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METHODOLOGY ARTICLE Open Access

Modular combinatorial binding among
human trans-acting factors reveals direct
and indirect factor binding
Yuchun Guo and David K. Gifford*

Abstract

Background: The combinatorial binding of trans-acting factors (TFs) to the DNA is critical to the spatial and temporal
specificity of gene regulation. For certain regulatory regions, more than one regulatory module (set of TFs that bind
together) are combined to achieve context-specific gene regulation. However, previous approaches are limited to
either pairwise TF co-association analysis or assuming that only one module is used in each regulatory region.

Results: We present a new computational approach that models the modular organization of TF combinatorial
binding. Our method learns compact and coherent regulatory modules from in vivo binding data using a topic model.
We found that the binding of 115 TFs in K562 cells can be organized into 49 interpretable modules. Furthermore, we
found that tens of thousands of regulatory regions use multiple modules, a structure that cannot be observed with
previous hard clustering based methods. The modules discovered recapitulate many published protein-protein physical
interactions, have consistent functional annotations of chromatin states, and uncover context specific co-binding such
as gene proximal binding of NFY + FOS + SP and distal binding of NFY + FOS + USF. For certain TFs, the co-binding
partners of direct binding (motif present) differs from those of indirect binding (motif absent); the distinct set of
co-binding partners can predict whether the TF binds directly or indirectly with up to 95% accuracy. Joint analysis
across two cell types reveals both cell-type-specific and shared regulatory modules.

Conclusions: Our results provide comprehensive cell-type-specific combinatorial binding maps and suggest a modular
organization of combinatorial binding.

Keywords: Computational genomics, Transcription factor, Combinatorial binding, Direct and indirect binding, Topic
model

Background
The combinatorial binding of trans-acting factors (TFs)
is an important basis for the spatial and temporal speci-
ficity of gene regulation [1–4]. Combinations of TFs
have been shown to regulate gene expression stripes in
the Drosophila embryo [5], to generate cell-type-specific
signaling responses [6, 7], and to program cell fates [8].
In this paper we call each distinct set of TFs that bind
together to the same regulatory regions a regulatory
module.
Understanding the interplay among regulatory mod-

ules is essential to dissect the complexity of gene

regulation. Previous studies have found that TFs tend to
bind in clusters, which are typically characterized by a
large number of TF binding sites in a regulatory region
[9–12]. These co-binding TFs may belong to different
functional modules that can be combined in regulatory
regions to achieve specific functions. For example, gene
regulation is initiated by the interaction of enhancer-
bound TFs, promoter-bound TFs, and TFs that bring
the enhancers and promoters together in three dimen-
sions, such as mediator, CTCF, and cohesin [13–15].
Therefore, CTCF/cohesin modules may co-occur with
enhancer-related modules, promoter-related modules, or
both. Such module co-occurrences suggest that com-
binatorial binding of TFs may be organized in a modular
hierarchy: a regulatory region may use a combination of* Correspondence: gifford@mit.edu
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multiple regulatory modules, which are, in turn, combi-
nations of multiple TFs.
However, previous methods for studying combinatorial

binding do not consider the modular organization of TF
co-binding. Early work in discovering TF co-binding was
limited to lower organisms or to the computational pre-
diction of motif sites [16–19]. The systematic discovery
of regulatory modules in humans has recently become
possible with large-scale efforts such as the ENCODE
project to comprehensively profile the in vivo binding of
tens to hundreds of TFs in multiple human cell types
[20, 21]. Initial analyses of the ENCODE data were lim-
ited to either pairwise TF co-binding [20] or TF co-
binding in the genomic regions bound by a particular TF
[9] and thus did not allow comprehensive discovery of
higher order combinatorial binding. Hard-clustering-
based methods have been applied to genome-wide bind-
ing data. For example, self-organizing maps (SOMs)
have been used to explore and visualize the colocaliza-
tion patterns of TFs [21] and k-means clustering has
been used to characterize the combinatorial regulation
of erythroid enhancers [22]. These methods model TF
binding at a given region with a single module and con-
sequently require a large number of modules to fully
represent the complexity of TF combinatorial binding.
For example, Xie et al. applied SOM to a dataset from
K562 cells and estimated the optimal number of neurons
(or modules) for the resulting SOM to be 2,852 [21].
Non-negative matrix factorization (NMF), a soft cluster-
ing method, has also been applied to infer TF interac-
tions [23]. However, this work did not explicitly explore
the issue of multiple module usage and predicted only a
small number of TF combinations [23]. It notably failed
to capture the well-studied CTCF/cohesin interaction
[14, 24]. Therefore, we have found that existing methods
are not suitable for modeling the modular structure of
multiple regulatory modules in the same regulatory
regions.
The need to model the modular organization of regu-

latory modules motivated us to use a probabilistic topic
model that can represent modular TF co-binding in
regulatory regions. Topic models have been widely used
to discover thematic structures in a large corpus of doc-
uments [25, 26]. A topic model decomposes documents
into a set of all shared topics, where a topic is a set of
words that co-occur in multiple documents. The factor-
ing of a document into multiple topics permits the dis-
covery of compact and coherent topics that can be
combined to accurately represent a document. This fac-
toring results in better performance in predicting held-
out data than mixture models [26], which are hard-
clustering methods that force a document to be de-
scribed by a single topic. Topic modeling has been used
to discover gene expression programs [27, 28] and

microRNA regulatory modules [29], but it has not yet
been applied to study TF combinatorial binding.
Regulatory Module Discovery (RMD) applies a topic

model to systematically discover regulatory modules
using a large compendium of in vivo TF binding data.
We show that RMD discovers more compact and com-
prehensive modules than other methods. Applying RMD
to data from human K562 cells, we discovered diverse
sets of regulatory modules and found that tens of thou-
sands of regulatory regions use multiple modules in a
modular manner. We found that, for certain TFs, direct
(motif present) and indirect (motif absent) binding of
the TF associates with distinct sets of co-binding part-
ners. Finally, our analysis discovered cell-type-specific
modules and shared modules, and that a given regula-
tory region can utilize different modules in different cell
types. Overall, our results provide comprehensive cell-
type-specific global maps of regulatory modules and sug-
gest a modular organization of TF combinatorial binding
in regulatory regions.

