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Background and Motivation
Electronic medical records (EMRs) normally include some 
well-structured tabular data such as laboratory measurements 
and medication orders, but a large portion of each patient’s 
record is in the form of narrative sentences (eg, pathology 
reports, discharge summaries, progress notes, clinicians’ notes, 
and comments) or snippets (eg, medical problem listings and 
medical test items).1–4 EMRs are being widely adopted, pro-
viding valuable repositories of historical patient data that 
enable clinicians and researchers to study profound biological 
and clinical questions.5–11 To make effective use of these natu-
ral language data, we typically run multiple interpretive algo-
rithms over the text, each generating annotations of portions 
of the text.3,4

Many early natural language processing (NLP) systems 
and corpora used in-line annotations where annotations are 
marked and embedded in the text (eg, i2b2 de-identification 
and smoking challenge corpora12,13). Figure 1 shows an example 
sentence with in-line annotations of Private Health Informa-
tion (PHI) and Unified Medical Language System (UMLS) 
semantic types (STs) in XML style markups. In comparison, 

stand-off annotations identify the starting and ending posi-
tions of the text to which it applies and contain various types 
of additional information specific to the type of annotation. 
Stand-off annotations have the benefit that the original docu-
ment is never altered or directly marked up by NLP steps (see 
Box1), hence more human readable. Stand-off annotations can 
be stored in data structures that make their retrieval fast and 
management efficient. This eliminates the need to maintain 
multiple versions of a document depending on what mark-
ups have been made on it, and it eliminates the often tedious 
task of other language processing systems to generate a flat file 
representation of intermediate analysis results, followed imme-
diately by the need to reparse those at files into an internal rep-
resentation that support the next processing step. More recent 
biomedical NLP systems and corpora gradually adopted the 
stand-off annotation or its variants, eg, cTAKES,14 current ver-
sion of MetaMap,15 and the i2b2/VA 2010 challenge.16 Exam-
ple stand-off annotations are also shown in Figure 1. Note 
that we can introduce additional STs due to alternative tax-
onomies/ontologies, including SNOMED-CT (www.ihtsdo.
org/snomed-ct), LOINC (loinc.org), and ARTEMIS.17 These 
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STs share the start and end positions, thus would be cumber-
some for in-line annotation format but cleanly separated using 
stand-off annotations.

In general, there can be many thousands of annotations 
per EMR document. As an example in the typical EMR set-
ting, for the corpora in the i2b2/VA 2010 challenge,16 after 
basic syntactic (tokenization, part-of-speech tagging, sentence 
parsing, phrase chunking, etc.) and semantic analysis (concept 
recognition, assertion recognition, relation recognition, etc.), 
we have on average about 10,000 annotations per document 
and millions of annotations in total. Such a large amount of 
annotations can be space consuming to store and time consum-
ing to search through. Thus, it is important to store and retrieve 
these annotations efficiently.

Further analysis of the text often requires retrieval of 
different types of annotations pertaining to different seg-
ments of the text. For example, a program may need to find 
all the sentences within a specific document section, or all 
the PHI annotations within a sentence or phrase. Another 
program may need to extract features for relation clas-
sification between two concept annotations (named enti-
ties such as medical problems and treatments), which can 
require querying syntactic, lexical, and semantic annotations 

that are before, between, or after the two concept annota-
tions in a record (eg, the time of relation between ,ST 
TYPE = "Diagnostic Procedure". endoscopy7 ,/ST. and 
,PHI TYPE = "Date".April15 2816,/PHI. in Fig. 1). 
Viewing annotations and text segments as intervals (with 
attributes) in the text, most annotation queries may then be 
formally stated as interval queries.

An interval is defined by its starting and ending posi-
tions. There are only three possible relations between two 
positions in a document, namely, = , ,, or .. However, as 
Allen18 has shown that, for temporal intervals, there are 
13 possible relations between two intervals, as defined in 
Table 1. We adopt this insight and terminology here, though 
referring to spatial rather than temporal intervals. Tempo-
ral intervals mining and reasoning is itself an active area of 
research.19,20 We note that the algorithms we present in this 
paper apply directly to temporal intervals. If we consider two 
intervals, α and q, with starting and ending positions x and 
y, as well as x′ and y′, respectively, they may have any of the 
13 relationships defined in Table 1 and illustrated in Fig-
ure 2. In the special case where some intervals are degener-
ated (ie, x = y), it is possible for more than one of the above 
relations to be satisfied. For example, given a degenerated 
α whose start and end coincide with a nondegenerated q′s 
x′, we could say that α m q or that α s q. The scenarios of 
the 13 relations of Allen’s interval algebra arise frequently in 
NLP on EMRs. For example, one may need to find all noun 
phrase annotations after a verb phrase annotation in a sen-
tence, extract all automatically identified PHI annotations 
that overlap with those in ground truth to calculate partial 
matches, or find all noun word annotations within a certain 
medical concept annotation. The distribution of these query 
types is task and corpus dependent. In this paper, we pro-
pose to solve the problem of efficiently retrieving all intervals 
satisfying each of the 13 interval relationship with respect 
to a given query interval. The task of retrieving all intervals 
satisfying certain relationship with the given query is called 
a stabbing-interval query or stabbing query for short. Note 
the difference between stabbing-interval query and stabbing-
point query, where a (time or spatial) point rather than inter-
val is given as the probe.

