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Abstract

Ensuring the safety of autonomous vehicles during operation is a challenging task. Numerous
factors such as process noise, sensor noise, incorrect model etc. can yield uncertainty in robot's
state. Especially for tracked vehicles operating on rough terrain, vehicle slip due to vehicle terrain
interaction affects the vehicle system significantly. In such cases, the motion planning of the
autonomous vehicle must be performed robustly, considering the uncertain factors in advance of
the real-time navigation.

The primary contribution of this thesis is to present a robust optimal global planner for
autonomous tracked vehicles operating in off-road terrain with uncertain slip. In order to achieve
this goal, three tasks must be completed. First, the motion planner must be able to work efficiently
under the non-holonomic vehicle system model. An approximate method is applied to the tracked
vehicle system ensuring both optimality and efficiency. Second, the motion planner should ensure
robustness. For this, a robust incremental sampling based motion planning algorithm (CC-RRT*)
is combined with the LQG-MP algorithm. CC-RRT* yields the optimal and probabilistically
feasible trajectory by using a chance constrained approach under the RRT* framework. LQG-MP
provides the capability of considering the role of compensator in the motion planning phase and
bounds the degree of uncertainty to appropriate size. Third, the effect of slip on the vehicle system
must be modeled properly. This can be done in advance of operation if we have experimental data
and full information about the environment. However, in case where such knowledge is not
available, the online slip estimation can be performed using system identification method such as
the IPEM algorithm.

Simulation results shows that the resulting algorithms are efficient, optimal, and robust. The
simulation was performed on a realistic scenario with several important factors that can increase
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the uncertainty of the vehicle. Experimental results are also provided to support the validity of the
proposed algorithm. The proposed framework can be applied to other robotic systems where
robustness is an important issue.

Thesis Supervisor: Karl lagnemma

Title: Principal Research Scientist
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Chapter 1

Introduction

Autonomous driving technology has wide applicability inclusive to self-driving cars, military

uses, exploration mission, agriculture, etc. Thanks to the diverse needs, autonomous driving

technology has gained much technological maturity recently. The DARPA Grand Challenge [41]

and DARPA Urban Challenge [31] have spurred this technological advance. Aside from

government-led projects, commercial companies such as Google have begun their own autonomous

vehicle researches. The famous "Google car", a self-driving car developed by Google, has

autonomously driven over 1 million miles, collecting crucial information for the development of

autonomous system.

Though autonomous driving technology has gained much technological maturity, there is still a

long way to go when it comes to ensuring the safety of the autonomous system. Numerous factors

such as process noise, sensor noise, incorrect model etc. can yield uncertainty in the robot's state.
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The planned trajectory should remain safe despite these uncertain factors introduced in real-time

operation. For this, robustness should be an important criterion during the motion planning phase.

In this chapter, a brief introduction to robust motion planning is presented. Section 1. 1 provides

some of the prior works related to the subject. The contribution and outline of the thesis is provided

in Section 1.2.

Figure 1. 1. Stanley in DARPA Grand Challenge (left) [411 and Talos in DRAPA Urban Challenge
(right) [3 1]

1.1. Related Works

1.1.1. Motion Planning

The motion planning problem in robotics refers to finding the (optimal) trajectory for a robotic

system, from its given initial state to the desired final state. There may be intolerable states, due to

maximum limit of the robotic system or obstacles. Motion planning converts the high-level

specifications of tasks from human to low-level description of how to move, such as control input

for robots [26]. First, let's formulate the motion planning problem more formally.

Motion Planning Problem Formulation [26]

1. A world (or workspace)W is either W = R2or W = R3 .
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2. 0 c W is the obstacle region.

3. A Robot is R c W. It may be a collection of m rigid links, A 1 , A 2 , ---, Am.

4. A Transformation is a function T: R -> W that moves the robot in the world.

5. A Configuration space C is a set of all possible transformations that may be applied to

the robot [8 and 33]. A Configuration q E C is an element in configuration space.

Configuration space may be divided into Cfree and Cobs, denotingfree configuration

space and obstacle configuration space respectively. Free configuration space is a set

of allowable configurations where the robot does not intersect with obstacle region.

Obstacle configuration space is a set of configurations where the robot intersects with

obstacle region.

6. Initial configuration and goal configuration is denoted as q, and qG respectively. Goal

configuration is usually relaxed to goal region QG c C, a set of goal configurations.

7. The motion planning algorithm must find a path r: [0, 1] - Cfree, such that r(0) = q,

and r(1) E QG -It can be thought of as the sequence of configurations the robot must

follow in order to reach goal region. A Trajectory is similar to path, but it contains the

information about the input that should be applied to the robot in order to follow the

path. A complete motion planning algorithm must compute a continuous path (or

trajectory) or correctly report in case it is not feasible.

The motion planning problem is sometimes referred to as "piano mover's problem" [38]. The

problem is shown to be PSPACE-hard, and thus NP-hard, by Reif [37]. The main difficulty is that
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it is highly affected by the dimension of the configuration space, which is related to the number of

robotic links given in the problem.

Despite the difficulty, several algorithms have been introduced to solve the problem, which work

well for a range of reasonable dimensions. Of course, all the algorithms suffer greatly when the

dimension of the configuration space increases. The essence of most of the algorithms is to find a

graphical structure within the configuration space such that it connects a given initial state and

desired final state. The combinatorial approach finds the trajectory without resorting to

approximation, with some restrictions imposed. One important restriction is that the obstacle region

in configuration space must be polygonal. To name a few, the cell decomposition is popular among

many combinatorial algorithms [7]. It divides the configuration space into partitions (cells) and

forms a graphical structure from the decomposed components. Another popular method is to

construct a visibility graph that connects the vertices of different obstacles [24]. One important

characteristic of the visibility graph is that it has some degree of optimality property, i.e. it finds the

minimum distance trajectory in some limited situations. Figure 1.2 shows how the graphical

structure is formed for the vertical decomposition method and visibility graph method in 2-D space.

Figure 1.2. Cell decomposition (left) and visibility graph (right) in 2-D space [26]
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There has been another class of approaches to the problem, called sampling based approaches

[20]. These methods construct the graphical structure using randomly sampled nodes. Probabilistic

roadmap (PRM) is one of the popular sampling based algorithm that is used for multi query

problems [21]. The algorithm expands the graph by trying to connect the newly sampled nodes to

the set of near neighbors in the existing graph. On the other hand, rapidly-exploring random tree

(RRT), another popular sampling based algorithm, is used for single query problems [27 and 28].

The algorithm tries to connect the newly sampled node with the nearest neighbor, and the resulting

graph is actually a tree. Due to the tree structure, searching for the solution within the tree can be

done very quickly, but it is only suitable for single query problems. In addition, the RRT algorithm

was originally developed for motion planning under differential constraints, which is another

positive result from having a tree structure [28]. For sampling based motion planners, the

completeness of the algorithm is weakened because of the random sampling. It is called resolution

completeness or probabilistic completeness, which means the probability of the algorithm having

the completeness property converges to 1 as the number of samples increases. Figure 1.3 shows the

graph (or tree) of PRM and RRT in 2-D space.

/G G

Figure 1.3. PRM (left) and RRT (right) in 2-D space. Note that PRM has loop since each new
node is connected to all of its neighbors. On the other hand, RRT has tree structure since each

new node is connected to only the nearest neighbor.
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Recently, there has been a breakthrough with sampling based algorithms. An approach to

guarantee the optimality of the solution (with respect to the specified cost function) has been

developed using a "rewiring" step [17]. The resulting algorithms, called PRM* and RRT*

respectively, have an asymptotic optimality property. Comparison of RRT and RRT* can be found

in Figure 2.2. Asymptotic optimality means the solution converges to the optimal one as the number

of nodes increases. The optimality property is not lost even when there is a non-holonomic

differential constraint [18].

One important criterion for motion planning algorithms other than the completeness and

optimality, is the robustness. The robustness ensures the solution found to be still valid even when

there is some degree of perturbation to the robotic system. A naive way to increase the robustness

of the solution is to dilate the obstacles. Feedback motion planning is another approach [26]. It tries

to find the feedback control law for each state of the robotic system. The motion planning algorithm

using the potential function is a good example of feedback motion planning. In fact, motion

planning using potential function has different mechanism from the algorithms explained above.

Rather than trying to make the graphical structure, it finds a potential function that is defined over

the whole configuration space. Then, the trajectory is found using the gradient of the potential

function [3 and 24]. That is, the feedback law is that the vehicle should move following the gradient

of the potential function. Bounded uncertainty method tries to find the robust solution assuming the

disturbance is bounded [12]. Finally, chance constrained approach assumes the state of the robotic

system to be a random variable [36]. It calculates the probability of collision based on the

distribution of the state. If the trajectory has the probability of collision less than some specified

value, the trajectory is assumed to be safe. The chance constrained method offers some quantitative

support for the solution found. Figure 1.4 shows obstacle dilation and potential function method in
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2-D space. Figure 1.5 shows Minkowski sum of robot 's uncertainty and disturbance, which is the 

essence of bounded uncertainty method. Figure 1.6 shows the diagram of chance constrained 

motion planning algorithm (CC-RRT*). 

- Obstacle 

- Dilated 
obstacle 

Figure 1.4. Obstacle dilation (left) and potential function method (right) [26] in 2-D space. In 
potential function method, circles indicate equipotential curves. Feedback law for potential 
function method is that the vehicle should move perpendicular to the equipotential curves. 

Robot's uncertainty 
bound at time step k 

Bounded disturbance 
Robot's uncertainty 
bound at time step k 1 

Figure 1.5 . Minkowski sum of robot 's uncertainty and disturbance in bounded uncertainty 
method 
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Goal

Figure 1.6. Diagram of chance constrained motion planning algorithm (CC-RRT*) [36]. Ovals
along the path indicate probabilistic distributions around nodes. They can be thought of as 1-o7

regions.

