
MIT Open Access Articles

Efficient Queries of Stand-off Annotations for Natural
Language Processing on Electronic Medical Records

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Luo, and Peter Szolovits. “Efficient Queries of Stand-off Annotations for Natural
Language Processing on Electronic Medical Records.” Biomedical Informatics Insights (2016):
29.

As Published: http://dx.doi.org/10.4137/bii.s38916

Publisher: Libertas Academica, Ltd

Persistent URL: http://hdl.handle.net/1721.1/106905

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution-NonCommercial 3.0 Unported licence

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/106905
http://creativecommons.org/licenses/by-nc/3.0/

29Biomedical informatics insights 2016:8

Background and Motivation
Electronic medical records (EMRs) normally include some
well-structured tabular data such as laboratory measurements
and medication orders, but a large portion of each patient’s
record is in the form of narrative sentences (eg, pathology
reports, discharge summaries, progress notes, clinicians’ notes,
and comments) or snippets (eg, medical problem listings and
medical test items).1–4 EMRs are being widely adopted, pro-
viding valuable repositories of historical patient data that
enable clinicians and researchers to study profound biological
and clinical questions.5–11 To make effective use of these natu-
ral language data, we typically run multiple interpretive algo-
rithms over the text, each generating annotations of portions
of the text.3,4

Many early natural language processing (NLP) systems
and corpora used in-line annotations where annotations are
marked and embedded in the text (eg, i2b2 de-identification
and smoking challenge corpora12,13). Figure 1 shows an example
sentence with in-line annotations of Private Health Informa-
tion (PHI) and Unified Medical Language System (UMLS)
semantic types (STs) in XML style markups. In comparison,

stand-off annotations identify the starting and ending posi-
tions of the text to which it applies and contain various types
of additional information specific to the type of annotation.
Stand-off annotations have the benefit that the original docu-
ment is never altered or directly marked up by NLP steps (see
Box1), hence more human readable. Stand-off annotations can
be stored in data structures that make their retrieval fast and
management efficient. This eliminates the need to maintain
multiple versions of a document depending on what mark-
ups have been made on it, and it eliminates the often tedious
task of other language processing systems to generate a flat file
representation of intermediate analysis results, followed imme-
diately by the need to reparse those at files into an internal rep-
resentation that support the next processing step. More recent
biomedical NLP systems and corpora gradually adopted the
stand-off annotation or its variants, eg, cTAKES,14 current ver-
sion of MetaMap,15 and the i2b2/VA 2010 challenge.16 Exam-
ple stand-off annotations are also shown in Figure 1. Note
that we can introduce additional STs due to alternative tax-
onomies/ontologies, including SNOMED-CT (www.ihtsdo.
org/snomed-ct), LOINC (loinc.org), and ARTEMIS.17 These

Efficient Queries of Stand-off Annotations for Natural
Language Processing on Electronic Medical Records

Yuan luo1 and Peter szolovits2

1Assistant Professor, Department of Preventive Medicine, Northwestern University, Chicago, IL, USA. 2Professor, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

ABstrAct: In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and
stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying
natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy posi-
tion constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record
ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform
a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types
from Allen’s interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmenta-
tions to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval
query tasks on all of Allen’s relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement
is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions.

Keywords: electronic medical records, natural language processing, stand-off annotation, interval tree

CitAtioN: Luo and Szolovits. Efficient Queries of Stand-off Annotations for Natural
Language Processing on Electronic Medical Records. Biomedical Informatics Insights
2016:8 29–38 doi: 10.4137/Bii.s38916.

tYPE: Perspective

RECEivEd: may 04, 2016. RESubMittEd: June 13, 2016. ACCEPtEd foR
PubLiCAtioN: June 22, 2016.

ACAdEMiC EditoR: John P. Pestian, editor in chief

PEER REviEw: Four peer reviewers contributed to the peer review report. Reviewers’
reports totaled 1,697 words, excluding any confidential comments to the academic
editor.

fuNdiNg: This research was supported (in part) by NIH grants 5U54 LM008748 and
1U54 HG007963. The authors confirm that the funder had no influence over the study
design, content of the article, or selection of this journal.

CoMPEtiNg iNtEREStS: PS is a member of the SAB of Health Fidelity and holds
stock options. PS also declares grants from Philips, outside of the scope of this work. YL
discloses no competing interests.

CoRRESPoNdENCE: yuan.luo@northwestern.edu

CoPYRight: © the authors, publisher and licensee Libertas Academica Limited. This is
an open-access article distributed under the terms of the Creative Commons CC-BY-NC
3.0 License.

 Paper subject to independent expert blind peer review. All editorial decisions made
by independent academic editor. Upon submission manuscript was subject to anti-
plagiarism scanning. Prior to publication all authors have given signed confirmation of
agreement to article publication and compliance with all applicable ethical and legal
requirements, including the accuracy of author and contributor information, disclosure of
competing interests and funding sources, compliance with ethical requirements relating
to human and animal study participants, and compliance with any copyright requirements
of third parties. This journal is a member of the Committee on Publication Ethics (COPE).
Provenance: the authors were invited to submit this paper.

 Published by Libertas Academica. Learn more about this journal.

http://www.la-press.com/journal-biomedical-informatics-insights-j82
http://www.la-press.com
www.ihtsdo.org/snomed-ct
http://dx.doi.org/10.4137/BII.S38916
mailto:yuan.luo@northwestern.edu
http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82

Luo and Szolovits

30 Biomedical informatics insights 2016:8

STs share the start and end positions, thus would be cumber-
some for in-line annotation format but cleanly separated using
stand-off annotations.

In general, there can be many thousands of annotations
per EMR document. As an example in the typical EMR set-
ting, for the corpora in the i2b2/VA 2010 challenge,16 after
basic syntactic (tokenization, part-of-speech tagging, sentence
parsing, phrase chunking, etc.) and semantic analysis (concept
recognition, assertion recognition, relation recognition, etc.),
we have on average about 10,000 annotations per document
and millions of annotations in total. Such a large amount of
annotations can be space consuming to store and time consum-
ing to search through. Thus, it is important to store and retrieve
these annotations efficiently.

