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A Geometric Approach to Nonlinear Econometric Models

By Isaiah Andrews1 and Anna Mikusheva2

Abstract

Conventional tests for composite hypotheses in minimum distance models can be unreliable

when the relationship between the structural and reduced-form parameters is highly nonlinear.

Such nonlinearity may arise for a variety of reasons, including weak identi�cation. In this note

we begin by studying the problem of testing a �curved null� in a �nite-sample Gaussian model.

Using the curvature of the model we develop new �nite-sample bounds on the distribution of

minimum-distance statistics. These bounds allow us to construct tests for composite hypotheses

which are uniformly asymptotically valid over a large class of data generating processes and

structural models.
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1 Introduction

Economists frequently �t nonlinear models using minimum-distance techniques, which

attempt to match model predictions to reduced-form parameter estimates. Conventional

tests for composite hypotheses in this setting implicitly rely on linear approximations,

such as the delta-method and �rst-order Taylor expansions, and can be unreliable in

contexts where nonlinearity is important relative to the variability of the reduced-form

parameter estimates. Such nonlinearity may arise for a variety of reasons, for example

if the model being �tted, or the restriction under test, is highly nonlinear relative to

the sample size. Relatedly, nonlinearity may result from weak identi�cation of struc-

tural parameters. In this paper we develop techniques for inference which are robust to

nonlinearity in the relationship between the structural and reduced-form parameters.
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MA 02138. Email iandrews@fas.harvard.edu. NSF Graduate Research Fellowship support under grant
number 1122374 is gratefully acknowledged.

2Department of Economics, M.I.T., 50 Memorial Drive, Building E52, Cambridge, MA, 02142. Email:
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Geometry Tobias Colding for discussing geometric issues with us, and for checking our geometric proofs.
We are grateful to Gary Chamberlain, Victor Chernozhukov, Jerry Hausman, Mattias Cattaneo, Whitney
Newey, Jim Stock, co-editor and several anonymous referees for helpful comments. A previous version of
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We �rst study the problem of testing a nonlinear hypothesis on the mean of a Gaus-

sian vector with unknown mean and known variance. We show that the distribution

of minimum-distance statistics in this context is dominated by an easy-to-simulate dis-

tribution which depends only the geometric curvature of a manifold de�ned by the null

hypothesis, measured relative to the known variance matrix. Using this bound, we derive

a novel test which controls �nite-sample size. This test is always more powerful than tests

based on the projection method, a leading alternative for this problem. Our approach

di�ers from the statistical geometry literature initiated by Efron (1975) in that we pro-

duce �nite sample bounds on the distribution of the test statistic, whereas the statistical

geometry literature is primarily concerned with higher-order asymptotic approximations.

We show that our �nite-sample bounds allow us to derive uniformly asymptotically

valid minimum-distance tests. These tests control size uniformly over a large class of

data-generating processes and structural models, allowing arbitrarily nonlinear relation-

ships between the reduced-form and structural parameters. Moreover, in cases where

conventional linear asymptotic approximations are reliable our robust tests coincide with

conventional tests asymptotically and thus do not sacri�ce asymptotic power in these

cases. We also introduce two modi�cations of our baseline procedure which o�er compu-

tational and power advantages in many contexts. Implementing our tests requires only

solving a non-stochastic optimization problem to compute geometric curvature and so

does not entail repeated simulation of the minimum distance statistic.

The paper is structured as follows. In Section 2 we introduce a �nite-sample testing

problem, derive geometric and statistical bounds, and introduce our baseline test. In

Section 3, we extend our �nite-sample results to show uniform asymptotic validity, discuss

the behavior of our test under conventional asymptotics, and compare our approach to

existing alternatives. Section 4 introduces two modi�cations of our baseline procedure

and discusses implementation. All proofs may be found in the Supplementary Appendix,

available on Anna Mikusheva's website.3 In the Supplement we further show analytically

that weak identi�cation leads to asymptotic nonlinearity in a toy DSGE example.

We use the following notation: γ̇ is the derivative of the function γ, γ̈ is the second

derivative, BR(x0) = {x ∈ Rk : ‖x− x0‖ ≤ (1 +
√

2)R} is a k-dimensional ball of radius

(1 +
√

2)R with center x0, and |A| is the cardinality of a set A.

3economics.mit.edu/faculty/amikushe
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2 Finite-sample Inference in a Gaussian Model

We consider the problem of testing a potentially non-linear hypothesis on the mean of

a multivariate Gaussian vector. Assume we observe a k-dimensional Gaussian vector θ̂

with known covariance matrix Σ and unknown mean θ0. We wish to test a p-dimensional

restriction which may be formulated either as g(θ0) = 0 for some (k − p)-dimensional

smooth function g or as θ0 = θ(β0) for a known link function θ(·) and some unknown

p-dimensional parameter β0 lying in a parameter space U ⊆ Rp.

Such testing problems arise in many contexts, for example in testing hypotheses

with nuisance parameters or in testing model speci�cation. This is the limiting testing

problem in many weakly identi�ed minimum distance models, as well as cases when

one �ts a highly nonlinear structural model based on reduced-form parameter estimates.