1.1.2. Tracked Vehicle Navigation in Off-road Condition

Robust motion planning is a huge issue especially for the tracked vehicles navigating through a

rough deformable terrain. This is due to numerous uncertain factors that affect the mobility and

yield vehicle state uncertainty. Slip phenomenon due to vehicle-terrain interaction can have an

especially significant influence [44]. One good example for visualizing the vehicle-terrain

interaction is the track mark on the ground as shown in Figure 1.7. The mark on the ground means

the energy from the vehicle has not been fully converted to the mobility of the vehicle, causing the

vehicle to slip [1 1 and 44]. In addition, each terrain interacts with the vehicle differently, resulting

varying slip properties among different terrains.
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Figure 1. 7. Figure of a tracked vehicle (left) and its track mark (right) [ 11] 

We can resort to Figure 3 .12 to understand the significance of slip in tracked vehicle navigation. 

It represents the distribution of the vehicle state deviation for every 2 m piecewise reference 

trajectory. We can observe that the vehicle deviates as much as 0.25 m when it is traveling only for 

2 m trajectory. 

There have been several prior works that dealt with this issue. [14] is a well-known work for 

tracked vehicle navigation in high slip terrain. This work, along with many other works [ 1, 2, and 

42], faces a big limitation, however. It presents a good slip property estimation scheme but rarely 

focuses on motion planning method, which is a crucial step. It estimates slip property using camera 

vision and plans trajectory using D* algorithm, a derivative of A* algorithm. Figure 1.8 shows some 

of the figures in [ 14]. Above one shows slip property estimation result using camera vision. Below 

one shows the planned trajectory using the D*. D* planner works only on grid map and it doesn't 

consider the dynamics of the vehicle. On the other hand, this thesis presents a rigorous motion 

planning scheme using CC-RRT* framework as well as an online slip estimation method. 
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Figure 1.8. Figures from [14]. Above one shows slip property estimation result using camera
vision. Different colored regions indicate regions with different slip properties. Below one shows

the planned path using D* algorithm.

In addition, it is important which tracked vehicle model we use. The simplest tracked vehicle

model is the kinematic differential drive model (or ideal differential drive model) shown in equation

(2.3). However, this model is very simple and it doesn't consider the slip effect, there has been

several tracked vehicle models developed in order to compensate for the slip effect. Some of the

models are presented in Table 1.1 [9, 22, and 46].
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Table 1. 1. Equations of different tracked vehicle models [9]. For each variable, refer to Figure
2 .1. vrf and wrj denote longitudinal and angular velocity respectively. In general kinematic slip

model, C(vrf, wrf) is a I by 9 matrix composed of 9 parameters.

Model Equation

Kinematic i cos6 -sinO 01 rvrr
differential drive 9 = sinO cosO 0 0

model 0 o 0 1] Lr

Effective wheel r cosO -sinO 0 vr1

base model [ = sin cos 0 0
S 0 0 1. Wrf/a-

General kinematic ] cosO -- sinO 0 +Vrf]

slip model 9 = sin6 coso 0 + C(Vrtirr) - a

1.2.Summary of Contribution and Outline

As stated above, robust motion planning is a huge issue for the tracked vehicles navigating

through a rough deformable terrain due to slip phenomenon. The problem becomes even more

complicated when there is no prior information about the terrain that the vehicle must travel

through. In this case, we cannot model the effect of the slip in advance. These difficulties should be

taken into account during the planning phase of autonomous vehicle navigation.

This thesis provides a robust motion planning framework for autonomous tracked vehicles

operating on off-road terrain. It is a practical methodology with wide versatility, and can be applied

to other robotic systems where robust motion planning is an important issue.

In this thesis, the robust motion planning of tracked vehicles is divided into three sub-problems.

First sub-problem is the optimal motion planning for non-holonomic vehicle system, since the

tracked vehicle system is a non-holonomic system. A computationally efficient motion planning

strategy for non-holonomic system is required. Second, modeling the uncertainty and performing

robust planning is another task. The slip should be properly modeled in order to be able to predict
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its impact in advance and plan the robust trajectory accordingly. The third sub-problem is the

motion planning under the limited prior information about the environment. In this case, the tracked

vehicle must be able to properly take the unknown factors into account and perform the motion

planning.

Each of the sub-problems listed above is assigned as a topic of each chapter. Chapter 2 presents

a computationally efficient sampling-based motion planning strategy for the non-holonomic tracked

vehicle system using RRT*. Modeling the uncertain factors of the tracked vehicle system and

ensuring robustness of the solution trajectory with chance constrained method is discussed in

Chapter 3. Chapter 4 introduces an iterative robust motion planning methodology for the

autonomous tracked vehicle in situation where there is not enough prior knowledge about the

environment. Finally, the thesis is concluded in Chapter 5.
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Chapter 2

Non-holonomic Motion Planning for Autonomous

Tracked Vehicles

Many autonomous robots, such as tracked vehicles, wheeled vehicles, underwater vehicles,

drones, etc., have non-holonomic dynamics, which prevents the robot to move freely in

omnidirection. Unfortunately, non-holonomic dynamics introduce significant difficulty to the

motion planning problem. In this case, combinatorial algorithms such as cell decomposition [7],

visibility graph [24], potential function method [24], etc. are not suitable, since they are mainly

developed for holonomic cases, where the robotic system can transform in the configuration space

without any restriction.

As was briefly stated in Chapter 1, RRT, a sampling based motion planning algorithm has been

developed for non-holonomic robotic systems, and it works well in many cases [28]. However, the

problem becomes exhaustive when we need to find the optimal trajectory with respect to some

specified cost function. One good news is that the optimal sampling based motion planning
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algorithms, such as PRM* and RRT*, does not lose their optimality property even with non-

holononic constraints [18]. On the other hand, we need a non-holonomic steering function that

finds the optimal trajectory that connects given two end nodes. This class of problems, which is

called a two point boundary value problem (TPBVP) is non-trivial. It introduces a huge

computational complexity to the motion planning problem [6, 23, and 25].

Due to high complexity of TPBVP, an approximate method can be used in order to gain

computational efficiency. This approach assumes a constant input along the trajectory between two

nodes. Then the connection to the goal node is assumed to be successful if it is close enough. Any

discrepancy that occurs due to the approximation is resolved using "repropagation" step.

In this chapter, an optimal motion planning algorithm for tracked vehicle system based on RRT*

is provided. It uses the approximate method together with "repropagation" step, as described above.

This chapter is organized as follows. Section 2.1 summarizes the problem statement in general

form. The vehicle system model is presented in Section 2.2. Basic knowledge about the algorithms

used is provided in Section 2.3. More detailed explanation about the RRT* algorithm is presented,

which is the backbone of the methodology introduced in this thesis. The application of approximate

method to the tracked vehicle system is also explained in this section. Section 2.4 presents

simulation results, comparing the approximate method with one of the exact connection method.

2.1. Problem Statement

The motion planning problems in general can be formulated mathematically in the following

way. Let the state space be X c RI and the input space be U c R". The system model can be

formulated in the following general form:
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i = f (z,u) (2.1)

where z E X is the state vector, u E U is the input vector. For non-holonomic vehicle system, the

above system equation is a non-holonomic system equation.

The motion planning algorithm should find the optimal and collision free trajectory from the

initial state zinit to the goal region Xgoai satisfying the system equation. The trajectory can be

described as the function r : [0, 1] - X. The optimal trajectory means that the trajectory must be

the optimal one with respect to the specified cost function, J(r(s)) where (0 : s 5 1). The

collision free trajectory means that, given the obstacle space Xobs, and the collision free space

defined as Xfree = X\XObS, every point in the trajectory must lie within collision free space, that

is, the trajectory must be given as -r: [0, 1] -- Xfree. Thus, the problem can be formulated as

follows.

find a trajectory r* : [0,1] -> Xfree subject to

T*(0) = zinit, T*(1) E Xgoa

(2.2)
i = f (z,u)

T* = argminJ(r(s)), (0 s 1)
T(S)

2.2. System model

In this thesis, a tracked vehicle is used as the system model. There exists many complicated

tracked vehicle models as shown in Table 1.1, but the complexity of the vehicle model greatly
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increases the computation time. Thus, a simple kinematic differential drive model is of interest.

Figure 2.1 shows the diagram of the vehicle.

A1-

y

x

VI

Vrf

..A

Figure 2.1. Diagram of simple kinematic differential drive [301

Equation (2.3) shows the system equation.

Vr V1
cosO

20- Vr -Vi
b

(2.3)

where z = [x, y, 0] is the state vector, u = [vr, v,] is the input vector. Parameter b indicates the

distance between the vehicle's two tracks. The cost function to be optimized is the following:

tf

oa (t)T Ra(t)dtJ(T) = J(z,u) = tf + (2.4)

where tf is the final time, a(t) is the acceleration, and R is the cost parameter matrix.
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2.3. RRT* with Non-holonomic Steering

2.3.1. RRT* Algorithm

RRT* is a sampling based motion planning algorithm with an asymptotic optimality property

[17]. The overall algorithm is shown in Algorithm 2.1.