Further analysis of the text often requires retrieval of
different types of annotations pertaining to different seg-
ments of the text. For example, a program may need to find
all the sentences within a specific document section, or all
the PHI annotations within a sentence or phrase. Another
program may need to extract features for relation clas-
sification between two concept annotations (named enti-
ties such as medical problems and treatments), which can
require querying syntactic, lexical, and semantic annotations

that are before, between, or after the two concept annota-
tions in a record (eg, the time of relation between ,ST
TYPE = "Diagnostic Procedure". endoscopy7 ,/ST. and
,PHI TYPE = "Date".April15 2816,/PHI. in Fig. 1).
Viewing annotations and text segments as intervals (with
attributes) in the text, most annotation queries may then be
formally stated as interval queries.

An interval is defined by its starting and ending posi-
tions. There are only three possible relations between two
positions in a document, namely, = , ,, or .. However, as
Allen18 has shown that, for temporal intervals, there are
13 possible relations between two intervals, as defined in
Table 1. We adopt this insight and terminology here, though
referring to spatial rather than temporal intervals. Tempo-
ral intervals mining and reasoning is itself an active area of
research.19,20 We note that the algorithms we present in this
paper apply directly to temporal intervals. If we consider two
intervals, α and q, with starting and ending positions x and
y, as well as x′ and y′, respectively, they may have any of the
13 relationships defined in Table 1 and illustrated in Fig-
ure 2. In the special case where some intervals are degener-
ated (ie, x = y), it is possible for more than one of the above
relations to be satisfied. For example, given a degenerated
α whose start and end coincide with a nondegenerated q′s
x′, we could say that α m q or that α s q. The scenarios of
the 13 relations of Allen’s interval algebra arise frequently in
NLP on EMRs. For example, one may need to find all noun
phrase annotations after a verb phrase annotation in a sen-
tence, extract all automatically identified PHI annotations
that overlap with those in ground truth to calculate partial
matches, or find all noun word annotations within a certain
medical concept annotation. The distribution of these query
types is task and corpus dependent. In this paper, we pro-
pose to solve the problem of efficiently retrieving all intervals
satisfying each of the 13 interval relationship with respect
to a given query interval. The task of retrieving all intervals
satisfying certain relationship with the given query is called
a stabbing-interval query or stabbing query for short. Note
the difference between stabbing-interval query and stabbing-
point query, where a (time or spatial) point rather than inter-
val is given as the probe.

The1 patient2 underwent3 an4 <ST TYPE = "Diagnostic procedure">

ECHO5 </ST> and6 <ST TYPE = "Diagnostic procedure"> endoscopy7

</ST> at8 <PHI TYPE = "Hospital">Beth9 Israel10 Deaconess11 Medical12

Center13 </PHI> on14 <PHI TYPE = "Date"> April15 2816</PHI>.

Start End Annotation type Annotation attribute

5 5 ST Type = Diagnostic procedure

7 7 ST Type = Diagnostic procedure

9 13 PHI Type = Hospital

15 16 PHI Type = Date

… … … …

In-line annotation

Stand-off annotation

figure 1. Comparison of in-line annotation and stand-off annotation. The
annotations marked in the sentence are PHI and UMLS ST. For example,
there are over 30,000 UMLS ST annotations that can be mapped to the
category of medical problems in the i2b2/VA corpus.

Common Natural Language Processing Steps

Tokenization automatically decides where words in a sentence begin and end. Part -of-speech (POS)
tagging assigns a part-of-speech tag for each word in the sentence (eg, VBD for “underwent” in the
sentence in Fig.1). Sentence parsing is the process of assigning a syntactic structure to a sentence
(eg, the constituency or dependency structure obtained by Stanford Parser). Phrase chunking refers to
grouping multiple words into a phrase (eg, the noun phrase of “Beth Israel Deaconess Medical Center”
in Fig.1).The results from tokenization, POS tagging and sentence parsing can provide features for
recognizing typed concepts (concept recognition), negations and uncertainty of concepts (assertion
recognition), semantic relations between concepts (relation recognition).

box 1. Common natural language processing steps.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82

Stand-off annotations for natural language processing on EMR’s

31Biomedical informatics insights 2016:8

Stabbing-interval queries and stabbing-point queries are
typically solved by using a data structure called an interval
tree.21 It is known that the stabbing-point query has an optimal
structure in both the internal memory model (in which the
cost of an algorithm depends on the total number of accesses
to memory locations) and the external memory model (in
which different levels of a memory hierarchy are characterized
by different accessing costs).22 A related problem formula-
tion is the stabbing-max point query, in which each interval is
associa ted with a priority score and the task is to retrieve the
interval containing the query point and having the maximum

priority. There are also near optimal23 and optimal24 structures
for stabbing-max point queries in the internal memory model.
Let n be the total number of intervals and k be the number
of reported intervals. Under the big O notation that gives an
upper bound for a function to within a constant factor,25 there
are structures that support O(log n + k)-time stabbing-interval
queries on the overlap relation. However, among all the 13 rela-
tions in Allen’s interval algebra, there are relations on which a
stabbing-interval query is hard to achieve O(log n + k) time.

In the rest of this paper, we first describe a baseline interval
tree, requiring O(log n) update time and O(n) space, which runs
a stabbing-interval query in O(log n + k) time on the overlap
relation and runs stabbing-max point query in O(log2 n) time.
We then describe Allen’s interval algebra and explain why cer-
tain relations are hard. “Interval tree with embedded secondary
tournament trees” and “Interval tree with large fan-out base
tree” sections recapitulate two linear space interval trees, one
with near logarithmic time23 and the other with logarithmic
time24 on stabbing-max query. “Solve Allen’s interval algebra in
logarithmic time” section proposes efficient stabbing-interval
queries on hard Allen relations, based on modifications of
interval trees in the study by Agarwal et al.24 and query refor-
mulations. We then review interval management in the exter-
nal memory model and higher dimensions. We conclude our
paper with suggestions for future work and a discussion.

