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Abstract

The primary contributions of this thesis include the first stages of development of a 2D, finite-
volume, non-hydrostatic, o-coordinate code and beginning to apply the Dynamically Orthogonal
field equations to study the sensitivity of internal tides to perturbations in the density field. First, we
ensure that the 2D Finite Volume (2DFV) code that we use can accurately capture non-hydrostatic
internal tides since these dynamics have not yet been carefully evaluated for accuracy in this frame-
work. We find that, for low-aspect ratio topographies, the z-coordinate mesh in the 2DFV code
produces numerical artifacts near the bathymetry. To ameliorate these staircasing effects, and to
develop the framework towards a moving mesh with free-surface dynamics, we have begun to im-
plement a non-hydrostatic o-coordinate framework which significantly improves the representation
of the internal tides for low-aspect ratio topographies. Finally we investigate the applicability of
stochastic density perturbations in an internal tide field. We utilize the Dynamically Orthogonal
field equations for this investigation because they achieve substantial model order reduction over
ensemble Monte-Carlo methods.
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Chapter 1

Introduction

The profound influence of internal waves on biological systems and human activities has
prompted the study of internal wave dynamics with observations and empirical models. Two func-
tions in particular motivate interest and enthusiasm for a thorough dynamical characterization;
first, internal waves are primary drivers of diapycnal mixing (Munk and Wunsch, 1998) and, sec-
ond, internal waves are responsible for nutrient transport in coastal regions (Shea and Broenkow,
1982). While any internal wave activity can encourage diapycnal mixing, since the osciallations
are perpendicular to resting isopycnals, the extremely energetic mixing events caused by breaking
internal waves (which we now know can exceed 200m in height (Alford et al., 2015)) may prove to
be a critical componant of global ocean circulation (Nikurashin and Ferrari, 2013). Internal waves
are also important mechanisms for nutrient transport. Some coastal systems depend on the regular
cycling of water between deep, high-nutrient regions and shallow, euphotic regions brought about
by internal wave activity (Wang et al., 2007). Many studies show that internal waves are influenced
by the strength of the barotropic tide, the steepness of bathymetry, and the stratification profile.
Here we begin to develop a numerical model that will characterize the sensitivity of internal waves
to these and other governing parameters.

Previous work has demonstrated a relationship between the strength of the barotropic tide
ans the mixing potential of internal tides (internal waves at tidal frequency) (Legg and Huijts, 2006).
This thesis describes simulations that aim to understand the influence of density perturbations on
the mixing potential internal tides. We conduct numerical simulations with a 2D Finite Volume

Framework (2DFV), that has been developed by the MSEAS group over the last four years (Ueck-
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ermann et al., 2013; Ueckermann and Lermusiaux, 2012). While many other numerical models are
available, we elect to conduct all of our simulations with the 2DFV code to take advantage of the
existing architecture, specifically the novel Dynamically Orthogonal (DO) field equations. The novel
DO field equations (Sapsis and Lermusiaux, 2009, 2012; Ueckermann et al., 2013) have been used
to efficiently solve the stochastic incompressible, Boussinesq, Navier-Stokes equations (Ueckermann

et al., 2013).

1.0.1 Verification of Internal Tide Dynamics

In chapter 2 we conduct a verification study to demonstrate the 2DFV code accurately cap-
tures internal wave dynamics. This verification study uses the internal wave dispersion relation,
linear theory from Khatiwala (2003), and simulation results generously provided by Sonya Legg for
comparison (Legg and Huijts, 2006). We find the 2DFV code can accurately capture the dynamics

of internal tides generated at steep topographies.

1.0.2 A o-coordinate Mesh

In chapter 3 we describe a coordinate transformation which ameliorated numerical artifacts
due to a staircased representation of low-aspect ratio topographies. Refining the z-coordinate grid,
instead of changing the coordinate system, to smooth the representation of bathymetry may be
a sufficient solution for a deterministic problem, because the computational cost will only scale
with the grid resolution. However, when a more expensive algorithm is required, like the DO field
equations where the cost scales as the square of the number of modes, an efficient mesh can be
advantageous, if not necessary.

There are two common'ways to modify a z-coordinate representation of bathymetry: re-define
the vertical coordinate, as in a o-coordinate mesh, or modify the geometry of the boundary cells,
as in the cut-cell method. While a o-coordinate mesh has been shown to be an effective solution
for stair-casing effects (Gallus Jr and Klemp, 2000), the cut-cell method, which includes the shaved
cell formulation in the MITgem (Adcroft et al., 1997) and the immersed boundary method (Tseng
and Ferziger, 2003), have also been shown to be effective solutions. A comparison of cut-cell and

o-coordinate grids conducted by Shaw and Weller (Shaw and Weller, 2016) acknowledged the merits

18



and drawbacks of both techniques and did not find either method to be superior. An advantage of
implementing the o-coordinate mesh, versus a cut-cell formulation, in the 2DFV code is that it is
a helpful intermediate step towards implementing a moving mesh with free-surface dynamics.
There are many well-known o-coordinate models including the Regional Ocean Modeling
System (ROMS; Mellor, 1998), the Penn State/NCAR Mesoscale Model (MM5; Grell et al., 1995),
the Finite Volume Community Ocean Model (FVCOM; Chen et al., 2003a), the Non-Hydrostatic
WAVE model (NHWAVE; Ma et al., 2012), and the Princeton Ocean Model (POM; Blumberg
and Mellor, 1987). These models vary in terms of the dynamics they represent (hydrostatic versus
non-hydrostatic) and numerical methodology (finite volume versus finite difference), and therefore
all manage challenges imposed by a o-coordinate mesh in slightly different ways. In chapter.3 we
describe solutions to challenges which arose in our o-coordinate model, including how the algorithm
maintained both de-coupled horizontal and vertical momentum equations and fully implicit diffusion
scheme from the z-coordinate 2DFV code. Additionally, we explain the way the issue of hydrostatic

inconsistency was ameliorated.

1.0.3 The DO Field Equations

For the first time we utilize the DO field equations to study the sensitivity of internal tides
to perturbations in the stratification. In these preliminary simulations, we initialize variability in
the density field near the peak of a steep sea mount, representing sub-grid scale eddies that stir
the fluid in this region, and find that initial perturbations to this region result in greater mixing
potential after tidal forcing compared to the unperturbed deterministic run in chapter 2. While
the stochastic simulations will require more rigorous verification than is presented in this thesis
to ensure the fidelity of the simulations, the first few verification study presented in chapter 4 is

encouraging.
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Chapter 2

Verification with Linear Theory and

MITgcm

Internal gravity waves are generated when a stably stratified fluid is perturbed such that a
heavier parcel of fluid moves over a parcel of lighter fluid. Gravity works to restore the stably
stratified configuration, and the resultant oscillations are internal gravity waves. A primary gener-
ation mechanism of internal waves in both the ocean and atmosphere, and the mechanism which
we consider in this thesis, is stratified fluid flow over rough topography resulting in Lee waves

downstream.

In this chapter we demonstrate that the 2D Finite Volume framework (2DFV) accurately
captures internal wave dynamics using three resources: the internal wave dispersion relation, linear
theory developed by Khatiwala (2003), and a simulation performed by Legg and Huijts (2006) on
the MITgcm .

In the first section we describe the setup of a test-case from Legg and Huijts (2006) in the
2DFV framework. In the second section, we briefly review the derivation of the internal wave
dispersion relation and verify the angle of propagation and wavelength of the internal tides in the
numerical simulations is correct. Next we confirm linear theory is an appropriate approximation
with the power spectra of the wavefield. Finally, we compare the particle velocity fields between

the 2DFV and MITgcm simulations.
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2.1 Problem Setup

We reproduce the "Tall-Narrow" test-case from (Legg and Huijts, 2006), where the barotropic,

M2 tide (period of 12.4 hours) oscillates over an idealized Gaussian topography of height hg

exp(_Q—%%i). The dynamical regime of this test-case is characterized by two dimensionless num-

bers, the Froude number (F}) and the tidal excursion parameter (Ry), which are defined as

U Uy
F= N Re=01

where Up is the magnitude of the barotropic tide, w is the tidal frequency, hg is the height of
the topography, g is gravitational acceleration, and L is approximately the e-folding length of the
Gaussian topography. The Froude number is a measure of mixing potential; narrower topographies
have more mixing potential than wider topographies. The tidal excursion parameter is a measure of
topographic impedance to the flow; tall topographies impede flow more than shorter topographies.
The Tall-Narrow (TN) topography has hp = 2350m and L = 1215m. With a 2 cm/s barotropic

tide, we have a Froude number of 0.011 and a tidal excursion parameter of 0.117.

The fluid is initially at rest with a linear background stratification corresponding to a constant

Brunt-Viisdla frequency (N)

poN?
g

0 , o

where the total density p is the sum of pg, the constant background density, and p’, the density

anomaly. The initial pressure field is hydrostatic such that

0
551)(% y,t=0) = —pg. (2.2)

We add the tidal forcing term from Legg and Huijts (2006) and Khatiwala (2003) to the horizontal

momentum equation such that F(x,t) in Equation 2.5 is

F, Uow cos(wt)
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The tidal velocity can be found by differentiating Equation 2.3, uparotropic = Up sin(wt).

The 2DFV Code

The 2DFV code solves the incompressible Navier-Stokes equations with the eddy viscosity

and Boussinesq approximations. For our simulation we have

V-u=0, (2.4)
/
Qﬂi+u~Vu=—Vp’+l/V2u+£—9+F(m,t), (2.5)
at Po
op’ /
le'|

where density (p) is defined piota) = po + p'(2,y,t) and p = %g such that < 1, and pressure is

Po
defined p = pg + p’po such that Vpg = —pog and ]ﬁil—[ <« 1. The boundary conditions on velocity,

0/ PO
shown in Figure 2-1, are zero-Neumann conditions on the inlet and outlet (du/dz = dv/dz = 0),
free-slip, no-penetration conditions on the top and bottom of the domain (du/dy = v = 0), and no-
slip conditions on the sea mount (u = v = 0). The boundary conditions on the pressure-correction
term (q) are imposed by the velocity boundary conditions according to the pressure-correction
formulation described in Appendix A. The pressure-correction term has zero-Neumann conditions
on the top of the domain, bottom of the domain, and sea mount, and open (%Z = 0) conditions on
the left and right domain boundaries. The boundary conditions on density are zero-Neumann on
all boundaries. Simulation results for the velocity and density fields after 13.9 hours of tidal forcing
are shown in Figure 2-2. We notice the zonal velocity field is antisymmetric about the horizontal
centerline (at y = -2350 m depth) and symmetric about the vertical centerline (at x = 0 km). The
azimuthal symmetric about the horizontal centerline velocity is antisymmetric about the vertical

centerline. For these relatively weak internal tides, the undulations in the density field are very

mild.
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Figure 2-1: A schematic illustrating the boundary conditions on velocity in the 2DFV simulation.

2.2 A Cut-Cell Boundary Condition for a Structured Finite Volume
Mesh

The simulations performed by Legg and Huijts (2006) impose free-slip velocity boundary
conditions on the sea mount, as opposed to the no-slip conditions described in the previous section.
If we wish to impose free-slip conditions on the topography, one option is to use a cut-cell method.
Instead of requiring interpolations like the immersed ghost cell boundary condition (Tseng and
Ferziger, 2003), we can solve for the values of boundary cells already present in the structured finite
volume mesh such that the stress-free condition is observed. Figure 2-3 shows a few cells on either
side of a masked region. The cut-cell algorithm we propose solves implicitly for the boundary values

(va,v4, Vg, u3, us in Figure 2-3) according to the stress-free, no-penetration conditions

=0 (2.7)

=)

P
£l
.

p—

I
o

(2.8)

where 7 and ¢ are a unit vectors in the normal and tangential directions, respectively.

2.2.1 Review of the Analytical Solution

The test-case with which we choose to study this new cut-cell boundary condition is Couette

flow between two concentric cylinders. The analytical solution for incompressible flow between
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Figure 2-2: The zonal velocity (top), azimuthal velocity (middle), and density (bottom) are shown
fields initially (left) and after 13.9 hours of tidal forcing (right).

concentric cylinders in polar coordinates is outlined below.