For example, let θ̂ be a preliminary or reduced-form estimator, which is approximately

normal with a well-estimable covariance matrix Σ. Assume the relationship between

the structural and reduced-form parameters is described by the link function θ(β) for

structural parameter β. Then testing correct model speci�cation is (asymptotically)

equivalent to testing that θ0 = θ(β0) for some β0 ∈ U . Alternatively, if there are two

structural parameters λ and β with link function θ(λ, β), then testing a hypothesis about

λ alone, H0 : λ = λ0, is equivalent to testing H0 : θ0 = θ(λ0, β) for some β ∈ U . We

base inference on the minimum distance (or for the exact Gaussian case, likelihood ratio)

statistic, which may be formulated as

MD = min
θ:g(θ)=0

(θ̂ − θ)′Σ−1(θ̂ − θ0) or MD = min
β∈U

(θ̂ − θ(β))′Σ−1(θ̂ − θ(β))

depending on the formulation of the null hypothesis.

To proceed, let us introduce the normalized random vector ξ = Σ−1/2(θ̂ − θ0) ∼

N(0, Ik) and the p-dimensional manifold S = {x : x = Σ−1/2(θ(β) − θ0), β ∈ Rp} or

S = {x : x = Σ−1/2(θ − θ0), g(θ) = 0}. Note that the manifold S is known up to

a location shift determined by the true value θ0. Thus, we know the shape of S and,

moreover, know that it passes through the origin if the null holds. The minimum distance

statistics de�ned above are simply the squared distance between ξ and S:

MD = min
x∈S

(ξ − x)′(ξ − x) = ρ2(ξ, S), (1)

where ρ is the Euclidean distance from a point to a set. The distribution of ρ2(ξ, S) is

in general non-standard and depends on the unknown θ0.

The central issue of this paper is how to �nd computationally tractable critical values
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such that tests based on ρ2(ξ, S) control size. The problem is that we do not know the

location of the true value θ0 on the null manifold, but the distribution of the statistic

depends on this value. Thus, we face a nuisance parameter problem.

We will distinguish between the linear and non-linear cases. If S is a p-dimensional lin-

ear sub-space in Rk then the squared distance ρ2(ξ, S) has a χ2
k−p distribution. Most of the

classical statistics literature deals with testing hypotheses that are either linear or asymp-

totically linear, in the sense that S is either a linear subspace or is well-approximated

by one in large samples. In particular, classical delta-method arguments assume that

the reduced-form parameter is precisely estimated relative to the nonlinearity of the null

hypothesis manifold, and thus that we can linearize the null hypothesis manifold around

the true parameter value.

By contrast, we also want to allow cases where the non-linearity of the model is im-

portant relative to the sampling error of the reduced-form parameter estimates, rendering

linear approximations unreliable. As noted by Hansen and Sargent (1991) in a discussion

of rational expectations models, �even for models that are linear in the variables the cross-

equation restrictions on the parameters can be complicated and often highly non-linear�.

Another potential source of nonlinearity in S is weak identi�cation: in the Supplemen-

tary Appendix we study an analytic DSGE example in which weak identi�cation, arising

from insu�ciently rich time-series dynamics for structural shocks, means that hypotheses

about structural parameters yield highly nonlinear null hypothesis manifolds.

One bound can be placed on ρ2(ξ, S) without any assumptions, namely that ρ2(ξ, S)

is dominated by a χ2
k distribution. Indeed, since 0 ∈ S,

ρ(ξ, S)2 = min
x∈S

(ξ − x)′(ξ − x) ≤ (ξ − 0)′(ξ − 0) ∼ χ2
k. (2)

Using this bound gives the �projection method,� which is currently the main approach

available for testing with weakly identi�ed nuisance parameters, see Dufour and Jasiak

(2001), and Dufour and Taamouti (2005). This paper proposes new critical values based

on a stochastic bound on the distribution of the MD statistic. These critical values

are smaller than those used by the projection method and coincide with χ2
k−p critical

values for linear hypotheses. This bound is based on measuring the curvature of the null

hypothesis relative to the variance Σ of the reduced-form parameter estimates.
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2.1 Geometric Concepts

In this paper we focus on regular manifolds embedded in k-dimensional Euclidean space.

A subset S ⊂ Rk is called a p-dimensional regular manifold if for each point q ∈ S there

exists a neighborhood V in Rk and a twice-continuously-di�erentiable map x : Ũ →

V
⋂
S from an open set Ũ ⊂ Rp onto V

⋂
S ⊂ Rk such that (i) x is a homeomorphism,

which is to say it has a continuous inverse and (ii) the Jacobian dxq has full rank. A

mapping x which satis�es these conditions is called a parametrization or a system of local

coordinates.

