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Abstract

This thesis aims to develop a new methodology to combine physics-based engineering
modeling methods with data-driven statistical modeling methods. The use of engineering
models alone or statistical models alone poses serious limitations in modeling a large system.
Engineering models can model only small manufacturing operations (e.g., orthogonal cutting).
Used alone, they are severely limited in modeling complex manufacturing systems, such as a
whole manufacturing line. On the other hand, statistical methods can model large and complex
manufacturing systems. However, statistical models may fail to capture true functional
dependence, which is necessary for process control and process improvement. It is important to
combine the two types of models to characterize a large system.

The methodology developed in this thesis research helps model an end-of-line (EOL)
output parameter as a function of important in-line process parameters in a manufacturing line.
The resulting model will help process engineers take proactive control action (feedback and
feedforward), respond appropriately to special-cause signals in control charts, and provide
improved understanding to develop future technologies.

There are two parts to the methodology. The first part focuses on the identification of
important process steps for a given EOL output. It does so by exploiting the multivariate nature
of EOL inspection variables. EOL inspection variables are the measurements taken on the final
product. The second part of the methodology focuses on the development of a large-scale model
for the EOL output as a function of parameters from important process steps. The framework of
multivariate adaptive regressions splines (MARS) is used to develop the final model. The model
combines piece-wise models from physics, empirical understanding about different process
steps and data from regular production. As such, the final model should provide more
predictability and improved process control than the one developed using only data or only
physics-based models.

Using the methodology, we have modeled end-of-line (EOL) channel length as a
function of in-line process parameters for a specific family of microprocessors at Intel
Corporation. (Channel length is an electrically measured distance that an electron, or a hole,
travels from the source to the drain of an MOS transistor. It is a key factor influencing device
speed.) The standard error of our model is about a third of the acceptable error whereas the
standard error of a leading multivariate statistical methods is more than the acceptable error. This
means that while one in three predictions by the leading method may be off by more than the
acceptable limit, that mis-prediction number using our model is only one in 322 predictions.
These results are especially encouraging because our model predicts EOL channel length from
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in-line process parameters. Equally importantly, our models help identify regions of process
operation that result in largely good parts, and those that result in largely bad parts.
Identification of such regions directly addresses the question of how to run a manufacturing

process to improve the quality of the final parts. We believe that the methodology is applicable
to many diverse manufacturing processes and output parameters.

Thesis Committee: ~ Prof. Duane S. Boning
Prof. Steven D. Eppinger (Advisor)
Dr. Robert D. Gordon
Prof. David E. Hardt (Chair)
Dr. Russ Sype
Prof. Roy E. Welsch (Advisor)

Key words: models, engineering, statistical, physics based, data driven, empirical models,
hybrid models, non-parametric, local models, process control, dependent spec limits,
manufacturing, semiconductor, MOS transistor, microprocessor, channel length, device
physics, multivariate adaptive regression splines, MARS
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1. Introduction

Recent consumer products provide many more functions with significantly improved
accuracy. For example, microprocessors previously used mainly for scientific computations are
now rapidly entering multi-media applications as a household communications tool. Besides
improving computation accuracy and speed, they are now performing multi-tasking at an
affordable price. Consumer cars now provide many more safety features (anti-lock brakes, air
bags, etc.), comfort features (dual temperature zones maintained simultaneously) and improved
functionality (greater tolerances on car body prevent leakage and enhance the life of the
transmission system).

The multiplicity of product functions, and the need for improved product accuracy have
resulted in relatively complex product designs. These in turn have made current manufacturing
processes increasingly complex. They now comprise many more operations, and the desire for
high precision in the final product demands a good understanding of each operation. Equally
importantly, current manufac.aring processes now also demand an improved understanding of
the interaction between several operations. These interactions significantly influence the quality
of today’s high precision products.

Models of manufacturing processes help us understand these influences. Most existing
modeling techniques are broadly of two types: first, the physics-based engineering modeling
methods, and second, the data-driven statistical modeling methods. A third type of
modeling method attempts to combine the two approaches, and gives combined or hybrid
models. However, current modeling methods have proved inadequate in modeling large
complex manufacturing lines.
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This thesis aims to develop a new modeling methodology which combines physics-based
and data-driven modeling methods to provide better predictability, improved controllability and
an improved understanding of manufacturing processes.

In this chapter, we introduce the concept of hybrid models, and their pertinence to
current manufacturing processes. We discuss a typical current manufacturing situation and the
state-of-the-art engineering models, statistical models and existing concepts in combining the
two approaches. We motivate the need for improved hybrid models, and thus a new modeling
methodology. We relate the current limitations in hybrid models to the needs in a typical
manufacturing environment, and show that a solution to those limitations can help address the
needs in manufacturing. We then present the problem statement for this thesis, and then
conclude this chapter with an overview of the organization of this thesis.

1.1 A note on terminology

Figure 1 shows a simple three-step canonical manufacturing line on which we define the
following terms.

Process Process | Process
Step | > Step 2 Step 3
X, tox X, Y

Figure 1. A typical manufacturing line

Process step: A machine (or a set of machines) which takes raw material(s), and
changes its geometry and/or material properties. Examples include a diffusion furnace, an oven,
a cluster of lithography machines (including a bake oven, a wafer spinning machine, a stepper,
and a developer), an etch machine, an implant machine, a lathe, a milling machine, etc. Figure 1
shows three process steps. Material processed by a process step can serve as (part of) raw
material(s) for the next process step. A process step is also called an operation.

Manufacturing line: More than one process step working in series, in parallel, or a
combination of both. Figure 1 shows a manufacturing line consisting of three process steps
working serially. A manufacturing line is also called production line.
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Input: A variable used to manipulate a process step [27]. These variables are typically
machine parameters. Examples include current, voltage, time of etch, intensity of UV light
in lithography, feed rate in tumning or milling operation. There are two kinds of inputs to a
process. Set points are inputs which cannot be manipulated in real time. Examples include
machine stiffness in milling, gas-inlet position in diffusion. Controllable inputs are inputs
which can be manipulated in real time. Examples of controllable inputs are feed rate in turning

or milling, time of etch, time of diffusion, beam energy in ion implant, etc.

Process variabie: If we know the value of an input, it is called a process variable or
process parameter, input variable, or in-line. A process parameter can be categorical
(species A vs. species B chosen for doping single crystal silicon) or continuous, and can
include set points and controllable inputs. Specific examples include pressure and temperature in
a diffusion furnace, wavelength of UV light in lithography, etc.

Intermediate product measurement: A variable measured (or we wish to measure)
on the product (or a surrogate product like a test wafer) while it is transitioning from one process
step to another. Examples of intermediate product measurements are thickness of oxide grown
in a diffusion furnace (measured after process step one in Figure 1), profile of carbon
concentration in a gear after heat treatment, number of particles and the depth of material eiched
after an etch operation (measured after process step two in Figure 1).

End-of-line (EOL) inspection variable: When the product reaches the end of a
manufacturing line, many measurements are taken on the product to test its functionality and
appearance. The set of measurements made on the product (or a surrogate product like a test
wafer) at the end of a manufacturing line are called EOL inspection variables. EOL inspection
variables are a multivariate response. They are also signatures of the process steps that
made the final product.

Output: An important characteristic of the final product that we want to model as a
function of influential process parameters. Typically, one of the EOL inspection variables is the
output. However, sometimes it is a function of a few EOL inspection variables. *“Y” is an EOL
output in Figure 1. Other examples of output are EOL E-tests, bin-splits, horsepower i an
engine, etc. EOL output is also called output variable, output parameter, response

variable, or response.

Often, the output is difficult to define in many manufacturing environments. Two types

of difficulties arise in defining an output:
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1. The variable of interest is sampled several times (or at several places) on a product.
Examples of such variables include electrical tests on a wafer and thickness of
photographic films. Since the output is considered to be a single number, an appropriate
statistic on the sampicd daia has to be treated as the output. The statistic chosen for this
thesis research is the median of the sampled data on the varisbles of interest.

2. A single variable measured on the product may not alone be an appropriate output
characterizing the product. For example, after a car body is welded together, several
measurements are taken on it. None of those measurements alone characterize the car
body completely. However, all those variables together (and perhaps many other parts
of the body on wuich no measurements are taken) characterize the car body more
completely. Here, the individual variables should be combined to form a geometric
feature about the car body, such as taper, shear, etc. An example of such a measure is
the body-in-white (BIW) ruler developed by the author and York, and reported in [92].
The measured value of the geometric feature (such as the BIW ruler) can be then
considered as the output for the purpose of modeling. Part of this aspect is discussed in
Section 5.3.1 on modeling caiitiple important characteristics about a product.

Disturbance: Any unknown inputs and unknown variation in known inputs [27].
Examples include machine wear, unknown variation in beam intensity in ion implant, wafer

position in three dimensions during lithography.

Engineering models: These are relationships between inputs and output, or between
one input and several other inputs, derived using physics of the process. As such, they

incorporate causality relationships between inputs and output.

Statistical models: These are purely data-driven models which exploit the
correlation between inputs and outputs to relate the output to inputs. They are also called
empirical models.

Hybrid models: These models use engineering models, empirical models and data.
They are also called combined models or integrated models.

1.2 Industrial manufaciaring background

This section motivates the need for an accurate multivariate model relating an output to
influential inpuis in a typical manufacturing line. The extensive usc of univariate control charts
in this section may superficially appear to stress the nced fcr multivariate control charts.
However, multivariate control charts are only one of the several control and monitoring options
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made available by an accurate multivariate model between the output and the inputs. In the
absence of a reliable multivariate model, manufacturing companies resort to the use of many
univariate control charts.

Figure 2 shows a manufacturing line comprising two process steps connected serially.
Univariate control charts are kept on process variables from process steps one (X,) and two
(X,), intermediate product measurement (t,,), and the end-of-line output variable (Y). Figure 2
also shows these control charts. The control limits are shown as dotted lines, and the process is
considered to be capable so that the control limiis are inside the specification limits (or spec
limits). The discussion in the following paragraphs uses spec limits. However, the arguments

apply equally well to control limits.

Intermediate
product measurement

Process 1 oxide thickness Precess 2
(Diffusion) (Plasma etch)

X in spec X, in spec Y out of spec

————— — -~ control limits in control charts
spec limits in control charts

control limits fali vithin spec limits

Figure 2. Two typical out-of-control problems in a manufacturing line

As long as all in-lin- variables (X, X, and t,,) are in spec and the EOL output (Y) is also
in spec, there is no cause for alarm. Such a situation in a large manufacturing line is
unrealistically fortuitous. Frequently, two situations arise that raise concerns:

1. Situation 1: All measured in-line variables are in spec. However, the EOL output goes
out-of-spec, such as the point marked “1” in Figure 2 [48]. The cause for an out-of-spec
output cannot be found in the two process steps because X, and X, are within spec

limits.
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2. Situation 2: When process step one processes raw materials, X, goes out-of-spec, as
in the point marked “2” in Figure 2. Should the out-of-spec point be ignored here to let
the intermediate product go to process step two, or should a control action be taken? If a
control action should be taken, what should it be [26, 55]?

The following sections attempt to explain the reasons for these two frequently occurring
situations in a large manufacturing line. The definition of a large (and complex) system is
discussed later on page 20.

12.1 Out-of-spec EOL output despite in-spec in-line process
variables

Several reasons can contribute to the first situation where the EOL output is out-of-spec
despiie all measured in-lines being in-spec, point “1” in Figure 2. These reasons include:

1. critical process variables not monitored. If X, and X, are not critical process
parameters for Y, then they have no information about the EOL output (Y). Perhaps
some other process variables associated with process steps one and two, but which are
still unknown, should be monitored.

2. poor understanding of multivariate relationship between EOL output (Y) and
process variables (X, and X,) even if X, and X, are known to be the only influential
process variables for Y. For lack of a model relating Y to X, and X,, only univariate
control charts are kept on X, and X,. Those univariate control charts cannot monitor the
manufacturing process correctly in all situations [48].

3. stochastic independence between X, X, and Y. On a plot of the joint probability

distribution between X, X, and Y, a 4+/-30 control limits on X, and X, will still leave a
small, but finite, probability of Y being out-of-spec even if X, and X, are in-spec.

4. critical process variables monitored improperly. If the measurements for X,
and X, are highly noisy, then the measurement noise could falsely put them within spec-
limits. In fact, X, and X, may actually be out-of-spec.

The first two reasons appear promising in providing useful answers for process
improvement. They are the focus of this thesis research.

Since the final product is made by both process steps, one and two, the EOL output (Y)
would most likely depend on both X, and X,. Figure 3 shows that Y depends on X, and X,
jointly. In Figure 3, the x-axis is X, and the y-axis is X,. The curved lines represent the lower

spec limit (Y ), target (Y,_.) and upper spec limit (Y ) for EOL output. The two parallel

target
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vertical lines represent the spec-limits for X, and the two parallel horizontal lines represent the
spec-limits for X,.

Isl Xy uwsl
Xy

Figure 3. Response: A multivariate function of inputs

Equation ! shows the mathematical relationship between Y, X, and X,. For lack of prior

knowledge about the system, Equation 1 assumes an additive error term, f(X), X2) + €, rather

than a multiplicative error term f(X, X2)*€, for its simplicity in the model development process.

The function (f) relating Y to X, and X, will include the interaction between X, and X, as shown
in Figure 3.

Y = (X1, X2) + €, € ~ N(0, G2)
Equation 1. EOL output: A function of in-line process parameters

The spec-limits for X, are not independent of those for X, because of the interaction
between X, and X,. This is contrary to the assumption in Figure 2. In Figure 3, the point
marked as “1” in the cross-hatched area is within the univariate spec-limits for X, and X,.
However, it falls out of the spec limits for the EOL output (Y). This depicts the first situation
described on page 15.

A multivariate mathematical model relating the EOL output (Y) to “influential” in-
line process variabies, X, and X,, can help determine the cross-hatched regions in Figure 3.
(Section 1.2.2 describes the concept of “influential” in-line process variables. The terms
“influential” and “critical” are used here synonymously.) The model can be used in many ways,
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one of which is the development of multivariate control charts. Such charts can help avoid
process operation in the cross-hatched arcas of Figure 3 that result in scrap at the end of the line.
The multivariate model can also be used to identify robust process settings, to determine
feedforward and feedback control actions, and in deciding whether a part should be scrapped
earlier in processing if the variation introduced in it is already high.

122 QOut-of-spec in-line process variable

In the second problematic situation, described on page 16, a measurement on an in-line
process variable goes out-of-spec. Should the process engineers ignore this out-of-spec
measurement, or should they take a control action? If this out-of-spec situation affects the EOL
output, then by how much does it affect the EOL output.

Again, a multivariate model relating the EOL output to “influential” process variables can
help determine if a response is needed for an out-of-spec measurement for X,. The process of
model development, and the final model will help determine if a particular process variable
influences the EOL output. A process variable that influences the EOL output is an influential
process variable for the EOL output. (This thesis research has developed a methodology to
identify influential process variables for a given EOL output, discussed in Section 2.2.1). With
a model relating the EOL output to influential process variables, one can handle an out-of-spec
measurement for an in-line process variable more methodically. This is explained in ihe
following paragraphs.

If the model relating the EOL output (Y) to influential process parameiers does not
include X, then “most likely” X, does not influence the EOL output (Y). (The term ‘“most
likely” is used here cautiously because of the considerations about causality vs. correlation in
model development. These considerations are discussed further in Section 4.6.) An out-of-spec
condition for X, can be ignored as far as Y is concerned. If Y is the only critical EOL output in

our discussion, we could completely remove the sensor for X,. The sensor is only causing false
alarms.

On the other hand, if both X, and X, are an integral part of the model for Y, and if X,

goes out-of-control (or out-of-spec), then one or more of the following control actions are
plausible:

I. Discard an intermediate product early in the manufacturing line if the variation
introduced in the intermediate product is already high. This will avoid unnecessary
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subsequent value-adding activities if the firal product is not expected to meet the
specification.

2. Identify robust set-points to make the EOL output more robust (or insensitive) to
variations in process variables that are hard to control.

3. Tighten spec-limits to avoid the cross-hatched areas shown in Figure 3.

4. Feedforward control. If X, goes out-of-control (or out-of-spec), X, settings can be
changed for that intermediate product [39, 61, 75] to prevent the EOL output (Y) from
going out-of-spec for the product.

5. Feedback control to avoid large variation in future batches [39, 61, 75).

Section 4.5.1 discussed these control actions in more detail. Here, the main point is that
a model relating the EOL output to influential in-line process parameters, such as shown in
Equation 1, is necessary in formulating and in evaluating different control strategies. An
accurate model will help engineers make a more informed decision. Therefore, the key is in
developing an accurate model for the manufacturing process.

1.3 Modeling research background

The previous section discussed the need for an accurate model that relates an EOL output
to influential in-line process parameters. This section summarizes the state-of-the-art research
literature on modeling.

Modeling techniques broadly fall under two headings. First, physics-based methods
result in engineering models or causal models; and second, data-driven correlation-
based methods result in empirical models or statistical models. A third category attempts
to combine the first two types of models, and results in hybrid models, combined moAels
or integrated models. The following sections describe each category of models.

13.1 Engineering models derived from physics

Physics-based engineering models have been developed and used in many disciplines of
engineering and pure sciences. Using the physics of the process and product, this approach
develops engineering models. The resulting model may help understand the underlying physics
better, which would in tum further improve the physics-based engineering model.

Physics-based models do not assume a parametric relationship upfront. Instead, they
use process physics and product physics to develop a mathematical formula that connects the
relevant variables. An example of a process-physics model is the orthogonal cutting model in
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machining/turning [5]. Examples of product-physics models are the several device-physics
equations that describe the behavior of an MOS transistor [80].

An accurate physics-based model (or even the physics used to develop it) can help

provide a list of influential variables for a given EOL output. The variables that are part of the

model certainly influence the output, as discussed in Section 4.6.

Through the use of physics, engineering models provide a good understanding of the

base-line connection between the response and the input variables. These models incorporate

causality, and are very important for process control, as discussed in Section 1.4.3.

However, engineering models suffer from several limitations. These limitations are

listed below:

1.

Traditional physics-based modeling approaches do not incorporate noise. (Noise can be
defined in several different ways. In this thesis, the term noise could refer to the
unsystematic part of the signal, unknown dynamics of the system, etc.) The presence of
noise is common in most data including manufacturing process data. The sources of
noise include measurement error, sensor error, process disturbance in the form of
variation in raw materials, machine settings, actuator systems, operator-to-operator
variation, etc. Purely physics-based engineering models do not handle noise.
Consequently, they fail to explain different output measurements from two similar
operations at the same settings [67]. Statistical models can handle noise easily.

This modeling approach is inadequate to model large complex systems, such as
a whole manufacturing line. (A later paragraph in this section presents the definition of a
large complex system.) This is due to a large number of input variables, poor physics-
based knowledge of the connections among them, and the presence of random noise.
Modeling large systems, such as a whole manufacturing line, is a strength of statistical
models, as discussed in the next section.

The difficulty in calibrating a large-scale model. Many constants in a large system
depend on factors that are either poorly understood or are hard to measure. Such
calibration constants will be difficult to estimate from a purely physics-based approach.

This paragraph discusses the definition of a large complex system. Specifically, it

attempts to address the question “When does a system become large and complex?”.

For the purpose of this research, a system becomes large and cormplex in two situations

1.

When there exist multiple steps in a system. Such a system is a multi-stage system with
more than one process step, such as the one shown in Figure 2. In this situation,
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physics-based understanding is inadequate to develop connections between variables
from dirferent steps of the system.

2. When the degree of accuracy needed is higher than that provided by the current physics-
based understanding about the system. This situation can arise even with a single step
process. Examples of this situation abound in orthogonal cutting, thin-film deposition

by the diffusion process in semiconductor manufacturing, etc.

A methodology has been developed in this research which helps develop models for
large complex systems. Chapter 2 describes the methodology.

The advantage of engineering models is best had in systems where the connections
between all input variables, and their relationship to the output, are well understood and the
amount of noise is insignificantly low. The reasons stated above demonstrate that engineering

models, used' alone, are inadequate to model large and complex manufacturing systems.

132 Statistical models derived using data

Statistical modeling methods use data to develop models. They consider the system as a
black box, and develop an input-output relationship based purely on data from that system. The
size of the system in the black box is generally immaterial; a given statistical technique would
treat a small machine and a large manufacturing line alike for the purpose of developing a model.
All statistical methods need a learning data set before they can be used on test data sets.

Statistical techniques incorporate process noise conveniently. However, all statistical
techniques suffer from two general limitations. These limitations are:

1. Poor confidence in predicting outside of the range of values of data used for model
development. This can be a serious limitation in the identification of robust settings for
the process, especially if the robust settings are outside of the range of the current data.

2. Poor confidence in the first derivative of the output with respect to different inputs (even
in the range of current data). This can have serious limitations in developing reliable

process control strategies.

Physics-based engineering models do not typically have these limitations because they
are derived from causality considerations. Statistical techniques can be further classified into
parametric techniques and non-parametric techniques. The following sections explain and
critically examine some important techniques.
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1.3.2.1 Parametric techniques

Parametric techniques first assume a particular functional relationship (or function)
between the output and the input variables. Then, they use data to estimate the numerical values
of the coefficients in the assumed relationship with the objective of minimizing some measure of
error. Typical estimation techniques include least squares or maximum likelihood methods [59].
From the resulting model, residuals are calculated by subtracting the actual value of the response
from the one predicted by the model. The residuals are checked for normality (or that they all
come from the same probability distribution), lack of correlation in time and for constant spread
at different output (and input) values [15]. The residuals are considered to be stochastic noise if
they pass these checks.

Parametric techniques include several regression methods, such as simple regression,
forward and backward step-wise regression, etc. [59]. Forward and backward step-wise
regression can be used to identify influential process variables for a given EOL output in a
manufacturing line. Even if we ignore multi-collinearity (discussed in a later paragraph), all
these regression techniques need process variable data to identify influential process variables.
These techniques will fail if process variable data are unavailable. A method is presented in
Section 2.2.1 to identify influential process steps for a given EOL output from a manufacturing
line, even if process variable data from the influential process steps are unavailable.

Most regression methods assume that the data are uncorrelated in time. If the data are
correlated in time, Multivariate Time Series Analysis (MTSA) is used to create independent data
[8, 10, 83]. Alternatively, every fifth or tenth data point can be used. This is based on an often
verified assumption that correlation reduces rapidly at higher lags.

Parametric regression techniques also assume that there is only one functional form
characterizing the whole system. These will be called “global modeling methods”. This
assumption may only be valid in a small operating region of the system, and only if the system
itself is very small. A large system, such as a whole manufacturing line, has several smaller
regions of operation. The behavior of the system in one region could be very different from that
in another. A global parametric regression technique would fail to characterize such a system
adequately and accurately. (The definition of global modeling methods does not assume any

specific error structure.)

Most simple regression methods are prone to high variance in the estimate of model
coefficients when the input variables are highly correlated with each other [59]. An assumption
of lack of correlation between input variables is an over-simplification for data from most
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systems, including that from a manufacturing line. Statisticians term the occurrence of
correlation between different input variables as multi-collinearity [59, 60, 87]. Parametric
regression techniques are often applied to naturally occurring data, wherz the problem of multi-
collinearity is very common.

