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Abstract

Live-cell imaging can be used to capture spatio-temporal aspects of cellular responses that are not 

accessible to fixed-cell imaging. As the use of live-cell imaging continues to increase, new 

computational procedures are needed to characterize and classify the temporal dynamics of 

individual cells. For this purpose, here we present the general experimental-computational 

framework SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell Responses) to 

characterize phenotypic cellular responses from time series imaging datasets. Hidden Markov 

modeling (HMM) is used to infer and annotate morphological state and state-switching properties 

from image-derived cell shape measurements. Time series modeling is performed on each cell 

individually, making the approach broadly useful for analyzing asynchronous cell populations. 

Two-color fluorescent cells simultaneously expressing actin and nuclear reporters enabled us to 

profile temporal changes in cell shape following pharmacological inhibition of cytoskeleton–

regulatory signaling pathways. Results are compared with existing approaches conventionally 

applied to fixed-cell imaging datasets, and indicate that time series modeling captures 

heterogeneous dynamic cellular responses that can improve drug classification and offer additional 

important insight into mechanisms of drug action.

Introduction

High-content imaging (HCI) is widely used to perform quantitative in vitro cell phenotyping 

in a broad range of applications from RNAi and drug screening to prediction of stem cell 

differentiation fates 1–4. In contrast to population-level assays that measure concentrations 

and activities of molecular species pooled over heterogeneous cellular populations, HCI has 
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the advantage of profiling cells in situ in a manner that captures both overall cellular 

morphology as well as sub-cellular features such as protein localization and their relative 

levels 5,6. Shape is the most common property used to characterize cellular phenotype in part 

due to the ease of image-based quantification enabled by cytoskeletal staining and the 

importance of morphology in a wide variety of cellular processes. In practice, fixed-cell 

imaging is typically performed because it avoids large-scale handling of live cultures during 

imaging or generation of fluorescent reporter cell lines, and enables quantification of large 

numbers of cells at a single time point, increasing statistical power for comparing cellular 

phenotypes across experimental conditions 7,8. Multivariate statistical modeling of fixed-cell 

image features has been effective in phenotype-based drug classification, providing 

important insight into signaling pathways involved in cellular morphogenesis 9,10. Single-

cell analysis using imaging has been particularly instrumental in identifying and deciphering 

cellular phenotypes in disease states 11. User-defined shape categories coupled with 

supervised learning such as support vector machines, as well as unsupervised methods such 

as principal component analysis (PCA), have been used to generate quantitative profiles for 

comparing experimental perturbations and inferring spatial signaling mechanisms of shape 

regulation 12–15.

However, fixed-cell assays, while relatively simple to perform through fluorescent staining 

and imaging, suffer from several important limitations. Principal among these is the loss of 

information regarding cellular dynamics in response to long-term or transient drug 

treatments. In addition, imaging artifacts may occur due to cell fixation and 

permeabilization, which may distort spatially resolved protein distributions 16. For these 

reasons, live-cell imaging is increasingly being used to characterize cellular phenotypes, 

particularly in the subcellular analysis of cell shape dynamics and polarization. For example, 

computational tools for cell boundary tracking 17–19, morphodynamics profiling 20–23, 

measurement of fluorescent reporters 24,25, and quantitative morphology and subcellular 

protein distribution analyses 26 in live cells have become an integral component of high-

resolution analyses of cell shape and its regulation, particularly in the context of cell 

migration. In cell migration studies, live-cell shape and signaling analyses have been 

complemented by direct quantification of motility properties such as cell speed and 

persistence of motion to establish links between molecular mechanisms and migratory 

phenotypes 27–32.

In these applications, the relative strengths of high-resolution, live-cell imaging versus fixed-

cell HCI assays are apparent: the former captures rich, dynamic properties of single-cell 

behavior while the latter enables large-scale screening of hundreds to thousands of cells. In 

an effort to bridge this gap, several mathematical approaches have been developed to infer 

dynamic properties of cell populations from fixed-cell measurements in HCI studies. For 

example, ergodic rate analysis based on differential equation modeling has been used to 

infer transition rates through cell cycle stages from images of molecular reporters that define 

various mitotic phases in individual fixed cells 33. Additionally, Bayesian network modeling 

of shape parameters coupled with RNAi knockdown of cytoskeleton-regulatory proteins has 

been used to infer shape state transitions of migratory cells and reveal underlying regulatory 

signaling modules 34,35. However, these approaches assume quasi-steady-state of the cell 

population, assign cells into pre-defined phenotypic categories, and, in the case of Bayesian 
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networks, face difficulties in modeling repetitive processes such as motility cycle stages in 

migrating cells. Moreover, they are not directly applicable to the analysis of live cells over 

time to monitor individual cellular responses to drug perturbations.

To address these limitations, here we present a live-cell HCI framework that captures the 

dynamics of a large number of cells on the scale of a phenotypic screen. The approach 

combines high-content live imaging, image processing, multivariate data analysis, and 

probabilistic modeling to characterize cell shape dynamics in a drug-screening context. 

Inspired by existing methods for modeling cell cycle stages from time series images 36,37, 

our framework employs hidden Markov modeling to describe shape dynamics as temporal 

sequences of morphological states that are observed as noisy, multivariate image data. 

Describing temporal trajectories of multivariate shape measurements as a finite set of states 

that is limited in number by Bayesian model selection that penalizes model complexity, 

results in an efficient description of time-dependent shape categories explored by a cell. This 

approach provides a means of modeling the shape dynamics of hundreds of individual cells, 

capturing temporal evolution in cell morphology directly from live images without 

assumptions of steady-state cell populations or predefined shape categories assumed by 

fixed-cell analyses. We show here in a proof-of-principle study that drug-response profiles 

derived from these models can be used for phenotypic drug comparisons and can reveal 

spatially distinct and pathway-specific roles that drug-targeted species play in modulating 

shape dynamics. Our computational framework is available as open source for the 

computational cell biology community to apply using MATLAB.

Results

We developed a framework to characterize single-cell shape dynamics for large collections 

of cells from live-imaging assays (Fig. 1). Fluorescent cells treated with a variety of drug 

perturbations are imaged in a multi-well format followed by image processing and analysis 

to track and outline individual cells over time. Image-derived features, or descriptors, of cell 

shape are extracted to generate a data cube for the entire imaging screen, with the three 

dimensions corresponding to shape features, individual cells, and time points. PCA is used 

for dimensionality reduction along the shape feature axes to generate temporal “shape-

space” trajectories of individual cells in principal component (PC) space. HMM is then used 

to annotate each cell shape trajectory using a small set of shape states that are determined 

using Bayesian model selection, revealing important time-dependent features of cell 

morphology while substantially reducing live-cell data size and complexity. Features 

extracted from temporal model annotations of hundreds of cells are then used for clustering 

and classifying perturbations. In the following sections we detail the steps of the framework 

and present a proof-of-principle study in profiling the heterogeneity in cell shape dynamics 

from a small-scale drug screen.

Live imaging enables temporally-resolved readout of cell phenotypes

We first generated a triple negative breast cancer cell line, MDA-MB-231, with stable 

expression of two fluorescent reporters, LifeAct-eGFP and histone H2B-mCherry, for 

concurrent imaging of actin and nuclear dynamics, respectively. This enabled the 
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unambiguous identification, isolation, and tracking of individual cells using the segmented 

nuclei, while the actin reporter enabled quantitative characterization of cytoskeletal 

morphology. MDA-MB-231 cells were chosen for their mesenchymal-like properties and 

lack of epithelial-type intercellular junctions, making this cell line particularly amenable to 

studying phenotypic behavior on the single-cell level. The two-color fluorescent reporter 

cells were seeded in 96-well plate format and treated with different drugs that target distinct 

components of the actomyosin cytoskeleton-regulatory pathways including ROCK (Rho-

associated protein kinase), myosin II, EGFR (epidermal growth factor receptor), calpain, 

MLCK (myosin light chain kinase), and MEK (mitogen-activated protein kinase kinase), to 

probe their effects on cell shape dynamics in two independent imaging experiments 

(Materials and Methods).