For x a system of local coordinates at q, the set of all tangent vectors to S at q

coincides with the linear space spanned by the Jacobian dxq and is called the tangent

space to S at q (denoted Tq(S)). Denote by γ : (−ε, ε)→ S a curve which lies in S and

passes through q = γ(0). The measure of curvature we consider is

κq(S) = sup
X∈Tq(S),γ̇(0)=X

κq(γ, S) = sup
X∈Tq(S),γ̇(0)=X

∥∥(γ̈(0))⊥
∥∥

‖γ̇(0)‖2
, (3)

where (W )⊥ stands for the projection of W onto the space orthogonal to Tq(S). This

measure of curvature is equal to the maximal curvature over all geodesics passing through

the point q and is invariant to the parametrization. If S is a p-dimensional sphere of radius

C then for each q ∈ S we have κq(S) = 1/C. If, on the other hand, S is a linear subspace

its curvature is zero at all points. Further discussion of geometric concepts is deferred to

the Supplementary Appendix.

How to calculate curvature in practice. Let S be a p-dimensional manifold in Rk,

and x a local parametrization at a point q, q = x(y∗). Denote the derivatives of x at

q by vi = ∂x
∂yi

(y∗), and let Z = (v1, ..., vp). For any vector W ∈ Rk let W⊥ = NZW =

(I−Z(Z ′Z)−1Z ′)W . Finally, denote the p2 vectors of second derivatives Vij = ∂2

∂yi∂yj
x(y∗).

The curvature can then be written as

κq(S) = sup
u=(u1,..,up)∈Rp

‖
∑p

i=1 uivi‖=1

∥∥∥∥∥
p∑

i,j=1

uiujV
⊥
ij

∥∥∥∥∥ = sup
(w1,...,wp)∈Rp

∥∥∥∑p
i,j=1 wiwjV

⊥
ij

∥∥∥
‖
∑p

i=1wivi‖
2 . (4)

2.2 Geometric Bounds

We bound the distance in Rk from a random vector ξ ∼ N(0, Ik) to a p-dimensional non-

random manifold S that contains zero. Our bound depends on the maximal curvature
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Figure 1: Left panel: Bounding a line between two curves in Case 1. Middle panel: the envelope for a
space curve in R3 in Case 2. Right panel: The stochastic bound described in Theorem 1 (d).

κq(S) over all relevant points in the manifold S. The bound depends on global properties

of the manifold, in the sense of properties that hold on a �xed bounded set, but the

behavior of the manifold at in�nity is irrelevant. In what follows, we restrict attention

to a connected part of the manifold that lies inside of a �nite cylinder centered at zero.

We derive our bound in two steps: �rst, we construct an envelope for the manifold S

using a collection of p-dimensional spheres. We show that the distance from any point ξ

to S is bounded above by the distance from ξ to the most distant sphere in the collection

we consider. Second, we show that our geometric construction implies a bound on the

distribution of ρ2(ξ, S) and hence on the distribution of the minimum distance statistic.

To provide intuition for our main statement we �rst discuss two simple cases in which

the construction of the envelope can be easily visualized.

Case 1 (k=2, p=1): A curve in R2. Consider a curve S passing through zero (i.e.

(0, 0) ∈ S). Suppose that the curvature of S is less than or equal to 1/C for all points

in S. If we imagine two circles of radius C tangent to S at zero, we can see that S lies

between them- see the left panel of Figure 1 for illustration. The distance from any point

ξ to S (denoted by d1 in the left panel of Figure 1) does not exceed the distance from ξ

to the further of the two circles (denoted by d2). This is the geometrical bound we use.

Note that if the maximal curvature of S goes to zero at all points (so that C → ∞)

then the two bounding circles converge to the tangent line to S at zero on any bounded

set. Further, note that the distribution of the distance d2 from a normal random vector

to the furthest of two circles depends only on C and is easy to simulate.

The logic of this example is quite straightforward to generalize to the case of a k− 1-

dimensional manifold in Rk, known as a hyper-surface. Dealing with manifolds of lower

dimension is more challenging, but the basic principle of the approach can be illustrated
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using a curve in R3.

Case 2 (k=3, p=1): A curve in R3. Suppose now that we have a one-dimensional

space curve S in R3 that passes through zero and whose curvature at all points is

bounded above by 1/C. We construct our envelope by considering the collection of

all one-dimensional circles of radius C tangent to S at zero. Equivalently, one can take

a given circle tangent to S at zero and rotate it around the tangent line. An example of

the resulting surface is given on the middle panel of Figure 1: we can again see that the

curve S lies inside the envelope.

One can show that the distance from any point ξ to the curve S (denoted by d1 in the

middle panel of Figure 1) is bounded above by the distance from ξ to the furthest circle

in the collection used to construct the envelope (denoted d2). Note that if the curvature

of S goes to zero at all points (so that C → ∞) then on any bounded set the envelope

converges to the tangent line to S at zero.

This geometric bound immediately implies a bound on the distribution of ρ2(ξ, S).

For ξ ∼ N(0, I3) the distribution of the distance d2 from ξ to the furthest circle is simple

to simulate. One can show that it is distributed as the squared distance from a two-

dimensional random vector η to the circle of radius C with center (0,−C) where the

coordinates of η are distributed as independent
√
χ2

1 and
√
χ2

2 random variables.