Algorithm 2.1: RRT*

I V <-- {ziitj; E +- 0;

2 for i = 1, --- , n do

3 Zrand +- Sample(i);

4 Znearest +- NearestVertex(G = (V, E), zrand);

5 Tranearest +- Steer(znearestpzrana);

6 if CollisionFree(Trajnearest) then

Xnear <- NearVertices (G = (V, E), Zrand, minfy (log(card(V))Scard (V))

(Zmin, Trajmin) <- (Znearest, Tranearest);

Cmin +- COSt(znearest) + CostFunc(Tranearest);

foreach znear E Xnear do // Choose parent step

Tranear -- Steer(znear, zrand);

if CollisionFree(Trajnear) A COst(znear) + CostFunc(Trajnear) < Cmin

(Zmin, Tramin) <- (znear, Tranear);

Cmin <- COst(znear) + CostFunc(Trajnear);

V +- V U tzrand}; E +- E U {Traminl;

foreach znear E Xnear do

Tra]rewire +- Steeltzrand,znear);

// Rewire step

if CollisionFree(Trarewire) A COst(zrand)+ CostFunc(Trarewire) <
COst(znear)

(zparent, Trajparent) +- Parent(znear);

E +- (E \ {Tra]parent)) U tTrarewirel;
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21 return G = (V, E)

To briefly explain the RRT* algorithm, the algorithm returns a graph (actually, a tree for RRT*

algorithm) consisting of vertices and edges. A vertex is a node that is sampled in every iteration in

line 3, and an edge is a trajectory that connects two vertices. After a new vertex (Zrand) is sampled,

the nearest vertex (znearest) from the existing graph is found by NearestVertex function. Then, the

trajectory to connect from the nearest node to new node (Tranearest) is calculated by the Steer

function. Here, the trajectory data structure, Traj contains the path (sequence of states) and input

data. If the calculated trajectory is not in collision with any of the obstacles, set of nodes that are

near to Zrand (Xnear) is found by NearVertices function. Xnear is a set of vertices (Znear) whose

r

distance from zrand is smaller than r = min{y * , (oard'))d77}, where 77 is a constant that
card (V)

limits the radius in initial iterations of the algorithm. y * o(card(V)) )d is a value that ensures the
card(V) 2

algorithm to have the asymptotically optimal property without Xnear being a too large set [17].

Among Xnear, the one that connects to Zrand with minimum cost (zmin) is found in line 8 - 14

('choose parent' step). Zrand and the trajectory (Trajmin) from zmin to Zrand is stored into the

graph in line 15. Finally, the algorithm goes through "rewiring" step, where the vertices in Xnear is

tried to be improved by using Zrand. If the cost to Znear is lowered via Zrand, the existing graph is

modified and the new trajectory (Tra]rewire) is added.

RRT* is based on the RRT algorithm, which has no optimality property. The RRT and RRT*

algorithm is compared for 2 dimensional motion planning problem in Figure 2.2. As it is stated

above, the solution returned by RRT* algorithm is close to the optimal one (shortest path), whereas

the solution from RRT algorithm is far from the optimal.
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Figure 2.2. Comparison of RRT (left) and RRT* (right). Magenta region indicates goal region.

RRT* doesn't lose the optimality property even for non-holonomic systems [18]. In this case,

the steering function in Algorithm 1 must solve the two point boundary value problem following

the given non-holonomic dynamics.

2.3.2. Non-holonomic Steering

2.3.2.1. Exact Connection Method

The non-holonomic steering function is a TPBVP solver that returns the optimal trajectory

between given two end nodes, without considering collision with obstacles. For the usual RRT*

algorithm, the steering function should connect given two nodes exactly, that is, the trajectory must

satisfy the given initial and final state of the system exactly. This is due to the "rewiring" step of

the algorithm. If the connection from zrand to znear is not exact, there is going to be a discrepancy

between Tralrewire and the trajectory between znear and its children nodes.
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Solving the TPBVP belongs to the area of optimal control. In optimal control, there exists two

approaches to solve the given problem, dynamic programming and calculus of variations. Dynamic

programming is extended to give us the Hamilton-Jacobi-Bellman equation for the problem [5].

Calculus of variations is extended to give us Pontryagin's minimum principle. Though dynamic

programming and calculus of variations seem to take different approaches, they yield the same

result. That is, the Hamilton-Jacobi-Bellman equation has the same form as the equation obtained

from Pontryagin's minimum principle [6 and 23]. When we formulate the Hamilton-Jacobi-

Bellman equation for given system equation and cost function, it is very likely that there is no

analytical solution for the problem. Even for the system given in Section 2.2, which is relatively

simple, there is no analytical solution. In this case, we need to use a numerical method to find the

solution [6 and 23].

Though it is computationally expensive, there has been several works that used a numerical

method to find the exact solution for non-holonomic steering function of RRT*. Work of Webb et

al. [43] used a steering function that linearize the system equation in every small time step and find

the optimal path with respect to the linearized dynamics. Though the solution uses linearization

approximation, it connects given two end points exactly. In addition, if the time step is small

enough, the deviation from the actual optimal solution due to linearization is not too big. Work of

Ha et al. [13] used a steering function that finds the accurate optimal path following the non-linear

dynamics, using an iterative method.

Those approaches have very low computation efficiency even for a simple vehicle model, such

as the one in Section 2.2. References to the computational complexity can be found in [43]. Thus,

in many practical implementations, a slightly different vehicle model is used [19]. Many works use
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a vehicle model called Dubins vehicle, which allow us to compute the minimum distance trajectory

extremely fast. The system equation for the Dubins vehicle is given as follows.

I v sin (2.5)

where v is the constant speed and u E [-Umax, Umax] is the angular input. Since the vehicle moves

at constant speed, the minimum distance trajectory also becomes the minimum time trajectory. It

has been proven that the solution for the minimum distance trajectory consists of only three actions,

full left turn (L), straight line (S), and full right turn (R). That is, u E t-Umax, 0, Umax} must hold.

In addition, it is also proven that the minimum distance trajectory must fall into one of the six cases,

{LRL, RLR, LSL, LSR, RSL, RSR}. The distance that the vehicle must travel for each action (L,

S, R) can be obtained with simple geometric calculation.

14,Sd L, Ra Lp R

Figure 2.3. Examples of Dubins curves for RSL and RLR cases [26]

2.3.2.2.Approximate Method

An approximate steering function for non-holonomic system has been introduced to avoid heavy

computation of exact connection [15]. Let's assume we are to find a trajectory between two given

nodes zstart and zend. In the approximate method, the input is assumed to be constant along the
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trajectory. This assumption greatly simplifies the problem, however it also makes the exact

connection to the endpoint difficult. Instead of trying to make the exact connection, the method

considers the local steering to be successful if Zend (desired endpoint) and Z'end (approximate) are

close, that is, IIzend - Z'end|l < E for some specified threshold E, and apply a corrective measure

afterward to resolve the discrepancy. This corrective measure, called the "repropagation" step, is

shown in Algorithm 2.2. In the "repropagation" step, all children nodes to Zend are regenerated

from Z'end using inputs and time durations saved previously by calling 'RepropSteer' function.

Since IIzend - Z'end 11 is very small, the regenerated children nodes will not deviate much from the

original ones. The "repropagation" step should be located after line 20 of Algorithm 1, within the

iteration of the "rewiring" step. The "repropagation" step is visualized in Figure 2.4.

Algorithm 2.2 : Repropagate(z, Znew)

1 for all z' E Children(z) do

2 Z'new <- RepropSteer(znew, Time(z, z'), Input(z, z'));

3 Repropagate(z', Z'new)

4 Delete z' in Tree;

5 Add z'new in Tree;

Figure 2.4. Diagram of how "repropagation" step process works
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Let's apply the approximate method to our tracked vehicle system in Section 2.2. Consider the

case when we are steering the vehicle from z, to z 2 . With the system equation from equation (2.3),

the trajectory becomes a circular arc when we apply the constant input assumption and neglect

process noise. That is,

b(Vr +Vi) b(Vr +91) bOvr + Vi)\2
(x(t) - x1 + 2(v - v 1) sinO1 ) 2 + (y(t) - yi 2(r - COS 1)2 = b (vr + V1)) (2.6)

2(vr - vi) 2(vr - vl)' (2(vr - v1)

When the vehicle starts from z1 and reaches z 2 satisfying only (x 2 , Y2) coordinate of z 2 under

constant input assumption, there exists only one circular arc path. Equation (13) shows that the

radius of the circular arc is r = b(r+v ). Since the radius can be obtained purely geometrically, it2(vr-vl)

specifies the velocity ratio of the right and left tracks. The vehicle can follow the given path with

various speeds as long as the ratio requirement is met. To find the appropriate velocities, we can

turn to the cost function. Under constant input and constant acceleration assumption, the cost

function becomes the following:

J X,u) = tf + aT Ra X tf (2.7)

The above cost function has three variables, vr, v1 , and tf. It becomes a function of only one

variable, tf, when we use the following two relations. First, the radius of the arc equals to b .(r+v1)
2(vrvl)*

Second, the length of the arc equals to (vr+VL) x tr. Then, we can differentiate the cost function

with respect to tf and find the optimal tf that minimizes the cost. The entire path and input (vr and

v1) can be obtained using the optimal tf.
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This steering function does not connect the given two states exactly. The (x 2, Y2) coordinate of

z 2 is met, but 02 might be different. Thus, reapply "repropagation" step to all the children nodes

and the "rewiring" step is complete.

2.4. Simulation Result

2.4.1. Dubins model

In this section, an exact connection method is presented. We must formulate Hamilton-Jacobi-

Bellman equation of the vehicle system given in Section 2.2 and solve it numerically in order to be

strict. However, as it was stated a number of times, the computation time is extremely large.

Reference to the computational complexity can be found in [43]. Thus, we will compare the

approximate method with the exact method using Dubins vehicle model. The simulation result with

Dubins vehicle model is shown in Figure 2.5. Table 2.1 shows the computation time for two cases,

the Dubins vehicle model method and the approximate method both with 5000 nodes.

Table 2.1. Table of computation time for two cases, the Dubins vehicle model method and the
approximate method. 5000 nodes were sampled for both methods.

Exact method with Dubins vehicle Approximate method

Computation time (sec.) 821.9 1018.4
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Figure 2.5. Figure of the Dubins vehicle simulation

Dubins vehicle model offers computational efficiency. However, using Dubins vehicle model

has several drawbacks. First, the trajectory calculated makes turns only in fixed radius. Second, the

cost function has to be the distance of the trajectory. The cost function lacks a term related to the

energy efficiency, which is usually a function of the input.

I
2.4.2. Approximate Method

An approximate method using "repropagation" step is presented in this section. The vehicle

model from Section 2.2 was used. The detailed technique is presented in Section 2.3.2.2. The

approximate method has several advantages over the exact connection method. First, it is

computationally efficient. This can be shown in Table 2.1 above. Second, it has very smooth path.