Results and discussion
Regulatory module discovery (RMD) discovers more
compact and comprehensive regulatory modules than
other methods
RMD discovers regulatory modules given binding data
for a large set of regulatory regions. RMD is based on
Hierarchical Dirichlet Processes [30], a Bayesian non-
parametric topic model that automatically determines
the number of modules based on the complexity of the
observed data. To use conventional document topic
model terminology, regulatory regions are “documents,”
TF binding sites are “words,” and regulatory modules
are “topics.” As in the document model, a regulatory re-
gion may utilize one or more modules, and a TF may
participate in multiple modules.
The co-binding of TFs in regulatory regions across the

genome can be represented without loss by a region-TF
matrix. In the work below, a full region-TF matrix would
be of size ~140,000 regions by 115 TFs and is difficult to
directly interpret. Using topic modeling, a large region-
TF matrix is summarized into a compact module-TF
matrix (49 modules × 115 TFs) and a TF site assignment
table (Fig. 1a). The module-TF matrix describes the set
of regulatory modules discovered, with each module rep-
resented as a probability distribution over all the TFs.
The assignment table assigns each TF binding site from
each region to one of the modules. The assignment table
can be further summarized into a region-module matrix
(~140,000 regions × 49 modules) that describes which
modules each regulatory region uses.
We first tested the ability of RMD, k-means clustering,

and NMF to accurately capture TF-TF correlations that
are present in the binding data. We used a compendium
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of ChIP-seq data from 115 TFs in human K562 cells
[20], and then pooled and merged all the TF binding
sites into ~140,000 non-overlapping co-binding regions,
each of which was required to contain at least 3 TF
binding sites. We applied the three methods to these
~140,000 co-binding regions and constrained them to
discover the same number of modules (k = 49). Then for
each method, we evaluated how well the pairwise TF
correlation scores from the module-TF matrix correlate
to those from the original region-TF matrix. We found
that the topic model modules more accurately recapitu-
late the pairwise TF co-binding relationship in the ori-
ginal data (r = 0.81) than the modules learned from the
other two methods (r = 0.74 for k-means clustering, r =
0.30 for NMF) (Fig. 1b). When the number of modules k
is increased to 100, the performance of k-means cluster-
ing and NMF improves to r = 0.80 and r = 0.59, respect-
ively (Additional file 1: Figure S1a). In addition, we
observed that the k-means modules tend to be more

similar to each other than those from RMD and those
from the original binding data (Fig. 1b). Because hard-
clustering-based methods do not factor complex binding
regions into multiple modules, they generally generate
more similar modules and need more modules to repre-
sent the structure in the data than a topic model.
However, the increase in module count makes the inter-
pretation of the modules harder. In the limit, increasing
k to the total number of regions will exactly recapitulate
the original binding data but will not permit common
patterns of co-binding to be observed.
Given that RMD needs fewer modules to represent the

binding data than k-means clustering, we then asked
whether the RMD modules were sufficient to represent
the clusters produced by k-means (k = 49 and k = 100).
For this analysis, we considered an RMD module to
match a k-means cluster and vice-versa if the Pearson
correlation between the module/cluster vectors is
greater than 0.5. We found that all the k-means clusters
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Fig. 1 RMD discovers compact and comprehensive regulatory modules. a RMD discovers regulatory modules from regulatory regions across the
genome. A region may use one or more modules. A factor may participate in one or more modules. RMD uses a topic model to summarize the
binding data into modules and to assign binding sites to the modules. b The topic model re-capitulates the original binding data more accurately
than k-means clustering and NMF. Each point in the scatter plot represents the Pearson correlation coefficient between a pair of TFs calculated
using the original binding data (x-axis) or calculated using the reduced data matrix (k = 49) by topic model, k-means clustering, or NMF (y-axis).
c A heatmap shows the Pearson correlations between topic model modules and k-means clusters (k = 49). The modules are ordered as in Fig. 2.
Bottom bar chart shows the maximum correlation values for each k-means cluster. All k-means clusters are matched by at least one module, with
a maximum correlation value larger than 0.5. Right bar chart shows the maximum correlation values for each module. Ten modules cannot be
matched by any k-means clusters
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(k = 49) are matched by RMD modules, while 10 RMD
modules are not matched by any k-means cluster for k
= 49 (Fig. 1c). These unmatched RMD modules are used
in small number of regions and often co-occur with
other more widely used modules. For example, Module
4 (STAT1 + STAT2 + STAT5A) binds in 960 regulatory
regions that are highly enriched with genes involved in
immune response (FDR q-value = 2.2E-14) and Inter-
feron alpha/beta signaling (FDR q-value = 2.2E-14), as
shown by a GREAT analysis of annotation enrichment
[31]. Two thirds of these regions also use other modules
such as enhancer or promoter modules. Other modules
that are not identified by k-means include co-binding of
ZBTB33 [32] and promoter associated factors (Module
1), and of Pol3 + BDP1 + ATF3 (Module 17 and 41).
Even when k is 100 for k-means, 6 RMD modules are
not matched by any k-means cluster, while all the k-
means clusters are matched by RMD modules
(Additional file 1: Figure S1b). These comparison results
are robust across different correlation cutoff values for
matching the modules (Additional file 1: Figure S1c).
The unmatched modules are missed by k-means cluster-
ing likely because they are over-shadowed by the other
more widely used modules in the same regions.
In summary, our analysis shows that RMD is bet-

ter at decomposing complex binding regions into a
combination of specific modules and learning a set
of more accurate, compact, and comprehensive mod-
ules than hard clustering and matrix factorization
approaches.

A global map of regulatory modules in human cells
Applying RMD to the K562 dataset, we discovered a glo-
bal combinatorial binding map consisting of 49 regula-
tory modules (Fig. 2 and Additional file 2: Tables S1-S2).
We also applied RMD to data from GM12878 cells (86
TFs) and discovered 49 modules (Additional file 1: Fig-
ure S2 and Additional file 2: Tables S3-S4).
We found that the discovered modules are easy to in-

terpret and reveal coherent functional groups of co-
binding TFs. The modules discovered from K562 cells
capture known sets of factors that interact with each
other or function as a complex, such as the following:

� the master regulators GATA1, GATA2 and TAL1
[33]; and the enhancer-binding co-activator p300

� the transcriptional machinery Pol2, TBP, and TAF1;
promoter-binding TFs such as E2F6 [34]; and
transcription start site associated chromatin regulators
such as PHF8 [35], etc.

