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Abstract
Measurement of brain tissue elastic and viscoelastic properties is of interest for modeling

traumatic brain injury, understanding and creating new biomarkers for brain diseases, improving
neurosurgery procedures and development of tissue surrogate materials for evaluating protective
strategies (e.g., helmets). However, accurate measurement of mechanical properties of brain
tissue is challenging due to the high compliance and complex mechanical behavior of this tissue,
including nonlinear viscoelastic behavior, poroelastic deformation, and failure mechanisms.
Thus, reported measurements of the elastic and viscoelastic moduli of brain tissue vary by
several orders of magnitude.

This thesis highlights three mechanical characterization techniques for brain tissue:
rheology, cavitation rheology, and impact indentation. Rheology is used to measure the shear
storage and loss moduli of brain tissue in (1) healthy and tuberous sclerosis mouse brain and (2)
healthy porcine brain. Next, cavitation rheology - a technique used to measure the elastic
modulus of compliant polymers and tissues - is implemented for the first time in porcine brain
tissue. Finally, a new analytical model and analysis procedure are developed for impact
indentation, a novel mechanical characterization technique that was used to measure the impact
response of murine and porcine brain tissue and brain tissue simulant polymers. This new
analytical model allows for measurement of viscoelastic moduli via impact indentation
experimental data, and it directly relates viscoelastic moduli to impact indentation output
parameters of quality factor, energy dissipation capacity, and maximum penetration depth
without the need for finite element simulation.

Thesis Supervisor: Krystyn J. Van Vliet
Title: Professor of Material Science and Engineering and Biological Engineering
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1 Introduction

1.1 Motivation

Measurement of the elastic and viscoelastic properties of brain tissue are of interest for

understanding disease and neural development, modeling traumatic brain injury, modeling

neurosurgery, and creating tissue simulant materials. In this thesis, we use and develop three

experimental techniques - rheology, cavitation rheology, and impact indentation - that can be

employed to obtain key mechanical properties of interest for mechanically compliant, hydrated

tissues such as brain tissue.

1.1.1 Disease may alter mechanical properties of brain tissue

Disease often affects the composition and structure of biological tissues. These changes

may affect mechanical properties of such tissues, such as stiffness. Understanding and measuring

these changes may be useful in biotechnology and in medicine, as the mechanical properties may

be correlative with disease pathology1 5 or for design of materials that mechanically mimic tissue

at specific stages of disease or injury.6 For example, for diseases that do not currently have useful

biomarkers, mechanical properties such as stiffness may be used as a marker of disease

progression, correlative with structural alterations (e.g., destruction of axon networks or

myelinated regions of the central nervous system) that are characteristic of the disease.'

Alteration in the elastic and viscoelastic properties of brain tissue has been observed in

various brain diseases including in Alzheimer's disease,2 multiple sclerosis, glioma,) in

demyelinated brain4 and even in normal aging.'' Disease models have been studied by various

methods, and in various models both in vivo and ex vivo.3'4 For example, in vivo magnetic

resonance elastography experiments showed that stiffness of the brain was decreased in

Alzheimer's patients comparing to controls (asymptomatic patients).2 Stiffness of glioma tumors
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in brain tissue was measured in mouse models via rheology and indentation, and found to be

stiffer than healthy brain tissue.3 While in vivo measurement of properties is generally preferred

to ex vivo due to clinical relevance,' only magnetic resonance elastography - a very expensive

method - can currently measure in vivo brain mechanical properties.9 Often, disease models in

rodents are preferred, as they are easily implemented and rodents are more easily maintained

than larger animals (e.g., pigs).

1.1.2 Modeling brain injury

There are over 10 million cases of traumatic brain injury (TBI) annually,' 0 with

approximately 1.7 million cases and about 50,000 deaths in the United States alone." While 75%

of these cases may be considered minor or concussive, sufferers of TBI may have devastating

and permanent effects, such as depression, cognitive deficits, and aggressive behaviors.1 Some

causes may not be preventable with protective equipment (e.g., falls, assaults), but TBI due to

automobile accidents, contact sports and military combat - cases that may be highest risk for

mortality and permanent disability - could be mitigated with better helmets, airbags or safety

features.

Modeling of impacts to the head may be investigated for design of protective strategies

and to understand how the brain is injured. Most modeling has been carried out by finite element

13,1413,151 3methods' 4 for a variety of loading conditions, including impact loading, 3" 5 blast wave,

pressure, and neurosurgery (Figure 1.1).16 The nature of these simulations heavily depends on

regimes of loading conditions. For example, for low speed impact, viscoelastic effects will be

dominant. However, if the impact speed is high, the material will not have time to relax and

dissipate energy (depends on time constants) and glassy modulus will be more relevant.

Depending on the magnitude of the load, failure parameters such as critical stress or strain
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thresholds, 13 may be relevant in both conditions. Moreover, if deformations are large such that 

material response is nonlinear elastic or nonlinear viscoelastic, then nonlinear material models 

should be included. 17 
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Figure 1.1: Modeling brain injury. (A) TBI can be caused by many different loading mechanisms, 
which may result in distributed or localized forces. (Adapted from Hemphill et al.) 18 (B) A finite element 
model of a sports injury impact. (Adapted from Cloots et al.) 19 (C) When interpreting simulated results, 
strain and strain rate thresholds may be used as indicators for TBI events. (From the review of 
Department of Defense Test Protocols for Combat Helmets).20 (D) A finite element model used to 
evaluate neurosurgery procedures. (Adapted from Miller et al.)21 

When modeling traumatic brain injury, common outcome parameters include pressure, 

von Mises stress and strain and maximum principal strain. These results can be assessed to 

determine if the deformations or stresses reach failure , thus indicating brain damage via axonal 

shearing. 13 However, the spatially inhomogeneous structure on the microstructural level of the 
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brain makes accurate failure criteria difficult.'8 For example, it has been suggested that the

microvasculature in the brain may amplify stresses and strains in surrounding axons, which in

turn produces axonal damage in those areas. 9 Additionally, anisotropic effects can

considerably alter stress and strains locally in the brain, and thus regions like the corpus

collosum maybe more susceptible to injury than others."1 Therefore, while extremely useful for

engineering purposes, models using homogenous, bulk mechanical properties of the brain may

not be able to accurately model injury. Critical volume elements may be used for efficient

multiscale modeling.'1

Constitutive laws used for modeling include viscoelasticity, hyperelasticity, and more

advanced models such as hyper-viscoelasticity;1 3 ,17,19 these models are described in depth in the

following section. For modeling of human traumatic brain injury, porcine or bovine brain

measurements have been used to determine material properties, as they are structurally similar in

terms of quantity of white and gray matter (Figure 1.2). 7.22

White
White matter

Murine White Porcine matter Human
Whiter Gray Gray

S Graym atter Grymatter 4 matter
matter

5mm
1cm

Figure 1.2: Coronal brain histological slices from murine, porcine and human brain. Larger animals
tend to have increased cortical folding and a higher proportion of white matter. Structurally, it is clear that
for simulating human brain mechanics, porcine is a better structural model than murine brain. (Figure
from http://brainmuseum.org)
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1.1.3 Creating tissue simulant materials for protective strategies

Creating protective equipment preventing TBI is of high interest to national defense, the

automobile industry, the contact sports industry and public health. To evaluate the efficacy of

new protective equipment, tissue simulant materials that accurately mimic the mechanical

response of brain tissue under specific loading conditions must be used (Figure 1.3); however,

some materials that are currently used may be unrealistic. For example, standard protocol for

helmet testing in the United States Army Research Laboratory, uses Roma Pastelina #1 ballistic

clay.20 This ballistic clay (as well as ballistic gelatin 23) is more than an order of magnitude stiffer

than brain tissue. We note that brain tissue under static/quasistatic loading and linearly elastic

regime has a Young's modulus from hundreds of Pa to a few kPa, depending on the mechanical

characterization technique. 25,26,3 Creating a good match is challenging, as the elastic and damping

properties of tissues may be a function of applied strain, strain rate, and the direction of the

deformation if the tissue is anisotropic; 3 further, the failure properties may be difficult to

replicate.

Recent work from Van Vliet et al. and the U.S. Army Research Laboratory has focused on

making polymers with tunable viscoelastic moduli in an effort to make more realistic tissue

simulant materials.6,2 7 Compliant, viscoelastic polydimethylsiloxane (PDMS) polymers have

been optimized to successfully match impact response of heart tissue (Figure 1.3C). 6 More

recently, multilayer gel composites with a compliant top layer have matched the impact response

28(via instrumented impact indentation) of more compliant brain tissue (Figure 1.3D). However,

more research is necessary to improve tunability in different loading conditions and to

understand how to appropriately use these materials in testing of protective equipment. For

example, the clay used in ballistics research currently is useful because it records energy
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dissipation through plastic deformation.20 Methods to measure the viscoelastic (and failure) 

responses would have to be developed prior to useful implementation of these materials for 

evaluation of protective strategies. 
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Figure 1.3: Tissue simulant materials for testing protective equipment. (A) Head model used for 
measurements. (B) Manikins are filled with a tissue surrogate substance, like ballistic gelatin or clay. ((A) 
and (B) adapted from the review of Department of Defense Test Protocols for Combat Helmets.)20 (C) 
Impact indentation results for PDMS-based tissue simulant materials and murine heart and brain tissue. 
Impact velocity vs. maximum penetration depth, energy dissipation capacity, and quality factor is shown 
as a function of impact velocity. Recent work from Van Vliet et al. has successfully tuned the impact 
response of simulant polymers to that of heart but not of more compliant liver. (Figure adapted from 
Kalcioglu et al.)6 (D) The impact indentation response of brain has been replicated using a bilayer 
composite gel. (Figure adapted from Qing et al.)28 
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1.2 Methods for measuring and modeling the mechanical behavior of brain tissue

Many methods have been used for measuring mechanical properties of compliant

polymers and soft tissues, such as brain tissue, and depend on the material properties of interest.

Elastic and viscoelastic properties are of great interest in the literature, and the tissue is often

assumed to be linear, isotropic and incompressible. Nevertheless, other properties such as

poroelasticity, nonlinearity (e.g., hyperelasticity), and failure have been investigated. Further

complicating analysis, brain tissue is anisotropic, nonhomogeneous, nonlinear, and properties

may vary by length scale.9 ,29 ,30 Attempts at developing constitutive laws have been made

recently. 22,1-3 However, there is currently no consensus on a constitutive law in the

literature, 9' 34 and measurements by different groups vary by as much as three orders of

magnitude.9' 30 We begin with two common models that are used in this thesis: viscoelastic and

hyperelastic material models. Next we will review existing methods used to measure mechanical

properties of brain tissue, and finally we will consider the structural origin of these mechanical

properties.

