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Abstract

We define a q-deformation of the classical ring of integer-valued poly-
nomials which we call the ring of quantum integer-valued polynomials. We
show that this ring has a remarkable combinatorial structure and enjoys
many positivity properties: for instance, the structure constants for this
ring with respect to its basis of q-binomial coefficient polynomials belong
to N[q]. We then classify all maps from this ring into a field, extending a
known classification in the classical case where q = 1.

Introduction

A polynomial is integer-valued if it takes integer values at all integers. In the
context of interpolation theory, integer-valued polynomials have been studied
at least since the work of Isaac Newton in the 17th century. But the theory
of integer-valued polynomials was first systematically developed in two 1919
papers of Pólya [Pól19] and Ostrowski [Ost19]. Their focus was on finding so-
called “regular bases” (i.e., bases consisting of one polynomial of each degree)
for Z-algebras of integer-valued polynomials with coefficients in various number
fields K. When K = Q, the classical case, a regular basis for the ring of
integer-valued polynomials is given by the binomial coefficient polynomials. For
more background on integer-valued polynomials, consult the book of Cahen and
Chabert [CC97].

In this paper we investigate a q-deformation of the classical ring of integer-
valued polynomials. Let us briefly summarize our results here. Recall the q-
numbers [n]q := (qn−1)/(q−1), the q-factorials [n]q! := [n]q ·[n−1]q · · · [1]q, and

the q-binomial coefficients
[
n
k

]
q

:=
[n]q !

[n−k]q ![k]q ! . In this paper we study the ring Rq

of all polynomials P (x) ∈ Q(q)[x] with P ([n]q) ∈ Z[q, q−1] for all n ∈ Z. We
show that this ring has a basis as a Z[q, q−1]-module consisting of the q-binomial
coefficient polynomials

[
x
k

]
for k ∈ N (Propositions 1.2 and 3.3). These

[
x
k

]
are

the unique polynomials in Q(q)[x] with
[
[n]q
k

]
=
[
n
k

]
q

for all n ∈ N. From Rq we

recover the classical ring R of integer-valued polynomials with rational coeffi-
cients and its basis of binomial coefficient polynomials

(
x
k

)
by specializing q := 1.
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It is well-known that R is not Noetherian (see [CC97, pg. xvii]). Thus Rq is
also non-Noetherian. Nevertheless the rings Rq and R have remarkable com-
binatorial structures and positivity properties. For starters, these rings come
with the following maps:

• a shift operator S : Rq → Rq defined by S(x) := qx + 1 with inverse
S−1 : Rq → Rq defined by S−1(x) := q−1(x − 1) (Section 4);

• a bar involution : Rq → Rq defined by q := q−1 and x := −qx (Section 5);

• a Frobenius map Ψp : R⊗Z Fp → R⊗Z Fp defined by Ψp(
(

x
k

)
) :=

(
x
pk

)
for all

primes p (Section 6);

• a quantum Frobenius map Ψd : R → Rq/Φd(q) defined by Ψd(
(

x
k

)
) :=

[
x
dk

]

for all integers d ≥ 1, where Φd is the dth cyclotomic polynomial (Section 6).

And these maps have the following relations between them:

• SP (x) = S−1P (x) for all P (x) ∈ Rq (Proposition 5.1);

• Ψp(SP (x)) = SΨp(P (x)) for all primes p, P (x) ∈ R⊗Z Fp (Proposition 6.3);

• Ψd(SP (x)) = SΨd(P (x)) for all d ≥ 1, P (x) ∈ R (Proposition 6.6).

We also have the following positivity properties for Rq: for all i, j, m ∈ N,

• with
[
x
i

][
x
j

]
=
∑

k αi,j,k(q)
[
x
k

]
, αi,j,k(q) ∈ N[q] for all k (Theorem 2.4);

• with
[
x
i

] [
x
j

]
=
∑

k αi,j,k(q)
[
x
k

]
, αi,j,k(q) ∈ N[q−1] for all k (Corollary 5.2);

• with Sm
[
x
i

]
=
∑

k βm,i,k(q)
[
x
k

]
, βm,i,k(q) ∈ N[q] for all k (Equation (4.5));

• with S−m
[
x
i

]
=
∑

k βm,i,k(q)
[
x
k

]
, βm,i,k(q) ∈ N[q−1] for all k (Equation (5.1));

• with
[
x
i

]
=
∑

k γi,k(q)
[
x
k

]
, γi,k(q) ∈ (−1)iN[q] for all k (Proposition 5.3);

• with
[
x
i

]
=
∑

k γi,k(q)
[
x
k

]
, γi,k(q) ∈ (−1)iN[q−1] for all k (Proposition 5.3).

Moreover, we offer simple, combinatorial formulas for all the coefficients above.
Finally, using the tools we develop we classify all ring homomorphisms from Rq

into a field (Theorem 7.1). In general there is no reason to expect to be able
to classify maps from a non-Noetherian commutative ring into a field, so this
classification shows that indeed Rq has a very special structure. Especially im-
portant for this classification of maps from Rq into a field is the aforementioned
quantum Frobenius map. In turn, the construction of this quantum Frobenius
map relies on a q-analog of Lucas’ celebrated theorem [Luc78] due (we believe)
to Sved [Sve88]. In the last section of the paper, Section 8, we discuss some
open questions and future directions in the investigation of the ring Rq.
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In a recent paper by the first author [Har15] the ring R played an impor-
tant role in understanding the asymptotic behavior of the modular represen-
tation theory of symmetric groups. Part of the motivation for this paper was
to understand what ring plays the role of R in the asymptotic behavior of the
representation theory of finite general linear groups and Iwahori-Hecke algebras
in type A. This direction and its connection to the theory of representation
stability will be addressed in more detail in an upcoming paper by the first
author.

Throughout this paper x and q are commuting indeterminates (which we will
sometimes specialize) whereas other lowercase letters like n, m, i, j, k, and d
are numbers and p is always a prime number. We use N := {0, 1, 2, . . .} for the
set of natural numbers, Z for the ring of integers, Q for the field of rational
numbers, Fpm for the finite field of cardinality pm, and Zp the ring of p-adic
integers. If R is a ring, then R[x] denotes the univariate polynomial ring in x
over R. Polynomials will be denoted by uppercase letters like P (x). If k is a
field, then k(q) denotes the field of rational expressions in q over k, the fraction
field of k[q]. For a, b ∈ Z set [a, b] := {a, a + 1, a + 2, . . . , b}, which is ∅ if a > b.

Acknowledgments: We thank Fedor Petrov [Pet15] for directing us to the
work of Bhargava [Bha97], and for pointing out that the classical method of
polynomial interpolation works to prove Proposition 1.2. Thanks to the anony-
mous referees for their comments and suggestions. This work was partially
supported by the National Science Foundation Graduate Research Fellowship
under Grant No. 1122374.

1 Quantum integer-valued polynomials

A polynomial P (x) ∈ Q[x] is integer-valued if P (n) ∈ Z for all n ∈ N. Let R
denote the ring of such polynomials. We have the following proposition about
the structure of R, which in fact was essentially known to Newton.

Proposition 1.1 (Pólya 1919 [Pól19]). R is freely generated as an abelian group
by the binomial coefficient polynomials

(
x
k

)
for k ∈ N defined by

(
x

k

)
:=

x(x − 1) . . . (x − k + 1)

k!
if k ≥ 1,

with
(
x
0

)
:= 1.

The key observation leading to this paper is that this ring admits a re-
markable q-deformation called the ring of quantum integer-valued polynomials.
Recall the q-numbers defined by [n]q := (qn − 1)/(q − 1) = (1 + q + · · · + qn−1)
for n ∈ N, with [0]q := 0 by convention. With these we may also define the
q-factorials [n]q! := [n]q[n− 1]q . . . [1]q for n ∈ N, with the convention [0]q! := 1.

For n ∈ N and k ∈ Z we define the q-binomial coefficients by
[
n
k

]
q

:=
[n]q !

[n−k]q ![k]q !
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when 0 ≤ k ≤ n, and
[
n
k

]
q

:= 0 if k > n or k < 0. Note the symme-

try
[
n
k

]
q

=
[

n
n−k

]
q
. Also note that

[
n
k

]
q

is a polynomial in q. In fact,
[
n
k

]
q

∈ N[q],

which follows from Lemma 2.1 below.
Now we define our main object of study, a q-deformation R+

q of R:

R+
q := {P (x) ∈ Q(q)[x] : P ([n]q) ∈ Z[q] for all n ∈ N}.