� CTCF, cohesin subunits RAD21 and SMC3, and
ZNF143 [13, 36]

� Pol3 transcriptional machinery [37]
� AP-1 factors such as JUN/JUNB/JUND/FOS/FOSL [38]

� MAF/BACH1/NFE2 [39]
� MYC/MAX/USF/E2F6 [40]
� SPI1 (also known as PU.1) and ELF1 [41]

To further evaluate whether the discovered modules
were consistent with known TF interactions, we com-
pared TF co-occurrences in these modules with pub-
lished in vivo protein-protein interactions assayed by
antibody immunoprecipitation and mass spectrometry
(IP-MS) in K562 cells [21]. Because of the limited cover-
age of the IP-MS dataset, we were not able to evaluate
the specificity of the TF combinations we discovered.
Similar to the original study [21], we evaluated the sensi-
tivity in recovering the IP-MS interactions using TF-TF
associations discovered by RMD. Among the 115 TFs
we studied, 33 physical protein-protein interactions were
identified in the published IP-MS dataset, 22 of these TF
interactions are captured as TF combinations in the
K562 regulatory modules (p value < 0.05) (Additional file
3: Table S7). The fraction of overlap is similar to the ori-
ginal study, which discovered TF co-binding as 2,852
SOM neurons (i.e. modules) [21]. Thus, RMD is able to
recapitulate previous findings with a much smaller num-
ber of interpretable modules.
We then examined whether the discovered regula-

tory modules were consistent with the chromatin
states of the regulatory regions that use them. We an-
notated regulatory regions by DNase hyper-sensitivity,
histone modifications, and the genome segmentation
annotations derived from them [20, 42]. For the regu-
latory regions that utilize the same modules, we com-
puted the fraction of the regulatory regions that
overlap with these annotations. We found that for the
regions using the same modules, the chromatin states
of the regions are consistent with the functions of the
TFs participating in the modules (Fig. 3a). For ex-
ample, modules with master regulators of K562 cells
and co-activator/co-repressors GATA1 + GATA2 +
TAL1 + p300 + RCOR1 + TEAD4 are used in regions
that are annotated with enhancer chromatin state and
are enriched with H3K4me1 histone modification,
while the Pol2/promoter modules are used in the re-
gions that are annotated with TSS (transcription start
site) chromatin state and are enriched with promoter-
associated histone modifications such as H3K4me3,
H3K9ac, and H3K27ac. Most regulatory modules are
used by regulatory regions that are DNase hypersensi-
tive, which may be explained by the preferential bind-
ing of TFs in open chromatin. Consistent with a
previous study [21], the modules used in the non-
DNase hypersensitive regions are pre-dominantly re-
pressive modules with heterochromatin-bound factors,
such as Module 48 (the combination of ZNF274,
ZNF143, TRIM28, CBX3, SETDB1, and other factors)
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Fig. 2 (See legend on next page.)
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and Module 7 (the combination of ZNF143, TRIM28,
CBX3 and SETDB1, but not ZNF274).
To further characterize the potential functions of the

regulatory modules we discovered, we performed sys-
tematic gene ontology (GO) analysis using GREAT [31]
on the genes proximal to the regions that use the same
modules. We clustered the enriched GO terms based on
the FDR q-values of the enrichment across the 49 mod-
ules. We found that specific GO terms are enriched in
the regions using specific modules (Additional file 1: Fig-
ure S3). For example, housekeeping functions are

enriched in promoter modules; regulatory functions and
cell-type-specific terms such as “hematopoietic or
lymphoid organ development” are enriched in both the
enhancer and AP1 modules.
To facilitate interpretation, we further clustered

modules that are driven by similar sets of TFs into 23
module groups. The modules in the same group share
the same set of main TFs, yet differ in some specific
minor TFs. For example, in the CTCF group, modules
29 and 35 both contain the TFs CTCF, RAD21, SMC3,
and ZNF143; Module 29 includes ARID3A and

(See figure on previous page.)
Fig. 2 Trans-acting factors bind in a complex combinatorial and context-specific manner. RMD was applied to a compendium of ChIP-seq binding
sites of 115 TFs (~140,000 regions) in human K562 cells and discovered 49 modules. Each cell in the heatmap represents the z-score of the TF
binding site count (standardized along the columns) of a TF (column) in a module (row). The bottom bar plot shows the total number of binding
sites of the TFs. The right bar plot shows the number of regions that use the modules. The top and left dendrograms were computed by applying
hierarchical clustering on the regulatory module matrix with Pearson correlation distance and average linkage. The module and TF labels are colored
according to the hierarchical clusters. Selected groups of similar modules are labelled based on the major TFs participating in each module

CTCF

RAD21

ZNF143

SMC3

MAX

E2F6
POLR2A

ZBTB7ATAF1

MAZ

PC1 (35%)

P
C

2 
(1

8%
)

-10000 0 10000 20000 30000
-4000

-2000

0

2000

4000

6000

8000

10000

12000

14000

JUNDJUN

JUNBFOSL1

FOS ATF3

TAL1

TEAD4

RCOR1

EP300

GATA2

CEBPDGATA1

NR2F2

MAX

PC3 (16%)

P
C

4 
(1

0%
)

-5000 0 5000 10000
-6000

-4000

-2000

0

2000

4000

6000

8000

10000

3CP 4CP1CP 2CP
-1 0 1

40
32

7
48

8
47
27
24
23
39

9
29
35
45

3
10

1
6

20
36
34
25
38

2
18
12
22
15
14

5
4

33
28
19
13
30
11
21
46
16
37
31
26
41
17
49
43
42
44

-1 0 1 -1 0 1 -1 0 1

C
S-

C
TC

F

H
3K

36
m

e3

H
3K

9m
e3

C
S-

T

C
S-

R

C
S-

PF

H
3K

27
m

e3

H
4K

20
m

e1

TS
S-

2.
5k

b

C
S-

TS
S

H
3K

79
m

e2

H
3K

27
ac

H
3K

9a
c

H
3K

4m
e3

H
3K

4m
e2

H
2A

.Z

D
N

as
e

H
3K

4m
e1

C
S-

E

C
S-

W
E

40
32
7
48
8
47
27
24
23
39
9
29
35
45
3
10
1
6
20
36
34
25
38
2
18
12
22
15
14
5
4
33
28
19
13
30
11
21
46
16
37
31
26
41
17
49
43
42
44