Basic Interval tree
A centered interval tree IT0 with secondary data structures can
be defined as follows. The set S of intervals is stored in a balan-
ced binary tree Tp, in which interval end points are stored in
leaves. The Tp starts in the root r with range σr = [–∞, ∞] and

Data interval

Query interval

figure 2. Allen’s interval algebra. In our notation, a and q are intervals, x, x′ are the start positions, and y, y ′ are the end positions. In typical applications,
we are given a query interval q to find from a collection of intervals (many α ’s) those that satisfy certain relation with q.

table 1. Possible relations among intervals, according to Allen’s
interval algebra.

SYMboL dESCRiPtioN dEfiNitioN iNvERSE

= α and q span the
same text

x = x′ ∧ y = y′

,, . α is completely to
the left (right) of q

y < x′ x > y′

m, mi α meets (is met
by) q

y = x′ y′ = x

d, di α is during q (vice
versa)

x > x′ ∧ y < y′ x′ > x ∧ y′ < y

s, si α starts q (q
starts α)

x = x′ ∧ y < y′ x = x′ ∧ y > y′

f, fi α finishes q (q
finishes α)

x′ < x ∧ y = y′ x′ > x ∧ y = y′

o, oi α overlaps q (is
overlapped by)

x , x′ , y , y′ x′ , x , y′ , y

Note: in our notation, α and q are intervals, x, x′ are the start positions, and y,
y ′ are the end positions.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82

Luo and Szolovits

32 Biomedical informatics insights 2016:8

repeatedly divides and distributes a node v′s range to its two
children vl and vr. The dividing point xv is used as search key
for node v. The endpoints in the leaves of the subtree rooted at
v fall in its range. The node v is the allocation node for an inter-
val s (s is called v′s associated interval) if x sv ∈ and xp(v) ∉ s,
where p(v) denotes the parent of v. The set S(v) consists of
v′s associated intervals. Two secondary balanced search trees
(BSTs) Tl(v) and Tr(v) store left and right endpoints of S(v),
respectively. S = Υv S(v) is the set of all intervals. We refer the
reader to Cormen et al.25 for more detail on basic interval tree
and its variations. Note that interval tree is related to range
tree that holds a list of points. Their difference and connection
is beyond the scope of this paper and we refer the reader to the
study by Lueker26 for more detail.

In the rest of this paper, we let n be the total number
of intervals. When inserting or deleting an interval s = [x, y]
to the tree Tp, we first find the lowest common ancestor (lca) u
of x and y and then update Tl(u) and Tr(u), taking O(log n)
time. Considering possible rotation, an update takes O(log n)
amortized time.25 Amortized time is the time required to per-
form a sequence of operations averaged over all the operations
performed.25 It is also clear that stabbing-max query takes
O(log2 n) time, as the secondary trees of all nodes on the search
path of q need to be searched. The data structure takes O(n)
space. IT0 runs stabbing-interval query on the overlap relation
as follows. Let s = [x, y] be the query interval. Starting from
root, for each node v visited, if x x yv ∈[,], report all intervals in
S(v). If xv , x, descend to right child vr of v. If xv . y, descend
to left child vl of v. The query time is clearly O(log n + k).

challenges for stabbing-Interval Queries on Allen’s
Interval Algebra
To solve the stabbing-interval query problem under Allen’s
interval algebra, the IT0 that works for general overlap rela-
tion will not suffice for some Allen’s relations in that it can-
not achieve O(log n + k) query time and O(log n) update
time under O(n) space. For example, let the query interval be
s = [x,y], for oi query (ie, find s′ such that s′ oi s), the IT0 will
work as follows. At a node v,

- If xv , x, then no interval s′ in v or in subtree rooted at vl
satisfy s′ oi s. Search the subtree rooted at vr.

- If xv . y, then interval s′ with x , x′ , y satisfy s′ oi s, no
intervals in subtree rooted at vr satisfy s′ oi s. Search the
subtree rooted at vl for additional s′ such that s′ oi s.

- If xv ∈[x, y], we need x′ . x and y′ . y.

We run into problems if xv ∈[x, y]. For the two constraints,
if we search Tl(v) and Tr(v) separately and intersect the result
set, then we cannot prevent Tl(v) or Tr(v) from returning more
than desired intervals and exceeding the theoretically desira-
ble O(log n + k) query time bound. This is different from the
general overlap query, for which all s′ ∈Sv can be returned and
the query time is O(log n + k). In fact, the worst case for oi

query can be O(log2 n), as shown in the next section. It is easy
to see that the o query has a worst-case time complexity of
O(log2 n) too.

However, for the di query, the pruning that works for
xv , x or xv . y in the oi query will not work, and it is hard to
analyze time complexity for this query by such reasoning. We
give a tight time complexity analysis in the next section.

tight time complexity Analysis on solving Allen’s
Algebra Using Basic Interval tree
Despite the nonoptimal performance, solving Allen’s algebra
using basic interval tree (IT0) is appealing in the sense that
the implementation is simple. For example, one can use a red–
black tree as Tp. As stated in the previous section, it is hard to
perform accurate time complexity analysis on stabbing-interval
queries with respect to some interval relations. In this section,
we use query rewriting to reduce those queries into stabbing-
max queries and give a tight time complexity analysis.

For the o query, it can be translated into the following
equivalent query, “find all intervals s′ = [x′,y′] such that y ∈ s′
and w(s′) = x′ . x.” In the above notation, w(s′) = x′ . x means
that the weight of s′ is x′, and we require that x′ . x. The new
query is similar to the stabbing-max query, except for that we
report all intervals with priority .x instead of reporting only
the maximum priority interval. Note that this does not take
extra time to scan the secondary trees in IT0, so the time com-
plexity is O(log2 n). Also note that O(log2 n) is not output sen-
sitive time complexity, and this corresponds to the worst-case
scenario in the example analysis of the previous section.

Of all Allen relations, three (ie, o, oi, and d) can be refor-
mulated into stabbing-max point queries. The reformulations
of the three Allen’s relation queries are presented in Table 2.
Thus, all above queries have a time complexity of O(log2 n).