This is because the turning radius is not fixed, unlike the case of Dubins vehicle model method.
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Third, it can consider the energy efficiency term in the cost function. Figure 2.6 shows the result of

the approximate method.
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Figure 2.6. Figure of the approximate method simulation

One drawback of the approximate method is that it needs more nodes to converge to the true

optimal solution than the exact method. This is because of two reasons. Firstly, there is an additional

constraint for the "rewiring" to happen for the approximate method, which is the condition

I zend - Z'end I < E. This significantly reduce the number of "rewiring" occurrence. For example,

when both exact method with Dubins vehicle model and the approximate method were run for 5000

nodes, the total "rewiring" happened were 1163 times and 3227 times respectively. Secondly,

because the "repropagation" step slightly changes the existing tree, previously collision free nodes

sometimes can become colliding nodes. Thus, even when we sample 5000 nodes, the actual number

of collision free nodes in approximate method is slightly smaller. Since the steering function for

both method takes similar time, this means the computation time is bigger. For our map scenario,
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the exact method needs about 3000 nodes and the

the convergence of optimal costs calculated. This

approximate method needs about 5000 nodes for

is shown in Figure 2.7.
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Figure 2.7. Calculated optimal cost with respect to the number of nodes sampled, for both exact
method (left) and approximate method (right). Each number of nodes is tested for 5 trials

indicated as x-shaped points. The error bar indicates 1 -sigma region. The mean for each number
of nodes in connected as a graph. The exact method needs about 3000 nodes and the approximate

method needs about 5000 nodes for convergence.

Figure 2.8 presents the optimal trajectories calculated with 5000 nodes for 5 trials. The calculated

optimal trajectories show some variance because they haven't fully converged to the optimum.

Figure 2.9 presents the optimal trajectories calculated for a different map scenario. Blue curve

indicates the result with the approximate method and red curve indicates the result with the exact

method using Dubins vehicle model. Optimal costs calculated were 94.2133 and 283.4188

respectively.
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Figure 2.9. Results for approximate and exact methods with a different map scenario

Despite the drawback explained above, the approximate method holds great advantages. Thus,

the approximate method is going to be used in this thesis.
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Chapter 3

Robust Global Motion Planner for Autonomous

Tracked Vehicles with Chance Constrained Approach

RRT* algorithm is unsuitable for motion planning of autonomous tracked vehicles operating on

off-road condition, due to numerous uncertain factors that affect the vehicle mobility. Slip

phenomenon due to vehicle-terrain interaction can have an especially significant influence. The slip

effect can be modeled as a process noise with high uncertainty, and the resulting vehicle state

uncertainty can be taken into account in the planning phase of autonomous vehicle operation. Using

a chance constrained approach and calculating the chance of collision by considering the vehicle

state as a random variable rather than a deterministic variable can ensure the robustness of the

motion planner.

CC-RRT* combines a chance constrained approach and the RRT* algorithm to obtain robust

and optimal trajectory [35]. This algorithm has been proven to be very effective. However, CC-

RRT* is usually implemented in open loop fashion and the vehicle's state uncertainty is propagated
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without considering the role of a compensator. The problem is that uncertainty can grow

exponentially due to accumulating process noise. This is usually not the case in real operation where

a closed-loop controller and state estimator (e.g. relying on GPS) are used. The role of a

compensator can be taken into account by combining the CC-RRT* framework with another

algorithm called LQG-MP [4]. When the two algorithms are combined, the degree of uncertainty

in vehicle's state is bounded, thus offering a more realistic and less conservative planning strategy.

In order to use the CC-RRT* (or LQG-MP) framework, the influence of slip phenomenon on

the vehicle state must be modeled prior to the planning phase. A simple experiment shown in [9]

provides an effective way to represent the uncertainty. Assuming that the slip affects the vehicle

system as a process noise, method in [9] is used to obtain the distribution of the process noise term.

The modeled process noise then can be used to calculate the distribution of the vehicle state at time

t.

In this chapter, the CC-RRT* algorithm is combined with LQG-MP framework to find the

optimal and robust trajectory for an autonomous tracked vehicle traveling on flat, deformable

terrain. Experimental data presented in [9] is used to model the influence of slip on the vehicle state.

This chapter is based on the work of Lee et al. [30].

This chapter is organized as follows. Section 3.1 demonstrates the problem statement in general

form. Vehicle system model is presented in Section 3.2. Basic knowledge about the algorithms used

is provided in Section 3.3. The application of LQG-MP to CC-RRT* framework is explained. How

to acquire the distribution of the slip process noise from an experimental data is presented in Section

3.4. Section 3.5 presents simulation results. The results from two different approaches of

considering uncertainty are compared. A rigorous experimental validation of the framework is

presented in Section 3.6.
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3.1. Problem Statement

Motion planning problems of chance constrained method has slight different form than the one

presented in Section 2.1. This is due to the fact that we are considering the state of the vehicle as a

random variable, rather than a deterministic one. Let the state space be X c R' and the input space

be U c R'. The system model can be formulated as the following with slight modification from

Section 2.1:

i =f(z,u) + w (3.1)

where z E X is the state vector, u E U is the input vector and w is the process noise into the system.

Here, the slip of the vehicle is included as the simplest form, it is assumed to be an additive process

noise. In addition, when the vehicle moves along the trajectory that traverses through more than

one type of terrain, the process noise should be different for each terrain types. This is because each

terrain type will interact with the vehicle differently and this will result in the varying slip effects

among different terrain types.

The motion planning algorithm should find the optimal and probabilistically feasible trajectory

from the initial state z1 t to the goal region Xgoai satisfying the system equation. Probabilistically

feasible trajectory means that, given the obstacle space XobS, every point in the trajectory given as

-r : [0, 1] -> X must always have smaller probability of collision than some threshold value 6, that

is, P(T(s) e XobS) < S, Vt, (0 s < 1).

Thus, the problem can be formulated as follows.
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find a trajectory r* : [0,1] -+ X subject to

* (0) = zingt, (where -r*(0) is assumed to be perfectly determined)

P(r*(1) E Xgoai) > a, (for some parameter a)

(3.2)
2 = f(z, u) + Wk, (different kfor each terrain type)

P(T(s) E Xobs) < 6, (0 s 1,S a parameter)

= argmin J(T(s)), (0 s 5 1)
r(s)

3.2. System Model

The system model is very similar to the one presented in Section 2.2, with slight modification.

A simple kinematic differential drive model is of interest with the additive slip process noise.

Equation (3.3) shows the system equation of the vehicle.

Vr+VI -

2 cos6

+ = V i n + Wk (3.3)
2
Vr - VI

b -

where Wk is Gaussian white noise with zero mean, which differs with respect to the type of terrain.

The slip is has the additive process noise form.

The cost function has the same form as the one in Section 2.2. In some cases, the degree of

uncertainty of the vehicle state is merged into the cost function (mainly by using the expected value
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of the vehicle's state). However, in order to simplify the problem, the cost function and the

uncertainty of the vehicle is decoupled and considered separately.

In order to use the CC-RRT* and LQG-MP framework, we need to linearize and discretize the

system equation and the cost function. The linearization must be done to maintain the assumption

that the state distribution follows Gaussian distribution. This is a strong approximation, but the

validity of this assumption is presented in Section 3.6. The linearized and discretized system

equation and the cost function are as follows [40].

xt+1-

Yt+1
et+1

-1 1
Vr +i -ICos Ot - cosot

Xt 0 0 - s + n t Xt 2 2 (3.4)
II 2 t]1 1 [Vrl

Yt + At x Vr + 12 ct + At X -sin6t -sinOt LV
-Ot 0 0 2 cos"t -O-2 2 IN
Lt] 2 ]L1t

L0 0 0 -
- b b

+ Ct + Wdiscrete,k,t

where Ct is a constant matrix due to linearization and Wdiscrete,k,t is the discrete time Gaussian

white noise. The cost function becomes:

N

J(X,u) = N x At + ai T Rai x At (3.5)
i=1

where N X At = tf.
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3.3. Chance Constrained Method

3.3.1. Open-loop Chance Constrained Method

Chance constrained method is used for robust motion planning, considering the state of the robot

to have a probabilistic distribution. In many cases, the distribution is assumed to be Gaussian in

order to simplify the calculation. CC-RRT* is an extended version of RRT* algorithm using chance

constrained method [35]. Thus, it has both optimality and robustness property. The diagram of CC-

RRT* is presented in Figure 1.6. Brief pseudo code for the CC-RRT* algorithm is provided in

Algorithm 3.1.

Algorithm 3.1: CC-RRT*

1 V <- zinit}; E +- 0;

2 for i = 1, --- , n do

3 zran <- Sample(i);

4 Connect to ProbFeas nearest node - (Znearest, Tranearest);

5 Xnear +- NearVertices(G = (V, E), Zrand);

Choose ProbFeas and min cost parent node among Xnear -4 (Zmin, Tramin);
6

// Choose parent step

7 if Zrand reduces cost to any nodes in Xnear and ProbFeas

Rewire and Repropagate;
8

// Rewire step

9 return G = (V, E)

The overall algorithm is almost the same as the RRT* algorithm presented in Section 2.3.1. The

only change that needs to be made is to change the CollisionFree function to ProbFeas function,
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which checks the probabilistic feasibility of the node. Thus, the trajectory data structure must

contain the covariance data along the trajectory.

Before we check the probabilistic feasibility, we need to calculate the probabilistic distribution

of the given node. Since the state of the vehicle (zt) is assumed to follow a Gaussian distribution,

zt-N(Ezt, Px,) holds. First, we can write the equation (3.4) as the following.

Zt+1 = Atzt + Btut + Ct + Wdiscrete,k,t (3.6)

Then, the mean and covariance at time t + I is given as follows.

E(zt+1 ) = AtE(zt) + Btut + Ct

(3.7)

&xt+1 = AtPXAtT + PWdiscretekt

where PWdiscretekt is the covariance matrix of Wdiscrete,k,t. Here, we make an approximation: If the

time step is small enough, the expected value of the state obtained from equation (3.7), E(zt+1 ),

should accurately approximate that from nonlinear equation, equation (3.3), at the same instance.