The inner cylinder has no-slip boundary conditions and rotates at a fixed angular velocity
(€2); the outer cylinder has free-slip, no-penetration boundary conditions as shown in Figure 2-4a.
Since this test-case is radially symmetric and has a steady-state solution, we expect derivatives in

the @ and time to vanish. Thus the continuity equation simplifies to

10
;@(Pmr) =) (2.9)

where u, is the velocity in the radial direction and p is the fluid density. Equation 2.9 simplifies

to ru, = C, where C] is a constant. Since we enforce no-penetration at both boundaries (u,(r =
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Figure 2-3: The structured C-grid mesh considers the center of the velocity cells to be at the center
of the scalar grid cell faces. Boundary cells on the scalar grid and on the velocity grids are shown
in grey, and the analytical boundary of the masked region is represented by the blue dashed line.
The local normal and tangential directions are identified with blue arrows.

Ry) = u,(r = R2) = 0) we see that the radial velocity must vanish everywhere in the flow.

Next, the momentum equations in the radial and angular directions simplify to

2 .
L
P =" (2.10)
a 10
O_M{E [;E(?’MQ)}} (2.11)

where ug is the angular velocity, u is the dynamic viscosity, and p is the pressure. Equation 2.11 can

be easily solved by integrating twice such that the solution to the annular Couette flow test-case is

U= 1 (2.12)

C
Uy = ?.02 — _3 (213)
-
The boundary conditions for this flow are

ug(r = Ry) = QR (2.14)
dug(r = Ra)

= 2.15
or 0 (8-15)
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so the constants C5 and ('3 are

RQ
Cy= —1—s (2.16)
R? + R}
RIREQ :
o k.l (2.17)
R} + RZ

-iug(r =R, =40m) = 1.23 m/s |

|u3(r=R1=5m)=5m/s[

24.6
Ug = 0.015r +T

(a) (b)

Figure 2-4: Two schematics of the setup of the annular Couette flow (a) and a sketch of the solution
for Ry =5 m, Ry = 40 m, and © = 1 rad/s. The solution for velocity everywhere in the flow is in
the third box of (b).

2.2.2 The Algorithm

If we know the analytical function for the boundary (e.g. a Gaussian, or a cylinder), then
we can calculate exactly the angle # between the (x,y) coordinate system and the (n,t) coordinate
system as shown in Figure 2-5. This cut-cell algorithm effectively considers the analytical boundary
to be composed of piecewise linear segments rather than discrete and even steps. In this particular
test-case (with the origin at the center of cylinders) the radial and angular directions are exactly
the normal and tangential directions. The rotation matrix which converts velocities between the
Cartesian (u,v) and normal-tangential (uy, u;) coordinate systems is

Un cos(f) sin(f)| |u

= : (2.18)
u —sin(@) cos(f)| |v
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We can use the rotation matrix in Equation 2.18 to write the boundary conditions in Equations

Y

(a) (b)

Figure 2-5: The two local coordinate axes are shown in (a) and for a cylindrical boundary containing
fluid (b) the coordinates are shown on the boundary.

2.12 and 2.15 in terms of the Cartesion velocities. The normal boundary condition becomes

Up = 0 (2.19a)
ucos(f) + vsin(f) = 0, (2.19Db)
and the tangential boundary condition becomes
J
% (—usin(f) + vcos(f)) =0 (2.20b)
—g—:: sin(6) + %E cos(f) =0 (2.20c)
oudr Oudy) . dvoxr  Ovdy

Nt 5 ——+ == ) = ;
(Ba: n + 3y an) sin(f) + (Bac n + 3y an) cos(f) =0 (2.20d)
— sin(6) i (8) + % @) )+ oy cos(f) + ?Esin(ﬂ) cos(f) =0 (2.20e)

5 <O By sin 5 By = g

) ou . 5, . 0Ou 2,0V . ov

— sin(0) cos(G)% — sin (Q)B—y + cos (9)831: + sin(@) cos(#) 5 0. (2.20f)

The two conditions (2.19b and 2.20f) couple the u and v velocities, and so the solution for the
predictor velocity (see Appendix A) is nolonger two separate linear systems for uw and v, but is

solved as one coupled system. At each timestep we solve implicitly for both the interior predictor
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velocity values, as well as for velocities in the boundary cells that form the perimeter of the outer

cylinder. All of the derivatives in Equation 2.20f are computed with first-order accuracy.

2.2.3 Results

After the simulation has reached a steady state the numerical velocity, shown in Figure 2-6,

is compared with the analytical solution. Samples of the velocity field along two radii of the setup

L%]velocily [m/s], cut-cell free-slip boundary condition v velocity [m/s], cut-cell free-slip boundary condition

Figure 2-6: The numerical u (a) and v (b) velocity fields for annular Couette flow with the free-slip
boundary condition on the outer cylinder after the simulation has reached steady state agrees with
the overall profile of the analytical solution, but the numerical solution is a little faster than the
analytical solution.

are shown in Figure 2-7 are compared with the analytical solution. The velocity profile respects the
boundary conditions (Equations 2.12, 2.14, 2.15), but the numerical velocity field is slightly faster
than the analytical field. The maximum relative error, found in the cells adjacent to the outer
cylinder, is approximately 13 %.

A more sophisticated algorithm and careful verification needs to be conducted to ensure
accuracy of the cut-cell boundary condition. Potential explanations for the discrepancy between
the numerical and analytical solutions include truncation error, which can be confirmed with a grid-
refinement study and ameliorated by increasing the order of accuracy of the computed derivatives.
We will proceed to apply with new boundary condition to the Low, Wide topography with a 2

cm/s tide, cognizant that the accuracy of these results is predicated on a thorough evaluation of
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Figure 2-7: The numerical solution in the cells identified by the black lines in the diagram are
shown above and to the left of the annular Couette flow sketch. The plots show that near the outer
cylinder the boundary condition is observed, but there is approximately a 13 percent error in the

velocity value.

the cut-cell boundary condition. Figure 2-8 shows the free-slip boundary condition significantly
improves but does not eliminate the numerical artifacts emanating from the Low, Wide topography.
Improvements to the accuracy of the algorithm, such as computing the derivatives with a higher

order of accuracy, may help further ameliorate the observed numerical artifacts and improve the

representation of internal waves in the 2DFV code.

2.3 Verification

We have identified four metrics to evaluate the ability of the 2DFV code to sufficiently repre-

sent the dynamics of internal tides. The first two, angle of propagation and horizontal wavelength,

confirm the stratification is correct and that advective and diffusive transport are dominated by the
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Figure 2-8: The Low, Wide topography with a no-slip velocity boundary condition on the topog-
raphy (a) shows numerical artifacts after 13.9 hours of tidal forcing. The cut-cell free-slip velocity
boundary condition (b) improves the representation of the internal waves.

pressure gradient force. Next we study the power spectra of the wavefield to confirm that linear
theory is a reasonable simplification. Finally, the particle velocity fields from the 2DFV code and

the MITgem are compared, and discrepancies are discussed.

2.3.1 Verification of Wavebeam angle with Linear Theory

First, we overview the derivation of the internal wave dispersion relation, which can be found
in many geophysical fluid dynamics textbooks, including Cushman-Roisin and Beckers (2011), and
use it to evaluate the angle of propagation of the internal tides. If we consider the regime where
we can ignore ambient rotation (large Rossby number), dissipative effects (small Ekman number),
non-linearity (the wave amplitude is much smaller than the wavelength), and make the Boussinesq

approximation, we can simplify the primitive equations to the following system:

,
% _ _%‘;__i (2.21)

,
g‘t’ _ %%% (2.22)
% _ _%2_1‘; _ pl_ogpf (2.23)
%+g—;+g—j=o (2.24)
%ﬁl + w;—‘f = (2.25)
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where p = po +p(2) + p'(2,9,2,t) and p = po(2) + P'(2,9,2,1) = = [ pogdz + p'(z,y,2,t) . The

magnitudes of the perturbations are much smaller than the mean values ILl[ < 1, Irlp })I <1, ||£ || < 1.

This system of five constant coefficient PDE’s above has solutions of the form

Uly, z)et kaathyy+hzz—wt) (2.26a)

v = V(z, z)ekarthyythez—wt) (2.26Db)
w = W(g, y)e!keatkyy+hzz—wt) (2.26¢)
p = P(t)eilkeathyy+hzz—wt) (2.26d)

p = Rz, y)eikaethyythzz—wt) (2.26¢)

Writing the system 2.26 in matrix form we have

- - - -

—iw 0 0 k ¢ U(y, z)

PO
0 —iw 0 2 0 |V(z2)
- k2 9 :_’
0 0 w a2 IW(z,y) 0. (2.27)

ky ky k, 0 O P(t)
0 0 &Q 0 —iw _R(z,y)_

If we set the determinate of the matrix in 2.27 to zero, and solve for w, we find the dispersion
relation

kz + k2
w? = <i@> z Ty (2.28)

podz ) k2 +kZ4 k2
If we consider a 2D case (ky = 0) and take v as the angle between the horizontal and the wavenumber

vector (kg, k;), the dispersion relation can be simplified to
w = N cos(7), (2.29)

where N? = — ( ,—% %&Z) For a buoyancy frequency of N = 8(10™*) rad/s, and the M@ tidal frequency
of w = 1.41(107%) rad /s, we expect the phase velocity vector to propagate at an angle of 1.39 radians
(79.84°) to the horizontal. Recall that the phase velocity propagates at 90° to the group velocity, so

a line of constant phase will be at 90° — . Let 6 = 90° — v so that w = N cos(90° — v) = N sin(6).
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For the aformentioned values of N and w, # = 10.2°. In Figure 2-10 we superpose dashed lines at an

Slope of Tall, Narrow
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0
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-10 km
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10 km

Figure 2-9: The slope of the TN topography is shown in blue alongside the theoretical angle of
propagation, 8 = 0.178 radians. We see the topography is supercritical, or that the slope of the
topography exceeds the slope of the internal tides, within approximately three kilometers of the

apex.

angle 6 on to a snapshot of the zonal velocity field from the 2DFV code. Note that the topography is

supercritical within 3 kilometers of the apex, as seen in Figure 2-9. We observe excellent agreement
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Figure 2-10: The dashed lines forming an angle, #, are superposed onto a snapshot of the 2DFV
zonal velocity field of the TN topography (Up — 2cm/s) simulation after 13 hours of tidal forcing,
The lines of constant phase agree well with the superposed dashed line.
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between the line of constant phase and the wave trajectory, and conclude that the waves produced

in this simulation are well-predicted by the linear theory derived above.

2.3.2 Verification of Horizontal Wavelength with Linear Theory

We will briefly describe the derivation performed by Khatiwala (2003) for the internal tide
wavenumber given an oscillating flow over an arbitrary topography. For a 2D domain, we can de-
scribe an arbitrary topography with a function h(z) and a tide in the form of a time-dependent
body force U(t) = Upw cos(wt), oscillating the fluid above the topography. After a Galilean trans-
formation to a reference frame that moves with the tide, Khatiwala takes a Fourier transform in
both spatial dimensions of the momentum equations and solves for the horizontal wavenumber,
jm [ n2w? — f2 1/2
[ N2 — n2w2] ’
where H is the maximum fluid depth, n is the vertical mode number, and j is the horizontal mode
number. We assume no damping in this system. The analytical, horizontal wavelength for the first
mode (j = n = 1), can be found from k, = 27 /\;. The first mode will have the longest wavelength
and so it will travel the fastest and be the first wave we will clearly observe at the edge of the
wavefield. To find the numerical wavelength from the 2DFV simulation, we create a Hovmoller
plot from horizontal cross-sections of the zonal velocity field at 1567m depth from the surface.
The horizontal wavelength from the numerical solution is the distance between two nulls; in the
Hovmoller. In Figure 2-11 we see that the analytical solution (equal to the length of the superposed
black line) agrees well with the distance between two nulls in the Hovmoller. We conclude the
horizontal wavelength from the simulation agrees well with the horizontal wavelength prescribed by

linear theory.