0

0.2

0.4

0.6

0.8

R
eg

ul
at

or
y 

m
od

ul
es

R
eg

ul
at

or
y 

m
od

ul
es

c d

a b

Fig. 3 Epigenomic annotation and principal component analysis of the K562 regulatory modules. a A heatmap showing the fraction of regions
using the same modules (rows) overlapping the specific annotations (columns). The modules (rows) are ordered as in Fig. 2. The top dendrogram
was computed by applying hierarchical clustering on the fraction matrix with Pearson correlation distance and average linkage. b Principal
component analysis (PCA) was performed on the factor-module matrix. The PCA loadings of the modules for the first four PCs. c The scatter plot
shows the TF binding site counts projected on the principal components (PCs) 1 and 2. The percentage labels in the x and y axes represent the
percentages of variance explained by the PCs 1 and 2, respectively. d Similar to c. The TF binding site counts projected on the PC3 and PC4. CS:
chromatin state; T: transcribed region; R: repressed region; PF: promoter flanking region; TSS: promoter region including TSS; E: enhancer region;
WE: weak enhancer or open chromatin region
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CEBPB, while Module 35 includes MAX, ZBTB7A,
MYC, and YY1.
RMD is able to discover widely used regulatory mod-

ules as well as very specific modules. For example, the
promoter, enhancer, and CTCF modules are each used
in more than 10,000 regulatory regions. At the same
time, a small and specific module, ZNF274 + TRIM28 +
SETDB1 (Module 48), which has been shown to specific-
ally bind at the 3′ ends of zinc finger genes and suppress
their expression [43], is used in only 63 regions.
To reveal the structure and importance of the discov-

ered regulatory modules, we applied principal component
analysis (PCA) to the module-TF matrix. We found that
modules are reduced to principal components (PCs) that
correspond well with the major module groups (Fig. 3b-d):
the first PC is contributed mainly by the CTCF modules,
explaining 35% of the total variance; the second PC is con-
tributed mainly by the Pol2/promoter modules, explaining
18% of the total variance; the third and fourth PCs are
contributed mainly by the p300/enhancer and AP-1 mod-
ules, explaining 16 and 10% of the total variance, respect-
ively. In total, the first four PCs account for 79% of the
total variance. These results indicate the dominant roles in
genome-wide DNA binding of CTCF and cohesin, which
have been suggested as key participants in shaping the
three-dimensional genome structure [14], followed by
promoter-binding factors and enhancer-binding factors.
We found that the relative influence of the modules is not
correlated with the number of factors in the modules be-
cause fewer factors contribute to the CTCF modules than
to the promoter or enhancer modules.

Regulatory module analysis identified distinct binding
partners of NFY in different regions
In addition to identifying the global trends in the regula-
tory modules, the combinatorial patterns for certain
groups of TFs also generate hypotheses about TF inter-
actions. The modules we discovered reveal context-
dependent co-binding as reported in previous work. For
example, we found that FOS mainly participates in five
modules (Additional file 1: Figure S4), which recapitulate
four categories of FOS co-localization patterns reported
previously [21]. Although the fifth FOS category “AP1-
HOT” does not directly correspond to a single module,
it can be factored into AP1 and promoter modules that
are mixed in those regulatory regions. In addition, we
found that the category of FOS +NFYB can be further
divided into FOS +NFYB + SP2 (Module 40) and FOS +
NFYB +USF (Module 32), which we discuss in more de-
tails below.
NFYA and NFYB (two subunits of NFY) both partici-

pate in Modules 32 and 40, together with the co-binding
partner FOS [21, 44]. However, in Module 32, NFY and
FOS co-associate with USF1, USF2, ATF3, and MAX,
while in Module 40, they co-associate with SP1 and SP2
(Fig. 4a). We verified that these two modules are used
predominantly in different regions. More specifically, we
found 1227 regions that are bound by both NFY and
USF2 but not by SP2, 1758 regions that are bound by
both NFY and SP2 but not by USF2, and only 120 re-
gions that are bound by NFY, and both SP2 and USF2
(Fig. 4b). The majority of the regions using the NFY +
SP module are TSS-proximal regions, while most of the
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can be observed around the NFYB motifs. Green, blue, yellow, and red indicate base A, C, G, and T

Guo and Gifford BMC Genomics  (2017) 18:45 Page 7 of 16



NFY +USF regions are distal regions. Furthermore, NFY
and USF2 co-binding exhibits a strong spacing con-
straint, with 1227 co-bound regions exhibiting a 21-
22 bp spacing between NFY and USF2 motif-supported
sites. On the other hand, NFY and SP2 co-binding does
not appear to have a specific spacing constraint. Enrich-
ment analysis using GREAT [31] shows that: the NFY +
USF bound regions are near genes with ontologies such
as “nuclear estrogen receptor alpha network pathway”
(FDR q-value = 7.1E-5), “steroid hormone receptor bind-
ing” (FDR q-value = 2.1E-4) and “Homeobox protein,
antennapedia type, protein family” (FDR q-value = 4.0E-
4); while the NFY + SP bound regions are near genes
with ontologies such as “Krüppel-associated box protein
family” (FDR q-value = 2.3E-11), “positive regulation of
nuclease activity” (FDR q-value = 1.6E-3) and “choles-
terol biosynthesis” (FDR q-value = 3.5E-3). Taken to-
gether, the regulatory module analysis identified that
NFY and FOS bind with distinct combination of factors
in different types of regulatory regions that may regulate
genes with distinct functions. NFY and SP1 have been
shown to bind to promoters of a number of genes syner-
gistically [45–47] or competitively [48]. NFY and USF
co-bind as a complex to the promoter of HOXB4 gene
in hematopoietic cells [49]. Here we find extensive NFY
+ SP and NFY +USF context-specific co-bindings occur
in a mutually exclusive manner in thousands regions,
suggesting the possibility of different DNA binding
modes for NFY and different consequences of gene regu-
lation. These results highlight that systematically discov-
ered regulatory modules may be used to generate
specific hypothesis that can be tested with more detailed
analysis.