(The plus sign superscript will be explained in Section 3 where we define a
slightly larger ring Rq of which R+

q can be seen as the “positive part.”) Note
that R+

q is naturally a Z[q]-algebra. We have the following q-analog of Propo-
sition 1.1:

Proposition 1.2. R+
q is freely generated as a Z[q]-module by the q-binomial

coefficient polynomials
[
x
k

]
for k ∈ N defined by

[
x

k

]
:=

x(x − [1]q) . . . (x − [k − 1]q)

q(
k

2)[k]q!
if k ≥ 1,

with
[
x
0

]
:= 1. These polynomials satisfy

[
[n]q
k

]
=
[
n
k

]
q
.

Proof. This proposition falls into a general framework set up by Bhargava; it
can be seen as an instance of [Bha97, Theorem 14]. It also is essentially the
same as [CC97, Chapter II, Exercise 15], which in turn cites [Gra90]. But let
us give a self-contained proof based on a well-known proof of Proposition 1.1
using polynomial interpolation.

Verifying that when x := [n]q the q-binomial coefficient polynomials evaluate
to the q-binomial coefficients

[
n
k

]
q
, and hence that these polynomials are actually

in R+
q , is a straightforward calculation. Also, the

[
x
k

]
are linearly independent

just because of degree considerations. What remains is to check that everything
in R+

q is a Z[q]-linear combination the q-binomial coefficient polynomials.
Let P (x) ∈ R+

q . We will construct polynomials Pi(x) in the Z[q]-span of
the q-binomial coefficient polynomials for i ∈ N such that Pk([j]q) = P ([j]q)
for j ∈ [0, k] and such that Pi(x) has degree at most k. The construction is
given inductively as follows:

P0(x) := P (0);

Pk(x) := Pk−1(x) + (P ([k]q) − Pk−1([k]q))

[
x

k

]
if k ≥ 1.

By supposition P ([k]q) ∈ Z[q] and so P ([k]q) − Pk−1([k]q) ∈ Z[q] for all k ∈ N.

Also, since
[
[k]q
k

]
=
[
k
k

]
q

= 1 and
[
[n]q
k

]
=
[
n
k

]
q

= 0 if n < k, for all k ∈ N we

have that P (x) − Pk(x) vanishes at the points x = [0]q, [1]q, . . . , [k]q. So if P (x)
has degree d then P (x) − Pd(x) is a polynomial of degree at most d vanishing
at the (d + 1) points x = [0]q, [1]q, . . . [d]q and is thus the zero polynomial. We
conclude that P (x) = Pd(x) and so have successfully expressed P (x) as a Z[q]-
linear combination the q-binomial coefficient polynomials, as desired.
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2 Combinatorial interpretations and structure

constants

In this section we will compute the multiplicative structure constants for the
rings R and R+

q . Before doing so we will review some well-known combinato-
rial interpretations for the (q-)binomial coefficients, and prove an interpolation
lemma used to pass combinatorial results to the algebraic setting.

Lemma 2.1. We have the following interpretations of
(
n
k

)
and

[
n
k

]
q
for n, k ∈ N:

1. (Classical)
(
n
k

)
is the number of k-element subsets of {1, 2, . . . , n}.

2. (Quantum)
[
n
k

]
q

=
∑

λ⊆(n−k)k q|λ|, where this sum is 0 if k > n.

3. (Finite Field)
[
n
k

]
q

evaluated at a prime power q := pm is the number of

k-dimensional subspaces of Fn
pm .

To clarify, in the quantum interpretation the sum is over those partitions
contained in a (n− k)× k box. Lemma 2.1 is very well-known, and a number of
proofs exist in the literature. We’ll refer to [Sta12, Propositions 1.7.2 and 1.7.3]
as a standard reference.

We will be using certain combinatorial identities involving (q-)binomial co-
efficients proved using these interpretations in order calculate the multiplicative
constants in these rings. The following lemma justifies passing identities proved
combinatorially using these interpretations to the algebraic setting with the
formal variable x.

Lemma 2.2.

1. (Classical interpolation) Let F ∈ Z[x0, x1, ...xk]. Then

F

((
n

0

)
,

(
n

1

)
, . . . ,

(
n

k

))
= 0 in Z

for all n ∈ N iff F (
(
x
0

)
,
(
x
1

)
, . . . ,

(
x
k

)
) = 0 in R.

2. (Quantum interpolation) Let F ∈ Z[q][x0, x1, ...xk]. Then

F

([
n

0

]

q

,

[
n

1

]

q

, . . . ,

[
n

k

]

q

)
= 0 in Z[q]

for all n ∈ N iff F (
[
x
0

]
,
[
x
1

]
, . . . ,

[
x
k

]
) = 0 in R+

q .

3. (Finite field interpolation) Let F ∈ Z[q][x0, x1, ...xk]. Then

F

([
n

0

]

q

,

[
n

1

]

q

, . . . ,

[
n

k

]

q

)
= 0 in Z[q]/〈q − pm〉

for all n ∈ N and prime powers pm iff F (
[
x
0

]
,
[
x
1

]
, . . . ,

[
x
k

]
) = 0 in R+

q .
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Proof. The first two statements just reduce to the fact that a polynomial in one
variable vanishes at infinitely many points if and only if it is the zero polynomial.
For the third statement we can use the fact mentioned in the previous sentence
to go from q := pm a prime power to formal q, and then apply the second
statement.

Propositions 1.1 and 1.2 give us bases for R and R+
q as algebras over Z

and Z[q] respectively, but they do not tell us anything about how a product of
basis elements decomposes as a sum of other basis elements. We will now give
formulas and combinatorial interpretations for these multiplicative structure
constants.

While R can be obtained from R+
q by specializing q := 1, it is an important

specialization so we will treat it on its own as a warm up. The following theorem
gives the structure constants for R.

Theorem 2.3. Let i, j ∈ N. Then the following formula holds in R:

(
x

i

)(
x

j

)
=

i+j∑

k=max(i,j)

k!

(k − i)!(k − j)!(i + j − k)!

(
x

k

)
.

In particular, the Z-algebra R with distinguished basis {
(
x
k

)
: k ∈ N} has struc-

ture constants in N.

Proof. When x = n ∈ N this is essentially the Chu-Vandermonde identity,
and the statement can be found in this form [Rio79, §1.4]. Alternatively one
can easily interpret this formula at x = n as counting certain pairs of subsets
of {1, 2, . . . , n} in two different ways, but in the interest of brevity we will not
elaborate. Lemma 2.2 then allows us to conclude the statement for x a formal
variable.

Now we’ll state the q-deformed version of this theorem, giving the structure
constants for R+

q :

Theorem 2.4. Let i, j ∈ N. Then the following formula holds in R+
q :

[
x

i

][
x

j

]
=

i+j∑

k=max(i,j)

q(k−i)(k−j) [k]q!

[k − i]q![k − j]q![i + j − k]q!

[
x

k

]
.

In particular, the Z[q]-algebra R+
q with distinguished basis {

[
x
k

]
: k ∈ N} has

structure constants in N[q].

Proof. For x = [n]q this is equivalent to the q-Chu-Vandermonde identity (see
for instance [And76, (3.3.10)]). Alternatively, if x = [n]q and q is a prime
power this can be interpreted as counting certain pairs of subspaces of Fn

q in
two different ways, but again we will leave the details to an interested reader.
Once again, Lemma 2.2 allows us to then conclude the result for x a formal
variable.

We will note that versions of Theorem 2.4 also appear in [CE14, §2] and [Ell14],
and the proofs there are by direct algebraic manipulation.
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3 Related rings

Recall that the ring of integer-valued polynomials R was defined in Section 1
as the collection of all P ∈ Q[x] such that P (n) ∈ Z for all n ∈ N. This was the
definition we q-deformed to define R+

q . However, there are (at least) two other
well known characterizations of R, as summarized by the following lemma.

Lemma 3.1. Let P ∈ Q[x] be a polynomial of degree d. Then the following are
equivalent:

1. P (n) ∈ Z for n ∈ [0, d].

2. P (n) ∈ Z for n ∈ N (in other words, P ∈ R).

3. P (n) ∈ Z for n ∈ Z.

Proof. Clearly 3 =⇒ 2 =⇒ 1, so we just need to check that 1 =⇒ 3.
The proof will be by induction on the degree d. Note that if d = 0 then the
polynomial is constant and the theorem holds trivially. So assume the degree
of P (x) is greater than zero and define P̃ (x) := P (x+1)−P (x) and note that P̃
is a degree d−1 polynomial in Q[x] taking integer values at x ∈ [0, d−1]. Hence

by induction P̃ (n) ∈ Z for all n ∈ Z. Finally we can conclude P (n) ∈ Z for
all n ∈ Z because

P (n) =

{
P (0) + P̃ (0) + P̃ (1) + · · · + P̃ (n − 1) n ≥ 0,

P (0) − P̃ (−1) − P̃ (−2) − · · · − P̃ (n) n < 0;

and in either case, each term on the right hand side is an integer.

