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Abstract: Wavelength-division multiplexed-passive opti-
cal network (WDM-PON) is a revolutionary high-capacity
and scalable broadband access network. This paper capi-
talizes on Laguerre–Gaussian (LG) modes to reduce
modal dispersion and increase data capacity. A data
rate of 25 Gbit/s is attained for a multimode fiber link
by multiplexing five LG modes on five wavelengths cen-
tered at 1,550.12 nm for a distance up to 800 m.
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1 Introduction

Wavelength-division multiplexed-passive optical network
(WDM-PON) is a revolutionary high-capacity and scalable
broadband access network [1]. The rapid growth of cloud
computing, video streaming and mobile applications has
led to an increase in bandwidth requirements [2–7].
Although a large number of 10 Gbit/s optical fiber net-
works have been laid by service providers [8], the
increase in bandwidth demands have prompted mega
data center operators to aggregate several 10 Gbit/s opti-
cal fibers together [9, 10].

A number of multiplexing techniques for increasing
the data capacity through a single optical fiber have been
proposed comprising wavelength [11, 12], polarization [13,
14], phase [14], amplitude [15, 16] and time dimensions
[17, 18]. An elegant approach that has attracted signifi-
cant attention is mode division multiplexing (MDM) [19],
realized by combining or separating modes at the multi-
plexer and demultiplexer for transmitting independent

data streams. Recent MDM demonstrations employ spa-
tial light modulators [5, 21, 22], fiber gratings [23–28],
digital signal processing algorithms [29–31], modal
decomposition algorithms [32–34], adaptive optics
[7, 35–38] and photonic crystal fiber [39].

The eminent factor restraining the bandwidth in
MDM is the coupling of power from one axial direction
to other directions. The coupling results in angular
spread of light rays in each channel, which consequently
governs the number of possible channels for a given
crosstalk value and determines the pulse width in each
channel. Thus far, relatively little consideration has been
given to the separation of the modes for optimizing the
bandwidth. This paper investigates the effect of separa-
tion of Laguerre–Gaussian (LG) modes on the channel
performance.

This paper is organized as follows: Section 2 eluci-
dates the MDM model for WDM-PON. Section 3 presents
the results and discussion, and the conclusion of the
paper is presented in Section 4.

2 WDM-based modal multiplexing

A WDM-based modal multiplexing model illustrated in
Figure 1 is developed in OptSim 5.2 [40]. The model may
be divided into three parts, namely, the transmitter,
channel and the receiver. The transmitter consists of
five vertical cavity emitting lasers (VCSELs) at five wave-
lengths, λ1 to λ5 between 1,546.92 nm and 1,553.33 nm,
based on the ITU grid, separated by 1.6 nm with a center
wavelength of 1,550.12 nm. The five VCSELs are driven by
separate pseudorandom bit sequence (PRBS) electrical
signals. The excitation of LG modes [40] for each VCSEL
array is given in Tables 1 and 2 to evaluate the effect of
separation modes in the azimuthal and radial directions,
respectively. Non-return-to-zero modulation scheme is
used. The power from each VCSEL is assumed to be
emitted uniformly into 5 μm x-polarized LG beams. The
five VCSEL signals are then combined using a wavelength
division multiplexer. The signal is propagated through a
multimode fiber between 200 and 800 m in length, in
order to investigate the effects of the modes spacing
between azimuthal and radial mode number on the chan-
nel performance in two scenarios. In Scenario 1, the
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radial mode number m is maintained to m¼ 2 while the
azimuthal mode number l is varied at each run ranging
from Δl¼ 1, Δl¼ 2, Δl¼ 3, Δl¼ 4 to Δl¼ 5. In Scenario 2,
the azimuthal mode number l is maintained to l¼ 2 while
the radial mode number m is varied at each run ranging
from Δm¼ 1, Δm¼ 2, Δm¼ 3, Δm¼ 4 to Δm¼ 5. At the
receiver, the signal is then demultiplexed into five

separate channels and the transverse modal field at
each photodetector is examined. At each photodetector,
the signal is analyzed using bit-error rate (BER) tester to
observe the eye diagram and determine BER of each
channel at different multimode fiber lengths.