1.2.1 Viscoelastic models

Mechanical models of biological tissues have generally borrowed from polymer

mechanics. The structure of soft tissues is generally similar to crosslinked hydrated polymers,

albeit more complicated (see Section 1.2.5). For small deformations, viscoelastic models

describe the mechanical response of tissue reasonably well.35'36

The general constitutive law in linear viscoelastic materials may be expressed as a

function of time by the Boltzmann superposition principle:
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7ij= J Sijkl (t - at' dt'

ftat

or Ei = -ijk dt'

where oui is the stress tensor, Ekt is the strain tensor, Sijkl is the stiffness tensor and Cijkl is the

compliance tensor. Similarly to linear elasticity, for isotropic materials the stiffness tensor Sijkl

may be represented in terms of two independent components, such as Young's modulus and

Poisson's ratio, shear and bulk modulus, or Lame constants; however, in viscoelasticity, these

components are functions of time. Generally, the viscoelastic moduli of tissue are measured

experimentally via frequency dependent storage and loss moduli (e.g., G', E', and G", E"),

relaxation functions (e.g., E(t), G(t)), or the related creep compliance function (J(t)). While

these properties are measured in different ways, they can be related mathematically using Fourier

or Laplace transforms. In our analysis, it will be convenient to represent the modulus as a shear

relaxation function G(t), and either bulk relaxation function K(t) or Poisson's ratio v(t).

k.,G1  k2, G2  k, Gj

k.., G..

Figure 1.4: The generalized Maxwell model. A generalized Maxwell model is composed of a spring in
parallel with N Maxwell elements (springs and dashpots in series). Each spring has a stiffness k, which
can be converted to a shear modulus G, and each dashpot has a damping coefficient b which can be
converted to a viscosity q. The time constant associated with each Maxwell element is T=b/k= q /G.
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The most common model used to describe the shear relaxation is the generalized

Maxwell model. This model is composed of one spring in parallel with N springs and dashpots

in series (Figure 1.4). The stiffness of the springs may be expressed in terms of stiffness k or

shear modulus G, and the dashpots may be expressed as the damping constant b or viscosity r7.

The physical interpretation is that the model has a distribution of N relaxation times. Upon

instantaneous loading, all springs in parallel are deformed, and a stiff "instantaneous" or "glassy"

shear elastic modulus Go governs the time response; however, at infinite time, the components

with dashpots will all relax, and only the single spring will elicit an elastic response, and a more

compliant shear "relaxation" modulus G,,,. The governing differential equation for this model (in

one dimension) may be expressed in the frequency domain as:

N (1.2)

+= Gj+
j=1 + 1I

Where a and C are the Laplace transform of the (shear) stress and strain, respectively, G are

(shear) moduli of the springs, ryj= 1 l/Gj where 71 is a daspot constant, and s is frequency. The

kernel for the equation is the relaxation function or the Prony series, and can be expressed in the

time domain as:

N t (1.3)
G(t)=Go+ Gje- T

j=1

N t

or G(t) = Go - IG (1 - e Ti)

j=1

In the frequency domain, this can be expressed in terms of real and imaginary parts (or

equivalently complex modulus and phase lag):
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N G (1.4)
G'(s) = G, + I Gs rj

j=1 j

N Gs.(1.5)

1+ S2-[
j=1 j

These expressions are mathematically equivalent, and may be used in either form to fit

data. Rheology and dynamic mechanical analysis (DMA), for example, are more easily fit in the

frequency domain, while relaxation (or creep compliance) may be fit in the time domain. In

Chapter 4, we will relate rheology parameters to impact indentation experimental data using

these mathematical relationships. We note that while in viscoelastic theory the bulk modulus

K(t) may also relax, it is also assumed that tissues and polymers are incompressible (v = 0.5)

and thus K = co. This allows facile conversion of shear modulus to Young's modulus: 36

E(s) = 2(1 + v)G(s) (1.6)

The mechanical behavior of tissues often leads to power laws in the frequency domain

instead of discrete time constants. Physically this corresponds to an infinite distribution of time

constants, which cannot be fit perfectly with a discrete number of time constants. However if

enough parameters are used, a usable fit may be obtained. A more complete power law behavior

has been encapsulated using fractional derivative models using a single parameter37 but is not

commonly used. Assumptions of the viscoelastic model that we use in this work are that the

material is (1) isotropic, (2) homogenous, (3) incompressible (4) linearly viscoelastic, (5) and

only relaxes in shear (i.e., bulk modulus is constant).

1.2.2 Hyperelastic models

Another common constitutive model used in tissue mechanics is hyperelasticity.

Hyperelastic theory also comes from the theory of polymers, and is useful for modeling large
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deformations (sometimes nonlinear deformations) that may lead to nonlinear elastic properties.

These constitutive laws often fit the strain stiffening behavior of tissues well; however,

hyperelasticity assumes perfectly elastic deformation, which is problematic for modeling

viscoelastic behavior.35

The constitutive law in hyperelastic models is defined by a strain energy density function W,

which is a function of strain eij:

aW (1.7)
uij ai

Since nonlinear deformations are often of interest, deformation is often defined in terms

of stretch ratio, deformation gradient, or invariants of the stress tensor instead of engineering

strain. The derivative of this strain energy density function with any deformation measurement

results in stress (e.g., Cauchy stress, 1st Piola-Kirchoff stress, etc.) 3 5

The simplest hyperelastic model is the neoHookean strain energy function, which may be

derived from entropic elasticity of polymer chains (which is the origin of elasticity in some but

certainly not all polymers). For isotropic, incompressible materials, the neoHookean strain

energy function may be expressed in terms of the principal stretches 4, 2, 2 3  and shear

modulus G as:

(1 2+A (1.8)

We note the convenience that this nonlinear constitutive law can be described in terms of

only the shear modulus G. The neoHookean model is the basis of the analysis of the cavitation

rheology mechanical characterization technique, which is discussed in Chapter 3.
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More sophisticated hyperelastic strain energy density functions such as the Moony-

Rivlin, Arruda-Boyce, or Fung modes, which have both empirical and first principal origins,

often produce better curve fits to experimental data.35'38 However, these models also involve

fitting more parameters, which are difficult to translate to moduli, such as a Young's and shear

modulus. These models will not be addressed in this thesis.

1.2.3 Nonlinear viscoelastic models

Unfortunately, viscoelastic and hyperelastic models are often insufficient to accurately

model polymers' and tissues' mechanical behaviors. Various nonlinear viscoelastic models,

which combine principals of hyperelasticity and viscoelasticity, have been developed, including

quasilinear viscoelastic models, and more complicated constitutive laws have been used in finite

element modeling of brain tissue.19,22,35 These models will not be addressed in this thesis.

1.2.4 Measuring the mechanical properties of brain tissue

Measurements of the Young's elastic modulus E of brain range from 1 00s of Pa to 1 Os of

kPa in the literature.9' 0'9 However, since brain tissue behaves viscoelastically, the measurement

of E is highly dependent on experimental loading conditions (such that its magnitude may

approach either a glassy or relaxation modulus).

Brain mechanical properties have been measured ex vivo and in vivo on different length

scales. Elastic and viscoelastic properties of ex vivo brain on the tissue level have been measured

by unconfined uniaxial compression or tension, 4'41 relaxation in shear7,4 2 and compression,7'

instrumented indentation, 2 6 and shear rheology. 3 ,9,17, 4 2 ,4 3 Magnetic resonance elastography has

been used to measure in vivo storage and loss moduli in mice4 and humans. ' 44 On the

18
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microscale level, atomic force microscope (AFM)-enabled indentation has been used. 45 On the

cellular level, viscoelastic properties have been measured by AFM and optical stretching.46
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considerable variability between measurements; however G' tends to be on the order of I 0-104 Pa,
whereas G ' is on the order of I 02 103. Additionally, while both G' and G "exhibit weak power laws with
nearly identical slopes in most studies, G'' appears to be considerably steeper, and thus tan6 increases
with frequency. Figure adapted from Chatelin et al. 9

On the length scale of the tissue, shear rheology measurements for G' and G" by different

groups also span orders of magnitude, but as shown in the review by Chatelin,9 there is

consistency in a subset of studies, with G' being on the order of 100s to 1000s of Pa, and G' on

the order of 10s to 100s of Pa, depending on frequency (Figure 1.5). In almost all cases, G' and

G" are characterized by weak power laws, meaning that the exponent defining the power is the

slope of the line in a log-log plot of modulus vs. frequency.9 ,2'

19

ZC
0

0
E

102

4x10
41

04 .



0.5 0.6 0.7 0.8 0.9 1.0
0 -.-- 010-

I' /w

V 7,

/

/

/

/

/
5,

/
1

0.5 0.6 0.7 0.8 0.9

Stretch ratio x (compression)

* * Estes ted McElcaroey 1970 oHuman, stran ltate 0.08 s-)

-'e- Estes nd McEllianry 1970 (Human. slraan rale 0.8 s)
--- Estro ando McEtihaoiey 1970 (Human. strar rate 8 s")

Estes trod McEIidarety 1970 (Human, strain late 40 s~')

-t- Mille and Chinazei 1991 (Porcmre. sIrain sale 0.64 10- s~)
-- Millet and Chiszoi 1997 (Porcine. strain rate 0.64 10' s")

-+--- Miller an.d Chinzoei 1991 (Porcine. strain rate 0.64 1")
-a--eras:eschii ef al. 2006 human, strain rate O.01 s")

0iceShe 0al. 2006 Pocele, strain rate0.01 s")

00 -Val) poor 2007 (Pctcine. strain rate 0,002 s")
e- Vap) pres 2007 (Poicine, stramn rare 0 ,0 1 s")

-9-- Vappoo 200 7 (Poerine. strain rote 0.02 s )
-4--Cloeng and istre 2007 (C all. whie matter. strai rate 0.0001 c)
-- >-Chesir aiid Bilston 2007 (C alf, whle matter. stain rare 0001 r)
- -ient and Bluston 2007 :C alf, white matter. strami rate 0.01 S)

000 -*- Pevin and Chere 2009 (Bovee, gray matter, strain rate 1000 s")
-- Pervit ard Chen 2009 (Bovire. clorna radiata, parallel to fibers strain rte 1000 s)
-- Pervi and Chen 2009 (Boviee. corona radiata, orthogonal to ibers. strain rate 1000 s")

- Pei Or ard Chren 2009 (Bovine. gray matter. strain rate 2000 s")

-C- Penvin and thin 2009 (Bosree. corona sadiata, parallel to fibers strain rate 2000 s)
0- Perv, atd Chen 2009 (Oowmrre. corona radiata orthogonal to fibers strain rate 2022 s")

70 Peevi aed Ihet 2009 (Oovme, gray matter. otrai rate 3000 sin)

000 -4- Peovist and Chen 2009 (Boviae. corona radials. parallel to fibers strain rate 3000 s")

-4- Pesvi and Chet 2009 (Bovine, col ona radials. orthogonal to fibers. srain t ate 3000 s")

Pirevebt at al. 2010 tPorcrie. stla, rate 001 s)

Prevost eoal. 2010 Porcie. strain rate l)t si
- Prevost or al. 2010 (Porcinae, strain rate I s-)

B
I

0.6 0. L

-0. >-

-l.0 -

-1.5-

nominal stress
[kPa]

stretch

Figure 1.6: Nonlinear material behavior of brain in tension and compression. (A) High compressive
deformation yields nonlinear behavior in a variety of species and brain regions. (Adapted from Chatelin et
al.)' (B) A tension-compression deformation cycle for brain shows nonlinear response. (C)
Preconditioning is observed, as stiffiness decreases for several deformation cycles, but is consistent
afterward. (B) and (C) adapted from Franceschini et al.29

While most studies have focused on moduli in the linear range, the brain exhibits strain

stiffening under large strains, as has been shown by cyclic uniaxial tension/compression tests