The1 patient2 underwent3 an4 <ST TYPE = "Diagnostic procedure">

ECHO5 </ST> and6 <ST TYPE = "Diagnostic procedure"> endoscopy7

</ST> at8 <PHI TYPE = "Hospital">Beth9 Israel10 Deaconess11 Medical12

Center13 </PHI> on14 <PHI TYPE = "Date"> April15 2816</PHI>. 

Start End Annotation type Annotation attribute 

5 5 ST Type = Diagnostic procedure

7 7 ST Type = Diagnostic procedure

9 13 PHI Type = Hospital

15 16 PHI Type = Date

… … … …

In-line annotation

Stand-off annotation

figure 1. Comparison of in-line annotation and stand-off annotation. The 
annotations marked in the sentence are PHI and UMLS ST. For example, 
there are over 30,000 UMLS ST annotations that can be mapped to the 
category of medical problems in the i2b2/VA corpus.

Common Natural Language Processing Steps

Tokenization automatically decides where words in a sentence begin and end. Part -of-speech (POS)
tagging assigns a part-of-speech tag for each word in the sentence (eg, VBD for “underwent” in the
sentence in Fig.1). Sentence parsing is the process of assigning a syntactic structure to a sentence
(eg, the constituency or dependency structure obtained by Stanford Parser). Phrase chunking refers to
grouping multiple words into a phrase (eg, the noun phrase of “Beth Israel Deaconess Medical Center” 
in Fig.1).The results from tokenization, POS tagging and sentence parsing can provide features for
recognizing typed concepts (concept recognition), negations and uncertainty of concepts (assertion
recognition), semantic relations between concepts (relation recognition).

box 1. Common natural language processing steps.
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Stabbing-interval queries and stabbing-point queries are 
typically solved by using a data structure called an interval 
tree.21 It is known that the stabbing-point query has an optimal 
structure in both the internal memory model (in which the 
cost of an algorithm depends on the total number of accesses 
to memory locations) and the external memory model (in 
which different levels of a memory hierarchy are characterized 
by different accessing costs).22 A related problem formula-
tion is the stabbing-max point query, in which each interval is 
associa ted with a priority score and the task is to retrieve the 
interval containing the query point and having the maximum 

priority. There are also near optimal23 and optimal24 structures 
for stabbing-max point queries in the internal memory model. 
Let n be the total number of intervals and k be the number 
of reported intervals. Under the big O notation that gives an 
upper bound for a function to within a constant factor,25 there 
are structures that support O(log n + k)-time stabbing-interval 
queries on the overlap relation. However, among all the 13 rela-
tions in Allen’s interval algebra, there are relations on which a 
stabbing-interval query is hard to achieve O(log n + k) time.

In the rest of this paper, we first describe a baseline interval 
tree, requiring O(log n) update time and O(n) space, which runs 
a stabbing-interval query in O(log n + k) time on the overlap 
relation and runs stabbing-max point query in O(log2 n) time. 
We then describe Allen’s interval algebra and explain why cer-
tain relations are hard. “Interval tree with embedded secondary 
tournament trees” and “Interval tree with large fan-out base 
tree” sections recapitulate two linear space interval trees, one 
with near logarithmic time23 and the other with logarithmic 
time24 on stabbing-max query. “Solve Allen’s interval algebra in 
logarithmic time” section proposes efficient stabbing-interval 
queries on hard Allen relations, based on modifications of 
interval trees in the study by Agarwal et al.24 and query refor-
mulations. We then review interval management in the exter-
nal memory model and higher dimensions. We conclude our 
paper with suggestions for future work and a discussion.

Basic Interval tree
A centered interval tree IT0 with secondary data structures can 
be defined as follows. The set S of intervals is stored in a balan-
ced binary tree Tp, in which interval end points are stored in 
leaves. The Tp starts in the root r with range σr = [–∞, ∞] and 

Data interval

Query interval

figure 2. Allen’s interval algebra. In our notation, a and q are intervals, x, x′ are the start positions, and y, y ′ are the end positions. In typical applications, 
we are given a query interval q to find from a collection of intervals (many α ’s) those that satisfy certain relation with q.

table 1. Possible relations among intervals, according to Allen’s 
interval algebra.