The combinatorial rules of direct versus indirect binding
We next compared the co-binding partners of TFs when
they bind directly (motif present) and indirectly (motif
absent) to the genome. We define direct binding as the
binding of a TF at sites that contain the cognate motif of
the TF, and indirect binding as binding at sites that do
not contain a detectable cognate motif. Previous studies
have found that many ChIP-seq binding sites of
sequence-specific TFs do not contain the cognate motif
of the TFs, suggesting that binding may be indirect
through the interaction with co-binding TFs [50, 51].
Understanding the combinatorial patterns of direct bind-
ing versus indirect binding may reveal the co-binding
TFs that facilitate indirect binding.
For each sequence-specific factor X, the binding sites

were divided into two groups: dX sites (direct binding)
where X motif is present; iX sites (indirect binding)
where X motif is not present. For example, CTCF sites
were divided into dCTCF and iCTCF sites. These two
groups were then treated as binding sites of distinct TFs.

For the K562 dataset, this motif-based division expanded
the total number of the TFs to 167, with 52 pairs of dir-
ect and indirect binding “factors” and 63 non-sequence-
specific factors. Applying RMD to these data, we discov-
ered 54 modules with the expanded set of direct and
indirect factors (Additional file 1: Figure S5 and
Additional file 2: Tables S5-S6). We then investigated
the presence of co-binding factors that are specific to
direct or indirect binding. For example, previous work
reported that FOS co-localizes with NFYB [21]. Our
analysis showed that this co-localization mostly occurs
between indirect FOS binding and both direct and indir-
ect NFYB binding (Modules 20 and 24) (Fig. 5a). To
more systematically investigate the indirect binding of
factors, we compute the pairwise correlation between all
the 52 direct binding factors and all the 52 indirect bind-
ing factors across their module participation profiles
(Fig. 5b). A high correlation means similar module par-
ticipation, indicating that the indirect binding factor
likely associates with the corresponding direct binding
factor. We found several groups of such associations: in-
direct binding of FOS with direct binding of NFY + SP1
+ SP2, indirect binding of E2F6 with direct binding of
MYC +MAX + BHLHE40 + USF +MXI1 + YY1, and in-
direct binding of ATF3 with FOS + FOSL1 + JUNB +
JUND + JUN.
Furthermore, we observed that the direct binding sites

and indirect binding sites of some factors participate in
very different modules. For example, direct FOS binding
co-occurs with AP-1 factors (Module 29) and MAF +
BACH1 + NFE2 (Module 27), while indirect FOS binding
co-occurs with NFY + SP1 + SP2 (Module 24) or NFY +
USF1 + USF2 (Module 20) (Fig. 5a).
With the observation that direct and indirect binding

sites of some factors associate with different combin-
ation of factors, we reasoned that it would then be pos-
sible to predict whether a sequence-specific TF binds
DNA directly or indirectly based on the proximal bind-
ing of other TFs. To test this hypothesis, we trained a
random forest classifier to predict whether a TF binding
site is a direct or indirect site using the proximal binding
of other TFs in the region. We quantify the difference
between the direct and indirect binding partners of a TF
by introducing a TF diversification score, which is de-
fined as the Pearson correlation distance between direct
and indirect binding modules of the TF. For factors with
high TF diversification scores, such as FOS, JUN, JUNB,
JUND, MYC, SRF, USF1, and MXI1, the classifier pre-
dicted the direct/indirect binding of the factors with 80-
95% accuracy (Fig. 5c and Additional file 4: Table S8).
Furthermore, the ability to accurately predict direct and
indirect binding of a TF is highly correlated to the TF di-
versification scores (Pearson correlation r = 0.80). The
higher the TF diversification score, the higher the
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prediction accuracy of the random forest classifier
(Fig. 5c). These results confirm that the direct and indir-
ect binding of certain TFs can be explained by the spe-
cific combination of co-binding factors.

Many regulatory regions use more than one module
To understand the interplay among regulatory modules in
regulatory regions, we investigated the extent of multiple-
module usage by regions. The multiple-module usage is a
structure that cannot be discovered by previous hard-
clustering-based approaches, but can be revealed by RMD.
We found that 25,107 regulatory regions (~18%) use more
than one module (Fig. 6a). For example, we found 3,742

regions that use both enhancer and AP-1 modules
(Fig. 6b), 3,071 regions that use both promoter and CTCF
modules, and 2,514 regions that use both promoter and
enhancer modules (Additional file 1: Figure S6). Notably,
more than 63% the regions that use both enhancer and
promoter modules are marked by both H3K4me1 (enhan-
cer-related) and H3K4me3 (promoter-related) histone
modifications (Additional file 1: Figure S6), but they are
annotated as either TSS/promoter or enhancer/weak en-
hancer chromatin states [42]. This represents a limitation
of genome annotation methods that only assign a single
label to a genome segment. Furthermore, a module may
co-occur with different other modules in distinct types of
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Fig. 5 Direct versus indirect TF binding can be explained by the specific combination of co-binding TFs. a FOS co-binds with different set of TF
partners when binding directly or indirectly. A subset of the regulatory module matrix that involves FOS binding are shown. Each cell in the heatmap
represents the TF binding site count of a TF (row) in a module (column). dTF (in red) represents the direct binding sites. iTF (in green) represents the
indirect binding sites. b RMD discovered specific combinations of TF indirect and direct binding. The heatmap shows the correlation between direct
binding and indirect binding of 48 TFs based on their module participation. The top and left dendrograms were computed by applying hierarchical
clustering on the correlation matrix with Pearson correlation distance and average linkage. Yellow boxes label combinations of TF indirect binding
(yellow text) and direct binding (orange text). c Direct/indirect binding of some TFs can be predicted with high accuracy using the binding of
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regulatory regions. For example, AP-1 modules co-occur
with enhancer modules in the regions annotated with
strong/weak enhancer chromatin states [42], co-occur
with CTCF modules in regions mainly annotated with
CTCF state, and co-occur with promoter modules in re-
gions mainly annotated with TSS/promoter state (Fig. 6b).
These different type of regions were also found to associ-
ate with different functional categories by a GREAT ana-
lysis [31]: the AP-1 and enhancer module co-bound
regions are enriched with genes involved in “platelet acti-
vation” (FDR q-value = 3.1E-11), “regulation of inflamma-
tory response” (FDR q-value = 4.4E-11), “regulation of
translation” (FDR q-value = 6.3E-10), and “myeloid
leukocyte activation” (FDR q-value = 1.1E-7); while the
AP-1 and promoter module co-bound regions are
enriched with genes involved in “viral process” (FDR q-
value = 1.4E-12), “protein kinase binding” (FDR q-value =
3.7E-11), and “apoptotic signaling pathway” (FDR q-value
= 3.3E-9). These differences in functional enrichment sug-
gest that AP-1 module carries out distinct functions when
it is combined with different type of other modules.
To ensure that the discovery of multiple-module usage