The stabbing-interval queries given interval s on the rest of
Allen’s relations are relatively straight forward with stabbing-
max reformulation. For s di s′ query, we descend the interval tree
with queries x and y in O(log n) time. For all the nodes hanging
right off the search path ∏x for x and hanging left off the search
path ∏y for y, we report all the associated intervals. It remains
to check the leaf node of ∏y for intervals s′ such that s di s′, or
equivalently x , x′. The leaf node can be linearly scanned in
O(log n) time. Thus, the total query time is O(log n + k).

The s , s′ or s . s′ queries are like s di s′ query, even
simpler. For s , s′ query, we follow the search path ∏y in the
interval tree, report all the associated intervals of the nodes

table 2. Reformulations for stabbing-interval queries on some
Allen’s relations.

ALLEN’S RELAtioN REfoRMuLAtioN

s = [x,y] o s′ = [x′,y′] y ∈ s′ and w(s′) = x′ . x

s = [x,y] oi s′ = [x′.y′] x ∈ s′ and w(s′) = y′ . x

s = [x,y] d s′ = [x′,y′] y ∈ s′ and w(s′) = –x′ . –x

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82

Stand-off annotations for natural language processing on EMR’s

33Biomedical informatics insights 2016:8

hanging right off the path. We scan the leaf of ∏y in O(log n)
time and report intervals whose x′ . y. It is clear that the
query takes O(log n + k) time. The analysis is analogous for
s . s′ query.

In Allen’s interval algebra, specifically for m, mi, s, si, f,
fi, and = , duplicate end points are allowed. We only store one
representative of the duplicate end points and keep pointers
from the copy to all intervals. We require that the number of
representative end points in a leaf node is O(log n).

For s m s′ query, we simply follow the search path ∏y in
O(log n/log log n) time to the leaf and do an O(log n) time
linear scan of the end points and report intervals whose left
endpoints x′ = y. The overall query time is O(log n). The s mi s′
query is analogous. The queries on the s, si, f, fi, and = relations
can all be analyzed in a similar fashion, yielding O(log n + k)
query time.

For combined queries, such as ,m (, or m) and .mi
(. or mi), we can simply perform the individual queries and
union the results, the query time is still O(log n + k).

The above asymptotic time complexities are tight, given
the IT0 data structure, except for the d query. To show that
O(log2 n) time complexity is also tight for the d query, we
show that one can rewrite stabbing-max query and reduce it
to d query. This can be done by expanding query point q into
an interval s = [q, q + δ], where δ is small so that no stored
interval endpoints falls into [q, q + δ]. Then, the stabbing-max
query can be done by stabbing-intervals s′ such that s d s′ and
keeping track of the max priority one. As bookkeeping does
not take additional time for stabbing-interval query, if the d
query takes less than O(log2 n) time, so does the stabbing-max
query on IT0. This contradicts that O(log2 n) is tight bound for
stabbing-max query on IT0, hence O(log2 n) is a tight bound
for the d query given the IT0.

Interval tree with embedded secondary
tournament trees
In the next two sections, we describe two augmented interval
trees that can be used to efficiently perform stabbing-interval
query on hard Allen’s relations. By augmenting secondary
trees into tournament trees and embedding them into Tp,
Kaplan et al.23 reduced stabbing-max query time to O(log n)
in the worst case, insertions to O(log n) amortized time, and
deletions to O(log n log log n) amortized time.

Using tournament tree. A tournament tree is a com-
plete binary tree that can be operated as a min (max) heap.25

The name is coined after the imaginary tournament: every
leaf node corresponds to one player and every internal node
correspond to the winner of one match. Each node a of the
secondary BSTs Tl(v) or Tr(v) uses a tournament tree to main-
tain the maximum priority of the intervals in its subtree,
denoted by m(α). The stabbing-max query can be performed
as max S max Sq q() (())=

∈
max

qv
v

Π
, where ∏q is the search path of q

in Tp and recall that S = ∪v S(v) is the set of all intervals. We

abuse the notation and let maxq (.) denote both the maximum
priority and the corresponding interval in a set. By keeping a
backtrack pointer, maxq(.) operator also returns the max prior-
ity interval. If q , xv in Tp, all the intervals whose left endpoints
are ,q will contain q. Thus max S v mq

q
l

(()) =
∈

max
α

α
Π

(), where Π
q
l

consists of nodeshanging left off ∏q, as shown in Figure 3. The
case where q . xv is analogous. This two-step procedure takes
O(log2 n) time.

embed tournament tree. To embed the tournament trees
into Tp, the tree Tl(v) (resp. Tr(v)) is redefined to be a tree isomor-
phic (hence a bijection δ is defined) to a subtree in Tp whose leaves
store the left endpoints of S(v) (resp. the right endpoints of S(v)).
Let pk(v) denote v’s ancestor and recall that δ(.) is the bijection
defined by the isomorphism between Tl(v) (resp. Tr(v)) and a sub-
tree in Tp. Two additional data structures hl(v) and hr(v) are main-
tained, where h v u p v st T u vl

k
l() { () . () () }= ∃ = ∈ =α | α δ αand

and hr(v) is symmetrically defined. The hl(v) and hr(v) are main-
tained as max-heaps that have m(α) as the node α ’s key. They
are of size O(log n) and their maxima are Ml(v) and Mr(v),
respectively. By definition, the set of intervals in hl(v) is the
set of intervals associated with v’s ancestors while having left
endpoints in the range σv. The hr(v) has symmetric definition.
One stops maintaining secondary structures for low-level node
v LL v depth v n∈ = <{ () log }| . Let HL = {v | depth(v) $ log n},
HL has height O(log n – log log n). Denote the improved data
structure to be IT1. As they only maintain a O(log n) secondary
structure for each of the Θ(n/log n) nodes, the space complexity
of IT1 is O(n).

