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Abstract

Anti-retroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life-cycle. 

In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1 

infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by 

passively administered 3BNC117, a broadly neutralizing antibody (bNAb), suggested that the 

effects of the antibody are not limited to free viral clearance and blocking new infection, but also 

include acceleration of infected cell clearance. Consistent with these observations, we find that 

bNAbs can target CD4+ T cells infected with patient viruses and decrease their in vivo half-lives 

by a mechanism that requires FcγR engagement in a humanized mouse model. The results 

indicate that passive immunotherapy can accelerate elimination of HIV-1 infected cells.
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Main text

Broadly neutralizing antibodies (bNAbs) to HIV-1 can block acquisition and suppress 

viremia in chronically infected humanized mice and macaques (1, 2). In humans, a single 

infusion of 3BNC117, a bNAb that targets the CD4 binding site on the HIV-1 envelope 

glycoprotein gp160, led to a rapid but transient reduction in viral loads by an average 1.48 

log10 copies/ml (3).

Antibodies differ from small molecule drugs that interfere with viral replication in that 

antibodies have the potential to impact the half-lives of both free virus and infected cells. 

Indeed, antibodies accelerate the clearance of free virions from the blood of macaques (4) 

and induce killing of infected cells in vitro by Fcγ receptor (FcγR)-mediated mechanisms 

(5, 6). However, the majority of infected cells die rapidly by apoptosis or pyroptosis (7, 8), 

and whether bNAbs can accelerate HIV-1 infected cell clearance in vivo has not been tested 

directly.

To examine the components that contribute to viral clearance in humans given a single 

infusion of 3BNC117, we adapted an existing model of HIV-1 viral dynamics (3, 9, 10). The 

model ((11), Fig. S1) includes virus-producing infected cells, as well as transport of free 

plasma virus to lymphoid tissues (LT) and vice versa. To this basic model, we added the 

feature that antibodies bind to virus particles, leading to virus neutralization and loss of 

antibody. Measurements of the decline of antibody concentrations in healthy humans were 

fitted to a two-compartment model (12, 13) to obtain the parameters characterizing the 

intrinsic antibody decay rates and transport between tissue and plasma over the time scale 

during which viral loads decay in patients treated with 3BNC117 (Fig. S2). The rate of free 

virus neutralization was fitted to the virus kinetics in 19 patients (Fig. S3), but we focused 

on patients showing an initial monophasic viral load decline (2B3, 2C1, 2C5, 2D3, 2E1, 

2E2), which tended to coincide with those receiving a higher antibody dose (3).

This model is unable to recapitulate the kinetics of viral load decline for any of the 

3BNC117-treated viremic patients (Fig. 1, green; Fig. S3). If we fit the overall extent of viral 

load decrease, the rate of viral load decay is predicted to be too fast. Conversely, matching 

the initial rate of viral load decline results in insufficient overall reduction of the viral load. 

Thus, we adjusted our model to incorporate a mechanism that includes antibodies acting to 

clear infected cells and explored if this provided additional reduction of virus over a longer 

timescale (11). The rates of free-virus neutralization and infected cell clearance are fit to the 

measured plasma viral load. Including cell clearance substantially improves the fit to patient 

data (Fig. 1, purple; Fig. S3; Table S3) because reducing the number of infected cells in 

tissues results in a second-order decay in the plasma viral load over a longer timescale.

Our modeling clearly shows that the patient data cannot be explained if 3BNC117 acts only 

to neutralize free virions, thereby making them incapable of infecting target cells. Reasons 

for why including infected cell clearance improves the fit, but does not quantitatively 

recapitulate the data are noted in supplementary materials (11). Further evidence for such a 

mechanism is indicated by comparison of our modeling and clinical data for patients treated 

with a constant high level of entry-inhibitor drugs like maraviroc (14) ((11), Fig. S4).
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To determine whether 3BNC117 can recognize the HIV-1 envelope (Env) trimer expressed 

on the surface of infected cells, we stained CD4+ T cells infected with HIVYU2 or primary 

isolates obtained from patients 2C1, 2C5, 2D3, and 2E5 before they were infused with 

3BNC117 (3). Consistent with their neutralizing activity in TZM-bl assays, 3BNC117, 

PG16, and 10–1074 specifically stained HIVYU2-infected cells (Fig. S5A). 3BNC117 and 

10–1074 also recognized nearly all Gag+ cells infected with primary isolates from patients 

2C1, 2C5, 2D3 and 2E5; however, the mean fluorescence intensity of staining for Env was 

lower than for HIV-1YU2 (Fig. S5B), possibly due to lower levels of Env on the surface of 

cells infected with patient viruses, or variable levels of tetherin antagonism by HIV-1 

accessory protein Vpu (15). We conclude that 3BNC117 recognizes the HIV-1 envelope 

glycoprotein on the surface of infected CD4+ T cells.