(Figure 1.6).29 The brain also has heterogeneous mechanical properties on the macroscale, as

studies have shown that white matter is stiffer than gray matter. ' 726 There are also local
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variations in white matter stiffness,' 7 with the corpus collosum white matter reported in some

studies to be stiffer than the corona radiata and other white matter.' White matter has also been

found to be mildly anisotropic due to the directionality of axon bundles,7 but with stiffnesses

varying by up to a factor of two in different directions. 21,26 Further, the brain, which is composed

of 20% extracellular fluid,47 has been shown to behave poroelastically at low strain rates.4 1,29

Like many other tissues,3 5 the preconditioning phenomenon (i.e., changing of stiffness upon the

first few loading cycles until material properties converge) has also been observed in brain tissue

(Figure 1.6C). 7

1.2.5 Origin of mechanical properties: Microstructure of the tissue

Brain tissue is characterized by a highly heterogenous hierarchical structure - from the

tissue level, to the cellular level, to the molecular level. On the tissue level, properties arise from

different tissue types: gray matter - composed of cell bodies - is isotropic and relatively

compliant comparing to white matter. White matter is composed of stiffer axon bundles, which

form anisotropy due to directionality of the axon connections. 30 Different regions of the brain

contain different amounts of white and gray matter and fluid filled ventricles, and the geometry

of the brain is complicated due to folding and other structures; 2 ' brain structure and white and

gray matter content vary considerably by species (Figure 1.2). Generally speaking, the

extracellular matrix protein networks that cells produce and to which cells adhere form the

structural and mechanical medium of the tissue.30 (Interestingly, while the effective crosslinks

within such protein networks behave like covalent ones in conventional polymers, most

biological polymers are held together by van Der Waals forces between large monomers.) 48

On the length scale of the cell, there is further complexity. There are different types of cells

that have different stiffness (e.g., astrocytes vs. neurons),46 and different components of cells that
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30,4have different stiffnesses (soma vs. cell processes).3,46 The brain is also relatively porous, and is

composed of approximately 20% extracellular space, and has therefore shown to have a

poroelastic response. 29,47 It is thought that most of the elastic response of the tissue is due to

cellular components, as the extracellular matrix is largely composed of glycosaminoglycans such

as hyaluronic acid, and has very few fibrous proteins (e.g., collagen), except for in the basement

membrane. 30,49 The intercellular space of neuron cell bodies and astrocytes is similar to that of

many mammalian cells, with elasticity arising from actin, intermediate filaments and tubulin.

The structure on the cellular level is clearly inhomogeneous as well.46

1.3 Thesis organization

In this thesis, we will explore three methods for measuring the elastic and viscoelastic

properties of brain tissue.

In Chapter 2 we use shear rheology to measure the dynamic moduli of healthy and tuberous

sclerosis mouse brain to investigate whether the disease affects the brain mechanical properties.

We also measure the dynamic moduli of healthy porcine brain tissue which will be used to

compare with cavitation rheology in Chapter 3.

In Chapter 3 we present the first use of cavitation rheology to measure the Young's

modulus of brain tissue, and validate the results via shear rheology.

In Chapter 4 we develop a new theoretical model for impact indentation experiments. From

the governing equations, we illustrate how to better design experiments, relate rheology and

impact indentation data without finite element simulation, improve accuracy of analysis of

impact indentation data, and extract viscoelastic moduli from impact indentation experiments.
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2 Macroscale rheology of mammalian brain tissue

2.1 Introduction

Shear rheology is a powerful experimental technique used to mechanically characterize

viscoelastic solid materials and complex fluids at the macroscale. In the field of tissue

mechanics, the shear storage modulus G' and loss modulus G" (or equivalently the complex

modulus G* and phase lag 6) are measured, and a parallel plate probe geometry is often used

(Figure 2.1). In the technique, the sample is placed in between the two plates, and the top plate

twists the sample an angle amplitude Wo at a frequency ao, resulting in a deformation with a

strain amplitude of yo. From the amplitude of the resulting torque signal To phase lag (P between

the angular displacement and torque are measured. From these parameters, G' and G" can be

determined from geometric expressions. Measurements are taken at a variety of prescribed

A~( R P
0-

Y ~ 0-

probe C
C

brain tissue,-

sandpaper 0

time

Figure 2.1: Rheology experimental setup. (A) The sample is placed between two rheometer plates,
and sandpaper is attached to both plates to prevent slip. The top plate oscillates at a frequency tr and

amplitude (p. resulting in a shear strain 1. Applied deflection (B) over time results in a reactional

torque (C), G' and G' may be measured from the phase lag (P and amplitudes of the deflection (p(
and torque To. (D) A 25 mm diameter, 4 mm thick porcine brain slice on a rheometer plate prior to

contact. (A)-(C) from Canovic et al.
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frequencies, and generally range from 0.001 to 100 Hz, with limitations at the lower end being

50
signal to noise ratio, and on the upper end inertial effects.

If the material is homogenous and elastically isotropic, torsion suggests that shear

strain/shear stress is linear with increasing radius r. Thus, the amplitude of the nominal shear

strain is actually the maximum shear strain at the sample, located at the edge of the probe, and

the shear strain is zero at radius r = 0. This also means that the center of the material contributes

least to the measurements, and the edges contribute the most. Care must be taken to section the

sample such that it fits the probe geometry well. If the material is inhomogeneous like brain

tissue, rheology will only give an average measurement of the storage and loss moduli, which is

often sufficiently useful for engineering purposes. Additionally, the material may have nonlinear

elastic properties at large strains. For this reason, amplitude sweeps (i.e., changing shear strain

amplitude) may be conducted to determine to which deformation linearity is maintained, and

frequency sweeps should be conducted at a shear strain that is in this linear range.50

The experiments reported in this thesis use shear rheology to quantify G' and G" for mouse

and porcine brain tissue, respectively.

2.2 Brain mechanical properties in a tuberous sclerosis mouse model

2.2.1 Background

Tuberous sclerosis (TSC) is a genetic disease that causes various symptoms, including

neurological problems, and has high comorbidity with autism.5' The disease is caused by

mutations in the Tsc1 and Tsc2 genes, and knockout mouse models have been made for the

disease.5 2 It has been shown that these knockout mice have hypomyelination,5 2 and similar

findings have been seen in humans via diffusion tensor imaging.53 Since brains with
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hypomyelination have been shown to have altered mechanical properties,4 we hypothesize that

the structural differences in TSC mouse brains may lead to altered mechanical properties in the

brain. Knowledge of these differences may be used for monitoring disease progression or for

therapeutic targets, if altered mechanical properties contribute directly to the pathology of the

disease.

On a structural level, hypomyelination should affect white matter of the brain more than

gray matter, as white matter is mainly composed of myelinated axons, whereas gray matter has

more cell bodies and astrocytes. Mouse brain, unlike human or other large mammals' brains,

has very little white matter, accounting for only about 10% of the structure; much of the white

matter is located in the corpus callosum of the brain (Figure 1.2). In our study, we therefore

measured the viscoelastic properties of brain both on the whole brain level via shear rheology, as

well as on the local level with impact indentation (-1mm scale) and AFM instrumented

indentation (pm scale).54 This chapter focuses on the rheology measurements, and the

measurements on the microscale are compared in the discussion.

2.2.2 Methods

2.2.2.1 Sample preparation

Tuberous sclerosis mouse models were bred as described previously.5 2 After sacrifice,

whole brains were extracted and sliced to 1mm thickness, and were stored in Hibernate-A media

(ThermoFisher Scientific, Waltham, MA) on ice. Measurements were conducted within 48

hours of sacrifice. The Guide for the Humane Use and Care of Laboratory Animals was followed

for all procedures. The study was approved by the Animal Care and Use Committee of

Children's Hospital, Boston and the Harvard Medical Area Standing Committee on Animals.
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2.2.2.2 Rheology procedure

The procedure for rheology was described in Canovic et al.54 Briefly, a parallel plate

rheometer was used to measure G' and G" at 250C. A 10 mm diameter probe was used with a

1 mm thick sample, and sandpaper was adhered to both plates (320 grit, McMaster Carr) to

prevent slip between the tissue and the plates. To provide consistent measurements, the normal

force on the tissue was maintained at 0.01 N after the tissue was allowed to relax for

approximately 5 minutes. To maintain hydration of a tissue, approximately 500 pl of Hibernate-

A media was pipetted to the sides of the tissue after contact was maintained. An amplitude sweep

from 0.0 1% to 10% shear strain was conducted at 1 rad/s and 10 rad/s, and the viscoelastic range

of the tissue was determined to be ~1-3% strain. Frequency sweeps from 0.1 to 10 Hz were

conducted at 1% strain.

2.2.3 Results

Storage and loss moduli as a function of frequency for TSC and control mouse brain are

plotted in Figure 2.2. Clearly there is no difference between TSC and control. The magnitude

and trend of these data are consistent with other studies of healthy porcine9'"7 and murine 3 brain

tissue rheology.

2.2.4 Discussion

Rheology data suggest that there is no different in viscoelastic properties in TSC vs

control mice. These data agree with other measurements by our group which show no difference

between the two groups.54 Creep compliance and stress relaxation experiments via AFM enabled

indentation showed no significant difference between disease and control at 10 s of loading.

Additionally impact indentation showed no significant difference between TSC and control for

maximum impact depth, energy dissipation capacity, and quality factor for all impact speeds
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* TSC G' 0 TSC G"
* Control G' 0 Control G"
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10

0.1 1 10
Frequency (rad/s)

Figure 2.2: Rheology for TSC and wild-type brain tissue. Storage (G') and loss (G") moduli of TSC
(red) and wild-type brains (black). n=5 for TSC mice and n=7 for wild type mice. Error bars represent
standard deviation.

These data suggest that the structural difference in TSC mouse brain (namely a decrease

in myelin) do not elicit a difference in mechanical properties. The structural differences are

concentrated in the white matter of the brain, which is mostly composed of myelinated axons.

We note that the rheology probe is too large to measure gray and white matter individually, as

the probe diameter is on the length scale of the whole mouse brain. However, AFM indentation

experiments (Figure 2.3), which probe mechanical properties on the length scale of-10 ptm also

did not show differences between TSC and control in both white and gray matter for creep

compliance and stress relaxation at 10 s, but showed that the modulus of gray matter is higher
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than white matter. This contradicts previous studies that suggest that white matter is stiffer,7 ,
26

and the reason for this discrepancy is unclear.

These results also contradict a recent study that showed that hypomyelination of mouse

brain tissue resulted in a decrease in stiffness compared to control, measured via magnetic

resonance elastography.4 However, the mechanism of demyelination in that study was induced

chemically via cuprizone, which also caused alterations in the extracellular matrix and cellular

composition.4 It is unclear if the hypomyelination played a role in the alterations of the brain's

stiffness in that disease model.
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Figure 2.3: Indentation of TSC and wild type mouse brain. Indentation of TSC and wild type mouse
brain shows no significant difference in elastic and viscoelastic properties. (A) Coronal view of the mouse
brain. Gray matter was measured in the cortex, while white matter was measured in the corpus callosum.
(B) Young's modulus, (C) creep compliance at 10 s and (D) stress relaxation at 10 s measurements
showed no significant differences between TSC and wild type in both gray and white matter. Gray matter
elastic modulus was significantly higher than white matter for both wild type and TSC groups (A), but no
significant differences were seen between white and gray matter in creep compliance and stress relaxation
measurements (C) and (D). Error bars represent standard deviation. Figure adapted from Canovic et al.
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2.3 Rheology of healthy porcine brain tissue

2.3.1 Background

Since the porcine brain is structurally similar to human brain (Figure 1.2), material

properties from porcine brain are commonly used to model traumatic brain injury. In this study,

we use rheology to measure G' and G" in porcine brain, and we investigate the effect of axial

pre-strain on G' and G". We published the methods and data presented in this section in the

Journal of Visualized Experiments.2 5 In Section 3.5 we compare these data to cavitation

rheology results in porcine white matter.