SYMboL dESCRiPtioN dEfiNitioN iNvERSE

= α and q span the 
same text

x = x′ ∧ y = y′

,, . α is completely to 
the left (right) of q

y < x′ x > y′

m, mi α meets (is met 
by) q

y = x′ y′ = x

d, di α is during q (vice 
versa)

x > x′ ∧ y < y′ x′ > x ∧ y′ < y

s, si α starts q (q 
starts α)

x = x′ ∧ y < y′ x = x′ ∧ y > y′

f, fi α finishes q (q 
finishes α)

x′ < x ∧ y = y′ x′ > x ∧ y = y′

o, oi α overlaps q (is 
overlapped by)

x , x′ , y , y′ x′ , x , y′ , y

Note: in our notation, α and q are intervals, x, x′ are the start positions, and y, 
y ′ are the end positions.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82


Luo and Szolovits

32 Biomedical informatics insights 2016:8

repeatedly divides and distributes a node v′s range to its two 
children vl and vr. The dividing point xv is used as search key 
for node v. The endpoints in the leaves of the subtree rooted at 
v fall in its range. The node v is the allocation node for an inter-
val s (s is called v′s associated interval) if x sv ∈  and xp(v) ∉ s,  
where p(v) denotes the parent of v. The set S(v) consists of 
v′s associated intervals. Two secondary balanced search trees 
(BSTs) Tl(v) and Tr(v) store left and right endpoints of S(v), 
respectively. S = Υv S(v) is the set of all intervals. We refer the 
reader to Cormen et al.25 for more detail on basic interval tree 
and its variations. Note that interval tree is related to range 
tree that holds a list of points. Their difference and connection 
is beyond the scope of this paper and we refer the reader to the 
study by Lueker26 for more detail.

In the rest of this paper, we let n be the total number 
of intervals. When inserting or deleting an interval s = [x, y] 
to the tree Tp, we first find the lowest common ancestor (lca) u 
of x and y and then update Tl(u) and Tr(u), taking O(log n) 
time. Considering possible rotation, an update takes O(log n) 
amortized time.25 Amortized time is the time required to per-
form a sequence of operations averaged over all the operations 
performed.25 It is also clear that stabbing-max query takes 
O(log2 n) time, as the secondary trees of all nodes on the search 
path of q need to be searched. The data structure takes O(n) 
space. IT0 runs stabbing-interval query on the overlap relation 
as follows. Let s = [x, y] be the query interval. Starting from 
root, for each node v visited, if x x yv ∈[ , ], report all intervals in 
S(v). If xv , x, descend to right child vr of v. If xv . y, descend 
to left child vl of v. The query time is clearly O(log n + k).

challenges for stabbing-Interval Queries on Allen’s 
Interval Algebra
To solve the stabbing-interval query problem under Allen’s 
interval algebra, the IT0 that works for general overlap rela-
tion will not suffice for some Allen’s relations in that it can-
not achieve O(log n + k) query time and O(log n) update 
time under O(n) space. For example, let the query interval be  
s = [x,y], for oi query (ie, find s′ such that s′ oi s), the IT0 will 
work as follows. At a node v,

- If xv , x, then no interval s′ in v or in subtree rooted at vl 
satisfy s′ oi s. Search the subtree rooted at vr.

- If xv . y, then interval s′ with x , x′ , y satisfy s′ oi s, no 
intervals in subtree rooted at vr satisfy s′ oi s. Search the 
subtree rooted at vl for additional s′ such that s′ oi s.

- If xv ∈[x, y], we need x′ . x and y′ . y.

We run into problems if xv ∈[x, y]. For the two constraints, 
if we search Tl(v) and Tr(v) separately and intersect the result 
set, then we cannot prevent Tl(v) or Tr(v) from returning more 
than desired intervals and exceeding the theoretically desira-
ble O(log n + k) query time bound. This is different from the 
general overlap query, for which all s′ ∈Sv can be returned and 
the query time is O(log n + k). In fact, the worst case for oi 

query can be O(log2 n), as shown in the next section. It is easy 
to see that the o query has a worst-case time complexity of 
O(log2 n) too.

However, for the di query, the pruning that works for 
xv , x or xv . y in the oi query will not work, and it is hard to 
analyze time complexity for this query by such reasoning. We 
give a tight time complexity analysis in the next section.

tight time complexity Analysis on solving Allen’s 
Algebra Using Basic Interval tree
Despite the nonoptimal performance, solving Allen’s algebra 
using basic interval tree (IT0) is appealing in the sense that 
the implementation is simple. For example, one can use a red–
black tree as Tp. As stated in the previous section, it is hard to 
perform accurate time complexity analysis on stabbing-interval 
queries with respect to some interval relations. In this section, 
we use query rewriting to reduce those queries into stabbing-
max queries and give a tight time complexity analysis.

For the o query, it can be translated into the following 
equivalent query, “find all intervals s′ = [x′,y′] such that y ∈ s′ 
and w(s′) = x′ . x.” In the above notation, w(s′) = x′ . x means 
that the weight of s′ is x′, and we require that x′ . x. The new 
query is similar to the stabbing-max query, except for that we 
report all intervals with priority .x instead of reporting only 
the maximum priority interval. Note that this does not take 
extra time to scan the secondary trees in IT0, so the time com-
plexity is O(log2 n). Also note that O(log2 n) is not output sen-
sitive time complexity, and this corresponds to the worst-case 
scenario in the example analysis of the previous section.

Of all Allen relations, three (ie, o, oi, and d) can be refor-
mulated into stabbing-max point queries. The reformulations 
of the three Allen’s relation queries are presented in Table 2. 
Thus, all above queries have a time complexity of O(log2 n).