Query and update. Let s′ be the interval with an end-
point at the leaf of ∏q, and let w′ be the priority of s′ (if q s∈ ′,
otherwise 0). The stabbing-max query can then be performed
by max () max(max max

q v vq
l

q
r

MS M v v wl r= ′
∈ ∈Π Π

(), (),), where Ml(v)

v

figure 3. Secondary tournament tree Tl(v). Πq is highlighted in yellow,
while Πq

l is highlighted in green.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82

Luo and Szolovits

34 Biomedical informatics insights 2016:8

and Mr(v) are introduced in “Embed tournament tree” section.
This is illustrated in Figure 4. We can keep track of the inter-
val achieving maxq(S) by storing backtracking pointers at the
roots of hl(v) and hr(v). For all v HL∈ , Ml(v) and Mr(v) now
have O(1) access time. For all v

v v LLq
l

∈
∈ ∈

LL M vl, max
,Π

() and

max
,v v LLl

M
∈ ∈Π q

l v() can be found by a linear scan of O(log n) end

points in O(log n) time. Thus, stabbing-max query now runs
in O(log n) time.

Kaplan et al.23 showed that insertions and deletions can
both be done in O(log n log log n) time. If we only maintain
secondary structure for the nodes in the top O(log n – log log n)
levels of the tree, amortized time is reduced to O(log n) for
insertion but not for deletion. Intuitively, after deletion, all
remaining intervals are candidates for the maximum inter-
val, hence O(log log n) time is still required to update each
of the O(log n – log log n) secondary structures (under top-
only secon dary structure maintenance) on a search path in Tp
(O(log log n)⋅O(log n – log log n) = O(log n log log n)).

Interval tree with Large Fan-out Base tree
Agarwal et al.24 increased the fan-out of Tp from 2 to log ,n
and cut redundant storage at secondary data structure. As a
result, their data structure, denoted by IT2, achieved O(log n)
query and update time with O(n) space.

structure of large fan-out interval tree. The data struc-
ture of Agarwal et al.24, denoted by IT2, consists of n/log n

fat leaves, each containing log n consecutive endpoints. The
children of a node are stored in a BST that allows O(log log
n) search time. For internal node v and its children vi ’s, the
range σv associated with v is divided into ranges σvi

 associ-
ated with vi ’s (called slabs). The intersecting point of two slabs
xv v vi i i

=
−

σ σ
1
∩ is called a boundary. A multislab is defined as

the union of several consecutive slabs σ σ[:]i j l i
j

i
= ∪ = v . Let f

be the fan-out of the tree, then there are
f

O n2

 = (log) mul-

tislabs in v. The node v is called the allocation node for an inter-
val s if there exists an i, such that its children’s dividing points
are in the interval x svi

∈(), but its parent’s dividing point is not
in the interval (xp(v) ∉ s) (similar to the binary case IT1). The
main tree Tp is maintained as a weight-balanced B-tree where
split instead of rotation is used to balance the tree.

There are O n
n

n O n n
log

/ log / log

=

3
2 internal

nodes in Tp. Any interval s = [x,y] such that x vi
∈σ and y v j

∈σ

can be divided into the left interval s x xl
vi

=
+

[,]
1

, the middle

interval s x xm
v vi j

=
+

[,]
1

 (degenerated if j = i + 1) and the right

interval s x yr
v j

= [,]. In the sequel, we define v’s left interval

set as s sv
l

s S
l

v
= ∈∪ and Tp’s left interval set as s sl

v T v
l

p
= ∈∪ . We

also define S S S Sv
m m

v
r r, , , analogously.

Secondary data structures Mv, Lv, and Rv are maintained
for S S Sv

m
v
l

v
r, ,and respectively, as explained below. The structure

Mv consists of O(log n) max-heaps storing multislabs (formerly

H x y x x x y Sv
ij

v v vi j
= ∈ ∈ ∈{[,] , ,[,] }| σ σ) and O nlog

 max-

heaps storing slabs (formerly H H i l jv
l ij= ≤ ≤{max() }|).

Overall, Mv uses O S nv
m| | +

log

3
2 space. As there are

O n n/ log
3
2

 internal nodes and hence this many Mv’s, they

use O(n) space in total. The secondary structure Lv stores a
high-level tournament tree for intervals in the set ∪u p u

lS= k ()v
of intervals that have left end points in the node v’s slab σv.
More precisely, let Ψ(u = pk(v), v) be the left intervals (sl′s)
with allocation node being v’s ancestor and with left end point
being in the slab σv. Let ψ(pk(v), v) be the maximum priority
interval in the set Ψ(u = pk(v),v). Also, define the set Φ(v) =
∪k≥ 2 Ψ(u = pk(v),v) to be the left intervals associated with v’s
indirect ancestors and the interval φ(v) = maxk$2ψ(pk(v),v) to
be the max priority interval in the set. Only φ(v)’s are actually
stored. Let Lv be the tournament tree used to store φ(v)’s, it has
height and search time O(log log n). In order to update Lv, two
additional structures are maintained, a BST Tu for the internal

figure 4. Stabbing-max query in Tp with data structure IT1. line
segments on top denote range of relative nodes. Line segments at
bottom are example intervals of the two nodes hanging right of the search
path. The search path Πq is highlighted in yellow, the nodes hanging left
off Π Πq q

l() and hanging right off Π Πq q
r() are highlighted in green.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82

Stand-off annotations for natural language processing on EMR’s

35Biomedical informatics insights 2016:8

node u and a max-heap Hv for the node v. Roughly speak-
ing, Tu corresponds to Tl(u) in IT1, except that a small tourna-
ment tree for each leaf is maintained to enable O(log log n)
search time at leaves. In addition, the operator for retrieving
the max priority and the associated interval, namely, m(α) in
IT1, has been extended into ψ(u, v) here. For the node v and
all its indirect ancestors (ie, ∀u = pk(v), k $ 2), we denote Hv
to be a max-heap used to store ψ(u, v). By definition, φ(v) is
at the top of the max-heap Hv. It is easy to see that the space

complexity of tournament trees is | |T O nuu Tp∈∑ = () and the

space complexity of max-heaps is | |H O nvv Tp∈∑ = () because

each Ψ(u, v) is stored once and each left interval is stored in
exactly one tournament tree associated with a leaf node of Tp.
The total space requirement is thus O(n). The secondary data
structure Rv for Sv

r can be analogously defined and analyzed.
Binary versus N-ary primary tree. Figure 5 shows the

differences and connections between the IT1 and IT2 on the
primary tree (Tp) level. Compared with IT1’s secondary struc-
ture, IT2 has extra max-heaps Mv due to large fan-out. In the
tree IT1, the intervals containing a position q can be extracted
using the operators hl(.) and hr(.) on the nodes hanging left
and right off the search path. In IT2, the intervals containing
a position q can be extracted using the data structures Lv’s,
Rv’s, and Mv’s on the search path. Nevertheless, together with
intervals containing position q and having end points in the
leaf nodes of the search path ∏q, they form a partition (off-
path and on-path) of all relevant intervals. This extra layer of
complexity is necessary for IT2 to be used for stabbing-interval
queries on hard Allen’s relations as enumerated in “Tight time
complexity analysis on solving Allen’s algebra using basic
interval tree” section.