General case With the intuition provided by these examples, we now turn to the

general case. Let S be a regular connected p-dimensional manifold in Rk passing through

zero. By the rotation invariance of standard normal vectors we can assume without loss of

generality that the tangent space T0(S) to manifold S at zero is spanned by the �rst p basis

vectors. For each x ∈ Rk, let x = (x(1), x(2)) where x(1) = (x1, ..., xp) ∈ Rp contains the

�rst p coordinates of x while x(2) = (xp+1, ..., xk) ∈ Rk−p contains the last k− p. In what

follows, we restrict attention to points on the manifold that lie inside of a (large) �nite

cylinder DC = {x = (x(1), x(2)) : ‖x(1)‖ ≤ C, ‖x(2)‖ ≤ C, x(1) ∈ Rp, x(2) ∈ Rk−p} ⊂ Rk.

Let SC be the intersection S
⋂
DC if it is connected or the connected part of S

⋂
DC that

passes through zero (that is, the part of S
⋂
DC which can be reached by continuous paths

lying in S
⋂
DC which pass through zero) otherwise. Note that ρ(ξ, S) ≤ ρ(ξ, SC).

To obtain some of our bounding results, we need one further assumption:
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Assumption 1 For any y(1) ∈ Rp with
∥∥y(1)

∥∥ ≤ C there exists a point x ∈ SC such that

x(1) = y(1).

Since we assumed (without loss of generality) that the tangent space T0(S) is spanned by

the �rst p basis vectors, Assumption 1 requires that the projection of SC on its tangent

space at zero cover a p-dimensional ball of radius C centered at zero, and hence that SC

have dimension p in a global sense. By a local property we mean one that holds on an

in�nitesimal neighborhood of a point. In contrast, by a global property we mean one that

holds on a �xed bounded set. Lemma 1 shows that Assumption 1 holds quite generally

for implicitly de�ned manifolds.

Lemma 1 Let the p-dimensional manifold S in Rk be de�ned by S =
{
x ∈ Rk, g (x) = 0

}
for a continuously di�erentiable function g : Rk → Rk−p. Assume that g(0k) = 0. For

some C > 0 assume that ∂
∂x′
g (x) is full rank for all x ∈ SC. If the maximal curvature

over SC is not larger than 1/C, then the projection of SC on the tangent space T0(SC)

covers the ball of radius C centered at zero.

Theorem 1 Let S be a regular p-dimensional manifold in Rk passing through zero. As-

sume that the tangent space T0(S) is spanned by the �rst p basis vectors. Assume that

for some constant C > 0 we have that κq(S) ≤ 1
C

for all points q ∈ SC. Then:

(a) Manifold SC lies inside the setM∩DC, where

M = {‖x(1)‖2 + (C − ‖x(2)‖)2 ≥ C2}. (5)

(b) If Assumption 1 is satis�ed, then for any point ξ ∈ Rk we have almost surely

ρ(ξ, S) ≤ max
u∈Rp−k,‖u‖=1

ρ(ξ,Nu),

where Nu = {x ∈ Rk : x = (x(1), zu), x(1) ∈ Rp, z ∈ R+, ‖x(1)‖2 + (C − z)2 = C2}.

(c) Almost surely maxu∈Rp−k,‖u‖=1 ρ(ξ,Nu) = ρ(ξ,Nũ), where ũ = − 1
‖ξ(2)‖ξ

(2).

(d) If ξ ∼ N(0, Ik) we have for all x, y:

P

{
max

u∈Rp−k,‖u‖=1
ρ2(ξ,Nu) ≤ x, ‖ξ‖ ≤ y

}
= P

{
ρ2

2(η,NC
2 ) ≤ x, ‖η‖ ≤ y

}
,

where the coordinates of the 2-dimensional random vector η = (
√
χ2
p,
√
χ2
k−p) ∈ R2

are independently distributed, NC
2 = {(z1, z2) ∈ R2 : z2

1 +(C+z2)2 = C2} is a circle

of radius C with the center at (0,−C), and ρ2 is Euclidean distance in R2.
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Theorem 1 (a) establishes that the manifold SC lies inside the set M bounded by

an envelope we construct from a collection of p-dimensional spheres Nu. Statement (b)

asserts that the distance from a point ξ to the manifold S is bounded by the distance

from ξ to the furthest sphere in this collection, while (c) picks out exactly which sphere

Nũ(ξ) is the furthest away for a given ξ. Finally, (d) shows that the distribution of the

distance from ξ ∼ N(0, Ik) to Nũ(ξ) is the same as the distribution of the distance from a

random variable η to a particular circle in R2 as depicted in the right panel of Figure 1.