2.3.2 Methods

2.3.2.1 Sample preparation

Half porcine brains (split sagittally through the center) were obtained from a local

slaughterhouse within Ihr of sacrifice. Brain was immediately placed in Hibernate-A media, and

kept on ice. The brain samples were sliced coronally to a thickness of 4-5mm with a razor and

were cut into 25 mm diameter disks to fit the rheometer geometry. All measurements were

conducted within 48 hours of sacrifice.

2.3.2.2 Rheology procedure

The procedure for rheology was described in Canovic et al.25 Briefly, a parallel plate

rheometer with a 25mm radius geometry was used to measure G' and G " at 3 7'C, and sandpaper

was adhered to both plates (320 grit, McMaster Carr) to prevent slip. Normal force was

maintained at 0.01N, and was allowed to relax for approximately 5 minutes prior to rheology

measurement. Samples were hydrated at the periphery with ~Im of Hibernate-A media.
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Amplitude sweeps were used to determine that the linear viscoelastic range was within 2% shear

strain. G' and G" were measured at frequencies from 0.1 to 100 rad/s at 1% shear strain.

2.3.3 Results

Storage and loss moduli are shown in (Figure 2.4). G' was approximately 5 times higher

than G", and both showed weak power laws with frequency. G" increased more rapidly with

frequency than G'. Additionally, G' and G" increased with axial strain at all frequencies

measured.

A1000 B 800

+G' -G" 700 +G' -G"
S-.600

-500

100 400

300

200

100

10 0
0.1 1 10 0% 10% 20%

Frequency (rad/s) Axial strain

Figure 2.4: Rheology of porcine brain. (A) G' and G" as a function of frequency show weak power

laws (N=4). (B) G' and G'" vs. axial strain at I rad/s. Both moduli increase with increasing axial strain, but

G' increases more rapidly. Error bars represent standard deviation.

2.3.4 Discussion

Our measurements of G' and G" match a number of studies in shear rheology for brain

tissue, and can be compared with those shown in the review by Chatelin et al. (Figure 1.5).9 G'

is on the order of hundreds of Pa, whereas G'is on the order of tens of Pa. Both show increasing

power laws, but G" has a steeper slope; thus there is an increase in phase lag with frequency.
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Additionally, we observed that G' and G" increased when axial strain was applied (and thus stress

state of the sample), but that G' increases more with axial strain than does G". The same trend

was observed in a rheological study on mouse brain by Pogoda. 3 This phenomenon highlights a

limitation of rheology of compliant polymers and tissues: to have enough friction to obtain a

reliable measurement, a normal force must be applied to the sample; however a normal force will

cause a compressive pre-stressed/strained state in the sample, which, for nonlinear materials, will

result in an altered measurement of modulus compared to an unstressed state. In this study and

the previous measurements in Section 2.2, we consistently measured the mechanical properties

under the same pre-stress. While this likely improved consistency between samples (for example,

allowing for improved resolution between groups in Section 2.2) the mechanical properties were

likely higher than would be expected in the state without pre-stress. This phenomenon is

especially important to take into consideration for compliant samples, which may be axially

compressed considerably prior to detection of axial force. For instance, our instrument has a

sensitivity of up to 0.01N axial force.

We note that our sample was not homogeneous and isotropic due to the length scale of the

measurement. Thus these measurements only give an average measurement of modulus, and are

not capable of distinguishing between possible differences in stiffness in white vs. gray matter.

Interestingly, the measurements are consistent between samples, resulting in a relatively small

standard deviation (Figure 2.4). One explanation for this consistency is that samples had a

similar proportion of white and gray matter. Additionally, while gray and white matter have

different stiffnesses, white matter is less than two times stiffer than gray matter.1,21, 26
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3 Cavitation rheology of mammalian brain tissue

3.1 Introduction

Many methods have been used to quantify the elastic modulus and viscoelastic moduli of

brain, as described in Section 1.2.4. Different methods measure these properties on various

length scales; for example, rheology operates on the macroscale, whereas atomic force

microscope enabled indentation operates on the length scale of microns. There is much debate in

the literature over the true value of elastic modulus of brain tissue, with measurements ranging

several orders of magnitude between techniques, and even when a single technique is used.9'30

Cavitation rheology is a relatively new mechanical characterization technique that has been used

to measure the elastic modulus of ex vivo tissues55-57 and compliant polymers58-60 on the length

scale of hundreds of microns to a millimeter, and in vivo characterization of skin tissue has also

been conducted. Measurement of local modulus of brain is relevant for study of disease and

modeling of TBI (Sections 1.1.1 and 1.1.2). Prior to this study, the cavitation rheology

technique has not been used to measure the elastic modulus of brain tissue.

3.2 Background

Cavitation rheology's use to measure Young's modulus has been demonstrated in

compliant polymers as well as ex vivo and in vivo tissues.56 ,61,62 Its advantages include low cost,

portability, ability to measure local mechanical properties, and ability to measure properties

without preprocessing of the sample (e.g., slicing).59 61 ,62 Since mechanical properties of ex vivo

tissues such as brain have been shown to change with time, this technique is a cheap alternative

to magnetic resonance elastography for modulus measurement of in vivo tissues or intact ex vivo

(e.g., bone marrow in the bone). 6
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Figure 3.1: The cavitation rheology technique. (A) Experimental setup. A syringe needle is inserted
into the test sample, and air is ramped through a syringe pump. Pressure vs. time is measured by a

pressure sensor. (Adapted from Zimberlin et al. 59 ). (B) As pressure is increased, a bubble is formed in the
form of a spherical cap with a radius of curvature R and height h. (Adapted from Kundu et al).60 (C) Raw
pressure vs. time curve for porcine brain with an 80pm radius needle. The critical pressure P, occurs at

the maximum pressure.

In this technique, a fluid (e.g., air or water) is pressurized through a syringe needle, which

is inserted into the polymer or tissue sample (Figure 3 .).S,59,60 The pressure is ramped at a

constant rate with a syringe pump. The pressurization creates a bubble which slowly grows

initially as the pressure is balanced by both surface tension and elasticity of the polymer or tissue

(Figure 3.1B), but when the radius of the bubble exceeds the needle radius, surface tension

resistance rapidly decreases with deformation. At a certain deformation, there is a maximum in

the total resistance, and resistance to pressure begins to fall with deformation, causing unstable

bubble growth, or cavitation (Figure 3.1C). For isotropic, neoHookean materials, this maximum

pressure P, may be related to the sample's Young's modulus E by

5 2y (3.1)
Pc -E+-

6 r

where y is the surface tension and r is the needle radius.59,60 This result is not exact, as it is

obtained from the analytical solutions of (1) a pressurized spherical void in an infinite solid and

(2) the surface tension of a spherical cap.60 The geometry is clearly different than condition (1)
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as the bubble forms a spherical cap, but taking into account these geometrical factors via finite

element simulation has provided a very similar relationship: 63

P, = LOSE + 2.1y (3.2)
r

Young's modulus may be determined with either of these equations by measuring P for different

needle radii, and plotting the linear P, vs curve. The slope of the line gives the surface tension,

while the y-intercept gives the modulus.

As described previously, tissues and polymers often are viscoelastic and not hyperelastic.

Pavlovsky showed that the viscoelastic effects may affect the Pc, but that viscoelasticity effects

may be used in the analysis via imaging of the bubble and thus measuring strain rate over time. 58

However, from basic viscoelastic theory, a low enough strain rate would result in, for example,

relaxed dashpots in the generalized Maxwell model, and thus the elastic response can be thought

of as the relaxation modulus (Section 1.2.1). Further, fracture or yielding are instabilities which

may also result in a critical pressure; in these cases, E cannot be calculated from P, with the

above analysis. 60

In this study, cavitation rheology in porcine brain is conducted for the first time, and these

results are validated by rheology.

3.3 Methods

3.3.1 Brain samples

Porcine brains were obtained from a local slaughterhouse within lhr of sacrifice and

immediately placed in Hibernate-A media. Brain tissue was sliced with a razor into
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approximately 2 cm thick slices for mechanical testing, and all measurements were conducted

within 48 hours of sacrifice.

3.3.2 Cavitation rheology procedure

Prior to measurement, needles were calibrated by bubbling air in deionized water and

measuring the pressure at which bubbles were formed. This pressure was compared to the critical

pressure predicted by Laplace's law,

2yw (3.3)
PC,, r

where r is the needle radius of the needle and yw= 73 mN/m is the surface tension of water at

room temperature. This analysis assumes that the minimum radius of curvature of the bubble in

water is equal to the inner radius of the needle. If the observed gauge pressure was within 5% of

the predicted pressure Pc,, the needle was used in the experiment.

Cavitation rheology was conducted as described previously. 59 A schematic of the setup is

shown in Figure 3.1. A needle (26, 28, 30, 31, or 33 gauge, Hamilton Company, Reno NV) was

inserted 2-3mm into white matter of the brain. Air was pressurized through a 20 mL syringe at a

constant rate of (airflow rate) and thus (pressurization rate) via a syringe pump (PHD Ultra,

Harvard Apparatus Holliston MA). Pressure was measured with a pressure sensor (PX26-

005DV, Omega Engineering, Stamford, CN) and recorded in custom LabView program

(National Instruments, Austin ,TX). The pressure vs. time curve for the tissue was obtained, and

critical pressure was recorded (Figure 3.1C). Measurements were taken at different locations in

the brain white matter and were at least 5mm apart. Five to 10 measurements were conducted for

each needle radius used.
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3.4 Results

To extract the modulus from the cavitation rheology data, critical pressure was plotted

against the inverse of the needle radius. The data were fit with a linear model, and the elastic

modulus was measured from the y-intercept, and the surface tension from the slope of the line, as

seen by Equation 3.2. The average measurements for individual animals (Figure 3.2A) resulted

in an average Young's modulus of 4.5 2.8 kPa, and of all the animals pooled by needle radius

(Figure 3.2B) a modulus of 4.7 kPa was obtained. As can be seen by the standard deviations in

Figure 3.2A, there was considerable variability between measurements within individual

animals; however, when the average critical pressures of animals were pooled, the measurements

were relatively consistent and the standard deviation was considerably lower (Figure 3.2B).

25 A 25 B

20 20
E3Pig Brain 41

A15 Pip Brain 42 15
OPig Brain #3

C. 10 * Pig Brain #4 CL 10

*Pig Brain 5

0 0
g 5 10 15 20 0 5 10 15 20

1/r (1/mm) 1/r (1/mm)

Figure 3.2: Cavitation rheology of porcine brain. Critical pressure vs. inverse needle radius for (A)
individual porcine brain samples and (B) averaged measurements across aniimals at various needle radii.
There is clearly much variability for measurements of individual animals, but the average measurements
have less variability. Error bars represent standard deviation. Error bars are not included for points where
n<4.

Rheology of porcine brain was measured to validate these results (Section 2.3). When fit

to a Prony series, these data gave a glassy modulus of EO = 2700 Pa and a relaxation modulus of
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E, = 560 Pa. These values are lower than that measured by cavitation rheology, but are within an

order of magnitude.