In one experiment, we included two controls in order to set a baseline for cell behavior under 

no drug treatment: one of growth media only and the other with 0.1% v/v DMSO in growth 

media to assess effects of DMSO alone since it was used to dissolve drug stock. We also 

included two different doses for the ROCK and MLCK inhibitors to assess drug 

concentration effects on cell shape dynamics characterized in our framework. In an 

additional experiment, we expanded the panel of drug treatments and used a different 

microscope, culture media, and cell passage number to assess these factors on 

reproducibility of experiments and subsequent analyses. Epifluorescence 2-D microscopy 

using a 10X/0.3NA air objective offered a suitable tradeoff between field-of-view and 

resolution, enabling us to maximize the number of cells captured with sufficient detail to 

characterize individual cell morphologies over approximately eighteen hours for each 

treatment condition.

Visual inspection of the compiled time series movies revealed asynchronous populations of 

dividing, apoptotic, and migratory cell phenotypes (Videos S1-3). For cells not undergoing 

division or death, we observed a broad range of shape changes, with some cells changing 

shape rapidly with pronounced cell body protrusions and retractions, while others exhibited 

less noticeable morphodynamic activity. Although the cells generally exhibited autonomous 

behavior that was largely independent of one another, we observed frequent contact and 

spatial overlapping of some cells in addition to entry and exit of cells into and out of the 

imaging fields of view. Collectively, the large quantity of imaging data and phenotypic cell 

behaviors rendered fully manual data parsing and analysis intractable, thereby motivating 

the need for an automated computational analysis pipeline for processing the time-series 

images.

Automated processing with quality control ensures accurate parsing of image data

A priority in formulating our probabilistic modeling approach was to ensure that any data 

input into the model accurately captures cell shape properties. We therefore developed an 

image processing pipeline to segment and track cells with as many automated, user-free 

steps as possible to increase throughput and minimize user subjectivity (Materials and 

Methods; Fig. 2A). Automated image parsing, cell segmentation, and tracking were first 

performed for all acquired image time series (see examples in Videos S1-3). A major 

challenge, however, involved the treatment of variations in image illumination between 
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fields and within fields over time, as well as variability in fluorescent reporter levels between 

cells, leading to occasional image processing errors such as over- or under-segmentation of 

cells (Fig. 2B). We therefore developed a GUI-based quality control (QC) module that 

enabled manual validation and modification of segmented regions and cell tracks. Here, user 

input is desirable because cell boundaries can be defined unambiguously by the human eye 

while automated segmentation is notoriously sensitive to image properties. This module was 

used to discern and correct artifacts introduced during image acquisition and automated 

processing steps. The QC module also enabled us to identify and label dividing and dying 

cells, which were removed from subsequent analyses (Fig. 2C).

Drug treatments diversify morphologies of MDA-MB-231 cells

The automated image processing and QC pipeline resulted in a collection of accurately 

segmented and tracked cell trajectories. We next extracted a set of eighteen morphological 

features from segmentation masks of each cell and time point (Table S1). Following z-score 

normalization of each feature across cells, we applied PCA to the data in order to capture 

and visualize the variability in shape between all cell images from the imaging experiment 

with the expanded panel of drug treatments (Fig. 3A). Here, we call the basis of the 

projected data onto the first two PCs the “shape-space.” The first two PCs captured over 

80% of the shape variability in the observations. In order to assess how PCA distributes and 

orients morphological properties of cells in shape-space, we selected random time snapshots 

from four different cells in seven regions of PC space and visualized the overlaid actin and 

nuclei images (Fig. 3B). This visualization revealed that morphologies of MDA-MB-231 

cells across all seven drug treatments vary from large and spread (Fig. 3B, panel d), to round 

cells with pronounced cortical actin at the cell periphery (Fig. 3B, panels e and f), as well as 

polarized cells with varying degrees of elongation (Fig. 3B, panels g, a, b), and branched 

morphologies (Fig. 3B, panel c).

To visualize how morphologies vary in different directions and radial distances away from 

the data mean in shape-space, we created a polar representation of the two PCs. The polar 

shape-space was subdivided into twelve equal angular bins, with each bin subdivided further 

into quartiles. Fig. 3C shows the representative cell shapes in each radial quartile of the 

angular bins as well as the contributions of the original eighteen shape features to the values 

of the two PCs. The highest variance in shape, along the first PC, predominantly captures 

cell elongation and branching, while the second PC captures cell spreading area and 

roundness. Features such as major axis length, geodesic diameter, and maximum Feret 

length capture similar length properties of cells and therefore have similar PC coefficients 

and directions in shape-space. These features are anti-correlated with solidity, circularity, 

and extent, which point in the opposite direction for both PCs, showing that branched and 

elongated morphologies have smaller solidities and circularities, as expected. As captured 

mainly by the second PC, cells with longer minor axes and larger areas have generally lower 

eccentricities and smaller ratios of major to minor axis lengths.

Furthermore, we found that cells are densely packed around the data mean at the origin in 

shape-space, with the point density dissipating radially (Fig. 3A). This suggests that 

although MDA-MB-231 morphologies are visually distinct, shape properties of the 
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population as a whole vary on a continuum, with no clearly distinguishable groups. 

Interestingly, however, when we plotted cell shape trajectories one at a time we found 

increased grouping and clustering of points. We applied k-means clustering to individual 

cells and to the cell population as a whole for k = 2 to k = 10 clusters, and computed average 

silhouette values in order to quantify the degree to which points form well separated, or 

cohesive, groups (Fig. 3D). As may visually be discerned in Fig. 3A, example cell trajectory 

i forms 2 groups while cell trajectory j forms 3 groups, which is confirmed by the maximum 

silhouette value that occurs for k = 2 and k = 3 clusters, respectively. On average, points 

from individual cell trajectories had higher cluster cohesion than did random samples with 

the same number of points as the trajectories or the entire cell population as a whole.

Probabilistic modeling of morphological states reveals heterogeneity in cell shape 
dynamics

Having observed that individual cell trajectories form more cohesive clusters than the 

population as a whole, we next sought to develop a principled and reproducible means of 

modeling morphological dynamics on a single-cell basis. We reasoned that the higher cluster 

cohesiveness within individual trajectories signifies the presence of underlying “states” that 

the cell explores in shape-space over time. Although Gaussian mixture modeling (GMM) is 

a highly useful approach for unsupervised, model-based data clustering that would eliminate 

subjective, user-defined delineation of states 37, it typically ignores the temporal nature of 

data. Including temporal information during model inference is reasonable a priori because 

GMM inherently assumes that observations are independent 38, which is not necessarily 

satisfied for sequential time series measurements from the same cell, whose shape may be 

highly correlated in time. We therefore applied an HMM framework in which temporal 

dependencies are directly incorporated during model inference, using a modified approach 

developed for annotating modes of single-particle motion in live cells 39. Within this HMM 

framework, the “hidden” underlying states correspond to cell shape states that produce 

observable emissions that are associated with the measureable cell shapes computed in PC 

shape-space (Materials and Methods). Additionally, Bayesian model selection enables us to 

penalize models with greater numbers of underlying shape states to fit the set of time series 

points satisfying Occam’s razor or the Principle of Parsimony 40,41.