Thus, the state obtained from the nonlinear equation is going to be used to obtain the mean state,

E(zt+1 ), and equation (3.7) is going to be used to obtain the covariance matrix only.

Next, let's check the probabilistic feasibility of the given node with distribution

zt -N(E (zt), Pxt). Suppose all obstacles are convex polyhedral, then the state zt being inside of the

obstacles (and thus colliding) can be expressed as /\ a iT(Zt - cij) < 0 where i stands for ith
i=1 Tz

face of polyhedron, j stands for jt obstacle, and nj is the number of faces in jth polyhedron. Then

the probability of collision with jth obstacle satisfies the following inequality.
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P(A ai1T(zt - ci) < 0) P(aijT(zt - cij) < 0) = Aijt= (1 - erf ajV(Ezt-t)
2aijT(Pxt)ai1

(3.8)

Here, Aijt is the probability of collision of the vehicle with ith face of polyhedron and jth

obstacle at time t. The upper bound for the probability of collision with jth obstacle at time t (Ajt)

is the minimum of Aijt for all i, that is A1t= min Aijt. Finally, The probability of collision at

time t satisfies the following equation

no no

P(Collision at time t) P(Collision with obstacle j at time t) 5 A1jt = At (3.9)
_=_ 1=1

where no is the number of obstacles. Then, the ProbFeas function returns 'safe' if At< 5 for some

threshold S. At< 8 only checks the probabilistic feasibility of a specific node at time t. We can also

check the probabilistic feasibility of the trajectory as a whole. The probability of collision for the

trajectory from t = 0 to t = tf (for discrete time sequence) satisfies the following equation.

tf

P(Collision of the trajectory from t = 0 to t = tf) = P zt E Xobs
t=O

(3.10)
tf tf

I P(zt E XobS) E At = A
t=0 t=O

Then, the trajectory from t = 0 to t = tf is said to be probabilistically feasible if A is smaller

than some threshold, Sp, that is, A< Sp. However, this method is overly conservative and considers

only discrete time sequence whereas the trajectory is defined over a continuous time interval. The

method becomes conservative when we replace the probability of collision from time 0 to tr with
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the summation in equation (3. 10) (at the first inequality). Thus, in this thesis, only the probabilistic

feasibility of each node at time t is going to be checked.

Figure 3.1 compares the solution obtained from CC-RRT* with that from RRT*. Non-holonomic

vehicle model presented in equation (2.3) and (3.3) is used. The green oval along the trajectory

indicates 95% confidence region of the vehicle state. Thus, CC-RRT* algorithm offers a

quantitative robustness of the solution in terms of collision with obstacles.
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Figure 3.1. RRT* (left) and CC-RRT* (right) in 2-D space.

3.3.2. Closed-loop Chance Constrained Method with LQG-MP

The chance constrained method is usually implemented in open loop fashion, i.e. doesn't

consider closed loop compensator that is used in most real world scenarios. This often makes the

solution overly conservative. Closed-loop uncertainty propagation resolves this issue. Closed-loop

uncertainty propagation can be done by combining CC-RRT* algorithm with LQG-MP framework.

LQG-MP algorithm can be merged in the part where we calculate the probabilistic distribution of
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the given node, zt~N(Ezt, Px,). Using the discretized and linearized equation in equation (3.4), the

vehicle and measurement equations can be represented as follows.

Zt+1 = Atzt + Btut + Ct + wt

yt+1 = Ht+1 zt+1 + vt+1

Zt+1 = Atzt + Btut + Ct + Lt(yt+1 - ^t+1)

yt+1 = Ht+1Zt+1 (3.11)

Zt+1 = Atft + Btur,t + Ct

Yt+1 = Ht+1 ,t+1

Ut = Urt - KtZ(t -)

where yt is the measurement, wt is the process noise (wt-N(0, Pw,t)), vt is the sensor noise

(vt-N(0, Pvt)), zt is the estimate of zt, and ft is the reference state at time t. Lt is the estimator

gain which will be assumed to be the optimal Kalman filter gain and Kt is the optimal feedback

controller gain [10]. The distribution of zt, Kalman gain, and controller gain can be obtained as

follows. First, let Zt = [. Then, manipulating equation (3.11), we get:

Zt+1 = AtZt + Bturt + Ct + GtWt

- At -Bt Ktt Lt+1Ht+1At (I - Lt+1Ht+1)At - BtKtI

Bt , Ct is some constant term 
(3.12)

= Lt+1 Ht+1  Lt+1IWt - t1

Then, we get state mean (E(zt)) and covariance (Pt) by:
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E(Zt+1 ) = AtE(Zt) + Btur,t + Ct, E(zt) = [1T oT]E (Zt)

Pt+1 = AtPtAt + GtPw,tt , Pt+1 = [I 0]Pt+1 [

Pt :covariance matrix of Zt (3.13)

Pt covariance matrix of Zt

Pw,t: covariance matrix of We

Again, we can use the nonlinear equation from equation (3.3) to obtain the mean (E (zt)) of the

state instead of the linearized equation in equation (3.13), assuming that the time step is small

enough. It is the same way as the one described in Section 3.3.1, right below the equation (3.7).

We get the Kalman gain by:

Lt = (AtPt_1A t + Pwt _)H T [Ht(APt_1At + Pw,t _1)HtT + pvt (3.14)

The optimal controller gain can be obtained using the standard LQR controller.

controller cost function

E ((Zt- Zt)TM(zt - Z) + (Ut - UrtD N(ut - urt))

Solving the matrix Riccati equation backward, (3.15)

Si = M,

Kt = (BetStBt + N)-B tStAt,

St_1 = M + AtT StAt - A tStBtKt

In this thesis, however, the LQG-MP algorithm is implemented with slight modification. The

distribution of zt and Kalman gain, Lt, is obtained as explained above. On the other hand, a

suboptimal controller gain is used in order to avoid solving the matrix Riccati equation recursively
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and reduce the computation load. This is based on the works of Gonzalez et al. [I I] and Kanayarna

et al. [16]. The suboptimal controller gain is of the following form:

2/3cosOt,
Kt =

2 flcos~e

1
2 yvYrftsinOt

+ -Yvrf,tsinOt

1
2pflsinQt + -yVrftCOSOt

2 /3sinOt - 2yvrf,tcosOt

where fl = ((Wrft) + y(Vr'ft) 2 ) , y and ( are tuning parameters

Vr + V1 Vr - VI
Vrft = 2 AWrfbt b

Though this is a suboptimal controller, the results in Section 3.5 suggest that it works well in

practice.

Figure 3.2 compares the open-loop and closed-loop uncertainty propagation on a simple curved

trajectory.

1.5

1.5

1-

0.5

-rajectory
-95% confidence

0.5 1 1'5 2 2.5 3 3.5 4 4.5

-5 cnIdenc

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 3.2. open-loop (upper) and closed-loop (lower) uncertainty propagation on a simple
curved trajectory
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3.4. Experimental Slip Calculation

In.order to use the CC-RRT* framework, the slip uncertainty must be modeled properly. In our

case, the slip uncertainty is assumed as the process noise to the tracked vehicle system, thus we

need to specify the probability distribution of the noise term, Wdiscrete,k,t. This can be done

experimentally. The process noise due to slip is assumed to be a zero mean Gaussian white noise.

Thus we only need to obtain the covariance matrix, P.discretekt*

The result presented in this section is based on the experimental result from trajectory generation

for tracked vehicles by Fink et al. [9]. When the vehicle is assumed to be traveling on flat, off-road

terrain and slip becomes the dominant source of process noise, several models already exist that

can compensate for the slip effect as shown in Table 1.1 [9]. Among many, the effective wheel base

model will be used in this chapter because it is both simple and powerful. This model multiplies a

parameter a to the wheel base b from equation (3.3) to compensate for slip in the vehicle's turning

action. This can easily be included in the framework of this thesis. The appropriate parameter value

is referenced in [9]. The parameter is different with respect to different soil types.

Using the referenced parameter, the vehicle's deviation from reference trajectory can be obtained

in a form of a distribution. That is, for every piecewise reference trajectory, we can calculate how

much the vehicle's real state is deviated from the reference trajectory. This distribution is illustrated

in Figure 3.3 and Table 3.1 for two soil types, concrete and turf. The deviation is measured for every

4 m trajectory segment.
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Ideal Differential Drive

Effective Wheel-Base

General Kinematic Slip

Figure 3.3. Uncertainty measurement for each vehicle model [9]

Table 3.1. Uncertainty measurement for each

APx (M) Ap (M)
It II

model [9]

Apo (rad)

Ideal -0.762 0.248 -0.115 0.372 -0.043 0.768

Eff. WB -0.019 0.016 -0.092 0.028 -0.006 0.026

Gen. KS -0.011 0.014 -0.015 0.007 -0.016 0.021

Ideal -0.371 0.056 -0.021 0.088 -0.006 0.166

Eff. WB 0.023 0.009 -0.043 0.007 0.019 0.009

Gen. KS 0.016

Eff.

0.008 -0.002

WB : Effective Wheel

0.006 0.002 0.007

Base, Gen. KS : General Kinematic Slip
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Now we need to convert the distribution from Figure 3.3 and Table 3.1 to the appropriate form

so that it can be used in the CC-RRT* framework. For every At, the following approximate relation

will be used to obtain P

Pwdiscrete,k \j 2 V) 4 exp24)2

- 2 0 0 (3.17)

Pexp= 0 072 0

. 0 0 U02

where Pex, is the experimental covariance matrix obtained from Table 3.1. Note is multiplied in
4

the parentheses because the experimental data in Table 3.1 is for 4 m trajectory segments as stated

previously. The algorithm is also slightly adjusted for the mean values from Table 3.1. It is because

the process noise is assumed to have zero mean, even though the mean values are not exactly zero

from Table 3.1. It doesn't affect much since the mean values are very small.
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3.5. Simulation Results

Simulations were conducted for a differential drive vehicle operating on an artificially created

scenario. Figure 3.4 shows the scenario map used in the simulation. The map size is 200 by 100

meters. It is a simulated region with obstacles and various terrain types. Black polygons indicate

obstacles, such as sand dunes, ponds, buildings etc. Green (dark gray) polygons indicate wooded

area, thus there is no GPS signal. In these regions, the uncertainty grows the same as it would in

open loop CC-RRT*. Yellow (light gray) polygons indicate roads or parking lot, which consist of

concrete. The rest of the map consists of turf. The vehicle's starting pose is (180 m, 85 m, 7T rad)

and the vehicle's goal region is 8 m x 8 m box around the point (40 m, 30 m).