was not the result of inappropriate merging of proximal
regulatory regions, we chose a more conservative inter-
site distance, 50 bp, for merging the sites into regions.

Furthermore, we studied the positions of the binding sites
that are assigned to different regulatory modules. In many
cases, the binding sites assigned to distinct modules are
spatially mixed. For example, in an 80 bp region on
chromosome 1, CTCF, CTCFL and RAD21 sites from a
CTCF module are mixed with POL2, E2F6, MAX, EGR1,
and other sites from a promoter module (Fig. 6c). Such
co-occurrences between CTCF and promoter modules are
consistent with previous findings that CTCF mediate
long-range DNA-looping interactions between enhancers
and promoter [13], and that ZNF143 binds directly to the
promoters and occupies anchors of chromatin interactions
connecting promoters with distal enhancers [36].
In summary, our analysis suggests that multiple-

module usage is a prevalent aspect of regulatory activ-
ities in the cells and it is revealed by RMD.

Cell-type-specific regulatory modules
We next investigated if we could observe cell-type-specific
and cell-type-common regulatory modules. We used
ChIP-seq data of 56 TFs that were profiled in both K562
and GM12878 cells [20]. Following a previous approach
[21], we constructed the co-binding regions in each cell
type separately (~105,000 regions in K562 and ~91,000 re-
gions in GM12878) and then combined the data from all
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Fig. 6 A large number of regulatory regions use multiple regulatory modules. a A histogram of the number of regulatory modules used in a
regulatory region. b Co-occurring modules partition the regions that use AP-1 modules into distinct functional categories. Left panel: A heatmap
showing the region-TF binding matrix of the regions co-bound by AP-1 and enhancer modules, AP-1 and CTCF modules, and AP-1 and promoter
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regions from both cell types for RMD analysis. RMD dis-
covered 48 modules that describe the binding of the 56
factors in K562 and GM12878 cells (Fig. 7a). To aid

interpretation of the modules, we clustered them into 16
module groups. Interestingly, the promoter-associated
modules and CTCF-associated modules are each clustered

a

b c

Fig. 7 Common and cell-type-specific regulatory modules. a RMD was applied to ChIP-seq binding sites of 56 TFs in human K562 cells and
GM12878 cells. Each cell in the heatmap represents the z-score of TF binding site count (standardized along the columns) of a TF (column) in a
module (row). The bottom bar plot shows the total number of binding sites of the TFs. The right bar shows the percentage of the sites contributed
from K562 data for the modules. The top and left dendrograms were computed by applying hierarchical clustering on the regulatory module matrix
with Pearson correlation distance and average linkage. b A scatter plot showing that the cell-type-specific modules are preferentially used in the
differentially bound regions in K562 cells and GM12878 cells. c Distinct cell-type-specific modules are used in the same genomic regions in different
cell types. A set of 1956 regions that are bound by K562 enhancer module factors in K562 (left panel) and by GM12878 enhancer module factors in
GM12878 cells (right panel). The TFs are in the same order as in a
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into one group that is common to K562 and GM12878,
while the enhancer-associated modules are clustered into
two cell-type-specific groups.
To investigate the degree of cell-type-specificity of the

discovered modules, we computed the fraction of the
binding regions that are contributed from the K562 data
or from the GM12878 data for each module. We found
that some combinations of factors are mainly used in
K562 cells and others are mainly used in GM12878 cells
even though all of the 56 factors bind regulatory regions
in both cell types (Fig. 7a). In particular, many enhancer
modules are preferentially used in one cell type. In K562
cells p300 co-binds with JUND, JUN, RCOR1, ATF3,
FOS, CEBPB, MAFK, MAX, and MYC (Module group
10), but in GM12878 cells p300 co-binds with MEF2A,
SP1, SPI1, BCLAF1, BCL3, and BHLHE40 (Module
group 11). Both cell types share other module groups,
such as the promoter and CTCF module groups. In the
regulatory regions that are bound in K562 or GM12878
cells but not bound in both cell types, cell-type-specific
modules are used preferentially by one cell type, while
shared modules are used in both cell types (Fig. 7b).
We next investigated if a regulatory region that is

bound in both cell types uses cell-type-specific regula-
tory modules. Out of 50,910 regions that are bound in
both cell types, we found that 1,956 regions use a differ-
ent enhancer module in the two cell types (Fig. 7c). For
these 1,959 regions, module group 10 is used in the
K562 cells and module group 11 is used in the
GM12878 cells. Thus although these regions are bound
in both cell types and may act as enhancers, as suggested
by the binding of transcriptional co-activator p300, they
are bound by cell-type-specific combinations of factors
in K562 and GM12878. In addition, we found 1,312 re-
gions that are bound by CTCF module factors in both
K562 and GM12878 cells, and also bound by the K562
enhancer module factors in K562 cells, suggesting the
usage of K562-specific enhancers in these CTCF/cohesin
bound regions. In summary, important differences can
exist between the set of regulatory modules that bind
the same regulatory regions in distinct cell types.