Special parametric regression modeling techniques are used to avoid the problem of
multi-collinearity. These techniques include ridge regression [59], principal components
regression [51], partial least squares, factor analysis [51], design of experiments (DOE) [56,
571, response surface models (RSM) [47], etc. All these techniques work on the principle of
creating or using orthogonal data to avoid the problem of multicollinearity. Ridge regression,
factor analysis, partial least squares and principal components regression can work on naturally
occurring data. These techniques first identify (a smaller set of) orthogonal axes, and then
transform the original data along the new orthogonal axes. On the other hand, DOE is a
controlled experiment where the input data are deliberately orthogonalized to remove
multicollinearity. A regression model is then developed using orthogonal data assuming a
parametric function relating the output to the orthogonal inputs. Note that the orthogonal inputs
could be from a DOE or from rotated axes. Several DOE designs exist to suit different systems
and the type of inference an analyst wants to obtain about the system.

Designed experiments can be very expensive to run, and often disrupt regular
production. Moreover, the final models (from DOE or any other technique discussed in the
previous paragraph) are only as good as the assumed parametric function.

An exact functional dependence is difficult to assume a priori when modeling a large
system using parametric methods. In the absence of any information about the variables,
parametric methods usually assume very simple polynomial relationships, e.g., linear and
quadratic with minimal interaction. Parameiric regression techniques are simple to use, fast, and
usually need little data for model development. They are effective if the assumed function
accurately represents the process. Otherwise, they can be highly inaccurate.

The price of simplicity of parametric models is a strong possibility of losing much signal
by a poor assumption about the parametric function. In addition, a single function may not be
able to globally approximate all the data because of the instabilities of a polynomial over a wide
range of the inputs [19].

To overcome the limitations of parametric techniques in modeling complex non-linear
systems, and to develop better insight to the underlying phenomena, many non-parametric
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modeling techniques are used. The next section discusses and examines a few important non-
parametric techniques.

1.3.2.2 Non-parametric techniques

Instead of developing a parametric relationship, the overall idea here is to “categorize”
data according to some criteria so that “similar”” data are grouped in the same category. Within
each category a unique approximating function is developed. Here, such methods are termed as
“local modeling methods” because they assume different model structure in different regions
of operation of the system. (There is no assumption abow the error structure in the model.)
Non-parametric techniques usually need much more data than parametric techniques for model
development. The following paragraphs critically examine some important non-parzmetric tools.

1.3.2.2.1 Cluster analysis

Cluster analysis is a term used for a multitude of algorithms used for classifying
numerical and categorical data [1]. Discriminant analysis and nearest centroid sorting methods
like Forgy's, Jancy's and K-means start with a pre-specified number of clusters and can work
only on numerical data. Methods of transforming categorical data into numerical data are not
reliable [1]). Discriminant analysis also assumes that the underlying distribution of the sample
and population is normal [37].

While most traditional cluster analysis methods are efficient and simple to use, they lack
interpretability. Interpretability is defined here as a model’s ability to divide the system into
several smaller regions, and to provide the basis of forming those regions. Section
1.4.3 provides a greater discussion on model interpretability. Lack of interpretability makes
cluster analysis difficult to provide (or even incapable of providing) a list of influential process
variables for a given EOL output. If cluster analysis could easily provide the reasons for
forming (or classifying) regions, then that basis could be used to identify influential process
variables.

In and of itself, cluster analysis is of little use in developing models between different
variables. Attempts to locally approximate functions in the clusters are generally unsuccessful in
high dimensions. In statistics literature, this problem is known as the “curse of dimensionality”
[17] (page 822). Most importantly, these methods do not incorporate prior information in the
form of engineering models or empirical information. The ability to incorporate prior
information is a very important feature of this thesis research, and will be presented in Chapter
2.
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1.3.2.2.2 Classification and Regression Trees (CART™)

CART is a hierarchical method of “categorizing” data and then of developing regression
models within each resulting category. CART can model Multiple Input Single Output (MISO)
systems only [11]. (CART is the trademark of California Statistical Software, Inc.)

Using a leamning data set, CART first develops a binary tree for the purpose of
classification (or for developing partitions in the region of operation). Figure 4 shows one such
binary tree. Note that exactly two branches emerge from each non-terminal node of the tree.
Each terminal node (or leaf node) of the tree becomes one of the final categories. The CART tree
in Figure 4 has three leaf nodes that produce three categories (or three small regions within the
operating space). Each leaf node contains some or all the data falling in that category.
However, a data point falls in only one leaf node.

Y Xyi» Xo4
g i=I,N

Region |

Region Il Region il

Figure 4. An example CART tree

The learning data set helps find suitable queries at non-terminal nodes (or split nodes). A
suitable query is one which gives maximum purity (a pre-defined mathematical criteria) to the
two resulting nodes of the binary tree. The classification process starts at the root node. After
the selection of a suitable query, the root node results in two children nodes, the left child and
the right child, as shown in Figure 4. Each child node now becomes a candidate for further
splitting. This process of splitting is called recursive partitioning. Recursive partitioning
continues until a pre-defined criteria is met. The resulting tree is then pruned to develop
parsimony in the model.
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Due to recursive partitioning that results in non-overlapping regions in predictor variable
space, CART cannot develop additive models (12, 29]. Additive models are defined here
as those that add contributions from szveral basis functions (or regions of tne predictor variable
space) to determine the value of the output. By contrast, only one basis function is used to
predict a given value of CART’s output.

Although a query at each split node uses an input variable, the purity function is based on
the response. In this manner, a CART model uses both, the inputs and the response, in the
process of model development. This is in contrast to factor analysis and conventional principal
components regression (PCR) that determine orthogonal axes with no contribution from the
response variable [20]. Lack of contribution from the output can be detrimental during model
development because the orthogonal axes may not have any information content for the
response, even though the original data may be rich in such information. This research has also
modified conventional PCR in two ways: first, by including physics-based models and empirical
information with predictor variables in developing regression, and second, by using all principal
components and the output in developing regression [84]. To differentiate it from the currently
used conventional PCR, the new PCR is called here the modified PCR, and is explained in
Section 4.2.2.

Figure 5 shows a typical query at a split node of a CART tree. Currently, CART uses
data only. For lack of information about the system that generated the learning data, only simple
queries can be asked at split nodes. Examples of such queries include “Is X <27”, “Is
Flag=true?”, etc., where X, is an input variable. X, is a split variable because the CART tree
formed a split using X,. The knot location for X, at the root node is “2”. Such queries lead
to only rectangular partitioning, as shown by graphical interpretation of a CART model later in
this section.

Figure 5. A typical query at split nodes of a CART tree



Introduction . 27

At the end of recursive partitioning, a regression model is developed. The model relates

the output, ?‘(x), to the various input variables used in the split nodes of the CART tree. These
input variables are also called split variables. Equation 2 shows the mathematical representation
of a typical CART model.

~ M
fx)= Y amBm(x)

m=1

Equation 2. A typical CART model

In Equation 2,

e M = total number of partitions created. M may or may nct be pre-specified
o {ap)} are the coefficients of expansion derived using least squares

e B, ’s are defined below.

Equation 3 shows the basis functions for mth sub-region [16]

Kn
Bm(x) = H H[Skm(x(k,m) - tkm)]

k=1
Equation 3. General form of CART basis functions

In Equation 3,
_ 1ifn>=0,
° H[Tl] - 0 otherwise

e K, = total number of non-terminal nodes to reach mth sub-region from the root node
e sym = -1 or 1 for left child and right child respectively at kth non-terminal node

®  X(k,m) = split variable at kth non-terminal node

e tm = knot location at kth non-terminal node

Another representation for same basis function is:

Bm(x) =[x € Ry) , where

1 if argument is true
0 if argument is false

e I =Indicator function =
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e {Rm}'lv' are non-overlapping sub-regions created by CART using recursive partitioning on
the learning data set.

The indicator function (I) results in a constant output value, a;, within a sub-region, R;.

f’(x) is a single order regression function with several discontinuities due to jumps at the
boundaries of each R;. CART can also be considered a piece-wise single-order parametric

technique.

Figure 6 is a graphical representation of the CART tree shown in Figure 4. The x-axis in
Figure 6 is X, and the y-axis is X,. The box enclosed by the points A, B, C, and D represents
the operating space of the system being modeled. The query at the root node of the CART tree
in Figure 4 results in the line EF. The query at the right child of the root node results in the line
GH. Note the rectangular partitions in Figure 6. This is because CART uses data only to create
the regions. Any point in the operating space falls in only one partition. In each partition,
CART develops a constant estimate of the output. This gives discontinuities to the estimated
function at the boundaries of the partitions. In addition, the removal of a region, such as region
IT, would create a hole in the operating space. This is because other regions do not overlap with

region II.

F
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Region Hl
G H
«
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Figure 6. Graphical representation of CART tree
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1.3.2.2.3 Multivariate Adaptive Regression Splines (MARS)

MARS is a modification of CART. It develops mathematical functions, ?(x), that have

(g-1) derivatives within Ry, and a specified degree of continuity at the boundaries of R, [23].
MARS differs from CART in two ways.

Partitioning in MARS is non-recursive. During partitioning, MARS can partition
the current candidate node and any of its predecessors. A big advantage of this type of
partitioning is in the creation of over-lapping regions in the space. The removal of a
partition would not necessarily create a hole in the space, as illustrated graphically later in
this section. Over-lapping regions give MARS the ability to develop additive models
because a given value of the output can have contribution from more than one region.
By contrast, CART partitions only the current node, but not its predecessors, and is
unable to develop additive models. Since more than twe partitions can happen at a node,
MARS is no longer a binary tree. In addition, a data point can fall in more than one leaf
node. As such it is difficuit to even represent MARS as a tree.

MARS uses different basis functions. This results in polynomial functions
within each small region. (CART gives only constant functions within each small
region). A typical MARS model will also be mathematically represented by Equation 2.
However, the basis functions for MARS are one-sided (or even two-sided) truncated
power basis functions for representing qth order splines [14, 16, 19, 21, 22, 23, 36, 38,
63]. Equation 4 shows a typical basis function for 2 non-terrinal node.

bg(x-t) = (x - )]
Equation 4. Basis function for split node in MARS

In Equation 4,
e tis the knot location, and

e q is the order of the spline and the subscript indicates the positive part of the
argument.

For q > 0, the spline approximation is continuous with (g-1) continuous derivatives.

Equation 5 shows the general form of basis functions for MARS.

Kum

Bfﬁ')(X) = H [Skm(x(k.m) - tkm)](}.
k=1

Equation 5. General form of MARS basis functions
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In Equation 5,

o K, = total number of non-terminal nodes to reach mth sub-region from the root node
e sym =-1or 1 for left child and right child respectively at kth non-terminal node

®  X(k,m) = split variable at kth non-terminal node

® tkm = knot location at kth non-terminal node
Unlike Equation 4 for CART, Equation 5 develops polynomial functions. For q = 0,
Equation 5 functionally reduces to the basis functions for CART. Thus for function
development, CART is a special case of MARS.

Figure 7 shows MARS’s graphical representation by modifying the CART tree of Figure
4. In Figure 7, region IV overlaps with regions I and II. The overlapping regions enable
MARS to develop additive models [12, 29]. Instead of giving a constant output within each
region, MARS generates polynomial functions. This gives continuous functions at the
boundaries, and enables MARS to approximate the true system behavior more accurately within
each region and in the operating space.

Region |

Region I

C Xj D

Figure 7. Graphical representation of MARS model

MARS model development is computationally intensive. Using a ranking methodology,
Friedman [24] has reduced the MARS algorithm’s computational effort by a factor of M (M =
total number of final basis functions).

Several researchers have applied MARS to serially correlated data also. Lewis and
Stevens (41, 42] have used MARS to develop a method for non-linear time series modeling
called ASTAR (adaptive spline threshold autoregression). When applied to Icelanding river flow



Introduction 31

data [42], ASTAR was more accurate, interpretable, and explicit in depicting the non-linearity in
the river flow process than a complex model developed by the existing methodology of TAR
(threshold autoregression) [78]. Applying MARS to do multivariate time series analysis is a
research area in itself. This thesis research has used serially un-correlated data only.

MARS still has several limitations. Current applications of MARS use data only, and not
any prior information, resulting in rectangular partitions like CART because of the nature of
queries asked at the split nodes, as shown in Figure 7.

MARS has promise of incorporating prior infonnation [23] (page 60), and this thesis
research has identified five ways to incorporate prior information in MARS. Furthermore, this
research has developed one of those ways, that of incorporating prior information as split
variables, and has demonstrated its use in developing more accurate models.

1.3.2.2.4 Artificial neural nets (NN)

Neural networks (NNs) have recently become popular in modeling complex systems.
They are often used in classification problems [18] and in recognition problems (speech and
visual). The building block of NNs is a perceptron. It typically receives several weighted
inputs, applies a defined parametric function on the sum, and then computes a single number as
the output. Many perceptrons placed in layers result in a neural net. A training data set is
required to determine the weights associated with each input of a perceptron in a NN. In this
respect, they work analogously to non-parametric statistical classifiers. They can be viewed as
high-order non-linear complex black boxes containing parametric models. Some authors prefer
to call NNs a non-parametric way of modeling [17].

A taxonomy of NNs compiled by Lippmann [45] shows that NN's can result in only a
pre-specified number of clusters for the purpose of classification. The number of clusters is
determined by the number of nodes in the first layer in unsupervised nets, and by the number of
nodes in the last layer in supervised nets. Unsupervised nets are those that do not have
information concerning the correct class of data during training, where as supervised nets have
this information. The use of multiple nodes in the input layer and in the output layer enables a
NN to develop multiple input multiple output (MIMO) models.

However, conventional perceptron-layered NNs lack the ability to create more clusters
on their own. They also lack the ability to develop interpretable models. Interpretability is
important for process control and for process improvement. See Section 1.4.3 for a further
discussion on model interpretability. NNs may also not converge in many situations.
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De Veaux [17] and Psichogios [62] have compared MARS and NNs in system
identification/modeling problems. They have shown that a MARS model is faster to develop
than a NN model. Despite being multiple input single output (MISO) by nature, MARS models
show superior performance over the MIMO NN models {17, 62]. Using MARS to develop
MIMO models is another interesting area of research, and has been recommended as part of
future work.

133 Hybrid models/Integrated models

A third category of modeling methods have attempted to combine the physics-based
modeling approach and the data-driven modeling approach. These methods usually use one of
the following two approaches:

1. first use the information about the system or physics-based understanding about the
system, and then perform data analysis.

2. first perform data analysis, and then use physics-based understanding about the system
to interpret the final results.

The first approach has been used more extensively than the second one. The following
sections describe the two approaches.

1.3.3.1 Use engineering knowledge before data analysis

When engineering knowledge or system knowledge is used before data analysis, the goal
of using the knowledge is to accomplish one (or more) of the following three activities:

1. Determination of inputs. This helps determine what inputs should be used in the
final model development.

2. Feature extraction from inputs. This helps combine the inputs together as an
expression, which may have a greater signal to noise ratio than the use of single inputs.

3. Assumption about a parametric form. This activity helps guide selection of
parametric function relating the response to the inputs and features.

After accomplishing these activities, data analysis is performed to estimate the values of
the coefficients in the assumed parametric function. The techniques used to estimate coefficient
values aim to reduce a measure of the error. The following paragraphs provide examples of
research in several areas that use engineering knowledge before data analysis. Each example
accomplishes one or more of the three activities above before performing data analysis.
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Physical knowledge and data have been used in many different fields of engineering,
pure science and statistics. In thermodynarnics, the state of a real gas is given by an equation
with empirically determined constants {81] (page 421). However, the underlying combination
of temperature, pressure and volume comes from prior knowledge about gasses. In Materials
Science, there is a significant effort to develop phase diagrams from first principles. These
phase diagrams are compared to those already determined using data only. To calculate the
natural frequencies of beams and plates with several unusual loading conditions, the effect of
inertia is first modeled by combining variables using prior knowledge from physics and
vibration theory. Then, data analysis is performed to estimate parameter values associated with
combined variables [4]. A similar strategy is followed for studying different regimes of non-
laminar flow over solids of different shapes (in the area of Fluid Mechanics) [86] (page 325,

420), and for studying convective heat transfer over surfaces of different shapes (in the area of
Heat Transfer) [31] (Chapter 6).

In the areas of machine design [72] (page 662 and on many other pages), design of heat
engines {90] (page 467), combustion of fuels [58] (page 122) and materials testing, first
principles (engineering knowledge) understanding is used in combining variables and then the
parameter values in the different assumed relationships (additive, multiplicative and exponential
parameters) are estimated by using data.

System knowledge has also been used in many statistical modeling methodologies. In
DOE, knowledge about the system is used to decide on the choice of factors, the levels (2 for a
factor with linear effect and 3 for quadratic), the resolution of the design, and which factors are
allowed to confound with each other 3, 8, 57]). The selection of variables and their interaction

in any parametric empirical model is always based on apriori information, if available [30, 56,
57].

Many researchers transform the original variables (by a linear or a non-linear
combination) or create dimensionless numbers by using physical understanding of the system.
Then, they use these dimensionless numbers and transformed variables in many different
statistical modeling techniques. These techniques include DOE [44, 65, 89], CART [11] (page
131), MARS [23] (page 59, 60). etc. For a solder joint classification problem, Eppinger et. al

[18] have extracted several engineering features from a solder joint data set, and then used them
as inputs to a NN.
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1.3.3.2 Use engineering knowledge after data analysis

Other researchers perform data analysis first, and then use physics-based knowledge or
system knowledge to interpret the results. Examples of such researchers are Hu and Wu [33,
91]. They performed principal components analysis on autobody measurements. The principal
components helped identify the planes of maximum variation. Using information about
assembly equipment, Wu then identified the fixtures within those planes that introduced high

variation.

In general, principal components and singular value decomposition (SVD) of data can
help provide insight into the physical driving factors of a system. Physical interpretation of the
parameters derived from DOE can also provide insight into the physics of the process and into
the numerical estimates for the physical parameters of the system [9] (Chapter 12).

1.4 Motivation

14.1 A few observations

In many manufacturing companies, engineers typically understand the influence of one
process step at a time on the EOL output. Statisticians term such influences as main effects of
different process variables on the EOL output. Often, the understanding of main effects is
qualitative. Some companies have developed statistical tools to understand main effects
quantitatively. This understanding of main effects has improved product quality and yield in
many manufacturing companies. The need for further improvements in yield and product quality
now demands a greater understanding of the influence of process steps on the EOL output.

Current state-of-the-art modeling methods seem to be lacking in providing this
understanding. When applied alone, neither physics-based modeling techniques nor data-driven
modeling techniques are capable of modeling large, complex, non-linear systems such as a
whole manufacturing line. The current techniques to combine the two approaches also fall short.
The limitations of these techniques, and how they fail to account for the characteristics of a large
system are outlined in the next section.

142 Summary of current limitations

Engineering models fail because they cannot relate variables that are not known to be
connecied by the laws of physics. A large manufacturing line has many such process variables.
Moreover, purely physics-based models do not incorporate noise. Process noise is a common
feature in manufacturing systems.
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Parametric statistical methods make a big assumption about the system upfront, and
usually develop global models. Global models fail to capture the desirable local deviations of a
system, such as a manufacturing line. Non-parametric methods do capture local details but
conventional clustering algorithms are not interpretable, and cannot be used easily for model
development. Generalized additive models do not capture multiple variable interaction. In
addition, most of these methods do not provide an effective mechanism to incorporate prior

information.

The typical approach of combined models is to use engineering knowledge before
performing data analysis or vice-versa. This approach comprises only a single jump from one
domain to another. Such an approach will also be unable to model a large system. This is due
to the lack of a systematic use of the engineering domain and the statistical domain more than
once. In a large manufacturing line, little process physics is known about many process
variables that are generally understood to influence the output variable. Clearly, physics-based
information will fail to identify them as influential input variables. In addition, several unknown
non-linear interactions may exist between several input variables. Unlike the typical approach of
existing combined model development techniques to extract features, unknown interactions may
not allow a simple way to extract features a priori. Due to multiple regions of operation of a
large system, the assumption of a parametric relationship between the output and the input
variables will be an invalid oversimplification. Thus, traditional ways of model development by
combined modeling schemes fail for a large manufacturing line. Moreover, even if the final
model appears interpretable, multi-collinearity between the input process variables confounds

control decisions.

All this points toward the need for a method that

e can model a large system, such as a whole manufacturing line,
e combines physics-based understanding, empirical information and data, and

e captures true local deviations in the system

The desired characteristics in the resulting model are outlined and explained in the
following section.

143 Desired model virtues: predictability, controllability and
interpretability

The final model for a manufacturing line should have the following three properties:
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1. Predictability
2. Controllability
3. Interpretability

1.4.3.1 Predictability

The model should be able to predict the output accurately from in-line measurements. In
Figure 8, the solid line represents the actual output of the system. The dots represent the
predicted value of the output from the model. Note the closeness of the dots to the solid line,
except for the point “A” which is discussed later.

A System
Predictedvalue ¢ o ¢

°A

Output

.

Input
Figure 8. First desired virtue: Model predictability

A new region of operation is one from where no data were used for model development.
An example of prediction in a new region is shown by the point “A” in Figure 8. Here, data are
not collected. However, the desire from the system model is that the point “A” falls close to the
predicted value by a simple extrapolation of the model.

Since purely data-driven models may lack the capability of predicting in a new region, it
is important to incorporate physics-based knowledge. This will help in identifying better
operating points for the manufacturing process. The term “better” could refer to more robust or
higher yielding operating points.

1.4.3.2 Controllability

In Figure 9, assume that the input and the output variables were sampled at only two
points. One could fit a straight line through them, shown as M, in Figure 9. With some
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uncertainly, one can also fit a quadratic function through the sampled data. The quadratic line is
shown as M, in Figure 9.

Output
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Figure 9. Second desired virtue: Process controllability

Note that both models, M, and M,, predict the output accurately at both sample points.
However, besides accurate prediction, we also want to know by how much the inputs should be
changed to bring the output on target. If the current operating point is X,, then M, suggests a
completely different control action from M, in the neighborhood of X,. This is because the sign

oM, oM,
of dlnputsx; js opposite to that of dlnputsx, Poor confidence in the first derivative of the output
with respect to the inputs is a typical problem with purely data-driven models.

If physics-based knowledge about the system suggests that the output behaves linearly
near X, but quadratically near X, then we could force the model to fit a straight line near X, and
a quadratic line near X . This is shown as M, in Figure 9. Besides predicting the output
accurately, note that M, also provides the correct sign for the first derivative of the output with
respect to the inputs near X, and X . As such, M, predicts accurately and provides for good
process control.

An accurate first derivative is important for reasons of process control. Otherwise,
engineers would not know how much, or even in which direction, to change input variables to
bring the output on target. Purely data-driven models do not necessarily provide a good estimate
of the first derivative. Physics-based models fulfill that requirement because they are causality-
based models.
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The obvious preferred approach is to combine data-driven modeling techniques with
causality-based models. The combination would use the ability of data-driven techniques to
model a large manufacturing line. It would also provide for good process control due to the
causality-based connections derived from engineering models.