The stabbing-interval queries given interval s on the rest of 
Allen’s relations are relatively straight forward with stabbing-
max reformulation. For s di s′ query, we descend the interval tree 
with queries x and y in O(log n) time. For all the nodes hanging 
right off the search path ∏x for x and hanging left off the search 
path ∏y for y, we report all the associated intervals. It remains 
to check the leaf node of ∏y for intervals s′ such that s di s′, or 
equivalently x , x′. The leaf node can be linearly scanned in 
O(log n) time. Thus, the total query time is O(log n + k).

The s , s′ or s . s′ queries are like s di s′ query, even 
simpler. For s , s′ query, we follow the search path ∏y in the 
interval tree, report all the associated intervals of the nodes 

table 2. Reformulations for stabbing-interval queries on some 
Allen’s relations.

ALLEN’S RELAtioN REfoRMuLAtioN

s = [x,y] o s′ = [x′,y′] y ∈ s′ and w(s′) = x′ . x

s = [x,y] oi s′ = [x′.y′] x ∈ s′ and w(s′) = y′ . x

s = [x,y] d s′ = [x′,y′] y ∈ s′ and w(s′) = –x′ . –x

http://www.la-press.com
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hanging right off the path. We scan the leaf of ∏y in O(log n)  
time and report intervals whose x′ . y. It is clear that the 
query takes O(log n + k) time. The analysis is analogous for 
s . s′ query.

In Allen’s interval algebra, specifically for m, mi, s, si, f, 
fi, and = , duplicate end points are allowed. We only store one 
representative of the duplicate end points and keep pointers 
from the copy to all intervals. We require that the number of 
representative end points in a leaf node is O(log n).

For s m s′ query, we simply follow the search path ∏y in 
O(log n/log log n) time to the leaf and do an O(log n) time 
linear scan of the end points and report intervals whose left 
endpoints x′ = y. The overall query time is O(log n). The s mi s′ 
query is analogous. The queries on the s, si, f, fi, and = relations 
can all be analyzed in a similar fashion, yielding O(log n + k) 
query time.

For combined queries, such as ,m (, or m) and .mi 
(. or mi), we can simply perform the individual queries and 
union the results, the query time is still O(log n + k).

The above asymptotic time complexities are tight, given 
the IT0 data structure, except for the d query. To show that 
O(log2 n) time complexity is also tight for the d query, we 
show that one can rewrite stabbing-max query and reduce it 
to d query. This can be done by expanding query point q into 
an interval s = [q, q + δ], where δ is small so that no stored 
interval endpoints falls into [q, q + δ]. Then, the stabbing-max 
query can be done by stabbing-intervals s′ such that s d s′ and 
keeping track of the max priority one. As bookkeeping does 
not take additional time for stabbing-interval query, if the d 
query takes less than O(log2 n) time, so does the stabbing-max 
query on IT0. This contradicts that O(log2 n) is tight bound for 
stabbing-max query on IT0, hence O(log2 n) is a tight bound 
for the d query given the IT0.

Interval tree with embedded secondary 
tournament trees
In the next two sections, we describe two augmented interval 
trees that can be used to efficiently perform stabbing-interval 
query on hard Allen’s relations. By augmenting secondary 
trees into tournament trees and embedding them into Tp, 
Kaplan et al.23 reduced stabbing-max query time to O(log n) 
in the worst case, insertions to O(log n) amortized time, and 
deletions to O(log n log log n) amortized time.

Using tournament tree. A tournament tree is a com-
plete binary tree that can be operated as a min (max) heap.25 

The name is coined after the imaginary tournament: every 
leaf node corresponds to one player and every internal node 
correspond to the winner of one match. Each node a of the 
secondary BSTs Tl(v) or Tr(v) uses a tournament tree to main-
tain the maximum priority of the intervals in its subtree, 
denoted by m(α). The stabbing-max query can be performed 
as max S max Sq q( ) ( ( ))=

∈
max

qv
v

Π
, where ∏q is the search path of q 

in Tp and recall that S = ∪v S(v) is the set of all intervals. We 

abuse the notation and let maxq (.) denote both the maximum 
priority and the corresponding interval in a set. By keeping a 
backtrack pointer, maxq(.) operator also returns the max prior-
ity interval. If q , xv in Tp, all the intervals whose left endpoints 
are ,q will contain q. Thus max S v mq

q
l

( ( )) =
∈

max
α

α
Π

( ), where Π
q
l 

consists of nodeshanging left off ∏q, as shown in Figure 3. The 
case where q . xv is analogous. This two-step procedure takes 
O(log2 n) time.