2.3.3 Verification of Frequency Spectra

If the frequency spectra of the waves is principally at the tidal frequency, and higher harmonics
thereof, linear theory is an appropriate simplification. Energy between harmonics of the tidal
frequency can be attributed to non-linearities associated with the internal waves that are spawned

by internal tides (Helfrich and Grimshaw; 2008). Figure 2-12 shows power spectra of the horizontal
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Figure 2-11: The analytical horizontal wavelength, equal to the length of the superposed black line,

agrees well with the wavelength in the numerical simulation.

and vertical velocity fields have peaks at the tidal frequency and higher harmonics. There appears

to be slightly more energy between peaks in the 2DFV simulation than in the MITgem simulation

(see Figure 9B in Legg and Huijts (2006)).
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Figure 2-12: The vertically integrated power spectra of the horizontal (left) and vertical (right)
velocity field, normalized by the barotropic velocity, at 11 km from the TN topography reveals
a large peak at the forcing frequency (w) and monotonically lower peaks at increasingly higher

harmonics confirming linear theory is appropriate.
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2.3.4 Verification of Particle Velocity Fields

Finally, we compare the particle velocity fields between the 2DFV and MITgem simulations.
Since this metric is most sensitive to the details of the model implementation, we discuss the
properties of both frameworks and how model discrepancies may affect the result. A snapshot of
the zonal total velocity field after 13.9 hours in Figure 2-13 shows very good agreement between
the simulations, but the velocity fields from the 2DFV code are a little larger at the intersection
between the wavebeams and the domain boundary (about 10 km to the left and right of the sea
mount on both the top and bottom of the domain). Additionally, the center of the waves radiating
away from the topography exhibit slightly larger velocities (about 50 km to the left and right of the
sea mount on both the top and bottom of the domain).

The MITgem is a 3D, non-hydrostatic, structured finite volume framework; the 2DFV code
is a 2D, non-hydrostatic, structured finite volume framework. Descriptions of each model and the
available numerical schemes can be found in Marshall et al. (1997) and Ueckermann and Lermusiaux
(2012), respectively.

MITgem U [m/s] t = 13.9 hours

2DFV U [m/s] t = 13.9 hours

-500 500
-1000 -1000
-1500 1500

2000 -2000

E . E
-2500 2500

3000 3000
-3500 -3500
-4000 -4000
-4500 4500

-55 km 0 km 55 km -55 km 0 km 55 km

Figure 2-13: A comparison of the zonal velocity fields for the TN topography and a barotropic tide
of 2cm/s between the MITgem simulation (left) and the 2DFV simulation (right) after 13.9 hours
of tidal forcing.

The simulations use the same grid size in the vertical (31.3 m) and approximately the same
grid size in the horizontal (the resolution of the 2DFV code is 10% finer with 200 m cell widths).
The 2DFV code differs in five respects from the MITgem simulation which are enumerated in Table

2.1. We will address each of these discrepancies to evaluate their influence on the simulation results.
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Table 2.1: Model Characteristics of the 2DFV code and the MITgcm

] [ 2DFV | MITgem |
Coriolis Term f 0 8(10~%)
Surface Coundary Condition rigid lid free-surface
Inlet /Outlet Boundary Condition || sponge radiative boudnary condition
Bathymetry Boundary Condition || no-slip stress-free
Bathymetry Representation z-coordinate (staircased) | shaved-cell

Coriolis terms in 2DFV and the MITgcm

The MITgcm simulation uses an f-plane formulation, where the Coriolis parameter, f =
20 sin(¢), is assumed to be constant. However, in a 2D flow with zonal and azimuthal direc-
tions, there is only one Coriolis term, and it appears in the zonal momentum equation. This term
is multiplied by the meridional velocity, and thus, vanishes. While the reciprocal Coriolis term,
f« = 20 cos(¢), appears in both the zonal and azimuthal momentum equations, they are negligible
compared to the Coriolis terms in most geophysical flows. A simple scaling argument demonstrates
that a flow with a small height-to-width aspect ratio renders the reciprocal Coriolis terms, much
smaller than the Coriolis terms. The aspect ratio of this simulation domain, 1:23, is very small.
Since we can neglect the reciprocal Coriolis terms and the only Coriolis term vanishes, we can set

f =0 in the 2DFV code without influencing the results.

Top Boundary Condition

We use a scaling argument to demonstrate that the rigid lid boundary condition used in the
2DFV code is a good approximation for the TN topography with a 2cm/s barotropic tide. The
MITgcm simulation solves for the free-surface parameter (n), and we will use the results from this
simulation to demonstrate that free-surface effects on the flow are small compared to the other
forcing terms. The evolution equation for the free surface height (n) is

£+a~vn+nv-a’=o (2.30)
for a velocity field .
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If we non-dimensionalize equation 2.30 with characteristic scales:

v
w

we have

Yo UY on' WY 0p° UY 0w WY 0w

Tor " L " oo tgEv oy " L oz 7 o (2.31)
© @ ®
and observe that
%=%=%+7T- (2.32)

We choose the characteristic values to be the barotropic tidal velocity (U = 0.02 m/s), the barotropic
tidal period (7 = 12.4 hours), the internal tide wavelength (L = 52,800 m), and the domain depth
(H = 4700 m). The magnitude of the vertical velocity is generally 10% of the horizontal velocity
(recall the domain height-to-width aspect ratio of 1:23), so we choose W = (0.1) U = 0.002 m/s.

Evaluating the terms in expression 2.32 with these characteristic values gives us two small numbers

Ur %

Since % and % are much smaller than 1, it seems we can neglect terms @ and @ with
respect to @, and so it seems we can neglect free surface effects. We also note that the slope of the
free-surface is small; Figure 2-14 shows snapshots of the free surface elevation every 1.39 hours for
the first 13.9 hours. The total variation in 1 over the 110 km domain is within 0.012 m of the resting
surface height; a liberal estimate of the slope would be (0.012 — -0.012)m/110000m = 2.8(10~7).
However, a free-surface would introduce a source of damping. Lack of a free-surface in the 2DFV

code may partially account for the slightly higher velocities we see in the 2DFV simulation at

x = +10km.
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Figure 2-14: We plot snapshots of the free-surface displacement (left) at 10 evenly spaced intervals
for the first 13.9 hours of the simulation. A * identifies the maximum displacement of each free
surface snapshot, and we observe the change in height to be much smaller than the domain width.
Note that, since the tide starts flowing to the right, we expect the free-surface will first buldge up
on the left of the topography.

Inlet and Outlet Boundary Conditions

The MITgem simulation uses a radiative boundary condition at the inlet and outlet of the
domain to prevent spurious reflections from the left and right boundaries. This boundary condition
could damp the velocity field near the inlet and outlet of the domain, possibly accounting for the
discrepancy between the 2DFV and MITgem simulations at the x = +50km. The 2DFV uses a
sponge to similarly prevent waves from reflecting off the left and right boundaries and propagate
back towards the generation site, but the 2DFV simulation is also initialized on a domain that is
four times wider than the MITgem (440 km). This is to ensure that internal tides generated at the
topography have not had time to reach the left or right boundaries before the snapshots at 13.9
hours. The center 110 km is used for the comparisons. Additionally, the first mode internal tides that
are generated with the aforementioned buoyancy frequency will have wavelengths of approximately
53 km. Therefore we extend the computational domain in order to observe a full wavelength on
either side of the generation site that is not contaminated by the artificial boundary forcing. The
difference in the inlet/outlet boundary conditions should not impact the accuracy of the internal

tides, but may account for the discrepancy at the edge of the MITgem simulation.
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Table 2.2: Froude Number and Tidal Excursion Paramter for all four topographies tested by Legg
and Huijts (2006), with a 2cm /s barotropic tide.

F, Ry,

Tall-Narrow | 0.011 | 0.117
Tall-Wide 0.011 | 0.029
Low-Narrow | 0.125 | 0.343
Low-Wide 0.125 | 0.014

Bathymetry Representation and Boundary Condition

While the MITgem simulation imposes a stress-free velocity boundary condition on a shaved-
cell bathymetry (Alistar Adcroft and Marshall, 1997), the 2DFV code imposes a zero-Dirichlet
velocity boundary condition on a staircased bathymetry.

It is possible that the staircased representaton and no-slip boundary conditions results in
numerical artifacts in the form of large vertical velocities near the topography contributing to the
slightly larger velocities in the 2DFV code. This effect is difficult to observe with the TN test-case,
so we examine all four topographies tested by Legg and Huijts (2006) with a barotropic tide of
2 cm/s; the corresponding F, and Ry numbers are listed in Table 2.2. The MITgcm and 2DFV
simulation results compare well for the Low-Narrow (LN), and Tall-Wide (TW) topographies, as
shown in Figures 2-15a and 2-15b. However, we see numerical artifacts in the 2DFV simulation
with the Low-Wide (LW) topography in Figure 2-15c due to the staircased representation of, and
boundary condition on, the topography.

The influence of a staircased representation is going to be most noticeable in a low-aspect ratio
topography because the streamlines are nearly horizontal and parallel, so the staircasing effects result
in vertical velocities that significantly influence the flow. In the TN topography, the streamlines
go up and over the topography, so staircasing effects are less noticeable. We can understand low-
aspect topographies to be most different (and steep topographies most similar) between shaved-cell
and staircased representations by considering the limiting case of a knife-edge topography. The
representations of shaved-cell and z-coordinate topographies converge for a knife-edge topography,
a unit-cell width boundary, and as the aspect ratio decreases, so does the z-coordinate approximation
of the shaved-cell boundary.

One solution to ameliorate staircasing effects is to refine the spatial grid; simulations with

the LW topography and a reduced grid-cell size are shown in Figure 2-16. While grid refinement
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Figure 2-15: A comparison of the zonal velocity fields between the MITgem simulation (left) and
the 2DFV simulation (right) for the LN (a), TW (b), and LW (c¢) topographies with a barotropic
tide of 2cm/s after 13.9 hours of tidal forcing. Numerical artifacts near the LW bathymetry are

visible.

does improve the results, it does not eliminate staircasing effects.

We cannot afford to refine

the grid by more than half (twice as many elements in each dimension) without shrinking the

computational domain. Unfortunately shrinking the computational domain introduces boundary
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Figure 2-16: Both grid cell dimensions are reduced to half (left) and to one-third (right) of the
original discretization. The no-slip condition and the stair-cased representation seem to affect the
flow near the topography even for a substantially refined grid.

effects that contaminate the simulation much earlier, so the refined plots are snapshots after only

five hours of tidal forcing.

2.4 Conclusion

We conclude that we can reproduce the correct internal tide dynamics for the TN topogra-
phy with a 2cm/s barotropic tide based on our evaluation of the angle of propagation, horizontal
wavelength, power spectra, and particle velocity field. The 2DFV code simulations exhibit slightly
larger particle velocities, and one possible explanation is that the free-surface in the MITgem simu-
lation introduces a source of damping that is absent in the 2DFV simulation. The discrepancies are
small enough to consider the 2DFV code capable of capturing internal tide dynamics with sufficient
accuracy. Additionally, we found the staircased representation can lead to numerical artifacts that
could noticeably disrupt the wavefield.

The particle velocity fields compare well for three of the four topographies studied by Legg
and Huijts (2006). To improve the comparison for the LW topography we develop a o-coordinate

framework, described in the following chapter.
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Chapter 3

A Non-hydrostatic, Finite Volume,

o-coordinate Framework

In this chapter we describe the o-coordinate grid and algorithms for each term in the momen-
tum and tracer-convection equations. Next we demonstrate the accuracy of the framework with two
test-cases. Finally, we address the o-coordinate pressure-gradient error and show the improvement

that the o-coordinate code has made from the z-coordinate framework.

