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MOTORS AND IMPOSSIBLE FIRING PATTERNS IN THE
PARALLEL CHIP-FIRING GAME∗

TIAN-YI JIANG† , ZIV SCULLY† , AND YAN X. ZHANG‡

Abstract. The parallel chip-firing game is an automaton on graphs in which vertices “fire”
chips to their neighbors. This simple model contains much emergent complexity and has many
connections to different areas of mathematics. In this work, we study firing sequences, which describe
each vertex’s interaction with its neighbors in this game. First, we introduce the concepts of motors
and motorized games. Motors both generalize the game and allow us to isolate local behavior of the
(ordinary) game. We study the effects of motors connected to a tree and show that motorized games
can be transformed into ordinary games if the motor’s firing sequence occurs in some ordinary game.
Then, we completely characterize the periodic firing sequences that can occur in an ordinary game,
which have a surprisingly simple combinatorial description.
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1. Introduction.

Background. The parallel chip-firing game, also known as the discrete fixed-
energy sandpile model, is an automaton on graphs in which vertices that have at least
as many chips as incident edges “fire” chips to their neighbors. In graph theory,
it has been studied in relation with the critical group of graphs [3]. In computer
science, it is able to simulate any two-register machine and is thus universal [8]. As a
specific case of the abelian sandpile model, which is itself a generalization of a sandpile
model introduced by Bak, Tang, and Weisenfeld [1, 2] in the study of self-organized
criticality, it has even more links with other fields.

The game. The parallel chip-firing game is played on a graph as follows:
• At first, a nonnegative integer number of chips is placed on each vertex of the
graph.

• The game then proceeds in discrete turns. Each turn, a vertex checks to see
if it has at least as many chips as incident edges:

– If so, that vertex fires.
– Otherwise, that vertex waits.

• To fire, a vertex passes one chip along each of its edges. All vertices that fire
in a particular turn do so in parallel.

• Immediately after firing or waiting, every vertex receives any chips that were
fired to it.

Here we will only consider games on finite, undirected, connected graphs, though
the definition of the game can be easily generalized for arbitrary multidigraphs. An
example game is illustrated in Figure 1. Given a parallel chip-firing game σ, we refer
to the chip configuration, also called the position, at a particular time t ∈ N as σt.
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616 TIAN-YI JIANG, ZIV SCULLY, AND YAN X. ZHANG

Fig. 1. A parallel chip-firing game. From an initial position in the upper left, the game
eventually enters a period of length 4.

The total number of chips on all vertices of the graph is constant throughout a
game, so there are finitely many possible positions in every game. Therefore, every
game eventually reaches a position σt that is identical to a later position σt+p for
some t, p ∈ N with p > 0. (We write σt = σt+p.) The game is deterministic, so
σt+n = σt+n+p for all n ∈ N. Thus, every parallel chip-firing game is eventually
periodic.

In this paper, we concern ourselves with both firing sequences and periodic firing
patterns (PFPs) of vertices. Each is a binary string representing whether or not a
particular vertex fires or waits each turn. The sequence covers all times from 0 to
infinity, while the periodic pattern covers just one period.

Previous work. The periodicity of the parallel chip-firing game gives rise to two
questions. First, what characteristics of a game and its underlying graph determine
the length of a period? It is known exactly what periods are possible on certain classes
of graphs, such as trees [4], simple cycles [6], the complete graph [13], and the complete
bipartite graph [10]. For these graphs, the maximum period lengths are bounded by
the number of vertices, but Kiwi et al. [11] constructed graphs on which the period
of games can grow exponentially with polynomial increase in the number of vertices.
There are also results regarding the total number of chips in a game. Kominers and
Kominers [12] showed that games with a sufficiently large density of chips must have
period 1. Dall’Asta [6] and Levine [13], in their respective characterizations of periods
on cycles and complete graphs, related the total number of chips to a game’s activity,
the fraction of turns during which a vertex fires. The denominator of the activity
must divide the period.

Second, we notice that some but not all positions σt are periodic, satisfying σt =
σt+p for some positive p ∈ N. What characterizes periodic positions? This problem
has not been as extensively studied. Dall’Asta [6] characterized the periodic positions
of games on cycles.

Our results. We hope to advance the understanding of both of these questions
through the study of firing sequences and PFPs.

After precisely defining the parallel chip-firing game in section 2, the first half of
the paper develops a new tool for studying the chip-firing game: motors, vertices that
fire with a regular pattern independent of normal chip-firing rules. Games with motors
are called motorized games. Motors allow us to study the behavior of subgraphs in
ordinary parallel chip-firing games. In section 3 we show that vertices always “follow”
a motor in periodic motorized games on trees. In section 4, we prove that periodic
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MOTORS AND IMPOSSIBLE PATTERNS IN CHIP-FIRING 617

motorized games can be transformed into ordinary games as long as the firing sequence
of each motor occurs in an ordinary game.

The second half of the paper characterizes the possible PFPs in parallel chip-firing
games. Section 5 briefly steps away from the game to study certain signed sums of
periodic binary sequences. The result is an inequality applicable to edges of the graph
of a parallel chip-firing game. In section 6, we sum this inequality over all relevant
edges to show that PFPs with both consecutive 0s and consecutive 1s cannot occur
in a parallel chip-firing game. This, along with an already known construction, fully
characterizes the PFPs possible in parallel chip-firing games. Finally, in section 7, we
examine some implications of this theorem.