embed tournament tree. To embed the tournament trees 
into Tp, the tree Tl(v) (resp. Tr(v)) is redefined to be a tree isomor-
phic (hence a bijection δ  is defined) to a subtree in Tp whose leaves 
store the left endpoints of S(v) (resp. the right endpoints of S(v)). 
Let pk(v) denote v’s ancestor and recall that δ(.) is the bijection 
defined by the isomorphism between Tl(v) (resp. Tr(v)) and a sub-
tree in Tp. Two additional data structures hl(v) and hr(v) are main-
tained, where h v u p v st T u vl

k
l( ) { ( ) . ( ) ( ) }= ∃ = ∈ =α | α δ αand  

and hr(v) is symmetrically defined. The hl(v) and hr(v) are main-
tained as max-heaps that have m(α) as the node α ’s key. They 
are of size O(log n) and their maxima are Ml(v) and Mr(v), 
respectively. By definition, the set of intervals in hl(v) is the 
set of intervals associated with v’s ancestors while having left 
endpoints in the range σv. The hr(v) has symmetric definition. 
One stops maintaining secondary structures for low-level node 
v LL v depth v n∈ = <{ ( ) log }| . Let HL = {v | depth(v) $ log n}, 
HL has height O(log n – log log n). Denote the improved data 
structure to be IT1. As they only maintain a O(log n) secondary 
structure for each of the Θ(n/log n) nodes, the space complexity 
of IT1 is O(n).

Query and update. Let s′ be the interval with an end-
point at the leaf of ∏q, and let w′ be the priority of s′ (if q s∈ ′, 
otherwise 0). The stabbing-max query can then be performed 
by max ( ) max(max max

q v vq
l

q
r

MS M v v wl r= ′
∈ ∈Π Π

( ), ( ), ), where Ml(v) 

v

figure 3. Secondary tournament tree Tl(v). Πq  is highlighted in yellow, 
while Πq

l  is highlighted in green.
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and Mr(v) are introduced in “Embed tournament tree” section. 
This is illustrated in Figure 4. We can keep track of the inter-
val achieving maxq(S) by storing backtracking pointers at the 
roots of hl(v) and hr(v). For all v HL∈ , Ml(v) and Mr(v) now 
have O(1) access time. For all v

v v LLq
l

∈
∈ ∈

LL M vl, max
,Π

( ) and 

max
,v v LLl

M
∈ ∈Π q

l v( ) can be found by a linear scan of O(log n) end 

points in O(log n) time. Thus, stabbing-max query now runs 
in O(log n) time.

Kaplan et al.23 showed that insertions and deletions can 
both be done in O(log n log log n) time. If we only maintain 
secondary structure for the nodes in the top O(log n – log log n)  
levels of the tree, amortized time is reduced to O(log n) for 
insertion but not for deletion. Intuitively, after deletion, all 
remaining intervals are candidates for the maximum inter-
val, hence O(log log n) time is still required to update each 
of the O(log n – log log n) secondary structures (under top-
only secon dary structure maintenance) on a search path in Tp 
(O(log log n)⋅O(log n – log log n) = O(log n log log n)).

Interval tree with Large Fan-out Base tree
Agarwal et al.24 increased the fan-out of Tp from 2 to log ,n  
and cut redundant storage at secondary data structure. As a 
result, their data structure, denoted by IT2, achieved O(log n) 
query and update time with O(n) space.

structure of large fan-out interval tree. The data struc-
ture of Agarwal et al.24, denoted by IT2, consists of n/log n 

fat leaves, each containing log n consecutive endpoints. The 
children of a node are stored in a BST that allows O(log log 
n) search time. For internal node v and its children vi ’s, the 
range σv associated with v is divided into ranges σvi

 associ-
ated with vi ’s (called slabs). The intersecting point of two slabs 
xv v vi i i

=
−

σ σ
1
∩  is called a boundary. A multislab is defined as 

the union of several consecutive slabs σ σ[ : ]i j l i
j

i
= ∪ = v . Let f 

be the fan-out of the tree, then there are 
f

O n2








 = (log ) mul-

tislabs in v. The node v is called the allocation node for an inter-
val s if there exists an i, such that its children’s dividing points 
are in the interval x svi

∈( ), but its parent’s dividing point is not 
in the interval (xp(v) ∉ s) (similar to the binary case IT1). The 
main tree Tp is maintained as a weight-balanced B-tree where 
split instead of rotation is used to balance the tree.

There are O n
n

n O n n
log

/ log / log












=






3
2  internal 

nodes in Tp. Any interval s = [x,y] such that x vi
∈σ  and y v j

∈σ  

can be divided into the left interval s x xl
vi

=
+

[ , ]
1

, the middle 

interval s x xm
v vi j

=
+

[ , ]
1

 (degenerated if j = i + 1) and the right 

interval s x yr
v j

= [ , ]. In the sequel, we define v’s left interval 

set as s sv
l

s S
l

v
= ∈∪  and Tp’s left interval set as s sl

v T v
l

p
= ∈∪ . We 

also define S S S Sv
m m

v
r r, , ,  analogously.

Secondary data structures Mv, Lv, and Rv are maintained 
for S S Sv

m
v
l

v
r, ,and  respectively, as explained below. The structure 

Mv consists of O(log n) max-heaps storing multislabs (formerly 

H x y x x x y Sv
ij

v v vi j
= ∈ ∈ ∈{[ , ] , ,[ , ] }| σ σ ) and O nlog



  max- 

heaps storing slabs (formerly H H i l jv
l ij= ≤ ≤{max( ) }| ).  