3.1 The o-coordinate Grid

Different definitions of the dimensionless coordinate o are used to achieve specific mesh prop-

erties (Haley and Lermusiaux, 2010). The definition we use in this framework is

-_Y_
o= @)’ (3.1)

&
Il
8

where H (z) is the fluid depth, but the algorithm’s architecture is generic such that re-definition of o
is simple to implement. Figure 3-1 shows a grid where ¢ is on the scalar grid of an Arakawa C-grid
mesh (Arakawa and Lamb, 1977). Definition 3.1 creates the o levels at evenly spaced fractions
of the total fluid depth, where o varies between 0 at the surface and -1 at the bathymetry. The
horizontal discretization is uniform. The bathymetry is represented with piecewise-linear segments,

in contrast to the staircased representation of a z-coordinate mesh, ‘as seen in Figure 3-2.
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Figure 3-1: The spacing between vertical cell walls is uniformly Az, and the length of the vertical
cell walls is uniformly H(xz)Ae in the vertical at any given horizontal coordinate.
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Figure 3-2: A o-coordinate mesh (a) and z-coordinate (b) mesh with the same number of cells in
the vertical and horizontal.

3.2 The o-coordinate Scheme

A o-coordinate scheme often removes complexity from the physical grid. For constant val-
ues of Az and Ao, where Ao = 0; — 0,41, the computational grid in Z,0 space is a structured,
rectangular grid with uniform rectangular cells Az wide and Ao high. Unfortunately, if we were
to evaluate the terms in the momentum and tracer-convection equations using simple rectangular
(Az x H(x)Aco) cells, we would need to couple the horizontal and vertical momentum conserva-
tion equations. Instead, we use cells like those in Figure 3-2a, and keep the zonal and azimuthal

momentum equations decoupled. This sacrifices some of the simplicity offered by e-coordinates in
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exchange for the computational efficiency of decoupled momentum equations. We first present a
detailed discussion of the Laplacian and gradient operators evaluated in a cell bordered by other
interior cells or Dirichlet boundaries, and demonstrate that the scheme in the limit of a Cartesian
grid reduces to the central difference scheme used in the 2DFV z-coordinate code. Then we describe
modifications to each algorithm for cells that impinge on Neumann or open boundaries. Finally, we
describe the advection scheme. The time-marching scheme is a second-order backward difference

scheme, which has been preserved from the 2DFV z-coordinate code.

3.2.1 The Laplacian Operator

The Laplacian operator is used in the diffusion terms of the horizontal momentum, vertical
momentum, and tracer-convection equations. The operator is also used to calculate the Laplacian
of the pressure-correction (q) as part of the pressure-correction projection method. We assume the
horizontal eddy viscosity (vg), vertical eddy viscosity (vy), and eddy diffusivity (x) coefficients are
constants. The Laplacian operator maps values to and from the same grid in our C-grid mesh;
we will see in the next section that this is not the case for gradient operations. We construct this
operator and perform an LU factorization at the beginning of the simulation before time-marching,
in preparation for the inversion that occurs at each timestep. If we wish to use the same numerical
operator for the Laplacian of the velocity fields and the Laplacian of the pressure-correction field,
we need to construct it such that the definitions imposed by the pressure-correction method are
observed. See Appendix A for an explanation of the projection method and the way we have

guaranteed discrete consistency.

The Importance of an Implicit Scheme

Diffusion is the stiff term in our equations of motion, and while many o-coordinate and un-
structured frameworks compute the diffusion term explicitly (Fringer et al., 2006, Marshall et al.,
1997; Chen et al., 2003b), we maintain a fully implicit scheme to avoid a stringent Courant-
Friedrichs-Lewy (CFL) condition (Courant et al., 1967). Von Neumann stability analysis can be

used to show an explicit diffusion operator would require a CFL condition of



(the limiting direction for this problem is the vertical). This restricts the timestep in the TN
test-case to At < 2(%'[%:—1_23]—); = 4.91(103)s. The CFL condition imposed by advection is

At <

Vma:v

where Vinq is the largest velocity the simulation must capture. With a barotropic tide of 2 cm/s, the
advection-imposed CFL condition is conservatively At < a%%lzﬂ;?f = 7.83(10)3s, 60% larger than
the condition imposed by diffusion. A fully implicit diffusion operator permits a larger timestep

and substantially improves computational cost.

The Algorithm

The finite volume formulation, which comes from control volume theory, casts divergence and
gradient operations as surface integrals around individual finite volumes by way of the divergence
theorem. This design is a principle advantage of the finite volume method for computational fluid
dynamics; by calculating surface fluxes between cells, local and global conservation of mass, mo-
mentum, and often energy, is guaranteed in a discrete sense. The construction of the method also
means state-variables are considered in a cell-averaged sense.

We first write the Laplacian as the divergence of a gradient, then take averages over individual
cell volumes and, finally, use the divergence theorem to arrive at a surface integral around each cell.
Once we know the gradient of the state variable at the center of each cell face, as shown in Figure

3-8, we can take the divergence of those gradients to arrive at the Laplacian.

1
(V : VQt’)Volume Averaged — V # V- V¢dV (3‘2)
. 1%
1
(V ’ VQS)Volume Averaged — V ¢V¢ ‘n dS (3‘3)
S
1 1 (
(V* V6)otume Averaged = 77 P\ T, # Vé dVsatelite p - dS (3.4)
satellite

1 1
(V ’ V¢)Volume Averaged = 7% Veatelli ¢ @ Nisatellite dSsatellite ¢ * T as (3~5)
satellite

Ssatellite

46



The first step is to calculate the gradients, the terms inside the braces of Equation 3.5.

We focus on the North gradient first. The gradient needs to be evaluated at the center of the
top cell face (z; + %m— y H(z, ;4 1 ) 0i). The closed region over which we will evaluate the gradient,
identified by the dashed line in Figure 3-4, has the same width as the center cell, and extends from
the midpoint of the cell above to the midpoint of the center cell. For clarity, we will enumerate cell

faces as shown in Figure 3-3.

o e 4 -------- :
. i
S I ,

Figure 3-3: The left, right, bottom, and top faces of cells are the first, second, third, and fourth
faces, respectively.

Notice we need to interpolate ¢ to faces 1 and 2 of the North satellite cell, and we will also

need to interpolate ¢ for the other satellite cells to ¢, o g and ¢; 1 TR We use a first-order,
1, 2!

2

bi-directional interpolation.

H(xj-1) H(x;) H(xj41) H(xjs2)
'
—————— ' DPi—1,541
‘ . i 41
adj ® '___________————
i,J—

T —// ° L

t+1 o D1, Dig1,j41

Dig1,5-1
Tiy2
v L r v

Figure 3-4: The North satellite cell.

1 1
¢ 151 = 7 (Pi1j-1 + Bimrg T dij-1+ big) biijil =7 (¢i-1,j + Pi-1,j41 + dij + bij+1)
1

1
Pir1j-1 = 7 (Pig-1+ i+ Piv1j-1+ $i+15) birl et = 7 (Gig + diger+ditrs+ Git1,j+1)
(3.6)
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= . The normal vectors

Similarly, we interpolate values of o with a first-order scheme, o, 1 %

corresponding to the four faces of the North satellite cell can be easily calculated.
N = [~1,0 (3.7)

nn,2 = [1,0] (3.8)

-
nN.g = H(xj+1)0'i—1/2 - H(xj)ai—1/2 y Tj— (wj + Ax) (3.9)
, \/(H(xj+1)0i—1/2 — H(z)0;_1/2)? + Ax?

H(xzj)o;41/2 — H(xj41)0i11/2 , — (x5 — (z; + Az))

N4 = (3.10)
i \/(H(ffj+1)0z‘+1/2 — H(z;)0i41/2)* + Az?
The North gradient of ¢ is calculated from the surface integral around North cell as
1 (zj,H(zj)0,, 1) (zj+Azx,H(xj41)0,, 1)
Vonorth = / " b1 j—lnN,ldS{VOTth +/ T ¢ jnn,3dS5 T 4 .
VNorth \ J (2, H(zp)o,_y) 2777 (@1 H i), )

North (Ij+AI1H(Ij+1)0i_%)
Bi-},i+3mN,2dS7 +/

/(l‘j-l’AiE,H(Ij.*.l)d’._%)
( (Ej‘H(l‘j)O,v_%)

North
¢i—1,;1N,4dSy " )

Ij+AI,H(.’l:]’+1)ai+%)

(3.11)

The right hand side of Equation 3.11, written in terms of coeflicients of the six values of ¢ used to

compute Vonorth, 18

1
v <¢i—%,j_%[*LO]H(xj)(Ui—% - Ui-}-%) + ¢i—%,j+%[170]H(wj+1)(0i—% - Ui+§) + ..

VNorth
(H(zj+1) — H(zj))oy 1, — (H(zj) — H(zj11))o;_y, Dx]
¢i,j 2 2 S4 ort

Az SNOTth-F(ﬁ' 1
Sé\forth 3 1=5LJ Si\lorth

V¢N orth —

(3.12)

We can group the right hand side of 3.12 according to the ¢ value so that the gradient is the sum

of six vectors, one for each ¢ in the gradient stencil.

1

Vonorth = —— (¢i,j lacy,boy) + di—1,jlany, bny] + dic1j—1lanwy, bnvwy 1+
VNorth (313)

di—1j+1{aNEN, DNEN] + Dij—1laEy, bEN] + Gij+1lawy, wa])

The coefficients in Equation 3.13, which are constant for the entire simulation since the grid does
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not evolve in time, are:

1. 1
acy = (H(zj41) = H(z5))oy, 1 + 2 H(wj)(0341 = 0i1) + 7 H(2j11)(05_1 = 034.1)

1
2

boy = —Azx

)

1 1
any = (H(zj) - H(zjt1))o;_1 + ZH(%)(UH% -0 1)+ ZH(%H)(%_% -0y

1
2

bny = Az
1
anwy = 7 H(z;)(011 —0;_1)
bNWN =0
1

GNENy = ZH(%H)(UF% - UH—%)
bygy =0
awy = %H(%’)(UH% - Ui—%)
bwy =0

1
AEN = ZH($j+1)(Gi—% - Uz‘+%)

bay =0

Now we repeat this procedure for the South (Figure 3-5), East (Figure 3-6), and West (Figure 3-7)

satellite cells until we have the four gradients in Figure 3-8.
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Figure 3-5: The South satellite cell.

1 (zjH(zj)e, 1)
( / © Gipy o gnsadSTN + /
(

H(xj,2)

ns1 = [_110]

ns,2 = [la 0]

[(H(ﬂ?3+1) — H(z;))o,, 3,25 — (z; + Ax)

ns,as =
\/(H(:Bj+1)ai+% - FI(:J,";,-)o:rH_%)2 + Ag?
(H(z;) = H(zj11))o5, 1, (x5 — (2 + Ax))
ns,a =
\/(H(‘rj+%)ai+% - H(-T.'i)ai+%)2 + Ax?

{ZJ+A$!H(IJ+1)U-+3)

T2 South
¢i+1_jns,3d83°" + s
(24 H(z))0,, 3)

(m5+Ax,H(zii1)e;y 1) gt
$i,j1.5,4dSy "

(Iij(IJ)a,-+%)

(3.14)

'ﬂE,l = [—1,0]

(H(z;y3) — H(zyy 1))oi, 25 — (25 + Ar)
\/(H(:cj+%)ai+1 — H(z;,3)0i+1)? + Ax?

V¢South = V.
South a:J,H(:rJ)a‘i_'_%)
(z;+Az,H(xj41)0,, 1 )
South
/ Py} gt ims,2d5; % +/
(2 + A7, H(zj41)0,, 3)
H(xj_4) H{x;) H(xj41) H(xjy2)
b
i-1,j
/ .¢'7| . =
5 sy AT P |
-1 / ‘é lef:u.u. :'d},-‘j-+| negz2 = [1,0}
T H i S M- h
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i1 ] .Q'JH-]J .d)"*l-.i"'] nEs =
Dig1,j-1
Oiy2

Figure 3-6: The East satellite cell.

véEaat =

VEast a:_,»+%,H(:L‘J.+%)G{+1)

(24342 H(z, 3 )7)
/ bi j+1ME,2d S5 + /
(

130z o
z;+3 4 :H(3'3-+%)U'z+l}

1 (zj+55 H(z, 1)0i)
(/ e fﬁi'an,]dSlEa'St +/
(

[(H(-TH%) — H(z;y3))os, — (25 — (25 + A:n))]
NE4 =
\/(H($j+%)01‘ - H(Ij+%)0i)2 + Ax?