We’d now like to have a q-analog of Lemma 3.1 for our ring R+
q . We’ll note

that the definition [n]q := (qn − 1)/(q − 1) ∈ Z[q, q−1] makes perfect sense for
all integers n ∈ Z. Explicitly, for n ∈ Z we set

[n]q :=





1 + q + q2 + · · · + qn−1 if n > 0;

0 if n = 0;

−q−1 − q−2 − · · · − qn if n < 0.

With these extended q-numbers in mind, we have the following q-analog of
Lemma 3.1:

Lemma 3.2. Let P ∈ Q(q)[x] be a polynomial of degree d with P ([n]q) ∈ Z[q]
for n ∈ [0, d]. Then:

1. P ([n]q) ∈ Z[q] for n ∈ N (in other words, P ∈ R+
q ).

2. P ([n]q) ∈ Z[q, q−1] for n ∈ Z.
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Proof. We will follow the previous proof pretty closely, inducting on the degree d
with the d = 0 case holding trivially. So we assume that P (x) has degree

greater than zero, define P̃ (x) := P (qx + 1) − qdP (x) and again note that P̃ is

a degree d − 1 polynomial in Q(q)[x] with P̃ ([n]q) ∈ Z[q] for all n ∈ [0, d − 1].

Hence by induction P̃ (x) satisfies the conclusions of the lemma. Finally we
conclude the statement for P since

P ([n]q) =

{
qndP ([0]q) +

∑n−1
i=0 q(n−1−i)dP̃ ([i]q) n ≥ 0,

qndP ([0]q) −
∑−n

i=1 q(n+i)dP̃ ([−i]q) n < 0;

and by induction we know each term on the right hand side is in either Z[q]
or Z[q, q−1] as required.

The second part of the previous lemma suggests that if we want a q-analog
of R which is symmetric for the positive and negative q-integers, then we should
have the target be Z[q, q−1] rather than Z[q]. This motivates the following
definition:

Rq := {P (x) ∈ Q(q)[x] : P ([n]q) ∈ Z[q, q−1] for all n ∈ Z}.

This is clearly a Z[q, q−1]-algebra, which by the previous lemma contains R+
q

as a Z[q]-subalgebra. The following proposition says there is essentially nothing
else in Rq.

Proposition 3.3. Rq = R+
q ⊗Z[q] Z[q, q−1] viewed as subrings of Q(q)[x].

Proof. As mentioned above, the inclusion R+
q ⊗Z[q] Z[q, q−1] ⊆ Rq is immediate

from the second part of Lemma 3.2. To see the other direction, let P (x) ∈ Rq

be of degree d. There is a positive integer m such that qmP ([0]q), qmP ([1]q),
. . ., qmP ([d]q) are all in Z[q]. By the first part of Lemma 3.2 it follows that
the polynomial qmP (x) is in R+

q . Hence we have P (x) ∈ R+
q ⊗Z[q] Z[q, q−1] as

desired.

Proposition 3.3 means that many results we have proved about R+
q trans-

fer directly to R: for example, the q-binomial coefficient polynomials
[
x
k

]
are

a Z[q, q−1]-basis of R and their structure constants are still as in Theorem 2.4.
There is an obvious counterpart to R+

q where we plug in negative q-numbers
instead of positive ones. We define this “negative” part R−

q of Rq as follows:

R−
q := {P (x) ∈ Q(q)[x] : P ([−n]q) ∈ Z[q−1] for all n ∈ N}.

Note that R−
q is a Z[q−1]-subalgebra of Rq. We will see in Section 5 that in

fact R+
q ≃ R−

q and this isomorphism is compatible with the obvious isomor-
phism Z[q] ≃ Z[q−1]. Hence we also have Rq = R−

q ⊗Z[q−1] Z[q] as subrings
of Q(q)[x] by Proposition 3.3. Our main motivation for considering R−

q is that
the isomorphism R+

q ≃ R−
q extends to an interesting involution of Rq.

Let us also briefly mention that in our setup there is another natural choice
of generator z := (q − 1)x + 1 for Q(q)[x]. Evaluating x := [n]q is the same

8



as evaluating z := qn for all n ∈ Z. And x is obtainable from z by the linear
transformation x = (q−1)−1(z−1). Thus the ring of all polynomials P ∈ Q(q)[x]
with P (qn) ∈ Z[q] (P (qn) ∈ Z[q, q−1]) for all n ∈ N (n ∈ Z) is evidently
isomorphic to R+

q (Rq). For q specialized to a natural number this “z-variable”
version of R+

q is discussed in [Gra90]. Going one step further, if we formally
adjoin square roots K2 = z and v2 = q, then the ring Rq[K, v] is equivalent
to the Cartan part of Lusztig’s integral form of the quantum group Uv(sl2)
[Lus89]. Much of the theory developed here can be done just as easily in the z
or K variable formulations of these rings. We chose the x variable convention
since it highlights the combinatorics and is the most transparent for specializing
q to 1.

4 A shift operator

The above proof of Lemma 3.1 relied on the fact that if P (x) ∈ R then the
related polynomial P (x+1) is also in R. In this section we study this operation
of replacing x by x+1 in more detail. So define the shift operator S : Q[x] → Q[x]
to be the ring homomorphism given by S(x) := x + 1 and extended Q-linearly.
Note that S is evidently invertible: we have S−1(x) = x−1. And also note that
for P ∈ Q[x], we have SP (n) = P (n+1) and S−1P (n) = P (n−1) for all n ∈ Z,
which means that S restricts to an isomorphism S : R → R. We can then ask
how S acts on the basis of binomial coefficient polynomials. The answer, thanks
to Pascal’s identity (

n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)

together with Lemma 2.2, is that for all k ∈ N

S

(
x

k

)
=

(
x

k

)
+

(
x

k − 1

)
(4.1)

with the convention that
(
x
k

)
:= 0 for k < 0. From (4.1) it follows by induction

that for all m, k ∈ N we have

Sm

(
x

k

)
=

m∑

i=0

(
m

i

)(
x

k − i

)
. (4.2)

These shift operators appear in the translation between the binomial coefficient
polynomial basis of R and the “multichoose” polynomial basis of R. That is, if
we set for all k ∈ N ((x

k

))
:= Sk−1

(
x

k

)
,

then it is well-known that for all n ∈ N,
((

n
k

))
is the number of k-element

multisets whose elements belong to {1, 2, . . . , n} (see [Sta12, pg. 26]). As we will
see in Section 5, we have

(
−x
k

)
= (−1)k

((
x
k

))
and so the polynomials (−1)k

((
x
k

))

for k ∈ N are also a Z-basis for R. A q-deformation of these multichoose

9



polynomials will feature prominently in Section 5, where we define a certain
involution Rq → Rq (extending the involution R → R given by x 7→ −x) that

restricts to an isomorphism R+
q

∼
−→ R−

q . But first we need a q-deformation of
the shift operator.

It is easy to q-deform the shift operator: we define S : Q(q)[x] → Q(q)[x]
as the ring homomorphism with S(x) := qx + 1 extended Q(q)-linearly. Once
again S is evidently invertible: S−1(x) = q−1(x − 1). For P ∈ Q(q)[x], we have
that SP ([n]q) = P ([n + 1]q) and S−1P ([n]q) = P ([n − 1]q) for all n ∈ Z, which
means that S restricts to an isomorphism S : Rq → Rq. We can analogously
ask how S acts on the basis of q-binomial coefficient polynomials. The answer,
thanks to the q-Pascal’s identity

[
n

k

]

q

= qk

[
n

k

]

q

+

[
n − 1

k − 1

]

q

(4.3)

together with Lemma 2.2, is that for all k ∈ N we have

S

[
x

k

]
= qk

[
x

k

]
+

[
x

k − 1

]
, (4.4)

with the convention that
[
x
k

]
:= 0 for k < 0. From (4.4) it follows by induction

that for all m, k ∈ N we have

Sm

[
x

k

]
=

m∑

i=0

q(m−i)(k−i)

[
m

i

]

q

[
x

k − i

]
. (4.5)

Indeed, it is clear that (4.5) holds for m = 0. Then, supposing that (4.5) holds
for m − 1, we have

Sm

[
x

k

]
=

m−1∑

i=0

q(m−1−i)(k−i)

[
m − 1

i

]

q

S

[
x

k − i

]

=

m−1∑

i=0

q(m−1−i)(k−i)

[
m − 1

i

]

q

(
qk−i

[
x

k − i

]
+

[
x

k − (i + 1)

])

=

m∑

i=0

(
q(m−1−i)(k−i)+(k−i)

[
m − 1

i

]

q

+ q(m−i)(k−i+1)

[
m − 1

i − 1

]

q

)[
x

k − i

]

=
m∑

i=0

q(m−i)(k−i)

([
m − 1

i

]

q

+ qm−i

[
m − 1

i − 1

]

q

)[
x

k − i

]

=

m∑

i=0

q(m−i)(k−i)

[
m

i

]

q

[
x

k − i

]
,

as desired. In the last line of this computation we used the other q-Pascal’s
identity for n, k ∈ N:

[
n

k

]

q

=

[
n − 1

k

]

q

+ qn−k

[
n − 1

k − 1

]

q

,

10



which follows from (4.3) by the symmetry
[
n
k

]
q

=
[

n
n−k

]
q
. It is also straightfor-

ward to prove (4.5) bijectively using Young diagrams.
Lastly, we remark that S restricts to a Z[q]-linear map S : R+

q → R+
q and S−1

restricts to a Z[q−1]-linear map S−1 : R−
q → R−

q , but these shift operators are no
longer invertible when restricted to R+

q or R−
q . However, we can easily describe

the images of R+
q and R−

q under the shift operator. For m ∈ Z define

R+,m
q := {P ∈ Q(q)[x] : P ([n]q) ∈ Z[q] for all n ∈ Z, n ≥ m};

R−,m
q := {P ∈ Q(q)[x] : P ([n]q) ∈ Z[q−1] for all n ∈ Z, n ≤ m}.