3.5 Discussion

In this study, we demonstrated the first use of cavitation rheology for measuring the local

Young's modulus of brain tissue. Although this technique may be used without sectioning the

tissue, in the present study the brain was sectioned for convenience.

The white matter of the porcine brain was observed to have a modulus on the order of

several kPa, which is in agreement with the range observed in the literature. However,

measurement of the same tissue with rheology showed that both the glassy and relaxation

modulus were lower than the cavitation rheology value. These findings are consistent with

studies in bovine eye and bone marrow, in which the observed Young's moduli were higher in

cavitation rheology as compared to rheology, but within an order of magnitude of each other.55 ,56

Based on theory, we would expect that the modulus measured by cavitation rheology

would be closer to the relaxation modulus (Section 1.2.1), as the deformation was relatively slow

(deformation took place), but since the pressure input was ramped, it is possible that the modulus

measured was higher than the relaxation modulus. Experiments by Peyton et al. (unpublished, as

part of this collaborative study) showed that increasing the rate of loading also changed the

measured modulus. Future experiments and theoretical explanations should be done to determine

appropriate pressurization rates for measurement of the relaxation modulus.

Part of the reason for this may be explained by the fact that only white matter was

measured with cavitation rheology, whereas rheology measured both white and gray matter.

Budday et al. and Johnson et al. showed that white matter was approximately 50% stiffer than

gray matter; interestingly both studies had stiffer storage modulus values, on the order of kPa.1,26
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Another possibility is that a significant portion of the strain was in the nonlinear range, and that

the neoHookean model does not have sufficient strain stiffening to capture the nonlinearity of

brain tissue.

Cavitation rheology also measures surface tension. Interestingly, the value of 220 + 100

mN/m obtained for brain was much higher than that of water (73 mN/m), the predominant

component of the tissue composition. Bovine eye was found to have a similar surface tension

value (200 mN/M)5 5 and, while not explicitly reported in Jansen et al., the slope of Pc vs. h1r for

bone marrow yields approximately 200 mN/m.56 Reported values for polyethylene oxide and

poly(methyl methacrylate)-poly(n-butyl acrylate)-poly(methyl methacrylate) triblock gels are

lower, on the order of 10's of mN/m.58'64 It is unclear why the surface tension value of brain

tissue is higher than water, and why there is similar observed surface tension between different

soft tissues.

A common problem with accurately measuring Young's modulus with cavitation

rheology is fracture at the critical pressure. While fracture is easily identifiable from visually

inspecting a deformed polymer,60 fracture cannot be assessed for opaque tissues. Additionally, a

critical pressure is observed whether the sample undergoes fracture or cavitation, so the

dominant process is not visible from pressure vs. time data. A previous study in bovine eye

suggested that cyclic pressurizaton of the tissue would suggest cavitation vs. fracture; cavitation

is a reversible processes which would show consistent critical pressures with repeated cycles,

while fracture is not reversible, and critical pressure would drop with cyclic loading.5 5 Thus, our

collaborators have conducted cyclic pressurization in murine brain tissue (Figure 3.3). These

data show that, while the critical pressure drops for the first several cycles - which may indicate

irreversible deformation - it remains essentially constant in subsequent cycles. The reason for
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this drop in critical pressure with pressure cycling could be explained by preconditioning of the

tissue, a phenomenon which has been observed in brain tissue (Figure 1.6C). However, future

work visualizing the deformation would more clearly determine whether fracture or cavitation

occurs in these experiments.
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Figure 3.3: Repeated pressurization-depressurization cycles in murine brain tissue in a single
location. Cavitation pressures appear to decrease with the first several cycles, but stay constant with
subsequent cycles. It is unclear whether this decrease in cavitation pressure is due to preconditioning of
the tissue or a failure mechanism. Uipublished data provided courtesy of Professor Shelly Peyton and
Sualyneth Galarza.
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4 Impact indentation of compliant viscoelastic materials: A new
analytical framework and connection to other experimental
techniques

4.1 Introduction

Impact indentation is an experimental technique recently developed by Van Vliet et al. that

may be used to assess the impact response of compliant tissues and polymers. Specifically it

has been used in conjunction with shear rheology to mechanically characterize tissue simulant

polymers, which are intended to have a similar mechanical response to soft tissues such as heart,

liver, and brain.6,28 The technique involves the impact of a sample with a pendulum with a small

(~mm) indenter tip, and the displacement vs. time response may be used to quantify the

maximum penetration depth, quality factor of the oscillation, and the energy dissipation capacity

of the material (see Section 4.2.2). One study using rheology and impact indentation showed a

successful match of recently developed crosslinked PDMS-based gels to heart tissue, but an

adequate match was not found for more compliant liver.6 A more recent study using impact

indentation only has shown that multilayered composite gels match the impact response of brain

tissue. 28

While the match between the impact response of the polymer to the response of the tissue

is clear,6,28 the interpretation of these outcome measures and their relation to rheological

measurements were only qualitatively understood. Comparison between impact indentation and

rheology experimental data has been limited to qualitative changes (e.g., maximum impact depth

decreases with increasing G .)6 Moreover, the model for these experiments relied on finite

element modeling in ABAQUS (Dessault Systemes, Velizy-Villacoublay, FR), which provided

qualitative predictions and was only able to predict responses of impact indentation from

rheology material properties, but not the inverse problem.
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In this chapter, an analytical model for impact indentations is developed based on linear

viscoelastic theory and contact mechanics. A direct relationship between rheology and impact

indentation is developed, enabling improved understanding of how the material properties affect

the impact response without the need for more time consuming finite element modeling. New

relationships between impact indentation parameters are also established, and new numerical

tools are introduced to fit the impact indentation raw data. Moreover, the inverse problem of

relating impact indentation experimental data to rheological parameters (e.g., G' and G") is

solved and demonstrated via data simulated in ABAQUS.

4.2 Background

4.2.1 Simple mass spring dashpot system

The analysis in this section hinges on the analysis of a simple, one dimensional spring-

mass-damper model of a mechanical system. From elementary dynamics, we know that

m + bit + ku = F(t) (4.1)

where u represents displacement, m is mass, b is the damping coefficient, and k is the stiffness

of the spring. Impacts may be modeled by a delta function in the external force term F(t) with a

magnitude equal to the impulsive force (equivalently one may set the force term as zero and

input the velocity into the initial conditions); any other external loads on this system can be

lumped in this term. The mechanical behavior of an impact response is based on the poles or

eigenvalues of the system; the solution will be a damped oscillation in the form6 5

u(t) = cleAit + C2 eL2t (4.2)

Where the eigenvalues are defined as:
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-b b\ 2 k (43)
2 =1-+ ---
2 2m - 2m m

It is convenient to rewrite this in terms of the "natural frequency" wn = , and the damping

b
ratio

2 , ( mm,

1,2 = (wn i - 1 = -(On + (4.4)

If ( < 1, the system is underdamped, then we obtain the solutions:6 5

u(t) = cle-eWnt+iWnJ[ (it + C2 e-<Wnt-ianfl - t (4.5)

= cie(-a+i fl)t+ c 2 e(-a-ift

The quality factor of the system is defined as:

1 =On (4.6)

2 2a

and can be interpreted as the number of cycles it takes the amplitude of the system to decay by

e. 65

4.2.2 Impact indentation experimental method

The impact indentation method may be used to measure the underdamped impact

response of a viscoelastic material. The method uses an instrumented nanoindenter (Micro

Materials, Wrexham, UK) with a pendulum as the indenter or impacter (Figure 4.1). The sample

is attached to the stage by glue and may be hydrated during the entire procedure. The impact

procedure is as follows: First, contact is established such that the measurement frame is known.

Next the pendulum is held in place by a solenoid while an electromagnetic force is applied (i.e.,

preloaded) at the top of the pendulum. When the pendulum is released, the load accelerates the
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pendulum toward the sample, and the sample is impacted with the pendulum; the

electromagnetic load is applied throughout the entire procedure. The displacement vs. time (and

therefore velocity and acceleration) is recorded via capacitor plates at the bottom of the

pendulum. Impact speeds on the order of 10s of mm/s have been achieved, and high strain

energy densities may be achieved due to small indenter radii (on the order of a millimeter). Two

indenter geometries have been used thus far: spherical and cylindrical flat punch. 6 Gravity

plays a role in the acceleration of the pendulum, but the magnitude and direction depends on the

equilibrium position of the pendulum; this will be explored in Section 4.4.9.

Electromagnetic coil
(applies force)

Displacement capacitor

Indenter
mount

Pendulur 
nertiaL

Figure 4.1: Schematic of the impact indentation device. A sample is mounted on the stage. The
pendulum is accelerated toward the material and impacts with a small flat punch or spherical indenter.

The three loads that are felt by the deformed material are (I) the pendulum inertia, (2) an electromagnetic

force on the pendulun (which in turn applies load on the sample) and (3) gravity. Displacement vs. time

is measured via capacitor plates.
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4.2.3 Original analysis of impact indentation data

The analysis used in previous studies has relied on a mass-spring-dashpot model with a

6,23,6pure impact (i.e., the force term in Equation 4.1 is a delta function). Three parameters

were measured in the previous impact indentation studies: the maximum penetration depth xmax;

energy dissipation capacity K; and the energy dissipation quality factor Q (Figure 4.2). 6,3,2,28,66

The quality factor is the same as previously described, where Q was measured by fitting the

exponential decay relaxation time of the top "envelope" of the curve (a in Equation 4.6) and the

natural frequency, and calculated from Equation 4.6 (Figure 4.2A).6 23 ,66
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Figure 4.2: Raw experimental output and previous analysis in impact indentation. (A) Displacement
vs. time and (B) velocity vs. time plots from an impact indentation experiment. x,,,, is found from the
maximum displacement, K is measured from V.. and V,,, and Q is measured from fitting an exponential
decay constant T and from the frequency of the response. Adapted from Kalcioglu et al.2 1
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K is a measure of the total energy the material dissipates from impact for the first half

cycle; it is measured from the kinetic energy in from the impacter Ein = mV 2 , the kinetic
2 inl

energy out of the impacter E0 ut = mv 2 t, the energy dissipated by the pendulum Es, and the

energy stored due to pendulum "stiffness" E :23

EK - Eout - E - Er (4.7)
K = nd r

Ein - E - EP

We note that the analysis for K and Q hinges on the assumption that the impact kinetic energy is

the only significant energy inputted into the system.

4.2.4 Previous finite element modeling

A finite element model was created to help analyze these data, as well as to determine

techniques to design tissue simulant polymers that match impact response of tissues.66 The model

described by Adityan was used to help design polymers with the same impact response as

tissues by altering parameters in the viscoelastic properties via altering the solvent loading,

crosslinking of the material, etc. Additionally, a multilayer composite polymer system was used

to better replicate brain tissue response to this mechanical impact loading.2 8

This general approach to measure the system is appropriate for matching and customizing

impact response of different materials. Even if the parameters are inaccurate in a general sense, if

they are measured consistently between different samples, good matches for tissue simulant

materials may be verified.

Nevertheless, several of the assumptions presented above are not valid, and the model

accuracy must be improved to extract more meaningful parameters from the data (e.g., more

accurate measures of Q or viscoelastic moduli). While the impact response was replicated by
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simulation and experiment, it can be argued that the interpretation of the data is inaccurate and

incomplete. A more rigorous analysis of the collected experimental data may yield more useful

relationships. First, the interpretation of the data will be analyzed from a phenomenological level

via simulation, showing the limitations of measuring K and Q as has been done previously. Next

a new analytic technique will be proposed and validated by simulation. Additionally,

relationships between the empirical parameters xmax, K and Q will be discussed, and a

mathematical relationship between rheological data, impact indentation parameters, and

frequency dependent moduli will be established.