1.4.3.3 Interpretability

A large manufacturing line has many regions of operation. The output depends on a
certain combination of process variables at one operating point. It could depend on a completely
different combination of process variables at a different operating point. Interpretable models
clearly show the different regions of operation of a process, and the combination of process
variables in the different regions of operation.

In Figure 10, there are three regions of operation because the mathematical relationship
of the output and the inputs is different in the three regions. t, and q,, are thickness of gate
oxide and charge on the gate respectively. To understand interpretability of models, they can be
considered in this section as intermediate product measurements in a manufacturing line. Note
that the combination of inputs in region I is the same as that in region II. Region III depends on
a different combination of input variables than region I and region IL

A
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Figure 10. Third desired virtue: Interpretability

Such model interpretability helps identify the combination of process variables that
produce good parts, and those that produce bad parts. In addition, it develops appropriate (and
even different) mathematical relationships between the output and the appropriate input variables
in the different regions of operation.
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1.5 Specific problems addressed in this research

This thesis research has developed a new modeling methodology that combines
engineering knowledge, statistical models and data to model a large manufacturing line. The
objective of the methodology is to produce more accurate and interpretable models, see Figure
11.

Engineering Statistical
perspective perspective

Process

physics Data

Our
hybrid modeling
methodology

Statistical Physical
model model

Accurate,
interpretable models

Figure 11. Our combined methodology: Objectives and inputs

This research has also attempted to answer the following two important questions:

1. Are combined models (developed using engineering knowledge, empirical models and
data) better than engineering models or statistical models used alone?

2. Do local modeling methods characterize a manufacturing line better than global modeling
methods?

1.6 Thesis overview

This thesis presents and discusses our hybrid methcdology. It introduces an industrial
problem at one of Intel Corporation’s microprocessor manufacturing facilities, and analytically
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applies our hybrid methodology to the industrial problem. It also applies alternative techniques

to the industrial problem, and compares their results with the one obtained by using our hybrid

methodology. This thesis also discusses issues with modeling and with the use of final mocels

for process control and improvement.

Chapter 2 presents and discusses our proposed research methodology which combines
engineering knowledge, statistical models and data. This methodology first helps
identify influential process steps. It then helps develop a large-scale model relating the
output to process variables from the influential process steps.

Chapter 3 introduces an industrial problem at one of Intel Corporation’s high-volume
micro-processor manufacturing facilities. It introduces the difficulties associated with
modeling end-of-line channel length, and then analytically applies our hybrid
methodology to the industrial problem.

Chapter 4 presents and compares our models to two altemnative models. With the help
of the models developed using our methodology, this chapter identifies several issues
with process control and process improvements.

Chapter S summarizes the insights gained by this thesis research and makes
recommendations for future investigation.
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2. Research methodology: hybrid
model development

2.1 Overview

Modeling a large system, such as a whole manufacturing line, is a challenging problem.
This chapter aims to list and explain the steps in a new hybrid modeling methodology developed
in this research. The hybrid methodology combines physics-based engineering models and data-
driven statistical modeling methods.

The methodology can be broadly divided into two parts, each with a distinct function, as
shown in Figure 12. The first part of the methodology identifies influential process steps for a
given end-of-fine (EOL) output. There are two outputs modeled in this research, channel length
for n-channel transistors (L_,) and that for p-channel transistors (L,,). The process parameters
associated with those process steps are the potentially influential process parameters for the EOL
output. The second part of the methcdology then develops a mathematical model relating the
EOL output to the potentially influential process parameters.

Part 1 Influential process Part 2
Output (dentify Influential parameters for Develop a r (
(L /L) process plramotonb median (X;n,'s)/ large-scale mode p="=t, )&m's)
Median (u)/ Steps 1-4 Influential process Steps 5-7 b o? =14(X,/'s)
Variance (69 parameters for
variance (X,'s)

Figure 12. Two parts of the hybrid methodology
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The methodology can be used to model the inter quartile range (or variance) and the
median (or mean) value of the EOL output. Inter quartile range and median can be considered as
a robust estimates of the variance and the mean, respectively. Both the median and the variance
are important to model because

e the median and the variance would together characterize the EOL output better than only
one of them would. If the EOL output is distributed normally, then by modeling its
median and variance, we can fully characterize the EOL output. A caveat here is that data
from manufacturing processes are not always distributed normally. However, median
and variance will still be important parameters to model, even if they do not characterize a
non-normal distribution fully.

e In atypical manufacturing line, a few process steps may influence only the median value
of the EOL output. On the other hand, other process steps may influence only the
variance of the EOL output. (Obviously, there could be a few process steps in a
manufacturing line that influence both the median and the variance of the EOL output).
To keep the EOL output on target, we need to understand the process steps that influence
the median. Equally importantly, to improve process capability, we need to understand
the process steps that influence the variance of the EOL output.

In Figure 12, some of the parameters identified as potentially influential for the median
(X,m's) can be different than those for the variance (X,,’s). Moreover, the mathematical
function relating the median to X.’s can also be different from the one relating the variance to
X,,’s.

pv

The current thesis research demonstrates the applicability of the hybrid methodology in
modeling the median value of end-of-line channel length of metal oxide semiconductor (MOS)
transistors. We believe that the methodology is also applicable in modeling the variance of EOL
channel length, and have recommended that as part of future work.

While divided into two parts, our hybrid methodology consists of seven general steps.
The first four steps fall in the first part of the methodology. They aim to identify potentially
influential process parameters for a given EOL output. The last three steps fall in the second part
of the methodology. They aim to develop an exact mathematical relationship between the output
and the potentially influential process parameters. The methodology combines physics-based
knowledge, statistical modeling approach and data in steps four, six and seven of the
methodology.
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The seven steps of the methodology are listed below:

Step 1: Choose EOL inspection data and identify model relationship

Step 2: Collect EOL inspection data

Step 3: Develop model and identify important EOL inspection variables

Step 4: Identify process steps influencing important EOL inspection variables and output
Step 5: Collect process data

Step 6: Detennine piece-wise engineering and statistical models

Step 7: Develop large-scale model relating output to process data

Section 2.2 explains the seven steps in the context of the two functions (parts) of the
hybrid methodology stated in Figure 12. Section 2.3 outlines and discusses the generalizable
domains of the seven steps. Subsequently, Section 2.4 adds further perspective to the hybrid
methodology by discussing its general applicability in different manufacturing environments.
Section 2.4 also discusses a few special cases of missing information in different steps of the
methodology. This chapter concludes with details of step seven of the methodology in Section
2.5. As part of step seven, we have customized multivariate adaptive regression splines
(MARS) for our modeling purposes. Section 2.5 provides the details of how we have extended
the use of MARS to combine physics-based models, empirical understanding and data to model
an end-of-line (EOL) output.

2.2 Seven-step methodology for hybrid model
development

22.1 Identification of influential process parameters

A typical manufacturing line has hundreds of process steps (and thousands of process
parameters associated with those process steps). Figure 13 shows the domain of all end-of-line
(ECL) inspection variables measured on a product made by such a manufacturing line.

EoL Output TR
(Lor/Lep)

Figure 13. Domain of all end-of-line inspection variables
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The dark pie wedge on the left in Figure 13 is the EOL output that we are interested in
modeling as a function of influential process parameters. This thesis research has modeled EOL
channel length (L., and L,). Figure 14 shows the domain of all process steps in a
manufacturing line. Only a few process steps in the manufacturing line influence the EOL
output.

e diffusion #5
e etch #7 —

« litho step #1\ o

* jon implant step #3

Figure 14. Domain of all process steps in a manufacturing line

The process steps diffusion #5, etch #7, litho step #1 and ion implant step #3 in Figure
14 represent the influential process steps for the EOL output (L, and L) in Figure 13. This
section aims to explain the algorithm that helps identify the dark pie wedges (shown in Figure
14) that influence the output, shown as the dark pie wedge in Figure 13.

The main assumption of the algorithm is that the EOL inspection variables are
surrogate signatures of process steps in the manufacturing line that made the product.
Using this assumption, the algorithm exploits the oft-existing multivariate relationship
between EOL inspection variables. It then uses several sources of information to
determine potentially influential process steps for the EOL output.

The algorithm does not need process data to identify influential process steps because of
the use of physics-based models, existing simulation tools and past experience of company
personnel. As such, the algorithm can identify even those process steps as being influential for
which no data are available. This is a strength of this algorithm.

The algorithm begins with the identification and selection of EOL inspection variables
that may be related to the output. We use system knowledge, understanding of process physics
and product physics (e.g., device-physics models) for this selection. The understanding from
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physics can be in the form of existing formal models. It can also be in the form of qualitative
reasoning developed by extending the underlying principles of physics.

To follow the steps of the methodology, consider the problem of modeling EOL channel
length with only a limited set of variables EOL inspection variables and in-line process variables.
The same example is considered later in Chapter 3 with the full range of relevant variables used
in a real manufacturing set up. Assume that only channel length measurements, threshold
voltages (V,’s), breakdown voltages (B,’s), electrical critical dimensicns (ECD) for channel and
for metal interconnects are available as EOL inspection variables. The EOL output is the channel
length. Physics-based knowledge tells that ECD for the channel, thieshold voltage, and
breakdown voltage are important EOL inspection variables for channel length. However, ECD
for metal interconnect is not an important variable. According to step one, ECD for channel and
V,’s are selected for further use. ECD measurements for metal interconnects are discarded.

In addition, we identify several inherent model structures. These model structures could
be between EOL inspection variables (Vt’s and ECD for channel in the example) and the EOL
output (channel lengih in the example), such as local or global relationships, univariate and
multivariate relationships. If applicable, we can also identify relationships between several EOL
inspection variables, such as nesting and hierarchical relationships. Identification of such model
structures is important for future analysis when we develop a mathematical model (in step three
of the methodology). The selection of relevant EOL inspection variables and the identification of
underlying model structures mark the completion of step one of the methodology.

The purpose of step one is to reduce the number of EOL inspection variables to be used
in the subsequent steps of the methodology. The rationale for this reduction stems from practical
considerations of sample size and limited data handling capability of software packages, and is
discussed in Section 2.4.2.

As part of step two of the methodology, we collect data for the EOL inspection variables
identified in step one. We also collect data for the EOL output. For the example here, data are
collected for Vs, B.’s, ECD of metal interconnect and channel length. The end of data-
collection marks the completion of step two.

The purpose of step three of the methodology is to further reduce the number of EOL
inspection variables. (As such, the number of EOL inspection variables is first reduced by step
one and then further by step three.) As part of step three of our methodology, we develop a
statistical model relating the output to all EOL inspection variables for which we collected data in
step two. We use the underlying relationships (local/global, univariate/multivariate, nested and
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hierarchical) identified in step one to develop this statistical model. The modeling tool used here
should be able to develop local models if several important local relationships were previously
identified in step one.

Examples of modeling tools that develop local models are classification and regression
trees (CART), multivariate adaptive regression splines (MARS). Examples of global modeling
tools are simple regression, principal components regression (PCR), and partial least squares
regression (PLS). Neural nets are hard to classify between local and global modeling tools.

In the example of channel length, a statistical model is developed that relates channel
length to V’s, B,’s, and ECD of the channel. Figure 15 depicts the development of the model as
an arrow from the EOL output to the rest of EOL inspection variables in the domain of all EOL
inspection variables. The objective of the statistical model is not to determine accurate model
parameters. However, its objective is to provide a list of EOL inspection variables that are
related to the EOL output in a statistically significant manner.

Domain of ALL
Domain of ALL Public domain/ diffusion #s  LICSESSSIEDS
Inspection Vanables company propnetary info ectch #7
¢ Closed-form empirical/
theoretical models
¢ Numerical simulation t00lS >
» Knowledge-base litho "
* DOE/Natural Experiments elitho ste
Statistically DOE/Natural Experimen P
important
Inspection ..
Variables son implant step #3

Figure 15. Algorithm to identify influential process steps

From the resulting statistical model, statistically significant EOL inspection variables are
identified that can together predict the output within the desired level of accuracy. One can use
standard statistical tests, such as t-test and F-test, to identify statistically significant EOL
inspection variables. Alternatively, one can develop one’s own algorithm for the same goal [52,
53, 54]). The identification of statistically significant EOL inspection variables marks the
completion of step three of the methodology.

The statistically significant EOL inspection variables are called here secondary EOL
inspection variables. In Figure 15, the secondary EOL inspection variables are represented by
the shaded pie wedges on the right in the domain of all EOL inspection variables. For the
channel-length example, assume that both V,’s and ECD of channel are identified as statistically
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influential variables, but B,’s are not identified to be statistically important. V,’s and ECD of

channel are called secondary EOL inspection variables.

The first three steps of the methodology have helped identify a list of EOL inspection

variables that can predict (or model/explain) the EOL output within the desired level of accuracy.

Now, the process steps that influence each of the secondary EOL inspection variables (and the

EOL output) remain to be identified. Those process steps should be able to predict (or

model/explain) the output with approximately the same accuracy as the secondary EOL

inspection variables do. This is because the secondary EOL inspection variables are surrogate

signatures of the process steps. The next step of the methodology (step four) helps identify

process steps that influence each of the secondary EOL inspection variables and the EOL output.

As part of step four of our methodology, information from several sources is used, and

is summarized in Figure 15. These sources are explained below.

1.

Theoretical and empirical models found in text books and research literature can
help identify influential process steps. For example, the threshold voltage (V,) of an
MOS transistor is related to its substrate doping concentration according to Equaiion 6

[80]). The parameter (y) is a measure of the implant dose. Consequently, both well-

implant steps (n-well and p-well) are important process steps that influence V..
Therefore, they also influence EOL channel length of an MOS transistor.

Vi= s - dox/Cox + 95 + 10p + Vi)™
Equation 6. V, as a function of substrate doping concentration

In Equation 6,
® ¢y is the difference between the bulk potential and the gate potential

e g, is the charge on the gate per unit area
e C_, is the capacitance of the gate oxide per unit area

© ¢y is the surface potential at the interface of the oxide and the substrate
e vyis the body-effect factor, and includes a measure of the implant dose in the substrate

eV, is the potential difference between the source and the substrate

Numerical simulation tools: These tools are typically developed or applied during
product and process development. They relate different process steps to different
product characteristics (including several secondary EOL inspection variables and the
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EOL output), numerically. Examples of such simulation tools are Suprem, Pisces,
Abaqus, etc. Although publicly available, different manufacturing companies usually
customize these tools for their specific products and processes. Regardless, publicly
available simulation tools can still provide useful information about influential process
steps.

3. Knowledge bases: During product and process development (including the time when
they both are in research phase), and during normal factory operation, several pieces of
new information emerge, and are stored in knowledge bases. Often, existing formal
models are incapable of explaining the new information. Thus, these data bases serve as
independent sources to identify influential process steps.

4. Experience of personnel from factories and research and development sites is often
an important source of information. Integration personnel from different sites can
provide information from their accumulated experience over several generations of
products and processes, and over several different product lines and process
technologies.

5. Natural experiments and design of experiments (DOE): One can also collect
data for process variables either from existing data bases or by running a DOE. The data
in data bases are typically collected during normal operation, and is also cailed happen-
stance data or data from natural experiments. By doing relevant statistical analysis on
such data, one can identify influential process steps for secondary EOL inspection
variables (and the EOL output). This source of information relies on process data, and

was not used in this thesis research.

Step four of our methodology relies on several sources of information. Many of these
sources may give similar results. We strongly recommend the use of as many sources as
possible. This will result in a more complete set of influential process steps. The use of several
sources of information also provides more confidence in process steps identified by more than
one source. The influential process steps are shown as shaded or cross-hatched pie wedges in
the domain of all process steps in Figure 15.

For the channel length example, knowledge bases (information source #3) and
experience of personnel (information source #4) may show that spacer-etch step and the
diffusion step that grows gate oxide are important steps for ECD of channel. Well implant steps
were earlier identified to be important. Therefore, influential process steps for channel length are
well implant and spacer etch steps and the diffusion step that grows gate oxide.
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The identification of a list of process steps that influence each of the secondary EOL
inspection variables (and the EOL output) marks the completion of step four of the methodology.
The process parameters associated with these process steps are potentially influential process
parameters for the EOL output.

To summarize, steps one through four of the hybrid methodology identify potentially
influential process parameters for the EOL output. First, a statistical model relating the EOL
output to the rest of relevant EOL inspection variables is developed. From that model,
statistically significant EOL inspection variables, called secondary EOL inspection variables, are
identified. Using five sources of information (listed earlier in this section), process steps that
influence each of the secondary EOL inspection variables and the EOL output are identified. The
process parameters associated with these process steps are potentially influential process
parameters for the EOL output.

222 Development of a large scale medel for end-of-line output

Steps one through four in Section 2.2.1 helped identify potentially influential process
parameters for the end-of-line (EOL) output. By doing so, the number of candidate process
parameters for the final model development (in step seven of the hybrid methodology) will
typically reduce from a few thousand to a few tens. This section now aims to explain the
algorithm that helps develop a large-scale model using steps five through seven of our hybrid
methodology. The model relates the EOL output to the potentially influential process
parameters, see Figure 12.

The final model (from step seven of the methodology) is called a large scale model
because it is a model for an output at the end of a large manufacturing line as a function of
process parameters from several different places in the manufacturing line.

Despite modeling a whole manufacturing line, the algorithm preserves local relationships
between the output and different process parameters. For example, the output may depend on a
certain set of process parameters in one operating region (such as the one in which short channel
effects are predominant in an MOS transistor). However, the output may depend on a different
set of process parameters in another operating region (such as the one in which long channel
effects are predominant in an MOS transistor).

In addition, the algorithm combines physics-based understanding about the product and
the manufacturing process steps, empirical understanding of process engineers about different
process steps and data collected during normal operation. This combination gives a more
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accurate model for the EOL output. Our algorithm is explained in the following paragraphs
through steps five through seven of our hybrid methodology.

This section now picks up on our methodology at step five (steps one through four are
discussed in Section 2.2.1). Step five is data collection for the process parameters that are
potentially influential for the EOL output. These data are used later for the final model
development in step seven of the hybrid methodology. In the channel length example, data are
collected for etch rate of the spacers, temperature and pressure in the diffusion chamber that
grows gate oxide, and the energy of the beam in the well implant steps.

In step six of the hybrid methodology, we identify pieces of information about the
manufacturing line and the final product. We call these pieces prior information. Prior
information can take several different forms. The following lines describe them.

1. Formal physics-based models from text books and research literature: These
models could be represented as equations relating one variable (or several variables) to a
set of variables.

2. Formal empirical models, such as the ones derived using DOE or RSM (response
surface models).

3. Qualitative understanding of engineers and technicians: Often, experienced
process engineers and technicians understand many nuances of manufacturing process
behavior that are not captured by any formal models (physics-based or empirical). In
manufacturing companies, this is often referred to as the “feel” for the process.
Experienced engineers and technicians often use their “feel” for the process to improve
the operation of their specific (set of) machines. Such knowledge is mostly qualitative
by nature, and does not usually exist in a formal quantitative form. However,
formalizing this qualitative knowledge may be important for several reasons. It can
improve our understanding of all (critically important) machines in a manufacturing line,
rather than that of just a few. This will help in providing better process control for
critically important process steps. As such, the final product will have tighter tolerances.
In addition, tolerance trade-off between different process steps in a manufacturing line
can be better understood. Such qualitative understanding can be formalized as simple
linear equations, and can be used in the final model development (in step seven of the
methodology). Later in Section 3.5, we will present three examples of formalizing such
qualitative understanding. Both those pieces of information proved useful in the final
models presented in Chapter 4.
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4. Features, such as the ratio of two variables provides more information about a product
characteristic. However, the actual relationship between the product characteristic and
the feature may not be known accurately. The features could be derived from physics-
based understanding or empirical understanding of the process and product.

For the example of channel length, three different models can be used

e Qualitative understanding of engineers can be used to deterrnine a measure of implant
dose from measurements on the energy of the beam in implanters.

e The measure of dose can be substituted in Equation 6 to estimate V,, and

e Existing empirical models that connect spacer etch rate to ECD of channel.

The hybrid methodology treats each piece of prior information as a new variable in the
final model development in step seven. A piece of prior information can be a physics-based
model, an empirical model, a feature or a simple equation representing the qualitative
understanding of process engineers. Appendix A illustrates the process of creating new
variables through a numerical example. It is recommend that the user gather as much prior
information as possible. The reason for doing this is explained in Section 5.1.3. The end of the
collection of prior information marks the completion of step six of the hybrid methodology.

The last phase of the hybrid methodology is the development of a final large scale model
which relates an EOL output to important process parameters. The model combines physics-
based knowledge and empirical understanding about the process with data collected during
normal operation. Step seven of the methodology develops this final model.

Before discussing the model development process, let us recapitulate the inputs for the
final model. The inputs are

1. data for all potentially influential process parameters identified at the end of step four of
our methodology, see Section 2.2.1. For the channel length example, they are beam
energy in well implant steps, etch rate of spacers, and temperature and pressure in the
diffusion chamber that grows gate oxide.

2. numerical values for all the different pieces of prior information. Prior
information is collected in step six of the methodology, see previous paragraphs in this
section. Data for influential process parameters are used to calculate (or estimate)
numerical values for prior information. Since prior information is collected for
influential process steps, and since data are also collected for influential process steps,
the numerical values for prior information for different observations can be calculated
using process data for different observations. In the channel-length example, numerical
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values are determined for implant dose, V;’s and models connecting spacer etch rate to
ECD of channel. Sometimes, a piece of prior information may contain a process variable
in its formula (or model) for which no data are collected. Cne possible numerical value
for this process variable is the nominal target value defined by the recipe of the process.
However, it is highly recommend that one use an estimated value for this process
variable, if it can be estimated from other data.

The output for the final model is obviously the EOL output.

Step seven of the methodology focuses on the final model development. For the inputs
described before, many types of statistical tools can be used to develop the final model.
Examples of these tools are CART, MARS, PLS, PCR, NN, etc. PCR and PLS are global
modeling methods. On the other hand, CART and MARS are local modeling methods. MARS
is chosen for the final model development in this thesis research by extending its use to
implement the seventh step of the methodology. However, the methodology is general to allow
the use of several different mathematical tools in step seven.

The final model may have fewer variables than the ones identified by the first four steps
of the methodology in Section 2.2.1. This can be due to several reasons, and may have
important implications in process monitoring and control. These reasons and implications are
discussed later in Section 4.6.

2.3 Domains of generalizable seven steps of hybrid
methodology

Our hybrid methodology combines the use of physics-based models of manufacturing
processes and products, empirical knowledge about manufacturing processes and data. For
clearer categorization, we put physics-based models in the domain of engineering models. We
also put empirical knowledge in the domain of statistical models. Data are represented in their
own independent domain called the “Data” domain. Figure 16 shows the three domains-
engineering models, statistical models, and data-as three long horizontal lines.
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Engineering (1)
models

Statistical
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(from data) mode!
Data

(Collect/Use)
Figure 16. Hybrid methodology uses three domains systematically

The previous section, Section 2.2, described the steps in our hybrid methodology. This
section now aims to depict our methodology’s systematic use of the three domains. For details
on the objectives and workings of the seven steps of the methodology, see Section 2.2.