Thus R+
q = R+,0

q , R−
q = R−,0

q , and

· · · ⊆ R+,−2
q ⊆ R+,−1

q ⊆ R+
q ⊆ R+,1

q ⊆ R+,2
q ⊆ · · · ;

· · · ⊇ R−,−2
q ⊇ R−,−1

q ⊇ R−
q ⊇ R−,1

q ⊇ R−,2
q ⊇ · · · .

Proposition 4.1. For m ∈ Z, Sm : R+
q

∼
−→ R+,−m

q is an isomorphism of Z[q]-

algebras, and S−m : R−
q

∼
−→ R−,m

q is an isomorphism of Z[q−1]-algebras.

Proof. We check that SmR+
q ⊆ R+,−m

q and S−mR+,−m
q ⊆ R+

q : for P (x) ∈ R+
q ,

we have SmP ([n]q) = P ([n + m]q) ∈ Z[q, q−1] for all n ∈ Z with n ≥ m, so
indeed SmP ∈ R+,−m

q ; similarly, for P (x) ∈ R+,−m
q , we have S−mP ([n]q) =

P ([n − m]q) ∈ Z[q, q−1] for all n ∈ N, so indeed S−mP ∈ R+
q . The statement

about R−
q is analogous.

5 A bar involution

The ring Z[q, q−1] of Laurent polynomials has an obvious Z-linear involution
given by q 7→ q−1. This involution is fundamental in Kazhdan-Lusztig the-
ory [KL79], where it is extended to a bar involution (or bar operator) of the
Hecke algebra of a Coxeter group. Thus we refer to the involution q 7→ q−1

of Z[q, q−1] as the bar involution : Z[q, q−1] → Z[q, q−1] as well. Accordingly,
we write c for the result of applying this involution to an element c ∈ Z[q, q−1].
We will now describe an extension of the bar involution to Rq.

First note that : Z[q, q−1] → Z[q, q−1] extends uniquely to a field invo-
lution : Q(q) → Q(q). And there is a unique extension of : Q(q) → Q(q)
to a ring involution : Q(q)[x] → Q(q)[x] satisfying x := −qx. If we write
any P (x) ∈ Q(q)[x] as P (x) = c0 + c1x + · · · + ckxk with ci ∈ Q(q), then
for all n ∈ Z we have P ([−n]q) = c0 + c1[n]q + · · · + ck([n]q)

k, which means

that P ([−n]q) = P ([n]q) for all n ∈ Z. In other words, we have the following
commutative diagram for all n ∈ Z:

Q(q)[x]

P (x) 7→P (x)

��

x 7→[n]q
// Q(q)

c 7→c

��

Q(q)[x]
x 7→[−n]q

// Q(q)

11



Now suppose that P (x) ∈ Rq. Thus P ([n]q) ∈ Z[q, q−1] for all n ∈ Z. So as

a result of the above diagram, P ([−n]q) ∈ Z[q, q−1] = Z[q, q−1] for all n ∈ Z.
Thus : Q(q)[x] → Q(q)[x] restricts to a ring involution : Rq → Rq, which
again we call the bar involution. Also as a result of the above commutative
diagram, the bar involution restricts to an isomorphism : R+

q
∼
−→ R−

q that

respects the obvious isomorphism Z[q]
∼
−→ Z[q−1].

The relationship between the shift operator and the bar involution is as
follows.

Proposition 5.1. For all P (x) ∈ Rq, we have SP (x) = S−1P (x). Thus for

all m ∈ Z, the map P (x) 7→ SmP (x) is an involution Rq → Rq.

Proof. For the first statement, by Lemma 2.2 we need only check that

SP (x)|x:=[n]q = S−1P (x)|x:=[n]q

for all n ∈ N. But by what we already know about the shift operator and the bar
involution, these are both equal to P ([−n − 1]q). As for the second statement:

by the first statement, we have SmSmP (x) = S−mSmP (x) = P (x) = P (x) for
all m ∈ Z and all P (x) ∈ Rq .

We also have the following corollary of the existence of the bar involution,
giving a distinguished basis for R−

q .

Corollary 5.2. R−
q is freely generated as a Z[q−1]-module by

[
x
k

]
for k ∈ N.

For i, j ∈ N these basis elements multiply as

[
x

k

] [
x

j

]
=

i+j∑

k=max(i,j)

qi(i−k)+j(j−k) [k]q!

[k − i]q![k − j]q![i + j − k]q!

[
x

k

]
.

In particular, the Z[q−1]-algebra R−
q with distinguished basis {

[
x
k

]
: k ∈ N} has

structure constants in N[q−1].

Proof. That the
[
x
k

]
give a Z[q−1]-basis for R−

q follows immediately from the bar
involution isomorphism. The formula for the structure constants is obtained by
applying the bar involution to the formula in Theorem 2.4. Note especially that
we have [n]q = q−(n−1)[n]q for all n ∈ Z.

As a consequence of Proposition 3.3 together with Proposition 1.2 and Corol-

lary 5.2, both
[
x
k

]
and

[
x
k

]
are Z[q, q−1]-bases of Rq. So it makes sense to ask

how to write one of these bases is terms of the other. The answer is given by
the following proposition.

Proposition 5.3. For all k ∈ N we have

[
x

k

]
= (−1)kq(

k+1

2 )Sk−1

[
x

k

]
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= (−1)k
k−1∑

i=0

q(
k+1

2 )+(k−1−i)(k−i)

[
k − 1

i

]

q

[
x

k − i

]

In particular the coefficients expressing
[
x
k

]
in the basis of

[
x
i

]
are in (−1)kN[q],

which means that in fact
[
x
k

]
∈ R+

q .
For all k ∈ N we also have

[
x

k

]
= (−1)kq−(k+1

2 )S−(k−1)

[
x

k

]

= (−1)k
k−1∑

i=0

q−(k+1

2 )+(i−k+1)k

[
k − 1

i

]

q

[
x

k − i

]
,

In particular the coefficients expressing
[
x
k

]
in the basis of

[
x
i

]
are in (−1)kN[q−1],

which means that in fact
[
x
k

]
∈ R−

q .

Proof. Let us first address how to express
[
x
k

]
in the basis of

[
x
i

]
. The second

equality follows from the first by an application of (4.5). For the first equality,
by Lemma 2.2 it suffices to verify

[
x

k

]∣∣∣∣∣
x:=[n]q

= (−1)kq(
k+1

2 ) Sk−1

[
x

k

]∣∣∣∣
x:=[n]q

for all n ∈ N. This follows from straightforward algebraic manipulation: we
verify directly from the definitions of

[
x
k

]
, the bar involution, and the shift

operator (as well as the fact that [n]q = q−(n−1)[n]q for all n ∈ Z) that

[
x

k

]∣∣∣∣∣
x:=[n]q

=

k−1∏

i=0

x − [i]q
qi[i + 1]q

∣∣∣∣∣∣
x:=[n]q

=

k−1∏

i=0

−qx − q−(i−1)[i]q
q−2i[i + 1]q

∣∣∣∣∣
x:=[n]q

=

k−1∏

i=0

−q[n]q − q−(i−1)[i]q
q−2i[i + 1]q

= (−1)k
k−1∏

i=0

qi+1 [n + i]q
[i + 1]q

= (−1)kq(
k+1

2 )
k−1∏

i=0

[n + k − 1]q − [i]q
qi[i + 1]q

= (−1)kq(
k+1

2 ) Sk−1

[
x

k

]∣∣∣∣
x:=[n]q

,
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as desired.
Now let us address how to express

[
x
k

]
in the basis of

[
x
i

]
. The first equality

follows from the claim about how to express
[
x
k

]
in the basis of

[
x
i

]
by apply-

ing S−(k−1) to both sides. Then by applying the bar involution to both sides
of (4.5), and using the fact proved in Proposition 5.1 that SP = S−1P , we get
for m, k ∈ N that

S−m

[
x

k

]
=

m∑

i=0

q(i−m)k

[
m

i

]

q

[
x

k − i

]
. (5.1)

Equation (5.1) lets us deduce the second equality from the first.