4.3 Limitations of the previous model & data analysis: Effect of load on K and Q

In this section, we explore the effect of the experimental conditions on the calculation of

K, Q and xmax via finite element simulation. In particular, we investigate the effect of the

electromagnetic load (which is applied to the pendulum to accelerate it toward the sample) on

these output parameters. This is of particular interest because the superimposed load is not taken

into account in the previous calculations of K and Q, where an inertial impact (i.e., impulse

input) is assumed. In studies we have published, we have assumed that K, Q and xmax were

functions of impact velocity only, but experimentally, the impact velocity and the external

magnetic load applied are coupled; the external load must be increased to increase the impact

velocity. In simulation we are able to decouple these effects, and analyze the effect of individual

variables.

We used a simplified model of impact loading in ABAQUS Standard (Figure 4.3), based

on a previous model probe geometry and mesh.66 In this simplified model, a mass impacts the

viscoelastic material with a velocity Vi and with a superimposed load P, which are varied

separately. For simplicity, we ignored the effects of adhesion, pendulum stiffness, pendulum
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damping, and gravity, which have been incorporated in the previous finite element models. The

viscoelastic material was defined by a Prony series which was fitted from rheological data; the

constants of the Prony series are listed in Table 1. However, the relaxation was only assumed to

occur in the shear modulus, but not the bulk modulus, contradicting previous analyses. The

density of the viscoelastic material was 965 kg/m3, the mass of the impacter was 0.171 kg and

the geometry of the indenter was a rigid flat punch of 1mm radius, which has a beveled edge to

improve numerical stability. ABAQUS Standard was used because the deformation was assumed

to be quasistatic.

Table 1: Prony series of PDMS data used for ABAQUS simulation

Go =25.7 kPa

Time constants Normalized Prony
z; (s) coefficients

G/Go

0.0412 0.63

0.340 0.089

0.702 0.0038

1.45 0.032

2.89 0.0077

5.88 0.013

11.9 0.012

24.9 0.0060

49.2 0.0018

100 0.0068

The raw data output for different responses of the system are shown in Figure 4.3 B.i-iii.

Figure 4.3 B.i., shows the response of an impact without a superimposed load, with the

impacter-sample interface remaining in contact (black) and when contact may be lost (red).
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When the two surfaces remain in contact, a damped oscillation analogous to the impulse

response to a mass-spring-dashpot is observed; when the surfaces do not remain in contact, the

impacter leaves the sample at a velocity Vout, which is constant after contact due to no external

loading. Figure 4.3 B.ii. is the response of a step load P with no initial velocity; this is analogous

to a creep experiment, except the system is underdamped, so oscillations are present. The

displacement gradually reaches equilibrium, and contact is never lost. Figure 4.3 B.iii. is an

impact with Vi, and superimposed load P, identical to the ideal conditions assumed in impact

indentation, neglecting pendulum stiffness, gravity, and pendulum damping; contact is not lost in

this case, but may be lost when impact velocities are high comparing to superimposed load.

Next we consider how the superimposed load and impact velocity independently affect the

energy dissipation capacity K (Figure 4.4A). To do so, we varied the impact velocity while

keeping the superimposed load constant (Figure 4.4A). Additionally, the closed blue circles

show the simulated data at experimentally relevant loads and impact velocities, and the open

black circles show real experimental data at those same applied loads and impact velocities.

Xmax is similarly affected by the superimposed load (Figure 4.4B).

48



A . 
I. 

Indenter l 
impacts gel at 
velocity vm 

B I. 

"O 
ro 

.52 
+-' 
:J 
a. 
c 

+ Applied load P 

Gel or 
tissue 

time 

OJ 0 4 

time(• ) 

II. 

Apply loading and initial 

II. 

velocity 

"O 
ro 

.52 
+-' 
:J 
a. 
c 

....... 

time 

iii. 

Ill. 

o 1 0 2 03 o• 05 D6 o 1 ca o.t 1 

t ime(•) 

Apply loading and initial 
velocity 

time 

0 05 

o~~~~~~~~~~~ 

o o 1 o' 03 04 o s oe 0 1 oe og , 
t itn. (s) 

Figure 4.3: Finite element model of a simplified impact indentation experiment with various 
loading and velocity input conditions. (A) i. Cartoon representation of an impact indentation experiment 
neglecting gravity and pendulum damping. A rigid indenter with a mass m impacts a viscoelastic gel with 
a velocity V;11 and external load P. ii. A 2-dimensional FEA model prior to impact. The mesh in the gel is 
concentrated near the impacter. iii. FEA model under impact with von Mises stresses shown. Stresses in 
the material are highest at the edge of the indenter (stress increases from blue, green, yellow to red). Since 
the deformation is quasistatic, no wave propagation is observed. (B) i. Pure impact. Impulse load input 
with impacter remaining in contact (black) and losing in contact (red). If the impacter remains in contact, 
the displacement vs. time is a pure damped oscillation ; if contact is not maintained, the impacter loses 
contact with the sample prior to the second peak of the damped oscillation. ii . Step load input: "creep" of 
an underdamped system. iii . Impact indentation input: simultaneous impulse and constant load input 
results in superposition ofresponses in B.i. and B.ii . 
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Figure 4.4: The effect of superimposed load on K and x.. (A) K vs. V.. and (B) xI,, vs. VII for
various constant external loads P (colored solid lines), simulated (closed circles) and experimental (open
circles) data uider experimental conditions. (A) For no load, K remains constant, while K appears to
decrease with V for increasing load. (B) For no load, xn,, increases linearly, and increasing load also
increases. For the simulated and experimental data where V.. and load are coupled, the effect of the load
and impact velocity are coupled.

We notice several trends. First, K is constant with impact velocity for pure inertial impact

(no superimposed load). This is expected (and will be shown rigorously in the next section), as

we are using a linear viscoelastic material model, so the energy dissipated is linearly related to

the energy inputted; thus the energy dissipated normalized to the energy put in is constant. Next,

we see that K increases as constant load increases. This is an artifact from normalizing to the

energy inputted from the impact, but we are not taking into account the work done by the

electromagnetic external load. It also explains the decreasing trend with increasing impact

velocity with constant nonzero external load: the trend with impact velocity is an artifact due to

normalizing data not to total energy inputted, but rather to the impact kinetic energy only. We

also see that the K increases with V, for both the simulated experimental conditions (blue closed

circles), as well as with the experimental data (open circles). This trend could be attributed to the

impact velocity coupled with increasing load and an incorrect method of normalizing the data.
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Another way to interpret this effect of the external load is that K is being measured via the

conservation of energy, where the energy inputted is only from the kinetic energy of the

impacter; however, in reality the kinetic energy of the impacter is modulated because the

electromagnetic load is also doing work on it, which decreases the kinetic energy of the

pendulum in the rebound velocity of the impact. In other words, according to linear

viscoelasticity, variation of K with impact velocity is an experimental artifact. Nonlinear material

properties may also affect the energy dissipated, but the strain stiffening will tend to decrease

energy dissipated with increasing impact velocity because the material behaves more elastically;

the opposite trend is observed experimentally with the previous data analysis model.

Further, the analysis from Equation 4.6 is also insufficient for measuring the quality factor

Q for the system for essentially the same reason. Measuring Q by fitting a decaying exponential

to the displacement vs. time curve and measuring the natural frequency of the material is only

valid if the input function is an impulse (i.e., an inertial impact with no external loads). The

external load drives the probe into the material, resulting in a final equilibrium point inside the

sample. If the impact plane is plotted in the decayed oscillation, it is clear that one cannot draw

two identical exponential decays that envelope the decaying oscillation (Figure 4.2), and it is

this single time constant (along with the natural frequency of the material) that defines Q.

Increasing the load will thus increase the time constant of the exponential decay on the top curve

(which has been used to measure Q in all previous analysis) thus decreasing Q. Conversely, the

bottom decay curve would result in an increased time constant with increasing load, further

showing the inconsistency in the analysis. It is shown in these simulations and in experimental

data that Q decreases with impact velocity, which is clearly due to the coupling with the

electromagnetic load. However, in Section 4.4.6 we will develop two new methods for
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measuring Q from experimental data, and both clearly show that Q is constant with impact

velocity when constant load is accounted for.

There may be regimes where this effect can be ignored (i.e., low external load, high impact

force), but the results suggest that the compliant tissues of interest are in the regime where a

conservation of energy analysis is not valid. To summarize: The data presented in various papers

shows that K and Q are a function of impact velocity. 23 ,28 The theory of linear viscoelasticity

predicts that these parameters should be constant with impact velocity, and will be demonstrated

rigorously in the following section.

Finally, K and Q are both system parameters, meaning that they are affected by the mass

and geometry of the pendulum, as can be seen from Equations 4.4 and 4.6. A more exact

relationship between mass and K and Q will be discussed in the following section.

4.4 A new analytic model of impact indentation

In this section we discuss an analytic viscoelastic model for impact indentation, and use it

to (1) predict impact response from rheological data, (2) determine material properties from

impact indentation data, (3) relate K and Q, and (4) establish further relationships between

variables.

4.4.1 The relationship between K and Q

Q is a measure of the rate of dissipation of energy per unit cycle (natural frequency),

and K is the amount of energy dissipated from impact to exit (approximately half a cycle).

Clearly these two quantities should be related. A simple relationship may be established by

assuming the solution of displacement of the impacter to be in the form of Equation 4.5. For an
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impact at velocity Vi, without external loading, the initial conditions are u(t = 0) = 0 and

u(t) = e nt sin(wn)1 - ( 2 t)
w41 - (2

= Im tCe(-w&n+i6 d)t,

V.
where C = Vi and&wd = U)1 -2

Taking the derivative of the complex displacement we obtain:

du*(t) = C(-(Wn + iWd)de(-CUn+iwd )t
dt

The velocity over time is:

du(t)

dt
Im I dt I = Ce- nt [(O COS(Wdt) - (w, sin(wdt)]

If we assume

we see that:

that velocity out of the system occurs at time t ~ -= (this is not
2 Od

strictly true),

T
du(t = T)

U dt - Ce-Cwnt [wd COS (a -) - n sin Wd T)]2 (4.11)

If we ignore the effect of the pendulum damping and stiffness, then the energy dissipation

capacity reduces to:
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_ Ein-Eout _MVin-2 mVut (4.12)
K 1V.2

2 Lfl

K - Vout -2n

V?Vin

K- (4.13)K ~-,1 - e - Q

A more exact solution for the same model may be obtained by solving for the maximum

T
velocity, which is slightly before t = due to phase lag. The exact occurs at:

2

(( -_)2 (4.14)
t =- tan' - = 6()

OJ -2( +1 oUd

- _ -6(Q) (4.15)
K = 1- e Q

We observe that K may still be represented as a function of only Q. We note that this is only an

approximation of the real system, as the transients were neglected in this analysis. Moreover,

these expressions are only valid for geometries where the surface area of contact is constant. For

the spherical geometry, for example, there is no close form solution in terms of elementary

functions.