Conclusions
Gene regulation specificity is orchestrated by the inter-
actions among a complex group of trans-acting factors
that we have organized into distinct combinable mod-
ules. Previous methods have modeled TF combinatorial
binding as pairwise interactions or as a single module at
a given regulatory region; they are thus not able to cap-
ture the complexity of modular combinatorial binding.
We have developed a new approach to summarize high-
dimensional binding data into combination of combina-
torial binding modules. Our approach can provide import-
ant insights into the mechanisms of gene regulation not

available with previous hard-clustering-based methods.
The modules discovered are easy to interpret individually
and as a whole, capturing key aspects of global combina-
torial binding patterns and providing a resource for gener-
ating new hypotheses for TF interactions.
Our analysis reveals that modular combinatorial bind-

ing occur in tens of thousands of regions and that spe-
cific combination of modules may regulate distinct
functional groups of genes, suggesting that multiple-
module usage is a prevalent aspect of regulatory activ-
ities in the cells. Modeling TF combinatorial binding as
regulatory modules helps to dissect the complexity of
combinatorial binding of many TFs into compact and
easily interpretable modules. Moreover, such explicit
modeling of modular structure helps to uncover specific
modules that are combined with other modules and are
easy to be missed by previous approaches. With a larger
number of additional TFs being assayed by large-scale
efforts such as the ENCODE project [20], we expect that
RMD will be useful in revealing the complexity of com-
binatorial binding in these future data.
Previous work attempted to distinguish between direct

and indirect TF in vivo binding by integrating in vivo
nucleosome occupancy data and in vitro protein binding
microarray experiments [51], or by using TF binding
motifs and DNase-seq footprints [52]. In this work, we
discovered that the direct and indirect DNA binding of
certain TFs is associated with distinct sets of co-binding
partners and that without using motif information the
co-binding partners alone can predict whether the TF
binds directly or indirectly with high accuracy. In
addition, our direct/indirect combinatorial binding maps
allow prediction of co-binding TFs that may facilitate
the indirect binding of TFs. The direct/indirect binding
analysis was conducted with a simplified classification
of the binding sites based on whether they contain a
detectable cognate motif. Recent studies show that
clusters of low-affinity binding sites with degenerate
motifs can be functional [53] and that binding sites
without consensus motifs may use DNA shape to facili-
tate the in vivo binding of TFs [54]. Future analyses
that take into account the clustering of binding sites
and the DNA shape information may gain more in-
sights on the role of combinatorial binding of co-
binding factors on TF binding.
Our method is a general method for studying TF com-

binatorial binding. It can be applied to various cell types
and species [11, 12, 55, 56] where sufficient binding data
are available. One potential limitation on studying com-
binatorial TF binding from ChIP-seq data is the relative
scarcity of high quality antibodies. To expand RMD
combinatorial binding analysis to more TFs or to cell
types that do not have sufficient ChIP-seq data, one
strategy is to augment or replace ChIP-seq data with TF
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binding predicted from DNase-seq [57] or ATAC-seq
[58] data and TF motif information [59, 60].

Methods
Data and preprocessing
ChIP-seq data for the TFs and corresponding controls
were downloaded from the ENCODE project website
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode
DCC/. Fastq files were aligned to hg19 genome with
Bowtie [61] version 0.12.7 with options “-q –best –strata
-m 1 -p 4 –chunkmbs 1024”. GEM [62] was used to call
binding events with default parameters using the aligned
reads of TF ChIP-seq experiments and the correspond-
ing control experiments. GEM produces two set of bind-
ing site calls for each dataset: GPS binding calls without
motif information and GEM binding calls with motif in-
formation. The binding calls overlapping with the EN-
CODE blacklist regions (http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeMapability/wg
EncodeDacMapabilityConsensusExcludable.bed.gz) were
excluded for this analysis.

Construct co-binding regions
GPS binding calls of all the factors in a given cell type
were pooled together to construct the co-binding re-
gions. Each binding call was expanded +/−50 bp from
the summit position. Then overlapping binding calls
were merged to form non-overlapping co-binding re-
gions. Only co-binding regions with three or more bind-
ing calls were used for subsequent analysis. We also
performed analyses using regions that have a minimum
of 2 or 4 TF sites, the results are similar (data not
shown). An alternative binding site expansion distance
of 100 bp was tested to construct co-binding regions; it
gives similar results. For this paper, the expansion dis-
tance of 50 bp was used because the spatial resolution of
TF ChIP-seq binding calls is about 30-50 bp and that
50 bp expansion distance is more conservative for ana-
lyzing multi-module co-occurrences than the 100 bp dis-
tance. From the K562 co-binding regions (n = 142,962),
we construct a Region-TF matrix (142,962 × 115) that
contains the number of binding sites of each TF in each
region. The code for constructing co-binding regions
and for generating topic model input files is freely avail-
able at http://groups.csail.mit.edu/cgs/gem/rmd/.

Topic model
The hierarchical Dirichlet processes (HDP) topic model
was used in this study because it automatically deter-
mines the number of the topics from the data. A C++
implementation of HDP was downloaded from http://
www.cs.columbia.edu/~blei/topicmodeling_software.html.
The parameters used were “–eta 0.1 –max_iter 2000”. Eta
is the hyperparameter for the topic Dirichlet distribution.

We tested different eta values (0.01, 0.05, 0.1, 0.5 and 1)
and the results were similar. We chose eta to be 0.1 to en-
code our assumption that each topic contains only a few
TFs. The HDP inference procedure typically converged at
about 1000 iteration. We ran the HDP with 3 different
random seeds for 2000 iterations and used the run that
had the highest data likelihood reported by the HDP. The
input to the HDP are the TF binding site counts in the co-
binding regions. Each region is treated as a document and
the TF sites as words in the documents. The output of the
HDP includes the module-TF matrix and the module as-
signment of each TF binding site.
For the module-TF matrix, each column vector (TF

participation vector) describes the distribution of the TF
binding sites across all the modules, and each row vector
(module vector) represents the number of binding sites
contributed by each TF to the module. We compute a z-
score for each TF vector. A TF is considered to partici-
pate a module if the z-score of the TF-module pair is
larger than 1. Similarly, we compute a z-score for each
module vector. A TF is considered to be a “main driver”
of the module if the z-score of the TF-module pair is lar-
ger than 1. Each module is labeled with the names of the
main TF drivers, which are ranked by their z-scores. To
facilitate interpretation of the modules, the module-TF
matrix was clustered into module groups using hierarch-
ical clustering with Pearson correlation distance and
average linkage. The cutoff distance for clustering is 0.5.
The region-module assignment table assigns each TF

binding site from each region to one of the modules.
The assignment table was summarized into a region-
module matrix where each element of the matrix repre-
sents the number of the TF binding sites in a region that
are assigned to a particular module. A module is consid-
ered as being used in a particular regulatory region if 1)
at least three binding sites in the region are assigned to
the module and 2) the z-score of the site count for the
module in the region is larger than 1.