3 Results and discussion

For evaluating of the effects of the azimuthal mode
number l separations, the average BER per VCSEL
array at various multimode fiber lengths are simulated
in Figure 2. The BER for all variations of azimuthal mode
number separation is acceptable except when Δl ¼ 1.
Figure 3 shows the spatial transverse electric field for
the center photodetector array with varying azimuthal
mode number separations. As evident from Figure 3, the
spatial transverse fields match the inherent modal fields
of the multimode fiber more closely as Δl increases. For
Δl ¼ 1, the close separation of the modes in the azi-
muthal direction significantly affects the accuracy of
power coupling into the inherent mode. Thus, the spa-
tial transverse electric field in Figure 3 confirms the BER
curves in Figure 2.

Figure 4 shows a comparison of the eye diagrams
illustrating the effect of azimuthal mode number
separation for a multimode fiber length of 400 m whereby
the radial mode number is maintained to 2. As the radial
mode separation increases, the time deviation between
propagation modes decreases and the eye opening widens.
This is consistent with the BER curves in Figure 2 and the
spatial transverse electric fields in Figure 3.

Figure 5 depicts the effect of the radial mode separa-
tion on the average BER per VCSEL for various multimode
fiber lengths. For even values of Δm¼ 2 and Δm¼ 4, the
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Figure 1: Laguerre–Gaussian mode
division multiplexing model for
evaluating the effect of spacing
of radial mode number on trans-
mission performance.

Table 1: Excitation of Laguerre–Gaussian modes for investigating the
effect of separation between azimuthal mode numbers within VCSEL
array on channel performance.

VCSEL
array

Azimuthal mode
number

generated, l

Azimuthal mode
number within

VCSEL array

Radial mode
number of VCSEL

array, m

 l¼,,,,  m¼

 l¼,,,,  m¼

 l¼,,,,  m¼

 l¼,,,,  m¼

 l¼ ,,,,  m¼

Table 2: Excitation of Laguerre–Gaussian modes for investigating
the effect of separation between radial mode numbers within VCSEL
Array.

VCSEL
array

Radial mode
number

generated, m

Radial mode
number within

VCSEL array

Azimuthal mode
number of VCSEL

array, m

 m¼ ,,,,  l¼ 

 m¼ ,,,,  l¼ 

 m¼,,,,  l¼ 

 m¼,,,,  l¼ 

 m¼,,.,  l¼ 
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Figure 2: The effects of the azimuthal mode
spacing for MMF length on bit error rare.

Figure 3: Transverse spatial electric field for
center photodetector array after demulti-
plexer whereby the radial mode number m ¼
2 and the azimuthal mode number is varied at
each run: (a) Δl¼ 1, (b) Δl¼ 2, (c) Δl¼ 3, (d)
Δl¼ 4, (e) Δl¼ 5.
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BER is better than odd-valued Δm as the polarities of the
peaks of the spatial field cancel each other. For odd
values Δm¼ 3 and Δm¼ 5, the polarities of the peaks
of the spatial field are out of phase with one another. In
addition, the BER is less than the acceptable BER range.

In Figure 6, the transverse spatial electric fields for
center photodetector array after the demultiplexer for various
radial mode number separations were analyzed. When the
spacing of Δm is even, modes experience less modal disper-
sion while for odd values of Δm, modes experience high
modal dispersion, consistent with results from Figure 5.

A comparison of eye diagrams showing the effect of
radial mode number separations at a distance of 400 m is

shown in Figure 7. Consistent with Figures 5 and 6, the
time deviation is high for odd values of Δm and is low for
even values of Δm.

4 Conclusion

In this paper, a 25-channel WDM-MDM model has been
designed at a center wavelength of 1,550.12 nm in OptSim
5.2 multiplexing five LG modes on each VCSEL array on
five different wavelengths. A transmission speed of 5 � 5
Gbit/s has been achieved, using five VCSEL arrays sepa-
rated at 1.6 nm.

Figure 4: Eye diagram at λ ¼
1,550.12 nm showing the effect
of azimuthal mode number
separation at a length of 400 m
whereby the radial mode number
m ¼ 2 and the azimuthal mode
number is varied each run: (a)
Δl¼ 1, (b) Δl¼ 2, (c) Δl¼ 3, (d)
Δl¼ 4, (e) Δl¼ 5.
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Figure 5: Effect of spacing of radial mode order
and MMF length on bit error rate.

Figure 6: Transverse spatial electric
field for center photodetector array at
λ ¼ 1,550.12 nm after demultiplexer
for LG modes whereby the azimuthal
mode number l maintained to 2 and
the radial mode number fluctuates
each run: (a) Δm¼ 1, (b) Δm¼ 2, (c)
Δm¼ 3, (d) Δm¼ 4, (e) Δm¼ 5.
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