To examine whether bNAbs can accelerate clearance of infected cells in vivo, we performed 

adoptive transfer experiments using NOD Rag1−/−Il2rgnull (NRG) mice. To prevent spread 

of infection between human cells, animals and infected cell suspensions were treated with 

antiretroviral therapy (ART) before adoptive transfer. Anti-HIV-1 bNAbs or isotype control 

antibodies were administered 12 hours before infected cell transfer (Fig. S6).

3BNC117 alone (P = 0.0012, Fig. 2A), or a combination of 3BNC117 and 10–1074, rapidly 

reduced the percentage of HIV-1YU2-infected cells among CD3+CD8− cells compared to an 

isotype control (P < 0.0001, Fig. 2B). Concomitant with reduction in the percentage of 

infected cells, cell-associated HIV-1 RNA levels were lower in bNAb treated mice than 

isotype controls (P = 0.0054, Fig. 2B). These data indicate that bNAbs can accelerate 

clearance of HIV-1YU2-infected cells in vivo.

To determine whether anti-HIV-1 antibodies can accelerate clearance of cells infected with 

primary HIV-1 isolates, we repeated the adoptive transfer experiment described above using 

human CD4+ T cells infected with HIV2C1, HIV2C5, HIV2D3, or HIV2E5. As with 

HIV-1YU2, bNAbs accelerated clearance of cells infected with patient isolates (Fig. 2C). We 

conclude that bNAbs can accelerate clearance of CD4+ T cells infected with primary HIV-1 

isolates.

To determine whether enhanced clearance of HIV infected cells by antibodies depends on 

their ability to engage FcγR expressing cells, we repeated the adoptive transfer experiments 

using bNAbs which carry mutations that specifically abrogate mouse FcγR binding (G236R/

L328R; GRLR) (16) (Fig. S7). Although GRLR-bNAbs show normal levels of neutralizing 

activity in TZM-bl assays (17), they do not interact with cytotoxic or phagocytic cells, and 

should therefore fail to accelerate clearance of HIV-1 infected cells in vivo. The frequency of 

infected cells remaining after treatment with GRLR-bNAbs was comparable to that found in 

mice receiving the isotype control (Fig. 3A), and significantly higher than that found in mice 

receiving wild-type bNAbs (P < 0.0001, Fig. 3A). In addition to testing GRLR-bNAbs, we 

also blocked wild-type bNAb Fc-FcγR interactions using a combination of antibodies 2.4G2 

and 9E9, targeting mouse FcγRs II/III and IV, respectively (Fig. S7). Mice receiving FcγR-

blocking antibodies failed to accelerate clearance of HIV-1-infected cells in response to 

bNAbs (Fig. 3B).
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Human IgG1, the isotype of 3BNC117 and 10–1074, binds with highest affinity to mouse 

FcγRI and FcγRIV (mFcγRI and mFcγRIV) (18). These receptors are murine orthologues 

of human FcγRI and FcγRIII (hFcγRI and hFcγRIII) (19), which are expressed on human 

monocytes and NK cells that can perform antibody-dependent cell-mediated phagocytosis 

(ADCP) or cytotoxicity (ADCC) in vitro (5). To examine the role of mFcγRIV in clearance 

of HIV-1-infected cells in the NRG mouse, we blocked this receptor specifically with a 

monoclonal anti-mFcγRIV antibody. Mice treated with bNAbs plus anti-mFcγRIV were 

comparable to isotype-treated mice (Fig. 3C), indicating that mFcγRIV is essential for 

accelerating clearance of HIVYU2-infected cells in vivo. We conclude that bNAbs accelerate 

infected cell clearance in NRG mice by a mechanism that requires mFcγRIV engagement.

We repeated adoptive transfer experiments in FcγR-humanized (hFcγR) mice that express 

only the human FcγRs (20). Similar to NRG mice, HIV-1YU2-infected cells were reduced in 

bNAb-treated hFcγR mice (P = 0.0064, Fig. S8). This data suggests that bNAbs can utilize 

human FcγRs, and not just murine FcγRs, to accelerate clearance of HIV-1YU2-infected 

cells in vivo.

To examine whether 3BNC117 accelerates clearance of HIV-1 infected cells in the context 

of chronic viral infection, we performed hemi-splenectomy experiments in chronically 

infected humanized mice (Fig. S9). The frequency of HIV-1YU2-infected cells before 

treatment was comparable in all groups of mice (Fig. S10). As expected, mice treated with 

the Fc mutant antibody GRLR-3BNC117, which neutralizes HIV-1 but does not interact 

with effector cells, had lower frequencies of infected cells compared with isotype-treated 

controls (P = 0.0219, Fig. 3D). However, mice treated with wild-type 3BNC117, which can 

mediate ADCC, had substantially fewer infected cells compared with mice treated with 

GRLR-3BNC117 (P = 0.0167, Fig. 3D). These data suggest that 3BNC117 can accelerate 

clearance of HIV-1YU2-infected cells in the context of chronic viral infection.