Overall, Mv uses O S nv
m| | +







log

3
2  space. As there are 

O n n/ log
3
2







 internal nodes and hence this many Mv’s, they 

use O(n) space in total. The secondary structure Lv stores a 
high-level tournament tree for intervals in the set ∪u p u

lS= k ( )v  
of intervals that have left end points in the node v’s slab σv. 
More precisely, let Ψ(u = pk(v), v) be the left intervals (sl′s) 
with allocation node being v’s ancestor and with left end point 
being in the slab σv. Let ψ(pk(v), v) be the maximum priority 
interval in the set Ψ(u = pk(v),v). Also, define the set Φ(v) = 
∪k≥ 2 Ψ(u = pk(v),v) to be the left intervals associated with v’s 
indirect ancestors and the interval φ(v) = maxk$2ψ(pk(v),v) to 
be the max priority interval in the set. Only φ(v)’s are actually 
stored. Let Lv be the tournament tree used to store φ(v)’s, it has 
height and search time O(log log n). In order to update Lv, two 
additional structures are maintained, a BST Tu for the internal 

figure 4. Stabbing-max query in Tp with data structure IT1. line 
segments on top denote range of relative nodes. Line segments at 
bottom are example intervals of the two nodes hanging right of the search 
path. The search path Πq  is highlighted in yellow, the nodes hanging left 
off Π Πq q

l( )  and hanging right off Π Πq q
r( ) are highlighted in green.
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node u and a max-heap Hv for the node v. Roughly speak-
ing, Tu corresponds to Tl(u) in IT1, except that a small tourna-
ment tree for each leaf is maintained to enable O(log log n) 
search time at leaves. In addition, the operator for retrieving 
the max priority and the associated interval, namely, m(α) in 
IT1, has been extended into ψ(u, v) here. For the node v and 
all its indirect ancestors (ie, ∀u = pk(v), k $ 2), we denote Hv 
to be a max-heap used to store ψ(u, v). By definition, φ(v) is 
at the top of the max-heap Hv. It is easy to see that the space 

complexity of tournament trees is | |T O nuu Tp∈∑ = ( )  and the 

space complexity of max-heaps is | |H O nvv Tp∈∑ = ( )  because 

each Ψ(u, v) is stored once and each left interval is stored in 
exactly one tournament tree associated with a leaf node of Tp. 
The total space requirement is thus O(n). The secondary data 
structure Rv for Sv

r can be analogously defined and analyzed.
Binary versus N-ary primary tree. Figure 5 shows the 

differences and connections between the IT1 and IT2 on the 
primary tree (Tp) level. Compared with IT1’s secondary struc-
ture, IT2 has extra max-heaps Mv due to large fan-out. In the 
tree IT1, the intervals containing a position q can be extracted 
using the operators hl(.) and hr(.) on the nodes hanging left 
and right off the search path. In IT2, the intervals containing 
a position q can be extracted using the data structures Lv’s, 
Rv’s, and Mv’s on the search path. Nevertheless, together with 
intervals containing position q and having end points in the 
leaf nodes of the search path ∏q, they form a partition (off-
path and on-path) of all relevant intervals. This extra layer of 
complexity is necessary for IT2 to be used for stabbing-interval 
queries on hard Allen’s relations as enumerated in “Tight time 
complexity analysis on solving Allen’s algebra using basic 
interval tree” section.

The major difference is that IT2 has larger fan-out log n; 

therefore, the height of Tp has been reduced to O(log n/log 

log n), allowing query and update time to be O(log log n) for 
secondary data structures and O(log n) in total.

Another difference is that IT2 has smaller heap size for 
max-heaps Hv’s than hl(v) in IT1, this is why IT2 has O(n) 
space requirement even without top-only secondary structures 
maintenance as in IT1.

Query and update. For stabbing-max query, the number 
of secondary structures for nodes on the search path ∏q that 
need to be searched can be up to O(log n/log log n); thus, we 
need query time on secondary structures to be O(log log n) 
so that the total search time is O(log n). On the other hand, 
update (insertion and deletion) is more complicated as rebalan-
cing the tree may be necessary. An analysis on secondary data 
structures is first presented, followed by an intuitive explana-
tion on update in primary tree is presented below.

Recall the definition of the S as the union of left, middle, 
and right intervals (ie, S = Sl ∪ Sm ∪ Sr), thus max(S) = max(max 
Sl, max Sm, max Sr), the stabbing-max query can be performed 
in a divide-and-conquer fashion. In addition, the interval col-
lections Sl, Sm, and Sr can be separately queried and updated.