2.3 Stochastic Bound

Theorem 1 implies a bound on the distribution of the distance from ξ ∼ N(0, Ik) to a

p-dimensional manifold S. Assume that for some C > 0, S satis�es all the assumptions

of Theorem 1 including Assumption 1. Then almost surely,

ρ2(ξ, S) ≤ ρ2(ξ,Nũ), (6)

as follows from statements (b) and (c) of Theorem 1. By Theorem 1 (d), the distribution

of the right hand side of (6) is the same as the distribution of the random variable ψC

ψC = ρ2
2(η,NC

2 ), (7)

where the coordinates of the two-dimensional random vector η = (
√
χ2
p,
√
χ2
k−p) ∈ R2

are independently distributed, NC
2 = {(z1, z2) ∈ R2 : z2

1 + (C + z2)2 = C2} is a circle

of radius C with the center at (0,−C), and ρ2 is Euclidean distance in R2. Combining

these results, we establish the bound

P
{
ρ2(ξ, S) ≥ x

}
≤ P {ψC ≥ x} for all x > 0,

so the distribution of ψC is an upper bound on the distribution of ρ2(ξ, S).

Note that the distribution of ψC depends only on the dimension of the space k, the

dimension p of the manifold, and the maximal curvature 1
C
. The distribution of ψC is

stochastically increasing in the maximal curvature and hence stochastically decreasing

in C, so if C1 < C2 then ψC1 �rst-order stochastically dominates ψC2 . As C → ∞

ψC ⇒ χ2
k−p, so if the curvature converges to zero at all relevant points then our bounding

distribution converges to the distribution of the distance from ξ ∼ N(0, Ik) to a p-

dimensional linear subspace. At the other extreme, ψC ⇒ χ2
k as C → 0 so if the curvature

of the manifold becomes arbitrarily large our bound coincides with the naive bound (2)

that can be imposed without any assumptions on the manifold.
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We want to emphasize that what we suggest is a stochastic bound that holds under

quite general assumptions. If the model of interest has additional structure, this can

potentially be exploited to obtain tighter bounds.

2.4 Construction of a Feasible Test

If the manifold S satis�es the assumptions of Theorem 1 then theMD statistic is stochas-

tically dominated by ψC under the null. Thus if we use F1−α(C, k, p), the (1−α)-quantile

of ψC (which is easy to simulate), as a critical value the resulting test has size at most α.

A practical question is what value of C to use. According to Theorem 1, C is tied

to the maximal curvature of S over the intersection of S with a cylinder DC centered

at zero. In practice, however, we do not observe the manifold S, which depends on

the unknown θ0. Nonetheless, we can see that the desired curvature is the same as the

maximal curvature of the observed manifold S∗ = {Σ−1/2θ(β), β ∈ U ⊂ Rp} ⊂ Rk over

all points in the intersection of S∗ with the cylinder D∗C(x0) = {x ∈ Rk : x − x0 ∈ DC}

centered at x0 = Σ−1/2θ0. This maximal curvature, in turn, is clearly bounded above by

the maximal curvature over the whole manifold, so if we take C∗ = 1/ (maxq∗∈S∗ κq∗(S
∗)),

using critical values based on ψC∗ provides a test that controls size. Moreover, since C∗

does not depend on any unobservables, a test based on these critical values is feasible.

3 Asymptotic Properties

The procedure described above controls �nite-sample size when the reduced-form pa-

rameter estimates are normally distributed with known covariance. In practice, however,

reduced-form parameter estimates θ̂ are only approximately normally distributed, and

researchers must estimate the covariance matrix Σ. This section obtains uniform asymp-

totic results, discusses the performance of our approach under conventional asymptotics,

and compares our approach to others available in the literature.

3.1 Uniformity

We de�ne a model to be a set consisting of a true value of the k-dimensional reduced-

form parameter θ0, a data generating process Fn consistent with θ0, and a link function

connecting the structural and reduced-form parameters, or more generally a manifold S̃n

10



describing the null hypothesis H0 : θ0 ∈ S̃n. We assume that the null holds. We allow

the data generating process Fn and the structural model S̃n to change with the sample

size n; this accommodates sequences of link functions such as those which arise under

drifting asymptotic embeddings, for example the weak identi�cation embeddings of D.

Andrews and Cheng (2012) and Stock and Wright (2000). It also allows us to model

the case when the researcher tries to �t a more complicated or nonlinear model when

she has a larger sample. Suppose we have an estimator, θ̂n, which will be asymptotically

normal with asymptotic covariance matrix Σ = Σ(Fn). Let Σ̂n be an estimator for Σ. We

consider the set of possible modelsM = {M : M = (θ0, {Fn}∞n=1, {S̃n}∞n=1)} and impose

the following assumption.

Assumption 2

(i)
√
nΣ−1/2(θ̂n − θ0)⇒ N(0, Ik) uniformly overM;

(ii) Σ̂n − Σ→p 0 uniformly overM;

(iii) The maximal and minimal eigenvalues of Σ are bounded above and away from zero

uniformly overM;

(iv) For each n and manifold Sn = {x =
√
nΣ−1/2(y − θ0), y ∈ S̃n}, the manifold Sn

satis�es Assumption 1 for C = Cn = 1/ supq∈Sn
κq(Sn).