(1‘7-,'+3%,H($j+%}0,'+1) East
Pit1,j+1ME,3dS3" + ..
(IJ+%£,H(1‘J-+%)M+1)

Ax .
(z;+35%,H(z;, 3)o:) e
Pi_1 1 1NE,4dSy
(IJ+%»H(E,+%)UJ

(3.15)
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i+2

(H(z;_1) — H(z;, 1))os, (25 — (z; + Ax))
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\/(H(:Ej_‘_%)o’,' - H(z,;_3)0:)? + Az?

Figure 3-7: The West satellite cell.

1 (zj— &5 H(x;_1)a:) West (zi+ 45 H(z,, 1 )oi) Wet
Vowest =7—— f Gij-1mw,1dS; +f bimi j+amw,3dSs ° + ..
(

Viwest m_i—%,H(m1_£)05+1) (mj-%,H(m,_%)om)

a
West (25 + 58 H(z,, 4 )o0) West
¢i,jnw,2d32 €s +/ ¢i,%’jian,4dS4 o8

(25~ 4% Hz;_y)o:) ’

f(‘-'-’ﬁ%,l‘f(x_,“i)m)
{Ii+%,H{IH% Yoit1)

(3.16)

Since the East and West satellite cells do not precisely outline cells on the scalar grid (i.e. the East

fi1 B frea g2
®
. Di-1,j41
bi-1,j
P TR v ¢Nm'f.h-- ‘
i—1 ‘ V2 - VQ?E(L.‘!L .¢’i.j+l
V i ¢I,J '
o ?)Wras!. '
i i1 b eeee-Nsown
(b:‘.j“ 1 L AV ¢’Srmth
. / . .
i+1 . Gis1,j bitt it
Pig1,5-1
Oit2
i v v A

Figure 3-8: The Laplacian numerical stencil uses nine values of ¢. First the four gradients at the
center of each cell face are computed, then a divergence of these gradients gives us the Laplacian at
the center.

and West satellite cells do not have a "kink" in the middle), we cannot guarantee conservation of

mass and momentum as with a z-coordinate mesh. However, for small changes in slope we do not
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expect a significant error (Ferziger and Peric, 2002). Next we calculate the Laplacian by taking the

divergence of the four gradients

zj,Hjo; ,’Cj+AI,Hj+10‘i+1

Vowest - 11dS1 + / Vésouth - 13dS3 + ...

zj, Hjoit1

(v ’ V¢)Volume Averaged — /

zj,Hjoi1

xj-I-A:E,Hj_,_lU,‘ :tj,Hj+10,'
/ V@East - n2dS2 + / Vénorth - 4dSy.
xr

i+ AT, Hj 105401 zj+Ax,Hjo;
(3.17)
The four normal vectors of the center cell are
ny = [-1,0] | (3.18)
ng = [1,0] (3.19)
H. _ H.o: (x4 A
ng = j+1%i i% > Tj 2(37] +2 z) (3.20)
\/(Hj.}.l(fi — Hjai) + Az
ng = HjUH—l - Hj+10i+1 » —(il‘j - ('TJ + Al’)) i (321)
V(Hj10041 — Hjoi1)? + Aa?

We rearrange Equation 3.17 into coefficients for each of the nine values of the state variable as in

Equation 3.13.

V -Vé =0¢; ; acn acs acgp acw boy bcg ac be
Ve =disly % v, Vivest' Vi Vi oyt
North South FEast West North South
[ a a a b b any b
bio1i Ny + Ng + Nw , Nn Ns ] ] [_N’ _N] + ..
LVNorth ~ VEast  Vwest VNorth  Vsownd "V 'V
[ asg asg asyw bSN ng as bS
Bit1,5 ; + [ ]
-VSouth VEast VWest VNorth VSouth V'V
[ awy aws awy  bwy bws aw
i1 + : |- 15%,00+ .
“ -VNorth VSouth VWest VNorth VSouth [ |4 ’ ]
AOFEN QEg QER bEN bES aE
¢',+1[ + + , + ] 9E 0 + ... 3.22
i VNorth VSouth VEast VN orth VSouth [ |4 ] ( )
[ANWy |, OGNWyw ONwy 1 anw
®i-1,j-1 ] ' 0] + ...
i -VN orth VWest , VNorth [ |4 ]
[asws |, Aswy bswg ] asw
i+1,j—1 ) . o] + ...
¢t+ 7 ~VSouth VWest VSouth |4 ’ ]
[ ASEs |, GSEp DSEs asE
Dit1,5+1 + ] 0]+ ...
vhhat -VSouth VEast, VSouth [ v ]
it [ANEy , GNEg bEy ] ‘[aNE 0]
T Vvorth © Veast| Vivorth v’
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These values are indexed into the Laplacian operator, which is subsequently LU factored to expedite

inversion.

The Algorithm on a z2-coordinate Grid

We can evaluate the truncation error of the Laplacian operator by Taylor expanding each of
the nine values in the stencil about the center value (¢;;), and find that for arbitrary H(z) the
truncation error is first-order, and for constant domain height,H(z) = Hy the truncation error is
second-order. This operator will reduce to the second-order central difference scheme used in the
2DFV z-coordinate code on a z-coordinate mesh. On a z-coordinate mesh, the domain will have
constant height, H(z) = Hy, and all of the normal vectors will reduce to either the standard basis
vectors or the negative of the standard basis. This implies the coefficients corresponding to the
four "corners" of the stencil (¢;—1;_1, dit1,j-1, Pi—1,j+1, Pi+1,j+1) vanish. The four gradients for a

z-coordinate grid are then

i Bic1j — by i D= Pir
v(bNov"th - [0, AxAy ]a v(JSS(Juth = [0, Al‘Ay ]
_ P — Biy _ Pig — Pij-1
Vd)East = [ ACEAy 70], V(JSWest = [ AxAy ,0]-.

We can take the divergence of these gradients to arrive at the Laplacian.

_0-0+ (¢i-171—¢i»1) - (¢i,j—¢i+1.j) . (¢i,J'A+;A—;fi,j) _ (¢i,j_¢‘i,j—1) +0-0

) — AzAy AzAy AzAy
V. Vo e o (3.23)
_ Pim1y b1 —49i i+ dijr1 + dij1
_ . (3.24)

and find the second-order central difference scheme is recovered exactly.

3.2.2 The Gradient Operator

Calculating gradients is required for several terms each timestep; the gradient of pressure
appears in the momentum equations, and the gradient of velocity appears in the pressure-correction
step. Unlike the Laplacian, these operators must map between grids in our C-grid mesh. The two
pressure gradient operators (g-;l, %) map values from the scalar grid, to the u and v grids. The

two velocity gradient operators (%, —g—;) map values from the u and v grids, to the scalar grid.
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Figure 3-9 shows the locations of the u and v values on the o-cooridnate grid. Another difference

H(xj-1) H(xj) H(xj,1) H(xji2)

v v

Figure 3-9: The o-coordinate grid maintains a C-grid configuration for the locations of the v and v
velocities.

between the Laplacian and the gradient operators is that the gradient is always part of an explicit
calculation. We can construct the four gradient operators once at the beginning of the simulation,

and evaluate gradients with matrix-vector multiplication at each timestep.

The Algorithm

Since the Laplacian operator required the computation of gradients, we will recycle part of
that algorithm for the gradient operators. The interpolated values of u, v, and p, just as with the
Laplacian in Equation 3.6, are computed as the average of the four neighboring values. We first
consider the horizontal pressure gradient. The dashed line in Figure 3-10, denotes the closed surface

over which we will evaluate the horizontal pressure gradient.

1 (& + 55 H(z, , 1)o3) (x;+352 H(z, , 3)oi11)
Vp; *(/( 2 Pij M1 dS]-f-/ 2 Piyljtl ™3 dSs + ...

P =
s B
2 V\Jw+4eHa,, o) (e, + 5% H(z, , 1)ow1) 2

(Ij+3%aH{Ej+%)ai)

Pij+1 N2 d»5'2+/

(2j+5%Hlz, 1 )o0)

(mj+3%,H(xj+%}oi)
: Piij+} Ma 54

(3.25)

A
mj+BTI,H(SCj+%)U,;+1)

Notice Equation 3.25 is exactly the equation for Vg, in Equation 3.15. Similarly, the vertical

pressure gradient on the v grid in Equation 3.26 is exactly Vonorn from Equation 3.12. The
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H(‘J:fj_l) H(-‘f}) H(fjn) H(ffi+2)

A v 4 v

Figure 3-10: We integrate over the surface identified by the dashed line to find gg. We can then
extract the horizontal gradient gg = Vp-[1,0].

dashed line in Figure 3-11, denotes the closed surface over which we will evaluate the vertical

pressure gradient.

H(f,'_1) H(fj) H(x}'+1) H(ﬁﬂ'Z)

v v v v

Figure 3-11: We integrate over the surface identified by the dashed line to find gg. We can then
extract the vertical gradient gg = Vp-[0,1].

1
sz;%,j =V (pi_%’j_%[—l,O]H(scj)(ai_% - O'H.%) +p@_%,j+%[laD]H($j+1)(ai—% - 0i+%) + .
(H($j+1) = H(:’:J'))UH%’ —Azx (H(Ij) — H(xjH))ai_%, Ax
Pij S S3 + pi-1,j 5 Sa
3 4
(3.26)
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Finally, the velocity gradient operators are identical to the surface integral around the center cell
in Equation 3.17, and we see why this is crucial in Appendix A. The dashed line in Figure 3-12a
(Figure 3-12b), denotes the closed surface over which we will evaluate the horizontal (vertical)

velocity gradient.

Hxj-1) H(x;) H(xj1) H(xji2) Hxj 1) Hix) H(xj41) H(xj42)
e ”/”
_ =
- Ui—1,5 o —
e |
i L | / _____ Vi—1,j+1——
. I it o | — Vi1 :
i-1 Y : i1 et 5.
mcs : u = : v
o uiig Vi g e  Wie1j-1 & V1 v Yi-giit+d
L '4, ______ P a [ : ‘_%-{_‘1\ ---------- ‘4*15-3;*_1-—*
— exn Uig k-4 i—— v _1-’—’—4 ----- Vi '
O [ Wit1,j—1 Mi+1,j O p——
v

Figure 3-12: We integrate over the surface identified by the dashed line to find the gradients of
velocity, and as with the pressure gradients, we extract the relevant components (g% = Vu - [1,0]

& =vVu-[0,1)).

Ij,HjUi :I.'J‘+AI,Hj+1U'i+1
Vul.‘jJr% = [Z ui j—1 - n1dS) +f Vil ol ‘ngdS; + ...

5 Hi 041 x5, Hjoi 41 (3 27)
SCj+A92,Hj+IUI’ :rj,Hj+101' ’
f u; j - n2dS? +/ w1, 1-madSy
SCJ'+A1',H_?'+1U¢+1 $j+A:1’,‘,Hj01 = 2
zj,Hjo; rij+Ax,Hj 10041
V’Ui_l e f UV, 1. 1 -n1d51+/ U@j-ﬂ3d53+...
317 t—3J—3 ‘
mj1Hjai+1 xjadei+1 (3 28)
:cj+Aa:,H_.,-+;cr,- zj,Hj 104 )
/ VL1 nodSs + / Vi—1,5 " n4dSy.
3:0+3 ’
$j+A$,Hj+1a'i+1 Ij+A$,HJ01'

The Algorithm on a z-coordinate Grid

In the limit of a z-coordinate grid, the gradient operators also reduce to the second-order
central difference scheme implemented in the 2DFV code. For example, the horizontal gradient of
zonal velocity (%), shown in Figure 3-12, would have no contribution from faces 3 and 4 to the

horizontal flux. The contributions from faces 1 and 2 are

(3.29)

ui,jAy[l, 0] + ui.jglAy[—l, 0] + ui_l’j_lA:E[O, 1]+ ui_'_l'j_lA:B[O, —1]
Vu;j = 221732 373
AzxAy
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1
Vu; ;- [1,0] = ArAp <ui,jAy — Ui j—10Y, u;_1 j_%A:E — ui-{-%,j—%A‘r> (3.30)

Ou _ uij — uij1

= 3.31
5 = (3:31)

Again, we exactly recover the second-order central difference scheme used in the z-coordinate code.
An advantage of a C-grid mesh illustrated here is the convenience with which second-order accurate

gradients can be computed with few or no interpolated values.