To compare our approach with GMMs that ignore dependencies in time series data, we 

simulated shape-space trajectories from underlying hidden Gaussian states to explore 

differences with HMM-based annotation using SAPHIRE. Specifically, we sought to 

compare state identification capability of the two methods, with SAPHIRE using Bayesian 

model selection and GMM using the Bayesian information criterion to penalize model 

complexity. Our two-state model simulations revealed that SAPHIRE is more likely to 

choose the model with the correct number of states and has better accuracy in inferring 

locations of state means compared with GMM due to SAPHIRE’s incorporation of temporal 

dependencies in the data during the state inference steps (Fig. S1).

Next, we applied SAPHIRE to experimental observations of cells in the two-dimensional PC 

shape-space to infer a time series model for each cell individually. The inferred model 

specifies the most probable number of hidden shape states, which is unknown a priori, as 
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well as the state parameters. Each state is a symmetric, bivariate Gaussian distribution in 

shape-space with two variables corresponding to the two PCs. The inferred parameters for 

each Gaussian distribution are the standard deviation and the mean, which capture temporal 

shape variation and average morphology of the cell within the state, respectively. The model 

also specifies a state transition probability matrix that describes the probability of transitions 

between shape states. Each cell is annotated in time with the most probable, or maximum 

likelihood, shape state sequence, enabling us to determine the most likely state that the cell 

exists in at each point in time. We first compared shape state inference of our approach with 

that of commonly-used GMM under different model constraints. Allowing for elliptically-

shaped Gaussian states in the GMM led to undesirable grouping of cell shapes with visually-

dissimilar morphologies into the same state (Fig. S2), and, similar to the results of the 

numerical simulations (Fig. S1), SAPHIRE was better able to capture distinct morphological 

phases of cells that gradually move between distinct regions of shape-space (Fig. S3). In 

certain cases of cells moving between two visually distinguishable underlying states, the 

state annotations of cell trajectories were similar for SAPHIRE and GMM (Fig. S4). 

Moreover, from all modeled cell trajectories we found that a larger fraction of cells exists in 

two to three underlying states, while fewer cells explore either a single state or four or more 

states (Fig. S5).

Despite some similarities in the numbers of states explored by cells, the inferred parameters 

of transition dynamics and state annotations varied considerably between cells. These 

variations not only existed for cells across different drugs, but also across cells within a 

given treatment and for cells with the same number of shape states. Fig. 4 shows the inferred 

shape states for two example cells treated with the same drug having the same number of 

inferred states, but with notable heterogeneity in state parameters and transition dynamics. 

Some cells exhibited rapid back-and-forth switching between states corresponding to 

periodicity in actin protrusions and retractions, resulting in shapes that are elongated, 

rounded, or those in between (Fig. 4A). Other cells exhibited individual instances of state 

transitions, progressively changing shape in a given direction in shape-space, such as going 

from larger and more spread to smaller and rounder morphologies (Fig. 4B). The maximum 

likelihood state annotations capture different phases in the morphodynamic history of a cell, 

with state transition parameters derived from the state sequence providing useful insights 

into its dynamic behavior. For instance, the model for the cell in Fig. 4A reveals that the cell 

is more likely to stay in state 1 (p = 0.19) or state 2 (p = 0.29) than transition to other states, 

and that direct transitions between elongated (state 1) and a rounded (state 3) morphology 

without going through an intermediate shape (state 2) is not likely (p = 0).

Shape state annotations serve as phenotypic readouts of drug action

Our probabilistic modeling framework produced annotated sequences of shape dynamics for 

all individual cell trajectories from the inhibitor screen, with each trajectory comprised of 

morphological states evolving in PC shape-space over time. We next explored how shape 

dynamics compare between cells treated with the distinct compounds. We first generated 

phenotypic signatures from the annotated state sequences for each cell. These signatures 

capture where in PC shape-space states are located, how long a cell spends in its inferred 
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states, and how frequently and in what directions in PC space a cell makes shape transitions 

(Fig. 5A).

We next assessed how the distribution of cellular shape states in polar PC space was affected 

by the experimental treatment conditions (Fig. 5B). Cells in the DMSO and growth media 

controls were positioned closely and were fairly evenly distributed around the mean of the 

shape-space data without exhibiting biased morphologies in any particular direction 

compared with the morphologies induced by drugs. The ROCK and myosin II inhibitors 

pushed cells predominantly towards highly elongated and branched morphologies with 

longer dwell times in these states. On the other hand, MLCK inhibition had the opposite 

effect, biasing cells toward smaller and rounder morphologies along the negative first PC 

axis. In the experiment with the expanded panel of drugs, both MEK inhibitors tested led to 

a broader variety of states, predominantly either rounder, or more elongated, shapes, 

although no strong biases of shape state location or state dwell time were observed upon 

MEK inhibition (Fig. S6A). Similarly, EGFR inhibition led to a broader and relatively more 

uniform distribution of morphological states around shape-space, albeit with a noticeable 

shift towards less elongated morphologies, whereas calpain inhibition biased cells into more 

elongated morphologies. Further, doubling the dose of the myosin II inhibitor shifted cells 

slightly towards more branched morphologies while diminishing elongated states, whereas 

an increase in dose of the MLCK inhibitor appeared to accentuate the bias towards smaller 

and more rounded shapes (Fig. 5B). For either drug, however, the overall distributions of 

cellular shape states and state dwell times were similar across both doses tested, as well as 

between the two imaging experiments.

Live-cell analysis also enables the determination of whether drugs differentially affect the 

trajectories that cells take through shape-space when they transition between distinct 

morphological states. To our surprise, state transition directions were similar across the 

drugs tested, with cells moving between two relatively narrow angular ranges, 120 to 180 

degrees or 300 to 360 degrees in shape-space (Fig. 5C; Fig. S6B) that correspond to 

decreased elongation with increased roundness versus increased elongation and decreased 

roundness, respectively (Fig. 3C). This finding suggests that most of the dynamics in shape 

that MDA-MB-231 cells undergo are along this morphological axis of increasing or 

decreasing elongation, regardless of drug treatment, which may be indicative of cytoskeletal 

protrusion and retraction cycles, while transitions toward larger, spread morphologies, for 

example, are quite rare for this cell type. Despite the similarity in the directions of state 

transitions taken by cells across drugs, ROCK and myosin II inhibition led to larger 

magnitudes and slightly broader distributions in state transitions, suggesting that these drugs 

induce more pronounced variations along the roundness-elongation axis of cell shape, likely 

by reducing transcellular actomyosin tension.

Moreover, readouts of shape state locations and state transitions can be used to group 

treatments based on similarities in induced phenotype dynamics. We derived a dynamic 

shape state “profile” for each treatment from the shape state and state transition histograms 

(Fig. 5B and 5C; Fig. S6A and S6B) and hierarchically clustered the treatments using profile 

similarities for each imaging experiment separately (Fig. 6A and 6B). As anticipated based 

on the preceding results, the two MEK inhibitors clustered closest together, as did the 
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DMSO and growth media controls. These results serve as internal controls to validate the 

HMM annotation and phenotypic drug comparison procedure proposed here. The MEK 

inhibitors were also found to have dynamic shape state profiles more similar to those of the 

EGFR and calpain inhibitors than to the MLCK, ROCK, and myosin II inhibitors. Myosin II 

inhibition with Blebbistatin produced phenotypes most similar to those with ROCK 

inhibition. Perhaps surprisingly, MLCK inhibition, which is known to alter myosin II 

activity, induced shape dynamics more similar to those under MEK and EGFR inhibition 

than under myosin II and ROCK inhibition. Overall, the computational analyses from these 

imaging experiments demonstrate that temporal dynamics of individual cells can be 

combined into quantitative profiles that serve as useful readouts for phenotypic drug 

comparison and for inferring shape-regulatory roles of targeted signaling molecules.