Assumption 2(i) and (ii) require that the reduced-form parameter estimates are uni-

formly asymptotically normal with a uniformly consistently estimable covariance matrix.

This assumption holds quite generally for many standard reduced-from estimators, such

as OLS estimates and sample covariances, over large classes of models. Care is needed

when using parameter estimates from ARMA models, however, as these models can suf-

fer from near-root cancellation, leading to non-standard large-sample behavior (see D.

Andrews and Cheng (2012)). Assumption 2(iii) uniformly bounds the eigenvalues of the

asymptotic covariance matrix above and below, and will generally follow from a uniform

bound on the moments of the data generating process. Finally, Assumption 2(iv) imposes

Assumption 1. For implicitly de�ned manifolds, this will again follow from Lemma 1.

Description of the procedure. Let us introduce a manifold Ŝn = {
√
nΣ̂
−1/2
n (x − θ0) :

x ∈ S̃n}, which di�ers from Sn in using an estimator Σ̂n in place of Σ. Let4 Ĉn =

4Note that Ŝn depends on θ0 but that Ĉn can also be written as Ĉn = 1/(supq∈Ŝ∗
n
κq(Ŝ∗n)) for

Ŝ∗n = {
√
nΣ̂
−1/2
n (x) : x ∈ S̃n}, and so can be calculated.

11



1/(supq∈Ŝn
κq(Ŝn)). Our main test uses the statistic nminθ∈S̃n

(θ̂n − θ)′Σ̂−1
n (θ̂n − θ) along

with critical value F1−α(Ĉn, k, p), where we denote by F1−α(C, k, p) the (1− α)-quantile

of the random variable ψC discussed in Section 2.3.

Theorem 2 If Assumption 2 holds, then the testing procedure described above has uni-

form asymptotic size α:

lim sup
n→∞

sup
M∈M

P

{
nmin
θ∈S̃n

(θ̂n − θ)′Σ̂−1
n (θ̂n − θ) > F1−α(Ĉn, k, p)

}
≤ α.

This result establishes the uniform asymptotic validity of our test allowing for arbi-

trarily nonlinear (or linear) behavior in the sequence of null hypothesis manifolds S̃n.

The key to this result is that our critical values re�ect the curvature of the null hypothe-

sis manifold measured relative to the uncertainty about the reduced-form parameters for

each sample size.

3.2 Curvature Under Conventional Asymptotics

Our method complements conventional asymptotic results, in the sense that if classical

assumptions guaranteeing asymptotic linearity hold, then our robust critical values con-

verge to the conventional ones. Consider a sample of size n from a model parameterized

by structural parameter β that belongs to some bounded set U ⊂ Rp and assume that
√
n(θ̂ − θ0) ⇒ N(0,Σ). Assume that the relation between structural and reduced-form

parameters θ = θ(β) is �xed, twice continuously di�erentiable with respect to β, and

that the matrix ∂
∂β
θ(β) is full rank on a neighborhood of β0, which is the only point

in the closure of U that solves θ0 = θ(β). We also assume that β0 belongs to the inte-

rior of U . The null hypothesis manifold Sn for sample size n is the graph of function

xn(β) =
√
nΣ−1/2(θ(β)− θ0), β ∈ U . The maximal curvature over all points of the man-

ifold Sn is equal to 1/
√
n times the maximal curvature of the manifold S1 obtained for

the sample of size 1, assuming the maximal curvature is �nite. Consequently, the critical

value F1−α(Cn, k, p) converges to the (1−α)-quantile of a χ2
k−p-distribution, which is the

true asymptotic distribution.

3.3 Other Methods for Testing with Nuisance Parameters

The main area of application of our method is testing in the presence of nuisance pa-

rameters. There exist several alternatives. One approach widely used in practice is the

12



projection method, which was popularized in econometrics by Dufour and Jasiak (2001)

and Dufour and Taamouti (2005). Applied in our setting, the projection method uses

χ2
k critical values and requires no assumptions beyond the asymptotic normality of θ̂.

However, projection method critical values are larger than those used by our method,

resulting in less powerful inference in cases where our assumptions hold. Only in the

limiting case of in�nitely high curvature (C = 0) do our critical values equal those of the

projection method.

An alternative to projection is to impose assumptions like those stated in Section 3.2

(typically labeled as strong identi�cation assumptions) and use χ2
k−p critical values. The

obvious advantage of this approach is that it is strictly more powerful than the projection

method. However, the assumptions of Section 3.2 are essential, and the test may over-

reject if these assumptions fail. For example, in the Supplementary Appendix we show

that weak identi�cation may lead to signi�cant curvature and invalidate χ2
k−p critical

values. By contrast, the test we suggest in this paper does not rely on such assumptions.

In the particular case of linear instrumental variables models with homoskedastic

errors and multiple endogenous regressors, Guggenberger et. al. (2012) show that one

may use the MD statistic with χ2
k−p critical values even when the nuisance parameter

may be poorly identi�ed. By contrast, in linear IV our approach uses χ2
k critical values.