In Figure 16, the numbers in circles on the three domains represent the steps in the
hybrid methodology. These numbers run from one through seven. The number one being the
first step of the methodology. It helps choose EOL inspection variables, and helps identify
model relationships. The number seven being the last step of the methodology. It aims to
develop a final large-scale model.

In Figure 16, the dark solid line connecting the circled numbers depicts progress in
modeling an EOL output parameter through the use of the seven steps of the methodology. The
presence of the dark solid line on a domain (shown as a long horizontal line) represents the use
of information from that domain. For example, the dark solid line under the number one implies
the use of engineering knowledge in step ore. The presence of the dark solid line on the “Data”
domain implies the use of or the coliection of data. Note that a given step of the methodology
can use information from more than one domain. As such, it would be represented on more than
one horizontal line in Figure 16. Examples of the steps that fall in more than one domain are
steps four, six and seven.

The inclined dark lines connecting two domains (shown as long horizontal lines) in
Figure 16 represent jumps from one domain to another. Obviously, transitions to steps four, six
and seven, which fall in more than one domain, are shown as dark inclined lines ending on

several long horizontal lines.

Now, let us understand the hybrid methodology’s systematic use of the three domains.
Step one helps choose EOL inspection variables, and heips identify model relationships
(univariate/multivariate, local/global, nested and hierarchical) through the use of engineering
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information and system knowledge. Thus, it falls in the engineering domain, see Figure 16.
The presence of the dark line under the number one depicts the use of the engineering domain.

The methodology moves to data-collection activity in step two. This is shown as the
dark line under the number two in Figure 16. A dark inclined line from the “Engineering
models” domain to the “Data” domain depicts the transition from step one to step two of the
hybrid methodology.

Step three of the methodology aims to develop a statisticai model relating EOL output to
other EOL inspection variables. It also aims to identify secondary EOL inspection variables, see
Section 2.2.1 for details. Step three falls in the domain of statistical models. A dark inclined
line from the “Data” domain to the “Statistical models” domain depicts the transition from step
two to step three of the methodology.

Step four of the methodology aims to identify influential process steps for each of the
secondary EOL inspection variables and for the EOL output parameter. To do so, step four uses
information from several sources. These sources are listed in Section 2.2.1. Some of those
sources fall in the domain of engineering models, e.g., theoretical models. Some of them fall in
the domain of statistical model, e.g., knowledge bases and experience of personnel. Yet, others
fall in multiple domains. For example, natural experiments typically fall in the domains of
statistical models and data. Thus, step four of the hybrid methodology uses information from all
three domains. It is represented on all three domains in Figure 16.

At the end of step four, the methodology has identified influential process steps for the
EOL output parameter. The process parameters associated with these process steps are
potentially influential process parameters for the EOL output. Through the remaining three
steps-five through seven-the methodology now aims to develop a large scale model relating the
EOL output to the potentially influential process parameters.

After step four, the methodology transitions to the data-collection activity of step five.
This activity is shown as a dark solid line under the number five in the “Data” domain.

Step six of the methodology aims to identify prior information about the manufacturing
process and product. Different pieces of prior information typically explain different particular
characteristics of the manufacturing process and product. Step six uses information from several
sources to identify prior information. These sources are listed in Section 2.2.2. Some of those
sources fall in the domain of engineering models, e.g., formal physics-based models. Some of
them fall in the domain of statistical model, e.g., qualitative understanding of engineers and
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technicians. Yet, others fall in multiple domains. For example, formal empirical models and
features can typically fall in all three domains-engineering models, statistical models and data.
Thus, step six of the hybrid methodology uses information from all three domains. It is
represented on all three domains in Figure 16.

Step seven of the methodology then develops a large scale model whicn relates the EOL
output {0 influential process parameters. Step seven combines piece-wise engineering models,
statistical models and data. As such, it falls in all three domains.

Note that the hybrid methodology moved from step one through step seven. While a few
steps fall in one domain only (e.g., steps one, two, three and five), other steps fall in multiple
domains (e.g., steps four, six and seven). Multiple domains help gather more information.
Greater amount of information helps increase model accuracy. We have shown later in Chapter
4 that the use of prior information (by including piece-wise engineering and empirical models)
from step six resulted in more accurate final models than the ones developed using data only.

Steps four, six and seven of our methodology use information from all three domains.
However, we recognize that information from all three domains may rot always be available.
Our hybrid methodology would still be applicable. For example, assume that piece-wise
empirical models are unavailable in step six. The methodology would use piece-wise
engineering models and data from step six to develop a final model in step seven. The final
model may be less accurate than the one that also incorporated piece-wise empirical models.
However, the methodology does not break-down if piece-wise empirical models are missing.

The next section, Section 2.4, provides greater discussion on the methodology’s
workings in the face of missing pieces of information. The section also comments on the
generality of the hybrid methodology.

2.4 A few observations on the hybrid methodology

The previous sections explained our hybrid methodology in its most basic form.
However, they have not discussed if the methodology is only applicable when the manufacturing
process or the EOL output have certain characteristics or if the methodology is more generally
applicable. In addition, the previous sections have also not discussed the applicability of our
methodology in special situations of missing information. The following sections discuss these

issues.



Research methodology: hybrid model development 56

24.1 Ge=ncrality of our hybrid methodology

This thesis research shows the applicability of our hybrid methodology in modeling a
continuous EOL output parameter in a largely batch-processing semiconductor manufacturing
process. (In microprocessor manufacturing, most process steps are batch processes. Only a
few process steps are continuous processes). However, we believe that the methodology should
be applicable to different types of EOL outputs (continuous and categorical) in a variety of
manufacturing processes (batch processing and continuous processing). This is explained in the
following paragraphs.

The seven steps of our hybrid methodology do not assume any characteristics about the
EOL output or the manufacturing process, see Section 2.2. They aim to accomplish certain
activities. These activities include the development of models, collection of information
(quantitative knowledge and quantitative models) and data, and interpretation of the information
gathered. Rather than assuming special characteristics about those activities, the methodology
depicts each activity in a general way. For example, the methodology provides the flexibility to
use any relevant model relationship (univariate/multi-variate, local/global, nested and
hierarchical) in step one. The manufacturing process characteristics will determine the choice of
the model relationship actually used in step one. Again, step three of the methodology provides
the flexibility to develop any statistical model, and step seven provides the flexibility to use any
of the several modeling tools.

None of the model development steps or the information gathering steps have
characteristics that would bias them in favor of certain manufacturing processes (or EOL
outputs) or bias them against others. The systematic use of information from the three domains-
engineering models, statistical models and data-also assumes no prior knowledge about the type
of output or about the characteristics of the manufacturing process. Note that the depiction of the
hybrid methodology on the three domains is a general depiction without reference to any type of
EOL output or manufacturing process.

As such, we believe that our hybrid methodology is general enough to model a variety of
EOL outputs (continuous and categorical) in a variety of manufacturing environments (batch
processing, continuous processing, or even mixed such as the one used in microprocessor
manufacturing). In addition to modeling a whole manufacturing line, the methodology can also
be used to model only a (set of) process step(s). A set of process steps is also called a cluster of
tools. Section 5.1.1 presents an example of a continuous film-making process, and shows how
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the steps of the methodology will be applied to the continuous process and to a largely batch-
processing semiconductor-making process.

242 Why is step one important?

Several colleagues have wondered about the usefulness of step one of our hybrid
methodology. (Step one of the methodology helps choose relevant EOL inspection variables,
and helps identify model relationships between them. Step one discards EOL inspection
variables that, based on our understanding of process physics and product physics, would not
have any connection with the EOL output. Data are collected for the chosen EOL inspection
variables in step two. Step three develops a statistical model using the model relationships
identified in step one). A few colleagues suggest the use of all EOL inspection variables, thus
by-passing step one. They suggest the development of a statistical model in step three using all
EOL. inspection variables, and then the identification of secondary EOL inspection variables from
the statistical model. Such an approach can give erroneous results because of two practical

considerations.

1. EOL inspection data are only a (preferably large) sample from a (much larger) population
2. The software for data analysis can handle only a limited set of data

These two considerations create serious limitations in a purely data-driven inference. For
reasons of limited sample size and data-handling capability, a mere coincidence of numbers can
make an EOL inspection variable an important one in modeling an EOL output. However, from
an understanding of product design and manufacturing process, the EOL inspection variable may
just not possibly have a connection with the EOL output. (The author confirmed the presence of
such erroneous EOL inspection variables in modeling the EOL channel length in MOS
transistors.) The use of such EOL inspection variables in subsequent steps of the methodology
would complicate the modeling process, at best. More likely, it would introduce spurious
process variables that may be hard to identify and eliminate. Spurious process variables
confound control decisions, and impede progress in process improvement. Therefore, it is
important to minimize (and possibly eliminate) erronecus conclusions about EOL inspection
variables early in the modeling process.

For the channel-length example, ECD of metal interconnects may have been identified a
statistically important inspection variable if it were not discarded ecarlier in step one. The
geometry of an MOS transistor clearly shows that ECD of metal interconnects cannot influence
channel length. If its statistical importance is identified in step three of the methodology, it
would be purely due to a coincidence of numbers.



Research methodology: hybrid model development 58

Given the limitations on sample size and data-handling capability, it is necessary to
discard useless EOL inspection variables. Useless EOL inspection variables are those that
cannot possibly have any connection with the EOL output, based on our understanding of
process physics and product physics. By removing such useless EOL inspection variables, step
one of the methodology reduces the chances of erroneous identification of secondary ECL
inspection variables in step three of the methodology.

243 Other end-of-line (EOL) inspection variables missing

This section discusses the situation when data are collected for only one variable at the
end of the manufacturing line. The variable for which data are collected is the EOL output.
Since no other measurements are made on the product, there are no other EOL inspection
variables. For example, assume that only the speed of the microprocessor is measured at the end
of line inspection. No other electrical test characteristic is measured. Such situations are rare,
and we have not come across one. However, this consideration is included here for the sake of

completeness.

This section explains the workings of the methodology when the only variable for which
data are collected is the EOL output parameter. Obviously, the methodology cannot identify
secondary EOL inspection variables because no data exists for model development in step three.
There are two options here:

1. The preferable option is to brainstorm to identify other product characteristics that may
have relevant connection with the EOL output. For the microprocessor example in this
section, such product characteristics are the threshold voltage, electrical measurement of
poly-silicon width, etc. Now, assume that these newly identified EOL inspection
variables are surrogate secondary EOL inspection variables. Then, apply step four of the
methodology to identify influential process parameters for the surrogate secondary EOL
inspection variables and for the EOL output. The rest of the methodology is then
applicable in the usual way described in Section 2.2.

2. If there is no product characteristic with relevant connection with the EOL output, then
we cannot even identify surrogate secondary EOL inspection variablcs. In this case, we
skip the first three steps of the methodology. We apply step four of the methodology to
identify influential process parameters for the EOL output. The rest of the methodology
is then applicable in the usual way described in Section 2.2.
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244 Only data available in step six

Assume that no prior information (in the form of piece-wise engineering and statistical
models) are available in step six of our hybrid methodclogy. However, only data for potentially
influential process parameters are available. Such situations arise during pilot runs in new
product and process development, particularly when the experience from past products and
processes cannot be extended to the new product and manufacturing process. This section aims
to address the issue of how the methodology works when no prior information are available.

In the absence of prior information, step six of the methodology resides only in the
“Data” domain. It is absent from the domains of engineering models and stafistical models, see
Figure 16. The methodology uses the available information in data to develop a final model in
step seven of the methodology. The modeling tools used in step seven will have fewer input
variables because additional variables from prior information are missing.

If prior information is missing, the methodology uses only limited information, whatever
is available in data. The final model may not be as accurate as the one that also incorporates
prior information. In Chapter 4, we have developed models for EOL outputs without using

prior information. These models are less accurate than the ones that use prior information and
data.

2.5 Integration of engineering models, empirical
information and data through MARS

Multivariate adaptive regression splines (MARS) were chosen as part of step seven of the
hybrid methodology. Currently, MARS uses data only. This research has extended the use of
MARS to also incorporate prior information in the form of physics-based engineering models
and empirical information about the manufacturing process and product.

This section aims to describe the extension of MARS to incorporate prior information
with data, and develops on sections 1.3.2.2.2 and 1.3.2.2.3 which present the process of model
development by MARS with the use of data only.

This thesis research has identified five places where MARS can use prior information.
These five places are:

1. split variables in split nodes
2. definition of split criteria in split nodes
3. choice of basis functions
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4. choice of the order of basis functions
5. definition of pruning criteria

We have explored and developed the first option of using prior information as split
variables in split nodes. Other options are suggested as part of future work in Section 5.3.1.

Our approach treats each new piece of prior information as a new variable. Each
engineering and statistical model results in a new variable. Consequently, there are as many new
variables as the number of new pieces of prior information. Appendix A presents a numerical
example to illustrate the process of creating new variables and of developing MARS models.
The numerical values for the new variables (derived using prior information) are determined
from those of the predictor variables. Predictor variables are the potentially influential process
parameters identified using the first four steps of our methodology.

Each row of observations for the predictor variables creates a new row of observations
for the new variables. The number of rows of predictor variables is the same as that of new
variables. The matrix of numerical estimates of new variables is appended row-wise to the
matrix of observations of predictor variables. The number of columns in the augmented data
matrix is the sum of the number of columns in the old matrix of predictor variables and the
number of pieces of prior information. The number of rows in the augmented data matrix is the
same as that in the old matrix of predictor variables. The following example illustrates the
process of creating new variables. Appendix A develops this example using numerical data.

Assume that the old matrix of predictor variables comprises two columns and fifty rows.
Each column represents a predictor variable (or a potentially influential process variable
identified using the first four steps of out methodology). The rows represent fifty observation
on the two predictor variables (X, and X,). Also assume an engineering model (through
Equation 7, and a piece of prior information from empirical understanding (shown as Equation
8). X, and X, in Equation 7 and in Equation 8 are predictor variables. Y, and Y, represent
product or process characteristics. Other symbols in Equation 7 and in Equation 8 are known
coefficients, representing material properties or other physical constants.

=a XL
Y, -a|x2 + as

Equation 7. Prior information as an engineering model
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Y')_ = a3X\ + a4X7_
Equation 8. Prior information as empirical information

To create a numerical values for Y, the values of X, and X, are substituted from the old
matrix of predictor variables in Equation 7 to give fifty numerical values for Y,. A similar
substitution process creates fifty numerical values for Y,. Y, and Y, are two new variables, one
from each piece of prior information.

The numerical values of Y, and Y, are appended row-wise to the old matrix of predictor
variables. The resulting augmented matrix has four columns and fifty rows. The columns
represent original predictor variables X, and X,, and the new variables Y, and Y,. The rows
represent different observations.

The new inputs ‘o the MARS modeling tool (software) are a column of response data and
the augmented data matrix, which holds old and new variables. The software for MARS model
development was written by Hastie [28] in the statistical software package environment called

Splus.

During classification (or partitioning) at any split node, MARS now has the option to
split on a new variable (determined from prior information) or on an old predictor variable.
Obviously, the split variable of choice is one that best satisfies the split criteria. This thesis
research used reduction in variance as the split criteria. (Prior information can also be used to
determine/choose an appropriate split criteria, described as the second option of the five options
that identify the places where MARS can incorporate prior information).

MARS will continue to develop further splits, choosing at each split any of the variables
from the augmented data matrix. MARS will result in several basis functions at the end of
forward step-wise regression. These functions will assume one of the following forms (or

higher order interaction terms):
o [X,-Xiul
o [X2 - x2cu|]+
b [XJ - x]cm]-[xd - x4cul]+

Xoeurr Xy and X
split values or knot locations. The split variables can be old predictor variables or new variables

X,, X,, X, and X, are split variables. X, ... X, Xicu sn are their respective

or a2 combination of both. The first two expressions represent main effects of X, and X,. The
last expression contains two variables X, and X,, and represents a two-way interaction between



Research methodology: hybrid model development 62

both variables. If there are higher order interactions, the MARS model will result in more basis
functions with appropriate number of square bracket terms. Each square bracket term contains
only one split variable. The terms in the square brackets are interpreted in the following way:

e [x-x = (X-Xgy,) for x > x,,, 0 otherwise

Cl.lt]+ cut’

* [x-x = (X-X ) for x < x.,,, 0 otherwise

cut]- cut’

The final MARS model is a linear combination of several functions generated earlier. A
numerical coefficient multiplies with each basis function to modulate its contribution to the
response. A typical MARS model is represented by Equation 9.

Output = a9 + a5[X| - Xicurls + a6[X2 - Xocud [Y1 - Yicuds +€ €~ N(O, G?)
Equation 9. A typical MARS model

In Equation 9,

e X, and X, are old predictor variables with their respective know locations in the square
brackets

e Y, is a new variable from prior information with Y, , being its knot location

leut

e a’s are constants

e £ is random noise

By substituting Equation 7 in Equation 9, we get Equation 10.

Output = a + as[X) - X1cus + 26[X2 - xzc..a-[a.;(‘—; i alﬁl +€, €~N(0,0?
CuU +

Equation 10. MARS model: Old predictor variables substitute prior information

The variables in Equation 9 are the same as those in Equation 10, except X, and X,_,,
which help determine the knot location for X,/X, after the substitution of Equation 7 in Equation
9forY,.

Equation 10 only contains old predictor variables. However, note that it also contains
prior information from Equation 8. Without the use of prior information, MARS would have
perhaps tried to approximate the relationship provided by prior information by using simple
univariate expressions. The approximation would be less accurate than the model developed
using prior information. This thesis research later shows that the incorporation of prior
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information results in more accurate models, see Chapter 4. Section 5.1.3 provides a graphical
interpretation of a MARS model which uses data (or old predictor variables) only. It also
compares that interpretation to that of a MARS model which uses data and prior information.
Section 4.4 provides an intuitive understanding of the reasons why MARS models with prior
information and data give better results than the ones developed using data (or old predictor

variables) only.

This thesis research has used MARS as part of step seven of the methodology. (The
reasons for choosing MARS are described in Section 1.3.2.2). However, our hybrid
methodology is general to include and use several other modeling tools like NN, PLS, PCR, etc.
In fact, the current thesis research has also developed models using PCR, and has compared
them with the ones developed using MARS.

Before presenting the PCR and MARS models in Chapter 4, the next chapter, Chapter 3,
describes an industrial application problem of modeling end-of-line (EOL) channel length of
MOS transistors. Besides discussing general modeling difficulties, Chapter 3 also applies the
seven step hybrid methodology to the problem of modeling channel length.
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3. Semiconductor manufacturing
application: Modeling end-of-line
channel length of MOS transistors

This chapter introduces an industrial problem in semiconductor manufacturing.
Specifically, the problem is that of modeling end-of-line (EOL) channel length in metal oxide
semiconductor (MOS) transistors as a function of in-line process parameters. Channel length is
an important factor in determining speed of a microprocessor, density of devices on a chip, and
memory capacity of memory chips. Our methodology, described in Chapter 2, is applied to this
industrial problem.

This chapter has six sections. Section 3.1 describes a semiconductor manufacturing
process in general, and depicts a semiconductor manufacturing line. Section 3.2 explains
channel length of MOS transistors, and depicts it graphically. The importance of channel length
in product performance is described in Section 3.3. Section 3.4 reviews practical (and
theoretical) difficulties in modeling channel length. The steps of our hybrid methodology are
applied to the problem of modeling channel length in Section 3.5. This chapter concludes with a
summary in Section 3.6.

3.1 The semiconductor manufacturing process

Semiconductor manufacturing is a multi-step process, consisting of a few hundred
process steps, as surnmarized in Figure 17.
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Figure 17. A semiconductor manufacturing line: A multi-step process

The starting raw material for a semiconductor manufacturing line is a bare silicon wafer.
Four types of operations are performed several times on the wafer to produce final chips. These
operations include etching, diffusion, lithography and thin film deposition. The operations
result in several chips (or dice) on each wafer, as illustrated in Figure 18. Figure 18 also shows
that several wafers travel together in a boat or in a lot. This marks the end of wafer processing
[25, 88]. Wafer processing usually takes several weeks. Finished wafers are tested for about
100 electrical characteristics.  Electrical tests or E-tests help determine if the several
manufacturing process steps worked correctly. The chips are then sorted (or binned by doing
probe tests), and sawed out of wafers. Acceptable chips are packaged and shipped to
customers.

Lots f\‘ Wafers Die
Al @ @@ | v | |

Figure 18. Chips nested in wafers nested in lots

During wafer processing, data are gathered for process variables at each process step,
and for intermediate product measurements at the end of many process steps. However, data for
some of those process variables and intermediate product measurements are not stored
permanently. (Hence, these data are not available later for modeling). Data are also collected for
E-tests at the end of wafer processing, and before binning.

This thesis research has focused on modeling two such E-test characteristics as a
function of influential process variables and intermediate product measurements. These E-test
characteristics are channel-length measurements for n-channel transistors (L ) and for p-channel
transistors (L), see Figure 17. Section 3.2 explains channel length, and differentiates L,, from
L. Since L, and L_, are measured at the end of the line for wafer processing, they are called
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end-of-line (EOL) channel length measurements. This thesis research has used data from an
Intel Corporation wafer processing line, on which a family of microprocessors are fabricated.

3.2 What is end-of-line channel length?

Figure 19 shows a metal oxide semiconductor (MOS) transistor [80]. A typical
microprocessor has millions of such transistors. (intel’s Pentium Pro™ has over 5.1 million
transistors. Pentium Pro is the trademark of Intel Corporation.) The heavily doped source
provides carriers (electrons or holes), which travel to the heavily doped drain through the more
lightly doped silicon channel region under the oxide. The electrode above the oxide consists
of heavily doped polycrystalline silicon, and is called the gate. (L, is the length of the
channel patterned at a lithography step, and is an important parameter influencing the effective
channel length.)