2. Preliminaries.

Definitions. A parallel chip-firing game σ on a graph G = (V (G), E(G)) is a
sequence (σt)t∈N of ordered tuples with natural number elements indexed by V (G).
Each tuple represents the chip configuration at a particular turn, where each element
of the tuple is the number of chips on the corresponding vertex. We define the
following for all v ∈ V (G):

N(v) = {w ∈ V (G) | {v, w} ∈ E(G)},

d(v) = #N(v),

σt(v) = number of chips on v in position σt,

Ft(v) =

⎧⎨
⎩
0 if σt(v) ≤ d(v) − 1,

1 if σt(v) ≥ d(v),

Φt(v) =
∑

w∈N(v)

Ft(w).

In a parallel chip-firing game, σt induces σt+1. For all v ∈ V (G),

(2.1) σt+1(v) = σt(v) + Φt(v)− Ft(v)d(v),

so an initial position suffices to define a game on a given graph. When Ft(v) = 0, we
say v waits at t, and when Ft(v) = 1, we say v fires at t.

A position σt is periodic if and only if there exists p ∈ N such that σt = σt+p.
The minimum such p for which this occurs is the period of σ and is denoted T .
Abusing notation slightly, “a period” of a game σ may also refer to a set of times
{t, t+ 1, . . . , t + T − 1}, where σt is periodic. The parallel chip-firing game is deter-
ministic and there are finitely many possible positions on a given graph with a given
number of chips, so for any game σ, there exists t0 ∈ N such that σt is periodic for all
t ≥ t0. If the initial position of a game is periodic, we may also call the game itself
periodic.
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618 TIAN-YI JIANG, ZIV SCULLY, AND YAN X. ZHANG

Notation. Definitions for invented notation are given in the section indicated in
the last column.

Parallel chip-firing Defined in

σt(v) Number of chips on vertex v in position σt. Section 2

F σ(v) PFP of v. Section 6

F σ
t (v) Indicates whether or not vertex v fires in σt. Section 2

Φσ
t (v) Number of chips vertex v will receive in σt. Section 2

T σ Period of σ. Section 2

Mσ Set of vertices that are motors in σ. Section 3

Graphs

V (G) Vertex set of graph G.

E(G) Edge set of graph G.

NG(v) Neighbors of vertex v.

dG(v) The degree of vertex v in graph G.

Other

[a, b] The integer interval {a, a+ 1, . . . , b}.
We leave out the subscript G or superscript σ if there is no ambiguity.

3. Motors. Let G be a graph. Suppose we wish to study the periodic behavior
of games on G, focusing on a particular subgraph H ⊆ G. Consider

X = {v ∈ V (G) \ V (H) | N(v) ∩ V (H) �= ∅},

the boundary of H . Knowing the initial chip configuration on V (H)∪X is, in general,
not enough to determine all subsequent configurations because vertices in X may have
interactions with vertices outside of V (H)∪X . However, we do know that every vertex
assumes a pattern of firing and waiting that repeats periodically as soon as a game
reaches a periodic position. Therefore, we can simulate the presence of the rest of G
by having each vertex in X fire with a regular pattern regardless of the number of
chips it receives.

The firing sequence of a vertex v in game σ is the sequence (Ft(v))t∈N. A motor-
ized parallel chip-firing game, or simply “motorized game,” on G is a game σ obeying
(2.1) with a nonempty set of motors M ⊆ V (G). Each motor follows a predetermined
firing sequence, firing without regard for the normal rules of the parallel chip-firing
game, which means, for example, that a motor may have a negative number of chips.
Put another way, for each m ∈ M , Ft(m) does not depend on σt(m). The term “or-
dinary game” refers to a game with no motors when there is ambiguity. A motorized
game is shown in Figure 2.

If a motorized game σ is eventually periodic (which is the case if every motor’s
firing sequence is eventually periodic), then just as in an ordinary game, every vertex
fires the same number of times each period. The proof is identical to the proof of
this fact for ordinary games [10]: all neighbors of the vertex that fires the most times
each period must also fire that maximal number of times, and by induction, so do all
vertices. (Recall that we consider in this paper only connected graphs.)
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MOTORS AND IMPOSSIBLE PATTERNS IN CHIP-FIRING 619

Fig. 2. A motorized parallel chip-firing game. The motor has firing sequence
(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, . . . ).

Let f ∈ {0, 1}. Call an interval [a, b] with a < b an f -clump of v ∈ V (G) if
and only if Ft(v) = f for all t ∈ [a, b]. We call [a, b] an f -max-clump if, in addition,
Fa−1(v) = Fb+1(v) = 1 − f . Given v ∈ V (G), we can express N as the union of
max-clumps of v and times during which v alternates between firing and waiting.

The proof of Theorem 3.2 follows the same structure as the proof that ordinary
games on trees have period 1 or 2 [4]. In fact, we rely on a lemma originally introduced
for that proof.