100 -

90-

80 -

70

60r

30 - Start State
No-GPS

20 - Concrete
Obstacle

10 Goal Region

0-
0 20 40 60 80 100 120 140 160 180 200

Figure 3.4. The map scenario for simulation [30]

Figure 3.5 shows the result with proposed algorithm. The figure shows the entire tree, and the

optimal trajectory is thickened. Ovals around the optimal trajectory indicate the 95 % confidence

region of the vehicle's state. Since the concrete is not covered with woods, GPS signals can be
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received and the covariance is bounded. The optimal trajectory is through the narrow concrete

corridor. In addition, after the vehicle emerged from the GPS-denied region (green or dark gray

region), the uncertainty oval shrinks. It can be seen from Figure 3.5. The same phenomenon can be

seen more clearly in Figure 3.6. When the vehicle is in GPS-denied region, the uncertainty grows

exponentially as it would have in open loop CC-RRT*. The uncertainty shrinks after the vehicle

emerged from GPS-denied regions. The change is more drastic in the second time. The uncertainty

reduction is because the vehicle can compensate for path deviation once it can receive GPS signal

again. There is a delay in uncertainty reduction after the vehicle emerges from no-GPS region. This

is because the vehicle needs to receive GPS signal for some amount of time in order to utilize the

closed loop controller to converge near the reference trajectory. Receiving GPS signal once couldn't

make the closed loop controller converge to the reference trajectory right away. Finally, we can

safely assume that the calculated trajectory would be robust since the uncertainty ovals do not

intersect with obstacles, meaning that it is at least 95% safe (the threshold used in chance

constrained method).

Figure 3.7 compares the above result with a simple robust planning strategy. Here, each obstacle

is dilated by a fixed distance. Observe that the maximum standard deviation of vehicle's pose along

the optimal trajectory in Figure 3.5 is ~1.6 m. The no-collision threshold used for chance

constrained method is 95%, corresponding to approximately twice the standard deviation. Thus, the

obstacles are extended by ~3.2 m from each face. The resulting optimal path obtained is much more

conservative compared to the result of Figure 3.5.

The simulation result thus illustrates that the proposed algorithm can obtain a robust and optimal

trajectory that is not prone to being overly conservative.
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Figure 3.5. Result with proposed algorithm [30]
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Figure 3.6. Trace of covariance matrix for state distribution zt (only for x, y coordinates) with
respect to distance traveled. The shaded area represents GPS-denied regions. See the uncertainty

grows exponentially in these regions and shrinks when the vehicle exits [30].
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Figure 3.7. Result with dilated obstacles [30]
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Figure 3.8. Simulation result for 5 trials [30]
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Figure 3.8 shows the simulation result for 5 trials. Table 3.2 shows the mean and standard

deviation of the optimal cost obtained for 5 trials. The optimal trajectory and cost calculated by the

algorithm vary each trial slightly and thus fails to meet the strict definition of optimum. However,

the variation is tolerable considering the fact that the algorithm succeeds to find a trajectory through

the corridor.

Table 3.2. Mean and standard deviation of the optimal cost for 5 trials [30]

Scenario Mean optimal cost Standard deviation

Proposed algorithm 55.4488 4.8049

Obstacle dilation 75.4797 10.0830

3.6. Experimental Results for Uncertainty Prediction

In this section, the uncertainty propagation using equation (3.7) is validated through

experimental data. The experiment was conducted with a commercial tracked vehicle, iRobot

Packbot [45], which is shown in Figure 3.9. The Packbot traveled an arbitrary trajectory on flat

concrete terrain, which is shown in Figure 3.10. Green trajectory along with grey dots show the

estimated vehicle state using RTK GPS. Red trajectory shows the estimated vehicle state using a

motion tracking system. An odometer was also used for tracking the velocity of left and right tracks.

The Packbot was driven at approximate velocity of 2 m/s. The experiment was conducted with Dr.

Jonathan R. Fink from the Army Research Laboratory (ARL).
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Figure 3.9. iRobot Packbot on two different terrains; concrete and turf [9] 

Figure 3.1. The trajectory used for the experiment 
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The vehicle was assumed to run the trajectory in open-loop manner. We can reconstruct the

piecewise reference trajectories of arbitrary length using the odometer data. The data from a motion

tracking system was assumed to represent the true state of the vehicle. The data from RTK GPS

was not reliable. Then, for arbitrary length of the reference trajectories, we can calculate the

deviation. The diagram for the concept is shown in Figure 3.11. Figure 3.12 represents the

distribution of the vehicle state deviation for every 2 m piecewise trajectory. 2 rn was chosen for

convenience, it was the distance the vehicle travelled for I second.

reference

real

V,

y

Lx

Figure 3.2. Diagram of trajectory deviation
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Figure 3.3. Distribution of deviation for 2 n trajectories; (x, y) position (left) and 0 (right)
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A similar plot can be obtained for longer piecewise trajectories (10 in). Figure 3.13 represents

the distribution for 10 m piecewise trajectories.

4-* *~ $

* *
t * * ~..

05 1

10.-

06 04 04 06 08 1

theta deviation (rad)

Figure 3.4. Distribution of deviation for 10 m trajectories; (x, y) position (left) and 0 (right)

Using the experimental result of distribution of the deviations for 2 m piecewise trajectories from

Figure 3.12, we can calculate the covariance matrix of process noise as described in Section 3.4.

Again, the process noise is assumed to be zero mean white Gaussian noise. Then, we can use the

calculated process noise to simulate the distribution of the vehicle state deviation plot for 10 m

piecewise trajectories using the process described in Section 3.3.1. The mean and covariance matrix

of the vehicle state can be calculated from equation (3.7) for each 10 m piecewise reference

trajectory. The input to the vehicle is the odometer data that was used to reconstruct the reference

trajectories. Then, for each piecewise trajectories, a point can be randomly sampled from the

distribution with calculated mean and covariance matrix. The simulated distribution of deviation

- 67 -

*0 -0 r

-1

2 -5 1 -05 0
x deviation (M)



can be compared with that of experimental data. Figure 3.14 shows the comparison. Table 3.3

represents the covariance matrices of both distribution plots.
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a.

a *9 *j* *.~,*
a *~~* *

a ma

* 9,3

15 I 05 0
deviation (in)

.4

05 1 15

15

F

I I~I

r7

I
J

4 06 08 1

Figure 3.5. Comparison of simulated and experimental deviation; (x, y) position (left) and 0
(right)

Table 3.3. Comparison of the covariance matrices of distribution plot in Figure 3.14.

Experiment Simulation

0.1666 0.0154 -0.0158 0.2968 0.0208 -0.0311

Covariance matrices 0.0154 0.1892 -0.0091 0.0208 0.2450 -0.0117

-0.0157 -0.0091 0.0455 -0.0311 -0.0117 0.0619

Table 3.4. Correlation coefficients for the distribution plot in Figure 3.14.

Experiment Simulation

Correlation
coefficients

x and y 0.0867 x and y 0.0771

x and 0 -0.1803 x and 0 -0.2293

y and 0 -0.0981 y and 0 -0.0950
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As it can be seen in both Figure 3.14 and Table 3.3, the simulated distribution matches the

experimental distribution well. To be more specific, Table 3.4 shows the correlation coefficients of

each coupled variables (x and y, x and 8, y and 0) for both experiment and simulation data. The

coefficients are close to zero, meaning that the distribution of variables (x,y,8) are almost

independent. Assuming that they are independent, the p-values between experiment and simulation

data are 0.6348 for x variable, 0.9789 for y variable, and 0.8486 for 8 variable. They are calculated

separately because we assumed the variables are independent. From the calculated p-values, we

can safely state that experiment and simulation data are drawn from the same distribution. In fact,

the simulated distribution is slightly more dispersed but this is tolerable since the simulated the

process noise would make the algorithm slightly more conservative. This result validates our

approach, even with a strong approximation such as linearization of the system dynamics. Since the

distribution of the vehicle state can be predicted accurately, the solution obtained from the motion

planner would actually be robust and also non-conservative. The consonance between simulated

prediction and the experimental result is expected to be more accurate if we include the closed-loop

controller. This is because the closed-loop controller would make the distribution of deviation be

more clustered around the mean, adding more validity to the Gaussian assumption.
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Chapter 4

Iterative Motion Planning Methodology Using Online

Slip Estimation

As it was discussed previously, motion planning for autonomous vehicles in off-road condition

is a conplex problem due to slip phenomenon. A robust planning framework was presented in

Chapter 3 to resolve this issue, but it requires prior knowledge about the environment that the

vehicle is going to travel. To be more specific, it needs the information about the types of terrain

the environment consists of, and their slip properties (mainly the effective wheel-base parameter a

and the covariance matrix of the process noise term due to slip). When we don't have much

information about the slip property of the environment, the robust planner in Chapter 3 is not

suitable. Moreover, when the slip property changes due to changing terrain condition, information

obtained a priori is inadequate. In such cases, online slip estimation would improve the result

greatly.
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The integrated prediction error minimization (IPEM) method is an effective algorithm [39] to

estimate the slip property. For a given differential system, IPEM calculates the parameter (in our

case, the effective wheel-base parameter a) that minimizes the deviation between prediction and

measurement. In addition, it calculates the probabilistic distribution of the minimized deviation (the

covariance matrix of the process noise term due to slip), which can be used in the motion planning

step. The fact that it uses integrated prediction rather than derivative directly makes the algorithm

more stable and accurate [39].