State-space temporal modeling of cell morphology improves drug classification over 
existing image-based profiling methods

SAPHIRE generates phenotypic profiles of experimental treatments from single-cell models 

of HMM-annotated morphological state trajectories in shape-space. This approach differs 

from existing fixed-cell HCI profiling methods, which, instead of modeling cellular 

properties of a given cell over time, characterize cellular properties for different cells in a 

population at a given time point. Therefore, we sought to assess the benefit that live-cell 

temporal modeling on a per-cell basis has in comparison with fixed-cell approaches 10,42–44 

in classifying treatment conditions in our screen (Fig. 7). We chose four profiling methods 

that have previously been compared amongst one another and have shown high drug 

classification accuracies in a large-scale drug screen study (see 15 and Materials and 

Methods). To make a fair comparison with live-cell analyses, we used live-cell population 

data from our inhibitor screen at five different time points post-treatment for the fixed-cell 

analysis methods in order to mimic a fixed-cell time course experiment. We additionally 

profiled the dynamics of individual cells but without the HMM that is used in SAPHIRE to 

assess the value of the HMM state-space shape representation for classifying treatments.

For the three treatments tested that were amenable to the classification analysis approach as 

in 15, of the four fixed-cell methods the “Factor Analysis + Means” profiles performed best, 

correctly classifying 5 of 6 treatments (Fig. 7A and 7B). This approach has also previously 

been shown to have good classification performance in a large-scale screen of dozens of 

drugs from different mechanistic classes 15,44. Profiles generated using Gaussian mixtures 43 

and the K-S statistic 10 correctly classified 4 of 6 treatments, whereas the simplest 

“Means” 42 approach only classified 2 of 6 treatments correctly. Treatment profiles 

generated using SAPHIRE resulted in correct classification of all 6 treatments, 

demonstrating improvement over the fixed-cell profiling methods tested. Moreover, the 

HMM annotation of morphological states using SAPHIRE appears to be critical for 

improving correct treatment classification, as profiles derived from single-cell temporal 

dynamics without the HMM misclassified 2 of the 6 treatments.

To further understand which properties of the state-space treatment profiles generated using 

SAPHIRE improve treatment classification, we separately considered the use of features that 

capture state transitions versus features that only consider properties of the states themselves 
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(Fig. 7C). Treatment classification confusion matrices using these state features separately 

revealed that state transitions correctly classify all six treatments, whereas exclusion of 

temporal transition information leads to misclassification of a treatment, yielding a 

classification performance similar to the fixed-cell “Factor Analysis + Means” profiling 

approach.

Collectively, these results demonstrate that all of the methods implemented, with the 

exception of the “Means” approach, correctly classify the MLCK and myosin II inhibitors, 

but fail to differentiate between cells treated with MEK inhibitor versus control, or those 

treated with ROCK versus myosin II inhibitors. Thus, as shown in Fig. 7D, when the shape 

distributions of two treatments differ, both state-space modeling of individual cells over time 

and existing fixed-cell profiling methods that measure features of different cells at multiple 

time points, can correctly classify and resolve treatment effects on cell shape. When shape 

distributions of two treatments are similar, however, state-space modeling of single-cell 

temporal transitions within the population distributions can improve discriminability and 

classification of treatments compared with existing methods that only capture shape 

properties of distinct cells within a population. Therefore, annotation of cell morphologies 

with a state-space representation using HMM, and in particular capturing state transition 

dynamics on a per-cell basis, can improve the accuracy of classifying treatment conditions in 

an HCI experiment.

Discussion

Here, we presented a computational framework that applies probabilistic time series 

modeling to characterize shape dynamics of individual cells under the action of drug 

perturbations assayed using live-cell imaging. Modeling temporal dynamics of cell shape 

using HMM condenses complex multivariate imaging data into simpler sequences of 

morphological states that evolve over time. Advantages of our approach over existing 

methods that are designed for fixed-cell imaging applications were explored. Quantitative 

features extracted from HMM state sequences using our approach serve as temporal 

signatures for comparing morphodynamic behaviors between cells, which are not available 

from fixed-cell analysis procedures. Temporal signatures from multiple identically treated 

cells are combined to serve as phenotypic profiles for clustering and classifying 

experimental perturbations.

It has been proposed that cell populations can assume either discrete or continuous 

morphological landscapes, principally determined by cell type, extracellular environment, 

types of perturbations, and the particular phenotype captured 45. For example, in cases when 

particular morphologies are reached under effect of genetic perturbations, cells may exhibit 

more stable steady-state morphologies leading to discrete shape states 13. Our results 

suggest, however, that shorter-term responses to pharmacological perturbation of highly 

asynchronous cell populations fall on a more continuous, finely graded morphological 

spectrum of shapes that conceals more cohesive and well separated shape state clusters 

within temporal trajectories of individual cells (Fig. 3). Consequently, two different 

approaches to cell profiling, one using commonly-applied fixed-cell analyses of populations 

of distinct cells and the other using temporal modeling of individual live cells presented 
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here, may collectively serve as a powerful combined approach to reveal idiosyncrasies in 

phenotypic effects of different molecular perturbations (Fig. 8).

In particular, within the context of image-based phenotypic profiling, our results illustrate 

that state-space temporal modeling of cell shape using HMM can improve the resolution of 

cellular classification in response to distinct drug treatments. This result, shown in Fig. 7D, 

highlights an important practical outcome of this work in the context of HCI. Existing 

phenotypic profiling methods correctly classified some treatments and misclassified others 

in the actomyosin cytoskeleton-focused drug screen. Our analyses demonstrate that 

modeling morphological transitions over time on an individual cell basis using HMM can 

provide useful live-cell phenotypic information for discriminating between treatment effects. 

Some of these effects are not captured by simply modeling cell shape distribution properties 

of different cells in a population, even if the same population is profiled over time. This 

suggests that the framework presented offers additional information beyond fixed-cell 

profiling in image-based classification using morphological data. An interesting application 

of temporal modeling would be to complement fixed-cell assays that utilize 

immunofluorescence staining in order to augment phenotypic profiling and better resolve 

underlying molecular differences driving distinct cellular drug responses assayed using live 

imaging.

In addition to investigating the utility of temporal shape modeling in HCI applications, we 

characterized differential cell shape dynamics induced by small-molecule inhibitors in order 

to infer relationships between actomyosin signaling mechanisms and shape phenotypes. 

Similarities in shape dynamics between DMSO and non-DMSO controls, between the two 

MEK inhibitors, and under different doses of the same drugs, validates the morphological 

states and state transitions as fundamentally reflecting target-specific effects. Similar 

dynamic responses in cell shape induced by EGFR, MEK, and calpain inhibition suggest 

that these species function along a common signaling axis of cell shape regulation in MDA-

MB-231 breast cancer cells (Fig. 6B). This result is in concordance with previous molecular 

mechanistic studies performed in fibroblasts, which showed that m-calpain activity is 

directly regulated by Erk by altering its spatial localization and association with PI(4,5)P2 at 

the plasma membrane 46. This process can be mediated by EGFR signaling through PLC-γ, 

which depletes PI(4,5)P2 at the leading edge resulting in localization and activation of m-

calpain at the trailing end that plays an important role in migratory cell polarization. The 

increased elongation phenotype induced by calpain inhibition revealed from our analysis 

(Fig. S6A) reflects the role of m-calpain in adhesion remodeling, the inhibition of which 

leads to trailing end retraction defects 47,48.

Moreover, our observation that ROCK and myosin II inhibitors biased cells toward branched 

and elongated morphologies is consistent with reported effects of increased actomyosin 

tension promoting cell polarization and limiting the formation of new protrusions 49–52. The 

increased elongation and branching dynamics we observed reflect the impairment in 

actomyosin contractility and loss of cell polarity upon ROCK and myosin II inhibition, 

leading to multiple competing protrusions extending outwards around the cell periphery. 