Lemma 3.1 (see [4, Lemma 1]). Let σ be a game on G. For all v ∈ V (G) and
f ∈ {0, 1}, if [a, b] is an f -clump of v, then there exists a neighbor w ∈ N(v) such
that [a− 1, b− 1] is an f -clump of w.

Less technically, every clump of firing or waiting by a vertex must be supported
by at least one of its neighbors. The lemma follows from the pigeonhole principle and
Lemma 6.1, which we state and prove later.

Theorem 3.2. Let σ be a periodic motorized game on tree T . For all v ∈ V (T )
and f ∈ {0, 1}, if [a, b] is an f -clump of v, then [a−D, b−D] is an f -clump of m for
some m ∈ M , where D is the distance from m to v.

Proof. The result is clear if all vertices either always fire or always wait. In all
other cases, each firing sequence has a max-clump, and the argument is roughly as
follows. By Lemma 3.1, each clump of a vertex must be supported by a clump of a
neighbor. Following the “chain of support” gives a sequence of vertices that either is
infinite or ends with a motor. If we consider the containing max-clumps of clumps, we
can guarantee a sequence with no backtracking. Trees have no cycles, so the sequence
must end with a motor. The details follow.

Let v0 = v and [a0, b0] ⊇ [a, b] be an f -max-clump of v0. By Lemma 3.1, given a
vertex vi �∈ M with clump [ai, bi], we can pick a supporting vertex vi+1 ∈ N(vi) and
integers ai+1 and bi+1 such that [ai+1, bi+1] is an f -max-clump of vi and [ai−1, bi−1] ⊆
[ai+1, bi+1]. (The fact that σ is periodic means we need not worry about negative
turn numbers.) If there is a maximum i for which vi exists, that vertex must be a
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620 TIAN-YI JIANG, ZIV SCULLY, AND YAN X. ZHANG

motor, which would mean [a−D, b−D] ⊆ [aD, bD], where D is the maximum i and
m = vD ∈ M . Thus, it suffices to show that the sequence (v0, v1, . . .) eventually
terminates. There are finitely many vertices in the graph, so it suffices to show that
the vi are all distinct.

T has no cycles, so if vi �= vi+2 for all i, then all vi are distinct. Suppose that
vi = vi+2 for some i. Then [ai, bi] ∪ [ai+2, bi+2] would be a clump of vi. However,
[ai−2, bi−2] ⊆ [ai+2, bi+2], making [ai−2, bi] a clump of vi. But [ai, bi] is a max-clump
for all i, so vi �= vi−2 for all i.

Call a firing sequence clumpy if it contains two consecutive 0s and two consecutive
1s; otherwise, call it nonclumpy.

Corollary 3.3. Let σ be a periodic motorized game on tree T with a single
motor m. If m has a nonclumpy firing sequence but has at least one clump, then
Ft+D(v) = Ft(m) for all v ∈ V (T ) and t ∈ N, where D is the distance from v to m.

Proof. The result is again clear in the always waiting and always firing cases.
In all other cases, m has an f -max-clump, where f ∈ {0, 1}. Let v ∈ V (T ). By
Theorem 3.2, v has a nonclumpy firing sequence because m does. All vertices fire the
same number of times every period [10, Proposition 2.5], so v must have at least one
max-clump, again because m does. For every f -max-clump [a, b] of v, [a−D, b−D] is
an f -clump of m. The non-max-clump intervals of v’s firing sequence are alternations
between 0 and 1, starting and ending with 1− f . The same must be true of m for it
to fire the same number of times as v each period.

The reason we require the games in Theorem 3.2 and Corollary 3.3 to be periodic
is to consider arbitrarily many past turns. We can likely weaken this condition if we
require the statements to be true only after sufficiently many turns, though exactly
how many turns that is could depend on the activity (firing frequency; see [13]) of the
motor, the size of the tree, and the total number of chips in the initial position.

4. Simulating motors. In this section, to refer to multiple chip-firing games
unambiguously, we include the subscripts and superscripts in, for example, dG(v) and
F σ
t (v).

We call a firing sequence (ft)t∈N possible if there exists an ordinary game σ on
some graph G such that F σ

t (v) = ft for all t ∈ N. Our next theorem states that we
can simulate motorized games with ordinary games as long as every motor’s firing
sequence is possible. Figure 3 demonstrates the concept.

Theorem 4.1. Let σ be a motorized game on G. If every motor’s firing sequence
is possible and has the same activity (firing frequency; see [13]), then there exists an
ordinary game σ′ on a graph H ⊇ G such that

• F σ′
t (u) = F σ

t (u) for all t ∈ N and u ∈ V (G),
• dH(v) = dG(v) for all v ∈ V (G) \Mσ, and
• the subgraph of H induced by V (G) is G. (That is, H contains no edges
between vertices of G that are not also in G.)

Proof. Our approach will be, for each m ∈ Mσ, to attach many copies of a graph
with a vertex with m’s firing sequence to m. If sufficiently many copies are attached,
the number of chips m has due to its neighbors in G becomes irrelevant as to whether
or not it fires.