It is worth remarking, as mentioned in Section 4, that the q := 1 case of
Proposition 5.3 says that

(
−n

k

)
= (−1)k

((n

k

))

for all n, k ∈ N. This duality between “n choose k” and “n multichoose k,” an
observation which has been attributed to Riordan [Rio58], is the starting point
for the study of combinatorial reciprocity theorems [Sta74]. We also note that

it is possible to give a combinatorial interpretation for
[
n
k

]
with n, k ∈ N as a

generating function for certain lattice paths by area under the path, generalizing
the multiset interpretation of (−1)k

(
−n
k

)
.

6 Lucas’ theorem and a quantum Frobenius map

We’d now like to define a quantum Frobenius map on (a base change of) Rq. To
highlight the analogy we will first review the usual Frobenius map on R ⊗Z Fp.
We recall the celebrated Lucas’ theorem on binomial coefficients.

Theorem 6.1 (Lucas 1878 [Luc78]). Let p be a prime. Let n, m ∈ N. Suppose
that n = n0 + n1p + · · · + nkpk and m = m0 + m1p + · · · + mkpk are the base p
expansions for n and m (so ni, mi ∈ [0, p − 1] for all 1 ≤ i ≤ k). Then,

(
n

m

)
≡

(
n0

m0

)(
n1

m1

)(
n2

m2

)
. . .

(
nk

mk

)
mod p.

We have the following corollary of Lucas’ theorem, proving the existence of
a Frobenius map for R ⊗Z Fp.

Corollary 6.2. Let p be a prime.

1. The map Ψp : R⊗Z Fp → R⊗Z Fp defined by Ψp :
(
x
k

)
7→
(

x
pk

)
and extended

Fp-linearly is a ring homomorphism.
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2. Ψp admits a one-sided inverse Ψ̃p : R ⊗Z Fp → R ⊗Z Fp defined by

Ψ̃p

((
x

k

))
:=

{(
x

k/p

)
if p | k;

0 otherwise.

Proof. All we need to do is check these formulas are compatible with the multi-
plication formula in Theorem 2.3. So let us expand Ψp(

(
x
i

)
)Ψp(

(
x
j

)
) in R⊗Z Fp:

Ψp

((
x

i

))
Ψp

((
x

j

))
=

(
x

pi

)(
x

pj

)
=

pi+pj∑

k=max(pi,pj)

(
k

pi

)(
pi

pj + pi − k

)(
x

k

)
.

Now Lucas’ theorem tells us that
(

pi
pj+pi−k

)
≡ 0 mod p unless p | k. So throwing

out those terms that vanish we may rewrite this with k = pk′ as

Ψp

((
x

i

))
Ψp

((
x

j

))
=

i+j∑

k′=max(i,j)

(
pk′

pi

)(
pi

pj + pi − pk′

)(
x

pk′

)
.

Using the definition of Ψp and simplifying with Lucas’ theorem one more time
we get

Ψp

((
x

i

))
Ψp

((
x

j

))
=

i+j∑

k′=max(i,j)

(
k′

i

)(
i

j + i − k′

)
Ψp

((
x

k′

))
,

which is exactly Ψp

((
x
j

)(
x
k

))
according to Theorem 2.3. Hence Ψp is a ring

homomorphism, as desired.
For the second part, above calculation shows that Ψ̃p is multiplicative for

those basis vectors it does not send to zero. So all that remains is to check that
the span of the polynomials

(
x
i

)
with p ∤ i is an ideal of R ⊗ Fp. This again can

be seen directly from Theorem 2.3 and Lucas’ theorem. Let i ∈ N satisfy p ∤ i
and j ∈ N be arbitrary. We have that

(
x

i

)(
x

j

)
=

i+j∑

k=max(i,j)

(
k

i

)(
i

i + j − k

)(
x

k

)
.

Lucas’ theorem tells us that if p | k then
(
k
i

)
≡ 0 mod p, hence we may take

the sum to just be over those k such that p ∤ k, as desired.

The Frobenius map x 7→ xp defined on Fp[x] commutes with the shift op-
erator x 7→ x + 1 and with the “bar involution” x 7→ −x. However, note
crucially that R ⊗Z Fp does not naturally sit inside Fp[x] and that more-
over Ψp : R ⊗Z Fp → R ⊗Z Fp does not extend x 7→ xp. Indeed, the Frobenius
map Ψp : R⊗ZFp → R⊗ZFp does not appear to have a simple relationship to the
shift operator S : R⊗ZFp → R⊗ZFp or the bar involution : R⊗ZFp → R⊗ZFp.
(These maps are obtained from the ones defined on Rq by specializing q := 1 and
then tensoring with Fp.) However, we do have the following proposition which
says that Ψp commutes with one of the related involutions from Proposition 5.1.
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Proposition 6.3. For all P (x) ∈ R ⊗Z Fp, we have Ψp(SP (x)) = SΨp(P (x)).

Proof. It suffices to verify that Ψp(S
(
x
k

)
) = SΨp(

(
x
k

)
) for all k ∈ N because

the
(
x
k

)
are a Z-basis of R and both expressions are clearly Z-linear. To that

end, using Proposition 5.3 and Equation (4.2) we compute that

SΨp

((
x

k

))
= S

(
x

pk

)

= (−1)pkSk

(
x

pk

)

= (−1)pk

pk∑

i=0

(
pk

i

)(
x

pk − i

)

We can simplify this expressing, noting first of all that (−1)pk ≡ (−1)k mod p,
and also, thanks to Lucas’ theorem, that

(
pk
i

)
≡ 0 mod p if p ∤ i. Ignoring the

terms that vanish and writing k = pk′ we have

SΨp

((
x

k

))
= (−1)k

k∑

i′=0

(
pk

pi′

)(
x

pk − pi′

)
.

Again applying Lucas’ theorem, we get

SΨp

((
x

k

))
= (−1)k

k∑

i′=0

(
k

i′

)(
x

p(k − i′)

)
,

which is exactly Ψp(S
(
x
k

)
) according to Proposition 5.3 and Equation (4.2).

Now let us try to extend the above to Rq. A naive thing to try would be to
lift this to a map from Rq ⊗ Fp with

[
x
k

]
7→
[

x
pk

]
. However looking at the degree

in q of the multiplicative constants it is clear that such a map cannot be a ring
homomorphism.

Instead, the connection to representation theory suggest that there should
be certain similarities between working in positive characteristic at q := 1, and
specializing q to a root of unity. Indeed, we can generalize the above argument
to define a quantum Frobenius map on certain quotients of Rq, but first we
will need the following q-analog of Lucas’ theorem due (we believe) to Sved
henceforth referred to as the q-Lucas’ theorem.

Theorem 6.4 (Sved 1988 [Sve88]). Let d be a positive integer and n, m ∈ N.
Suppose that n = dn′ + n0 and m = dm′ + m0 with n0, m0 ∈ [0, d − 1]. Then

[
n

m

]

q

≡

(
n′

m′

)[
n0

m0

]

q

mod Φd(q),

where Φd denotes the dth cyclotomic polynomial.
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Comparing this to the usual Lucas’ theorem, this suggests that we should
look for quantum Frobenius maps not from Rq/Φd(q) to itself, but between R
and Rq/Φd(q). Specifically, we have the following corollary to the q-Lucas’
theorem.

Corollary 6.5. Let d be a positive integer.

1. The map Ψd : R → Rq/Φd(q) defined by
(
x
k

)
7→
[

x
dk

]
and extended Z-

linearly is a ring homomorphism.

2. After extending scalars, Ψd admits a one sided inverse Ψ̃d : Rq/Φd(q) →
R ⊗Z Z[q, q−1]/Φd(q) defined by

Ψ̃d

([
x

k

])
:=

{(
x

k/d

)
if d | k;

0 otherwise.

Proof. As before for the first part it suffices to check compatibility with the
multiplication formulas from Theorems 2.3 and 2.4. So we compute

Ψd

((
x

i

))
Ψd

((
x

j

))
=

[
x

di

][
x

dj

]
=

di+dj∑

k=max(di,dj)

q(k−di)(k−dj)

[
k

di

]

q

[
di

di + dj − k

]

q

[
x

k

]
.