Stabbing-max point query on intervals in Sm requires 
querying all O(log n/log log n) internal nodes on the search 
path and reporting the maximum. Stabbing-max query for 
intervals in Sv

m associated with an internal node v requires 
finding a slab of σv containing q (this takes O(log log n) time) 
and then retrieving the max interval from the max-heap of 
this slab (this takes O(1) time). Total time is O(log n). The 
update on Sm requires searching down the balanced B-tree Tp 
in O(log n) time and updating on Sv

m for identified node v.  
The update on Sv

m requires updating a multislab max-heap in 
O(log n) time and then updating O nlog



  affected slab 

max-heaps (each taking O(log log n) time) in O(log n) time 
(as O n nlog log log⋅



  # O(log n)). Thus, the total update 

time is O(log n).

v

u

q
q

Binary Tp F-ary Tp

TI(v), HI(v)
Tr(v), Hr(v)

Mv

Mv

Rv

Lv

TI(v), hI(v),
Tr(v), hr(v)

figure 5. The difference between the IT1 (on left) and IT2 (on right). Yellow indicates search path.
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The stabbing-max point query on the left intervals in 
Sl requires following the search path ∏q in Tp and querying 

for each node on the path v q∈∏( ) the left intervals associ-

ated with it (the secondary tournament tree Lv introduced 

in “Structure of large fan-out interval tree” section). Each 
tournament tree has O(log log n) search time, hence all O(log  
n/log log n) nodes on the search path ∏q require O(log n) search 
time. The fat leaves can be searched in O(log n) time by linear 
scan. Thus, the total search time is O(log n). When updating 
Lv, for v’s ancestor u (ie, u = pk(v)), we need to update the BST 
Tu. The ancestors of v need to be traversed bottom up along 
a path of length O(log n/log log n). Each Tu of size O(log n)  
needs to be updated in O(log log n) time. Thus, the update on 
Tu takes O(log n) time in total for all ancestors of v. Similarly, 
updating Hv also takes O(log n) time. Finally, updating Lv 
itself takes O(log log n) time. Hence, the total update time is 
O(log n). The stabbing-max point query and update times on 
Sr have analogous analysis.

The stabbing-max point query time and update time are 
O(log n) on all data structures Sl, Sm, and Sr; hence, the query 
and update time on S are O(log n).

solve Allen’s Interval Algebra in Logarithmic time
In this section, we solve the problem of efficient stabbing-
interval queries on all Allen’s relations. That is, the query has 
O(log n + k) worst-case time, the update has O(log n) amor-
tized time and the space requirement is linear. We extend the 
data structure IT2 to build two interval trees, IT le

2
 and IT re

2
, 

using values of left end points and right end points as priori-
ties, respectively. The new data structure is called IT2’.

For the o query, as explained in “Tight time complexity 
analysis on solving Allen’s algebra using basic interval tree” 
section, it can be translated into the following equivalent query, 

“find all intervals s′ = [x′,y′] such that y s∈ ′ and w(s′) = x′ . x.” 
The new query is similar to the stabbing-max query, except for 
that we report all intervals with priority larger than x instead 
of reporting only the maximum priority interval. This change 
requires some modifications to the IT2 querying algorithm.

For the middle interval set Sm, we still query all O(log 
n/log log n) internal nodes on the search path. Query for the 
middle interval set for a node v Sv

m( ) requires first finding a 
slab σv containing q (in O(log log n) time). For the max-heap 
corresponding to σv’s slabs, we traverse all nodes in the heap 
having key . x. For each traversed node v′ in σv’s slab max-
heap, we traverse all nodes having key . x in the multislab 
max-heap whose max is stored in v′. For each traversed node 
in the multislab max-heap, we report the corresponding inter-
val. For each valid interval (eg, s′ such that s o s′), we traversed 
one node in the slab max-heap and one node in the multislab 
max-heap; thus, the query time on the middle interval set Sm 

is O
n

n
n k O n k

log

log log
log log (log )⋅ +













= + .

For the right interval set Sr, we still follow all O(log n/log 
log n) internal nodes on the search path. As shown in Figure 6, 
let RBST(v) be the BST associated with a node v hanging right 
off the search path ∏y. We query the BST RBST(v) to find all 
v′ with ∏(v′) . x. Note that the newly introduced RBST(v) is 
a BST version of the tournament tree Rv. The BST RBST(v) 
allows identifying all node v′’s in O(log log n) time without 
adding asymptotic update time to the overall O(log n) bound. 
For each such v′, we find in the max-heap Hv′ all u′ that have 
(u′,v′) . x where ψ(u′,v′) denotes the maximum priority of the 
left intervals associated with the nodes u′ and v′ (see “Struc-
ture of large fan-out interval tree” section for details). For each 
such u′, we have a modified tournament tree Tu, such that 
every internal node stores the max and second-max priorities 
of the subtree. Note that this does not add asymptotic update 

1. Query RBST(V) to find all v' with Ø(v')>x

2. Find in Hv’ all u' that have ψ(u',v')>x

Tu'

3. Query the subtree of Tu' rooted
by the node corresponding to v' 

ψ(u',v')

RBST(V)

v' 
Hv'

u'

figure 6. Search procedure on Sr for the o query given query interval s. RBst(v) is the BST associated with a node v in Sr.
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overhead. We also modify the leaf tournament tree of Tu, in 
the same way. We query the subtree of Tu, rooted by the node 
corresponding to v′. If both max and second-max priorities are 
larger than x, we descend the tree, otherwise, we simply return 
the interval corresponding to max priority without descending 
the tree. This approach guards against unnecessary descend-
ing for paths that contain only one valid interval. Note that 
there are at most four nodes in all RBST (v), Hv, and Tu, which 
are visited for every reported interval. Thus, for all v hanging 
right off the search path, the total query time is O(log n + k). It 
remains to search the leaf of the search path ∏y and combine 
the results. A linear scan takes O(log n) time for O(log n) leaf 
nodes. Thus, the total query time for the right interval set Sr 
is O(log n + k).