3.2.3 The Advection Scheme

In the o-coordinate framework we use an upwind advection scheme and compute the advected
flux through six regions of each cell, shown in black, blue, and orange in Figure 3-13. The values
of the horizontal and vertical velocity interpolated to the center of each cell face, shown in Figure
3-12, are used to compute the conservative form of the advection term in the horizontal (Equation

3.32) and vertical (Equation 3.33) momentum equations

Ouu  Ovu
oz oy
Juv  Owvv
F T

(3.32)

(3.33)

The integral for Equation 3.32 is

1 (zj_}'%aH(mj_'_%)Ui)
V- uu = V / ui,j_l[ui,j_l,vi_l,j_l] -n1dSi + ...
(25+58 H(z,, 1)oit1) 22
(xj+3%,H(mj+%)a'i+1)
A ui,j[ui,j,vi_%,jJr%] ng dSsz+ ...
(wj+Tz,H(xj+%)0i+1)
3.34
(z;4+342 H(x . 3)05) : ( )
it
/ ui—l,j—l[ui—l,]’—lvvi—lvj]n2 dSs + ...
(xj+3%vH(x]+%)a‘L+l) 2 2 2 2

/(xﬁsé;,H(xH%)ai)
(

U; 1 1[U~ 1, 1,U; ] Ty dS4 .
i+3.5—5 M+l -1 Vig
xﬁ%,H(zﬂ%)ai) 2r2 22

This term represents an important difference between the z-coordinate and o-coordinate frame-
works. The z-coordinate code uses a Total Variation Diminishing advection scheme while the

o-coordinate code uses a first-order upwind scheme. Although ﬁpwind schemes lead to more nu-
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Figure 3-13: The horizontal flux terms are in black and orange and the vertical fluxes are in blue.

merical dissipation than other flux-limiting schemes, we did not observe any significant dissipation

in the test-cases used to evaluated the o-coordinate code.

3.2.4 Neumann and Open Boundary Conditions

The aforementioned schemes apply to all interior cells and cells that impinge upon a Dirichlet
boundary (¢ = dp). There are two other boundary conditions we wish to implement, a Neumann
boundary condition (g% = dy), and an open boundary condition (g:fg = 0). For a Neumann
boundary condition, we use a first-order approximation and set the value of ¢ in the boundary cell
equal to the value of ¢ in the adjacent interior cell. For example, a zero-Neumann condition on the

top domain boundary for the Laplacian operator would set the following equalities

bi—15-1=Pij-1, i1 = bij, Pi—1,+1 = Pij+1-

So we can replace ¢;_1j—1,¢;—1; and, ¢;_; j+1 in Equation 3.22, and find new coefficients for
¢ij-1, ®ij and, ¢; 1. An issue with this first-order approximation is that, the steepness of the
slope of the o surface is proportional to the error computed in the Neumann boundary condition.
For a o-surface with a small slope, the trajectory between the center of the bounadry cell and the
center of the interior cell will very well approximate the normal direction to the o-surface. As the
o-surfaces steepen, the trajectory between the center of the boundary cell and the center of the
interior cell will less-accurately approximate the normal direction. Specifically for our sea mount

test-cases, this should not be an issue for either the LW (the primary motivation for this coordinate
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transformation) or TW topographies. However, in order to use the o-coordinate framework to study
the TN topography, a more sophisticated Neumann boundary condition, like a ghost-cell immersed
boundary method (Tseng and Ferziger, 2003), would be required.

For an open boundary condition, which we define as %ﬁ; = (), we ensure that the Laplacian in
the normal direction to the domain boundary vanishes. We use the open condition on the pressure-
correction variable for the inlet and outlet (green regions of Figure 2-1). For example, if the East
domain boundary was open, the terms corresponding to d;—f;—’— in Equation 3.22, need to sum to zero.

Thus, for all nine coefficients, we set the part of the coefficient in Equation 3.22 that corresponds

.)2 ;
to %J- to zero.

3.3 Verification

We use two test-cases to verify the accuracy of the o-coordinate framework. The first test-
case is on a z-coordinate grid, so we can compare results from the z-coordinate code with the
o-coordinate code directly. We also use results from this test-case to verify the order of accuracy.

The second test-case has an analytical solution.

3.3.1 Verification on z-coordinate Grid

We first consider the Lid-Driven Cavity test-case. The domain is a square with unit area;

there are three static walls and one wall with unit velocity as pictured in Figure 3-14. Figure 3-15

. Uy=1m/s 5

L L o

Al/ 1 m /|V

Figure 3-14: The Lid-Driven Cavity test-case has four Dirichlet boundaries and a square domain
(where Az = Ay).

shows the streamlines at the same instance in time from the z-coordinate and o-coordinate codes,



and we see the results agree very well.
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Figure 3-15: Streamlines from the z-coordinate and o-coordinate codes compare well for a test-case
on a z-coordinate grid.

5 Spatial Convergence Study
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Figure 3-16: A grid refinement study, using the centerline velocity from the Lid-Driven Cavity test-
case, demonstrates that the convergence rate for both codes is between first-order and second-order
as expected.

A spatial convergence study, shown in Figure 3-16, using the center-line velocity values from
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the Lid-Driven Cavity velocity field confirms a convergence rate between first and second-order, as
expected. Recall that while the o-coordinate Laplacian and gradient operators reduce exactly to
the second-order, central difference scheme on a z-coordinate mesh, the solution results will not be

identical because the advection schemes differ.

3.3.2 Verification with an Analytical Solution

Now we show that the results from the o-coordinate code agree very well with an analytical
solution. We study Couette flow between two parallel plates, but incline both plates at a 45° angle
as shown in Figure 3-17. The inlet velocity profile is that of a fully developed Couette flow. The
velocity boundary conditions at each plate are zero-Dirichlet conditions, and the right boundary has
zero-Neumann conditions for velocity ( g% = g% = 0). The right boundary has an open condition on
the pressure-correction, corresponding to the definition implied by the projection method, and the
boundary condition for the pressure-correction on the other three boundaries is a zero-Neumann
boundary condition.

The mesh for this simulation is pictured in Figure 3-18. This is a very efficient mesh compared
to what would be required in a z-coordinate setup to achieve the same resolution; many more cells
would need to be generated and then masked in a z-coordinate code because the domain needs to

be rectangular.

B o
\'4\"5 Y.
y
h=1m
6 = 45°
- X

Figure 3-17: The two parallel plates are lm apart and the domain has a small width to length
aspect ratio such that velocity in the across-channel direction vanishes.

The solution of this test-case is the same for any angle 6 since there is no gravitational body

force, or any other influence that works to break the flow’s symmetry about the centerline between
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Sigma Grid
T

Figure 3-18: o-coordinate mesh for planar Couette flow

the plates. The analytical velocity field is

1 ap
w(ys) = 5;3%(?;3 — hy.) (3.35)

for distance along the planar flow L, and width between the parallel plates h. The x, and y,
axes are oriented along, and transverse to, the boundaries, respectively. Since the simulation evolves
horizontal and vertical velocities, a simple rotation matrix is used to convert the [u, v] velocity field

from the simulation to the rotated coordinate system (z,,yx).

A velocity profile is sampled midway along the length of the domain after the flow has reached
a steady state. The u velocity (shown in Figure 3-19) and v velocity fields are linearly combined to
rotate the solution into the (x4, y) coordinate system. The velocity in x, direction compares very
well with the analytical solution, as shown in Figure 3-20. We see excellent agreement between the
o-coordinate results and the analytical solution. Since the o-coordinate code performs well in both

verification tests, we revisit tidal flow over the LW topography.
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Figure 3-19: The zonal velocity (%) from the Figure 3-20: A simple rotation is used to
o-coordinate mesh for planar Couette flow write the analytical solution in terms of
agrees very well with our intuition and with along-plate velocity and across-plate velocity.
the analytical solution. The velocity profile from the o-coordinate
code agrees very well with the analytical so-
lution.

3.4 Mitigating Hydrostatic Inconsistency

The zonal velocity field, shown in Figure 3-21, reveals a convective instability above the
topography very early in the simulation. We explore and ameliorate this behavior in this section.

3.4.1 The Pressure Gradient Error

A well-documented problem in o-coordinate formulations is known as the pressure gradient

error, or the issue of hydrostatic inconsistency (Lin, 1997; Kanarska and Maderich, 2003; Berntsen,

2DFVV [m/s] t = 0.1330 hours

2DFV U [m/s] t = 0.1330 hours
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Figure 3-21: We observe convection after a very short time in the cells above the sea mount.
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2002; Mesinger, 1982). We will illustrate this challenge with a simple finite difference formulation
and then describe the relation to the finite volume formulation. If we convert the horizontal pressure

gradient into o coordinates we have

OP docdP  0iOP

;9;_%6_0+%%' (3.36)

In hydrostatic equilibrium ‘3—1; = 0, so we expect %%{;B + %%g = (0. These two terms are often

large, compared to numerical epsilon, and will have opposite signs, but the truncation errors of each
of these terms can differ significantly such that there is a remainder after summation. The result of
this residual truncation error is spontaneous convection, which is strongest where the o levels are
the steepest. The analogy in the finite volume formulation is that the %g—g is the horizontal flux

through the two vertical faces (1 and 2) and the %%—f term is the horizontal flux through the top

and bottom faces (3 and 4).

We can see this truncation error in our LW topography simulation. After initializing hydro-
static equilibrium, the pressure gradient is computed and plotted in Figure 3-22a. Next we compute
the analytical truncation error by Taylor-expanding the six values of pressure that constitute the
numerical stencil for the horizontal pressure gradient, given in Equation 3.37. For constant N,
p'(y) = N%(Hp — y)?/2, where Hp is the maximum height of the domain. The analytical values of
the second derivatives are ai;% =0 and %;%i = N2,

op Op 9%p 0%p 0?p

£ 1. it el 2 2
e 1 e + a1 52 + ay D20y + a3 92 + O(Az*, Ac*, AzAo) (3.37)

where

_3_ H(zj) — H(zj11)

4 4
((A0’2 — gO’iAO' + §0’?)H(wj+1)2 - ...

“ 7R (H(zj41) + H(z;))Ax
gH (z;)(Ac — 203)?H (zj41) + H(z;)*(Ac? - %aiAo- + %ag))
as _(H(zj) — H(z;11))*(Ao — 204)
(4H (zj41) + 4H(z;5))
az =0.
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The leading order term, plotted in Figure 3-22b, very well matches the truncation error we observe.

2 _ 2
9p'/ 9x (T =0) 1070 a, #p/ay’ =a N
0 1 0
-500 0.8 -500
1000 0.6 -1000
1500 04 -1500
-2000 02 -2000
E 0
-2500 E 2500
-0.2
-3000 -3000
-0.4
-3500 -3500
-0.6
-4000 4000
-0.8
-4500 -4500 !
-55 km 55 km -55 km 0 km 55 km

(b)

Figure 3-22: The horizontal pressure gradient, computed upon initializing a hydrostatic pressure
field (a), is non-zero in the cells that are skewed by the topography. The first term in the horizontal
pressure gradient truncation error (b) agrees very well with the observed error.
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Figure 3-23: The difference between the pressure gradient error in Figure 3-22a and the analytical
truncation error in Figure 3-22b can be attributed to higher order terms in the truncation error.

We attribute the discrepancy in magnitude between the observed error and the computed error, in

Figure 3-23, to the higher-order terms.

Hydrostatic Model Solutions

One technique used to ameliorate this error in hydrostatic models is to remove the mean

density profile (Gary, 1973), this technique is used by the MSEAS PE (Haley and Lermusiaux,
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2010). Several formulations that carefully interpolate pressure (Lin, 1997) or density (Song, 1998)
to more accurately calculate the pressure gradient force are referred to as pressure-Jacobian and
density-Jacobian methods, respectively. Unfortunately, these techniques are not applicable to a

non-hydrostatic framework.