For each m ∈ Mσ, let Am be a graph such that there exists a game σm and some
vertex um ∈ V (Am) such that F σm

t (um) = F σ
t (m) for all t ∈ N. Let am and bm be

the minimum and maximum, respectively, of {σt(m) | t ∈ N}. These bounds exist
because all the motors have possible firing sequences with the same activity, which
means the motorized game is eventually periodic. Let km = bm − am + 1, and let H
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Fig. 3. Suppose the motor in motorized game (b) has firing sequence (0, 0, 0, 0, 1, 0, 0, 0, . . . ).
This occurs in ordinary game (a). By using sufficiently many copies of (a) and carefully choosing
n, we construct (c). The behavior of G in (c) is identical to the behavior of G in (b).

be the union of G and km copies of each Am, with G and the copies of Am disjoint
except for m = um for each m ∈ Mσ.

It is clear by construction that H contains no new edges between vertices of G
and that

• dH(m) = kmdAm(um) + dG(m) for all m ∈ Mσ,
• dH(u) = dAm(u) for all u ∈ V (Am) \ {m} for each m ∈ Mσ, and
• dH(v) = dG(v) for all v ∈ V (G) \Mσ.

Suppose that for some t ∈ N, σ′
t satisfies the following.

1. σ′
t(m) = kmσm

t (um) + dG(m) + σt(m)− am for all m ∈ Mσ.
2. σ′

t(u) = σm
t (u) for all u ∈ V (Am) \ {m} for each m ∈ Mσ.

3. σ′
t(v) = σt(v) for all v ∈ V (G) \Mσ.

We will show that σ′
t+1 satisfies the above as well. We have dH(v) = dG(v) for all

v ∈ V (G)\Mσ, so F σ′
t (v) = F σ

t (v) for all v ∈ V (G)\Mσ. Similarly, F σ′
t (u) = F σm

t (u)
for all u ∈ V (Am) \ {m} for each m ∈ Mσ. Finally, for all m ∈ Mσ, if F σm

t (um) = 0,
then

σ′
t(m) ≤ km(dAm(um)− 1) + dG(m) + σt(m)− am

= kmdAm(um) + dG(m) + (σt(m)− bm)− 1

≤ dH(m)− 1,

and if F σm

t (um) = 1, then

σ′
t(m) ≥ kmdAm(um) + dG(m) + (σt(m)− am)

≥ dH(m),

so F σ′
t (m) = F σm

t (um) = F σ
t (m).

We now know that F σ′
t (v) = F σ

t (v) for all v ∈ V (H), so σ′
t+1(v) = σt+1(v) for all

v ∈ V (G) \ Mσ and σ′
t+1(u) = σm

t+1(u) for all u ∈ V (Am) \ {m} for each m ∈ Mσ.

D
ow

nl
oa

de
d 

11
/0

4/
16

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

622 TIAN-YI JIANG, ZIV SCULLY, AND YAN X. ZHANG

01000100︸ ︸︷ ︷
1101100︸︸︷ ︷

101011

Fig. 4. A string’s 0-sectors (marked below) and 1-sectors (marked above).

Finally, we have

σ′
t+1(m) = kmσm

t (um) + dG(m) + σt(m)− am +Φσ′
t (m)− F σ′

t (m)dH(m)

= kmσm
t (um) + dG(m) + σt(m)− am +Φσ

t (m)− F σ
t (m)dG(m)

+ kmΦσm

t (um)− kmF σm

t (um)dAm(um)

= km(σm
t (um) + Φσm

t (um)− F σm

t (um)dAm(um)) + dG(m)

+ (σt(m) + Φσ
t (m)− F σ

t (m)dG(v))− am

= kmσm
t+1(um) + dG(m) + σt+1(m)− am.

for all m ∈ Mσ.
We can distribute chips in σ′

0 such that it satisfies (1), (2), and (3), in which case,
by induction, σ′

t satisfies (1), (2), and (3) for all t ∈ N, implying F σ′
t (u) = F σ

t (u) for
all v ∈ V (G).

In Theorem 3.2, motors were primarily a convenient intuition and terminology; we
could have proved a similar theorem within the context of the ordinary parallel chip-
firing game, though its statement would have been messier. Theorem 4.1 demonstrates
another way in which the motor concept is useful. Its constructive power makes certain
conjectures easy to prove or disprove by example. For instance, motors make it easy
to construct games in which the period isn’t bounded by the number of vertices.

5. Signed sums of binary sequences. We take a brief break from the parallel
chip-firing game itself to consider binary strings. Throughout this section, p and q
are length-n binary strings, b ∈ {0, 1}, and b = 1− b. We denote the ith element of a
binary string p as pi, and any integer equivalent to i mod n may replace i.

The following definition formalizes the notion of part of a string being “mostly” 0s
or 1s. A b-sector of p is a ⊆-maximal integer interval [x, y] such that py−1 = py = b and
either pi = b or pi+1 = b for all i ∈ [x, y]. Informally, b-sectors end with consecutive
bs and extend back as far as possible. We have to make an exception for always-
alternating strings, such as 01010101, that have neither 0 nor 1 twice in a row. We
arbitrarily define [0, n − 1] to be a 0-sector of them. It is the transitions between
0- and 1-sectors that are ultimately important, so this exception is acceptable. It is
simple to verify that the indices of every binary string have a unique decomposition
into 0- and 1-sectors. An example is shown in Figure 4.