Given that MLCK and ROCK are both known to induce myosin II phosphorylation and 

activation, we may have expected their inhibition to promote similar shape dynamics. 
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Instead, the surprisingly dissimilar and near-opposite morphologies that their inhibition 

produced (Fig. 5B) suggests that MLCK and ROCK differentially affect cytoskeletal 

dynamics; this notion is supported by previous studies which showed that MLCK and 

ROCK have spatially distinct roles in regulating myosin II activity, and whose activities have 

opposite effects on the number of lamellipodial protrusions, cell elongation, and 

polarization 50,53. The MDA-MB-231 cell shapes induced by MLCK inhibition in our work 

are reflective of single-front motile cell morphologies for which formation of additional 

lamellipodial protrusions is limited (Video S3), as has been suggested to also occur in 

keratocytes at different stages of development 53. The differential effects of ROCK and 

MLCK inhibition on shape dynamics that we identified through our analyses (Fig. 8) may 

have consequential effects on overall cell polarization and migratory behavior in cancer that 

warrants further investigation in future work.

More generally, the plasticity and variability in shape revealed in our analyses reflects the 

highly dynamic cytoskeletal changes characteristic of protrusion and retraction events, such 

as those of migratory cells undergoing directional changes or motility cycles. In light of this, 

further exploration of interest would be to characterize and understand what cellular 

functions the morphological states captured by HMM annotation may represent. Qualitative 

visual inspection suggests that cells in rounder states have higher amounts of cortical actin, 

whereas those in more elongated states are polarized and may therefore be migratory (Fig. 

2B, Videos S1-3). Future studies will focus on characterizing morphological state properties 

in more depth by quantifying cytoskeletal organization in addition to whole-cell shape, 

incorporating signaling status from live or fixed-cell fluorescent reporters in post-capture 

analysis 24,54, and combining model-annotated state-space dynamics with motility 

measurements to establish temporal relationships between morphology and migratory 

behavior 27,55,56.

Notwithstanding, the current work demonstrates that phenotypic information derived from 

imaging-based models of temporal shape dynamics reflects underlying signaling pathway 

activities that regulate cell shape, which enables hypothesis generation for more in-depth, 

mechanistic follow-up studies. In vitro profiling of phenotype dynamics is also relevant in 

the context of early-phase drug discovery. In that context, time series modeling of live-cell 

phenotypes can complement existing fixed-cell imaging methods as well as genetic and 

biochemical approaches for understanding cellular drug responses, particularly with the 

advent of genome editing approaches such as CRISPR/Cas9 57–61. The collective 

implementation and application of these approaches will become an increasingly important 

component of integrative drug profiling and holistic understanding of cell function.

Materials and Methods

Software and image data availability

The files necessary to run SAPHIRE are provided as supplemental software. A demo with 

sample cell image data, instructions, and scripts is provided for using the trajectory editing 

GUI tool, time series modeling, phenotypic profile computation for groups of cells, and 

visualization of SAPHIRE outputs.
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Generation of fluorescent reporter cells

Cells were generated with fluorescent reporters for both actin to provide for cell shape and 

histones to label nuclei. A pBABE-HistoneH2B-mCherry retroviral plasmid was a gift from 

Dr. Iain Cheeseman (MIT Whitehead Institute). LifeAct-eGFP was inserted between the 

XhoI-EcoRI sites in pMSCV-puro vector using standard molecular biology techniques. 

Replication-incompetent virus was purified from HEK-293T cells using standard protocols. 

Supernatants containing LifeAct-eGFP or H2B-mCherry packaged virus were harvested at 

48–72 h after transfection, and passed through 0.45μm filter prior to use for transduction of 

target cells (Pall Corp., Cortland, NY). MDA-MB-231 cells were transduced with LifeAct-

eGFP and H2B-mCherry filtered viral supernatants containing 8μg/mL polybrene 

(Millipore). Selection and propagation of transduced MDA-MB-231 cells was performed by 

culture in 1μg/mL Puromycin (Sigma) in complete DMEM media. To make the stable 

fluorescent cell population more uniform in the expression of the two reporters, cells were 

sorted for double-positive intensities in the 80-90 percentile of the population using a 

MoFlo3 flow cytometer (Beckman Coulter, Inc.).

Cell culture, live-cell imaging, and drug perturbations

The triple negative breast cancer cell line MDA-MB-231 (ATCC) stably expressing LifeAct-

eGFP and histone H2B-mCherry was used in all experiments. Cells were cultured in high-

glucose Dublecco’s Modified Eagle Medium (DMEM) (Life Technologies) supplemented 

with 10% HyClone fetal bovine serum (Thermo Scientific), 1% penicillin/streptomycin 

(Gibco), and 1% GlutaMAX (Life Technologies) at 37°C and 5% CO2. For drug 

perturbation imaging experiments, Nunclon Delta 96-well optical bottom plates (Thermo 

Scientific) were coated with 5μg/cm2 pH-neutralized, acid-extracted, nonpepsin digested 

collagen I (BD Biosciences) for 1 hour at 37°C and 5% CO2. All wells were then washed 

twice with PBS and once with culture media prior to cell seeding. Following plate coating 

with collagen, cells were seeded at a density of 1000 cells/cm2 in culture medium and 

incubated at 37°C and 5% CO2 for 24 hours. Following the 24-hour incubation, the culture 

media was replaced with drug-containing imaging culture media and the plates were 

immediately transferred to the microscope for live imaging. The time delay between drug 

addition and start of image acquisition was approximately 30 minutes to 1 hour.

Two imaging experiments were performed: for the experiment with the expanded panel of 

drugs cells were imaged on an IncuCyte ZOOM system incubated at 37°C and 5% CO2 

under a standard scanning protocol (Essen Bioscience) in drug-containing DMEM growth 

media (see above). Cells were imaged over approximately 18 hours at 20-minute intervals, 

with three wells per drug condition and four fields of view per well, producing an image data 

set of 84 fields (4452 time series image frames), from which 293 individual cell trajectories, 

with an average of 53 time frames, were obtained for further analyses. For the other 

experiment, which contained the experimental controls, cells were imaged in Leibovitz’s 

L-15 media (Life Technologies) supplemented with the same additives as the DMEM culture 

media above, on a Nikon Eclipse Ti microscope equipped with an Andor Zyla sCMOS 

camera. Cells were imaged over approximately 18 hours at 8-minute intervals, with three 

wells per drug condition and four fields of view per well, producing an image data set of 96 

fields (16128 time series image frames), from which 435 individual cell trajectories, with an 
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average of 100 time frames, were obtained for further analyses. All inhibitor stocks were 

dissolved in dimethyl sulfoxide (DMSO) (Sigma), other than Y-27632, which was dissolved 

in high-purity water. All final concentrations of inhibitors in culture media used for imaging 

were at 0.1% v/v DMSO or lower. In both experiments cells were imaged using a 0.30 NA 

Nikon Plan Fluor 10X air objective. The inhibitors used in this work and their vendor 

sources were as follows: AZD6244 (MEK inhibitor; Selleck Chem.), ML-7 (MLCK 

inhibitor; Enzo Life Sciences), Blebbistatin(+/−) (non-muscle myosin II inhibitor; Enzo Life 

Sciences); Gefitinib (EGFR inhibitor; LC Labs), PD0325901 (MEK inhibitor; LC Labs), 

Y-27632 (ROCK inhibitor; Enzo Life Sciences), PD150606 (Calpain inhibitor; EMD 

Millipore).