Comparing HDP with k-means clustering and NMF
To test the ability of RMD, k-means clustering, and
NMF to accurately capture TF-TF correlations that are
present in the binding data, we applied all three ap-
proaches to the same set of K562 cell ChIP-seq binding
data to discover the same number of modules (k = 49).
We applied k-means clustering and NMF on the K562
Region-TF binding matrix using the MATLAB software
(MATLAB and Statistics Toolbox Release 2012a, The
MathWorks, Inc., Natick, Massachusetts, United States).
For k-means clustering, Euclidean distance is used as the
distance metric. The cluster number (i.e. rank for NMF)
was set to be k = 49 and k = 100 to compare with the
HDP topic model with 49 topics. We refer the k-means
clusters, NMF components and HDP topics as the
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modules. To compare the three approaches, we first
computed the pairwise TF correlation scores using the
original region-TF matrix, or the module-TF matrices
derived from these three methods. Then we computed
the correlation between the pairwise TF correlation
scores from the original region-TF matrix and those
from the three derived module-TF matrices. We also
compared topic model modules and k-means clusters by
computing their Pearson correlation using the module
vectors versus the cluster vectors. The comparison re-
sults are robust across different correlation cutoff values
for matching the modules (Additional file 1: Figure S1c).

Principal component analysis (PCA)
PCA was performed using the MATLAB software
(MATLAB and Statistics Toolbox Release 2012a, The
MathWorks, Inc., Natick, Massachusetts, United States)
on the module dimension of module-TF matrix.

Protein-protein interaction and epigenomic annotation of
regulatory modules
The protein-protein interaction derived from IP-MS Data
for K562 cells [21] was downloaded from http://www.cell.-
com/cms/attachment/2021777707/2041662737/mmc1.xls.
For the 33 direct physical interaction pairs that contain
the TFs in our study, we considered an interaction as
rediscovered by RMD if the two TFs are both the “main
drivers” in a same module. The p-value of overlap be-
tween IP-MS data and the RMD modules was calculated
by fixing the pulled-down TFs while permuting all the
partners identified by mass spectrometry and calculating
the odds of getting higher overlap with RMD modules. A
total of 200 permutations were performed, enabling us to
estimate the p value to the level of 0.05.
DNase hyper-sensitive open chromatin peak calls, his-

tone modification peak calls, and the combined genome
segmentation annotations were downloaded from http://
ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_
data_jan2011/. The co-binding regions were annotated
with the epigenomic annotations if they overlap at least
1 bp. For each module, we identified the regulatory re-
gions that use the module and computed the fractions of
these regions that overlap with the annotations.

GREAT ontology enrichment analysis
The GREAT ontology enrichment analysis [31] was
performed on the GREAT website (http://bejerano.
stanford.edu/great/public/html/index.php) with the de-
fault “basal plus extension” association rule. BED files
of the regions that use the regulatory modules are
used as the inputs. Hierarchical clustering was per-
formed to cluster the GO terms on the -log10 (FDR
q-value) of GO terms with Pearson correlation dis-
tance and average linkage.

Direct versus indirect binding analysis
For the direct versus indirect binding analysis, GEM
binding calls were used for sequence-specific binding
factors that the GEM motifs can be verified. The pos-
itional frequency matrix of the top ranked motif re-
ported by GEM was compared against known motifs of
the same factor in the public databases using STAMP
[63], as previously described [62]. For the 52 sequence-
specific TFs that a database match for the top motif is
found, the GEM binding calls were divided into direct
and indirect binding sites based on whether the binding
sites contain a motif match of the TF. The direct and in-
direct binding sites were treated as separate factors for
topic modeling analysis. For example, CTCF sites were
divided into dCTCF and iCTCF sites. For the non-
sequence-specific factors and sequence-specific factors
that the top GEM motif does not match the known
database motifs of the factor, GPS binding calls were
used. All the GEM and GPS binding calls were then
pooled together to construct the co-binding regions. In
total, 159,204 co-binding regions with binding sites from
167 “factors” were constructed. Applying RMD, we dis-
covered 54 modules. The correlation between direct
binding of a TF and indirect binding of another TF
(matrix shown in Fig. 5b) were computed using the TF
vectors in the module-TF matrix.

Predicting direct/indirect binding using random forest
We trained a random forest (RF) classifier to predict
whether a TF binding site is a direct or indirect site
using the proximal binding of other TFs in the co-
binding region. We used the TreeBagger implementa-
tion of RF in the MATLAB software (MATLAB and
Bioinformatics Toolbox Release 2015b, The Math-
Works, Inc., Natick, Massachusetts, United States).
More specifically, using the region-TF matrix (159,204
× 167), we took the rows that contained either direct or
indirect binding sites of the TF, used the columns cor-
responding to the direct or indirect binding of the TF
as the prediction target and the rest of the columns
(binding of the other TFs) as the features. For each se-
quence specific co-binding TF, the dTF and iTF col-
umns were combined, ignoring the motif information.
Therefore, the prediction is harder because it based
only on the identity but not the motif information of
the co-binding TFs. For each sequence-specific TF, we
trained five RFs, each with a distinct random subset
(80%) of the data, and then tested on the rest of 20%
data. The prediction accuracy values of the five classi-
fiers are then averaged for each TF. The correlation be-
tween direct and indirect binding of a TF (shown in
Fig. 5c) were computed using the corresponding TF
vectors in the module-TF matrix.
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Cross-cell-type analysis
We used ChIP-seq data of 56 TFs that were profiled in
both K562 and GM12878 cells [20]. When there were
multiple datasets for the same factor, we chose the data-
sets that were produced by the same lab, using the same
antibodies, or had similar number of binding calls. Fol-
lowing a previous approach [21], the co-binding regions
were constructed separately for K562 and GM12878.
These data from both cell types were then concatenated
for topic model analysis. Thus we can learn TF co-
binding relationships that are shared across cell types
but still keep track of the cell type origin of the TF sites
and the regions.
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