5

However, the result of Guggenberger et. al. (2012) does not hold in more general settings.

In particular, Lee (2014) provides examples of non-homoskedastic IV models in which

χ2
k−p critical values lead to over-rejection.

Another alternative, developed by D. Andrews and Cheng (2012), assumes we know

which parameters are weakly identi�ed and that there is a known parameter that con-

trols the strength of identi�cation. They then create robust tests by simulating the

asymptotic distribution of the test statistic for di�erent values of nuisance parameters

and taking the �least favorable� among those distributions over a set of relevant nuisance

parameter values. Unfortunately, this approach can become quite computationally de-

manding in models with more than a few nuisance parameters. Moreover, the assumption

that a known parameter controls the strength of identi�cation rules out many models of

economic interest. As one might expect given the additional structure imposed by D. An-

5The null hypothesis manifold in linear IV with multiple endogenous regressors is irregular, having a
singularity when the �rst stage is equal to zero. One can resolve this by applying the approach described
below to project over the endogenous regression coe�cients not under test, resulting in χ2

k critical values.
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drews and Cheng's approach, in contexts where both their results and those developed

in this paper can be applied, their approach will generally yield more powerful tests.

Other recent work on testing with nuisance parameters includes Elliott et al. (2015),

McCloskey (2015), and Moreira and Moreira (2013).

4 Modi�cations and Implementation

The baseline procedure described in Section 2.4 uses the maximal curvature C∗ over

the whole manifold and with respect of all parameters. In this section we discuss two

modi�cations which may allow us to further reduce the critical values. For brevity, we

present these modi�cations under the assumption that θ̂ is exactly normal with known

covariance, but the asymptotic properties of these modi�cations are established in the

Supplementary Appendix.

4.1 Modi�cation 1: Curvature Over a Smaller Set

There are a variety of problems in which using C∗ may be unappealing. For example, it

may be that searching numerically for the maximal curvature over the whole manifold is

quite time-consuming, or that the manifold has irregularities or points of high curvature

which are far away from θ0. In such cases we may wish to restrict attention to the

curvature of the manifold over some smaller set, which raises two issues. First, we do

not know the true value θ0 and hence the center of the cylinder D∗C(x0). Second, if the

manifold is close to �at (so C is large) to �nd the maximal curvature over D∗C(x0) we

might need to check curvature over a huge set, which could again be very computationally

demanding.

We suggest a modi�cation which overcomes both of these problems and is easy to

implement in practice. For a �xed value R, let C ∧ R = min{C,R}. Denote by

F1−α(C,R, k, p) the (1− α)−quantile of the distribution of ψC(R) de�ned as

ψC(R) =

 ρ2
2(η,NC

2 ) if ‖η‖ ≤ R;

‖η‖2 if ‖η‖ > R,
(8)

where η and and NC
2 are de�ned in statement (d) of Theorem 1. For any �nite R the

distribution of ψC(R) �rst order stochastically dominates the distribution of ψC . In

Lemma 2 below we show that one may calculate curvature only over that part of the

14



manifold lying inside a ball of radius proportional to R, but that one must compensate

for this by using larger critical values, speci�cally quantiles of ψC(R) rather than ψC .

This is the price paid for calculating curvature over a smaller set of points.

Lemma 2 Assume that we have a single observation θ̂ from a population θ̂ ∼ N(θ0,Σ)

with unknown mean θ0. We wish to test the hypothesis H0 : θ0 ∈ S̃. Let S∗ = {Σ−1/2θ, θ ∈

S̃} ⊂ Rk be a regular p-dimensional manifold, and B∗ = BR(x̂) a ball of radius (1+
√

2)R

around x̂ = Σ−1/2θ̂, where R is such that P{χ2
k ≥ R2} < α. Let

C∗R =


(
minq∗∈S∗⋂B∗ 1/κq∗(S

∗)
)
∧R, if S∗

⋂
B∗ 6= ∅;

0, if S∗
⋂
B∗ = ∅.

Suppose that Assumption 1 holds for C∧R where C = 1/ supq∈S∩DR
κq(S). Then the test

which rejects the null if and only if MD > F1−α(C∗R, R, k, p) has size not exceeding α.

4.2 Modi�cation 2: Working with a Subset of Parameters

The procedures discussed above treat the multi-dimensional vector β in such a way that

only the direction of highest curvature a�ects the value of C and thus in�uences the

critical values. Imagine instead that β can be divided into two subsets of parameters

β = (β′1, β
′
2)′ in such a way that the curvature corresponding to directions β1 is low.

Then by calculating curvature only with respect to β1, while projecting over β2, we

may be able to obtain smaller critical values. Moreover we can search over di�erent

partitions of β and use the one which gives us the smallest critical value. To state this

result formally, let J be a subset of indexes {1, ..., p}, let βJ denote the corresponding

elements of β, and let β−J denote the remaining elements. Let U−J and UJ(β−J) denote

{β−J : ∃βJ ∈ R|J | s.t. (βJ , β−J) ∈ U} and {βJ ∈ R|J | : (βJ , β−J) ∈ U)}, respectively. Let

J be a collection of subsets J .