Image processing

Time series stacks were exported as monochrome images from the red and green channel for 

LifeAct-eGFP (actin) and histone H2B-mCherry (nuclei) reporters, respectively. All images 

were batch processed using a custom pipeline written in MATLAB (Mathworks, Inc.). First, 

time series images were drift-corrected with the StackReg plugin in ImageJ using the 

nuclear reporter channel relative to the first time frame and cropped to maintain identical 

field of view regions in the nuclei and actin reporter image stacks for each field individually. 

Nuclei in each image were then segmented using point-source detection 62. User-assisted 

cell body segmentation from the actin reporter channel was performed for the first frame of 

each time series stack. Otsu intensity and Canny edge detection thresholds were set by the 

user for the first frame of a time series for each field of view, with the cell masks generated 

by combining the binary Otsu foreground and Canny edge pixels. The thresholds were 

modified through time for each field of view automatically for the second frame onward 

using a parameter gradient search that minimized the sum of the difference in area, 

perimeter, and solidity of foreground objects between a previous and subsequent frame. For 

each connected foreground object, nuclei centers were used to form holes in the binary 

object mask that enabled detection of touching cells by computing the Euler number for the 

object. Segmented cell body regions without spatial overlap with segmented nuclei were 

removed. Segmented nuclei were tracked over time using the IDL tracking method 

implementation 63. To avoid bias of cell-cell interaction effects on morphology, touching 

cells were automatically identified as two or more segmented nuclei within a segmented cell 

body region in a given frame, and subsequently flagged for removal. A graphical user 

interface was developed to correct cell body segmentation inaccuracies and to label dividing 

or dying cells (Fig. 2). Continuous cell trajectories with no division, death, or intercellular 

spatial interactions were retained for both imaging experiments and subsequent analyses.

Cell shape quantification and shape-space definition

Eighteen whole-cell shape features were computed from the binary masks of each cell at 

every time point in both imaging experiments (Table S1). Here, we call a temporal snapshot 

of a cell a “cell object”. For each imaging experiment separately, the raw shape features 

from all cell objects were combined into an n × m matrix A, where n is the total number of 

cell objects and m is the number of shape features. The matrix was z-score normalized 

across cell objects for each feature (along columns). For the imaging experiment where the 

expanded panel of drugs was tested, we performed dimensionality reduction using PCA onto 
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a two-dimensional basis from the covariance matrix of A, making the PCs linear 

combinations of the shape features with points in PC space corresponding to cell objects. 

The PCA coefficients derived from cells imaged in the expanded drug panel experiment 

were then used to project the shape features from the other experiment (with drug doses and 

controls) onto the same two-dimensional PC basis. Reducing data dimensionality using PCA 

dampens the effects of features in the model that contribute little to shape variability across 

cells and removes correlations between features used for subsequent modeling steps. With 

this projection, the shape trajectory of a cell is converted from a T × m matrix, where T is 

the number of time points, to a T × 2 matrix, where the two columns correspond to the two 

linearly independent PCs. The T × 2 matrices for each cell represent bivariate temporal 

trajectories in the two-dimensional PC space that we define as the “shape-space”. The 

bivariate temporal trajectories are then used for subsequent shape state identification and 

time series modeling. GMM using expectation maximization and Bayesian information 

criterion (BIC) for model selection were used for GMM analyses of simulated and 

experimental data and implemented using the mclust package in R.

Probabilistic time series modeling

A bivariate temporal trajectory for an individual cell whose shape dynamics we wish to 

model is comprised of T time points each with an (xt,yt) coordinate at each time point t ∈ {1,

…,T} in two-dimensional PC shape-space. We model the coordinates as emissions et =(xt,yt) 

from K number of “hidden” shape states, . We represent each shape 

state as a symmetric, bivariate Gaussian distribution with mean μi =(μx,i, μy,i) and standard 

deviation along both PC coordinates, σi = σx,i = σy,i. The covariance matrix of x and y is 

diagonal, and we write the probability of the point et in shape-space coming from shape state 

si as:

We next consider the set of points et for the entire cell trajectory , 

resulting in a T × 2 matrix, e. Because the number of hidden shape states, and the parameters 

μi and σi for each state si that lead to the emissions e are unknown, we test models Mk with 

different numbers of hidden states, k ∈ K, and select the model that best fits the cell 

trajectory shape-space data, e. Bayesian model selection is used to evaluate how well each 

model fits the data in order to select the best model, inherently penalizing increased model 

complexity (i.e., increasing number of states),

with the proportionality holding since we consider the prior probabilities of all models Mk to 

be equal. Importantly, points in e are not independent as they represent a temporal evolution 

in shape of the same cell. A hidden Markov model in the framework is used to incorporate 

the temporal dependencies in e and infer parameters that describe the dynamic properties 
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(state transitions). Therefore, for each model, Mk, its full set of parameters θk that must be 

inferred from the data are

where for each shape state (bivariate Gaussian distribution) μi and σi correspond to the state 

mean and standard deviation in shape-space, respectively, φij is the probability of 

transitioning from state si to state sj within the state transition probability matrix, φ , and πi 

is the probability of the cell starting in state si at the first time point. Models are compared 

amongst each other independent of a particular realization, or values, of the parameters, as 

well as of the possible hidden shape state sequences. Therefore, the likelihood P(e | Mk) is 

marginalized over all the parameters θk and hidden state sequences sk ={st} for t ∈ {1,…,T} 

to obtain the total marginalized likelihood of the model Mk,

The summation over states in brackets, [·], is the probability, P(e | Mk,θk) of the observed 

temporal sequence of coordinates in shape-space of the cell trajectory, e, conditioned on a 

particular model with k hidden shape states, Mk, and its parameters, θk. Summation over the 

hidden state sequences is performed using the forward algorithm. Metropolis Markov Chain 

Monte Carlo (MCMC) with importance sampling is used to sample parameter space in order 

to integrate the marginalized likelihood, with the prior probability of the parameters given 

the model, P(θk | Mk), taken as constant 39. The resulting MCMC integration yields the total 

marginalized likelihood of each model, P(e | Mk), and its maximum likelihood (ML) 

parameters, . The model with the highest marginalized likelihood is chosen to describe the 

shape dynamics of the cell, with the most likely hidden shape state sequence calculated by 

the Viterbi algorithm using the ML parameters.

SAPHIRE model-derived phenotypic profiles for drug comparisons

Annotated shape state sequences of individual trajectories from identically treated cells were 

combined to generate a phenotypic profile for that treatment condition. A phenotypic profile 

is a 48-element numerical vector composed of four types of histograms that capture shape 

dynamics: state radial distances and state dwell times, collectively called “state location 

features”, as well as state transition magnitudes and state transition dwell times, collectively 

called “state transition features”. These features are derived as follows (see illustration in 

Fig. 5A).

For each inferred Gaussian state si in shape-space from a temporally annotated sequence, we 

convert the coordinates of the state mean value in the Cartesian PCA axes (μx,si, μy,si) to 

polar coordinates (μr,si, μθ,si). As a result, rsi becomes the location vector of the state in 

shape-space and |rsi| is the radial distance of the state from the origin, where |·| denotes 

vector magnitude. θ is the angle rsi makes in the counterclockwise direction with the 

positive PC1 axis for state si. For each state si the state radial distance is described by |rsi|, or 
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equivalently . The normalized state dwell time for si is calculated as 

, where δt,si=1 if the state is si in the model-annotated state sequence at time t, 
and 0 otherwise, with T equal to the number of elements in the sequence (i.e. number of 

time frames in the cell trajectory). For a given cell trajectory, we derive an angular histogram 

with twelve bins on the range of 0 to 360 degrees, with the first bin 0 to 30 degrees, second 

bin 30 to 60 degrees, and so on until the twelfth bin that ranges from 330 to 360 degrees. For 

all states si∈S in the cell sequence, the state radial distance value of each bin is computed as 

 where  denotes the mean, for all states si with μθ,si falling within the angular range 

of the bin, to generate a histogram of state radial distances. A state radial distance profile for 

a treatment condition is then computed as the average within each bin in the twelve-bin state 

radial distance histograms for all cells in that treatment condition. The state dwell time 

profile of the treatment condition is similarly computed except averaging normalized state 

dwell time values for states of each cell instead of the state radial distances for twelve 

angular bins.