4.4.2 Quantifying xmx

If we use the same assumed solution for the displacement as Equation 4.8, we see that

the maximum penetration depth xmax scales linearly with impact velocity Vn with a slope of

1 dt)T Tr
1 Clearly, x occurs when = 0. If we assume that occurs at t ~ - = -

nmax ocrdt 2 6d
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Vin -((n- Jr (4.16)
Xmax= e dd sin(Wd(-))

yin i
2  

* it

Xmax - e e 2Q (when 1 - <2 1)0) d O~(4.17)

4.4.3 A differential equation for impact on a viscoelastic material

Impacts on viscoelastic materials by rigid impacters have been investigated

previously.67' 68 In our experimental method, impacts tend to be in the quasistatic regime, where

inertia of the viscoelastic material may be neglected, and therefore wave propagation effects can

be ignored. The justification for this is that the timescales of impact (i.e., the period 100s of ms

in the simulations above) are much longer than the time for the shear wave to propagate from the

impacter and back (as the wave speed will be on the order of m/s for a material with a shear

modulus of a kPa). 69 The simple mass-spring-dashpot system is often inadequate due to

frequency dependence of viscoelastic materials and geometric effects of contact mechanics. The

viscoelastic model we use is the generalized Maxwell model, which may be determined by

fitting the rheological parameters G'(w) and G "(w), and may be rewritten in the time domain

via the Prony series G(t) (Section 1.2.1).

The one-dimensional, (ID) impact of a rigid indenter and a viscoelastic material, as well

as the impact of a spherical impacter, have been investigated thoroughly. 67' 68 In this section we

apply this analysis to the impact indentation technique, and derive equations that may be applied

to predict impact response via rheology data. Further, we use these equations with a systems

analysis approach to relate rheological parameters and impact indentation results via transfer

functions (Figure 4.5). We demonstrate the ability to use this analysis to measure glassy and

55



relaxation moduli from impact indentation data. The effect of pendulum gravity and constant

applied electromagnetic load may be taken into account using this analysis.

Input Transfer Response

(Load) Function (Displacement)

LI

K, Q

0D E

In put. Response

Time 1Time

Transfer Function

G', G" KQ
Input +

System ID Response

Figure 4.5: Relating rheological parameters to impact response. Transfer functions may be used to go

from load vs. time input to displacement vs. time output, as well as to predict K and Q from rheological

parameters. They may also be used to measure viscoelastic moduli from displacement vs. time output,

which was not possible Lising finite element models.

Chen and Lakes present an excellent review of solutions for the impact of viscoelastic

68
materials. We note that we assume that inertia in the viscoelastic material is small comparing to

that of the rigid impacter (i.e., the mass of the indenter is much larger than the mass of the

viscoelastic material). We start with the purely linear elastic case. For ID impact via a block

indenter, the deformation over time can be described by the ordinary differential equations:
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F(t) = m dzu(t) (4.18)
dt2

d 2u(t) EAu(t) (4.19)

m t2 h (iD block impacter)

where u(t) is the displacement of the impacter, m is the mass of the impacter, E is the Young's

modulus of the elastic material, A is the surface area and h is the thickness of the viscoelastic

material.

d_____) 8R 1 /2 Gu3 / 2 (t) (4.20)

Md 2U(t) 
(Spherical impacter)

dt2  3(1 - v)

where R is the radius of the probe, G is the shear modulus, and v is the Poisson's ratio. We note

that Equation 4.20 resembles the Hertz solution.69 By analogy, using the static contact

mechanics solution described by Johnson, we may express the impact of a rigid cylindrical flat

punch indenter as: 69

dzu(t) 4RGu(t) (4.21)
dt - v)(Flat punch impacter)dt2 (1 _ V)

Chen and Lakes go on to show that the impact of a viscoelastic solid for the rigid 1 D block and

spherical impacters, the governing differential equation may be written in terms of convolutions

of the Prony series E(t) or G(t): 68

d2 u(t) _A t( du(t') (4.22)
m dtE -t' dt' dt'(1D block)

du(t) R t (4.23)
m =- 3(1 - G(t - t')d(u 3/ 2 (t') (Spherical impacter)

dt2 3(1 - v) fo

Again, by analogy, it is clear the contact mechanics result for a flat punch indenter on a

viscoelastic material may be used to model the impact as well: 70
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dzu(t) 4R ft du(t) (4.24)
m 2 = - G(t-t') , dt' (flat punch impacter)

dt2  (1-v) J dt

We note that the response of these solutions is only valid while the probe and the material

are in contact. For the linearly elastic case, the impacter and the elastic material are in contact for

exactly half a cycle, and for the viscoelastic case, contact will occur for slightly less than half a

cycle. If a load is applied, then the situation may change and these instances are discussed later.

4.4.4 Solutions to "pure impact": New analytic methods for Q

The solutions to Equations 4.22, 4.23 and 4.24 may be found numerically. However, for

the linear ODEs Equations 4.22 and 4.24, using transfer functions we can very easily calculate

Q (and K from Q) without solving the solution (Figure 4.5). If we add an arbitrary force term

F(t) to the right hand side of Equation 4.24, divide through by mass m, and take the Laplace

transform we obtain:

2=F(s) (.5s2U(s) + asG(s)U(s) = (flat punch impacter) (4.25)

Where

4R

a m(1 - v)

Taking the Laplace transform of the Prony series (Equation 1.3) with n coefficients and

substituting, we obtain:

s2 U(s) + a G, + )is U(s) = (Flat punch impacter)

We may obtain a solution in the form:
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_ F(s) (4.27)
U (S) = _-

where the characteristic polynomial P(s) is:

G Ns (4.28)
P(s) = m s2 +a Go + ZG/ (Flat punch impacter)

If we set P(s) = 0 we may solve this expression numerically to obtain the n+2 poles for

the system, of which two are complex and n are real. The two complex poles are analogous to

those in Equation 4.4 and may be used to obtain Q. From Q we may obtain K (and xmax). The

remaining n poles are transients from the relaxation times in the Prony series.

Thus if we can obtain the Prony series from rheological experiments and we know the

mass and radius of a flat punch indenter, we may predict the impact response. We have reduced

what was previously achieved by finite element model in Section 4.3 to solving an algebraic

expression. However, this analysis is only valid for the flat punch geometry, which we have used

more extensively. The spherical indenter does not have solutions in terms of elementary

functions, but may be solved numerically (Equation 4.23). This solution is an improvement over

finite element analysis.

The forcing term for impact indentation experiments can be assumed to be a linear

superposition of a Dirac delta function 6 dat contact time to and a constant (electromagnetic) load

Fei stepped at contact:

mVn(.9
F(t) = SAd(t - to) + FeiH(t - to) (4.29)

At
where H(t - t0 ) is the Heaviside step function and At is the time of impact.
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4.4.5 A technique for measuring viscoelastic moduli by impact indentation

We now look to applying this simplified model of impact indentation to measure

dynamic moduli by impact indentation, which is the inverse problem of that solved in the

previous section (Figure 4.5). We notice that if it is possible to calculate the poles of the system

from a known Prony series, it should also be possible to calculate the Prony series from poles (or

corresponding transfer function), provided there are the same number of equations and

unknowns. For the standard linear solid (i.e., one time constant in the generalized Maxwell

model) the transfer function reduces to a 3rd order polynomial, and the three material properties

(glassy modulus Go, relaxation modulus Ge, time constant r) can be determined by solving the

reduced Equation 4.28:

P(s) = m s2 + aG, + (Go - G)s (4.30)

S + 1/C

S 2 Gc
0 = s3 +-+ asGO + a-

TT

For a Prony series with more time constants, the analysis becomes more difficult. For a two term

Prony series, there are five material properties: glassy or relaxation modulus (Go & G.), two

time constants (T1 and -C2 ), and two weights for time constants (G 1 & G 2), but only four poles.

Gis G2s (4.31)
P(s) = m s2 + a G + + + + )]= 0 (Flat punch impacter)

s i +/ S+ 1/T2

In this case another parameter must be measured to obtain the five parameters. For

example, in addition to the four poles, the relaxation modulus may be obtained from the depth of

the probe as t -> oo (i.e., equilibrium is reached).
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4.4.6 Methods for determining the poles from experimental impact indentation response:
Logarithmic decrement and systems identification

To improve our measurement of the impact indentation parameter Q, two new data

analysis procedures are explored: logarithmic decrement and systems identification. Logarithmic

decrement is a very simple way of measuring the poles of a mass-spring-dashpot system,

whereas systems identification may be used to fit data with transfer functions with as many poles

for given input loading conditions.

Logarithmic decrement may be used to measure the damping coefficient of an

underdamped system by measuring the values of the peaks of the damped oscillation. The

logarithmic decrement A is defined as:6 5

1 x(t) (4.32)
A= -in

n x(t + nT)

Where x(t) is a peak, n is the number of periods between peaks, and T is the period. The

damping factor is related to A by:

1 (4.33)

And therefore the quality factor can be determined directly by the following relation:

1 2r )2 (4.34)

2 A

Q when ' « 1 (4.35)
The convenience of this method of calculating Q is that it will calculate the same for

impulse input, step input, and a combination of the two, provided that the system behaves like a

simple mass-spring-dashpot system. This can easily been verified, and is provided in the
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Appendix (and we note that a modified form of Equation 4.32 must be used). Practically

speaking, the constant load that complicated the previous analysis discussed in Section 4.3 does

not affect logarithmic decrement analysis. Moreover, the logarithmic decrement can be

measured from the output data alone; the input signal (i.e., impact force, external load) is not

necessary for the analysis.

A more complete picture of the poles can be provided from systems identification

methods, as may be done with MATLAB's System Identification Toolbox (Mathworks, Natick,

MA). Systems identification takes input and output data for a system and fits a prescribed

transfer function (Figure 4.5). The fit and coefficients for the transfer function are measured, and

the poles can be determined numerically from the characteristic polynomial.

4.4.7 Measuring material properties from impact indentation data: Proof of concept

In this section we use the methods in Sections 4.4.3 and 4.4.6 to analyze data from

simulated impact indentation data. The model used is the same as that of Equation 4.24, and like

that model, the effects of gravity and pendulum damping were neglected. Material properties for

a three component generalized Maxwell model (i.e., standard linear solid) were simulated to test

the robustness of the analytical techniques to complexity of the true material properties.

4.4.7.1 Predicting impact response

Impact response can be predicted by measuring the displacement vs. time response via

simulation in finite element software or solving Equation 4.24, or alternatively by calculating

the poles of the system (i.e., the roots of Equation 4.28). The displacement vs. time response of

ABAQUS simulation and numerical solution of Equation 4.24 or 4.28 is shown in Figure 4.6.

In these simulations, impact velocity was VO = 4.1mm/s, the constant force P = 5mN with a

62

"O"W"WT



standard linear solid viscoelastic material of G, = 5.03 kPa, Go = 10.1 kPa, v = 0.05 s, and

v = 0.49.

A similar response is observed with the ABAQUS simulation vs. the numerical solution

(Figure 4.6), but there is a clear disparity between the two, and the reason why is unclear. In

theory, the two solutions should be identical, as both are based on the same material model,

system properties, and loading conditions. One explanation for the discrepancy may be the

beveled edges in the impacter in the finite element simulation, which are incorporated into the

model for numerical stability.

*

E

Ea)
0

Cu
-5-

0.35?
- Analytical Model

0.3 --- ABAQUS Simulation

0.25

0.2

0.15

\ /
0

0 0.2 0.4 0.6 0.8 1
time (s)

Figure 4.6: Displacement vs. time for a simplified impact indentation experiment simulated by an
analytical model and in ABAQUS.