Lemma 3 Assume that θ̂ ∼ N(θ0,Σ), and that S∗ =
{

Σ−1/2θ(β), β ∈ Rp
}
⊆ Rk is

a manifold passing through θ0. For J ∈ J and β−J ∈ U−J consider the |J |-dimensional

sub-manifold

S∗(β−J) = {Σ−1/2θ(βJ , β−J), βJ ∈ UJ(β−J)}.

For q ∈ S∗(β−J) let κq(S
∗(β−J)) be the curvature of the |J |-dimensional sub-manifold

S∗(β−J). De�ne

C∗J = inf
β−J∈U−J

inf
q∈S∗(β−J )

1

κq(S∗(β−J))
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to be the inverse of the maximal curvature with respect to sub-parameter βJ only, where

the maximum is taken over all |J |-dimensional sub-manifolds S(β−J). Assume that for

β−J,0 the true value of β−J , S(β−J,0) =
{
x− Σ−

1
2 θ0 : x ∈ S∗(β−J,0)

}
satis�es Assumption

1 with C = C∗J . Then the test which rejects the null if and only if MD > F1−α(C∗J , k, |J |)

has size at most α. In fact, we can minimize the critical values over J , and the test

which rejects if and only if MD > minJ∈J F1−α(C∗J , k, |J |) has size at most α.

Critical values F1−α(C∗J , k, |J |) may be smaller than those based on the full parameter

vector due to smaller curvature, or larger since |J | ≤ p. Note, however, that so long as

J includes the full set of indices {1, ..., p}, minimizing critical values over J can only

decrease our critical values relative to the baseline procedure. Moreover, this modi�cation

may be freely combined with that in the previous section, allowing us to simultaneously

restrict attention to a �nite ball around θ̂ and calculate curvature over only a subset of

parameters. See Lemma S2 in the Supplement for a formal statement.

4.3 Implementation

This section summarizes how to use the results above to calculate curvature and critical

values. Our discussion here will assume the manifold has an explicit global parameteri-

zation. These results may be generalized to implicitly de�ned manifolds, as the implicit

function theorem guarantees the existence of local parameterizations at all points.6 The

null hypothesis is H0 : θ0 = θ(β), β ∈ U.

In using the �rst modi�cation (Section 4.1), the appropriate choice of R will depend on

the problem under study. Critical values are strictly decreasing in R, but are increasing

in the maximal curvature. If the manifold S∗ has singularities or points of very high

curvature then it will be bene�cial to choose a smaller value of R, since this gives us a

better chance of excluding these points and obtaining small critical values. Likewise, in

cases where the curvature optimization problem given below is computationally taxing,

choosing a smaller R will reduce the domain over which we have to search. The choice of

R is closely related to the choice of an initial con�dence set in a Bonferroni procedure.

For the second modi�cation (Section 4.2), from a theoretical perspective it is optimal

to choose J = 2{1,...,p}, since search over the collection of all subsets gives the smallest

6Note that many implicitly de�ned manifolds also have an explicit representation. Thus, the assump-
tion of a global parameterization does not preclude the application of Lemma 1
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possible critical value. In high-dimensional cases, however, such a search will be unap-

pealing. Happily, in many problems the structure of the link function θ suggests some

subset of parameters which are likely to contribute to high curvature, allowing us to

restrict attention to this subset. More generally, if researchers have ex-ante knowledge

about which subsets of parameters tend to be problematic for conventional approaches

to inference this can inform the choice of J .

Given choices of R and J , for each J ∈ J and i, j ∈ J de�ne

ZJ(β) = Σ−
1
2
∂

∂βJ
θ(β), VJ,ij(β) = Σ−

1
2

∂2

∂βi∂βj
θ(β)

V ⊥J,ij(β) =(I − ZJ(β)(ZJ(β)′ZJ(β))−1ZJ(β)′)VJ,ij(β) = NZJ (β)VJ,ij(β).

We can then calculate the maximal curvature over subset J and ball BR(x̂) = {x :

‖x− Σ−
1
2 θ̂‖ ≤ (1 +

√
2)R} and de�ne

C∗J,R =

 inf
β∈U :Σ−

1
2 θ(β)∈BR(x̂)

inf
(w1,...,w|J|)∈R|J|

‖ZJ(β)w‖2∥∥∥∑|J |i,j=1wiwjV
⊥
ij (β)

∥∥∥
 ∧R.

This is a p + |J |-dimensional optimization problem, which may be solved by standard

techniques. We want to emphasize that no simulation is required to calculate C∗J,R. For

each J we simulate F1−α(C∗J,R, R, k, |J |) as the 1− α quantile of random variable ψC(R)

as de�ned in (8) with C = C∗J,R. If |J | > 1 then we use the smallest critical value,

minJ∈J F1−α(C∗J,R, R, k, |J |).
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