Let

si(p) =

{
−1 if i is in a 0-sector of p,

1 if i is in a 1-sector of p,

δi(p) =

{
0 if i is in a b-sector of p and i+ 1 is in a b-sector of p,

1 if i is in a b-sector of p and i+ 1 is in a b-sector of p,

Mi(p, q) = si(p)(pi − qi−1) + si(q)(qi − pi−1)− δi(p)− δi(q).

Our main theorem in this section concerns what we refer to as the mischief between
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p : 010001︸
4

2︷ ︷
0011011︸︸

2

2︷ ︷
00101011︸ p : 01000100︸ ︸

2

4︷ ︷
1101100︸︸

0

4︷ ︷
101011

q : 1000100︸
2

4︷ ︷
1101100︸︸

0

4︷ ︷
1010110︸ q : 1000100︸

2

4︷ ︷
1101100︸︸

0

4︷ ︷
1010110︸

Fig. 5. We calculate the mischief between two strings by dividing each into sectors. The
misbehavior of p towards q is −(2 − 4) + (4 − 2) − (0 − 2) + (4 − 2) = 8, as shown on the left. On
the right, we see that the misbehavior of q towards p is 0. Each string has 4 sector switches, so
M(p, q) = 8 + 0− 4− 4 = 0.

p and q,

M(p, q) =
n−1∑
i=0

Mi(p, q).

Mischief, superficially speaking, measures three things: how much p differs from q
delayed one time step, which we call the misbehavior of q towards p; the reverse, and
the total number of sector switches. An example calculation is shown in Figure 5. The
rules of the parallel chip-firing game put a global upper bound on the total disagree-
ment between vertices, yet the following theorem states that mischief is nonnegative,
meaning that sector switches require disagreement. We show in section 6 that this
implies that firing sequences with sector switches are impossible once a game has
become periodic.

Theorem 5.1. The mischief between any two binary strings of equal length is
nonnegative.

Proof. Let

μi(p, q) = (pi−1, pi, si(p), si+1(p), qi−1, qi, si(q), si+1(q)),

a tuple of all information required to calculate Mi(p, q), and let G be a weighted
digraph with

V (G ) = {μi(p, q) | p, q strings, i ∈ N},
E(G ) = {(μi(p, q), μi+1(p, q),Mi(p, q)) | p, q strings, i ∈ N}.

(The third item of each edge is its weight.) Define the weight of a path to be the
sum of the weights of its member edges, and call a path negative if it has negative
weight. The mischief M(p, q) is the weight of a path in G induced by the sequence of
vertices (μ0(p, q), . . . , μn−1(p, q), μ0(p, q)). Therefore, it suffices to show that G has
no negative cycles—in particular, no negative cycles of length n.

We discuss below the constraints that define what tuples can exist as some μi(p, q).
These constraints yield a graph G with 64 vertices and 256 edges, which is impractical
to analyze by hand. However, running the Bellman–Ford algorithm [5] on G shows
it to be free of negative cycles. A Python program specifies both the graph and the
algorithm in detail in the appendix.

The only constraint on edges of G is that the state shared by the connected
vertices be consistent. For example, both μi(p, q) and μi+1(p, q) contain pi. There
are two constraints on the vertices of G enforced by the definition of sectors in p.
Analogous constraints apply for q.
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624 TIAN-YI JIANG, ZIV SCULLY, AND YAN X. ZHANG

• If pi−1 = pi = b, then si(p) indicates that i is in a b-sector of p.
• If si(p) �= si+1(p), then pi−1 = pi = b such that si(p) indicates that i is in a
b-sector of p.

To get a sense for how these force nonnegative mischief, consider the latter constraint.
The sector switch reduces mischief, but it also makes pi+1 = b. If qi = b, then q
misbehaves towards p at i+ 1. If qi = b and i is in a b-sector of q, then p misbehaves
towards q at i. However, we cannot finish the last case, qi = b with i in a b-sector of q,
with similar local reasoning. The former constraint limits the frequency with which
that last case can happen, but there are many scenarios to consider before dispatching
the case. Using the Bellman–Ford algorithm avoids this further casework.

6. Nonclumpiness of PFPs. We consider parallel chip-firing game σ on undi-
rected graph G. The PFP of a vertex v ∈ V (G) is the binary string

Ft0(v) . . . Ft0+T−1(v),

where t0 is the smallest natural number such that σt0 is periodic.1 We write the PFP
of v as F (v). For simplicity, we assume here that t0 = 0 and index PFPs modulo T .

Let P be the set of all PFPs that are compatible with σ, which means they have
the same number of 0s and 1s as a PFP that occurs in σ. Call a PFP with both
consecutive 0s and consecutive 1s clumpy, and let Q be the set of clumpy PFPs that
are compatible with σ. (Recall that the T th and 0th entries of a PFP are the same,
so, for example, 011010 is clumpy.) It is known that, given almost any2 nonclumpy
PFP, one can construct a parallel chip-firing game on a simple cycle in which every
vertex has that PFP shifted by some number of steps [6]. We prove here that clumpy
PFPs cannot occur in any parallel chip-firing game.

Lemma 6.1. In a periodic game on G, for all v ∈ V (G) and a, b ∈ N,

(6.1) −d(v) + 1 ≤
b∑

t=a

(Φt−1(v)− d(v)Ft(v)) ≤ d(v)− 1.