By the q-Lucas’ theorem, the term
[

di
di+dj−k

]
q

vanishes modulo Φd(q) unless d

divides k. Ignoring the terms that vanish and writing k = dk′ we have

Ψd

((
x

i

))
Ψd

((
x

j

))
=

i+j∑

k′=max(i,j)

q(dk′−di)(dk′−dj)

[
dk′

di

]

q

[
di

di + dj − dk′

]

q

[
x

dk′

]
.

We can simplify further the above expression using the q-Lucas’ theorem and
the fact that qd = 1 modulo Φd(q) to get

Ψd

((
x

i

))
Ψd

((
x

j

))
=

i+j∑

k′=max(i,j)

(
k′

i

)(
i

i + j − k′

)[
x

dk′

]
,

which is exactly Ψd(
(
x
i

)(
x
j

)
) according Theorem 2.3. Hence Ψd is a ring homo-

morphism, as desired.
For the second part, as before above calculation shows Ψ̃d is multiplicative

for those basis vectors it does not send to zero. Thus we just need to check that
the span of the

[
x
i

]
with d ∤ i forms an ideal. As before take i ∈ N such that d ∤ i

and let j ∈ N be arbitrary. By Theorem 2.4 we have

[
x

i

][
x

j

]
=

i+j∑

k=max(i,j)

q(k−i)(k−j)

[
k

i

]

q

[
i

i + j − k

]

q

[
x

k

]
.

The q-Lucas’ theorem tells us that if d | k then
[
k
i

]
q

= 0 modulo Φd(q) and

hence we may rewrite this as a sum over those k with d ∤ k, as desired.
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The direct analog of Proposition 6.3 holds in this q a root of unity case.

Proposition 6.6. For all P (x) ∈ R, we have Ψd(SP (x)) = SΨd(P (x)).

Proof. It suffices to prove that Ψd(S
(
x
k

)
) = SΨd(

(
x
k

)
) for all k ∈ N since both

expressions are Z-linear. To that end, using Proposition 5.3 and Equation (4.5),
we compute

SΨd

((
x

k

))
= S

[
x

dk

]

= (−1)dkq(
dk+1

2 )Sdk

[
x

dk

]

= (−1)dkq(
dk+1

2 )
dk∑

i=0

q(dk−i)(dk−i)

[
dk

i

]

q

[
x

dk − i

]
.

We claim that (−1)dkq(
dk+1

2 ) = (−1)k modulo Φd(q). If d is even, then we

have qd/2 = (−1) modulo Φd(q) so (−1)dkq(
dk+1

2 ) = (−1)dk2+dk+k = (−1)k

modulo Φd(q), where we use the fact that dk(k + 1) is even since k(k + 1) is

even. If d is odd then d divides
(
dk+1

2

)
so q(

dk+1

2 ) = 1 modulo Φd(q) and we

have (−1)dkq(
dk+1

2 ) = (−1)dk = (−1)k modulo Φd(q). Also note that by the
q-Lucas’ theorem

[
dk
i

]
q

= 0 modulo Φd(q) unless d | i. Ignoring the terms that

vanish and writing i = di′, the above becomes

SΨd

((
x

k

))
= (−1)k

k∑

i′=0

q(dk−di′)(dk−di′)

[
dk

di′

]

q

[
x

d(k − i′)

]
.

Now we can use the fact that qd = 1 modulo Φd(q) and apply the q-Lucas’
theorem again to get

SΨd

((
x

k

))
= (−1)k

k∑

i′=0

(
k

i′

)[
x

d(k − i′)

]
,

which is exactly Ψd(S
(

x
k

)
) according to Proposition 5.3 and Equation (4.2).

7 Classification of maps into a field

A basic problem one can pose for any commutative ring is to classify homomor-
phisms from that ring into fields. This problem is closely related to the problem
of classifying the points of the spectrum of the ring, i.e., the prime ideals of the
ring. Indeed, the prime ideals of a commutatitive ring are precisely the kernels
of maps to fields (although the correspondence is not one-to-one, due to the
existence of injective maps between fields).
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The maximal ideals (i.e., kernels of surjective maps to fields) of R were
classified by Brizolis [Bri76] in 1976: for p a prime and t ∈ Zp a p-adic integer,
the following set of polynomials (where |·|p denotes the p-adic norm)

Mp,t := {P (x) ∈ R : |P (t)|p < 1}1

is a maximal ideal of R; moreover, any maximal ideal M of R is M = Mp,t

for some p and t, and Mp,t = Mp′,t′ if and only if p = p′ and t = t′. An
intriguing consequence of this classification is that while Z[x] ( R ( Q[x]
and Z[x] and Q[x] both have countably many maximal ideals, R has uncountably
many maximal ideals.

More recently, the first author used a classification of the maps R → k
for k a field of positive characteristic as part of his investigation of stability
properties of the modular representation theory of symmetric groups [Har15].
We now extend this classification to the quantum setting. From now on in this
section, fix an arbitrary field k. In Theorem 7.1 below we will classify all ring
homomorphisms R+

q → k, breaking up the classification into cases of where q
is sent. In the process we also classify all homomorphisms Rq → k, which are
the same except that we forbid q := 0.

As a first source of homomorphisms R+
q → k we have the following “stan-

dard” evaluation maps: first we specialize x := [n]q for some n ∈ N to get a
homomorphism from R+

q to Z[q] and then we compose with a map from Z[q]
to k defined by sending q to any κ ∈ k. Let us call this map stdn,κ : R+

q → k.
These standard maps are certainly not all the maps from R+

q into k, but as we
shall see they are “dense” in the set of such maps.

To describe all the maps we need some notation. If char(k) = 0, then we
have R ⊗Z k ⊆ k[x] in a natural way. Thus we may treat any P (x) ∈ R as an
element of k[x]. In particular, if t ∈ k then for every m ∈ N we define

(
t
m

)
to be

the result of evaluating
(

x
m

)
∈ k[x] at x := t. On the other hand, suppose for a

moment that char(k) = p > 0. Then R⊗Zk does not naturally sit inside of k[x],
so it does not make sense to evaluate

(
x
m

)
at an arbitrary element t ∈ k. But

if t ∈ Zp is a p-adic integer, then t has a base p expansion t = t0+t1p+t2p
2+· · · .

Thus, following Lucas’ theorem (Theorem 6.1), we can in this case define

(
t

m

)
:=

(
t0
m0

)(
t1
m1

)
· · ·

(
tk
mk

)
mod p

for every m ∈ N with base p expansion m = m0 + m1p + · · · + mkpk. Note that
according to this definition,

(
t
m

)
∈ Fp. But Fp ⊆ k in a unique way, so we can

in fact treat
(

t
m

)
as an element of k.

Now return to considering general k. The last paragraph discussed eval-
uating binomial coefficient polynomials to obtain elements of k. What about
evaluating q-binomial coefficient polynomials to obtain elements of k? As long

1A brief remark on what P (t) means here: we treat t ∈ Zp as an element of the field of
p-adic numbers Qp; recalling that char(Qp) = 0, it makes sense, as we explain in a moment,
to evaluate any P (x) at t ∈ Qp to obtain P (t) ∈ Qp.
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as the denominator q(
m

2 )[m]q! of
[

x
m

]
is not zero when we set q := κ ∈ k, the

polynomial
[

x
m

]
q:=κ

is a well-defined element of k[x]. In this case we can of

course then define
[

t
m

]
q:=κ

∈ k to be the result of evaluating
[

x
m

]
q:=κ

∈ k[x] at

some element x := t ∈ k. So, for a given m ∈ N, when does q(
m

2 )[m]q! evaluated
at q := κ ∈ k equal zero? Exactly under the following circumstances:

• κ = 0 and m ≥ 2;

• κ = 1 and m ≥ p where char(k) = p > 0;

• κ is a primitive dth root of unity for some d > 1 and m ≥ d.

This claim is easily verified: the q = 0 and q = 1 cases are clear; and if q 6= 1, 0

then q(
m

2 )[m]q! equals zero if and only if

(q − 1)m−1q−(m

2 )q(
m

2 )[m]q! = (qm − 1)(qm−1 − 1) · · · (q2 − 1)

also equals zero, which happens precisely when q is a dth root of unity for
some 1 < d ≤ m.

Finally, before stating the classification, we observe that thanks to Propo-
sition 1.2 a map ϕ : R+

q → k is determined by where it sends q and
[

x
m

]
for

all m ∈ N. And thanks to Proposition 3.3, a map ϕ : Rq → k is determined by
this same information as well.

Theorem 7.1. Let k be a field. Then the ring homomorphisms ϕ : R+
q → k

are exactly the following:

1. q = 0: For each choice of k ∈ N ∪ {∞}, we have a map ϕ defined by

ϕ(q) := 0;

ϕ

([
x

m

])
:=

{
1 if m ≤ k,

0 otherwise
for each m ∈ N.