Ldrawn

Sio,
(Gate Oxide)

Polysilicon (Poly)

e,

Source Drain

L,
(Channel length)

Substrate

Figure 19. A metal oxide semiconductor (MOS) transistor

The channel region is non-conducting at room temperature with zero bias voltage on the
gate terminal. When an appropriate voltage is applied at the gate, a large number of minority
carriers move to the channel region (close to the oxide) from the rest of the substrate. When
enough carriers exist to form a high conducting current path in the channel, inversion is said to
occur and the device is on. A shorter channel will invert faster because it needs fewer total
number of carriers from the substrate to achieve the critical carrier concentration (that is to say,
smaller devices have smaller gate capacitances). The gate voltage needed to achieve inversion is
called the threshold voltage. After inversion in the channel is achieved, an appropriate
voltage difference between the source and the drain results in the free flow of current between
these electrodes.
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MOS transistors are of two types, n-channel transistors and p-channel transistors. The
geometric representation of the two is the same. The difference between the two is in the type of
dopants used in the fabrication of the source, drain, substrate and gate; the type of dopant
determines whether electrons or holes will be the carriers in the channel. The substrate of an n-
channel transistor is lightly doped with acceptor atoms such as boron, gallium, and indium,
while the source/drain areas and the poly-silicon gate of an n-channel transistor are heavily
doped with donor atoms such as phosphorous, arsenic, and antimony. Electrons act as carriers
in the channel region of n-channel transistors. The substrate of a p-channel transistor, on the
other hand, is lightly doped with donor atoms such as phosphorous, arsenic, and antimony; its
source/drain areas and the poly-silicon gate are heavily doped with acceptor atoms such as
boron, gallium, and indium. Holes act as carriers in the channel of p-channel transistors. The
channel length of n-channel transistors is represented as L_,, and that of p-channel transistors as

L

ep®

For several reasons (including process variation, violation of the charge-sheet model,
presence of edge effects, etc.), the important length parameter for the channel is not the
geometric length of the poly gate (L., in Figure 19). Rather, the key parameter is the
electrical or effective channel length. In this thesis research, the term “channel length”
always refers to effective channel length.

3.3 Why is end-of-line channel length important?

In Figure 19, a short distance between the source and the drain results in a short channel
length. The transistor will turn on earlier due to faster channel inversion, and switching between
high and low output (drain) voltages will be faster due to a shorter transit time of carriers in the
channel. The resulting increase in microprocessor speed has been a major motivation for
continual scaling of devices to smaller and smaller dimensions. In addition, smaller line widths
result in higher packing density on a chip. Higher transistor counts have enabled
microprocessors to handle more tasks and more complexity (such as multi-tasking) more
efficiently [79]. Microprocessor capability and memory size have grown phenomenally over the
past few decades, due in large part to the increase in device density according to Moore’s law.
(Moore’s law states that the number of transistors on a given chip area double every eighteen

months.)

However, if the channel is too short, carriers may move to the channel from the source,
and may travel to the drain even before the threshold voltage is applied at the gate. This
phenomenon is called transistor breakdown, which deteriorates the reliability of a
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microprocessor or a memory chip. The careful design and control of channel length is thus
critical to achieve both high speed and high reliability. Channel length is one of the most
important determiners of product quality to Intel and to the semiconductor industry in general,
and accurate models can have a tremendous payoff in manufacturing control.

3.4 Difficulties in modeling EOL channel length

Modeling end-of-line (EOL) channel length as a function of in-line process parameters is
a challenging task. The difficulties associated with modeling EOL channel length are of broadly
two types

1. data-related difficulties, which need a more practical approach to be addressed.
2. model-development related difficulties, which are more theoretical by nature.

34.1 Data-related difficulties

Wafer fabrication is a data rich environment characterized by data collection at multiple
steps during processing, hierarchical sampling plans, multivariate data collected end of line, and
both continuous and discrete response variables. Hierarchical sampling plans and nesting in
variables create complex model structures between several EOL E-test variables. This
complexity often makes even understanding the components of variance difficult.

It is important to know what the processing conditions were for a wafer, for which
channel length measurements are being currently taken. This exact linking of in-line processing
conditions with specific measurements at the end of the line is important to understand the
influence of different processing conditions on the EOL channel length. Unfortunately, a clear
linkage is often missing, increasing the challenge in modeling because these links have to be
somehow established first, before any data-modeling activity is begun.

A further complication to unclear linkage is the presence of data on many different data
bases. For several reasons (including convenience, feasibility, and/or cost), data from different
process steps reside in many locations. Often, data exist only in dedicated station controllers,
which are typically not connected to a central computer or do not transfer data to a central
system. Moreover, station controllers have limited storage capacity, and data-acquisition
systems typically collect data at high sampling rates (band width). Consequently, data stored in
station controllers are usually for a few cycles of a process siep. These data may not represent
enough products, thus resulting in poor confidence in the parameters of the final model. In
addition, station controllers for different machines (in different process steps of a manufacturing
line) may have dissimilar data storage formats. This adds difficulty in setting up a single data
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file for analyzing data from several process steps of a manufacturing line. The problem of poor
data linkage and the presence of many disconnected data bases (which follow different storage
formats) result in a lower level of monitor integration than desired.

Besides the issues with differing formats and many data bases, data contained in them do
not lend ihemselves to straight forward statistical analysis because of the presence of outliers and
missing data. Missing data can be due to machine error, sampling plauns, operator error, data-
base error, etc. Data from real systems also have outliers. Outliers can significantly influence
several statistical analysis résults. A typical challenge with the presence of outliers is to
differentiate 2 genuine extreme data value from a false extreme data value. The genuine extreme
data value is useful to understand system behavior. On the other hand, false extreme data values
can give misleading results. Thus, a challenge of preliminary data analysis in the presence of
outliers is to classify the outliers correctly.

Even if the outliers have been categorized correctly, it is important to analyze the genuine
extreme values appropriately. If the system behaves in an extreme way locally, an extreme value
should not affect our analysis about the system globally. The presence of outliers and missing
values also need a rationale for choosing between the deletion of the whole row of observations
(which has missing values or outliers), or the substituticn of outliers and missing values by
appropriate estimats [34]. Regardless, missing values and outliers add complexity to data
handling, analysis, and interpretation of final results.

342 Model development related difficulties

Besides the practical data-related difficulties, several model-development issues also
arise. The existence of several process variables and our lack of full understanding of their
effect on final quality add complexity to the entire production process. Furthermore, even set
points of process variables can vary in multiple runs. For example, the flow rate of a gas in
diffusion step 3 can be different from that in step 5. The effect of process parameters on the
final quality of the chip (clock speed, yield, etc.) is impossible to understand using only
engineering models because such models do not readily represent process noise or subtle
environmental and multi-parameier effects. Traditional parametric techniques fail to capture
desirable local deviations in the relationships between process parameters and output quality.
Using data, one can develop purely staistical models relatively easily. However, data-driven
models do not incorporate :ausality considerations, which are necessary for process control and

process improvement.
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Sampling plans and the choice of variables on which data are not collected can
significantly influence the accuracy of the final model. If no process variable data are collected
for an influential process step, and no data are collected for intermediate product variables after
the process step, then the final model may not be as accurate as it could be if the relevant data
were collected and used in developing the model.

If numerical techniques of simulation are used for model development, then they could
include causality connection. However, numerical techniques often fail to explicitly represent
many transistor characteristics [80], such as the threshold voltage (V). Such characteristics
include the voltage to bring the channel in depletion, in weak inversion, and in medium
inversion, etc. An explicit representation of such characteristics is necessary later for accurate
circuit simulation [80].

Such difficulties make modeling of EOL channel length more challenging. In this thesis
research, a methodology has been developed to model channel length by incorporating well-
known device-physics models (which bring causality connection), empirical information from
process engineers, and data. The next section applies the different steps of our hybrid
methodology to the problem of modeling EOL channel length.

3.5 Seven-step hybrid methodology applied to model
EOL channel length

This thesis research has modeled EOL channel length at lot level, see Figure 18. This
means that one representative number was used, the lot-level median value, as the measure of
channel length for a lot. The numerical value of the representative number for L, was typically
different from that for L,. Modeling the variance of channel length is recommended as part of
future work. The median value determined from channel-length measurements at multiple sites
on every wafer in a ot was treated as the lot level median value for the lot. There were several
reasons for modeling channel length at lot level. These reasons include:

1. availability of data for process variables and most intermediate product measurements at
lot-level only. These data were not available at wafer level or at die level.

2. the desire to determine the highest level of data aggregation (or representation), that
provided the desirable signal. In high volume manufacturing a reduction in time for
inspection and measurement is important for high throughput. Data aggregated at a high
level (such as at lot-level) need less time for inspection than data aggregated at lower
levels (such as at wafer-level or at die-level), and is preferable in high-volume
manufacturing. In addition, the higher the level of data aggregation, the less the total



Semiconductor manufacturing application: Modeling end-of-line channel length of MOS transistors 71

data there is to analyze for a given number of products (or of process cycles). This can
help in obtzining inference faster, and in implementing real-time control. Low levels of
data aggregation usually result in large volume of data. Besides needing a large upfront
capital investment in data-acquisition equipment, a large amount of data takes more
analysis time, needs more storage space, and minimizes opportunities for real-time

control.

Thus, a high level of data aggregation is preferred over lower levels of aggregation.

This section is divided into two parts, based on the two parts (functions) of our hybrid
methodology, as illustrated by Figure 12. Section 3.5.1 discusses the first part. It focuses on
the identification of influential process parameters for EOL channel length. In this Section, steps
one through four of our hybrid methodology are applied to the problem of modeling channel
length. Section 3.5.2 discusses the second part of the methodology. It focuses on the
development of a large-scale model relating EOL channel length to influential process parameters
(identified in the previous Section). In this Section, steps five through seven of our hybrid
methodology are applied to the problem of modeling channel length.

In sections 3.5.1 and 3.5.2, several tables and figures report intermediate results for
both, L,, and L
applied separately to model L, and L. Since L,, and L,, are very similar, we have chosen to

«p» together. To be sure, the steps of the methodology should be, and were,
present the intermediate resuits for the two together. Where ever possible, the tables and figures
clarify important differences.

3.5.1 Identification of influential process parameters

Step 1: Choose relevant EOL E-tests and identify model relationship

Table 1shows a list of all EOL E-iests. Table 1 includes tests that have direct connection
with channel length (e.g., threshold voltages and critical dimension of poly lines) and also those
that cannot possibly have a connection with channel length (e.g., critical dimensions for metal
inter-connects). Repeating names represent the same E-test, but at different bias conditions or

measurements on different test structures.
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drain current of p channel
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drain current of p channel
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junction breakdown voltage of n+ area
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Table 1.

effective electrical length of n channe!
List of all EOL E-tests

+ junction breakdown voita

From the list of all E-tests, only a few E-tests were selected that could possibly have a

connection with EOL channel length (L., and L), and are compiled in Table 2. This selection

was guided mainly by physics-based models and understanding (and very little by past

experience of company personnel).
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sheet resistance of wide n+ diffusion weoll current of p channel drain current of n channel
sheet resistance of wide p+ ditffusion well current of n channel drain current of p channel
n well leakage current well current of of p channel drain current of n chanr.el
ecd ol n+ implanted natrow un-nested poly effective electrical length of n channel drain current of p channel
breakdown voltage of area oxide over p well external resistance ot n channel external resistance of n channel
breakdown voltage of area oxide over n well uocoxze ot n channel uocoxze of n channel
capacitance of n+ edge effective electrical length of p channel effective elactrical length of p channel
junction breakdown voltaga of p+ edge exiernal resistance of p channel extemal resistance of p channel )
drain current of n channel with gate structure in saturation regime uocoxze of p channel effective electrical length of n channel
drain current of n channel in saturation regime eltactive electrical length of n channel | external resistance of narrow source/drain
drain current of p channel in saturation regime external resistance of n channel uocoxze n channel narrow source/drain
drain current of n channel in saturation regime uocoxze of n channel process bias for channel of nmos |
drain current of p channel in saturation regime effective electrical length of p channel process bias for channel of pmos
transconductance of n channel uocoxze of p channel le difference between n and p channel
transconductance of p channel effective electrical length of n channel effective width of n channel
punchthrough of n channel junction leakage of p+ edge effective width of p channel
punchthrough of p channel threshold voltage of n channel n+ to n+ punchthrough vollage
punchthrough of n channel threshold voltage of p channel p+ to p+ punchthrough voltage
punchthrough of p channel threshold voitage of p channel n+ to n well punchihrough voltage
punchthrough of n channel threshold voltage of n channel n+ to p well punchthrough voltage
punchthrough of of p channal threshold volitage of p channel n+ junction breakdown voltage
well current of n channel thrashold voltage of n channel D+ junction breakdown voltage

Table 2. EOL E-tests selected by step one

Since L,, and L., are modeled at lot-level, no inherent model structure was used. For
modeling at wafer-level, the nesting structure of wafers being nested in lots should be used.
Here, the median value of L, (and L,,) is modeled as a function of the median values of other E-
tests selected from Table 1.

Step 2: Collect EOL inspection data

Data were collected for the chosen EOL E-tests. 385 lot level median values were
collected for each E-test. These lots were processed over two quarters (or six months). Each

row in the resulting data file represeuted E-test values for a single lot.

Step 3: Develop model & identify secondary EOL E-tests

Several statistical methods exist in literature to develop a model for the purpose of
identifying statistically important predictor variables (40, 52, 53, 54]. Here, two different
models were developed for L, and for L. 'hey were principal components regression (PCR)
models and classification and regression trees (CART) models [11, 49]. These models related
L., (and L,,) to other EOL E-tests parameters, chosen from Table 1. From each of those
models, we identified a list of significant EOL E-tests that predicted EOL L, (and L,) accurately
[40, 68, 69, 70, 71]. These significant EOL E-tests are also called here secondary EOL E-tests.
For both L,, and L, the secondary E-test variables for the PCR model matched very well with
those from the CART model. Table 3 shows the secondary E-test variables for L, and L,
Repeating names represent the same E-test, but at different bias conditions or measuremcnts on
different test structures.
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Secondary EOL E-tests for L,, & L,
ecd of n+ implanted narrow un-nested poly
well current of n channel
well current of p channe\
drain current of p channel in saturation :egime
drain current of p channel in saturation regime
breakdown voltage of area oxide over p well
breakdown voltage of area oxide over n well
threshold voltage of p channel
threshold voltage of p channel
drain current of n channel in saturation regime
drain current of n channel in saturation regime
punchthrough of p channel
punchthrough of p channel
punchthrough of p channel
ecd of un-nested n+ diffusion lines
punchthrough of n channel
punchthrough of n channel
punchthrough of n channel
junction leakage of n+ edge
junction leakage of p+ edge
le difference between n and p channel
threshold voltage of n channel
threshold voitage of n channel
threshold voltage of n channe!
n well leakage current
external resistance of n channel
effective width of n channel
eftective width of p channel!

Table 3. Secondary E-test variables for L, and L

The secondary E-tests in Table 3 are of the following types:

e ECD’s (electrical critical dimensions), that are related to the geometry of thc poly gate.

e Threshold voltages, drain currents, breakdown voltages of the area oxide related to the
gate oxide thickness that determine the degree of control of gate voltage on the channel.

e Well currents, punchthrough voltages, leakage currents and external resistance that are
related strongly to the channel and source/drain doping.
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Step 4: identify process steps influencing secondary EOL E-tests
and EOL channel length

The use of the following sources of information helped identify influential process steps

for secondary EOL E-tests and for EOL channel length:

1.

Theoretical and empirical models from process physics and device physics to
determine what process steps influence secondary EOL E-tests, L, and L_. An example
of a relevant theoretical model for threshold voltage (V) is given by Equation 6 on page
47. In addition, we use Intel Corporation’s process flow handbook, E-Test handbook
and FMEA for more information. (FMEA stands for Failure Modes and Effects
Analysis. This document lists possible types of faults in the final product, their possible
causes, severity to customers, how often they estimated to ocur and how often the faults
are estimated to be caught.) Other examples of physics-based models can be found in [6,
7, 25, 32, 35, 40, 43, 44, 64, 65, 73, 74, 88].

Numerical simulation tools such as Intel Corporation’s numerical simulation tools
that build on process simulators such as Suprem and device simulators such as Pisces.
Through process and device simulation, these tools identify influential process
parameters for a given EOL E-test parameter at different operating conditions.
Knowledge bases: Intel Corporation had two different sets of knowledge bases for
the curren: technology. These knowledge bases contained information on what process
variables were identified as the causes of problems in the past. These knowledge bases
helped identify influential process steps for L,, and L. and for secondary E-test
variables.

Experience of personnel: Given list of secondary EOL E-tests (and L, and L,,),
integration engineers at the manufacturing site were asked to identify process steps that
most influence each of the secondary EOL E-tests, L and L.

Design of experiments (DOE) or natural experiments were not used in the first

four steps of the methodology to demonstrate that influential process steps can be identified even

without the use of process data. '

14

The influential process steps obtained from the different sources mentioned above are

reported in Table 4. The process parameters associated with the process steps are potentially

influential process parameters for L., and L_. There were sixty nine such process parameters.
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Activates dopants implantes in poly & S/D 1 Gate anneal 1 Plasma etch of plugs in vial
Anneals wafers in hydrogen ambient Grows buffer oxide Plasma etch of plugs in via2
Defines active and isolation regions Grows edge oxide Plasma etch of vial
Defines polysilicon gates & interconnects Grows field oxide Plasma etch sputter |
Densifies BPSG layer Grows gale oxide Plasma etch sputter 2
Deposit base material for Salicide formation Grows oxide o protect gate edges Plasma etch spuuter 3
Deposit high quality thermal oxide Grows sacrificial oxide Plasma etch through BPSG for contacts
Deposit interlevel dielectric between devices & metal |N+ S/D implant Plasma etrh to open bond pads ‘
Deposit spacer NTip implant Preclean to remove remaining buffer oxide
Deposits a conformal polysilicon film Nwell implant Precleans gate
Deposits dielectric between metal | & 2 P+ S/D implant PTip implant
Deposits hermetic conformal passivation layer Plasma etch for deposition of ILD Pwell implant
Drives n-well dopant into the epi-layer Plasma etch for metal | interconnects Remove silicon nitride from active regions
Drives p-well dopant into epi layer Plasma etch for metal 2 interconnects Reoxidizes top surface of poly & S/D
Etches away silicon nitride & buffer oxide Plasma etch for metal 3 interconnects Salicide formation
Etches polysilicon gates & interconnects Plasma etch for via2 Sputter
Etches spacer Plasma etch of plugs connecting poly or S/D to metal | Start material condition

Table 4. Influential process steps for L,, and L,

The next Section focuses on the final model development, which relates L, (or L,,) to
potentially influential process parameters.

352 Development of large-scale model cembining engineering and
statistical information, and data

This Section applies steps five through seven of our hybrid methodology to the problem
of modeling EOL channel length.

Step 5: Collect data for in-line process variables and intermediate
product variables

Data were collected for process parameters associated with the influential process steps
reported in Table 4. There were a total of sixty nine such parameters. 242 lot level median
values were collected for each influential process parameter and for EOL L, and L. Each row
in the data file represented measurements for the same lot.

Step 6: Determine engineering models and empirical information

Several physics-based models were collected. They are reported as six equations and
one expression (feature) in Table 5 [80]. The six equations explain the behavior of an MOS
transistor under different operating conditions. For example, Equation 1 in Table 5 is a general
equation for threshold voltage for long channel devices. Equations 2 through 4 in Table 5 model
short channel effects. Equation 5 models the mobility of carrier. Carrier mobility is important
because it explains how fast carriers move from the source to the drain. Equation 6 models

miller-capacitance. The last expression is a feature that is important in the calculation of channel
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length. (Other sources of such piece-wise models are [6, 7, 25, 32, 35, 40, 43, 44, 64, 65, 73,
74, 85, 88].)

[ Equation or
Expression Name Equation/Expression
number

Equation 1 Threshold voltage (Vi) Vi= ¢us - Qa/Con + 98 + (08 + V)**

Equation 2 &V, due to pinch off Vp=2(e/Ea)(talL)(Pe + Vo)

Equation 3 5V, due to narrow channet 8V = N(E/Ea)(tadWH s + V)

Equation 4 Change in channel length due to pinch off |8L = sqrt(2(e«/(qNa)))(sart(¢o + (Va-Vas)) - sGt(¢0))
. . . . Jen = (Bulk mobility/2)/(1 + (0.025Cad2€s)(Vs - Vi +

Equation 5 Effective carrier mobility 2y5q(e + Vo) - 0.5(1 - 5)Va))

Equation 6 Overlap/Miller Capacitance Cowr = Eoxll/T

Expression 1 MuCZe uCaW

Table 5. Physics-based models

In the equations and the expression of Table 5,

e ¢, is the difference between the bulk potential and the gate potential

e g is the charge on the gate per unit area
e C,_, is the capacitance of the gate oxide per unit area

e ¢, is the surface potential at the interface of the oxide and the substrate

e vyis the body-effect factor, and includes a measure of the implant dose in the substrate
e 'V, is the potential difference between the source and the substrate

o ¢ is the permittivity of singe crystal silicon

e ¢ isthe permittivity of the gate oxide

e t_isthe thickness of the gate oxide

¢ L is the nominal length of channel

e W is the nominal width of channel

e qis the magnitude of electronic charge
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o N, is the substrate dose

eV is the potential difference across the source and the drain

e V is the potential difference across the source and the pinch-off point in the channel
e 'V, is the potential difference across the gate and the source

e U=, = effective mobility of the carriers

e dis an approximation constant
o ris the depth of LDD implant

_ Bl
¢D_2qNA

o E, is the electric field that results in velocity saturation of electrons in the channel

The right side of equations 1 through 6 and the expression in Table 5 consist of

e in-line process parameters,
¢ in-line intermediate product variables,
e material properties.

Numerical values of relevant material properties were determined from standard tables.
Most in-line process parameters and in-line intermediate product variables were part of the list of
the sixty nine process variables for which data were collected, see step five of the hybrid
methodology. However, measurements for three variables were still missing. These variables
are accumulated charge on the gate (q,,), implant dose in the source/drain areas (S/D dose), and
implant dose in the tip areas (Tip dose), also called the lightly doped drain (LDD) areas.

The values for the three parameters (q,,, S/D dose and Tip dose) were estimated using
empirical knowledge of process engineers. The information from engineers was qualitative by
nature. However, it was translated into a quantitative piece of information. Table 6 shows the
process of estimating numerical values for q,,, S/D dose and Tip dose.
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Equation or !

Expression Name ! Equation/Expression
number
Equation 1 gate charge (Qox) qox = f(equipment data from plasma process steps)

Source/Drain dose S/D dose = g(equipment data from S/D implant steps)

Equation 2 (S/D dose)
Equation 3 (LjODsDe)d ose (Tip ;jLDD dose = h(equipment data from LDD implant steps)

Table 6. Quantitative depiction of empirical information for q,, and implant dose

In the equations of Table 6, the functions “f”, “g” and “h” are determined using the
experience of process engineers. Examples of such functions include natural log, square root,
normalization about median, a combination of them, etc.

At the end of step six, seven models from device physics and three models from the
qualitative empirical understanding of process engineers have been identified. The qualitative
information was translated into mathematically usable quantitative equations. Then, numerical
estimates of the seven device-physics models and of the three empirical models were obtained
for each observation of data.

Step 7: Develop large-scale model relating output to process data

The inputs for the final model were the numerical estimates of seven physics-based
models, three empirical models, and data for sixty nine in-line variables. Response values (L,
and L_) were also given to the MARS modeling tool for model development [28] in the Splus
statistical computing environment on windows and UNIX. (Helpful references for using Splus
are [13, 50, 82].)