Proof. We express σb(v) in terms of σa−1(v):

σb(v) = σa−1(v) +

b−1∑
t=a−1

(Φt(v) − d(v)Ft(v)),

σb(v)− d(v)Fb(v) = σa−1(v)− d(v)Fa−1(v) +

b∑
t=a

(Φt−1(v)− d(v)Ft(v)).

As mentioned in [12, section 2], the set of vertices v such that σt(v) ≥ 2d(v) chips
is nonincreasing as t increases. In particular, in a periodic game, this set is empty
unless the game has period 1, in which case the lemma is clear. Otherwise, simple

1The reason we introduce PFPs instead of continuing to reason with firing sequences is because
a PFP is aware of the period of the game it occurs in. For instance, the PFPs 01 and 0101 result in
the same periodic firing sequence, but while the latter, which has period 4, might occur in the same
game as the PFP 0011, the former, which has period 2, cannot.

2The given construction requires that the PFP not be decomposable to a repeated substring.
Using Theorem 4.1, one can expand the construction to any nonclumpy PFP other than those
that are 01 or 10 repeated more than once. These PFPs turn out to be impossible, though the
corresponding firing sequences are possible in games of period 2.
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analysis of the waiting and firing cases shows that σt(v) ≤ 2d(v) − 1 implies 0 ≤
σt(v)− d(v)Ft(v) ≤ d(v) − 1, which gives the desired inequality.

We define

τ(p) = {v ∈ V (G) | F (v) = p},
π(p, q) = {{v, w} ∈ E(G) | F (v) = p, F (w) = q},

mS(p, q) =
∑
i∈S

(pi − qi−1)

for binary strings p and q and sets of indices S ⊆ N. Note that mS(p, q) is very closely
related to the misbehavior of q towards p, missing only sector-dependent signs. We
now have the tools to prove our main result.

Theorem 6.2. Clumpy PFPs do not occur in the parallel chip-firing game.
Proof. The key is to examine the mischief between all pairs of neighbor vertices

in which at least one neighbor has a clumpy PFP. Roughly speaking, summing an
inequality derived from Lemma 6.1 over all vertices with clumpy PFPs bounds a
negative sum of mischiefs below, and summing the inequality given by Theorem 5.1
over all edges incident with a vertex with a clumpy PFP gives an upper bound on
the same sum of mischiefs. The lower bound relates positively with the number of
vertices with clumpy PFPs, and the upper bound is 0.

Let a, b ∈ N and v ∈ V (G). Grouping the sum in (6.1) by v’s neighbors instead
of time steps yields

−d(v) + 1 ≤ −
∑

w∈N(v)

m[a,b](F (v), F (w)) ≤ d(v) − 1.

Reordering the inequality on the left, recalling that d(v) = #N(v), gives

1 ≤
∑

w∈N(v)

(1−m[a,b](F (v), F (w))),

and by considering the right inequality we obtain the same result with the − switched
to +. Let p be a PFP. By summing the above over v ∈ τ(p) for some choice of signs,
we obtain

#τ(p) ≤
∑

v∈τ(p)
w∈N(v)

(1 + rvm[a,b](p, F (w))),

where each rv = ±1 may be chosen dependent on v. (Notation: domains for outer
sums are above domains for inner sums.) That each m[a,b](p, F (w)) term is preceded
by a sign of our choice is a hint that we can relate this quantity to misbehavior.

For all PFPs p, let X (p) be the set of sectors of p. Because each sector of a PFP
is of the form [a, b] for some a, b ∈ N, we can sum the above inequality over X ∈ X (p)
and p ∈ Q to get

(6.2)
∑
p∈Q

X∈X (p)

#τ(p) ≤
∑
p∈Q

v∈τ(p)
w∈N(v)
X∈X (p)

(1 + rv,XmX(p, F (w))),

where each rv,X = ±1 may be chosen dependent on v and X .
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626 TIAN-YI JIANG, ZIV SCULLY, AND YAN X. ZHANG

Let p be a clumpy PFP. If q is a clumpy PFP, then

(6.3) M(p, q) =
∑

X∈X (p)

(sX(p)mX(p, q)− 1) +
∑

X∈X (q)

(sX(q)mX(q, p)− 1).

(Abusing notation slightly, we write sX(p) instead of si(p) if i ∈ X ∈ X (p).) The
−1 in each sum accounts for the −δi(p) − δi(q) term in Mi(p, q). If instead q is not
clumpy, then X (q) = {[0, T − 1]}, so q has no sector switches and

(6.4) M(p, q) =
∑

X∈X (p)

(sX(p)mX(p, q)− 1) + s[0,T−1](q)m[0,T−1](q, p).

However, m[0,T−1](q, p) = 0 because p and q have the same length and number of 1s.
This means that the mischief between p and q only depends on the misbehavior of
q towards p and sector switches in p. This is important because Lemma 6.1 bounds
total misbehavior towards a vertex from all neighbors.