2. q a root of unity: For each choice of positive integer d, ω ∈ k a primtive
dth root of unity, n0 ∈ [0, d−1], and t either any element of the field t ∈ k
if char(k) = 0 or a p-adic integer t ∈ Zp if char(k) = p > 0, we have a
map ϕ defined by

ϕ(q) := ω;

ϕ

([
x

m

])
:=

( t−n0

d

m′

)[
n0

m0

]

q:=ω

for each m ∈ N, where m = dm′ + m0

with m0 ∈ [0, d − 1].

3. q not zero, not a root of unity: For each choice of κ ∈ k not equal to
zero and not a root of unity, and t ∈ k, we have a map ϕ defined by

ϕ(q) := κ;
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ϕ

([
x

m

])
:=

[
t

m

]

q:=κ

for each m ∈ N.

The maps ϕ : Rq → k are the same as the above, except that Case 1 (where q is
sent to zero) does not occur.

Proof. Case 1 (q = 0): Not surprisingly, this is the most degenerate case. First
let us show that the ϕ described indeed define ring homomorphisms. So let ϕ be
as in the statement. If k 6= ∞ then ϕ = stdk,0, so it is indeed a homomorphism.
If k = ∞ then for any P (x) ∈ R+

q we have ϕ(P (x)) = stdN,0(P (x)) for all
sufficiently large N (how large N needs to be depends on the degree of P (x)),
which in particular implies ϕ is a homomorphism.

To see these are all ring homomorphisms sending q to zero note that if we
specialize the formula in Theorem 2.4 to q := 0 we get that for j ≤ k integers:

[
x

j

][
x

k

]
=

[
x

k

]
.

Setting j = k we see that
[
x
k

]
must get sent to 0 or 1 for all k. Then this

formula tells us that if we send
[
x
j

]
to 0 then we must send

[
x
k

]
to 0 for all k > j.

From there it is easy to see that any such homomorphism must agree with one
on our list, as they are completely determined by how many of the q-binomial
coefficient polynomials get sent to 1.

Case 2 (q a root of unity): This is really the interesting case. Let us
break it into two subcases, based on whether or not q is sent to 1.

Case 2(a) (q = 1): Note that a homomorphism from R+
q to k where q is

sent to 1 is the same thing as a homomorphism from R to k. These are essen-
tially characterized by Brizolis’s result, and this formulation of the classification
appears in in [Har15]. For completeness we repeat the argument presented there.

If k is in characteristic zero then as we mentioned earlier, the binomial
coefficient polynomials naturally sit inside k[x], so for any point t ∈ k we can
just evaluate each polynomial at t to get a homomorphism into k. Moreover
any ring homomorphism from R to a field of characteristic zero is completely
defined by the value that x gets sent to, so we get that Hom(R,k) ≃ k and the
standard evaluation maps correspond to the copy of N in k.

In characteristic p things are somewhat different as the binomial coefficient
polynomials do not naturally sit inside k[x]. Let us look again at Lucas’ theorem:

(
n

m

)
≡

(
n0

m0

)(
n1

m1

)(
n2

m2

)
. . .

(
nk

mk

)
mod p.

For fixed m this formula only depends on the first k base p digits of n. Hence
we can naturally evaluate modulo p the binomial coefficient polynomials at any
p-adic integer t (since they still have a base p expansion) and obtain evaluation
maps evt : R → Fp for each t ∈ Zp. These evt are exactly the ϕ described in the
statement. The following lemma completes the characterization in this case.
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Lemma 7.2. Any homomorphism ϕ : R → k of rings from R into a field k of
characteristic p factors as evt for some t ∈ Zp, followed by the inclusion of Fp

into k.

Proof of lemma. First consider maps ϕ to Fp. Let m = m0 + m1p + · · · + mkpk

be the base p expansion of a positive integer m. Lucas’ theorem tells us that
the polynomial

F (x) =

(
x
m

)
−
(

x
m0

)((x

p)
m1

)(( x

p2)
m2

)
. . .
(( x

pk)
mk

)

p

is integer-valued, and hence pF (x) gets sent to zero under ϕ. This implies that
the images of

(
x
m

)
for all m are determined by the images of x,

(
x
p

)
,
(

x
p2

)
, . . . We

may then interpret these values as the base p digits of some t ∈ Zp and conclude
that ϕ = evt since they agree on a basis for R.

To see any map into an arbitrary field of characteristic p must factor through
a map to Fp note that for any P (x) ∈ R the image under ϕ of P (x)p − P (x)

in k is p times the image of P (x)p−P (x)
p ∈ R. Therefore the image of P (x) is

fixed by the Frobenius map and hence is in Fp.

Case 2(b) (q a primitive dth root of unity, d > 1): First note that
if char(k) = p > 0 then necessarily p ∤ d and thus t−n0

d ∈ Zp since d is a unit

in Zp. So the term
( t−n0

d

m′

)
is well-defined according to our earlier definition.

Now note that if t = n is an integer congruent to n0 modulo d then the
q-Lucas theorem tells us that the map ϕ described is the standard map stdn,ω

which we know to be a ring homomorphism. It then follows that the (a priori
just linear) map ϕ is a ring homomorphism for all appropriate values of t, as
the definition of the map varies algebraically in t and the set of nonnegative
integers congruent to n0 modulo d is dense with respect to the Zariski topology
on k in characteristic zero, as well as with respect to the p-adic topology on Zp.

We need to show that these are all such homomorphisms. Note that any
homomorphism from R+

q to k sending q to a primitive dth root of unity must
send x ∈ R+

q to one of d possible values: [0]q, [1]q, . . . , or [d−1]q. This is since
the following identity holds in R+

q :

x(x − [1]q)(x − [2]q) . . . (x − [d − 1]q) = [d]q!q
(d

2)
[
x

d

]
.

We see that indeed if we send q to a dth root of unity the right hand side
vanishes and therefore we are forced to send x to one of these values in order
for the left hand side to vanish. This value where x gets sent corresponds to the
discrete parameter n0 in the statement of the theorem.

Next, we note that if we precompose our map into a field with the quantum
Frobenius map Ψd : R → R+

q /Φd(q) then we obtain a homomorphism from R
into k and may apply the q = 1 classification. This map from R into k corre-
sponds to the choice of t (where the labeling variable t is shifted by the invertible
map t 7→ t−n0

d ).
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So in order to complete the classification in this case we just need to show
that any such homomorphism into a field is completely determined by the data
of where x gets sent, and its restriction to the image of R under Ψd. So it is
enough to show that we can express

[
x
k

]
as a polynomial of x and elements of the

image of Ψd, with coefficients in Z[q] localized at Φd(q) = 0. Write k = dk′ + k0

with k0 ∈ [0, d − 1].
If k′ = 0 then the usual formula for

[
x
k

]
has denominator relatively prime

to Φd(q), and hence it can be expressed just in terms of x after localizing.
Otherwise, consider the product:

[
x

k0

][
x

dk′

]
=

k∑

i=dk′

[
x

i

][
i

dk′

]

q

[
dk′

k − i

]

q

q(i−k0)(i−dk′).

The q-Lucas’ theorem tells us that the
[

dk′

k−i

]
q

term is zero unless i = k. Simpli-

fying this remaining term using the q-Lucas’ theorem we obtain:
[

x

k0

][
x

dk′

]
=

[
x

k

]
.

So we see that indeed we can express
[
x
k

]
in terms of x and elements of the image

of Ψd, finishing this case of the classification.
Case 3 (q not zero, not a root of unity) Since the denominators of the

q-binomial coefficient polynomials are products of q and cyclotomic polynomials
in q it is clear that R+

q localized away from q being zero or a root of unity is
just a polynomial ring in x over Z[q] localized away from q being zero or a root
of unity. Hence such maps to fields are just given by a (nonzero, non-root of
unity) choice κ of where to send q, and a choice t of where to send x.

8 Open questions and future directions

In this section we discuss some open questions and possible future directions in
the investigation of the ring Rq.

8.1 A dilation operator

For any integer m ≥ 1, consider the dilation operator Dm : Q(q)[x] → Q(q)[x]
given by

Dm(x) :=
((q − 1)x + 1)m − 1

q − 1
=

m∑

i=1

(
m

i

)
(q − 1)mxm

and extended Q(q)-linearly. This operator may be easier to understand in the
“z-variable” formulation discussed in Section 3: with respect to this generator it
is defined by Dm(z) := zm. This operator is defined so that for P (x) ∈ Q(q)[x]
and n ∈ Z we have DmP ([n]q) = P ([mn]q). Thus Dm restricts to a Z[q, q−1]-
linear homomorphism Dm : Rq → Rq. We can of course ask how Dm acts on
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the basis of q-binomial coefficient polynomials. That is, let us try to understand
the coefficients δm,i,k(q) ∈ Z[q, q−1] when we write

Dm

[
x

i

]
=

∞∑

k=0

δm,i,k(q)

[
x

k

]
.