The major difference is that IT2 has larger fan-out log n;

therefore, the height of Tp has been reduced to O(log n/log

log n), allowing query and update time to be O(log log n) for
secondary data structures and O(log n) in total.

Another difference is that IT2 has smaller heap size for
max-heaps Hv’s than hl(v) in IT1, this is why IT2 has O(n)
space requirement even without top-only secondary structures
maintenance as in IT1.

Query and update. For stabbing-max query, the number
of secondary structures for nodes on the search path ∏q that
need to be searched can be up to O(log n/log log n); thus, we
need query time on secondary structures to be O(log log n)
so that the total search time is O(log n). On the other hand,
update (insertion and deletion) is more complicated as rebalan-
cing the tree may be necessary. An analysis on secondary data
structures is first presented, followed by an intuitive explana-
tion on update in primary tree is presented below.

Recall the definition of the S as the union of left, middle,
and right intervals (ie, S = Sl ∪ Sm ∪ Sr), thus max(S) = max(max
Sl, max Sm, max Sr), the stabbing-max query can be performed
in a divide-and-conquer fashion. In addition, the interval col-
lections Sl, Sm, and Sr can be separately queried and updated.

Stabbing-max point query on intervals in Sm requires
querying all O(log n/log log n) internal nodes on the search
path and reporting the maximum. Stabbing-max query for
intervals in Sv

m associated with an internal node v requires
finding a slab of σv containing q (this takes O(log log n) time)
and then retrieving the max interval from the max-heap of
this slab (this takes O(1) time). Total time is O(log n). The
update on Sm requires searching down the balanced B-tree Tp
in O(log n) time and updating on Sv

m for identified node v.
The update on Sv

m requires updating a multislab max-heap in
O(log n) time and then updating O nlog

 affected slab

max-heaps (each taking O(log log n) time) in O(log n) time
(as O n nlog log log⋅

 # O(log n)). Thus, the total update

time is O(log n).

v

u

q
q

Binary Tp F-ary Tp

TI(v), HI(v)
Tr(v), Hr(v)

Mv

Mv

Rv

Lv

TI(v), hI(v),
Tr(v), hr(v)

figure 5. The difference between the IT1 (on left) and IT2 (on right). Yellow indicates search path.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82

Luo and Szolovits

36 Biomedical informatics insights 2016:8

The stabbing-max point query on the left intervals in
Sl requires following the search path ∏q in Tp and querying

for each node on the path v q∈∏() the left intervals associ-

ated with it (the secondary tournament tree Lv introduced

in “Structure of large fan-out interval tree” section). Each
tournament tree has O(log log n) search time, hence all O(log
n/log log n) nodes on the search path ∏q require O(log n) search
time. The fat leaves can be searched in O(log n) time by linear
scan. Thus, the total search time is O(log n). When updating
Lv, for v’s ancestor u (ie, u = pk(v)), we need to update the BST
Tu. The ancestors of v need to be traversed bottom up along
a path of length O(log n/log log n). Each Tu of size O(log n)
needs to be updated in O(log log n) time. Thus, the update on
Tu takes O(log n) time in total for all ancestors of v. Similarly,
updating Hv also takes O(log n) time. Finally, updating Lv
itself takes O(log log n) time. Hence, the total update time is
O(log n). The stabbing-max point query and update times on
Sr have analogous analysis.

The stabbing-max point query time and update time are
O(log n) on all data structures Sl, Sm, and Sr; hence, the query
and update time on S are O(log n).

solve Allen’s Interval Algebra in Logarithmic time
In this section, we solve the problem of efficient stabbing-
interval queries on all Allen’s relations. That is, the query has
O(log n + k) worst-case time, the update has O(log n) amor-
tized time and the space requirement is linear. We extend the
data structure IT2 to build two interval trees, IT le

2
 and IT re

2
,

using values of left end points and right end points as priori-
ties, respectively. The new data structure is called IT2’.

For the o query, as explained in “Tight time complexity
analysis on solving Allen’s algebra using basic interval tree”
section, it can be translated into the following equivalent query,

“find all intervals s′ = [x′,y′] such that y s∈ ′ and w(s′) = x′ . x.”
The new query is similar to the stabbing-max query, except for
that we report all intervals with priority larger than x instead
of reporting only the maximum priority interval. This change
requires some modifications to the IT2 querying algorithm.

For the middle interval set Sm, we still query all O(log
n/log log n) internal nodes on the search path. Query for the
middle interval set for a node v Sv

m() requires first finding a
slab σv containing q (in O(log log n) time). For the max-heap
corresponding to σv’s slabs, we traverse all nodes in the heap
having key . x. For each traversed node v′ in σv’s slab max-
heap, we traverse all nodes having key . x in the multislab
max-heap whose max is stored in v′. For each traversed node
in the multislab max-heap, we report the corresponding inter-
val. For each valid interval (eg, s′ such that s o s′), we traversed
one node in the slab max-heap and one node in the multislab
max-heap; thus, the query time on the middle interval set Sm

is O
n

n
n k O n k

log

log log
log log (log)⋅ +

= + .