4.4.7.2 Analysis of simulated experimental data with logarithmic decrement: Measuring Q

The displacement vs. time responses of finite simulation and numerical simulation were

analyzed via logarithmic decrement, from which Q was measured. The results are plotted against

impact velocity in Figure 4.7. Unlike in previous analyses of K or Q, where these output

measures were a function of velocity, logarithmic decrement shows that Q is a constant with
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velocity (and applied load), as is predicted from linear viscoelasticity of a mass-spring-dashpot

system. Interestingly, the constant Q value appears to hold when transients are included as well

(this model includes relaxation times), at least in the range of impact velocities and loads that

were evaluated here. Equation 4.30 predicts a Q value of 2.53, showing that logarithmic

decrement accurately measures Q.

3.5 - Increasing load

3.0 030- 00 0 0 0
2.5 - E N N

52.0 _ mN 9mN l3mN 17mN 21mN

1.5 -

1.0 - 0 ABAQUS Simulation

0.5 - m Analytic Model

0.0- 1 1

3.5 4.5 5.5 6.5
Impact Velocity (mm/s)

Figure 4.7: Q vs. impact velocity for ABAQUS simulation and analytic model output. Q was
measured using logarithmic decrement. Measured Q is constant with impact velocity and with increasing
load.

4.4.7.3 Analysis of simulated experimental data with systems identification: Measuring Q
and viscoelastic moduli

Systems identification allows us to not only accurately measure Q, but to obtain enough

information from the system to measure viscoelastic moduli and time constants, provided that

experimental parameters such as mass and pendulum damping are known. In this analysis force

vs. time and displacement over time are provided as input, and an assumed transfer function is

fitted in the frequency domain. A fit of simulated data with the corresponding transfer function is

provided in Figure 4.8. The coefficients of the transfer function or the roots of the characteristic

64



polynomial may be used to solve for G,. Gi, and T1 by solving a system of nonlinear equations in

the form of Equation 4.30 or 4.31. Table 2 shows that Go, Go and r may be accurately

measured via systems identification.
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rMndel name ll

Color: [i.0.1

From input "ul" tc cutput "y1":
1350

3^3 + 154.7 s^2 + 1485 3 + 5.303eO4
Name: t-l

Continuou3-time identified transfer func

Diar and Notes

4 Impcrt mydata

Tranafer functicn extimation
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Present close -- Help

* Model Output: yl

File Options

X 10'
3.5

2.5

2
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0
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Measured and simulated model output

0.2 0.4 0.6 0.8 1
Time

Figure 4.8: Systems identification of impact indentation data. Fitting of the displacement vs. time data
via systems identification provides a transfer function. The transfer function miay be used to calculate
viscoelastic parameters.

Table 2: Comparison of output results in
numerical simulation (ABAQUS) and new
system identification.

prediction of Q, shear moduli and relaxation time, for
analytical model, using either logarithmic decrement or
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Inputted or 2.53 10000 5000 0.05
Predicted

ABAQUS Log. Dec. 2.93
simulation

Sys. ID 2.81 10950 4231 0.077

Analytical Model Log. Dec. 2.50

Sys. ID 2.51 9954 4919 0.052



4.4.8 Effect of geometry and mass of the impacter on the outcome variables

It is clear that Q and therefore K are dependent on the pendulum-indenter-impact material

system, as can be seen by Equations 4.23 and 4.24. Thus, Q and Kwill be functions of not only

the impacted material, but also indenter geometry, mass of the pendulum, pendulum damping,

etc. While the derived impact indentation equations (Equations 4.23 and 4.24) do not have

explicit solutions for Q in terms of the mass and geometry (i.e., radius) of the probe, we can

understand the trends by looking at the simple mass-spring-dashpot system. From Equations 4.4

and 4.6 we see that Q scales with the square root of the mass and the square root of the material

stiffness. These trends are mimicked in the more complete model, but must be solved

numerically.

4.4.9 A complete mathematical model for impact indentation experiments

While Section 4.4.3 provides a starting point for the analysis, to more accurately mimic

the experimental setup we must include the effects of pendulum gravity and pendulum damping.

We begin with a free body diagram (Figure 4.1). We assume that, since the angular

displacements are small, the movement of the pendulum is only in the x direction, and thus the

pendulum acceleration is linear rather than angular, and the inertia of the pendulum/indenter is

represented by mass instead of moment of inertia. Therefore, the inertia of the indenter and the

material response of the viscoelastic material are as described in Equations 4.23 and 4.24. The

gravity term is:
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F (8(t)) = mgL(sinOeq - sin 8(t))

~ F(u(t)) = mgL*u(t)

where L* is the ratio of the pivot-center of mass distance to the pivot-indenter distance. The

pendulum has a damping force is:

du
Fd(t) = b(t)

Performing a force balance, and including an external load Fext (t):

FextM dzu(t) +b du(t) 4R ft du(t')
dt2 dt (1 - v) ( dt

(4.37)

(Flat punch)

Fextt~mdzu(t) +bdu(t) +8R1/ 2 e
d(t) dt 3 8R 1 +G(t - t')d(u3/2 (t')) + mgL*u(t)Fet =n-d t2 dt -+3(1 -v) o G(

(4.38)

(Spherical impacter)

For the flat punch geometry, the same method may be used as in Section 4.4.4 to predict

the impact response from the characteristic polynomial:

/n
2  4R ( Gis

P(s) = ms + bs + G + S+ i)+ mgL* (4.39)

and similar formulations may be used to extract the moduli and time constants from the impact

indentation response, assuming the damping coefficient, gravity term, and external loads.

Confirming these results with simulation and with experimental data should be pursued in future

work.
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4.5 Discussion

Applying this new model of impact indentation yields several insights as to how the

system is expected to behave. This analytical approach also provides a new platform for

predicting impact indentation results and analyzing experimental data.

The previously published model, while based on the same engineering principles as the

current one, was oversimplified and therefore prone to misleading interpretation of results on

highly compliant materials. Namely, the model did not take into account the coupling of velocity

and external load on the pendulum. Simulations allowed for the decoupling of velocity and

external load, and showed that the trends of K, Q and xmax with impact velocity were strongly

affected by external load. In fact, these simulated data showed that K and Q are constant with

impact velocity for linearly viscoelastic materials. The change with impact velocity is an artifact

of the analytic procedure. For example, in the previous calculation of K, the conservation of

energy did not include the external load term, which adds energy into the system during the

experiment. Therefore, since K is normalized only to the kinetic energy into the system, the

increase in K with impact velocity is an artifact of the coupled external load.

Theory suggests that K and Q are properties of the system (but not material properties)

and are independent of the external force if delta or step inputs are applied. In fact they are both

related to the poles of the mass-spring-dashpot system. Interestingly, it is readily shown that K

and Q are essentially measurements of the same property in the case of a simple mass-spring-

dashpot system; in other words, K is a function of only Q. However, it is important to note that

this analysis neglects transients due to relaxation times from the generalized Maxwell model.

Future work should determine the exact relationship between K and Q when using more complex

material models.
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While nonlinear mechanical properties are not included, it is of interest to understand the

effect of nonlinear strain stiffening on Q and K. Simple investigation of a spring-mass-dashpot

model suggests that increased strain stiffening is analogous to increasing the spring stiffness k,

which would be expected to increase Q (Section 4.2.1). Since tissues and polymers often display

nonlinear elastic properties, it is reasonable to question whether and how our engineering

approximation may affect accurate prediction and analysis of impact indentation experimental

data. If most of the stress in the sample leads to deformations in the linear viscoelastic regime,

this model may be useful in analyzing data. Future work can assess the usefulness of our linear

model via finite element simulations of linear viscoelastic vs. nonlinear viscoelastic models.

Further, this analytical model provides a more efficient platform for predicting the

response of the system: displacement vs. time solutions were solved numerically in much less

time than a finite element model, and the analytical parameters K and Q were determined with

simple algebraic expressions. The inputs to the finite element method and to the analytical model

are essentially the same: physical and mechanical properties, geometry, loading and velocity

conditions, masses, etc. However, the analytical model is limited as it may not be used to include

effects of adhesion, nonlinear mechanical properties, and complicated geometries beyond a flat

punch or sphere on a semi-infinite halfspace. We note that these simple algebraic solutions for K

and Q are only available for the flat punch geometry. While we may solve for displacement vs.

time of the spherical impacter numerically from the nonlinear Equation 4.23, the Laplace

transform is invalid for nonlinear ODEs, and K and Q are more difficult to predict directly.

This analytical model provides several new methods for measuring Q, and thus K, that

are increasingly accurate. Logarithmic decrement is particularly convenient, but is based on a

simple mass-spring-dashpot model only, and provides only two poles. Systems identification
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assumes a transfer function and fits the curve, and will thus output several poles, from which K

and Q as well as the dynamic moduli and time constants may be assessed. We have validated this

analysis (Table 2), but we note that there is some error (<20% for elastic modulus and time

constant) for ABAQUS simulated data. The reason for this error is unclear, but it could be due to

nonlinear strains or a beveled probe that are not taken account in the analytical model used to fit

the data.

Overall, this study presents a new way of analyzing impact indentation data. The new

model provides a more rigorous interpretation of the previous analysis of impact indentation. It

allows for both prediction of the experimental data from mechanical properties (which was

attained previously by finite element modeling) and also extraction of mechanical properties

(such as viscoelastic moduli and relaxation time constants) from experimental data. Further,

assumption of a simple mass-spring-dashpot model, the basis of the previous analysis, now

allows for relation of the variables K, Q and xm to each other; interestingly, K and Q are direct

functions of one another. Finally, this work provides two data fitting methods - logarithmic

decrement and systems identification - for more accurate measurement of K and Q as well as

measurement of viscoelastic moduli and time constants. Since this work relied on simplified

simulated finite element output, future work is necessary to implement these analyses for

experimental impact indentation data.
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6 Appendix
Logarithmic decrement may be used to measure Q or ( from peaks of a damped

oscillation and frequency. Here we demonstrate that this works for the impact indentation

displacement vs. time response, provided that the material model is a spring-mass-dashpot, and

that the force input is an inertial load with a superimposed constant load. The solution for

velocity over time will be:

u(t) = Cie - nt sin (WnJ1 - (2t) + C2 - C2 e- ntcos (OnV1 - (2t)

This may be written in terms of complex exponentials as

u(t) = C3 e -cntein1 7~t-S + C2

where 6 is the resulting phase lag from combing the sine and cosine terms. If we use a modified

logarithmic decrement formula, and assuming [1 -(2 ~ 1 we get:

1 x(O - x(t+!nT
A= -In

n x(t+nT)-x(t+2nT)

1 (C 3 e -(Nnteti(nt- '+ C2)-(C 3e Nn(t+{T)ein(t+JT) + Cz)
=-ln 3 3

(C 3 e Nn(t+nT)eiwn(t+nT)- 8+ C2 -(C 3  n(t+ 3nT) i(n(t+2nT)- + C2)

C2 and 6 cancel:

1 (C 3 e(dltei(Ont)-(C3e cL.nt e 2+ngtd)

e (nfTe i(nnT (C 3 e-'-n(tei(Onl0)- (C3 e Cn(t+iT un

Since eiWnnT = 1,

A= 1ln(e(WnnT) = (&nT
n

A~= 27r(
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