Non-hydrostatic Model Solutions

While other models, like NHWAVE, are able to mitigate the effects of the pressure-gradient
error with a spatial discretization scheme that inhibits spontaneous flow (NHWAVE uses a second-
order Godunov-type finite volume method discretization unlike the 2DFV code), we ameliorate
this issue by removing the hydrostatic pressure from the momentum equations and refining the grid
spacing. Removing the hydrostatic component of the pressure is common practice in many numerical
models since the hydrostatic pressure is generally much larger than the non-hydrostatic pressure,
and its removal can free the simulation of errors that are proportional to this larger quantity. First

the pressure is separated into two components, the hydrostatic and non-hydrostatic pressures

P = Phyd t Pnon-hyd- (3.38)

Now we substitute this into our horizontal momentum equation.

%-I—u Vu——l (ﬁ
ox

o °¢ 2
- — —gqd F t). 3.39
a9t P Pnon-hyd + o L POg C) +vViu + Fy(z, ) ( )

Using the Leibniz Rule we interchange the order of the integral and the derivative

au 1 5 ’ 0 6 p, 2
== - __ — [ = F, t). 4
5 +u-Vu= <8:vpn°“ -hyd — /y g (Pog) d¢ ) + vViu + Fy(x,t) (3.40)
In the vertical momentum equation we have
v 10 4
En +u Vo= ~ oy (Phyd + Pnon-hya) + vV2v + Fy(z,t) — Pog (3.41)
ov 10 o 0 5 ' !
B V= o wona) — 50— [ gdC+ 09+ Pl t) - g (3.42)
y
ov 190 /
5 Tu Vv= 0By (Pnon-nya) + p—g + vV + Fy(a, t) - %g (3.43)
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Figure 3-24: The o-coordinate simulation of the LW topography with the hydrostatic pressure
removed is initially free from spontaneous convection due to the pressure gradient error. However,
a boundary layer develops near the topography that accelerates or decelerates the flow near the
boundary.

_8'1? +u- Vo= e ( ) 4+ V30 + Fy(z, t) (3.44)
* VU | = WL, 1), .

ot Py ay Pnon-hyd v\,

Anaiytically, the two formulations (Equations 2.5 and Equations 3.40 and 344) have identical

velocity field solutions. However, numerically we expect to see differences due to the relative scaling

of the computed quantities and their associated round-off and truncation errors.

Second, while it is commonly understood that truncation error is proportional to the grid
size, the pressure gradient error in particular has been shown to diminish with the square of the
horizontal and vertical grid spacing (Mellor et al., 1994); instead of using the same resolution as the
MITgem simulation, we use a grid that is twice as fine in the horizontal (dz =100m instead of 200m)
to mitigate the truncation error. The boundary conditions on velocity and the pressure-correction

term are the same as the z-coordinate simulation.

After these modifications the results of the LW simulation, shown in Figure 3-24, significantly
improve from the previous simulation, shown in Figure 3-21, although the zero-Dirichlet condition
on the sea mount does cause a boundary layer with slightly larger velocities to develop near the
topography. There is room improve upon this solution and bring the result of the LW simulation
closer to that of the shaved cell simulation, but this procedure is an important first step towards

that goal.
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3.5 Conclusion

We have discussed in detail the algorithms in our non-hydrostatic o-coordinate framework.
Our goal was to ameliorate stair-casing effects and make progress towards a moving-mesh, free
surface code. The o-coordinate code better represents the bathymetry and ameliorates the stair-
casing effect we saw with the z-coordinate code. The algorithm is first-order accurate and the
fully implicit diffusion operator reduces the computational cost substantially. Future work includes
improving the schemes to further reduce the prevalence of the hydrostatic inconsistency truncation

error, which may require a more sophisticated boundary condition.
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Chapter 4

Application of the Dynamically
Orthogonal Field Equations

For the first time we utilize the Dynamically Orthogonal (DO) field equations to study the
sensitivity of internal tide dynamics to perturbations in the linear stratification. These simulations
are conducted with the 2DFV, z-coordinate code which we demonstrated in Chapter 2 can accurately
capture the relevant dynamics of internal tides for the TN test case. The DO field equations achieve
substantial model order reduction , and efficiently explore a solution space (Sapsis and Lermusiaux,
2009, 2012; Ueckermann et al., 2013; Subramani and Lermusiaux, 2016). The DO field equation
have also been utilized for data assimilation (Sondergaard and Lermusiaux, 2013a,b; Lolla and
Lermusiaux, 2016a,b).Conceptually, the advantage of the DO methodology over a Monte-Carlo
approach can be characterized as projecting a high-dimensional problem onto a lower-dimensional
subspace, and then evolving the subspace in time.

In the first section we outline the DO methodology. In the second section we discuss the
initialization of the mean, modes, and stochastic coefficients. In the third and fourth sections we
discuss the results and verification of the DO simulation. We acknowledge that the verification of
the DO simulation, while encouraging, is not definitive, and that more work need to be done to
ensure the fidelity of the simulation. In the fifth section, we proceed with a preliminary evaluation of
the influence of initial perturbations to the density field on the resultant available potential energy.
This analysis, though contingent on the accuracy of the DO simulation, does suggest a substantial

sensitivity to the density anomalies introduced at the internal tide generation site.
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4.1 DO Methodology

We briefly discuss the DO methodology and governing equations. Let the vector containing

all the state variables be

We can define a generic evolution equation for the state vector as

0S8 (z,t; Q)

e = L(S(zx,t;Q), x,t;Q) (4.2)

where § is a function of two spatial dimensions (z = [z, y]), time (¢), and random variable (2). The
operator £ in our simulation represents the Navier-Stokes equations, a DO derivation for which is

found in Ueckermann et al. (2013). After a Karhunen-Loéve (KL) decomposition,

S
S(x, t;9Q) = Sz, t) + Y Six, )Yi(t; Q) (4.3)
i=1
Sapsis and Lermusiaux (2009) apply an orthogonality condition to the stochastic subspace spanned

by s DO modes.
aS;

(a,é}) =9 for l,_] = 1,2,3...,8 (4.4)

Finally, Sapsis and Lermusiaux (2009) use 4.3 and 4.4 to find evolution equations for the mean (S),

modes (S;), and stochastic coefficients (Y;).

958) _ B lLfuts, 69), 2, 9] ws)
6'U.ia(:,t) = Ty [EL[u(=, 1 Q), 2, Q)Y; (5 QCyY, (4.6)
de:C(;; Q_) = (Llu(x,t;Q), z,t; Q] — EQ[L'[u(a:, t;Q), z, t; Q)], ui(x, t)) (4.7)

where Ily; [F(2)] = F(z) — s [F(z)] = F(z) - (F(=), ug(x, O)ux(z,t) and
Cyy,; = ER[Y;(t;Q)Y;(t; Q)]. The expectation of a quantity with respect to a random variable €2 is
written E<[e], and a spatial inner product between two quantities is written (e;, e;). Thus, we find

that the computational cost of evaluating the DO field equations is aproximately equal to s2 41+ 1
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deterministic simulations. The s? term comes from the modes equations, since any mode can be
advected by any other mode. The other two equations are the mean and coeflicient equations which
have approximately the same cost as a deterministic simulation. For a complete derivation and
explanation of the DO equations and their numerical implementation, see Sapsis and Lermusiaux

(2009); Ueckermann et al. (2013), and Sapsis (2011).

4.2 Initialization

We need to initialize mean fields, mode fields, and stochastic coefficients for each component of
S. The mean fields for velocity and density are initially equal to the deterministic initial conditions
where the fluid is at rest and stably stratified. Next we identify a region within the domain where
we will initialize variability (i.e. where the stochastic term S;Y; will be non-zero). In our simulation
we use a rectangular region surrounding the peak of the topography that is 2L, = 9720m wide and
2L, = 1880m high. We initialize the stochastic term, S;Y; from a singular value decomposition of a
covariance kernel. To compute the covariance between any two points we multiply the correlation

between the two points by the standard deviation at each point
COvVy2 = K1,20102. (4.8)

The correlation between any two points (z1,y1) and (x2,y2) in this variability region will be deter-

mined by the distance between them according to

K1,2 :e(|I L—: : 2+(Iyl:—yy I)Z

(4.9)
and zero for all other points. This formulation works to prevent steep density gradients, since points
which are closer together are more closely correlated. The standard deviation (o) of density will be
defined at each point in this region according to a Gaussian function oge™(#/m=)*=u/m)* a5 seen

in Figure 4-1, where 0¢g = 2, m, = %l, and my = %ﬂ The s orthonormal modes,
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Figure 4-1: The standard deviation of p at each point in the variability region is oy = 2 weighted
by a Gaussian concentric with the variability region.

U

8= |u

Pi

have zero variability in the velocity fields (u; = v; = 6) and variability in the density field (p;)
is proportional to the first s singular vectors of the covariance matrix. The first four modes are
pictured in Figure 4-2. The stochastic coefficients are proportional to the square-root of the singular

values and a standard normal distribution.

For the following simulations we use 12,000 realizations and 28 modes. If we carry too few
modes or too few realizations, we will insufficiently characterize the total variability in the system.
To ensure that we have enough modes, we check that the variance in the highest stochastic coeffi-
cients (corresponding to the highest modes) is small compared to the lowest stochastic coefficients
(corresponding to the lowest modes), as in Figure 4-3. To ensure we have enough realizations, we

validate the DO simulation with an ensemble Monte-Carlo simulation described in section 4.4.
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Figure 4-2: The first four of 28 orthonormal modes are proportional to the first four singular vectors
of the covariance kernel.

4.3 Results

We describe the evolution of the mean, modes, and coeflicients, as well as several realizations

from the DO simulation.

4.3.1 Mean

The mean fields of velocity and density, shown in Figure 4-4, closely resemble the fields in the
deterministic simulation shown in Figure 2-2. This is expected, since, random perturbations like

the ones we apply, are not likely to exert a net force on the mean field.

4.3.2 Modes

The first four modes for u, v, and p after 13.9 hours of tidal forcing are pictured in Figure
4-5. We see internal tide-like structures in the modes. The modes of the zonal velocity are anti-
symmetric about a vertical centerline, and the modes of the azimuthal velocity are symmetric about
the horizontal centerline; the same symmetries and anti-symmetries exhibited by internal tides as

seen in Figure 2-2.

73



var[Y_iY_i]

107 T '
1-;‘-‘ ¥ 0 hours
LY — 0.52 hours
4F N 2.1 hours | |
20 1 —— 3.6 hours
— 5.2 hours
—— 6.8 hours
10'5 E ———— 8.3 hours | 4
— 9.9 hours
11 hours
13 hours
10 Sk 14 hours E
107 F E
-8 =
10°F . -
* x k¥ -
¥ *» -
=9 [ ; 4
10
FowoH Ry ¥
10-10 1 1 1 -| 1
0 5 10 15 20 25 30

modes

Figure 4-3: The variance drops off between the first and last modes by more than three orders
of magnitude, and the distribution of variance stays very constant throughout 13.9 hours of tidal
forcing.

4.3.3 Stochastic Coeflicients

Figure 4-6a shows the stochastic coefficients are initially uncorrelated Gaussian distributions.
As the simulations evolve, features in the marginals of the stochastic coefficients develop in response
to coupling of the modes and nonlinearities in the perturbed internal tide simulation dynamics.
Figure 4-6b shows the marginal pdf’s of the stochastic coefficients after 13.9 hours of stochastic

forcing.

4.3.4 Realizations

Finally, we show four realizations (the realization number is indicated by the reference number
in the parenthesis) out of the 12,000 after 13.9 hours of tidal forcing in Figure 4-7. Recall that the
DO methodology allowed us to evolve 12,000 realizations at the computational cost of s?+1+1 = 786
deterministic simulations. The influence of the different perturbations in each realization can be

clearly observed.