We additionally derive state transition profiles for each treatment condition. Consider for a 

given cell a state transition from si to sj. The state transition direction θsji for sj from state si 

is the angle that the vector rsj−rsi makes in the counterclockwise direction with the positive 

PC1 axis in shape-space. The state transition magnitude for sj from state si is computed as |

rsj−rsi| scaled by the normalized state transition dwell time. The normalized state transition 

dwell time for sj from state si is calculated as the number of time points a cell spends in state 

sj after transitioning to it from state si, divided by the sequence length, T. The state transition 

dwell time value of each of the twelve angular bins is the mean of the normalized state 

transition dwell times of all states whose means (μr,si,μθ,si) are in the bin. For transition 

directions θsji for all i ≠ j and a given cell, the state transition magnitude value of each of the 

twelve angular bins is computed as  for all θsji falling within the angular 

range of each bin, to produce a histogram of state transition magnitudes. A state transition 

magnitude profile for a treatment condition is then calculated as the average within each bin 

in the twelve-bin state transition histograms for all cells in that treatment condition. A state 

transition dwell time profile is similarly computed except averaging normalized state 

transition dwell times across cells for the twelve angular bins instead of the transition 

magnitudes.

To quantify similarities in effects of treatment conditions on cell shape dynamics, clustering 

using average linkage of Euclidean distances between phenotypic profiles was performed for 

treatment pairs to generate cluster dendrograms. Internal nodes were re-sorted into optimal 

leaf order without dividing the clusters or changing overall tree connectivity so that 

treatments with similar profiles are next to each other by maximizing the sum of similarities 

( , where i is a leaf adjacent to leaf j) between adjacent tree leaves.

Permutation testing was used to assess significance of Euclidean distances (similarities) 

between all pairs of treatments as follows. Dynamic phenotype profiles (48-element vectors) 

based on state locations and state transitions and corresponding dwell times (see above) of 
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individual cells within any two treatment conditions being compared were randomly 

reassigned into the two treatments while preserving the number of cells and their signatures. 

Signature values were averaged between the randomly-assigned cells for a given treatment 

to generate a treatment profile. A permutation test p-value for similarity between two 

treatment profiles was quantified by comparing the actual Euclidean distance between the 

treatment profiles relative to the null distribution of distances between profiles that were 

obtained by repeating the cell assignment randomizations and distance calculations 10,000 

times for each pair of treatments.

Drug classification and comparison with existing methods

To compare between various image-based profiling methods for classifying treatment 

conditions, we followed an analysis procedure similar to the one described previously 15. 

Four existing state-of-the-art methods for generating treatment profiles from fixed-cell 

measurements were implemented for comparison with the temporal modeling framework 

presented in this work: “Means” 42, “K-S Statistic” 10, “Factor Analysis + Means” 44, and 

“Gaussian Mixture” 43, all of which were previously compared in an HCI drug classification 

performance study 15. For each method, all cellular image snapshots were extracted from the 

time series movies for all treatment conditions at 1, 4, 8, 12, and 16 hours following 

treatment addition, as if a researcher would make fixed-cell imaging measurements at these 

time points in an HCI experiment.

Briefly, the “Means” approach averages each of the 18 cell shape features for each treatment 

condition for the five time points to generate a phenotypic profile for a treatment. For the 

“K-S Statistic”, the cumulative distribution function (cdf) is compared between the treatment 

and DMSO control cells for each shape feature separately. A signed Kolmogorov-Smirnov 

(K-S) statistic is then computed for each treatment, which is equal to the maximum distance 

between the two cdfs and set to positive if the treatment cdf is above the control cdf and 

negative otherwise. A “K-S Statistic” profile for a treatment is a vector of concatenated 

signed K-S statistics for each shape feature. For the “Factor Analysis + Means” method we 

first performed factor analysis on cells from all treatments at the five time points, selecting 

the number of factors using the Kaiser criterion, and then computed the average value of the 

scores of each factor for the cells in each treatment condition to generate a profile for that 

treatment. Finally, for the “Gaussian Mixture” method, a GMM with no covariance matrix 

constraints was fit to cell observations from all treatments at each time point separately 

using all shape features as variables, testing models with 2 to 30 mixtures, and selecting the 

best-fitting model using BIC. For each treatment, the posterior probability of each cell under 

that treatment belonging to each of the mixtures was computed and averaged across cells for 

each mixture to generate a profile at a given time point. The averaged posterior probabilities 

of all mixtures and time points were combined to generate a phenotypic profile for each 

treatment.

Treatment classification accuracy was assessed for each of the profiling methods described 

above, as well as using the profiles derived from the single-cell temporal modeling using 

SAPHIRE. To assess the value of the HMM in treatment classification, treatment profiles 

extracted from shape-space analyses of cellular dynamics without the HMM annotations 

Gordonov et al. Page 18

Integr Biol (Camb). Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were generated identically as for SAPHIRE but by treating each time point in a cell 

trajectory as a separate “state” (i.e. no modeling of PCA coordinates from underlying hidden 

Gaussian states). Treatment condition classification accuracy was assessed by computing 

pair-wise Euclidean distances between phenotypic profiles of treatments using each of the 

profiling approaches separately. A treatment was designated as being correctly classified if 

its phenotypic profile was closest, in terms of distance, to that of the same treatment at a 

different dose, compared to the profiles from other treatments 15.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

BIC Bayesian information criterion

EGFR epidermal growth factor receptor

GMM Gaussian mixture modeling

HCI high-content imaging

HMM hidden Markov modeling

PC principal component

PCA principal component analysis

MEK mitogen-activated protein kinase kinase

MLCK myosin light chain kinase

ROCK Rho-associated protein kinase

SAPHIRE Stochastic Annotation of Phenotypic Individual-cell Responses
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Figure 1. Schematic of SAPHIRE (acronym) for live imaging-based modeling of cellular 
phenotypes
Live fluorescent cells treated with drugs or other perturbations are imaged in multi-well 

format on a microscope with an incubation system. Temporal image acquisition is followed 

by image processing and analysis to segment and track individual cells over time. Cell shape 

descriptors are extracted to generate a data “cube” with dimensions corresponding to [shape 

features] × [individual cells] × [time-points] for the entire imaging screen. Principal 

component analysis is applied to generate the temporal “shape-space” trajectories of 

individual cells. For each cell trajectory, probabilistic time series modeling is applied to infer 

the most likely underlying model of phenotypic states (e.g. blue, pink, and yellow) and its 

parameters, which are used to annotate a temporal sequence of states and state transitions. 

Model-derived temporal features of single-cell dynamics from multiple cells are then used to 

generate phenotypic profiles for drug clustering and classification.
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Figure 2. Processing and analysis of two-color fluorescent cell movies for segmentation, tracking, 
phenotype annotation, and quality control
(A) Schematic of the image time series processing workflow used to generate tracked cell 

outlines in multi-well imaging experiments. Boxes in yellow indicate steps with user input. 

(B) Left, an example image time series field of view showing touching (yellow) and isolated 

(non-touching) cells (cyan) automatically identified in the processing pipeline. Inset shows 

automatic thresholds that may lead to under- or over-segmentation that are subsequently 

adjusted by the user with a GUI tool. Right, example of individual cells segmented and 

tracked using the pipeline in (A) from time series imaging over approximately sixteen hours. 