Let W = {v ∈ V (G) | F (v) ∈ Q} be the set of vertices with clumpy PFPs.
Choosing rv,X = −sX(p) in (6.2) yields∑

p∈Q
X∈X (p)

#τ(p) ≤
∑
p∈Q

v∈τ(p)
w∈N(v)
X∈X (p)

(1− sX(p)mX(p, F (w)))

=
∑
p∈Q

v∈τ(p)
w∈N(v)∩W
X∈X (p)

(1− sX(p)mX(p, F (w))) +
∑
p∈Q

v∈τ(p)
w∈N(v)\W
X∈X (p)

(1 − sX(p)mX(p, F (w)))

=
∑

p,q∈Q
e∈π(p,q)

( ∑
X∈X (p)

(1− sX(p)mX(p, q)) +
∑

X∈X (q)

(1− sX(q)mX(q, p))

)

+
∑
p∈Q

v∈τ(p)
w∈N(v)\W
X∈X (p)

(1 − sX(p)mX(p, F (w))).

Note that we consider p and q in the sum over p, q ∈ Q to be unordered. (One
alternative notation is a sum over {p, q} ⊆ Q.) We now substitute using (6.3) and
(6.4) and apply Theorem 5.1 to get∑

p∈Q
X∈X (p)

#τ(p) ≤ −
∑

p,q∈Q
e∈π(p,q)

M(p, q)−
∑
p∈Q

v∈τ(p)
w∈N(v)\W

M(p, F (w)) ≤ 0.

Sets have nonnegative sizes, so #τ(p) = 0 for all p ∈ Q.

7. Implications of nonclumpiness. It is a basic property of the parallel chip-
firing game that every vertex fires the same number of times each period [10]. This
means, roughly speaking, that every periodic game is either “mostly waiting” with
bursts of firing or “mostly firing” with bursts of waiting. (In fact, there is a bijection
between these two types of games. Each periodic game has a complement that inverts
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firing and waiting [10].) This is because if a vertex waits twice in a row, then because
it therefore never fires twice in a row, it fires less than half the time over the course
of a period. Similarly, a vertex that fires twice in a row fires more than half the time.
We cannot have a vertex that waits twice in a row and a vertex that fires twice in a
row in the same periodic game because each vertex fires the same number of times
each period.

Corollary 7.1. Once a parallel chip-firing game is periodic, either no vertex
fires twice in a row or no vertex waits twice in a row.

That is, in periodic games, a firing sequence is possible if and only if it is non-
clumpy.

The interior of a set of vertices W is {v ∈ W | N(v) ⊆ W}. Because a waiting
(or firing) vertex with only waiting (or firing) neighbors will wait (or fire) the fol-
lowing turn as well, the above observation proves the following conjecture of Fey and
Levine [7].

Corollary 7.2. Once a parallel chip-firing game is periodic, the interior of the
set of waiting vertices is always empty, the interior of set of firing vertices is always
empty, or both interiors are always empty.

Interestingly, Corollary 7.2 also implies Theorem 6.2. If clumpy PFPs were pos-
sible, then a leaf attached to a motor with a clumpy PFP would be at different times
in both the waiting and firing interiors.

In one of the first papers on the parallel chip-firing game, Bitar and Goles char-
acterized parallel chip-firing games on trees [4]. Corollary 3.3 and Theorem 6.2 allow
us to characterize the behavior on tree-like subgraphs—subgraphs that, if an edge to
a root vertex is cut, become a tree separated from the rest of the graph—by making
the root vertex a motor.

Corollary 7.3. Let σ be a periodic game on G with period at least 3 in which
no vertex fires twice in a row, H be a tree-like subgraph of G, and m ∈ V (H) be the
root of H. Then for all v ∈ V (H),

σt(v) =

⎧⎪⎨
⎪⎩
d(v) if Ft−D(m) = 1,

0 if Ft−D−1(m) = 1,

d(v) − 1 otherwise,

where D is the distance from m to v. An analogous result holds if no vertex waits
twice in a row.

In some sense, tree-like subgraphs are passive in that their vertices fire only in
response to their rootside neighbor firing. In a periodic game, we can completely
remove tree-like subgraphs without affecting the PFPs of the other vertices.

Corollary 7.4. Let σ be a periodic game on G, leaf l ∈ V (G) have single
neighbor m, and G′ be G with l deleted. Then a game σ′ exists on G′ with the same
firing behavior as σ.

The starting position σ′
0 can agree with σ0 completely except for possibly re-

moving a chip from m. We consider the case where no vertex fires twice in a row.
Compared to σ′, vertex m has to have an extra chip to fire in σ. However, unless m
fired the previous turn—which, because l is a leaf, is equivalent to saying l is firing
this turn—m will have received the extra chip back from l, so removing both l and
the chip has no effect on m as long as m does not fire while l has a chip, which doesn’t
happen due to nonclumpiness. The case where no vertex waits twice in a row is anal-
ogous. This corollary concerns a leaf, though the result generalizes to all tree-like
subgraphs by repeated application, providing an alternate proof of Corollary 3.3.
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Fig. 6. A game on a 6-cycle in which a glider orbits once each period.

8. Discussion and directions for future work. We have introduced motors,
studied motorized games on trees, and shown that motor-like behavior can be con-
structed in ordinary games, provided that each motor has a possible firing sequence.
We then showed that PFPs are possible if and only if they are nonclumpy, which,
among other things, allows classification of periodic games as “mostly waiting” or
“mostly firing” and the removal of tree-like subgraphs without loss of generality.