This chapter provides a robust motion planning methodology for tracked vehicles operating in a

rough terrain environment with unknown slip property. An iterative motion planning scheme that

uses online slip estimation is introduced. The environment is assumed to be flat and to consist of

multiple soil types. The slip estimator calculates the slip property of the soil that the vehicle is

currently operating on in an online fashion using IPEM algorithm. Then, the robust motion planner,

presented in Chapter 3, plans the trajectory for the vehicle iteratively based on the most recent slip

property calculated by the slip estimator. This chapter is based on the work of Lee et al. [29].

This chapter is organized as follows. Section 4.1 provides the problem statement and an

overview of the iterative planning and estimation methodology. The vehicle system model is

provided in Section 4.2. Basic information about the online slip estimator using IPEM approach is

presented in Section 4.3. The simulation result for the operation of a tracked vehicle in a realistic

scenario is presented in Section 4.4.
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4.1. Problem Statement and Overall Methodology

The overall framework consists of three components: i) planner, ii) trajectory tracker, and iii)

slip estimator. Given an initial state and slip estimate, the planner finds the optimal trajectory

assuming that the entire environment has a homogeneous slip property. The obtained optimal

trajectory is passed to the trajectory tracker. The tracker follows the trajectory and meanwhile

gathers sensor measurements. For tracked vehicles, these would typically be GPS and odometer

measurements. The slip estimator calculates the new slip estimate based on the measurements and

feeds it back to the motion planner along with the new start state. The planner re-plans the optimal

trajectory based on the new slip estimate, and the process repeats itself until the vehicle reaches the

goal region. Figure 4.1 and Algorithm 4.1 show an overview of the entire iterative methodology.

Start State Optimal New Start State

Slip Estimate Trajectory Trajectog Measurements New Slip Estimate
Motion Planner I Slip Estimator

Pursuer

Figure 4.1. Diagram of overall framework [29]

Algorithm 4.1: Overall Framework [29]

1 Initialize starting state and slip estimate;

2 while (vehicle not in Xgoal)

3 MotionPlanner -+ Optimal trajectory;

4 TrajPursuit -- Measurements;

5 SlipEstimator - Slip estimate;

6 New start state; New slip estimate;

7 return
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Next, the problem statement for each part in Figure 4.1 is introduced. The problem statement for

the motion planner is similar to the one in Section 3.1. Let the state space be X c R' and the input

space be U c R'. The vehicle model can be formulated in the following general form:

i = f(z, u, p, w) (4.1)

where z E X is the state vector, u E U is the (nominal) input vector, p is the parameter used to

compensate for the slip, and w is the white process noise with zero mean. The noise term due to

slip, w, has a different form from the system model introduced in equation (3.1), where w was

included as an additive noise. In fact, this different modeling w doesn't affect much in our case,

which is going be discussed in Section 4.2. p and Z, the covariance matrix of w, vary with respect

to the terrain type and they are calculated by the slip estimator. In this chapter, p and E, together

will be referred to as slip estimate. p and w are often considered together with input u to form the

following equation:

= f(Z, Ua(P, W)) (4.2)

where ua is the augmented input.

The vehicle should reach the goal region Xgoai, starting from the initial state zinit and following

the optimal and probabilistically feasible trajectory calculated by the motion planner. That is, the

trajectory calculated by the motion planner should have the minimum cost with respect to the

specified cost function. Also, letting XebS, and T : [0, 1] -+ X again denote the obstacle space and

trajectory respectively, P(r(s) c Xobs) < 6, Vt, (0 s 1) must be satisfied for the probabilistic

feasibility.

The online slip estimator is essentially a system identification algorithm [32]. A system

identification algorithm estimates the unknown parameters given system dynamics and actual
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measurements. Let's assume the system dynamics is given as the equation (4.1). p and w can be

thought of as the unknown parameter that needs to be estimated. Given state at t = 0, zo, we can

predict the state of the system along the trajectory, Zpred(t), as the function of p and w using the

equation (4.1). Here, the input u is assumed to be known. We are also given measurement along

the trajectory, zmea (t). Then, the slip estimator calculates the best estimate for p and w that

minimize the cost function of the form Jestimator(Zpred(t), zmea(t)), that is, the cost function that

takes the predicted and measured trajectory as the arguments. In many cases, this is just the

Euclidean norm.

find the parameter estimate p* and w* subject to

Zpred(0) = ZO

Zpred(t), the prediction of system state along the trajectory

(4.3)

Zmea(t), the measurement of system state along the trajectory

Zpred f (Zpred, u, p, w), with given u

p* and w* = argmin Jestimator (zpred(t), Zmea(t))
pandw

Finally, the trajectory pursuer is a trajectory tracking system that follows a given trajectory. It is

composed of sensor and closed-loop controller, which have the same dynamics as the ones used in

motion planning step.
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4.2. System Model

In this chapter, the following simple kinematic differential drive with augmented input is of

interest. It is similar to vehicle model from Chapter 2 and 3 with slight modifications.

[X] r + V 1 -Vr a + Vi,a
[( + wp) 2 cos6 ' 2 cos]

r + VI sV-,a + VI,a

2 2sn]
(a+W)Vr - Vi Vr,a - Vi,a

b b -

(4.4)

where z = [x, y, O]T is the state vector, u = [Vr, vI]T. is the nominal input vector applied to the

system, and up = [Vr,a Vi,a]T is the augmented input vector. p = [a p]T is the parameter vector

and w = [wa wp]T is the process noise vector which takes a normal distribution, w-N(O, E)

where EZ is a constant matrix. u and Ua satisfy the following equation:

(a + wa) + + w8)

Ua (a +wa) 2-p+ w8)

2

(a + wa) - (fl + wp)

2 u = Tau
(a +wa)+ (fl+ WO

2

The vehicle model can be considered as the effective wheel base model with an additional

parameter fl.

The cost function to be optimized for the motion planner is as follows:

J(X,u) = tf + f tf
a(t)T Ra(t)dt

where tf is the final time and R is the cost parameter matrix.
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The system equation and the cost function needs to be linearized and discretized for the motion

planner, which is similar to the case in Section 3.2. Here, we need to linearize the equation (4.4)

with respect to the process noise term w too [34].

Now, let's explain the question imposed in Section 4.1. Why does modeling the process noise

term w as in equation (4.1) not have much difference from the one suggested in equation (3.1)? This

is thanks to the linearization step. If we linearize the equation (4.1) with respect to w, the resulting

linearized equation has the process noise term as the additive noise, which has the same effect as

the case in equation (3.1).

4.3. Online Slip Estimation

In this chapter, the IPEM method is used for the slip estimator [39]. It calculates the parameter

estimate of the system that minimizes the deviation between the state prediction, zpred(t), and

measurement, Zmea (t). Additionally, it calculates the system's stochastic property, the distribution

of the process noise assuming that it takes some normal distribution, w-N(O, ZE).

First, let's briefly explain the IPEM algorithm. In IPEM method, zpred(t) is obtained by

integrating the system equation from to to t, using the current parameter estimate, Pest:

zprea(t) = z0 + ff (zpreci(T), Ua(T, Pest, 0)) dr (4.7)
to

where ua is the augmented input as in Equation (17). Note 0 in Ua(T, Pest, 0), since the process

noise has zero mean.

Let us put Zpred (t) = g (z(to), Ua( 'Pest, 0)). This equation is usually a nonlinear equation for

vehicle models. The above equation can be linearized as follows.
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Zprea(t) ~ 1.. (4.8)

We will use the notation SE, which stands for slip estimate, to denote p = pest, w = 0. Now,

we can approximate the new parameter estimate based on measurements received using the

following equation:

- Ap ~ Zmea - Zpred (4.9)
a SE

However, obtaining the Jacobian matrix in Equation (4.9), which can be obtained as applying

the difference equation ~~ g(zpred(to),ua(. ,p+-Spi,w))-g(zpred(to),ua(,PW)) for all matrix
api ISE

elements, is computationally demanding. We take the detour and first linearize the differential

system equation.

S4pred(t) ~ zpred(t) + a Sua(t, P, W)ISE
aZpred SE a SE (4.10)

= FSzest(t) + GSua(t, P,W)ISE

For this linearized differential system equation, the solution is the following vector convolution

integral:

SZpred(t) = @(t, t0 )Sz(t0 ) + fF(t, )SUa(t, PW)SEdT (4.11 )
to

Here, 'P(t, -r) and F(t, r) can be obtained in the following way.

k(t, r) = F(t)P(t, -)

t (4.12)
T) f F(()d
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P(t, r) = e '(t,T)

F (t, r) = (P(t, T)G(r)

We can approximate the Jacobian matrix -2
'SE

Ig 
I

aP SE

as follows:

t dua (T, P, W)
Hsys = t 0 (t, -) d I d (4.13)

In addition, we need the measurement covariance matrix, the covariance matrix of r(t) =

Zmea(t) - Zprea(t).

RSYS = P(t, to)Zx,mea(to)P(t, to)T +
t

F(t, T)Q(r)F(t, T)TdT + Exmea(t)

where Exmea(t) is the covariance matrix of zmea(t) (it is easy to think of it as the GPS error

covariance matrix) and Q (r) is the covariance matrix of Sua (r, p, w).

We can obtain the parameter value using the following Kalman filter framework iteratively:

Pest,klk-1 = Pest,k-ik-1

Pest,kjk-1 = -Pest,k-1Ik-1 + Ak

rk = Zpredk - Zmea,k

Sk = HSYS,k pest,kk_1HyS,k + Rsys,k

Ke,k = -p,,,,k k_1Hsys,kTSk-1

Pestklk = Pest,kik-1 + Ke,krk

XPest,k~k = U - Ke,kHsys,k)-pest,klk-1

(4.15)
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where k stands for kth iteration. EPest is the covariance matrix of the parameter estimate and Ak is

the covariance matrix that governs how much weight we put on the most recent measurement. The

larger that Ak is, the more weight we put on the recent measurement.