(C) Quality control and phenotype labeling of processed cell image time series. Two 

example cell trajectories imaged for eighteen hours at 20-minute intervals are shown, one 

undergoing cell division (left), characterized by cell rounding in mitosis followed by 

cytokinesis, and another undergoing death (right), with progressive cytoskeletal shrinking, 

non-uniformity in actin structure (green), and disruption of nuclear morphology (pink). 

Isolated cells are automatically labeled ‘s’ while cells touching others or the image boundary 

are labeled ‘b’. Dividing or dying cells are interactively labeled ‘d’ and ‘a’, respectively.
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Figure 3. Visualization and clustering of live-cell shape features reveals a morphologically 
diverse shape-space following drug treatments
(A) PCA of approximately 20,000 temporal snapshots (gray points) from live imaging of 

293 cells treated with seven drugs (inhibitors of: EGFR, Calpain, MEK (2), Myosin II, 

ROCK, and MLCK). Two PCs explain over 80% of the variability in the original shape 

features (upper right panel). Inset shows a continuous shape-space with highest point density 

around the mean of the data for the cell population, while single-cell trajectories form more 

well separated clusters in time. (B) Visualization of 28 live-cell snapshots randomly chosen 

in different regions (a-g) of shape-space in (A). Under the influence of the seven drugs, 

shapes vary from large and spread, to round with cortical actin, to varying degrees of 

elongation, to branched morphologies. (C) Polar coordinate PC shape-space visualization. 

Shapes are shown in different angular bins and radial distances from the mean of the data, 

which is the origin of the two PC axes in (A). Cell shapes are colored based on the radial 

distance quartiles within each angular bin. The orientations of the original shape features 

that contribute to each PC are shown. Lengths of gray lines for each feature correspond to 

the relative magnitudes of their PC coefficients. (D) K-means clustering of morphologies in 

shape-space on individual cell trajectories (examples, yellow and blue) reveals clusters that 

are tighter and better separated on average for all imaged trajectories (orange) compared 

with clustering of cells pooled together (black) or of random single-cell trajectories of the 

same lengths (pink).
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Figure 4. Probabilistic modeling of temporal shape-space trajectories captures heterogeneous 
dynamic transitions in cell morphology
(A) A cell exhibiting repetitive back-and-forth switching between three inferred 

morphological states of increasing elongation of the cell body from yellow to pink to blue. 

Top left, the temporal trajectory of the cell through PC shape-space. Top center, Gaussian 

shape states inferred by Bayesian HMM in SAPHIRE with circles corresponding to one and 

two standard deviations from the mean (circle center), respectively. Trajectory time points 

are colored based on the maximum likelihood (ML) hidden state inferred from the model. 

Top right, a diagram of the dynamic state transitions derived from the ML state sequence 

with numbers next to arrows corresponding to transition frequencies between, or within, 

states. Live-cell actin reporter images are outlined with the cell body mask boundaries and 

colored according to their ML states. (B) A cell with switch-like transitions between three 

morphological states, changing shape continuously from larger and spread to smaller and 

round. Shape modeling of this cell trajectory is performed independently of the cell in (A).
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Figure 5. Dynamic features of model-annotated shape state sequences from multiple cells enable 
phenotypic comparisons between experimental treatment conditions
(A) Traversal of a hypothetical cell through polar shape-space showing shape state and state 

transition features for deriving a phenotypic signature of a cell trajectory. Circles are 

locations of inferred state means, blue arrows are state transitions, and the green arrow is an 

example of a radial distance of a particular state from the shape-space center. State 

transitions capture direction of cellular shape changes over time regardless of state location, 

whereas state locations capture the particular morphological properties of a cell in a given 

region of shape-space where the state resides. States and transitions are used to generate a 

phenotypic signature for each cell individually to enable comparisons between cells. (B) 
Polar distributions of combined states from all single-cell trajectory models for treatments 

tested in the imaging screen. Rose plot petals correspond to directional bins in polar shape-

space as in (A), but represent average responses of all cells in a given treatment. Longer 

petals signify radial distances that are further from the shape-space origin. Petal color depth 

relates to state dwell time of cells in a given slice of polar shape-space, normalized to total 

trajectory length. (C) Effects of drugs on directions of cellular transitions in polar shape-

space. Rose plot petals are average state transition directions of cells in a given treatment. 

Longer petals signify larger transition magnitudes between states, meaning that state means 

are farther apart. Petal color depth relates to dwell times of the target states normalized to 

total trajectory length.
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Figure 6. Comparisons of drug effects on morphological states and state transition dynamics
(A) Top, hierarchical clustering of phenotypic profiles derived from single-cell models of 

shape dynamics under the effect of small-molecule inhibitors that target molecular species 

involved in regulating actomyosin organization. Increasing Euclidean distance indicates 

decreasing similarity between treatments that are grouped in the dendrogram using average 

linkage. Bottom, permutation tests indicate statistical significance of pairwise similarities 

between treatment profiles. (B) Clustering of model-derived phenotypic profiles, as in (A), 

of cell shape dynamics in response to treatment with an expanded panel of inhibitors.
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Figure 7. State-space modeling of cellular shape dynamics improves drug classification 
performance compared to existing image-based profiling methods
(A) Confusion matrices showing nearest-neighbor classifications of individual treatments in 

the inhibitor screening experiment using existing fixed-cell drug profiling methods and the 

dynamic modeling approach presented in this work. The myosin II and MLCK inhibitor (BB 

and ML7, respectively) treatments are comprised of two different doses tested for each drug, 

“Ctrl” comprises the DMSO and non-DMSO controls, and “Other” comprises Y-27632 

(ROCK inhibitor) and AZD6422 (MEK inhibitor) treatments that were only tested at a 

single dose and therefore not used for classification comparisons. (B) Overall treatment 

classification performances of the proposed and existing phenotypic profiling methods. 

Classification accuracy reflects the number of correctly predicted treatments out of six true 

treatment comparisons made in (A). (C) Confusion matrices showing treatment 

classification performance of SAPHIRE using either state features alone or temporal state 

transition features alone for generating profiles used in classification. (D) Utility of single-

cell temporal modeling in phenotypic profiling depends in part on similarities of cellular 

feature distributions between treatments. Cellular distributions of a highly varying shape 

Gordonov et al. Page 29

Integr Biol (Camb). Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



property between cells, major axis length, are shown for pairwise treatment comparisons 

illustrating the benefits of single-cell temporal modeling in drug profiling and classification. 

Each distribution comprises individual cells measured at 1, 4, 8, 12 and 16 hours post-

treatment. P-values correspond to Kolmogorov-Smirnov tests with the null hypothesis that 

the distributions of two treatments being compared are the same.
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Figure 8. Schematic of the conceptual difference between fixed-cell analyses versus SAPHIRE, 
and their combined insights into molecular mechanisms of cell shape regulation
The distribution of morphologies of drug-treated MDA-MB-231 breast cancer cells falls on 

a continuum, illustrated in gray. The extent of cell elongation and branching is the 

dominantly varying morphological property of the breast cancer cell line analyzed in our 

drug screen (Fig. 3). Fixed-cell profiling captures the morphological landscape of distinct 

cells in the population at a given time point. In contrast, SAPHIRE captures the 

morphological evolution of individual cells over time. SAPHIRE uses an HMM framework 

to detect the presence of morphological states (e.g. orange and green states for one cell, blue 

and pink states for another) used to model the temporal dynamics of each cell independently 

within the population. Application of both of these approaches to live-cell shape profiling 

reveals that MLCK inhibition decreases, while ROCK and myosin II inhibition increases, 

cellular elongation and branching.
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