Response In-line In-line ] In-line - Physics N Physics Empirical ) Empirical

#1 #2 #69 model #1 model #7 model #1; model #3

23 23 456 | . 12.5 54.6 . 67.8 834 ., 8
231 43 435 |. 132 562 . 657 _ 8679 .| 8.3

43 446 453 . 134 556 . 65 864 .| 79

34 435 467 . 115 589 . 669 789 .| 7.7

356 879 _ 453 ! 14.2 51 : 68.9 813 el T
. 23.56_ 12.6 546 ' . 11.6 54.6 . 61.7 888 e 7.65
23.3 23.8 654 | 12.5 61 . 67 ' 857 . 7.5

Table 7. Representative data file for MARS modeling tool
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Table 7 shows a representative data file (with data values transformed for confidentiality
reason) given to the MARS tool for model development. The first column is the response
variable (L,,/L.,). The next sixty nine columns are the in-line process variables and in-line
intermediate product measurements. The subsequent seven columns are the seven physics-based
engineering models. The last three columns are the empirical models. Appendix A illustrates the
process of creating new variables and cf developing MARS models with the help of a numerical
example.

The MARS software was given this data file and a number telling MARS to develop
models with a maximum of six-variable interaction. MARS discovered that a maximum of two-
way interaction gave most accurate models for L, (and L, ), as summarized in Equation 11.

L = ag + aj[Etchy - @], + 23[ECDL, - a4], + a5{S/D dose - ag]. +
a7(tox - as]{[ECDL. - a4+ + a9[Tip dose - a1 0}-[BViL - a1 1]+ + aj 2[Etchraic - 2]+ [Tip dose -aio}+ +
a13[Etchyae - 32]-[Larawn - @i 4]+ + a15[Polyeich rate - 216)-[ECDLe - a4]. + a1 7{Etchraie - 22){V, - aighe + €& € ~ N(0, 6?)

Equation 11. MARS model for L /L,

In Equation 11,

1. Etch,_, is the etch rate of the process step just before BPSG deposition

2. ECDL, is the electrical critical dimension of the poly gate measured just after the gate is
patterned

S/D dose is the dose in the source/drain areas

t,, is the thickness of the gate oxide

Tip dose is the dose of the LDD areas

&V, is the change in threshold voltage due to pinch off

L,... is the geometric length of the channel measured when the gate is patterned
Poly,,.,. ... is the etch rate of the poly gate
V, is the threshold voltage

¥ X N o kW

Equation 11 has eighteen constants (numerical values are not disclosed for confidentiality
reasons), and effectively includes parameters from nine process steps. It has three main-effects
terms, and six two-way interaction terms. Chapter 4, on results and discussions, lists and these

results and compares them to two alternatives.
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3.6 Summary
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4. Results and discussion

This chapter provides the results of applying the methodology to the problem of
modeling end-of-line (EOL) channel length of MOS transistors in microprocessor
manufacturing. The chapter is divided into six main sections. Section 4.1 gives the final MARS
model for EOL channel length. This model incorporates device-physics models and empirical
knowledge about implant steps and plasma-etch steps. The model relates channel length to
influential process steps identified in Section 3.5.1. Section 4.2 lists two alternate models for
EOL channel length, the MARS model with data only and the PCR model with data and device
physics. Using residuals plots, Section 4.3 compares the MARS model derived using device-
physics models, empirical knowledge about process steps and data to the two alternatives.
Section 4.4 provides intuitive understanding for why the MARS model developed using prior
information (in the form of device-physics models and empirical information) gives better results
than the one developed using data only. Section 4.5, then identifies a good process operating
region from the MARS model which uses device-physics models, empirical knowledge about
process steps and data. The good process operating region is one that gives parts close to target.
Section 4.5 also discusses different ways of using the region. The last section, Section 4.6
discusses some important implications of the variables present in the final MARS model on
strategies for process control.

4.1 MARS model for EOL channel length with device-
physics models, empirical knowledge and data

Separate models were developed for end-of-line (EOL) channel length for p-channel (L)
and n-channel (L_) MOS transistors. These models relate respective channel lengths to process
parameters from influential process steps. 150 lot level-observations were used to develop the
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models, which were then tested on an independent set of 92 lot-level observations. Both
training and test observations were spread over two quarters (or six months) at Intel. Since the
order of lots varies from operation to operation, there does not exist a unique chrenological order
of lots.

The framework of multivariate adaptive regression splines (MARS) was used to develop
models for channel length [23]. These models used information from device-physics knowledge
(see Table 5), empirical understanding about implant steps and plasma-etch steps (see Table 6)
and data. Appendix A shows an example of developing a MARS model for a set of random
observations. The example illustrates the inputs and outputs of the software that generates
MARS models, and the method of interpreting the outputs to compile the final model equation.
The software used here was developed by Hastie [28].

MARS models for L,, and L, (with and without the use of physics-based models and
empirical knowledge) were developed in the following way. Of the 150 observations, 149 were
first used to develop a MARS model, which was then used to predict the remaining observation.
Then, the remaining observation was used for model development and a different observation
was kept aside for prediction. These steps were repeated to develop 150 MARS models, each of
which was tested on the remaining 150th observation. Such a process of model development is
called generalized internal cross validation. The model which resulted in minimum root mean
square prediction error was chosen to be the final MARS model. This model was then used on a
different set of 92 observations for external cross validation.

Equation 12 shows the MARS model for L,,. (For proprietary reasons, the numerical
values of coefficients are not disclosed). The model for L., has the same structure only with
analogous process parameters pertinent 10 p-channel transistors, and with different constants. In
Equation 12, the term inside a pair of square brackets is a univariate basis function. It
contributes to the model under two circumstances:

1. if the numerical value of the term and the subscript next to the square brackets are
positive, and
2. if the numerical value of the term and the subscript next to the square brackets are

negative.

Device-physics models are represented through terms V, (threshold voltage) and 8V,
(change in threshold voltage due to pinch off) in Equation 12.
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L. = 2y +a,[Etchg,, - 8], + a3[ECDL, - %], + as[S/D dose - a]). +
a7(tox - ag)[ECDLe - as]+ + a9[Tip dose - ajo}-[6ViL - a1 1)+ + a1 2[Etchar - a2]+[Tip dose - ajo}+ +
aj 3{Etcheare - 22]1.[Larawn - @14+ + a1 5[Polyerch raie - a16)-{ECDL - a4]+ + a17{Etchrate - 221{V( - a18}+ + € € ~ N(0, Gz)

Equation 12. MARS model for L, and L, using device-physics models,
empirical information and data

Equation 12 has nine predictor variables, two of which are from physics-based models,
another two are from empirical information, and the rest are process variables. These nine

predictor variables appear below:

1. Etch,, is the etch rate of the process step just before BPSG deposition, a process
variable

2. ECDL, is the electrical critical dimension of the poly gate measured just after the gate is

patterned, a process variable

S/D dose is the dose in the source/drain areas, from empirical information

t, is the thickness of the gate oxide, a process variable

Tip dose is the dose of the LDD areas, from empirical information

3V, is the change in threshold voltage due to pinch off, from a physics-based model

NS v hew

L,... is the geometric length of the channel measured when the gate is patterned, a
process variable

o

Poly.,.. ... is the etch rate of the poly gate, a process variable
9. V,is the threshold voltage, from a physics-based model

Equation 12 has eighteen constants. It has three main-effects terms, and six two-way
interaction terms. Company personnel in semiconductor manufacturing typically examine only
L,... in the event of any problems with channel length. This model helps identify a manageable
set of additional process variables to examine those can influence channel length.

This paragraph defines a metric called “model capabiiity ratio” used here to assess
the goodness of the models. Model capability ratio is defined in a manner analogous to process
capability or C,,, and is the ratio of the acceptable error (in L, or L,) and the model standard
error (for L, or L_). For the model shown in Equation 12, this ratio is 2.96 for L., and 2.167
for L, and is a measure of the acceptable error in terms of the number of standard deviations of
the model error. The higher this ratio is, the better the model is.

Model capability ratio has an interesting graphical interpretation. Consider the area under
a standard normal probability distribution curve between the points (zero - model capability ratio)
and (zero + model capability ratio) on the x-axis, as shown in Figure 20 for L, and for L,
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This area is defined here as model prediction capability or C,. C,, for L, was 0.9969
on the test set of 92 lot level observations. A C,., value of 0.9969 (or 99.69%) means that the
model would predict only one in 322 L, observations beyond the acceptable limit. The higher
the model prediction capability (or C,,) is, the more the model has identified the systematic part

of the signal.

N(, 1)

] T 1 -—

-2.96 X +2.96 2167 X +2.'16'l
Len Lo
Figure 20. Model prediction capability for L., and L, models of Equation 12

Figure 21 shows the L_, residuals for the test set of 92 observations. The variance does
not appear to be unifornily spread for different observations. Unfortunately, due to the manner
in which lots are processed at different operations, there is not a clean, clear order in which the
residuals can be analyzed. As such, a specific reason for the variation in the spread of the
residuals could not be determined.

o

Residuals

Observations

Figure 21. L_, residuals for MARS model with device-physics models, empirical
information and data
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Residuals analysis (normal cumulative probability plot and the plot of residuals vs. fitted
values) of L, showed that the residuals were distributed approximately normally. This is true
for residuals of L, and L, from other models as well.

Model capability ratio for L, is 2.167 and the Model prediction capability is 0.969 (or
96.9%), tested on a cross-validation data set of 92 lot level observations. A C,., of 0.969
means that one in 32 predictions will fall beyond the acceptable error bounds. Figure 22 shows
the L, residuals. For reasons mentioned earlier about the varying order of processing of lots
from operation to operation, a specific reason for the variance in the spread of the residuals could
not be determined for different observations in Figure 22. (This is true for the later residuals
plots also.)

“ .‘9 0 ®
0 =: 5‘%}:005

o P ."*

Residuals

L 22 PN

Observations

Figure 22. L, residuals for MARS model with device-physics models, empirical
information and data

4.2 Alternative models

Two reasonable alternatives to compare with the above MARS models are:

1. MARS models using data only, and

2. modified principal components regression (PCR) models using data, device-physics
models and empirical information. Traditional applications of the PCR method have
used data only.

This section presents the alternative models.
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42.1 MARS models with data only

Equation 13 and Equation 14 show MARS models for L, and L, respectively, derived
using data only. In Equation 13 and Equation 14, most predictor variables are the same as in
Equation 12. The ones that are different are listed below:

® (... IS the thickness of the base material for salicide formation

® U uerae 1S the thickness of the spacers

e Linky, is a machine-relaied variable which measures energy during UV exposure in
lithography of the gate

e a’s are constants different from those in Equation 12

Unlike Equation 12, device-physics models are missing in Equation 13 and in Equation
14. Also, the machine parameters estimating gate charge are not used here, but are used in
Equation 12 through the use of empirical information (Equation ! in Table 6), which becomes

part of V, and &V, (due to pinch off) in Equation 12. Oxide thickness (t,,) does not appear in
Equation 13, but is a part of the models in Equation 12 through a main effect term and as part of
V, and 8V, (due to pinch off). As before, the models in Equation 13 and in Equation 14 were

developed using 150 lot level observations, and were then tested on a completely different set of
92 lot level observations

Len = 29 + aj[Etchpye - 224 + a3[Etchpye - a3]. + 24(ECDLe, - as). + ag[Tip dose - a7], +
ag(tsal-base - 89)- aj0tspacer-dep - a11]. + aj2[Etchpae - 7] [Linkgg - ay3]4 +
aja[Etcheye - a7] [Linkgg - a53). + aj5[tsar-base - 39)+a16[Tip dose - a7], +

a)7[Tip dose - a7]_[tsal-base - 39+ +2;8[tsal-base - 9).[Linkgp - 213], + €, € ~ N(O, c?)
Equation 13. MARS model for L, using data only

Figure 23 shows the L_, residnals. The x and y axes scales in Figure 23 are the same as
those in Figure 21. The model capability ratio for L,, model with data only is 2.287.
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Observations

Figure 23. L, residuals for MARS model with data only

Lep = ag + a)[Etchpye - a2]4 + a3[ECDLp - a4], + as[ECDL, - a4]. + a6[Tip dose - a7]. +
agllox - ag) [ECDLp - aj0)4 + a1 [Tip dose - a7).[Etchpye - a2]4 +
ay2[Etchyye - a2).[Tip dose - a7]. + €, € ~ N(0, G?)

Equation 14. MARS model for L using data only

The corresponding model fit results for L_, are shown in Figure 24. They are all based
on the predictions of the model on the cross-validation data <et of 92 Jot level observations. The
residuals plot has the same horizontal and vertical scales as those in Figure 22. The model

capability ratic for L, model using data only is 1.439.

Resiguals
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Figure 24. L residuals for MARS model with data only

4.22 Modified PCR models with device-physics knowledge,

empirical information and data
Traditional applications of principal components regression (PCR) use data only [51].

The modified version of {PCR) developed here uses device-physics models, empirical
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information and data. The covariance matrix was determined for a data matrix (shown in Table
7), which had device-physics models and empirical information represented as separate
additional columns in the original data matrix. Principal components were determined for the
covariance matrix. All principal components were chosen for regression [84). The output, L,
and L, was regressed (one at a time) over the principal components. The t-scores of the
regression coefficients were examined. If the absolute value of a t-score was less than two, the
corresponding principal component was eliminated from the regression, and a new regression
equation was developed using the remaining principal components. This process was repeated
until the absolute values of all t-scores were above two. The resulting PCR model had only
statistically significant principal components. There was one modified PCR model for L, and
another one for L. They both tumed out to have similar structure with different constants.
Later, these models are compared to the cnes derived using the methodology developed by this
research reported in Chapter 2. By contrast, conventional PCR selects only a few principal
components (that explain a given amount of variation, say 80% or 90%), and then develops a
regular regression between the output and the selected principal components.

Equation 15 shows the structure of mecdified principal components regression (PCR)
models for L., (and L_). The model for L has the same structure only with analogous process
parameters pertinent to p-channel transistors, and with different constants. These models are
derived using device-physics models, empirical knowledge about process steps and data. “p,’s”
in Equation 15 represent principal components of the covariance matrix. The predictor variables
used here are the same as those used by the hybrid methodology developed in this thesis
research. As before, the model in Equation 15 was developed using 150 lot level observations,

and then tested on a completely different set of 92 lot level cbservations.

Output = ag + a;pe + ap7 + a3py3 + a4pjg + asp3g + €, €~N(0, 62)

Equation 15. Modified PCR model for L., and L, using device-physics models,
empirical information and data

In Equation 15,

e p,’s represent different principal components
e a’s are model constants
e € is random normal error term with mean zero and variance G

Model capability ratio for L., is 0.955 giving a model prediction capability (C,,) of
0.6162 (or 61.62%), which means that on= in three predictions will fall beyond acceptable
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limits. Figure 25 shows the corresponding L, residuals. The horizontal and vertical scales in

Figure 25 are the same as those in Figure 21 and in Figure 23.
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Figure 25. L,, residuais for modified PCR model with device-physics models,
empirical information and data

Model capability ratio for L, is 0.769 giving a model prediction capability (C.,) of
0.5162 (or 51.62%), which means that almost every other prediction will fall beyord acceptable
limits. The corresponding model fit results for L, are shown in Figure 26 on the cross-
validation data set of 92 lot level observations. The horizontal and vertical scales in Figure 26

are the same as those in Figure 24 and in Figure 22.

Residuals

Observations

Figure 26. Lep residuals for modified PCR model with device-physics models,
empirical information and data



Results and discussion 91

4.3 Comparison between models from different
methods

Figure 27 compares the residuals plots of L, for the three models. While actual numbers
are not reported on the Y-axis for confidentiality reasons, the vertical scales are the same for the
three plots. The first plot is the residuals plot for the modified PCR modei (with device-physics
models, empirical information and data). The second plot is that of the MARS model with data
only, and the third plot is that of the MARS model with device-physics models, empirical

information and data.

Figure 27 shows that the residuals of the MARS model with device-physics models,
empirical knowledge and data are much tighter around zero than that of the MARS model with
data only. The standard error of the MARS model with device-physics models, empirical
information and data is more than 22% less than that of the MARS model with data only. This

percentage is calculated through the use of Equation 16.

SEMARS with data only ~ SEMARS with prior information and data
SEMARS with data
Equation 16. Percentage improvement calculation for MARS models

% improvement =

In addition, the residuals of the MARS model with data only are much tighter around
zero than that of the modified PCR model with device-physics models, empirical information
and data. The standard error of the MARS model with data only is more than 58% less than that
of the modifiecd PCR model with devicz-physics models, empirical information and data
(calculated using Equation 16).
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Figure 27. Residuals plots of L , for the three models

Figure 28 compares the corresponding residuals plots of L, for the three models. The

vertical scales are the sume for the three plots.

Again, Figure 28 shows that the residuals of the MARS model with device-physics
models, empirical knowledge and data arc much tighter around zero than that of the MARS
model with data only. The standard error of the MARS model with device-physics models,
empirical information and data is more than 33% less than that of the MARS model with data

only. The percent improvement here is calculated using Equation 17.

SEmadificd PCR with prior information and data - SEMARS with data only

% improvement =
SEmodiﬁcd PCR with prior information and data

Equation 17. Percentage improvement of MARS over modified PCR models

The residuals of the MARS model with data only are much tighter around zero than that
of the modified PCR model with device-physics models, empirical information and data. The
standard error of the MARS model with data only is more than 46% less than that of the
modified PCR model with device-physics models, empirical information and data (calculated

using Equation 17). Table 8 compares the improvements in standard error achieved by current

models for L, and L.



93

Resulis and discussion
modified PCR with data MARS with MARS with data
& device physics data only & device physics

o _,' ._.'.

’ - ¢ g
RS ‘

Residuals

Residuals
o

Residuals

-

Observations Observations Observaiions
> 46% improvement > 33 % improvement
(over col. 1) (over col. 2)

Figure 28. Residuals plots of L , for the three models

Percent Worst case Percent Worst case
Percent Worst case  'MProvement in percent improvement in percent
. standard error improvement in
improvement in percent standard error improvement in
of current standard error
standard error improvement in of current standard error
AARS model of MARS
of current standard error sina data and  modal in MARS model of MARS model
MARS model of MARS model Y*'"9 o data :"" du.rir:- using data and using data and
uging data only using data only Pr p prior prior
) X Information Information
over modified over modified 1 MARS Information information
PCR PCR over curren over over modified  over modified
MARS model models using PCR PCR
e using data only data only
Len 58.27 56.27 22.80 14.94 67.78 66.20
Lep 46.54 43.31 33.60 24.55 64.50 62.10

Table 8. Percent improvement in standard error for current models and for the
worst case

An obvious question here is if the improvements reported above are significant. This is
answered by comparing the standard error of the MARS models reported here to the inherent
variation in those models. If the inherent vanation is small, the improvements are significant.
Otherwise, the improved model reported here is a fortuitously selected one. A measure of the
inherent model variation was had from the generalized cross validation standard error (GCV;,).
During model development, 150 MARS models were developed using only 149 observations at
a time. Prediction error was computed for the remaining observations for each of the 149
MARS models. The standard error calculated from the 150 prediction errors is the generalized
cross validation standard error (GCV ) representing inherent model variation.

The ratio of GCV,, and standard error of the different MARS models are 0.0159 (L,
using data only), 0.0163 (L, using prior information and data), 0.02 (L, using data only), and
0.0226 (L, using prior information and data). The ratios show that the inherent model
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variability is only a couple of percentage points of the model standard error used for comparing
different types of model for L, and L,

Table 8 reports the worst case comparison between different types of models for L, and
L., with respect to the improvement in standard errors. The worst case comparison between
MARS models (using data only) and modified PCR models is when the standard error of the
MARS models is higher than their current value by three times the GCVg.. Specifically, the
improvements in L, and L_ are 56.28% and 43.31%, respectively, for the worst case
comparison. The worst case comparison between MARS models using data only and MARS
models that use data and prior information is when the standard error of MARS models using
data only is lower than their current value by three times their GCV; and that of MARS model
using data and prior information is higher than their current value by three times their GCV .
Here, the worst case improvements are 14.9% and 24.54% for L, and L, respectively. Similar
numbers comparing MARS models using data and prior information to modified PCR models
show improvements of 66.2% and 62.1%, respectively, for L, and L. The comparison
numbers for the worst case confirm that the improvements in standard errors of the MARS
models (with and without the use of prior information) are still quite a bit higher than that of the
modified PCR models, and the improvements in standard errors of MARS models that use prior
information are still higher than that of MARS models that use data only.

Graphically, the comparison between MARS models that use prior information with
those that use data only provides another perspective to the system being modeled. The use of
data only in MARS results in hyper-rectangular regions (or partitions) in the process-operation
space. Within each of the hyper-rectangular regions, MARS fits a function that obeys some
continuity criteria at the boundaries of the partition. By using physics-based models and
empirical information, MARS splits the process-operation space into non-hyper-rectangular
regions. The flexibility in the shape of the partitions can help divide the process-operating space
more accurately. As such, the final model would characterize the system more accurately.

We can now compare the above results to the objective of this research outlined in
Section 1.5. Both Figure 27 and Figure 28 show that our methodology developed more accurate
models for L_, and L, than the two alternative models. This is clear if we compare the plots in
column three in the two figures to those in columns one and two. In addition, note that the plots
in column three give improved standard errors over those in column two (more than 22%
improvement for L., and more than 33% improvement for L, ). This shows that, in this case,
combined models (which use device-physics models and empirical information with data) for the
current application problem are more accurate than statistical models (which use data only) alone.
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Also, the plots in column three gave improved standard errors compared to those in column one.
This shows that, in this case, the local modeling method (MARS) characterized a large
manufacturing operation better than a global modeling method (modified PCR).

To be sure, the comparison between MARS models (with and without the use of prior
information) and conventional PCR models comes with a caveat. Conventional PCR modeling
method does not use the response to determine principal components used in the final
regression. It chooses only a few that explain a specified variation in the input variables instead.
As such, conventional PCR modeling method may identify principal components that may not
have enough signal to model the response, even though the original inputs may be rich in such a
signal. This limitation of conventional PCR is overcome here by using all principal components,
and then using a t-test to identify the statistically significant ones. On the other hand, MARS
modeling method uses response information at every stage, in developing the partitions and in
developing the regression.

PCR was chosen as a comparison alternative in this research because (conventional)
PCR is a popular multvarate statistical modeling method that is used extensively in
manufacturing companies (including those in the semiconductor industry). A comparison of
MARS models with partial least squares (PLS) regression would also be appropriate and
interesting, and is recommended as part of future work.

4.4 Why does MARS with prior information give
improved models?

Jif

Section 4.3 demonstrated that MARS models developed using prior information (in the
form of device-physics models and empirical information) predict end-of-line (EOL) channel
length better than (an improved version of conventional) PCR and MARS with data only. This
section aims to provide intuitive understanding about why MARS models with prior information

give better results.