For the right interval set Sr, we still follow all O(log n/log
log n) internal nodes on the search path. As shown in Figure 6,
let RBST(v) be the BST associated with a node v hanging right
off the search path ∏y. We query the BST RBST(v) to find all
v′ with ∏(v′) . x. Note that the newly introduced RBST(v) is
a BST version of the tournament tree Rv. The BST RBST(v)
allows identifying all node v′’s in O(log log n) time without
adding asymptotic update time to the overall O(log n) bound.
For each such v′, we find in the max-heap Hv′ all u′ that have
(u′,v′) . x where ψ(u′,v′) denotes the maximum priority of the
left intervals associated with the nodes u′ and v′ (see “Struc-
ture of large fan-out interval tree” section for details). For each
such u′, we have a modified tournament tree Tu, such that
every internal node stores the max and second-max priorities
of the subtree. Note that this does not add asymptotic update

1. Query RBST(V) to find all v' with Ø(v')>x

2. Find in Hv’ all u' that have ψ(u',v')>x

Tu'

3. Query the subtree of Tu' rooted
by the node corresponding to v'

ψ(u',v')

RBST(V)

v'
Hv'

u'

figure 6. Search procedure on Sr for the o query given query interval s. RBst(v) is the BST associated with a node v in Sr.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82

Stand-off annotations for natural language processing on EMR’s

37Biomedical informatics insights 2016:8

overhead. We also modify the leaf tournament tree of Tu, in
the same way. We query the subtree of Tu, rooted by the node
corresponding to v′. If both max and second-max priorities are
larger than x, we descend the tree, otherwise, we simply return
the interval corresponding to max priority without descending
the tree. This approach guards against unnecessary descend-
ing for paths that contain only one valid interval. Note that
there are at most four nodes in all RBST (v), Hv, and Tu, which
are visited for every reported interval. Thus, for all v hanging
right off the search path, the total query time is O(log n + k). It
remains to search the leaf of the search path ∏y and combine
the results. A linear scan takes O(log n) time for O(log n) leaf
nodes. Thus, the total query time for the right interval set Sr
is O(log n + k).

The query on Sl can be performed in a similar fashion,
with a run time of O(log n + k). Therefore, the total query time
on S is O(log n + k) for the o query given interval s.

For stabbing-interval queries on hard Allen relations, we
now have a tool to reformulate them into a stabbing-max point
queries. As presented in Table 2, of all Allen relations, three
hard relations (o, oi, and d) can be reformulated into stabbing-
max point queries.

Note that it may require building a new interval tree IT2′
for each new query reformulation. This does not look too bad
when we only need three query reformulations. Moreover,
we can also pack the three secondary data structures into one
interval tree IT2′ and share the primary tree Tp. The stabbing-
interval queries given interval s on the rest of Allen’s relations
are relatively straightforward. For these relations, query pro-
cedures and (tight) time analysis are the same as in “Tight
time complexity analysis on solving Allen’s algebra using basic
interval tree” section.

Next, we show that the above logarithmic time complexi-
ties for the o, oi, and d queries are tight. We use query rewrite
and proof by contradiction. For example, given a query point q,
we can rewrite the stabbing-max query to the o query by stab-
bing s′:s = [–∞, q] o s′ and keeping track of s′ with max priority.
Bookkeeping here takes O(k) time. When O(k) # O(log n),
stabbing-max query can be performed in less than O(log n)
time, contradicting the fact that O(log n) is a tight bound on
stabbing-max query given the IT2′ data structure. We sum-
marize the time complexity analysis of various interval trees
examined so far in Table 3.

Generalize Into external Memory structure and
Higher dimensions
Throughout the time complexity analysis in previous sections,
we have followed the theoretic algorithm analysis convention
in assuming an internal memory model where the cost of an
algorithm depends on the total number of accesses to memory
locations. However, in practice, one needs to take into account
the memory hierarchy to better characterize different access
speeds at different levels. External memory interval manage-
ment is often used in database community, such as in spatial
queries27 and temporal aggregates,28 for massive dataset. Arge
and Vitter22 proposed an optimal data structure that performs
stabbing-point query in O(logB n + k/B) I/Os and update
in O(logB n) I/Os in worst case with a space requirement of
O(n/B) disk blocks. With their proposed data structure, the
IT2 structure for stabbing-max query under internal model
can be directly generalized to give an external memory loga-
rithmic I/O structure for stabbing-max query, as pointed out
by Agarwal et al.24

It is conceivable that one needs to add more than one
dimension to order the annotations. For example, one might
need to store relation annotation between two or more medi-
cal concepts.29 Stand-off annotation for relations can be
indexed by multiple independent intervals. This exposes the
necessity to generalize our algorithm to higher dimensions.
Under internal memory model, generalization of the one-
dimensional optimal structure to higher dimensions can be
easily made by using segment trees.30 This scales up the space,
the update time, and the query time by a factor of O(log n) per
dimension. Generalization under external memory model also
has a scaling-up factor of O(log n) per dimension for space,
update, and query time.31

conclusion
Stand-off annotations are becoming ubiquitous for biomedi-
cal NLP, due to the advantages in computing and storing
such annotations compared to in-line annotations. Stand-off
annotations can be abstracted into interval representations.
Efficient querying, updating, and storing stand-off annota-
tions require carefully designed interval trees. The problem is
even more challenging when we want to achieve theoretical
lower bound on stabbing-interval query time for all possible
relations in Allen’s interval algebra. We reviewed three types

table 3. Comparison of operation time between multiple interval tree data structures.

IT0 IT1 IT2 IT2′

Allen’s interval O(log2 n + k) for o, na na O(log n + k)

algebra queries oi and d

Stabbing-max query na O(log n) O(log n) na

insertion O(log n) O(log n)* O(log n)* O(log n)*

deletion O(log n) O(log n log log n)* O(log n)* O(log n)*

Note: *Amortized time.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82

Luo and Szolovits

38 Biomedical informatics insights 2016:8

of interval trees (IT0, IT1, and IT2) with increasingly complex
secondary data structures. We modified and extended IT2 into
IT2′ so that it can be used to attain desirable lower time bound
for stabbing-interval queries with all Allen’s relations. At the
same time, the update time is logarithmic and space complex-
ity is linear, both at theoretical lower bound. Thus, IT2′ is a
generic and fundamental data structure and algorithmic tool
that enables efficient queries, updates, and storage of stand-off
annotations for NLP on EMRs.