4.4 Verification with Monte-Carlo

To verify the DO simulation results, we perform an ensemble Monte-Carlo simulation where

each initial condition in the ensemble corresponds to an initial realization of the DO simulation. The
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Figure 4-4: The mean fields initially match the deterministic initial conditions (left) and the mean
fields after 13.9 hours (right) agree well with the deterministic simulation results after tidal forcing.

ensemble Monte-Carlo simulation agrees very well with the DO simulation; Figure 4-8 shows that
after 13.9 hours of tidal forcing, the relative error between the DO simulation and the Monte-Carlo
simulation is about 1%. This result is encouraging, but does not guarantee the accuracy of the
DO simulation. To fully ensure the accuracy of the DO simulation, a careful investigation of the
stochastic density and velocity fields would be required. This task is complicated by the osciallatory
nature of the tides and the wave interactions between the tides and gravity waves generated by the
density anomalies. A more thorough description of these challenges can be found at the end of this
chapter.

We will proceed with the energetics analysis and draw some preliminary conclusions about

the relative influence of variability in the density field on the mixing potential of the stratified fluid,
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but understand that a more rigorous verification should be conducted to confirm the validity of the

DO simulation.

4.5 The Implications of a Perturbed Stratification for the Resultant

Available Potential Energy

To examine the influence of perturbations to the density field near the peak of the sea mount,
we calculate the available potential energy for the 12,000 DO realizations and compare them with
that of the unperturbed, deterministic simulation. We use available potential energy (Lorenz, 1955)
as a proxy for mixing potential, and draw some preliminary conclusions about the amount of mixing
potential the internal tides can accomplish with and without perturbations to the stratification. We
partition the potential energy as in Winters et al. (1995), where we define the total potential energy
as the sum of a background potential energy Ep and available potential energy E, which can be

written as the following volume integrals

/
Ey=g / P ydv (4.10)
v PO .

/
E.=g / 2 lly - yulldv (4.11)
v PO

where we set y. = H — %7\,97, which is exactly Equation 2.1'. The notions of "background" and
"available" come from the capacity of the potential energy to do work. It is easily observed from
Equation 4.11 that the deterministic simulation is initialized with zero available potential energy, and
can only acquire it when tidal forcing across the sea mount bends the isopycnals. By contrast, the
DO simulations are initialized with some available potential energy since the fluid in the variability
region is not necessarily stably stratified. Figure 4-9a shows the initial available potential energy
of the DO simulation realizations is between 1% and 90% of the available potential energy in the
deterministic simulations after 13.9 hours. The abscissa is the maximum deviation, within the

variability region, from the linear profile given by our constant buoyancy frequency. We define the

'The definition we use here differs from that in (Winters et al., 1995). The background potential energy definition
used by (Winters et al., 1995) is the minimum potential energy that can be achieved by adiabatically re-arranging
the fluids parcels. Since the internal tide simulation does not introduce large variations in the relative amount of
fluid parcels of a given density, our definition of y. will closely approximate the definition in (Winters et al., 1995).
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maximum perturbation as

max (I/)’"—__M_y)l X 100) (4.12)
p(y)

where p” is the initial density field for a given DO realization 7 and the linear profile is p(y).
Almost all of the DO simulations maintain a larger available potential energy than the deterministic
simulation, as seen in Figure 4-9b. We consider one realization to clarify the results in Figures 4-9a
and 4-9b. This realization is initialized with a perturbation that has a maximum departure from
the linear profile of 20% and is configured such that the initial available potential energy is 30%
of the available potential energy in the deterministic simulation after 13.9 hours. After the same
amount of tidal forcing, this perturbed simulation has double the available potential energy of the
unperturbed deterministic simulation. The likely explanation for this is that the wavefield in the
DO simulations is the interaction of internal tides and gravity waves spawned by the perturbation.
Even without tidal forcing, the density anomalies introduced initially in the stochastic simulations
would generate internal gravity waves since the fluid in the variability region is unlikely to be stably
stratified. It is plausible that these internal gravity waves interfere with internal tides in such a way

as to bolster the total available potential energy in the system.

4.5.1 Conclusion

We have applied the DO field equations to study internal tides. The marginals of the stochastic
coefficients show the modes of the simulation couple and interact, and the verification of the DO
simulation with the ensemble Monte-Carlo simulation is encouraging, but as we have mentioned,
not definitive. If we explore the results of this DO simulation the amount of available potential
energy created by our characterization of the sub-grid scale eddies is impressive, and the efficiency
of the DO methodology allowed us to study a wide range of perturbations and better understand the
relationship between the amount of initial available potential energy and the final available potential
energy after tidal forcing. A complete dynamical characterization of internal tide-internal gravity
wave interaction would be required to fully explain the energetics that we have begun to explore with
these stochastic simulations. The DO field equations may not only prove to be a useful technique

to efficiently study the sensitivity of internal tides to variability in the environment, but also for

77



efficiently studying wave-wave interactions such as internal tide-internal gravity wave interactions

or internal tide-surface wave interactions.
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Figure 4-5: The first four modes of zonal velocity (top), azimuthal velocity (middle) and density

(bottom) after 13.9 hours of tidal forcing. -
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Chapter 5
Conclusions and Future Work

5.1 Conclusion

We have shown internal tide dynamics can be sufficiently captured with the 2DFV code by
demonstrating excellent agreement between the simulation results and those predicted by linear
theory for both the angle of propagation and horizontal wavelength. The power spectra of the
internal tides confirmed linear theory is an appropriate simplification and the 2DFV particle velocity
field matched the MITgem results well for the TN topography used in the DO simulations. For low-
aspect ratio topographies, a coordinate transformation can significantly improve the particle velocity
field between the MITgcm and 2DFV code. Our 2D, non-hydrostatic, o-coordinate framework has
a fully implicit diffusion operator which offers a substantial advantage in computational cost. The
issue of hydrostatic inconsistancy was ameliorated by removing the hydrostaic pressure and refining
the grid spacing. Finally, we have, for the first time, utilized the Dynamically Orthogonal field
equations to study internal tides. Specifically we aimed to study the sensitivity of internal tides to
sub-grid scale phenomena paramaterized by perturbations in the stratification near the apex of a

steep topography.

5.2 Future Work

Some possible directions to move forward with the o-coordinate framework and the stochastic

simulations are described below. Broadly the goals would generally focus on improving the repre-

85



sentation of internal tides in the LW simulation with the o-coordinate framework and conducting a

careful verification of the stochastic simulation.

5.2.1 o-coordinate Framework

Future work on the o-coordinate framework includes reducing the truncation error to more
effectively control the pressure-gradient error and improving the topographic boundary condition.
A finite-volume scheme like a Godunov-type method has been shown to lend itself to substantially
control the pressure-gradient error, and might be a viable option for the o-coordinate framework.
Since the Neumann boundary condition is only first-order, and the position of the velocity values
are vertically aligned, the accuracy of the velocity near the topography is inversely proportional
to the steepness of the topography. As mentioned earlier, this does not pose significant challenges
for the shallow, low-aspect ration topographies, but in order for this code to be extended for steep
topographies a more sophisticated Neumann boundary condition would be required. The immersed

ghost cell method is one possible option.

The o-coordinate code would ease the incorporation of a free-surface dynamics into the 2DFV
code, which is important for shallow-water simulations. Future work on the 2DFV code would
includes incorporating free-surface dynamics with a moving mesh as is in the MSEAS PE (Haley

and Lermusiaux, 2010; Haley et al., 2015).

5.2.2 Application of the DO Field Equations

A careful deterministic investigation of the internal tide-internal gravity wave dynamics would
be required to carefully verify the stochastic simulations. The work in this thesis represents the first
stages of exploring these dynamics, and demonstrates a potential for the wave-wave interactions to
influence the properties of the wavefield far away from the internal tide generation site.

Future work includes incorporating stochastic forcing to study the influence of a variable
barotropic tide and surface waves on the internal tides. We hope to combine stochastic forcing
and stochastic initialization to study the separate and combined influences of sub-grid scale eddies,
external wind-driven surface waves, and tidal forcing. We have begun work towards this goal by

implementing modifications for stochastic forcing to the DO equations for a variable barotropic tide
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Fu,.u. = Uo(2)w cos(wt) in Equations 5.1c(a-c).

E®Up)w cos(wt)
du(z,t) g
0
E®UgY;]w cos(wt)
ou;(z,t) _
__Er__zcm%<E%Lmy+ 0 )—”.
0
E®UpY;]w cos(wt)
Cry, <EQ[£YJ'] + 0 ,Uk>wc

dY;(¢; Q)
dt

=<£—EWQ+‘

0

(Ug — E®[Up))w cos(wt)

0 ,ui>

0

(5.1a)

(5.1b)

(5.1c)

The DO methodology can allow us to efficiently study the sensitivity of internal tides to variations in

the stratification and the associated interactions between internal tides and internal gravity waves,

variation in the tidal velocity, and variations in other external forcings such as surface waves.
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Appendix A

The Projection Method

Here we discuss the projection method utilized in the z-coordinate and o-coordinate code,
and discuss the associated restriction on the o-coordinate Laplacian operator. The method used is a
Chorin-Temam projection method Chorin (1968). We start with the temporally discretized system
of equations A.1 to A.3: continuity, conservation of momentum, and tracer-convection, respectively.

We treat the nonlinear and source terms explicitly and the linear terms implicitly.

V-i*=v.attl =0 (A.1)
—k+1 _ ~k
T (v )t = —%Vpk 4oV - (Va4 FF (A.2)
PkH - Pk k k+1
NI + (V- (@p)* = V- (Vo) (A.3)

In the first step of this fractional-step method, a predictor velocity (u_;k“) is computed using the

pressure field from the previous timestep.

aktl — gk vk o & kt1 k
N + (V- (uw))* = —;Vp +vV- (Vu*+ )+ F (A.4)
aktl — gk gkt gk 1 1
- + (V- ad)k — (V- a@d)k = —=vpFt!l — —Zvpk + .
g At ( )" = ) p p (A5)

AVAL TR RIS vy g (L
Zk+1 _ k1 1 1 . .
u Atu* _ _;Vplﬂ—l + ;Vpk + v(V2EFHY) — y(V2ghtD

(A.6)

89



We recall the vector ID, V27 = V(V - %) — V x (V x ¥), and substitute for the diffusion term.

,a‘k-l—l _ ,&‘k-{—l 1 1
_— = -;Vpk"!'l-l-;Vpk-t-V[V(v-ﬁkH)—VX (Vx @) —p[V(V-@*+1) -V x (Vx @F 1))

At
(A7)
We make the approximation V x (V x @¢t1) & ¥V x (V x @¢+1).
gl gkt 1 1
—ar = VT S v (V@) V(v (A8)

We compute the pressure-correction (g = %pk“ - %p’“ — »(V - @*t1) 4+ »(V - @) by taking the

divergence of A.8, and this is the step where we see the restriction imposed on the o-coordinate

Laplacian operator.

artl — ght! 1 1
V= —;Vpk'H + ;Vpk +vV(V i@t — vv(V - afth)) (A.9)
—_V - gkt
—A"t‘*— = v;v -VpHtl 4 %v VPP + VYUV @ V.UV @t (A10)
-V - aft! g 1 et1 et
T=V-V[—;p +;p +1'/(V"u )—U(V'u* )]=V'V(—q) (A.ll)

Mathematically, the divergence operator in red is equivalent to the divergence operations in black.
However, since the same mathematical operators can be constructed with different numerical schemes,
each red divergence operator needs to be numerically equivalent to guarantee conservation. This is
why it is important that Equation 3.17 is numerically identical to Equations 3.27 and 3.28.

Next, we solve for (¢) and compute the corrector velocity (u*+1).

-V - Ef‘*’l

B Vi) = =—"— (A.12)

,&'k:-i-l _ ,a'k‘-}-l 1 1
* = V4 SV V(W @) — (V- Y (A.13)

At P P

ikt — gkt

£ = A.14
7 Vq (A.14)
d*tl = —g*tl _ vgAt (A.15)

Finally, we correct the pressure with the corrector velocity. Equation A.16 is an incremental,

rotational pressure-correction scheme.
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%P’C“ =q+ %p’“ +uvV(V @) — (V@) (A.16)
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