Figure 29 shows three scatter plots. The first plot is between the output, end-of-line
channel length, and the thickness of the oxide (t,.). The second plot is between end-of-line
channel length and the charge on the gate (q,,). The third plot is between end-of-line channel
length and an implant machine parameter called thermal wave (TW). For simplicity, the output
is shown as L,. L, could represent channel length of n-channel transistors (L,,) and/or of p-

channel transistors (Ley)-
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All three scatter plots look like “fuzzy balls”, implying lack of correlation (or signal)
between the output (L,) and t ,, q,, or TW. Figure 29 indicates that L, cannot be modeled from
t,,» 4o, of TW.
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Figure 29. Scatter plots between channel length Vs oxide thickness, gate charge
and TW

Figure 30 shows the scatter plot between the output (L,) and the device-physics model in
the form of q,,*t,,. The correlation (or signal) between the output and t,*q,, improves in part
of the scatter plot. The scatter plot in Figure 30 can be divided into three regions. Region I and
region II show some signal between L, and q_ *t . In these regions, L, depends on g, *t,, as a
straight line. The slope and intercept of the straight line in region I can be different from that in
region II. Region III of the scatter plot in Figure 30 is still 2 fuzzy bali, implying lack of
correlation (or signal) between L, and q_ *t ..

Region H Region Il :Region i
I
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Figure 30. Scatter plot between channel length and device-physics model
(tox‘qol)
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However, different prior-information (e.g., empirical information about source drain
implant process step such as S/D dose value calculated from many TW parameters) in region III
in Figure 30 can replace the fuzzy ball by a meaningful signal. Figure 31 shows a scatter plot
between L_ and q_,*t , in regions I and II, and between L, and S/D dose in region IIL

%\egion | iRegion Il iRegion Iil

bx'Qox /D dose

Figure 31. Scatter plot between channel length and device-physics modei
(t,.*q,,) in regions I and II, ard S/D dose in region III

Figure 31 shows that L, can now be modeled. It is a linear function of q_ *t_, in regions
I'and II. In addition, it is a linear function of S/D dose in region III. The identification of q_ *t

and S/D dose as predictor variables in regions I, II and III respectively helped generate the signal
for L,.

How does MARS help in generating and maximizing the signal for L,? MARS exploits
the fact that prior information can help generate clear signals for L,, compare Figure 29 to Figure
31. In addition, MARS exploits the fact that some pieces of prior information can generate a
clearer signal for L, in a region than what other pieces of prior information can do. For example,
S/D dose helped generate a clearer signal for L, in region III than what q_ *t  did, compare
region III in Figure 30 with region III in Figure 31. MARS accomplishes two tasks
simultaneously. It determines the different regions (e.g., the three regions in Figure 31), and
selects different pieces of prior information to maximize the signal to noise ratio. It defaults to
the use of data if data provides a better signal than any of the available prior information.

A possible situation where available prior information may not be useful is when the data
are collected from one region of operation, but the available physics-based models and empirical
information are valid in a completely different region of operation. For example, consider that
the MARS software is provided with models for short channel effects only and data that are
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collected near operating points where long channel effects are predominant. In this case, prior
information from device-physics models would not be used; MARS will try to model long
channel effects by using data only.

4.5 Identification of good process operating region

A distinct advantage of MARS models is to identify regions of process operation that
result in good parts, and those that result in bad parts. If the MARS model includes physics
based understanding, then the process operating region identified from it shculd be based on
causality relationship of the physical model. On the other hand, a region identified from a
MARS model using data only could result from a mere coincidence of numbers. As such, the
use of physics-based models can help determine good process operating regions more reliably.

Here, we now present an example of a process-operating region which results in good parts.

Figure 32 shows a simplified 3D region which resulted in most parts in the test data that
fell within a small window of target +/- 0.56. The 3D region is made up of the basis function in

the MARS model that these parts invoked. In the figure, the x-axis is a measure of gate charge
(q,,) accumulated during processing. The y-axis is the thickness of the gate oxide (t,). The z-
axis is etch rate of the process step just b:fore BPSG deposition. As long as the three
parameters along the three axes fall within the solid during processing, there would be good
parts at the end of the manufacturing line. However, if a point falls outside of the solid during
processing, there would be a bad part at the end of the line. According to Figure 32, the
interaction between ¢, and q,, is important in determining the final quality. But, the etch rate
before BPSG deposition remains an independent axis. That the etch rate is independent, makes
intuitive sense. Also, that there are bounds on etch rate again makes intuitive sense. According
to a process engineer at Intel, a very high etch rate will etch away too much silicon from the
source/drain (S/D) area, and push the top surface of the S/D velow the lower edge of the gate
oxide. As such, the S/D will have more difficulty transferring minority carriers to and from the
channel region under inversion. This will result in a dysfunctional transistor.
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Etch %

Figure 32. A 3D sketch of a good process operating region

The following discussion investigates the interaction between gate oxide thickness (t,,)
and gate charge (q,,) accumulated during processing. Figure 33 shows a 2D cross-section of the
3D solid in Figure 32. The shaded region is a good process operating region for t,, and q,,.
Figure 33 makes intuitive sense. According to Figure 33, there is a particular relationship
between t,, and q,, which defines the bounds o. good operation. If the process runs beyond
these bounds, it would produce bad parts at the end of the line. (Mathematically, the region

below the curved line is represented by t_*q, < constant). The following paragraph explains the
shaded region qualitatively.

In the shaded region, the gate still has control over the channel. Outside of the shaded
region, the gate 'oses that control. In Figure 33, line 1 shows that for a given oxide thickness,
there is a critical value of the gate charge (q.), beyond which the gate loses control on the
channel. Similarly, according to line 2, there is a critical value of oxide thickness (t,) for a given
amount of gate charge. For oxide thickness less than the critical oxide thickness, we still have
control on the channel. For oxide thickness more than that the critical oxide thickness, the gate
loses control on the channel'. q_ and t_ are determined from the mathematical relationship for

' The author wishes to thank Intel Corporation’s Ann Nelson for assisting in developing the arguments for
critical gate charge and oxide thickness through the use of lines 1 and 2.
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the shaded region (t,,*q,,< constant). For a given value of one of the variables (t,, or q,,), the
critical value for the other can be determined from this relationship.
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Figure 33. A 2D cross-section of a good process operating region

Engineers and researchers in the semiconductor industry know that t, and q,, interact
with each other. They know that for a given q_,, there is a critical oxide thickness beyond which
the gate will tend to lose control over the channel, and vice-versa. The methodology developed
in this research has helped formalize that intuitive understanding mathematically. It has helped
determine the shape of the interaction between t,, and q,, (from physics-based models and

empirical information), and helped identify the exact parameters of that interaction (based on
measurement data).

4.5.1 Practical uses of the good process operating region

Section 4.5 discussed the identification of a region in the process operating space that
results in good parts. In doing so, our methodology formalized an intuitive understanding

mathematically. This Section discusses a key practical question “How should we best use the
good region of Figure 337”.

All points in the good operating region of Figure 33 do not result in equally good parts.
Some points result in better parts than others. If we want to produce parts within a small

window of target +/- 0.5G, then we have to solve Equation 12 for L,, equal to target - 0.56 and
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again for L, equal to target + 0.50. (For L, Equation 12 will be solve with different values of

the constants in it). This will give us a subregion within the region shown in Figure 33. This
subregion is shown in Figure 34. The next paragraph explains how we use the subregion.

qOX

Figure 34. A subregion resulting in output within target +/- 0.50

Assume current specification limits (spec limits) tor t, and q,, as shown in Figure 34.
The intersection of the two spec limits is shown as the box ABCD. The curved lines represent

constant L, (or L_) lines, such that the lower curved line is target - 0.50 and the upper curved

line is target + 0.56. For reasons discussed in Section 1.2, points like the circled point Z in

Figure 34 are avoidable. These points can be avoided by tightening the spec limits on t,,
and g, such that the box ABCD lies completely within the subregion marked by the lower and
the upper curved lines. Figure 35 shows the new box, EFGH, resulting from tightened spec
limits on t, and q,.

An obvious result of tightening spec limits (to generate univariate control charts) is the
reduction in the operating space. Box EFGH is smaller than box ABCD. For a high
dimensional problem, this operating space may become impractically small, so much so that a
feasible set of univariate spec limits may not even exist. Instead of using the multivariate model
resulting from the current research methodology for generating univariate control charts, the
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model should be used to develop appropriate multivariate control charts and control strategies.
Additional control options resulting from an accurate multivariate model are discussed further.

Y O L N AR R

qOX

Figure 35. Multipie uses of subregion from Figure 34

Determine more robust set-points for t, and q,,. If the process parameter influencing
q., is a harder parameter to control than the one influencing t ,, then the set point for q,, should
be moved to a new position q,, shown in Figure 35. This makes the output L, {or L) more
robust to disturbances in q_,. This step should be understood in some additional perspective.
By changing the set point for q,,, L., (or L_) has become more robust to disturbance in q,, for
the same target value of L, (or L.;). However, the new set point for q,, may affect some other
EOL product characteristic adversely. To avoid such undesired effects, each critical EOL
product characteristic should be modeled as a function of important in-line parameters, as
discussed in Section 5.3.1. Those models wili show if a critical EOL product characteristic is

affected adversely by the new set point for q,.

The subregion in Figure 34 can also be used in determining appropriate feed-forward
control action. The act of changing down-stream process parameters in a manufacturing line to
off-set upstream disturbanccs is called feed-forward control action. Suppose that gate oxide is
grown and measured chronologically before the process steps that result in gate-charge
accumulation. Assume that the spec limits for t_ and q,, are shown as the box ABCD in Figure
34, and that t_, was measured to be t,,,. From Figure 34, it is clear that parts will be out-of-spec
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for q, > q,,,- To avoid out-of-spec parts, the process step resulting in gate-charge accumulation
should be run such that q, is within its spec limits but less than q,,.

Feed-forward control action needs good data acquisition, integrated monitoring and
control. Besides being expensive, it is also contrary to the idea of robust manufacturing
processes. Robust processes are necessary in high-volume manufacturing for minimum
variation in final products. Consequently, feed-forward control is not a recommended technique
for process control. As such, the process should be run to result in oxide thickness different

from t,,. If the oxide thickness on a part is equal to t,, during processing, feed-back

ox|1

control action should be taken so that future parts do not have oxide thickness like ¢, ;.

Lastly, the region in Figure 34 can also be used to decide whether a part should be
rejected early in the process if the variation introduced in it is alieady very high. If the oxide

thickness on a part is t_,,, see Figure 34, it may be more cost-effective to reject the part early

ox2?

than to add value to a potentially bad final product or to take a feed-forward control action to off-

set the variation in oxide thickness.

We do not recommend cone way of using the good process operating region over another.
The optimal method for keeping products on target will be decided by feasibility (robust setting
may not always be possible due to the working limits of an actuator) and cost considerations
(tightening certain process specifications may require costly equipment for control). However, a
practically meaningful analysis of available options is possible only if regions such as the one
shown in Figure 33 are identified and understood with the help of an accurate multivariate
model.

4.6 Process monitoring and control implications of
variables in MARS model

Step four of our hybrid methodology had identified sixty nine potentially influential
process parameters for EOL channel length. These parameters are from the fifty one process
steps listed in Table 4. However, the final MARS models contain only nine unique process
parameters, as shown by Equation 12. Does that mean that only nine out of sixty nine process
parameters are important to monitor and control EOL channel length? Should the rest of the
sixty parameters not be monitored or used for process control? This section aims to address

these issues.

The nine process parameters in Equation 12 are certainly important parameters to predict
EOL channel length. This is confirmed through cross validation of the two equations (or
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models) on independent data sets of 92 observations. The model prediction capabilities of the
two models were 96.9% and 99.6% respectively using a completely independent data set from
the one used to develop the two models. This is a respectably high prediction accuracy for L,
and L, from in-line process parameters.

However, good prediction from a statistical model does not necessarily imply good
process control, see sections 1.3 and 1.4.3. This is because statistical models are “correlation-
based” models that provide good prediction accuracy. On the other hand, causality based
models are necessarily for a precise process control. MARS is a statistical modeling tool. (So
are NN, PCR, PLS, CART, etc.) As such, MARS alone does not guarantee precise process
control.

The use of prior information in MARS can bring in a degree of causality in MARS
models. Physics-based engineering models are derived from causality considerations. The
presence of these models in the final MARS models helps develop causality, and improves

confidence in process control.

Process control (and monitoring) strategies developed using process variables that are
part of the piece-wise engineering models in MARS are likely to provide good process control.
In addition, often intuitive or physics-based reasons support the presence of many other process
variables in the final MARS model. Such reasons add confidence in process control techniques
developed using those process variables, even if they were not part of a formal engineering
model. Objectively speaking, the accuracy of and the confidence in strategies for process control
through other variables (not supported by physics-based reasons or piece-wise engineering
models) is hard to predict. Their use in process control can only be checked through controlled

experiments.

Process variables that do not enter the final MARS models, e.g., the remaining sixty one
variables, are not necessarily unimportant process variables. They do not enter the final MARS
model for one of the following two reasons:

1. they have no signal (or information) for EOL channel length

2. their effects are taken up by another process variable that entered the final MARS model
(main effect) or by a set of such process variables (interactions). This is a common
situation with MARS (and with other statistical modeling techniques) when
multicollinearity exists in the input variables

In the first case, if the process variable neglected in the final MARS model has no
information for EOL channel length, then it is not an important process variable for channel
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length. In the second case, the neglected process variables are unimportant for channel length
only if the process variables present in the final MARS models are the only drivers for (or are
causal to) the EOL output. The neglected process variables are merely correlated to the process
variables in the MARS models

On the other hand, a MARS model will be poor for process control if the actual drivers
for the EOL output have been neglected in favor of non-drivers, but correlated, process
variables. Unfortunately, there is no clear method of differentiating between driver and non-
driver process variables, except by using physics-based causal information (and models).
Besides providing a high prediction accuracy, the process variables supported by physics-based
information are also good candidates for process control. The need for good process control is a
major motivation to include physics-based models and information at several steps in this thesis

research on developing a hybrid modeling methodology.
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5. Conclusions

The goal of this research was to develop a new modeling methodology combining
physics based modeling methods and statistical modeling methods. An important question that
the research aimed to address is whether combined models (models that combine physics-based
models and data-driven statistical models) are better than physics-based models or statistical
models used alone. In addition, the research also endeavored to show that the local modeling
method, MARS, characterizes the large manufacturing system modeled in this research better
than the global modeling method, PCR.

Besides, a notable practical accomplishment of the work reported here is the use of state-
of-the-art multivariate statistical methods on industrial data [76]. Even with the availability of
more complete data bases, the lack of which prohibited sophisticated multivariate analysis in the
past, current industrial data-analysis practice has not moved beyond univariate analysis or simple
multivariate analysis like conventional PCR. This research work has applied a few sophisticated
multivariate statistical methods (like CART, MARS and a modified PCR) to industrial data.

This chapter summarizes the main lessons leamed from our effort. It is divided into
three parts. Secticn 5.1 lists the contributions of this research, while Section 5.2 discusses the
limitation of the current research. Finally, Section 5.3 recommends a few areas for future
investigation.

5.1 Thesis contributions

This thesis research makes contributions in the following areas:
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I. development of a new methodology that develops hybrid models (the hybrid
methodology comprising seven steps)

2. methods to identify influential process steps for a given end-of-line (EOL) output

3. extension of MARS to combine physics-based models and empirical information with
data (the seventh step of the hybrid methodology)
identification of good process-operating regions

5. increased understanding about the influence of process parameters on EOL channel
length

The following sub-sections describe each contribution.

5.1.1 Generalizable hybrid model development methodology

This thesis has developed a new comprehensive methodology to model an EOL output
parameter as a function of important in-line process parameters. Prior methods were limited in
modeling large systems primarily because they failed to use the domains of engineering and
statistical models effectively, see sections 1.3 and 1.4. Their single jump from engineering
domain to statistical domain, and vice-versa, prevented them from borrowing information
effectively.

The methodology proposed in this research uses information from three domains. These
are the engineering (or physics-based) domain, the statistical modeling domain and the data
domain. By using the three domains methodically, this research takes a step further in modeling
large systems, such as a whole manufacturing line. When applied to microprocessor
manufacturing, the methodology has given very encouraging results.

We believe that researchers in the area of system modeling know of our hybrid
methodology in bits and pieces. We also acknowledge that engineers in manufacturing
companies have used bits and pieces of the methodology for decades. However, those bits and
Fieces have given only limited, but respectable, results. By putting those bits and pieces
together and adding important missing ones, the methodology proposed in this research provides

a formalized, disciplined approach to the process of modeling.

The methodology, comprising seven steps, does not assume any particular characteristic
about the EOL output or the manufacturing process. We believe that the methodology is
applicable to several EOL output parameters (continuous and categorical) and manufacturing
processes (continuous and batch). As a testimony to the generality of the applicability of the
methodology, the next section applies the steps of the methodology to a continuous
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manufacturing process that makes photographic film. For comparison purposes, the
applicability of the methodology to the largely batch-processing semiccnductor-manufacturing

process is also reviewed.

5.1.1.1 Hybrid methodology applied to a continuous manufacturing
process

This section discusses the applicability of the hybrid methodology to a continuous
manufacturing process which makes photographic film. The raw material is a plastic which is
first melted and put on a rotating extruder wheel. The extruder wheel lays the melted plastic flat
as it cools on the rotating wheel. The film is then stretched in the long direction and in the cross
direction. A heating and cooling cycle releases the stress in the film generated during stretching.
A few types of chemical bases are applied on the film to improve its strength. At the end of the
line, a few measurements are taken on the film.

Table 9 shows the seven steps of our methodology as they would be applied to the
continuous manufacturing process of making the film. The output is the thickness of the film,
and the inputs are the several process variables (such as temperature, clamp force during
stretching, air-flow rate on the extruder wheel, etc.) and any intermediate product measurements
(such as opacity of the intermediate film).

Table 9 also shows the seven steps of our hybrid methodology as they were applied to
the largely batch-manufacturing process at Intel Corporation to model end-of-line channel length.
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Modeling EOL charael
Step 7 steps of hybrid length on Intel's batch- lr:‘:dzg:tglnﬁg:s"rlnr:nt:fl::t':;ls:
Number methodology processing manufacturlng rocess 9
operation P
. . channel length, breakdown . . . T
ect ! film thickness, fil il
Step 1 \?ahn%%T:sEOL inspection voltages, threshold voltages, rlerf]:ac::/ oi ndsexl m opacity, film
saturation currents
Collect data for channel length ) . )
Collect data for EOL : Collect data for film thickness, film
Step 2 inspection variables breakdown voltages, threshold opacity, film refractive index
voltages, saturation currents
channel length = f(threshold
Develop model relating voltages, breakdown voltages, thickness = f(opacity, refractive
output to cther EOL saturation currents). Identify index). Assume that'o acity and
Step 3 |inspection vanables and statistically important inspection relract.ive index are st f: ricall
identify statistically significant | variables. Assume they are significant statis y
inspection variables threshold voltages & breakdown 9
voltages
Identify influential process
steps (and associated . Influential process steps are:
st 4 process variables) tlhnliu:nhal _?rocless tSt: ps :h?SQ tongitudinal and cross-stretch
ep influencing statistically 1 te;t)ogq plo yi e f poly fines, operations, annealing operation, and
significant EOL i i substrate implant, etc. truder-wheel stati
gnifican inspection extruder-wheel station.
variables and the EGL output
Collect process data for process .
Step 5 |Collect process data variables in the process steps %ZI::.(':itec:‘a;asf;r'lﬂreor::tgslsi:as‘rtfblzs
identified in step 4 identi a P
Collect models, e.g., thickness =
f(extruder-wheel rpm, air-flow rate on
. . . . heel); thickness = f(cross-stretch &
Collect piece-wise Collect device-physics models and I“c;n iu} dinal t':)r:e)' trf;:ri:)ness _
Step 6 |engineering and empirical empirical models, described in f(ar?neal temp & tir'ne)' Colle ct_
rodels section 3.5.2. constitutive models showing
influence of temp & chemical
composition of polymers
Develop a large-scale model using |Develop a large-scale model (MARS,
the data for process variables CART, NN, etc.) by using data for
Step 7 |Develop a large-scale model |collected in step 5 and for process variables collected in step 5
engineering and empirical models |and for engineering and empirical
in step 6 models in step 6

Table 9. Seven steps of methodology applied to model film thickness in a
continuous manufacturing process
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5.12 Identification of influential process steps without using process
data

This investigation has helped us develop a new way to identify influential process
variables for a given EOL output, even if process data are unavailable. The procedure to do it is
developed in the first four steps of our methodology, and relies on exploiting the multivariate
relationship among EOL inspection variables and the output, and then on the use of physics-
based models, statistical modeling on data, and empirical qualitative information from past

experience.

Often, data from critical process steps are unavailable. The reasons for data
unavailability include technological limitations and cost. Traditional statistical methods would
not help if process data are unavailable. DOE would not even be applicable. In the case example
of Chapter 3, no data are collected for several critical process steps, e.g., well implants. While
most statistical methods would have failed to identify them as influential, our methodology
managed to identify them as important process steps for channel length, see Table 4. Once
ciearly identified as being important, these process parameters can then be monitored
appropriately for process control.

Our methodology incorporates techniques of using in-line process data, empirical models
and physics-based models. But, it is not critically dependent on any one of them. Of course,
the methodology will fail if none of them are available. However, it will still work if any
information (empirical models/physics-based models) or data are available. Like most other
methods, the efficacy of our methodology would most likely improve with the availability of

more information and data.

The ability of the methodology developed in this research to use traditional statistical
methods and models, but not be critically dependent on any one of them is an important
advantage in modeling real production processes.

5.13 Extension of MARS to combine engineering & statistical
models and data

Multivariate adaptive regression splines or MARS has traditionally used only data for
model development. This investigation identified five places where MARS can use prior
information about the system. Prior information can be in the form of empirical models or
physics-based models. The five places where MARS can use prior information are:

1. through split variables in split nodes
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definition of split criteria in split nodes
choice of basis functions
choice of the order of basis functions

noR W

definition of pruning criteria

This research extended the use of MARS by exploring and developing the first option.
Currently, the use of only data in MARS results in rectangular regions in hyper-space (defined
by several predictor variables), unless interaction terms are exglicitly used as new variables in
the input data file to the MARS modeling software. In the absence of prior information,
identification of a rcasonable set of interaction terms from an unmanageably large set of
possibilities is almost impossible. As such, explicit use of interaction terms is not common. By
using prior information (in the form of empirical models and physics-based models) as split
variables, MARS deveiops non-rectangular regions in hyper-space.

The use of physics-based models within the non-rectangular regions can result in a more
accurate tnodel relating the output to the inputs over the use of conventional MARS. This is
because physics-based modais can bring in functions like exponential, ratios, log, etc. that
conventional MARS will fing diificult to represent if the functions are not explicitly supplied as
additional data columns in the input daia file to the modeling software.

The development of non-rectangular regions helps characterize a large dynamic system
more accurately and efficiently. This is particularly useful when an output depends on a
particular combination (or functional form) of inputs at some operating point. But, it depends on
a very different combination (or functional form) of inputs at another operating point. This
behavior is commonly observed in production lines.

In general, more pieces of prior information would result in a more efficient
characterization or modeling of production lines. With more piece-wise models, MARS will
have a greater choice in finding split variables. There will be a greater possibility of finding a
split variable from prior inforration that minimizes total variance. In the absence of prior
information, the reduction in variance would be accomplished by using several other predictor
variables instead. However, the reduction in variance may still be less than the reduction in
variance when prior information is used.