We might expect the space of motorized games to be larger than that of ordinary
games. Theorem 4.1 shows us that, as long as the firing sequences involved are
possible, the parallel chip-firing game is in some sense just as “expressive” as its
motorized variant. This allows, for example, the simulation of some aspects of the
dollar game, a variant of the general chip-firing game discussed by Biggs [3]. In the
dollar game, exactly one vertex, the “government,” may have a negative number of
chips and fires if and only if no other vertices can fire. We can construct a motorized
parallel chip-firing game in which we replace the government with a motor that waits
a sufficiently large number of steps between each firing such that it never fires in the
same step as another vertex. Biggs showed that every dollar game tends towards a
critical position regardless of the order of vertex firings, so this motorized parallel chip-
firing game tends towards the same critical position. Theorem 4.1 may help reveal
the extent to which the parallel chip-firing game can simulate additional aspects of
the dollar game and other general chip-firing games.

Despite the expressiveness we get due to motors, the nonclumpiness of firing pat-
terns tells us that the parallel chip-firing game is “easier” than its rules explicitly
tell us it must be. In addition to results mentioned in section 7, Theorem 6.2 is a
step towards reducing the parallel chip-firing game to one of interacting “gliders.” For
example, consider the situation in Corollary 3.3. Intuitively, we can think of this corol-
lary as stating that each firing of the motor creates a wave of gliders that travels away
from the motor. In fact, the corollary, together with Theorem 6.2, implies that every
periodic position on tree-like subgraphs must be the result of such gliders, providing
a new test that can diagnose some positions that are never repeated. Every game on
a simple cycle with period at least 3 can be described by gliders [6]. (See Figure 6.)
We believe that this approach could be used to analyze periodic behavior of games on
further classes of graphs, such as those in which each vertex is in at most once cycle.

Nonclumpiness is essentially an unwritten rule of periods in the parallel chip-firing
game, which is unusual because no local property of the firing mechanism disallows
clumpiness. By contrast, in other graph automata that are more restrictive than the
parallel chip-firing game, such as source reversal [9] (essentially a parallel chip-firing
game with exactly one chip bound to each edge), nonclumpiness is obvious, even
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locally. In the other direction, motors make it simple to show that certain stronger
restrictions do not apply to the parallel chip-firing game. For example, a path where
the leaves are motors can yield a game in which some chips cannot be bound to a
single edge, which is a property of source reversal. We might ask which restrictions
apply to which chip-firing-style games. Is the parallel chip-firing game on undirected
graphs the most general game to which an analogue of Theorem 6.2 applies?

We hope that the intuition and constructive powers of motors and the reduction
in the space of possible periodic games provided by nonclumpiness prove useful in
further research.

Appendix: The Bellman–Ford Algorithm. The following Python program
below constructs G from section 5 and shows it has no negative cycles. For a more
detailed exposition of the Bellman–Ford algorithm and a proof of its validity, see [5].

infty = float("inf")

class Vertex:

def __init__(self):

self.distance = infty

class Edge:

def __init__(self, tail, head, weight):

self.tail = tail

self.head = head

self.weight = weight

# Returns True if graph has a negative cycle or unreachable vertices.

def bellman_ford(verts, edges):

# For our purposes, the start vertex is arbitrary.

edges[0].tail.distance = 0

# Find minimum length from the start vertex to each other vertex.

for i in range(len(verts) - 1):

for e in edges:

new_distance = e.tail.distance + e.weight

if new_distance < e.head.distance:

e.head.distance = new_distance

# Find triangle inequality failures caused by negative cycles.

# Also confirms we searched entire graph (infty < infty == False).

for e in edges:

if e.tail.distance + e.weight < e.head.distance:

return True

return False

# Throughout, we use 0 instead of -1 for s_i(p), correcting when needed.

# Checks if mu_i(p,q) is compatible with the definition of a sector.

def valid_vert(mu1):

(p0, p1, s1, s2, q0, q1, t1, t2) = mu1

return (p0==s1 if p0==p1 else s1==s2) and (q0==t1 if q0==q1 else t1==t2)

# Checks if the first state can be followed by the second.

def valid_edge(mu1, mu2):

(p0a, p1a, s1a, s2a, q0a, q1a, t1a, t2a) = mu1

(p1b, p2b, s2b, s3b, q1b, q2b, t2b, t3b) = mu2

return p1a==p1b and q1a==q1b and s2a==s2b and t2a==t2b

# Calculates M_i(p,q)

def weight(mu1):

(p0, p1, s1, s2, q0, q1, t1, t2) = mu1

return (2*s1-1)*(p1-q0) + (2*t1-1)*(q1-p0) - abs(s1-s2) - abs(t1-t2)
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bits = {x : tuple((x // 2**i) % 2 for i in range(8)) for x in range(2**8)}

V = {bits[i]: Vertex() for i in range(2**8) if valid_vert(bits[i])}

E = [Edge(V[u], V[v], weight(u)) for u in V for v in V if valid_edge(u, v)]

# And Theorem 5.1 is...

print(not bellman_ford(V, E))
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