These coefficients δm,i,k(q) are the first time that “positivity” seems to fail
for Rq. Note that Dm is a map of degree m in x. Thus δm,i,mi(q) 6= 0. How-
ever, when we specialize q := 1, this map Dm becomes a map of degree one:
namely, Dm(x) := mx. And so we have (q − 1) | δm,i,k(q) for all k > i. More
generally by the same reasoning we have (q − 1)⌊(k−1)/i⌋ | δm,i,k(q). At any
rate we certainly do not have that δm,i,k(q) ∈ N[q]. But even accounting for
this predictable power of (q − 1), positivity for these δm,i,k(q) can apparently
fail for other reasons. For example, computation with Sage mathematical soft-
ware [Sage] tells us that

D2

[
x

3

]
= (q + 1)(q2 + 1)

[
x

2

]
+ q(q + 1)(q2 + 1)(q5 + q3 + q2 − 1)

[
x

3

]

+q5(q − 1)(q + 1)(q2 + 1)(q2 + q + 1)(q4 + q2 + q + 1)

[
x

4

]

+q7(q − 1)2(q + 1)2(q2 − q + 1)(q2 + 1)(q2 + q + 1)(q4 + q3 + q2 + q + 1)

[
x

5

]

+q12(q − 1)3(q + 1)2(q2 − q + 1)(q2 + 1)(q2 + q + 1)(q4 + q3 + q2 + q + 1)

[
x

6

]
.

The fact that δ2,3,3(q) /∈ N[q] is especially troubling.
It is worth contrasting the above discussion with the fact that we do have

positivity for the coefficients δm,i,k(1) when we specialize q := 1. To this end,
we observe the (undoubtedly folklore result) that

(
xy

i

)
=

∞∑

j,k=0

∂i
j,k

(
x

j

)(
y

k

)
(8.1)

where ∂i
j,k is the number of j × k (0, 1)-matrices with exactly i ones and no

row or column of all zeros. Thanks to Lemma 2.2, equation (8.1) can be proved
by taking x := n, y := m with n, m ∈ N and interpreting both sides as the
number of subsets of size i of the set {(a, b) : a ∈ {1, . . . , n}, b ∈ {1, . . . , m}}:
it is obvious why the left-hand side counts these subsets; the right-hand side
counts these subsets by grouping them according to their projections to the first
and second components. We can specialize y := m in (8.1) and conclude that

δm,i,k(1) =
∞∑

j=0

∂i
j,k

(
m

j

)
.

So in particular δm,i,k(1) ∈ N. Note that unlike other coefficients studied in
this paper, there does not appear to be any simple product formula for the ∂i

j,k.
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Therefore, even in this q = 1 case where we have positivity for these dilation
coefficients, computing δm,i,k(1) seems hard.

8.2 Intersection of R+
q and R−

q

What can we say about the ring R+
q ∩ R−

q ? Note that R+
q ∩ R−

q is naturally
only a Z-algebra, that is, a ring. Of course Z ⊆ R+

q ∩ R−
q . But we can say

more: by Proposition 5.3 we at least have
[
x
k

]
,
[
x
k

]
∈ R+

q ∩ R−
q for all k ∈ N. It

seems unlikely that R+
q ∩R−

q = SpanZ{
[
x
k

]
,
[
x
k

]
: k ∈ N} as a Z-module . Indeed,

it is not even clear that the set {
[
x
k

]
,
[
x
k

]
: k ∈ N} generates R+

q ∩ R−
q . Can it

be shown that R+
q ∩ R−

q is not a free Z-module? In general this ring R+
q ∩ R−

q

seems quite mysterious to us. More generally, for any m, m′ ∈ Z we can ask
what the intersection R+,m

q ∩ R−,m′

q looks like. Recall that the ring R+,m
q is

defined in Section 4.

8.3 A Hopf algebra?

The polynomial ring Q[x] can be given the structure of a Hopf algebra over Q
by defining the comultiplication as ∆(xn) =

∑n
k=0

(
n
k

)
xk ⊗ xn−k, the counit

as ε(xn) =

{
1 if n = 0,

0 otherwise.
, and the antipode as xn 7→ (−1)nxn. With this

coalgebra structure on Q[x], we have for all k ∈ N that

∆

((
x

k

))
=

k∑

i=0

(
x

i

)
⊗

(
x

k − i

)
;

ε

((
x

k

))
=

{
1 if k = 0,

0 otherwise.

The above formulae define a coalgebra structure on R which is called the “di-
vided power coalgebra” (see [DNR01, Example 1.1.4(2)]). In particular the
Hopf algebra structure on Q[x] restricts to a Hopf algebra structure on R
(which is, however, now a Hopf algebra over Z, not Q). Note that the antipode
for R viewed as a Hopf algebra in this way is the “bar involution” (special-
ized to q := 1, of course). It would be interesting to define a Hopf algebra
structure on Rq for which the bar involution is the antipode. One immediate
issue is that Rq is naturally a Z[q, q−1]-algebra, but the bar involution is not
a Z[q, q−1]-linear map: rather, it “twists” the coefficient ring. Perhaps there is
some way to relax the conditions of a Hopf algebra to only require the antipode
be a semi-linear map.

8.4 Maximal ideals of Rq

As mentioned at the beginning of Section 7, Brizolis [Bri76] offered a very nice
classification of the maximal ideals of R. Considering the classification of maps

25



from Rq into a field we provide (Theorem 7.1), one might be optimistic that
we could find a similar classification of maximal ideals of Rq. As we explained
earlier, this would amount to determining when a map from Rq to a field is
surjective. Note that a consequence of Brizolis’s classification is that if k is a
field and ϕ : R → k is surjective, then k = Fp for some prime p. In particular
there is no surjective map from R to a field of characteristic zero. In contrast, Rq

actually does have surjective maps to fields of characteristic zero. For example,
consider the map ϕ : Rq → Q defined by ϕ(q) := 1

2 and ϕ(x) := 2. It turns out
that ϕ is surjective. Indeed, observe that for any k ∈ N,

ϕ

(
q(

k

2)+1

[
x

k

])
=

(
1

2

)(k

2)+1 2(2 − 1)(2 − 3
2 ) · · · (2 − 2k−1

2k−1 )
(

1
2

)(k

2) · 1 · 3
2 · 7

4 · · · 2k−1
2k−1

=
k∏

i=1

1

2i − 1
.

Then note that for any prime p, there is some k such p | 2k − 1, just because 2
has to have some mutliplicative order in Fp. Thus we see that 1

p belongs to

the image ϕ(Rq) for every prime p. But if 1
p ∈ ϕ(Rq) for all primes p, then

clearly ϕ(Rq) = Q as claimed. Considering the fact that some maps ϕ : R → Q
are surjective, while others are certainly not (such as any with ϕ(q) = 1), it
seems that the general problem of determining when a map from Rq to a field
is surjective could involve some delicate number theory. Thus while it would
certainly be interesting to classify all maximal ideals of Rq, we doubt that there
is as nice a classification as Brizolis’s classification of maximal ideals of R.

Let us give a little further commentary on where this surjective map to Q
is coming from. It is not of the form stdn,κ : Rq → k for any n ∈ N, but
it can be seen as a limiting case n := ∞ of these maps, as we now explain.
So define [∞]q := 1

1−q . And let S := SpanZ[q,q−1]〈
1

1−qd : d ≥ 1〉 be the sub-

Z[q, q−1]-algebra of Q(q) generated by 1
1−qd for all positive integers d. Then we

get a Z[q, q−1]-linear map ξ : Rq → S defined by ξ(x) := [∞]q. Indeed, it is easy
to verify that for all k ∈ N we have

ξ

([
x

k

])
=

k∏

i=1

1

1 − qk
,

the generating function by size for partitions of at most k parts (or equivalently,
of partitions with parts less than or equal to k). Some other basic properties of
this “infinity specialization” ξ are ξ(SP (x)) = ξ(P (x)) and ξ(P (x)) = ξ(P (x))
for all P (x) ∈ Rq. (Here we restrict the bar involution from Q(q) to S.) That
the bar involution commutes with ξ suggests that “[−∞]q” is equal to [∞]q.
And indeed there is a sense that this equality is correct: note that for all n ∈ Z
we have [−n]q = −q−1[n]1/q; so it makes sense to define

[−∞]q := −q−1[∞]1/q =
1

1 − q
= [∞]q.
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Now for any field k and any element κ ∈ k not zero and not a root of unity we can
define std∞,κ : Rq → k by first mapping Rq to S via ξ and then mapping from S
to k by sending q to κ. The previous paragraph explains that std∞, 1

2
: Rq → Q

is a surjective map.
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