Author contributions
Conceived and designed the study: YL, PSZ. Wrote the first
draft of the manuscript: YL. Agree with manuscript results
and conclusions: YL, PSZ. Jointly developed the structure and
arguments for the paper: YL, PSZ. Made critical revisions
and approved final version: YL, PSZ. Both authors reviewed
and approved of the final manuscript.

reFereNces
 1. Luo Y, Uzuner O, Szolovits P. Bridging semantics and syntax with graph algo-

rithms – state-of-the-art of extracting biomedical relations. Brief Bioinform.
2016:doi: 10.1093/bib/bbw001. [epub ahead of print].

 2. Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx:
a medication information extraction system for clinical narratives. J Am Med
Inform Assoc. 2010;17(1):19–24.

 3. Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language process-
ing: an introduction. J Am Med Inform Assoc. 2011;18(5):544–51.

 4. Demner-Fushman D, Chapman WW, McDonald CJ. What can natural language
processing do for clinical decision support? J Biomed Inform. 2009;42(5):760–72.

 5. Luo Y, Sohani A, Hochberg E, Szolovits P. Automatic lymphoma classification
with sentence subgraph mining from pathology reports. J Am Med Inform Assoc.
2014;21(5):824–32.

 6. Luo Y, Xin Y, Hochberg E, Joshi R, Uzuner O, Szolovits P. Subgraph augmented
non-negative tensor factorization (SANTF) for modeling clinical text. J Am Med
Inform Assoc. 2015;22(5):1009–19.

 7. Luo Y, Xin Y, Joshi R, Celi L, Szolovits P. Predicting ICU mortality risk by
grouping temporal trends from a multivariate panel of physiologic measure-
ments. In: Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ;
2016.

 8. Friedman C, Hripcsak G, Shagina L, Liu H. Representing information in patient
reports using natural language processing and the extensible markup language.
 J Am Med Inform Assoc. 1999;6(1):76–87.

 9. Denny JC, Miller RA, Waitman LR, Arrieta MA, Peterson JF. Identifying QT
prolongation from ECG impressions using a general-purpose natural language
processor. Int J Med Inform. 2009;78:S34–42.

 10. Chapman WW, Christensen LM, Wagner MM, et al. Classifying free-text tri-
age chief complaints into syndromic categories with natural language processing.
Artif Intell Med. 2005;33(1):31–40.

 11. Luo Y, Riedlinger G, Szolovits P. Text Mining in Cancer Gene and Pathway
Prioritization. Cancer Informatics. 2014;13(S1):69–79.

 12. Uzuner Ö, Goldstein I, Luo Y, Kohane I. Identifying patient smoking status
from medical discharge records. J Am Med Inform Assoc. 2008;15(1):14–24.

 13. Uzuner Ö, Luo Y, Szolovits P. Evaluating the state-of-the-art in automatic de-
identification. J Am Med Inform Assoc. 2007;14(5):550–63.

 14. Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical text analysis and knowl-
edge extraction system (cTAKES): architecture, component evaluation and
applications. J Am Med Inform Assoc. 2010;17(5):507–13.

 15. Aronson AR. Effective mapping of biomedical text to the UMLS metathesaurus:
the MetaMap program. In: AMIA Annual Symposium Proceedings. American
Medical Informatics Association, Washington, DC; 2001;2001:17–21.

 16. Uzuner Ö, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on
concepts, assertions, and relations in clinical text. J Am Med Inform Assoc.
2011;18(5):552–6.

 17. Carver T, Berriman M, Tivey A, et al. Artemis and ACT: viewing, annotat-
ing and comparing sequences stored in a relational database. Bioinformatics.
2008;24(23):2672–6.

 18. Allen JF. Maintaining knowledge about temporal intervals. Comm ACM.
1983;26(11):832–43.

 19. Moskovitch R, Shahar Y. Fast time intervals mining using the transitivity of
temporal relations. Knowl Inform Syst. 2015;42(1):21–48.

 20. Combi C, Sala P. Interval-based temporal functional dependencies: specification
and verification. Ann Math Artif Intell. 2014;71(1–3):85–130.

 21. Edelsbrunner H. A new approach to rectangle intersections part I. Int J Comput
Math. 1983;13(3–4):209–19.

 22. Arge L, Vitter JS. Optimal external memory interval management. SIAM J
Comput. 2003;32(6):1488–508.

 23. Kaplan H, Molad E, Tarjan RE. Dynamic rectangular intersection with priori-
ties. In: Proceedings of the thirty-fifth annual ACM Symposium on Theory of
computing. ACM, San Diego, CA; 2003:639–48.

 24. Agarwal PK, Arge L, Yi K. An optimal dynamic interval stabbing-max data
structure? In: Proceedings of the sixteenth annual ACM-SIAM Symposium
on Discrete Algorithms. Society for Industrial and Applied Mathematics,
Vancouver, BC, Canada; 2005:803–12.

 25. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms.
Cambridge, MA: MIT Press; 2001.

 26. Lueker GS. A data structure for orthogonal range queries. In: 19th Annual
Symposium on Foundations of Computer Science, 1978. IEEE, Ann Arbor, MI;
1978:28–34.

 27. Guttman A. R-trees: A Dynamic Index Structure for Spatial Searching. ACM;
1984.

 28. Yang J, Widom J. Incremental computation and maintenance of temporal aggre-
gates. In: Proceedings of the 17th International Conference on Data Engineer-
ing, 2001. IEEE, Heidelberg, Germany; 2001:51–60.

 29. Luo Y, Uzuner O. Semi-Supervised Learning to Identify UMLS Semantic Rela-
tions. AMIA Joint Summits on Translational Science. San Francisco, CA. 2014.

 30. Bentley JL. Solutions to Klee’s rectangle problems. [Unpublished manuscript] Dept
of Comp Sci, Carnegie-Mellon University, Pittsburgh, PA. 1977.

 31. Agarwal PK, Arge L, Yang J, Yi K. I/O-efficient structures for orthogonal range-
max and stabbing-max queries. European Symposium on Algorithms. Springer
Berlin, Heidelberg. Algorithms-ESA 2003. Springer; 2003:7–18.

http://www.la-press.com
http://www.la-press.com/journal-biomedical-informatics-insights-j82