The query on Sl can be performed in a similar fashion, 
with a run time of O(log n + k). Therefore, the total query time 
on S is O(log n + k) for the o query given interval s.

For stabbing-interval queries on hard Allen relations, we 
now have a tool to reformulate them into a stabbing-max point 
queries. As presented in Table 2, of all Allen relations, three 
hard relations (o, oi, and d) can be reformulated into stabbing-
max point queries.

Note that it may require building a new interval tree IT2′ 
for each new query reformulation. This does not look too bad 
when we only need three query reformulations. Moreover, 
we can also pack the three secondary data structures into one 
interval tree IT2′ and share the primary tree Tp. The stabbing-
interval queries given interval s on the rest of Allen’s relations 
are relatively straightforward. For these relations, query pro-
cedures and (tight) time analysis are the same as in “Tight 
time complexity analysis on solving Allen’s algebra using basic 
interval tree” section.

Next, we show that the above logarithmic time complexi-
ties for the o, oi, and d queries are tight. We use query rewrite 
and proof by contradiction. For example, given a query point q, 
we can rewrite the stabbing-max query to the o query by stab-
bing s′:s = [–∞, q] o s′ and keeping track of s′ with max priority. 
Bookkeeping here takes O(k) time. When O(k) # O(log n),  
stabbing-max query can be performed in less than O(log n) 
time, contradicting the fact that O(log n) is a tight bound on 
stabbing-max query given the IT2′ data structure. We sum-
marize the time complexity analysis of various interval trees 
examined so far in Table 3.

Generalize Into external Memory structure and 
Higher dimensions
Throughout the time complexity analysis in previous sections, 
we have followed the theoretic algorithm analysis convention 
in assuming an internal memory model where the cost of an 
algorithm depends on the total number of accesses to memory 
locations. However, in practice, one needs to take into account 
the memory hierarchy to better characterize different access 
speeds at different levels. External memory interval manage-
ment is often used in database community, such as in spatial 
queries27 and temporal aggregates,28 for massive dataset. Arge 
and Vitter22 proposed an optimal data structure that performs 
stabbing-point query in O(logB n + k/B) I/Os and update 
in O(logB n) I/Os in worst case with a space requirement of 
O(n/B) disk blocks. With their proposed data structure, the 
IT2 structure for stabbing-max query under internal model 
can be directly generalized to give an external memory loga-
rithmic I/O structure for stabbing-max query, as pointed out 
by Agarwal et al.24

It is conceivable that one needs to add more than one 
dimension to order the annotations. For example, one might 
need to store relation annotation between two or more medi-
cal concepts.29 Stand-off annotation for relations can be 
indexed by multiple independent intervals. This exposes the 
necessity to generalize our algorithm to higher dimensions. 
Under internal memory model, generalization of the one-
dimensional optimal structure to higher dimensions can be 
easily made by using segment trees.30 This scales up the space, 
the update time, and the query time by a factor of O(log n) per 
dimension. Generalization under external memory model also 
has a scaling-up factor of O(log n) per dimension for space, 
update, and query time.31

conclusion
Stand-off annotations are becoming ubiquitous for biomedi-
cal NLP, due to the advantages in computing and storing 
such annotations compared to in-line annotations. Stand-off 
annotations can be abstracted into interval representations. 
Efficient querying, updating, and storing stand-off annota-
tions require carefully designed interval trees. The problem is 
even more challenging when we want to achieve theoretical 
lower bound on stabbing-interval query time for all possible 
relations in Allen’s interval algebra. We reviewed three types 

table 3. Comparison of operation time between multiple interval tree data structures.

IT0 IT1 IT2 IT2′

Allen’s interval O(log2 n + k) for o, na na O(log n + k)

algebra queries oi and d

Stabbing-max query na O(log n) O(log n) na

insertion O(log n) O(log n)* O(log n)* O(log n)*

deletion O(log n) O(log n log log n)* O(log n)* O(log n)*

Note: *Amortized time.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82


Luo and Szolovits

38 Biomedical informatics insights 2016:8

of interval trees (IT0, IT1, and IT2) with increasingly complex 
secondary data structures. We modified and extended IT2 into 
IT2′ so that it can be used to attain desirable lower time bound 
for stabbing-interval queries with all Allen’s relations. At the 
same time, the update time is logarithmic and space complex-
ity is linear, both at theoretical lower bound. Thus, IT2′ is a 
generic and fundamental data structure and algorithmic tool 
that enables efficient queries, updates, and storage of stand-off 
annotations for NLP on EMRs.
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