In addition, in the absence of an appropriate piece of prior information, MARS selects
substitute pieces of prior information {und piedicter variables) based on “correlation”
characteristics rather than on causality considerations. (The use of input/output correlation is an
advantage of MARS over methods like conventional PCR that do not exploit the input/output
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correlation). This complicates strategies for process monitoring and for process control, as
discussed in Section 4.6. As such, the identification of as many pieces of prior information as
possible in step six of the hybrid methodology is highly recommended. Step six aims to identify
piece-wise physics-based models and empirical information, as discussed in Section 2.2.2. The
use of as many pieces of prior information as possible in the final model development step, step
seven, of the hybrid methodology is also highly recommended.

5.14 Identification of good process-operating region to improve
quality

When the critical process variables (identified using the first four steps of our
methodology, see Chapter 2) in a production line fall within a particular range of values, the
EOL output is within specification (or in-spec). Otherwise, the EOL output goes out-of-spec.

This research helps identify the range of values of the critical variables that results in
products in-spec. We call this the good process operating region, see Figure 33 for an example
of a good process operating region. This research also helps us identify the range of values of
the critical parameters that results in out-of-spec products. We call this the bad process operating

region.

The identification of good process regions can help in several aspects of technology
development and process control, see Section 4.5.1. Here, we will discuss one such aspect.
Through the example of oxide thickness (t,) and gate charge (q,,) in Figure 34, we also
demonstrate that the range of values of one critical variable could be dependent on the range of
values of another. This dependence has significant implications in setting up spec-limits for
different process variables. The current practice of setting up spec-limits assumes independence
between different process variables. This assumption is valid only when there is no interaction
between those variables. In graphical terms, those variables only give rectangular regions of
operation in hyper-space. For example, the spec-limits of etch rate are independent of those of
t,, (or g,,) in Figure 32. Also note that the cross-section of the 3D solid in Figure 32 along the
etch-rate/t_, plane or along the etch-rate/q,, plane is a rectangle. However, the spec-limits of q,,
are very much dependent on those of t,,. The cross-section of the 3D solid in Figure 32 along
the g, /t,, plane is shown in Figure 33. That cross-section is not a rectangle.

The idea of dependent spec-limits for different process variables is not new [46, 77].
However, this research presents a way to identify good regions of operation. These regions can
be more effectively used to identify clearer dependence between the spec-limits for different

process variables.
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An important question often asked in manufacturing companies is “How should we run
our production line to produce quality parts?’. By helping identify good and bad process
operating regions, this research directly aims to address that question.

5.1.5 Increased understanding of EOL channel length

Conventional understanding about channel length in the semiconductor manufacturing
industry is to examine L, if there are problems with the measurement of channel length. L,
is the geometric length of channel measured just after poly gate is patterned. In existing
research, there are several physical characteristics of a transistor understood to influence channel
length (including L

awn

and oxide thickness). However, a mathematical relationship depicting
the influence is still missing, making it difficult for manufacturing companies to exploit the
information in additional variables beyond what can be had through univariate analysis.

This thesis research has developed models for channel length. Besides L., the models
identify many more variables that can together predict channel length within the desired
accuracy. The models also show the influence of these variables mathematically through main
effects and two way interaction terms in Equation 12. An improved understanding about
channel length through an accurate multivariate model will help examine variables other than
L,,.. in manufacturing, and help determine more efficient, cost effective ways to achieve smaller

channel-length variation in high volume production.

5.2 Limitations of current research

The strengths of our methodology have helped discover and develop improved modeling
techniques. Simultaneously, they have helped identify several areas of limitation. In these
areas, parts of the methodology are either inapplicable or they rely on assumptions about the
system to be modeled. These areas of limitation are:

1. data-rich environment
2. model single output at a time
3. class of models made possible by MARS

The following paragraphs discuss each of those limitations. Section 5.3 focuses on
possible techniques to avoid these limitations, and discusses other areas for further investigation.
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5.2.1 Data-rich environment

Several steps in the methodology rely on the availability of a large amount of data.
Examples of these steps are:

e step three, which develops a statistical model relating EOL output to the rest of EOL
inspection variables

e step seven, which develops a large-scale model relating EOL output to influential process
parameters. Moreover, MARS modeling technique needs more data than simple
parametric regression methods to model a system.

Not all manufacturing environments are data-rich. Most data-poor environments suffer
from a combination of the following two characteristics:

1. no data are available for a few variables
2. infrequent data samples are available for several process variables.

In our methodology, if EOL inspection data are unavailable, step three of the
methodology will be unimplementable. If process variable data are unavailable, step seven of
the methodology will be unimplementable. In addition, sparsely available data may compromise
the confidence in the final results.

There may be ways to work around limited availability or unavailability of data in some
situations. However, the methodology in its current form needs additional development to
handle systems that lack enough data.

522 Model single (univariate) output

For most products, there is more than one characteristic important to a customer.
Examples of these characteristics are functional accuracy, product reliability and product’s
appearance. The median and the variance of the same output variable often become a two-
pronged response for understanding robustness issues. This thesis research has developed a
new way to model “one” such characteristic as a function of process parameters. Using the
model, we have discussed several control options to keep the characteristic close to target.
These control options often involve changing processing conditions. While the new processing
conditions promise to bring the characteristic, which we have modeled, close to target, they may
also affect other characteristics, which we have not modeled.

A straight-forward approach is to model all important product characteristics as separate
functions of process variables. Besides being tedious, this approach does not exploit the
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dependence (or cormlation) between different characteristics of a product. As such, it fails to
provide an understanding of the trade-off between different characteristics of a product when the
processing conditions are changed. A few modifications in our current methodology are
discussed in Section 5.3. These modifications address the issue of modeling several outputs (or
characteristics of a product) simultaneously as a function oi process variables.

523 Class of models made possible by MARS

MARS is a very versatile modeling tool. It can develop generalized additive models. It
also identifies important interactions between predictor variables. However, in one variable it
cannot develop higher-order models than the order of the spline used for model development.
This is because MARS cannot develop models showing interaction of one variable with itself.
Note that the interaction of a variable with itself will give higher order models in that variable.
Section 5.3 discusses ways to overcome this limitation.

5.3 Recommendations for future work

This thesis research has developed and verified some novel ideas. It has also resulted in
some useful and promising results. However, there remain some unanswered questions and
unverified ideas that emerged in the course of this research. They need further investigation.
The recommended future work falls into the following categories:

1. develop improved models

include other classes of models in MARS

e incorporate prior-information at other places in MARS
e develop models for multiple outputs

¢ develop models for categorical outputs

o develop weighted regression models
develop confidence limits on model structure
develop models for variance

update models

evaluate non-proven competing opinions about processes.

“nokh v

53.1 Develop improved models

Models for manufacturing processes can be improved in several ways. The following
paragraphs describe those ways.
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Include other classes of models in MARS

MARS is currently incapable of developing quadratic (or higher order) models in one
variable, see Section 5.2.3, if the order of the spline is only one. However, it can develop
quadratic (or higher order) models if

® the higher order part appears as an expression in an engineering model or in an empirical
model

e the order of the basis functions in MARS is chosen as two or higher

The engineering models and empirical models used in this research did not include
quadratic terms. The basis functions were also just univariate basis functions.

Incorporate prior information at other places in MARS

This research has identified five places where MARS can incorporate prior information.
However, it has explored and developed only one such option. The remaining four, listed
below remain unexplored.

definition of split criteria in split nodes
choice of basis functions
choice of the order of basis functions

LN -

definition of pruning criteria

Further development of these options may give further improvements in the models for
L., and L_. Developing these options will also be a respectable contribution to the research
literature in modeling.

Modeling multiple outputs

Currently, MARS models one output (or response) only. This places limitations on
understanding trade-off when more than one product characteristic is important. This research
has modeled only one output at a time (L_, or L.).

Multiple outputs can be modeled by developing a single statisiic comprising all outputs.
Such a statistic can have a varying amount of contribution from the outputs. Mathematical
techniques used to develop such a statistic are principal components analysis, factor analysis,
etc. These are linear techniques only. Alternatively, system knowledge can also be used to
develop a statistic which may be a non-linear function of the outputs.



Conclusions 117

Include categorical outputs

The current thesis research modeled two continuous outputs (L, and L,). It did not
explore model development with categorical outputs. Categorical outputs are important in many
industrial problems, particularly in modeling yield (in semiconductor manufacturing), defect rate
(in a continuous photographic film-making process), etc. MARS can model categorical output
too. It will be interesting to see if the issues in modeling a categorical output will be any
different from those in modeling a continuous output, or if the results will be as remarkable as
that of modeling L., and L.

Developing weighted regression models

We assumed that all predictor variables and observations are equally important for model
development. In reality, some predictor variables are more reliable than others. This could be
due to different sensor errors, different amount of stochastic noise associated with different
predictor variables, dissimilar sampling frequency, etc. In addition, some observations are more
reliable than others. It will be an interesting process to develop a way to attach different weights
to different predictor variables and to different observations simultaneously. The use of such

weights can help in performing sensitivity analysis [2].

53.2 Develop confidence limits on model structure

Using the methodology developed in this research, a model was developed for L, and
another for L_,. While the variance on the predicted output was low (determined by the model
standard error and by the generalized cross validation standard error), the confidence limits on
the model structure have not yet been established. The establishment of such limits will help
understand more clearly how well the current models for L, and L, would be applicable to new
data and process technologies.

5.3.3 Develop models for variance of the output

This thesis research has modeled the median value of L /L, as a function of influential
in-lines. The variance of L, /L, still remains unexplored. A model for variance is important to
understand signal to noise ratio, and to identify robust process settings. With a better
understanding about variance, the tradeoff between median and variance can be better
understood. For example, precise control of the median may be at the expense of a high

variation.
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There are some interesting issues with modeling the variance. In general, physics-based
models are for the median (or mean) value. They are rarely found for the variance. The
understanding about variance is often qualitative by nature except in some cases where the
understanding is developed by using numerical simulation tools. Quantitative results of
numerical simulation tools are also often interpreted qualitatively. These issues make the model
development of variance a difficult task by traditional physics-based modeling methods and by
traditional statistical modeling methods. As such, these issues also render the variance a very
interesting output to model by the methodology developed in this research.

Broadly speaking, the seven steps of the methodology will be applied in much the same
way to model the variance as they would be applied to model the median (or the mean). A few
interesting differences will be in the implementation of step three and step six, where the
methodology relies on physics-based knowledge, empirical information and data. Empirical
information will be used much more to model the variance than how much it was used to model
the median (or the mean). Often, the variance depends on the median (or the mean). This is
again verified empirically. The use of physics-based models in step six of the methodology can
help test the dependence of variance on the median (or the mean).

534 Update models

Due to deliberate changes in a manufacturing process, and due to process maturity after
the process is developed and transferred to high-volume manufacturing, the characteristics of the
manufacturing line change. The model for the output has to account for such changes. Two
types of modifications are needed in a model to account for such changes. They are:

1. updating parameters (or coefficients) of the model with new estimates. Several
estimation techniques can be used to determine new parameter values. These techniques
include, but are not limited to, bayesian techniques, time series analysis, etc.

2. updating the structure of the model. This involves ripping apart the old model
and developing a completely new model. This type of update may be needed when an
otherwise non-influential process parameter may become an important one after a change
in the manufacturing process. This update may also be needed after a sufficiently long
time to allow the process to mature.

An important consideration with both types of updates is the determination of the
frequency of updates. In fact, updates for the two types can be done hierarchically. The model
coefficients can be updated more frequently than the structure of the medel.
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53.5 Evaluate competing non-proven opinions about processes

When a manufacturing process step is not well understood, a set of process engineers
may believe that the process step behaves in one way (say linearly). However, another set of
engineers (or process developers) may believe that the process step behaves in a different way
(say quadratically). It is important to determine the different operating conditions under which
one opinion is more pertinent than another, and by how much one opinion is more pertinent that
the other.

The use of prior information (engineering and empirical models) and data can help
determine the different regions of operation in which one opinion is more important than
another. Bayesian and Dempster-Shafer theory [66] can also be used to attach probability to the
different opinions in different regions of operation. In addition, those probabilities can be
updated periodically with the use of more data.
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Appendix A

This appendix aims to show an example of the inpits to and the outputs from the
software that develops MARS models [28]. The objective of the appendix is not to develop an
accurate MARS model. However, the appendix demonstrates an input file to the software that
develops MARS model, and interprets the output of the software. The example chosen here is
only a fictitious one. (Friedman has discussed MARS through many examples [23].)

Figure 36 shows a manufacturing line with two process steps connected serially. The
two process variables are X, and X,, and the output is Y. Equation 18 shows an assumed
physics-based model relating X, and X,. Equation 19 shows an assumed empirical relationship
between X, and X,. An assumed model relating Y to X, and X, is shown by Equation 20, and
is used solely for the purpose of creating data for Y. A random normal error structure is
assumed on the output (Y), as shown by Equation 20. This section attempts to develop a MARS
model relating Y to X, and X,.

Process 1 —» Process 2
(Diffusion) (Plasma etch)

X xV Y‘

Figure 36. A manufacturing line with two process steps

=X
Ml—x2+2

Equation 18. Physics-based model relating X, and X,

M, =3X, +4X,
Equation 19. Empirical model relating X, and X,

Y=2%+ 5X; -3X, + €, € ~N(0, 0.01)
2
Equation 20. Assumed model relating Y to X, and X,
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Data were generated for X, and X, by creating fifty random numbers for X, and by

creating another fifty for X,, as shown in Table 10.

Output Procoss varlable Process varlable Enginearing model Emplirical model I
v) (X4) (Xa) ( %) (M,)
4.48 0.01 -1.58 1.99 -6.20
-4.08 -0.04 1.27 1.97 4.97

-11.07 -1.02 1.54 1.34 3.13
-3.53 -0.13 0.80 1.84 2.682
1.09 -0.36 -0.59 2.62 -3.42
-3.04 -0.03 0.89 1.96 .45
-0.80 -1.88 -2.38 2.80 -15.08
-1.71 0.34 1.27 2.27 8.09
3.28 0.00 -1.11 2.00 -4.43
8.62 1.21 0.58 4.14 5.87
-090 -0.02 0.25 1.92 0.92

—12.88 -1.01 0.20 -1.47 -1.87
3.54 0.92 0.99 2.93 8.70

-34.56 -1.38 0.10 -11.68 -3.74
-8.33 -0.47 0.30 0.45 -0.19

40.02 -0.80 0.04 -15.93 -2.23
1.27 0.90 1.44 2.63 8.45
2.45 -1.16 -2.46 2.47 -13.30
-2.08 0.10 0.91 2.12 3.94
0.37 0.23 0.51 2.45 2.73
10.9¢ 2.40 -1.12 -0.14 2.71
-0.84 0.08 0.51 2.18 2.30
-2.08 -0.02 0.58 1.96 2.25
-2.48 0.75 2.29 2.33 11.40
28.60 -1.11 -0.07 19.02 -3.58
-3.45 -2.23 -0.90 4.48 -10.28
7.60 1.23 0.89 3.78 6.43
6.00 1.56 -0.76 -0.05 1.63
1.40 -0.52 -1.02 2.51 -5.86
-1.51 0.42 1.35 2.31 6.65
-8.13 -0.31 1.36 1.77 4.52
-3.50 0.56 2.25 2.25 10.67
13.09 2.69 -1.27 -0.12 3.00
15.94 1.09 0.20 7.51 4.07
-6.83 0.10 2.48 2.04 10.23
1.38 -0.92 -1.80 2.57 -9.17

-15.30 -1.76 1.35 0.70 0.12
2.30 0.30 -0.58 1.48 -1.42
1.01 -0.52 -0.49 3.08 -3.52
7.60 1.47 0.96 3.52 8.28
2.33 0.45 -0.56 1.19 -0.89
-1.33 0.41 1.32 2.31 6.52
4.04 0.54 -0.87 1.39 -1.89
5.52 0.08 -1.70 1.96 -6.57
5.41 0.32 -1.42 1.77 -4.72

-12.58 -1.35 0.80 0.30 -0.87
8.12 -2.42 -0.25 11.74 -8.28
3.23 .34 -0.83 1.58 -2.28
16.64 2.46 0.75 5.29 10.39
17.18 2.99 1.10 4.72 13.36¢

Table 10. Inputs to MARS software

The second and the third columns in Table 10 show the data for X, and X, respectively.
Data for X,, X, and Equation 18 were used to generate data for M,. Data for X,, X, and
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Equation 19 were used to generate data for M,. The fourth and the fifth columns in Table 10
show the data for M, and M, respectively. Data for X,, X, and Equation 20 were used to

generate data for Y. The first column in Table 10 shows the data for Y.

The software used for MARS meodel development was in the Splus environment. The

command used to develop MARS medel is shown by Equaticen 21.

app.mars <- mars(x=app.in, y=app.out, degree=2)
Equation 21. Command to develop MARS model

In Equation 21

app.mars contains the output of the routine “mars” that develops MARS models.

mars is the routine that develops MARS models. (There are other arguments than the
ones outlined here that a user can give to the mars routine. However, the other
arguments are not described here because mars uses default values in the absence of
user-supplied ones. The default values of those arguments were used here.)

X is the data matrix that contains the predictor variables. In the example considered here,
x consists of the last four columns of data in Table 10, and is called app.in.

y is a vector of outputs. In the example, y consists of the first column of data in Table
10, and is called app.out.

degree is the maximum degree of allowable interaction between different predictor
variables. In the example, it was chosen as two. :

‘The “mars” routine has multiple outputs for a MARS model. However, only a few of

those are necessary to interpret the model. These part of the output include:

1.

factor. This is a matrix. The number of columns in factor is the same as that of the
input matrix x. Table 11 shows the “factor’” matrix for the case example.

X Xz M, M.
[1,] 0 0 0 0
[2,] 0 0 1 0
[3,] 0 0 -1 0
[4,] 1 0 0 0
[5,] -1 0 0 0
[6,] 0 0 0 1
[7,] 0 (4] 0 -1

Table 11. “factor’” matrix for MARS model
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The rows in Table 11 represent the different basis functions. The value zero in a
particular row and column means that the predictor variable represented by that column
does not contribute to the basis function represented by that row. For example, no
variable contributes to the first basis function as illustrated by the first row in Table 11.
The first row represents the constant term in the MARS model. The presence of a “1™ or
a “-1” in a row implies that the variable represented by the column contributes to the
basis function represented by the row. The second row in Table 11 contains a *“1” in the
column under M,. This means that M, contributes to the second basis function. The
significance of *“1” and “-1” is explained in a later paragraph.

Notice that all rows in the “factor” matrix (except the first row) have only one non-zero
element. This implies that there are no interaction terms in any basis function. The
“mars” routine did develop MARS models with two-way interactions, as shown by
Equation 21. However, the MARS model without any interaction term was chosen
because it was more accurate than the one which included two-way interaction terms.

2. cuts. This is a matrix. Its dimensions are the same as those of the “factor” matrix.
Table 12 shows the “cuts” matrix for the case example. The rows represent the different
basis functions and the columns represent the different predictor variables. In Table 12,
the four columns represent X, X,, M, and M, respectively.

[,1] [.2] [3] [,4]

[1,] | o0.000 | 0.000 | 0.000 | 0.000
[2,] | o0.000 | 0.000 | 1.386 | 0.000
[3,] | 0.000 | 0.000 | 1.386 | 0.000
[8,] | 0.454 | 0.000 | 0.000 | 0.000
[5]1 | 0.454 | 0.000 | 0.000 | 0.000
[6,] | 0.000 | 0.000 [ 0.000 | -1.868
17,1 | 0.000 | 0.000 | 0.000 | -i.868

Table 12. “cuts” matrix for MARS model

The “cuts” natrix gives the cut-off values of the predictor variables that contribute to
different basis functions. As such, only a few positions in the “cuts” matrix are non-
zero. These positions have a “1” or a “-1” in the “factor’” matrix. Compare Table 11 and
Table 12. Since the first row represents the constant term in the model, it contains only
zeroes in both matrices. The second row has a cut-off value of 1.386 for M, with a “1”
in the second row of the “factor” matrix. The “1” (without the minus sign) means that
the second basis function contributes only for values of M, greater than 1.386. The third
row has a cut-off value of 1.386 for M, with a “-1” in the third row of the “factor”
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matrix. The “-1” means that the third basis function contributes only for values of M,
less than 1.386.

3. selected.terms. This is a vector. It contains the row numbers in the “factor” matrix
(which are the same as those in the *“cuts’” matrix) that become part of the final MARS
model. The number of elements in the *“selected.terms” vector is less than or equal to the
number of rows in the “factor” matrix. Table 13 shows the selected terms in the case

example. All basis functions contribute to the final MARS model in the example
considered here.

[111234567
Table 13. Selected terms in the final MARS model

4. coefficients. This is a vector. It contains the coefficients that multiply with the
different basis functions. The number of coefficients is the same as the number of
elements in the selected.terms vector. Table 14 shows the coefficients in the case
example. The first coefficient multiplies with the first basis function. It turns out to be

the model constant. The second coefficient multiplies with the second basis function and
SO on.

Coefficients
[1,1 3.404
[2,] 1.997
[3,] -2.001
[4,] 7.302
[5,] -7.205
[6,] -0.751
[7,1 0.745

Table 14. Coefficients in the final MARS model

5. residuals. This is a vector of residuals. The number of elements in “residuals” is that
same as the number of observations used to develop the MARS model. In the case

example, “residuals” has fifty elements. These residuals are later used to determine the
standard error of the MARS model.

The final MARS model can now be constructed with the use of Table 11 through Table
14. The model is constructed by adding the selected basis functions in the “factor” matrix.
Since the first row is a selected term, and it does not have any predictor variables, only the
coefficient contributes to the model. The coefficient value is 3.404 from Table 14. The second
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basis function has contribution from M, see Table 11, only when M, is greater than 1.386.
This is mathematically represented as (M, - 1.386],. The coefficient value 1.997 multiplies with
the basis function. The resulting expression is 1.997[M, - 1.386],. This expression is added to
the model constant 3.404. The next basis function is from the third row of the “factor’” matrix.
Here, M, contributes to the MARS model, only for values less than 1.386. This is
mathematically represented as [M, - 1.386]. The multiplying coefficient for the third basis
function is -2.001. The total contribution of the third basis function to the final MARS model is
-2.001[M, - 1.386].. The contributions of the rest of the basis functions are also calculated like-
wise. These contributions are added together to construct the final MARS model. The standard
error is calculated from the residuals and added to the MARS model. Equation 22 shows the
final MARS model for the case example.

Y =3.404 + 1.997[M| - 1.386]+ - 2.001[M| - 1.386]. + 7.302[X] - 0.454}; - 7.205[X - 0.454]. -
0.751[M3 - (-1.868)]; + 0.745[M7 - (-1.868)]. + £, €~N(0, 0.0061)

Equation 22. Final MARS model for the case example

By substituting the expressions for M, and M, from Equation 18 and Equation 19
respectively in Equation 22, Y can be expressed purely in terms of the process variables X, and
X,.