In contrast to ART, antibodies have the potential to engage host immune cells in defense 

against the virus. They do so by binding to cell-free virions, thereby accelerating clearance 

and preventing their entry into target cells. Antibodies can also bind to HIV-1 Env on the 

surface of infected cells to induce ADCC. Finally, immune complexes can activate antigen-

presenting dendritic cells to elicit adaptive immune responses (19).

Both neutralizing and non-neutralizing antibodies support anti-HIV-1 ADCC activity in vitro 
(5, 21), and Fc receptor binding is essential for optimal protection, post exposure 

prophylaxis, and therapy by bNAbs in animal models (17, 18, 22–24). Moreover, ADCC has 

been indirectly associated with both control of and protection against infection (15, 25–28). 

However, the rapid death of HIV-1 infected cells has made it difficult to establish that 

antibodies can accelerate the clearance of infected cells in vivo. Our mathematical analysis 

of patient data, and the antibody-mediated reduction in infected cells seen in adoptive 

transfer experiments establish that bnAbs alter the half-life of infected cells. This 

observation may help explain why post-exposure prophylaxis with bNAbs is more effective 

than ART in hu-mice (23).
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Experiments with human cells in mice cannot fully recapitulate the human host; 

nevertheless, these experiments establish that antibodies can accelerate clearance of infected 

cells in vivo, and do so by an FcγR-dependent mechanism. The finding that antibodies can 

clear infected cells in vivo has significant implications for therapies aimed at HIV prevention 

and viral reservoir reduction or elimination.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of viral load measurements (filled circles, solid black lines) with best-fit 
model predictions (solid colored lines)
Each green line shows the predicted viral load over time, normalized by its initial amount, 

VP(t)/VP(0), in a model whereby antibody can only neutralize free virus particles. Each 

purple line shows a modified model whereby antibody can also lead to clearance of infected 

cells. Only those patients with a day 1 viral load lower than baseline are shown. Open circles 

and dashed black lines represent data points that were not used for parameter estimation. 

Within each subfigure, we note the quantity Δlog10VP(tmin) = log10(VP,min/VP(0)), i.e. the 

viral load at the nadir and the time in days at which this occurs for the data (black letters), 

and the predictions for a model with free virus clearance only (green) and a model that also 

includes infected cell clearance (purple). This predicted minimum for each patient and 

model is denoted with a star.
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Figure 2. bNAbs accelerate clearance of HIV-1-infected cells in vivo
(A) Scatter plot showing the percentage of Gag+ cells among CD3+CD8− cells in 3BNC117 

(600 μg) or isotype control treated mice 5 hours after HIVYU2-infected cell transfer.

(B) Percentage of Gag+ cells among CD3+CD8− cells in bNAbs (3BNC117 + 10–1074, 300 

μg each) or isotype control treated mice 5 hours after HIVYU2-infected cell transfer (left 

panel). Cell-associated HIV-1 RNA was measured in enriched human cells extracted from 

the spleen of mice 5 hours after transfer, plotted as the ratio of HIV-1 RNA to the number of 

CD3+CD8− cells for each mouse (right panel).

(C) Graphs represent transfer experiments with cells infected by HIV2C1, HIV2C5, HIV2D3, 

or HIV2E5. Each dot represents one mouse. Lines represent median values. Data represent 2–

4 independent experiments with a total of 6–13 mice per condition. *P<0.05; **P<0.005; 

***P<0.001, two-tailed Mann–Whitney U test.
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Figure 3. FcγR engagement is required to facilitate clearance of HIV-1-infected cells
(A) Percentage of Gag+ cells among CD3+CD8− cells in bNAbs, GRLR-bNAbs, or isotype 

control treated mice.

(B) NRG mice were injected with mouse FcγRII/III/IV blocking antibodies or isotype 

control 6 hours before injection of bNAbs. Graphs show the percentage of Gag+ cells among 

CD3+CD8− cells.

(C) Percentage of Gag+ cells among CD3+CD8− cells in mice receiving FcγRIV blocking 

antibody, or isotype control.

(D) Infected cell clearance in chronically HIV-1YU2-infected hu-mice. Scatter plot shows the 

ratio of the percentage of Gag+ cells among CD3+CD8− cells before and 5 hours after 

3BNC117, GRLR-3BNC117, or isotype control injection. Each dot represents one mouse. 

Lines represent median values. Data represent 2–4 independent experiments for each 

condition with a total of 7–12 mice per condition. *P<0.05; **P<0.005; ***P<0.001, two-

tailed Mann–Whitney U test.
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