We can also estimate for Z,, assuming that it is a constant, although it can vary according to

terrain type. The overall procedure is similar to the above explanation. More detailed explanation

can be found in [39].

Next, let us apply the above IPEM method to our vehicle model presented in Section 4.2. We

need the Jacobian matrices a and .
azpred SE aua SE

0r,a + V1,a

F0 ra 2 s6 = 0 -pred

O Vr,a + V,a Opred 0 Ypre]
FSZpred SE 0

0 0 0 SE

[1 1 (4.16)

G E -C1Si0pred 1CS pred u SE 2Sflp2~

b b

We can calculate 'P(t, r) easily:

1 0 -AYpred-

=(t, I + 'P(t, C) = 0 1 xpred (4.17)
0 0 1

where Axpred = Xpred (t) - Xpred (-). Using the above equations,
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Thus,

AYpred 1 A~pe
COSOpred b 2 OSpred + "bred

F 'r) 1 Axpred 1 Axpred
T~t 2 

= sin~pred + b 2 sin0prec - b

1 1

b

.ypred

du b (Vr -i )O (Vr + VO cos~pred]
dua(r, p, w) Axprec - 1

F(t,T) dp ISE r-i) ( lr+Vi)S fre

(Vr -VI)
b-

(4.18)

(4.19)

We can obtain Hsys = ft F(t, r) d SE dr by integrating Equation (24). Since we assume

piecewise constant input, that is, u = [vr vI]T is piecewise constant, the calculation is simplified.

When we obtain RSYS, we use the assumption that E, is a constant matrix. The following holds

in that case:

Q(r) = TUEWTU T (4.20)

Vr-V1 Vr+V 1

where Tu = 2 2
Vr-V1 1V+VL]

4.4. Simulation Results

Simulations were conducted in an artificially created environment with several properties. Figure

4.2 shows the simulated map. There are numerous polygonal obstacles (black polygons) such as

sand dunes, ponds, buildings, etc. In addition, the environment is assumed to consist of two terrain
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types, represented by the white and green (gray) regions in Figure 4.2. The white region represents

a more slippery and unstable terrain (such as an icy region), whereas the green region represents a

less slippery and more stable terrain (such as turf). The map size is 200 by 100 meters. The vehicle's

starting pose is (180 m, 85 m, 7 rad) and its goal region is the 10 m X 10 m box around the point

(20 m, 20 m).

100

90

80

70

40

30

20
00 Obstacle

10+ Start State10 [JJGoal Region

0 0 20 40 6U 80 100 12U 14u 160 180 200

Figure 4.2. The map scenario for simulation [29]

The vehicle's trajectory pursuit is also simulated using a closed loop controller. The same

controller that was used for the motion planner must be used, which is shown in equation (3.16).

The vehicle slip is also simulated during the pursuit. The slip was simulated so that each terrain has

different true p and Z values. The slip estimator would have to estimate the values for p and Z,.

Figure 4.3 shows the simulation result when the slip estimator was not operating. The optimal

trajectory was planned using initial guesses of p and EZ. Then, the vehicle tried to follow the

trajectory assuming that the initial guesses were correct. The guesses were chosen so that they were
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close to true p and E, of the green region, and the vehicle thus followed the trajectory well within

that region. However, when the terrain changed, the vehicle deviated much from the planned

trajectory and collided with an obstacle. The sum of deviation between reference trajectory and the

vehicle's real state for every 0.3 seconds was 53.7946m in green region and 869.2009rn in white

region.

Figure 4.4 shows the result where the slip estimator was operating but the online re-plan was not

conducted. The vehicle follows the trajectory much better than it did in Figure 4.3. This is due to

the fact that the closed loop controller could utilize the newly calculated slip estimate. However,

since the trajectory was planned using only the initial guesses, the vehicle collided with an obstacle

in this scenario as well. The sum of deviation between reference trajectory and the vehicle's real

state for every 0.3 seconds was 69.8949m in green region and 601.3396m in white region.

100-Z
F- Different Region______________

90, Obstacle
-Planned Trajectory

80 Real State
Estimated State

70 95%Confidence

60

40

30

10

0
0 20 40 60 80 100 120 140 160 180 200

Figure 4.3. The simulation without slip estimation [29]
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Figure 4.4. The simulation with slip estimation, but without re-planning [29]

Figure 4.5 shows the result with the entire framework operating. It shows re-planned trajectories

for all iterations. In this case, the vehicle not only followed the planned trajectory successfully, but

it also avoided all the obstacles. This indicates that the re-planning plays a crucial role in the overall

vehicle operating scheme. The sum of deviation between reference trajectory and the vehicle's real

state for every 0.3 seconds was 71.8236m in green region and 90.2926m in white region. This

means the vehicle followed the reference trajectory well even in white region, unlike the cases in

Figure 4.3 and 4.4. Figure 4.6 shows the calculated parameter values (p) for the Figure 4.4 case

(left) and the Figure 4.5 case (right). The true parameters used were pi = [0.9 1.0]T for the first

region (white) and P2 = [0.5 0. 8 ]T for the second (green) region, which are indicated as dashed

horizontal lines. The true parameters were calculated correctly and the terrain change was also

successfully detected. The terrain change is indicated with vertical lines. The high frequency noise

is due to the assumed measurement noise and ZY. Table 4.1 shows the ratio of sums of deviation
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calculated above for each case with respect to the iterative method case. The deviation is largest

when we don't perform estimation. The deviation shrinks when we perform estimation without

replanning, but it is still large. The deviation is the smallest when we perform estimation and

replanning altogether.

100
Different Region

90 Obstacle
Planned Trajectory

80- Real State
80 -_ Estimated State

70 -95% Confidence

60

40

30

10

0
0 )j .10 60 80 100 1.,>3

Figure 4.5. The simulation with slip estimation and re-planning [29]
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Figure 4.6. The parameter estimate for Figure 4.4 (left) and Figure 4.5 (right) [29]
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Table 4.1. Ratio of sum of vehicle's deviation

Scenario No estimation

Ratio of Sum
of Dev.

5.6934

(with respect

No re-plan

to the iterative method) [29]

Iterative
method

4.1405

There is a slight delay in terrain change detection, as we can observe from Figure 4.6. That is,

there is a delay for the parameter alpha to converge to the true value after the terrain change. The

reason lor this observation is that the parameter alpha converges to the true value only when it meets

curved trajectory. It doesn't converge on the straight line trajectory. This is due to the fact that the

parameter alpha is only related to turning rate of the vehicle as in equation (4.4). This can be seen

well from the following result.
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III I I I i

0 20 40 60 80 100 120 140 160 180

Figure 4.7. Pursuit of the specified reference trajectory consists of long straight line followed by
two half circles
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0
Figure 4.8. Parameter estimate for Figure 4.7

In Figure 4.7, the vehicle followed the specified reference trajectory, which consists of long

straight line followed by two half circles. Figure 4.8 shows the parameter estimate along the

trajectory. The true parameters, p = [1.0 1.0]T, are indicated as the dashed horizontal line. The

change from straight line to half circle is indicated with vertical line. The true value of parameter

alpha is not detected until the vehicle enters circular trajectory as explained.
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Chapter 5

Conclusion

5.1. Results and Contributions

This thesis presents a robust motion planning architecture for autonomous tracked vehicles

operating on off-road condition. The slip of the vehicle due to vehicle-terrain interaction becomes

a major source of uncertainty. In order to compensate for the effect of slip during motion planning

phase, a robust motion planning strategy is introduced.

Before actively discussing robustness, a computationally efficient optimal motion planning

method for non-holonomic system, such as tracked vehicles, is presented in Chapter 2. Instead of

trying to achieve the exact connection for non-holonomic steering function, which is

computationally expensive, an approximate method with "repropagation" step can be used to meet

computational efficiency [15].

In Chapter 3, a robust motion planning scheme is introduced by combining two state-of-the-art

algorithms, CC-RRT* [35] and LQG-MP [4]. CC-RRT* calculates the probability of collision and
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ensures robustness in quantitative manner. LQG-MP propagates uncertainty in closed-loop fashion.

The combined algorithm yields robust yet non-conservative trajectory.

The algorithm is further improved by introducing the online slip estimator in Chapter 4. The

robust motion planning algorithm in Chapter 3 requires much prior knowledge about the

environment. This issue can be resolved by combining the robust motion planner with online slip

estimator and re-planning the trajectory iteratively. The online slip estimation plays a crucial role

when there is not much information about the environment or when there is an abrupt change in

terrain condition.

To the author's knowledge, this work is the first to demonstrate a practical methodology for

robust optimal motion planning of autonomous tracked vehicles operating in rough outdoor

scenarios. The overall algorithm has been tested on realistic simulated environment. An

experimental result is also provided for the partial validation of the algorithm. The work in this

thesis has many practical applications. It can be applied to exploration problems, such as planetary

rovers, where detecting and estimating different terrains in unknown environments and avoiding

obstacles at the same time is the major goal. In addition, though it is only applied to tracked vehicles,

the methodology is versatile, which is another advantage of this work. It can be applied to many

other robotic systems that requires robust motion planning.

5.2. Future Work

There might be several extensions to improve this research:

The current work is aimed for robust motion planning of tracked vehicle on flat deformable

terrain. This scenario can be extended to a more complex one, where the vehicle is traveling on 3-
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D terrain where the slope of the terrain cannot be ignored. In this case, an accurate way to model

and quantify the slip uncertainty should be developed.

More 'experimental data can be provided to validate the result. The experimental data presented

in the thesis is only for concrete surface. An experiment on several other terrain types can be

provided to enrich the result. In addition, the motion planning algorithm can be tested with an actual

tracked vehicle operating in environment where it is composed of multiple soil types and the full

information about the environment is not known.

The computational efficiency of the algorithm can be improved. For example, a more smart

random node sampling and probabilistic feasibility checking for CC-RRT* can improve the

computational efficiency.
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