Future work on the a-coordinate framework includes reducing the truncation error to more

effectively control the pressure-gradient error and improving the topographic boundary condition.

A finite-volume scheme like a Godunov-type method has been shown to lend itself to substantially

control the pressure-gradient error, and might be a viable option for the a-coordinate framework.

Since the Neumann boundary condition is only first-order, and the position of the velocity values

are vertically aligned, the accuracy of the velocity near the topography is inversely proportional

to the steepness of the topography. As mentioned earlier, this does not pose significant challenges

for the shallow, low-aspect ration topographies, but in order for this code to be extended for steep

topographies a more sophisticated Neumann boundary condition would be required. The immersed

ghost cell method is one possible option.

The a-coordinate code would ease the incorporation of a free-surface dynamics into the 2DFV

code, which is important for shallow-water simulations. Future work on the 2DFV code would

includes incorporating free-surface dynamics with a moving mesh as is in the MSEAS PE (Haley

and Lermusiaux, 2010; Haley et al., 2015).

5.2.2 Application of the DO Field Equations

A careful deterministic investigation of the internal tide-internal gravity wave dynamics would

be required to carefully verify the stochastic simulations. The work in this thesis represents the first

stages of exploring these dynamics, and demonstrates a potential for the wave-wave interactions to

influence the properties of the wavefield far away from the internal tide generation site.

Future work includes incorporating stochastic forcing to study the influence of a variable

barotropic tide and surface waves on the internal tides. We hope to combine stochastic forcing

and stochastic initialization to study the separate and combined influences of sub-grid scale eddies,

external wind-driven surface waves, and tidal forcing. We have begun work towards this goal by

implementing modifications for stochastic forcing to the DO equations for a variable barotropic tide
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Futde Uo(Q)wcos(wt) in Equations 5.1c(a-c).

E' [Uo]w cos(wt)

+ 0

0

Uj (x, t) =C- EQ[LYj] +d t ;' \E

dY(t; Q) L - E"[L] +

E2[UoY]w cos(wt)

0 w...

0

"[U0Yj]L0 cos(Wt)

0 ,Uk Uk

0

Uo - E0[Uo])w cos(wt)

0 , i

0

The DO methodology can allow us to efficiently study the sensitivity of internal tides to variations in

the stratification and the associated interactions between internal tides and internal gravity waves,

variation in the tidal velocity, and variations in other external forcings such as surface waves.
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Appendix A

The Projection Method

Here we discuss the projection method utilized in the z-coordinate and a-coordinate code,

and discuss the associated restriction on the a-coordinate Laplacian operator. The method used is a

Chorin-Temam projection method Chorin (1968). We start with the temporally discretized system

of equations A.1 to A.3: continuity, conservation of momentum, and tracer-convection, respectively.

We treat the nonlinear and source terms explicitly and the linear terms implicitly.

V - =t - V . gk+1 = 0 (A.1)

k +1V1 k 
+ (V- (-OW))= -- = p + vV - (Vk+l) + Fk (A.2)

At P

0k+1 - + (V. (p))k = V. (Vpk+1) (A.3)At

In the first step of this fractional-step method, a predictor velocity (-'k+1) is computed using the

pressure field from the previous timestep.

-k+1 _ ik
* + (V - ( ))k -- +p + vV - (Vik+1 ) + Fk (A.4)

At p
k+1 _ k V .k1 __. / \.-.\k = V k+ 1

At At P p (A.5)

VV 2 gk+l _ V2gk+l +F - Fk

igk+1 -Wk+1- I+ _kk+l 1 Vp k + u(V2ilk+1) V(V 2il+1)
At p p

(A.6)
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We recall the vector ID, V2'= V(V -7) - V x (V x -), and substitute for the diffusion term.

-k+1 ,-k+l
U U*k+1 _ k [V jk+1) _ VXVX k+1) _[VV_ k+1_ VXV lk+ 1)At p p

(A.7)

We make the approximation V x (V x ilk+1) V x (V x -k+17

k+ -1 1 1
* = Vpk+1 + -VPk + .vV(V k+) - u'V(V i;*+') (A.8)

At p p

We compute the pressure-correction (q = 1Pk+1 _ 1 k - v(V k + v(V k+)) by taking the

divergence of A.8, and this is the step where we see the restriction imposed on the o-coordinate

Laplacian operator.

k+1 k+l 1 1
U . * k+1 _ k k VV l+1) _VV -k+1V ( t*Vpk~ + VpK VV. *+' ' (A. 9)

At p p

A+1 + + V .p vV - k+ _ .vv(v . -k+l) (A.10)

kk+1 _ k1 k ++V(V 41k) _(V -k+1 11)
At p p

Mathematically, the divergence operator in rvd is equivalent to the divergence operations in black.

However, since the same mathematical operators can be constructed with different numerical schemes,

each r(d divergence operator needs to be numerically equivalent to guarantee conservation. This is

why it is important that Equation 3.17 is numerically identical to Equations 3.27 and 3.28.

Next, we solve for (q) and compute the corrector velocity (uk+1).

_ V . ijk+1
V - V(-q) = * (A.12)

-k+1 -k+l 1* = Vpk+ 1 _ _VPk _ V(V i.k+) _ vV(V +1) (A.13)
At p p

-k+1 _ k+1

* = Vq (A.14)
At

k+t _-_ + - VqAt (A. 15)

Finally, we correct the pressure with the corrector velocity. Equation A.16 is an incremental,

rotational pressure-correction scheme.
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Ipk+ - q + p + VV(V - Uk+1) - v(V . ik+1) (A.16)
p p
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